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Abstract 

 Coefficient omega is a model-based reliability estimate that is unrestricted by 

assumptions of a unidimensional essentially tau equivalent model. Rather, omega can be adapted 

to suit the underlying factor structure of a given population. A Monte Carlo simulation was used 

to investigate the performance of unidimensional omega and omega-hierarchical under 

circumstances of model misspecification for high and low reliability measures and different scale 

lengths. In general, bias increased with the amount of unmodeled complexity (i.e. unspecified 

multidimensionality or error correlations). When models were misspecified, observed bias was 

higher when true population reliability was lower, and increased with scale length. Less variable 

estimates were observed when true reliability and sample size were higher. 
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Introduction 

 Reliability estimates provide information about how well an observed score represents 

the construct being measured. Although coefficient alpha (Cronbach, 1951; Guttman, 1945) has 

long reigned as the most commonly reported reliability statistic for composite score reliability, 

the assumptions on which it is based are easily violated, resulting in biased estimates of true 

reliability (e.g. Dunn et al., 2014; Graham, 2006; Green & Yang, 2009; Raykov, 1997). In 

particular, multidimensionality can result in strong bias and render coefficient alpha estimates 

uninterpretable (Stanley & Edwards, 2016). Instead, a more accurate and interpretable estimate 

can be obtained by using the parameters of a confirmatory factor analysis (CFA) to calculate 

model-based reliability in the form of coefficient omega (McDonald, 1999). However, true 

population models cannot be known, and researchers must rely on a variety of statistical 

methods, previous evidence, and theory support their theorized structures. Simulations have 

suggested that goodness of fit statistics may be biased in favour of certain models, such as the 

bifactor model (e.g. Bonifay & Cai, 2017; Reise et al., 2016). As a result, the CFA could be 

misspecified, and the estimate of omega based on incorrect values. As yet, the degree to which 

different coefficient omega statistics differ from true reliability when the model is incorrectly 

specified is not known. Using a Monte Carlo simulation, this thesis will investigate the 

performance of coefficient omega for unidimensional models and omega-hierarchical in cases of 

misspecified models. Additionally, both estimates will be calculated using the observed variance 

as well as the model-implied variance to test the assertion that these results are equal (Kelley & 

Pornprasertmanit, 2016) when the model is incorrect. 

Classical Test Theory and Reliability 

 Following from Classical Test Theory (CTT; Lord & Novick, 1968), for any test 
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component (i.e., item) j, the observed score (𝑥𝑗) is presumed to be equal to the sum of an 

individual i’s true score for the item (𝜏𝑗) and error (𝜀𝑗). For any test that can be represented by a 

total composite score X, it follows that 

𝑋𝑖 =  ∑ 𝜏𝑖𝑗 +

𝐽

𝑗=1

∑ 𝜀𝑖𝑗

𝐽

𝑗=1

 

Here, the true score represents an individual’s score for systematic influences on the test (such as 

the underlying construct). Conversely, the error term captures noise left over, which may 

positively or negatively impact the individual’s observed score relative to their true score. 

Theoretically, across infinite parallel test items, this error should cancel to 0, leaving the 

observed and true total scores to be equal. However, for any individual test, there will always be 

some degree of error. The amount of error relative to true score, which is quantified by 

reliability, must be understood to evaluate the usefulness of a given measure. Population 

reliability of a composite score can be defined as  

𝜌(𝑋) =  
𝜎𝜏

2

𝜎𝑋
2 

where 𝜎𝜏
2 represents the variance due to total true score and 𝜎𝑋

2 represents the overall composite 

score variance. Reliability therefore represents the proportion of total variance which is 

attributable to the true score. However, the challenge faced in practice is that neither true score 

nor error can be directly observed. As a result, reliability can only be approximated, and there are 

many different methods to do so. 

Coefficient Alpha 

 Coefficient alpha (𝛼), also known as Cronbach’s alpha (Cronbach, 1951; Guttman, 1945), 

is the most common reliability estimate and, in many cases, the only estimate reported (Flake et 

al., 2017). The ubiquity of coefficient alpha may be part of its appeal, substituting ease for 
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precision (Black et al., 2015). Unlike alternative measures of reliability discussed later, 

coefficient alpha can be calculated from a single test administration and requires only the 

computation of a covariance matrix or item variances and an unweighted total score. Reliability 

analysis from statistical software such as SPSS will report coefficient alpha as its main or only 

output, and few applied researchers are aware of its alternatives (Black et al., 2015; Yang & 

Green, 2011). 

 Coefficient alpha represents the mean split-half correlation for every possible split of 

items for a given scale adjusted for scale length (Cronbach, 1951). With a single administration 

of a scale, assuming item errors are uncorrelated, a lower-bound estimate of reliability can be 

calculated from 

𝛼 =  
𝐽

𝐽 − 1
(1 −

∑ 𝜎𝑦𝑗

2𝐽
𝑗=1

𝜎𝑋
2 ) 

where J is the number of items in the scale, 𝜎𝑦𝑗

2  is the variance for item j, and 𝜎𝑋
2 is the composite 

score variance. This formula may be expressed equivalently as 

𝛼 =
𝐽2𝜎𝑗𝑗′

𝜎𝑋
2  

where 𝜎𝑗𝑗′ is the average covariance among the items (Green & Yang, 2015; McDonald, 1999).  

 The formula for coefficient alpha is based on the assumption of fungible units, which 

treats any one item as interchangeable with any other item without changing scale properties. 

This assumption can be relaxed to take the form of the essentially tau-equivalent model, a factor 

analytic model wherein all items load equally onto a single factor representing a single 

underlying construct. Items are free to vary in intercepts, but the slopes remain the same. Slopes, 

in the case of a factor analytic equation, represents the factor loadings of items, which quantify 

how the underlying construct represented by a factor influence items on a scale. Thus, in the tau-
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equivalent model, all items are directly influenced in the same way by a single common factor. 

The equation can be centered around 0 to negate the intercept. Thus, the equation for the total 

score of a one-factor tau-equivalent model can be expressed as 

𝑋𝑖 =  ∑ 𝜆𝑓𝑖𝑗 + ∑ 𝑒𝑖𝑗

𝐽

𝑗=1

𝐽

𝑗=1

  

where X is the total observed score of individual i for a test comprised of j items, 𝜆 is the factor 

loading for all items onto the single factor, 𝑓𝑖 is the factor score for individual i, and ei is the error 

term associated with the items. The true score for any individual is thus the product of the factor 

loading and their own factor score. Factor score variance can be set to 1 in order to define the 

factor’s metric, and coefficient alpha can be calculated using the parameters from the tau-

equivalence model such that  

𝛼 =  
𝐽2𝜆2

𝜎𝑋
2  

where 𝜆 is the factor loading for all items onto a single factor (Green & Yang, 2015). 

 However, the tau-equivalence model demands important assumptions that must be met 

for coefficient alpha to be an unbiased estimate of true reliability: (1) the scale must be 

unidimensional such that all items are influenced by a single underlying construct, (2) factor 

loadings must be equal, such that all items are influenced in the same magnitude and direction, 

and (3) the errors are independent across items. Violations of these assumptions can result in a 

biased estimate of true reliability. 

 Essential tau equivalence is unlikely to be true under any real-world condition. Even 

when a scale is truly unidimensional, it is improbable that each item will have the same 

relationship with the factor. Factor loadings often vary widely, and this variance will result in 

underestimation of reliability by coefficient alpha (Graham, 2006; Green & Yang, 2009; Raykov, 
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1997). Simulations have shown this bias may be as strong as 11.1% under severe violations 

(Raykov, 1997). However, Savalei and Reise (2018) point out that the worst biases are likely to 

occur for short scales where one item has a high loading while the others are low, and that these 

scales are likely to already have low reliability. When other assumptions are met, coefficient 

alpha can serve simply as a lower-bound reliability estimate (Lord & Novick, 1968). 

 Violations of unidimensionality and uncorrelated errors can result in much more 

troubling consequences. Error covariances among items will produce bias in the direction of the 

covariance with a magnitude relative to its strength (Fleishman & Benson, 1987; Maxwell, 1968; 

Raykov, 2001). Yang and Green (2011) posit that residual correlations between items tend to be 

positive, producing an over-estimate of reliability. This effect was demonstrated in simulations 

by Gu et al. (2013), which indicated that the presence of correlated errors could result in an 

overestimate of population reliability by as much as .38 for a low reliability (𝜌 = .38) scale when 

2/5 of items had residual correlations of .40. As true reliability increased, the bias of coefficient 

alpha decreased; however, even when the true reliability was .94, coefficient alpha overestimated 

reliability by .02, on average. Indeed, as Yang and Green (2011) predicted, as error correlations 

increased, so did the bias of coefficient alpha (Gu et al., 2013). Failing to address violations of 

the assumption of uncorrelated errors can therefore have serious repercussions. Model fit should 

always be considered prior to estimating reliability to assess residual covariance and possible 

multidimensionality. 

Multidimensionality 

 Dimensionality refers to the number of systematic influences on a scale’s score. A 

unidimensional scale, as discussed above, is one in which a single factor influences all items 

directly. However, defining a scale with a single factor is not necessarily equivalent to defining a 
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scale which measures a single construct. Several authors have argued that only scales with a very 

narrow scope will satisfy the assumption of unidimensionality and most scales show some 

degree of multidimensionality (Reise et al., 2007; Reise et al., 2000; Socan, 2000). A single 

construct that influences all items in a scale may still be present among multiple factors. 

 Multidimensionality typically occurs for one of two reasons. A test may be designed to 

measure multiple distinct factors related to an overarching construct, or methodological artefacts 

may result in nuisance factors (Yang & Green, 2011). In the case of the former, these factors 

may present as subscales or variance related to constructs of interest (e.g. inattention-related 

variance and hyperactivity-related variance for a measure of ADHD). In the case of the latter, 

factors can result from residual covariances produced by item wording effects, multiple items 

pertaining to the same stimulus, and so on.  

 Multidimensionality may manifest in a number of forms. Bifactor models have become 

increasingly popular, with applications in major areas of psychological research, including 

personality, intelligence, and psychopathology (Rodriguez et al., 2016). In a bifactor model, a 

single general factor directly influences all items in a scale, while specific factors capture 

residual covariances that remain over and above the general factor for smaller subsets of items. 

For model identification and interpretability of factors, the general and specific factors should be 

orthogonal to one another (Reise, 2012; Rijmen, 2009).  

 An example of a path diagram for a bifactor model can be seen in Figure 1. Each item in 

the bifactor model is related to the general factor and one specific factor with error variance 

unique to that item. Specific factors may capture residual variance related to meaningful 

constructs or simply account for the effects of methodological artefacts. The general factor is 

intended to represent a single overall construct influencing all items in a scale. In this way, the 
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model allows for a multidimensional measure of a single construct, improving fit while 

potentially retaining a meaningful composite score. We can assess the appropriateness of 

composite score use by calculating the reliability of the composite score as a measure of the 

construct represented by the general factor, using a form of model-based reliability, omega-

hierarchical, which will be discussed later.  

 Alternatively, multidimensionality may present as a higher-order or multiple factor 

model, both of which are nested within the equation for a bifactor model (Reise, 2012). Higher-

order models are similar to bifactor models in that all items are influenced by a single general 

factor, as well as one of several lower-order factors. However, in a bifactor model, the general 

and specific factors are orthogonal, while in a higher-order model, the general factor (or higher-

order factor) indirectly influences the items through lower-order factors. Conversely, a general 

factor may not be present to create a multiple first-order factor model. In this case, two or more 

constructs represented by distinct, but correlated, factors directly influence subsets of items. 

Typically, each item is influenced by a single construct represented by one factor, but there may 

be cases of cross-loadings, wherein an item may be influenced by more than one construct.  

 Coefficient alpha is not appropriate for assessing the composite score of a test with an 

underlying multidimensional model, as multidimensionality will obscure interpretation of a 

reliability estimate that fails to distinguish the source of the variance. High values of coefficient 

alpha are often considered by applied researchers to indicate unidimensionality or appropriate 

use of composite score. In reality, both high and low values of alpha are associated with 

unidimensional or multidimensional tests (Schmidt, 1996; Sijtsma, 2009), and therefore 

coefficient alpha is not reflective of factor structure. Rather, the true score in the numerator of 

the equation for coefficient alpha is comprised of the average covariance among scale items and 
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thereby reflects all systematic influences on an individual’s test score. That is, coefficient alpha 

estimates the proportion of variance due to all systematic influences, and does not necessarily 

reflect the proportion of variance related to the construct of interest. If one is interested in the 

proportion of variance due to a particular construct, this quantity would be better estimated with 

a model-based reliability estimate. 

Coefficient Omega 

 Coefficient omega (ω; McDonald, 1999) is an alternative, model-based reliability 

estimate, which is based on the congeneric model. The congeneric model can be expressed as 

𝑥𝑖𝑗 =  𝜆𝑗𝑓𝑖 + 𝑒𝑖𝑗 

where 𝑥𝑖𝑗 is the observed score for individual i on item j, 𝜆𝑗 is the factor loading for each item j, 

𝑓𝑖 is the factor score for any individual i, and 𝑒𝑖𝑗 is the error term for the item. Within the 

congeneric factor model, factor loadings are allowed to vary across items. In this way, the 

congeneric model is represented by a regression equation in which each item is regressed onto a 

single factor with a slope equal to its factor loading. True score here is the product of the factor 

loading and the individual’s factor score, so that the total true score for any individual is then the 

sum of the estimated true scores for each item.  

 Coefficient omega, based on the parameters of this model, represents the proportion of 

observed composite score variance attributable to the single factor. Generally, CFA is preferred 

to exploratory factor analysis when estimating coefficient omega, as a CFA implies a stronger 

theory for the underlying model (Flora, 2020). There is some evidence from simulations that 

reliability estimates are more accurate when a CFA approach is used in cases for which the 

underlying model includes a single factor common to all items (Murray et al., 2019). To 

calculate coefficient omega for a unidimensional test, we can set the factor score variance equal 
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to 1 to set the metric so that 

𝜔 =  
(∑ 𝜆𝑗

𝐽
𝑗=1 )2

(∑ 𝜆𝑗
𝐽
𝑗=1 )2 + ∑ 𝑣𝑎𝑟(𝑒𝑖𝑗)𝐽

𝑗=1

 

where∑ 𝑣𝑎𝑟(𝑒𝑖𝑗)𝐽
𝑗=1  represents the total error variance across all items. The denominator of 

coefficient omega can be represented as the model-implied total variance as seen above or as the 

observed total variance (𝜎𝑋
2) without any meaningful difference, though Kelley and 

Pornprasertmanit (2016) posit observed total variance may be more robust in the case that a 

model is misspecified. If the denominator is to be calculated as the model-implied variance and 

there are residual covariances for an otherwise unidimensional model, the denominator should be 

expanded to include an additional term of two times the sum of the residual covariances. 

Coefficient omega can also be modified to accommodate categorical items using CFA 

parameters based on polychoric correlations (Green & Yang, 2009); however, this modification 

will not be explored here. 

 Coefficient omega may also be modified to provide interpretable reliability estimates for 

tests with multidimensional measurement models. For a scale well-represented by a bifactor 

model, omega-hierarchical (𝜔𝐻) is a suitable composite score reliability estimate (Zinbarg et al., 

2005). The formula for omega-hierarchical is nearly the same as above but for a few 

modifications. The numerator includes the factor loadings for only the general factor (𝜆𝑔𝑗) and, if 

the denominator is represented as the model implied total variance, it must expand to include 

terms for the squared sum of factor loadings for all specific factors (𝜆𝑠𝑛𝑗) as well as the general 

factor and error. The formula can be written as  

𝜔𝐻 =  
(∑ 𝜆𝑔𝑗

𝐽
𝑗=1 )2

(∑ 𝜆𝑔𝑗
𝐽
𝑗=1 )2 + (∑ 𝜆𝑠𝑘𝑗

𝐽
𝑗=1 )2 +  ∑ 𝑣𝑎𝑟(𝑒𝑖𝑗)

𝐽
𝑗=1
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where 𝜆𝑠𝑘𝑗 is the factor loading of item j onto specific factor k. Omega-hierarchical thus 

represents the proportion of composite score variance that can be reliably attributed to the 

general factor. If the reliability due to the general factor is high, then much of the variance in test 

scores is caused by a single underlying construct, and the scale can be treated as “essentially 

unidimensional” (Rodriguez et al., 2016). Thus, the use of a composite score for the scale would 

be appropriate. 

The Problem with Bifactor Models 

 Despite their advantages, methodologists caution against overusing bifactor models (e.g. 

Bonifay et al., 2017; Markon, 2019; Maydeu-Olivares & Coffman, 2006; Reise et al., 2016). 

Although fit statistics may favour the bifactor structure over other models, this may be a 

symptom of overfitting, rather than a representation of the true underlying structure. Reise et al. 

(2016) found that the bifactor model was able to produce an adequate fit for the Rosenberg Self-

Esteem Scale (Rosenberg, 1965), not necessarily because of a “reverse-wording” effect, but 

because of a greater ability to capture invalid response patterns. Bonifay and Cai (2017) 

demonstrated that even when data were generated to follow random patterns, the bifactor model 

showed a good fit for a high percentage of samples. Simulations have shown that a bifactor 

model can produce as good or better fit statistics than the correct model when fit to data from 

unidimensional, two-factor, and higher-order populations (e.g. Maydeu-Olivares & Coffman, 

2006; Morgan et al., 2015; Murray & Johnson, 2013). The bifactor model can appear to fit even 

when it is inappropriate. 

 In real-world situations, we can only approximate the true model underlying any 

measure, using fit statistics to indicate how well a hypothesized model fits sample data. A 

bifactor model which produces good fit to data may then be selected even though the true model 
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is not bifactor. In that case, omega estimates will be based on a bifactor model, and there is a risk 

that omega may be biased as a result. Currently, little is known regarding the accuracy of 

unidimensional omega and omega-hierarchical given incorrect model selection. Using a series of 

Monte Carlo simulations, this study investigated the following research questions: 

1. How well does omega for a unidimensional model estimate composite score 

reliability when the true model is not unidimensional? 

2. How well does omega-hierarchical perform as an estimate of composite score 

reliability when the true model is not a bifactor model? 

3. To what extent is the degree of bias related to goodness of fit statistics used to assess 

model fit? 

 I hypothesized that coefficient omega for unidimensional models and omega-hierarchical 

will both experience some degree of bias when calculated for models that are incongruent with 

their design. I expected that the extent of the bias would depend on the degree to which CFA 

parameters differ from their true model, or the degree to which factor loadings have been 

affected by model misspecification. For models with a general factor, I hypothesized that these 

coefficients will have greater accuracy when the general factor of a given model is strong. That 

is, when factor loadings for the general factor tend to be high, such that it accounts for a large 

proportion of variance, bias of both unidimensional omega and omega-hierarchical would be 

smaller than for scales with a weak general factor. Models with poor fit are unlikely to be 

selected, so the relationship between model fit and bias was assessed for a clearer picture of bias 

among models that would be more likely to be chosen based on fit. Finally, I will be 

investigating whether bias is affected by the use of the observed or model-implied total variance 

denominator. 
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Method 

 To investigate the bias of unidimensional omega and omega-hierarchical, a series of 

Monte Carlo simulations were run using R (R Core Team, 2020). Data were drawn from 

multivariate normal distributions with covariance structures consistent with given population 

CFA models using the mvrnorm function of the MASS package (Venables & Ripley, 2002). 

Sample models were estimated using the maximum likelihood estimator in the lavaan package 

(Rosseel, 2012) and reliability was estimated using semTools (Jorgensen et al., 2020). True 

reliability was calculated for each population model and compared with sample estimates of 

reliability for 1,000 random samples for each cell of the study design. In total, there were four 

population model factor structures and both a high and low reliability model were generated for 

both long and short scales. For each condition, reliability was assessed for three sample sizes, 

creating a total of (4 × 2 × 2 × 3) = 48 unique cells. 

Study Conditions 

 For each of the models described below, there were two conditions of reliability, 

determined as a function of factor loadings within the population model. The high reliability 

condition set reliability to approximately .85, while the calculated reliability of the low reliability 

condition was approximately .60. Scale lengths were either short (8 items) or long (16 items). To 

ensure enough indicators per factor for model identification, scale lengths were necessarily 

longer for the higher order model, such that the short test was 12 items (3 indicators per lower-

order factor), and the long test was 20 items (5 indicators per lower-order factor).  

Sample sizes were large (N = 1,000), medium (N = 250), and small (N = 100). Often, a 

sample size of 100 would not be considered suitable for factor analysis; however, in applied 

cases when scale structure and psychometric properties are not the focus, researchers may still 
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wish to estimate the reliability of their selected measures. In these cases, samples may be small 

relative to psychometric studies. Sample sizes of 1,000 are more ideal for factor analytic 

purposes, but are often unrealistic in practice, especially in applied studies.  

 Sample data were drawn from four population models: a simple one-factor model with no 

correlated errors, a one-factor correlated errors model, a bifactor model, and a higher-order 

model. All models were specified such that factor variances equaled 1.0; consequently, the 

population-level model-implied covariance structures were in the correlation metric. Although 

unlikely to occur in real-world scenarios, the simple one-factor model was included to 

investigate the performance of unidimensional omega under ideal conditions. Samples from 

these population models were fit only to the correct model across replications. For all remaining 

population models, a simple one-factor model, a correlated errors model, and a bifactor model 

were fit to sample data. Therefore, data from the correlated one-factor and bifactor population 

models were fit to a correctly specified model as well as two incorrectly specified models, while 

data from the higher-order populations were fit only to incorrectly specified sample models. 

 Figures 2 through 5 show the structure of the correct population models in the shorter 

scale length condition. Table 1 shows the complete list of population factor loadings for each 

population model. Population models were not designed to be tau equivalent; instead, factor 

loadings differed across items. Factor loadings for the correlated one-factor model ranged from 

.493 to .837 in the high reliability conditions and from .493 to .624 in the low reliability 

conditions. Because allowing all item errors to correlate would have produced under-identified 

models, the one-factor model with correlated errors was specified such that half of the items 

correlated with one another. The error correlations were small to moderate in the high reliability 

conditions (approximately .09 to .31) and moderate to high in the low reliability conditions 
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(approximately .19 to .52). In a typical bifactor model, every item loads onto both a general 

factor and a specific factor. However, preliminary simulations showed that bifactor models 

estimated using data from the correlated errors population could not converge consistently with 

two specific factors. Therefore, only one specific factor representing these error correlations was 

included in addition to the general factor.  

The bifactor population models were specified to include two specific factors pertaining 

to equal halves of the items and a single general factor underlying all items. In the high reliability 

conditions, general factor loadings ranged from .358 to .913, while specific factor loadings were 

smaller and ranged between .213 and .448. For low reliability conditions, general factor loadings 

ranged between .314 and .711, while specific factor loadings ranged between .213 and .663. The 

correlated errors model fit to sample data allowed all items within each half to correlate with one 

another, but not with items from the other half of the scales.  

Finally, the higher-order population model included a single higher-order factor and four 

lower-order factors. Four was selected as the number of specific factors because this is the 

smallest number of factors from which a higher-order model can be empirically distinguished 

from a correlated-factor model (Rindskopf & Rose, 1988). For the higher-order factor, loadings 

ranged between .72 and .91 in the high reliability condition and .51 to .69 in the low reliability 

condition. Lower-order factor loadings ranged from .68 to .91 for the high reliability condition 

and .44 to .79 in the low reliability condition. 

Evaluation of Results 

 For each replication, unidimensional omega and omega-hierarchical were calculated and 

compared with true population reliability. Unidimensional omega was calculated for both the 

correlated error and uncorrelated error models and were analyzed separately. Omega estimates 
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using both model-implied and observed total variance were included in the analysis. Bias for 

each estimate within each condition was calculated as the difference between the omega estimate 

and true reliability (𝜔 − 𝜌). Precision was assessed as the variability within each cell represented 

by the standard deviation. Finally, the relationships between mean bias and goodness of fit 

statistics of CFI, TLI, and RMSEA were plotted and correlated to determine whether higher bias 

was only a concern in cases of poor model fit, or whether it could frequently occur in other 

conditions. 
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Results 

Convergence and Proper Solutions 

 Convergence and proper solution rates for each cell are shown in Table 2. Across all 

conditions and replications, 98.07% of the sample models converged. All except one of the 

nonconverged models was from a bifactor sample model. Of the estimated models that 

converged, approximately 95.11% produced proper solutions. Bifactor models also produced 

more improper solutions, except when the true model was bifactor and reliability was low. In this 

case, the correlated errors model produced far fewer proper solutions. In general, convergence 

and proper solution rates increased as sample size and true reliability improved. Solutions that 

did not converge and produce proper solutions were excluded from analysis. 

Simple One-Factor Population Model 

Table 3 shows the mean and standard deviation of bias of unidimensional omega 

correctly specified to a one-factor model with no correlated errors. Unidimensional omega 

showed an average bias of approximately 0 for all conditions, except when true reliability was 

low (𝜌 = .60) and sample size was small (n = 100). These conditions produced a small bias, 

overestimating reliability by approximately .01. Mean bias did not exceed .01 in either direction. 

Precision, as expressed by the standard deviation of absolute bias, was most strongly 

related to sample size and true reliability, such that there was less variability among estimates as 

sample size increased and when true reliability was higher. The distributions of bias for each 

condition within each sample size are shown in Figure 6. Sample sizes of 100 yielded a standard 

deviation of .02 when true reliability was high; however, variability increased to .07 in the low 

reliability condition. As sample size increased to 250, precision improved to .01 for samples 

from a high reliability population and .04 for samples from the low reliability population. 
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Overall, given a reasonable sample size, unidimensional omega produced a good estimate of 

reliability in the theoretical ideal circumstance of a one-factor model with independent errors. 

One-Factor Population Model with Correlated Errors 

 The mean bias and variability for omega estimates for a one-factor population with 

correlated errors are shown in Table 4. Similar to the correctly specified unidimensional omega 

in the previous section, a correct model yielded unbiased estimates on average, regardless of 

condition. The variability of absolute bias also followed a similar pattern to above, such that the 

distribution of estimates became narrower as sample size and true reliability increased. The worst 

precision was seen for small sample sizes with low reliability, for which standard deviations 

were .09 and .07 for the 8- and 16-item measures, respectively. Variability was still rather high 

when sample size was 250, but improved to .06 and .05, respectively. High reliability conditions 

yielded more precise estimates, such that even small sample sizes had a standard deviation of 

bias around .03. Boxplots for each condition within each sample size are in Figures 7 through 9.  

 The misspecified bifactor model yielded similar results to the correct model, such that 

high reliability conditions yielded the same relatively unbiased results. However, in low true 

reliability conditions, omega-hierarchical produced an average bias between -.01 and .02. 

Precision was also slightly worse in the 16-item low reliability for omega-hierarchical, but only 

increased by a difference of .01 relative to unidimensional omega. Specifying a bifactor sample 

model therefore produced worse estimates than the correct model, but the overall difference was 

small. In general, omega-hierarchical produced reasonable estimates when misspecified to data 

from a one-factor population with correlated errors. 

 The misspecified simple one-factor model produced highly biased estimates, on average. 

Absolute bias was the smallest for scales with fewer items and high true reliability, but even in 
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the best of circumstances, still ranged between .06 and .08. In low reliability 16-item conditions, 

bias ranged between .22 and .25. The variabilities of these estimates were small relative to the 

other sample models, but given that the standard deviations were centered around such a high 

bias, unidimensional omega showed a poor performance when the model failed to include 

correlated errors. 

Bifactor Population Model 

 Table 5 shows the mean absolute bias and variability of omega estimates when the 

population model was bifactor. The correctly specified bifactor sample model produced omega-

hierarchical estimates which were relatively unbiased, although a small overestimation of .01 

appeared in some low reliability conditions. Precision showed a similar pattern as with the 

previous population models, such that there was low variability in estimates from high reliability 

populations, but variability in estimates from low reliability was about .08 when sample size was 

100 and dropped to .05 as sample size increased to 250. Figures 10 through 12 show the 

distributions for each condition within each sample size. Omega hierarchical was therefore a 

good estimate of reliability for the bifactor model, assuming sufficient sample size for low 

estimate variability. 

 For high reliability conditions, misspecification of a unidimensional model with 

correlated errors to the bifactor population produced relatively unbiased estimates of reliability. 

However, bias in the low reliability conditions increased to .01 for the 8-item condition and up to 

.07 for the 16-item condition when sample size was low. As sample size increased, bias dropped 

to .05. Estimates showed less variability for unidimensional omega relative to omega-

hierarchical; however, the risk of bias was higher overall, indicating that it is not a suitable 

replacement for omega-hierarchical. 



 19 

 As with the one-factor with correlated errors population, the simple unidimensional 

sample model produced estimates with very high bias, ranging from .08 in the high reliability 

condition to .28 in the low reliability condition. Mean bias increased as true reliability decreased 

and as number of items increased. There was low variability in these estimates, but the simple 

model was too strongly biased in all conditions to be an acceptable alternative to omega-

hierarchical. 

Higher-Order Population Model 

 For the higher-order population, estimates based on the simple one-factor sample model 

displayed a similar pattern of high bias as with the other complex models. Absolute bias ranged 

from .08 to .23 across conditions, worsened by both scale length and low population reliability. 

However, specifying correlated errors improved the performance of unidimensional omega such 

that mean absolute bias ranged from -.04 to 0. Unidimensional omega was more likely to 

underestimate reliability when the sample size was small and true population reliability was low. 

As the sample size improved to 250, mean bias improved to near 0. Variability of estimate bias 

was once again about .09 when sample size was only 100, but reduced to approximately .05 

given an increase in size to 250. Omega-hierarchical produced almost the same pattern as 

unidimensional omega with specified correlated errors. Bias was small, and for sample sizes 250 

or higher, precision was acceptable even in populations with low reliability. Figures 13 through 

15 show boxplots of omega estimates for each sample model for a given sample size. With a 

reasonable sample size, omega-hierarchical and unidimensional omega with specified correlated 

errors both produced reasonable estimates of true reliability in a higher-order population. 

Denominators of Coefficient Omega 

For all conditions, omega was calculated using both the model-implied total variance 



 20 

(𝜔Σ) and observed total variance (𝜔S). In general, only small differences in omega estimates 

were observed between the two calculations. Differences in mean bias did not exceed .03, while 

differences in precision (estimate standard deviations) did not exceed .02. Typically, 𝜔Σ 

produced slightly higher and less variable reliability estimates. Accordingly, 𝜔S was more likely 

to underestimate omega, but this result was only apparent when fitting bifactor or correlated 

errors models to a higher-order population model. Differences between the two calculations were 

most common when the sample model was misspecified, and strongest for the worst 

misspecifications (i.e. estimating unidimensional omega based on a simple one-factor sample 

model when the true model was more complex). Differences were also related to low population 

reliability and were magnified as the number of items increased. In general, there was not a 

meaningful difference between the estimate calculations. 

Relationship with Model Fit 

To investigate how model fit related to the bias of coefficient omega, scatterplots were 

graphed and correlations were calculated between mean bias and three fit statistics (RMSEA, 

CFI, and TLI). Given that mean bias could be positive or negative, absolute values of bias were 

used for this analysis. Fit statistics were individually regressed onto absolute bias to assess 

characteristics of each relationship. Plots indicated that the overall relationships were linear, but 

residuals were heavily positively skewed, so correlations were calculated using Spearman’s rank-

order correlations. Additionally, two replications were identified as potential outliers with high 

Cook’s distance for TLI. These values were both from the low reliability simple one-factor 

population with 16 items and a sample size of 100. TLI values for these replications were -10.56 

and 13.14, respectively, and had corresponding CFI values of 1 and RMSEA of 0. Removal of 

these cases did not meaningfully change the observed relationships between fit statistics and 
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absolute bias. Additionally, removal of all cases where TLI exceeded 1.10 did not meaningfully 

change these results and were therefore retained. 

Figures 16 through 18 show the average relationships between fit statistics and bias for 

each sample within each model. Although the overall trend did not appear to violate linearity, 

plotting mean bias against CFI or TLI for different sample models within each population 

revealed more curvature in an upside-down parabola or wave-like function which appeared to be 

a product of combining high- and low-reliability conditions. Given poor fit of models where 

most of the curvature occurs, it is unlikely these models would be selected for use. Curvature 

was therefore not investigated further. Where fit statistics would typically indicate good model 

fit (approaching 1 for CFI and TLI; approaching 0 for RMSEA), variability of bias was high, but 

the average absolute bias changed only by about .01 to .02. 

The relationships between absolute bias and all three fit statistics for the whole dataset 

were strong (𝑟RMSEA = .58, 𝑟CFI = -.64, 𝑟TLI = -.61), suggesting that poorer model fit was 

associated with greater bias. However, for each sample model, worse fit did not appear to 

consistently increase bias, supporting that these correlations may be a function of merging the 

data from all three population models. In general, fit statistics and bias were both poor for 

unidimensional omega, while unidimensional omega with specified correlated errors and the 

bifactor model both showed low bias and good fit. Therefore, merging the two supports a 

stronger relationship than may truly be present within each model. Table 7 shows the 

correlations between model fit and bias for each fit statistic within population-level and sample-

level data. Generally, CFI showed the strongest relationship with bias. Associations were 

strongest for unidimensional omega with no specification of correlated errors, and weakest for 

the omega-hierarchical, regardless of population.  
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Discussion 

Methodologists have suggested transitioning from coefficient alpha to model-based 

reliability estimates such as coefficient omega which consider the underlying model and 

therefore do not rest on assumptions of unidimensionality and essential tau equivalence (e.g. 

Flora, 2020; Raykov & Marcoulides, 2011). In the current study, Monte Carlo simulation 

techniques were used to investigate the bias of unidimensional omega and omega-hierarchical 

when the sample model is misspecified. Omega estimates based on sample models correctly 

specified to their respective population model were unbiased on average (mean absolute bias 

between -.01 and .01), regardless of other sample or population characteristics. Given a 

reasonable sample size (N ≥ 250), omega also showed a reasonable estimate variability, 

suggesting that it performs well as an estimate of reliability when the model is correctly 

specified. Conversely, misspecified models produced mean biases ranging from -.02 to .28. 

Consistent with hypotheses, the degree to which estimates of omega were biased by 

misspecification of the sample models was primary related to the amount of unmodeled 

complexity in the sample model. That is, unidimensional omega based on a simple one-factor 

sample model consistently performed poorly for complex models, but as correlated errors and 

multidimensionality were specified, performance improved. Selection of observed versus model-

implied total variance for the calculation of omega estimates did not have much impact on results 

or improve bias in the case of misspecification, contrary to the claim by Kelley and 

Pornprasertmanit (2016) that use of observed total variance is more robust to misspecification.  

Unidimensional omega based on a one-factor sample model with no correlated errors was 

a suitable reliability estimate only when the sample model was correctly specified. Estimates for 

data from more complex populations were highly biased, averaging .07 or higher, even under the 
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best of circumstances. Specification of correlated errors improved unidimensional omega’s 

performance, such that it was somewhat more robust against bias when the model was 

incorrectly selected. Estimates were relatively unbiased when true population reliability was 

high, indicating a greater proportion of variance was related to a single construct, or when tests 

had fewer items. Low reliability conditions for longer tests showed that unidimensional omega 

was biased, on average, by .04 if the data was from a higher-order population, and up to .07 if the 

data was from a bifactor population. In these situations, the specification of correlated errors for 

all items within specific factors did not appear to be enough to capture multidimensionality. For 

shorter measures, it appears that unidimensional omega may be estimated with minimal risk of 

bias if error correlations are specified, but this is not true for longer measures. To minimize bias 

risk, unidimensional omega should only be used when there is sufficient evidence to suggest a 

truly unidimensional measure. 

Compared with unidimensional omega with or without correlated errors, omega-

hierarchical displayed the most stable performance between population model conditions. 

Previous simulations have indicated that the bifactor model may be overused and can produce 

good fit statistics despite misspecification due to overfitting (e.g. Maydeu-Olivares & Coffman, 

2006; Morgan et al., 2015; Murray & Johnson, 2013). In cases where the bifactor model 

converged and produced proper results, omega-hierarchical showed little or no bias on average, 

even when the true model was not bifactor. As with other sample models, mean bias was highest 

in low reliability conditions, and this effect was exacerbated by longer scales. However, bias did 

not exceed .02 in either direction for any condition and, given a reasonable sample size, showed 

low variability. Thus, omega-hierarchical appeared largely robust to model misspecification. For 

any model with a single factor common to all items, incorrect selection of a bifactor sample 
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model will not badly bias omega estimates.   

Results from these simulations are largely in alignment with previous studies, indicating 

that omega estimates are generally accurate when the sample model is consistent with the true 

model, and that reliability estimates are more likely to be biased in cases of misspecification as 

true reliability decreases (e.g. Gu et al., 2013; Yang & Green, 2010; Zinbarg et al., 2005). Scale 

length further amplified observed bias in misspecified models. A simulation by Yang and Green 

(2010) found that longer measures may have the effect of decreasing bias of omega for 

misspecified models by including more indicators; however, this finding was based on models 

which included zero to two correlated errors, or for a true bifactor model with only a single 

factor. Here, the degree of misspecification here was higher, such that the bifactor and higher-

order populations included two specific and four lower-order factors, respectively, while the one-

factor population with correlated errors included correlations for half of the sample items. More 

indicators therefore produced more complexity, thereby overriding the stabilizing effects of 

increasing indicators. The effect of scale length then appears to be related to the degree of 

misspecification. 

These findings further support Yang and Green’s (2010) observation that failure to 

specify correlated errors for a congeneric model will result in worse bias, and expand on the 

performance of model-based estimates for a bifactor sample fit to data from a population other 

than bifactor. In Yang and Green’s (2010) simulation, misspecification of a congeneric model as 

bifactor was found to increase the risk of bias. However, their study did not fit the bifactor model 

to a population with correlated errors, so the degree of misspecification was higher. Such bias 

did not appear to the same extent in this study when the true model included correlated errors. 

Similarly, their study employed an SEM estimate more akin to omega-total, which includes a 
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variance term for any specific factors in its numerator, in addition to the general factor. It is 

therefore a measure of all systematic variance and is likely to produce higher estimates. Yang 

and Green (2010) hypothesized that the true bias associated with overspecified models was a 

symptom of overfitting and inflation of the true score estimate. Conversely, omega-hierarchical 

includes only the true score estimate related to the general factor, which may have removed some 

of the bias associated with misspecifying a congeneric model as bifactor. 

This study did not directly compare the performance of omega estimates with coefficient 

alpha; however, a comparison of results from previous simulations with results presented here 

indicates that coefficient omega is less biased than coefficient alpha overall, but only when error 

covariances and multidimensionality are included in the CFA model. Gu and colleagues (2013) 

found that when residuals were correlated at .40 for 6 of 15 items, coefficient alpha 

overestimated reliability by .05 when the true reliability was .86, and by .18 when true reliability 

was .68. In the present study, the correlated errors model included error covariances between .20 

and .50 for a 16-item test. When those error covariances were not modeled, unidimensional 

omega overestimated reliability by .09 when true reliability was .85, and by .22 when true 

reliability was .60. Yet, when the error covariances were correctly modeled, omega showed little 

to no bias on average. Given the differences in model specifications, results are not directly 

comparable; however, this pattern does suggest that coefficient omega is an improvement to 

coefficient alpha when the true model is complex, but only when that complexity is adequately 

modeled. This conclusion is more directly supported by Yang and Green’s (2010) report that 

SEM estimates based on underspecified congeneric models (i.e. unidimensional omega based on 

a model without specified correlated errors) had a slightly higher relative bias than coefficient 

alpha when fit to data from a congeneric population with correlated errors. Given a correct 
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congeneric sample model, SEM estimates showed little to no bias.  

Implications 

Applied to a practical setting, the findings of these simulations have important 

implications for researchers estimating reliability with coefficient omega. The high bias across 

all one-factor sample models fit to complex populations highlights the importance of specifying 

multidimensionality. Even in the best of conditions, the simple one-factor sample model 

overestimated omega by a minimum of .07 when specified to populations with error correlations 

or multidimensionality. Assuming a one-factor model without specifying error correlations – 

even for a unidimensional measure – is therefore inappropriate under any circumstance. 

However, modeling some complexity reduced the average bias of omega, even when the sample 

model was still incorrect. This is best exemplified by the results for the bifactor population 

model; specifically for the 16-item low reliability conditions. The simple one-factor sample 

model overestimated reliability by an average of .28, but specifying correlated errors related to 

specific factors reduced mean bias to .07, even when sample sizes were small. Omega-

hierarchical, however, showed no bias on average, and good precision given a reasonable sample 

size for this condition. This suggests that as the modeling of multidimensionality approaches the 

correct model, omega estimates became less biased. Additionally, although omega-hierarchical 

in particular was relatively robust against model misspecification, the most accurate estimates 

most consistently resulted from correctly specified models. Choosing an appropriate CFA model 

is crucial to producing accurate estimates of reliability with coefficient omega.  

CFA models are generally chosen through a combination of theory and evidence, relying 

on methods such as goodness of fit to help determine the appropriateness of a model for a given 

measure. Although an overall association was found between omega estimate bias and goodness 
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of fit, this association broke down when the data were separated by population and sample 

model. For correctly specified models, the relationship was quite weak, and when the statistics 

showed good or reasonable fit, bias did not differ by more than .01 or .02 on average. Variability 

in estimates for as CFI and TLI approached one and RMSEA approached zero was high among 

incorrectly specified models. Additionally, even when the simple model showed good fit, mean 

bias remained high. There was also very high variability in bias, particularly among better values 

of CFI, TLI, and RMSEA, indicating that reliance on goodness of fit statistics is not sufficient to 

ensure unbiased reliability estimates. Researchers should employ other methods, including 

theory, previous studies, and other model selection criteria such as AIC and Bayes factors to 

confirm the best model has been chosen.  

Correct model selection nullified the effects of other study factors on mean absolute bias; 

however, since the true model cannot be known, researchers should still be cautious of 

interpreting coefficient omega. The average bias for estimates based on misspecified models was 

higher when true reliability was low and worsened by an increase in number of items. Like true 

models, true reliability cannot be known and is difficult to manipulate. Researchers should be 

aware that lower values of omega are more likely to be biased, and that this bias is generally an 

overestimation, rather than underestimation of the reliability of a given measure. Comparing 

previous estimates with one’s own estimate when possible may also aid in identifying situations 

where omega has been biased. Researchers should also be aware that when true reliability is low, 

variability in omega estimates is higher, and that steps can be taken to ensure better precision. 

 In addition to low population reliability, estimate variability was primarily related to 

sample size. As with any parametric statistic, larger samples produced lower variability in 

sample estimates across replications. Larger sample sizes are therefore recommended for more 
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stable estimates of omega. Although a sample size of 1,000 may be ideal, it is often impractical 

in applied research. Samples of 250 or higher generally showed a variability close to .02 to .05 

among well-specified sample models and is recommended as a baseline sample size for adequate 

reliability estimation. Sample sizes of 100 resulted in a much higher variability, ranging between 

.05 and .09, and are unsuitable for stable estimation of omega. Small sample sizes are also 

unsuitable for factor analysis and for model comparison. As such, researchers who wish to 

investigate scale reliability should aim for sample sizes compatible with running a good 

confirmatory factor analysis. 

Limitations and Directions for Future Research 

 This study investigated the potential for bias of two omega estimates under a variety of 

conditions; however, there are several limitations to its scope which should be addressed by 

future studies. First, a few cells in this study are based on far fewer than 1,000 replications. For 

the bifactor population, some of the cells had sample sizes as low as 300 to 500 replications, 

although only when the sample size was N = 100. As such, there is a higher risk of error within 

the results of these cells.  

These simulations also treated true reliability and scale length as binary, and therefore 

makes assumptions about the pattern of results based on values studied here. While it appears to 

be the case that as true reliability increases, bias decreases, the amount to which a true population 

value between .60 and .85 or lower than .60 may bias omega remains uncertain, and the point at 

which lower reliability becomes problematic has not been addressed. Similarly, model 

misspecification was constrained to selection of an incorrect model type. The effect of 

misspecifying items to incorrect factors or failing to model all correlated errors, for example, was 

not addressed. Further studies should verify these findings for various population parameters and 
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investigate the effects of minor misspecifications. 

Higher-order models were also included at the population level, but not the sample-level, 

and the performance of omega higher-order (see Flora, 2020) when models are misspecified was 

not evaluated. Data was also drawn from a multivariate normal distribution, assuming continuous 

item responses. This was done to examine the effects of model misspecification without the 

confound of categorical versus continuous responses. In practice, many psychometric measures 

use ordered, categorical items which require polychoric correlations to estimate an accurate CFA 

model. In these situations, coefficient omega must be adapted to become omega-categorical 

(Green & Yang, 2009). Important expansions on these findings will therefore be to investigate 

the performances of both categorical omega and omega higher-order under varying conditions of 

model misspecification to confirm whether the above guidelines can be generalized. 

Finally, these simulations were based on confirmatory factor analysis. CFA requires 

strong theory or evidence and is used to verify the hypothesized factor structure of a given 

measure. Particularly in the scale development phase, researchers may wish to estimate 

reliability for measures using exploratory factor analysis (EFA) when the factor structure is 

uncertain. EFA models are estimated using different methods from CFA, and often require the 

use of rotation techniques which alter factor loadings for interpretability. As such, omega 

estimates must be adapted to account for these changes, and exploratory omega is better suited to 

estimate corresponding reliability (Flora, 2020). Future studies should further investigate the 

performance of exploratory omega. 
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Conclusion 

 A series of Monte Carlo simulations indicated that coefficient omega is a relatively 

unbiased estimate of reliability when the sample model is correctly specified. Unidimensional 

omega based on a sample model with no correlated errors was appropriate only when correctly 

specified, as it was highly biased when the true model was more complex. In cases of 

misspecification of multidimensional models, unidimensional omega performed well only when 

correlated errors pertaining to specific or lower-order factors were included in the model. Bias 

was higher when tests had a lower true reliability and more items. Omega-hierarchical, based on 

a bifactor sample model, was the most robust to model misspecification, showing an average bias 

of +/- .02 when fit to a one-factor model with correlated errors or a higher-order model. The best 

performance for all populations were observed when models were correctly specified, as long as 

sample size was sufficient (N ≥ 250). Researchers who wish to estimate reliability using omega 

should therefore take care to find the most accurate CFA model to fit their scale, based not only 

on fit indices, but also on theory and previous evidence, and ensure a reasonable sample size 

before running their analyses.   
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Figure 1. Example path diagram for a fictional bifactor scale comprised of ten items. Observed 

scores are represented by xj, where j is the item number. All items relate to the general factor (g) 

with strength quantified by its factor loading (𝜆𝑗𝑔). The first five items are also related to a 

specific factor (s1) while the second five items are related to a second specific factor (s2), 

capturing residual covariance for each subset of items that remains over and above the general 

factor. Each item has its own unique error term (𝑒𝑗). 
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Figure 2. Simple one-factor population model from which samples will be drawn. Items load 

with a strength of  𝜆𝑗 onto a single factor. Errors are uncorrelated and unique to each item. 
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Figure 3. One-factor population model with correlated errors from which samples will be drawn. 

Items load with a strength of  𝜆𝑗 onto a single factor. Errors are correlated among the second half 

of the items. 
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Figure 4. Bifactor population model from which samples will be drawn. Items load with a 

strength of  𝜆𝑗 onto a single general factor, while two specific factors capture residual covariance 

among subsets of items. Errors are uncorrelated and unique to each item. 
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Figure 5. Higher order population model from which samples will be drawn. A single general 

factor influences items through four lower-order factors. Errors are uncorrelated and unique to 

each item. 
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Table 1 

Population factor loadings and error covariances for each true model. 

Model Factor loading matrix 

dimension 

Population factor 

loadings 

Error covariances 

Simple one-factor, 8 

items, low reliability 

8x1 .414, .210, .472, .416, 

.325, .504, .301, .521 

(none) 

Simple one factor, 8 

items, high reliability 

8x1 .847, .423, .870, .516, 

.648, .721, .322, .743 

(none) 

Simple one-factor, 16 

items, low reliability 

16x1 .245, .423, .229, .316, 

.420, .414, .224, .403, 

.312, .248, .331, .266, 

.391, .202, .165, .104 

(none) 

Simple one factor, 16 

items, high reliability 

16x1 .745, .423, .730, .416, 

.628, .514, .324, .643, 

.612, .548, .331, .246, 

.741, .502, .365, .316 

(none) 

Correlated errors, 8 

items, low reliability 

8x1 .504, .293, .412, .506, 

.451, .574, .434, .610 

.287, .343, .334, .232 

.197, .312 

Correlated errors, 8 

items, high reliability 

8x1 .823, .593, .837, .706, 

.751, .834, .746, .744 

.187, .263, .264, .232, 

.197, .282 

Correlated errors, 16 

items, low reliability 

16x1 .504, .293, .412, .396, 

.401, .574, .414, .410, 

.471, .532, .624, .523, 

.339, .419, .331, .345 

.347, .413, .294, .418, 

.524, .359, .236, .232, 

.217, .214, .227, .335, 

.304, .322, .344, .220, 

.381, .392, .288, .271, 

.401, .310, .447, .313, 

524, .232, .357, 392 

Correlated errors, 16 

items, high reliability 

16x1 .504, .293, .412, .396, 

.401, .574, .414, .410, 

.471, .532, .624, .523, 

.339, .419, .331, .345 

.347, .413, .294, .418, 

.524, .359, .236, .232, 

.217, .214, .227, .335, 

.304, .322, .344, .220, 

.381, .392, 288, 271, 

401, .310, .447, .313, 

.524, .232, .357, .392 

Bifactor, 8 items, low 

reliability 

8x3 .462, .340, .420, .659, 

.314, .501, .608, .410, 

.426, .414, .279, .338, 

0, 0, 0, 0, 0, 0, 0, 0, 

.314, .448, .213, .417 

(none) 

Bifactor, 8 items, 

high reliability 

8x3 .852, .736, .868, .612, 

.913, .704, .719, .611, 

.426, .414, .279, .338, 

0, 0, 0, 0, 0, 0, 0, 0, 

.314, .448, .213, .417 

(none) 

Bifactor, 16 items, 

low reliability 

16x3 .432, .536, .711, .312, 

.313, .501, .415, .631, 

(none) 
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.653, .467, .358, .233, 

.448, .535, .317, .502, 

.426, .474, .376, .598, 

.451, .526, .663, .424, 

0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 

.519, .448, .414, .618, 

.269, .367, .389, .420 

Bifactor, 16 items, 

high reliability 

16x3 .852, .636, .868, .612, 

.513, .704, .719, .831, 

.653, .774, .358, .721, 

.448, .835, .612, .718, 

.426, .374, .276, .238, 

.351, .248, .319, .314, 

0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 

.317, .448, .314, .418, 

.269, .227, .389, .420 

(none) 

Higher-order, 12 

items, low reliability 

12x4x1 .60, .72, .64, .62, .68, 

.73, .83, .54, .64, .44, 

.75, .66, .59, .62, .69, 

.61 

(none) 

Higher-order, 12 

items, high reliability 

12x4x1 .84, .87, .89, .82, 84, 

.86, .83, .91, .89, .84, 

.85, .84, .79, .72, .91, 

.81 

(none) 

Higher-order, 20 

items, low reliability 

20x4x1 .61, .53, .79, .49, .71, 

.71, .73, .76, .65, .68, 

.58, .69, .49, .72, .65, 

.66, .74, .58, .54, .61, 

.59, .64, .51, .62 

(none) 

Higher-order, 20 

items, high reliability 

20x4x1s .84, .87, .89, .82, .84, 

.86, .83, .91, .86, .84, 

.85, .84, .76, .81, .68, 

.87, .74, .80, .54, .88, 

.79, .72, .89, .82 

(none) 
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Table 2 

Frequency of converged and proper solutions across cells. 

 Correlated Errors Population  Bifactor Population  Higher-Order Population 

Sample model Correlated Errors Bifactor  Correlated Bifactor  Correlated Errors Bifactor 

 Con. Pr. Con. Pr.  Con. Pr. Con. Pr.  Con. Pr. Con. Pr. 

8 items               

High reliability               

n = 100 1000 1000 1000 1000  1000 1000 863 527  1000 998 988 886 

n = 250 1000 1000 1000 1000  1000 1000 951 798  1000 1000 1000 990 

n = 1000 1000 1000 1000 1000  1000 1000 990 976  1000 1000 1000 1000 

Low reliability               

n = 100 999 983 960 872  1000 947 751 323  1000 967 973 549 

n = 250 1000 1000 992 983  1000 999 782 504  1000 1000 995 915 

n = 1000 1000 1000 1000 1000  1000 1000 915 825  1000 1000 1000 1000 

               

16 items               

High reliability               

n = 100 1000 1000 638 638  1000 993 854 644  1000 1000 989 918 

n = 250 1000 1000 829 829  1000 1000 960 821  1000 1000 999 997 

n = 1000 1000 1000 894 894  1000 1000 1000 990  1000 1000 1000 1000 

Low reliability               

n = 100 1000 999 766 683  1000 333 899 727  1000 891 965 746 

n = 250 1000 1000 816 800  1000 483 980 928  1000 999 1000 987 

n = 1000 1000 1000 942 941  1000 658 1000 1000  1000 1000 1000 1000 

Note: ‘Con.’ represents the number of models which converged. ‘Pr.’ represents the number of converged models that produced 

proper solutions. All models in the simple one-factor population model converged, and all but two produced proper solutions. All 

simple models fit to data from more complex population models also converged and produced proper solutions, such that Nrep = 1000 

for all cells. 
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Table 3 

Absolute bias of coefficient omega for samples drawn from a 

simple one-factor population model. 

Condition 𝜔Σ bias 𝜔𝑆 bias 

8 items   

n = 100   

High reliability .00 (.02) .00 (.02) 

Low reliability .00 (.07) -.01 (.07) 

n = 250   

High reliability .00 (.01) .00 (.01) 

Low reliability .00 (.04) .00 (.04) 

n = 1000   

High reliability .00 (.01) .00 (.01) 

Low reliability .00 (.02) .00 (.02) 

   

16 items   

n = 100   

High reliability .00 (.02) .00 (.02) 

Low reliability -.01 (.07) -.01 (.07) 

n = 250   

High reliability .00 (.01) .00 (.01) 

Low reliability .00 (.04) .00 (.04) 

n = 1000   

High reliability .00 (.01) .00 (.01) 

Low reliability .00 (.02) .00 (.02) 

Note: Absolute bias is presented as the mean bias across 1000 replications for all conditions, 

except the low reliability condition with 8 items and sample size of 100, for which only 998 

replications produced proper solutions. 𝜔Σ represents coefficient omega calculated using the 

model-implied total variance as the equation denominator. 𝜔𝑆 represents coefficient omega 

calculated using the observed total variance as the equation denominator. High reliability 

conditions had a population reliability of approximately 𝜌 = .85, while low reliability conditions 

had a population reliability of approximately 𝜌 = .60. 
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Figure 6. Boxplots showing the absolute bias of coefficient omega using the model-implied total 

variance as its denominator for sample sizes of 100, 250, and 1000 for an underlying population 

model that has one factor with correlated errors. For the high reliability conditions, population 

reliability was approximately 𝜌 = .85, and low reliability conditions had a population reliability 

of approximately 𝜌 = .60. Length refers to the number of items, such that long tests have 16 

items and short tests have 8 items.  
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Table 4 

Absolute bias of coefficient omega for samples drawn from a population with one-factor with correlated errors. 

 Simple  Correlated Errors  Bifactor 

 N 𝜔Σ bias 𝜔𝑆 bias  N 𝜔Σ bias 𝜔𝑆 bias  N 𝜔Σ bias 𝜔𝑆 bias 

8 items 

n = 100 

High reliability 1000 .07 (.01) .07 (.01)  1000 .00 (.03) .00 (.03)  1000 .00 (.03) .00 (.03) 

Low reliability 1000 .17 (.04) .15 (.04)  983 .00 (.09) .00 (.09)  872 -.01 (.09) -.01 (.09) 

n = 250 

High reliability 1000 .07 (.01) .06 (.01)  1000 .00 (.02) .00 (.02)  1000 .00 (.02) .00 (.02) 

Low reliability 1000 .17 (.02) .15 (.03)  1000 .00 (.06) .00 (.06)  983 .00 (.06) .00 (.06) 

n = 1000   

High reliability 1000 .08 (.00) .06 (.01)  1000 .00 (.01) .00 (.01)  1000 .00 (.01) .00 (.01) 

Low reliability 1000 .17 (.01) .15 (.01)  1000 .00 (.03) .00 (.03)  1000 .00 (.03) .00 (.03) 

   

16 items 

n = 100 

High reliability 1000 .09 (.01) .07 (.01)  1000 .00 (.03) .00 (.03)  638 .00 (.03) .00 (.03) 

Low reliability 1000 .25 (.02) .22 (.03)  999 .00 (.08) .00 (.08)  683 .02 (.10) .01 (.09) 

n = 250   

High reliability 1000 .09 (.01) .09 (.01)  1000 .00 (.02) .00 (.02)  829 .00 (.02) .00 (.02) 

Low reliability 1000 .25 (.01) .22 (.02)  1000 .00 (.05) .00 (.05)  800 .02 (.06) .01 (.06) 

n = 1000   

High reliability 1000 .09 (.00) .07 (.00)  1000 .00 (.01) .00 (.01)  984 .00 (.01) .00 (.01) 

Low reliability 1000 .25 (.01) .22 (.01)  1000 . 00 (.02) .00 (.02)  941 .01 (.03) .01 (.03) 

Note: Bold values represent the bias for the correctly specified model. Standard deviations of absolute bias are marked in brackets 

beside mean absolute bias. N represents the number of converged, proper solutions, while n represents the sample size within each 

replication. 𝜔Σ represents coefficient omega calculated using the model-implied total variance as the equation denominator. 𝜔𝑆 

represents coefficient omega calculated using the observed total variance as the equation denominator.  



 47 

 

Figure 7. Boxplots showing the absolute bias of coefficient omega using the model-implied total 

variance as its denominator for a sample of 100 participants for an underlying population model 

that has one factor with correlated errors. Bias is shown for three different sample models when 

the reliability is high (𝜌 = .85) or low (𝜌 = .60) and different scale lengths vary such that long 

tests have 16 items and short tests have 8 items.  
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Figure 8. Boxplots showing the absolute bias of coefficient omega using the model-implied total 

variance as its denominator for a sample of 250 participants for an underlying population model 

that has one factor with correlated errors. Bias is shown for three different sample models when 

the reliability is high (𝜌 = .85) or low (𝜌 = .60) and different scale lengths vary such that long 

tests have 16 items and short tests have 8 items.  
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Figure 9. Boxplots showing the absolute bias of coefficient omega using the model-implied total 

variance as its denominator for a sample of 1000 participants for an underlying population model 

that has one factor with correlated errors. Bias is shown for three different sample models when 

the reliability is high (𝜌 = .85) or low (𝜌 = .60) and different scale lengths vary such that long 

tests have 16 items and short tests have 8 items.  
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Table 5 

Absolute bias of coefficient omega for samples drawn from a bifactor population. 

 Simple  Correlated Errors  Bifactor 

 N 𝜔Σ bias 𝜔𝑆 bias  N 𝜔Σ bias 𝜔𝑆 bias  N 𝜔Σ bias 𝜔𝑆 bias 

8 items 

n = 100 

High reliability 1000 .08 (.01) .08 (.01)  1000 .00 (.03) .00 (.03)  527 .00 (.03) .00 (.03) 

Low reliability 1000 .14 (.04) .14 (.05)  947 .00 (.07) .00 (.08)  323 .00 (.09) .00 (.09) 

n = 250 

High reliability 1000 .08 (.01) .08 (.01)  1000 .00 (.02) .00 (.02)  798 .00 (.02) .00 (.02) 

Low reliability 1000 .15 (.03) .14 (.03)  999 .01 (.05) .01 (.05)  504 .01 (.05) .01 (.05) 

n = 1000   

High reliability 1000 .08 (.00) .08 (.00)  1000 .00 (.01) .00 (.01)  976 .00 (.01) .00 (.01) 

Low reliability 1000 .15 (.01) .15 (.01)  1000 .01 (.02) .01 (.02)  825 .01 (.03) .01 (.03) 

   

16 items 

n = 100 

High reliability 1000 .09 (.01) .09 (.01)  993 .00 (.03) .00 (.03)  644 .00 (.03) .00 (.03) 

Low reliability 1000 .28 (.02) .25 (.04)  333 .07 (.06) .06 (.07)  727 .01 (.08) .01 (.09) 

n = 250   

High reliability 1000 .09 (.01) .09 (.01)  1000 .00 (.02) .00 (.02)  821 .00 (.02) .00 (.02) 

Low reliability 1000 .28 (.01) .25 (.02)  483 .06 (.03) .06 (.04)  928 .01 (.05) .01 (.05) 

n = 1000   

High reliability 1000 .10 (.00) .09 (.00)  1000 .00 (.01) .00 (.01)  990 .00 (.01) .00 (.01) 

Low reliability 1000 .28 (.01) .26 (.01)  658 .05 (.02) .05 (.02)  1000 .00 (.03) .00 (.03) 

Note: Bold values represent the bias for the correctly specified model. Standard deviations of absolute bias are marked in brackets 

beside mean absolute bias. N represents the number of converged, proper solutions, while n represents the sample size within each 

replication. 𝜔Σ represents coefficient omega calculated using the model-implied total variance as the equation denominator. 𝜔𝑆 

represents coefficient omega calculated using the observed total variance as the equation denominator.  
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Figure 10. Boxplots showing the absolute bias of coefficient omega using the model-implied 

total variance as its denominator for a sample of 100 participants for an underlying population 

model is bifactor. Bias is shown for three different sample models when the reliability is high (𝜌 

= .85) or low (𝜌 = .60) and different scale lengths vary such that long tests have 16 items and 

short tests have 8 items.  
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Figure 11. Boxplots showing the absolute bias of coefficient omega using the model-implied 

total variance as its denominator for a sample of 250 participants for an underlying population 

model is bifactor. Bias is shown for three different sample models when the reliability is high (𝜌 

= .85) or low (𝜌 = .60) and different scale lengths vary such that long tests have 16 items and 

short tests have 8 items. 
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Figure 12. Boxplots showing the absolute bias of coefficient omega using the model-implied 

total variance as its denominator for a sample of 1000 participants for an underlying population 

model is bifactor. Bias is shown for three different sample models when the reliability is high (𝜌 

= .85) or low (𝜌 = .60) and different scale lengths vary such that long tests have 16 items and 

short tests have 8 items.  
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Table 6 

Absolute bias of coefficient omega for samples drawn from a higher-order population model. 

 Simple  Correlated Errors  Bifactor 

 N 𝜔Σ bias 𝜔𝑆 bias  N 𝜔Σ bias 𝜔𝑆 bias  N 𝜔Σ bias 𝜔𝑆 bias 

12 items 

n = 100 

High reliability 1000 .08 (.01) .07 (.01)  998 .00 (.03) .00 (.03)  886 .00 (.03) .00 (.03) 

Low reliability 1000 .16 (.04) .14 (.06)  967 .00 (.07) -.01 (.08)  549 -.01 (.08) -.02 (.08) 

n = 250 

High reliability 1000 .08 (.01) .07 (.01)  1000 .00 (.02) .00 (.02)  990 .00 (.02) .00 (.02) 

Low reliability 1000 .16 (.02) .16 (.03)  1000 .00 (.04) .00 (.04)  915 .00 (.04) .00 (.04) 

n = 1000   

High reliability 1000 .08 (.00) .07 (.00)  1000 .00 (.01) .00 (.01)  1000 .00 (.01) .00 (.01) 

Low reliability 1000 .17 (.01) .16 (.01)  1000 .00 (.02) .00 (.02)  1000 .00 (.02) .00 (.02) 

   

20 items 

n = 100 

High reliability 1000 .10 (.01) .10 (.01)  1000 .00 (.03) .00 (.03)  918 .00 (.03) .00 (.03) 

Low reliability 1000 .22 (.03) .19 (.06)  891 -.02 (.09) -.04 (.10)  746 -.02 (.08) -.03 (.09) 

n = 250   

High reliability 1000 .10 (.00) .10 (.01)  1000 .00 (.02) .00 (.02)  997 .00 (.02) .00 (.02) 

Low reliability 1000 .23 (.02) .20 (.04)  999 .00 (.04) -.01 (.04)  987 .00 (.04) -.01 (.04) 

n = 1000   

High reliability 1000 .10 (.00) .10 (.00)  1000 .00 (.01) .00 (.01)  1000 .00 (.01) .00 (.01) 

Low reliability 1000 .23 (.01) .20 (.02)  1000 .00 (.02) .00 (.02)  1000 .00 (.02) .00 (.02) 

Note: Standard deviations of absolute bias are marked in brackets beside mean absolute bias. N represents the number of converged, 

proper solutions, while n represents the sample size within each replication. 𝜔Σ represents coefficient omega calculated using the 

model-implied total variance as the equation denominator. 𝜔𝑆 represents coefficient omega calculated using the observed total 

variance as the equation denominator.
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Figure 13. Boxplots showing the absolute bias of coefficient omega using the model-implied 

total variance as its denominator for a sample of 100 participants for an underlying population 

model is higher-order. Bias is shown for three different sample models when the reliability is 

high (𝜌 = .85) or low (𝜌 = .60) and different scale lengths vary such that long tests have 16 items 

and short tests have 8 items.  
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Figure 14. Boxplots showing the absolute bias of coefficient omega using the model-implied 

total variance as its denominator for a sample of 250 participants for an underlying population 

model is higher-order. Bias is shown for three different sample models when the reliability is 

high (𝜌 = .85) or low (𝜌 = .60) and different scale lengths vary such that long tests have 16 items 

and short tests have 8 items.  
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Figure 15. Boxplots showing the absolute bias of coefficient omega using the model-implied 

total variance as its denominator for a sample of 1000 participants for an underlying population 

model is higher-order. Bias is shown for three different sample models when the reliability is 

high (𝜌 = .85) or low (𝜌 = .60) and different scale lengths vary such that long tests have 16 items 

and short tests have 8 items.  
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Figure 16. Scatterplot of absolute bias of coefficient omega by RMSEA for each sample model 

within each population. Absolute bias is represented by the absolute value of bias. 
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Figure 17. Scatterplot of absolute bias of coefficient omega by CFI for each sample model 

within each population. Absolute bias is represented by the absolute value of bias. 
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Figure 18. Scatterplot of absolute bias of coefficient omega by TLI. Absolute bias is represented 

by the absolute value of bias. 
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Table 7 

Correlations between degree of absolute bias and model fit indices. 

  Simple  Correlated Errors  Bifactor  Higher-Order 

Fit statistic  Ov.  Ov. Sim. Cor. Bif.  Ov. Sim. Cor. Bif.  Ov. Sim. Cor. Bif. 

RMSEA  .11  .42 -.60 .10 -.10  .64 -.45 .05 .06  .65 -.88 .14 .12 

CFI  -.16  -.51 -.24 -.13 .04  -.73 -.50 -.10 -.10  -.74 -.74 -.18 -.17 

TLI  -.06  -.48 -.24 -.03 .05  -.68 -.47 -.03 .02  -.71 -.68 -.10 -.10 

Note: Correlations represent the Spearman correlation between each respective fit statistic and the absolute bias of coefficient omega 

estimates using the model-implied total variance denominator. Absolute bias is represented by the absolute value of bias. Ov. refers to 

the overall correlation between the fit statistic and bias across all sample models for a given population model. Sim. refers to the 

simple one-factor sample model. Cor. refers to the one-factor sample model with correlated errors. Bif. refers to the bifactor sample 

model. 


