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Abstract 
 
Altered permeability of the endothelial barrier in a variety of tissues has implications 

both in disease pathogenesis and treatment. Glucocorticoids are potent mediators of 

endothelial permeability and this forms the basis for their heavily-prescribed use as 

medications to treat ocular disease. However, the effect of glucocorticoids on endothelial 

barriers elsewhere in the body is less well-studied. Here we investigated glucocorticoid-

mediated changes in endothelial flux of Adiponectin (Ad), a hormone with a critical role 

in diabetes. First, we used monolayers of endothelial cells in vitro and found that the 

glucocorticoid dexamethasone increased transendothelial electrical resistance and 

reduced permeability of polyethylene glycol (PEG, molecular weight 4000kDa). 

Dexamethasone reduced flux of Ad from the apical to basolateral side, measured both by 

ELISA and Western blotting. We then examined a diabetic rat model induced by 

treatment with exogenous corticosterone, which was characterized by glucose intolerance 

and hyperinsulinemia 
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Chapter 1: Review of Literature   
 
1.1 Diabetes introduction  

1.1.1 Types of diabetes and their prevalence 

Diabetes mellitus is a chronic disease that is a major global health concern due to 

its increasing prevalence. Statistics generated by the Canadian Diabetes Cost Model 

estimated that diabetes affected approximately 3.4 million Canadians in 2015 (an estimated 

9.3% of Canadian population). Moreover, the model projected an increase to 5 million 

patients by 2025, which accounts for approximately 12.1% of the population. From a 

national survey of individuals aged 20 years and older, nearly 5.7 million individuals 

(22.1% population) are at risk of developing diabetes, and the number is projected to 

increase to 6.4 million (23.2%) by 2025.  

Diabetes has significant impacts on government funding. In 1999, the Canadian 

Diabetes Strategy (CDS) was created with an initial funding of $115 million for 5 years to 

focus on diabetes awareness programs. However, in 2005, the government increased its 

budget by 80% to $18 million per year (Leung, 2016). The budget increase focused on 

expanding public education of diabetes prevention and management of its complications. 

Another diabetes-related policy and program at the federal level focuses on increasing 

awareness of diabetes among the First Nations people, since they are considered as high-

risk communities. The initial funding of $58 million for a period of five years from 1999-

2004 was expanded to $190 million for 2010-2015 (Leung, 2016). The funds mentioned 

above exclude costs that are associated with treatment of long-term complications of 

diabetes. People with diabetes are three times more likely to be hospitalized than those with 

cardiovascular disease, at a 12 times greater risk for end-stage renal disease, and a 20 times 
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greater risk for lower limb amputation when compared to the general population (Booth 

and Cheng, 2013).  

As of late 2015, research from the University of Toronto School of Public Health 

indicated that each diabetic patient costs the healthcare system about $16000 over eight 

years as compared to approximately $6000 for people who do not have diabetes (Rosella 

et al., 2016). Therefore, the expenditure for diabetic care has a significant monetary impact 

on the Canadian health care system. 

1.1.2 Metabolic Syndrome 

Metabolic syndrome (MetS) is a common and complex disorder clustering 

hypertension, obesity, dyslipidemia, and insulin resistance. Diabetes mellitus is the most 

common and widely studied metabolic syndrome. Diabetes mellitus is characterized by an 

alteration in carbohydrate metabolism leading to hyperglycemia with symptoms that 

include polyuria, polydipsia, and weight loss. There are 2 main types of diabetes: type 1 

and type 2 diabetes mellitus. Type 1 diabetes caused by destruction of pancreatic β cells, 

resulting in disrupted and ultimately deficient insulin secretion. Type 2 diabetes is 

characterized by insulin resistance, which is initially compensated for by increased insulin 

secretion but ultimately β cell failure occurs leading to hyperglycemia. In addition to type 

1 and 2 diabetes, gestational diabetes occurs during pregnancy when the body naturally 

becomes more resistant to insulin. Gestational diabetes is not permanent, and blood sugar 

will typically returns to normal after birth. However, gestational diabetes can potentially 

increase the risk of type 2 diabetes in the future.  

Type 2 diabetes is the most prevalent type of diabetes, accounting for nearly 90% of 

the diabetic population worldwide. There are many risk factors for type 2 diabetes 
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including pregnancy, genetics (defects in insulin secretion), age, race, diet, and lack of 

physical activity. However, the best predictor for type 2 diabetes is obesity. The number of 

obese individuals is growing at an alarming rate. From a Canadian government survey of 

the population aged 18 years and older between 2003 and 2014, approximately 8.2 million 

(62%) men and 6.1 million (46%) women had an increased health risk due to excess body 

weight. The number of obese individuals had increased from 57% in men and 41% in 

women prior to the 2003 survey (Shields, 2006). Notably, excessive visceral obesity is 

closely associated with the rising incidence of type 2 diabetes (Ford, 2005; Yusuf et al., 

2005).  

1.2 Diabetes pathophysiology  

1.2.1 Proposed mechanisms responsible for development of diabetes (whole body) 

As mentioned above, obesity is a key risk factor for the emergence of type 2 

diabetes. Adipose tissue regulates glucose metabolism by releasing various adipokines. In 

association with obesity, retinol-binding protein-4 (RBP4) is released and induces insulin 

resistance through reduced phosphatidylinositol-3-OH kinase (PI3K) signalling in muscles 

and enhanced glucose production in the liver by increased expression of the glyconeogenic 

enzyme phosphoenolpyruvate carboxykinase (PEPCK) (Yang et al., 2005). Studies have 

shown an increased release of tumour necrosis factor α (TNF-α), interleukin-6 (IL-6), and 

monocyte chemoattractant protein-1 (MCP-1) from adipose tissue, which suggests 

macrophage infiltration might have a role in the development of insulin resistance (Fain et 

al., 2004; Wellen and Hotamisligil, 2005). Other studies have shown that macrophage 

infiltration into white adipose tissue is increased in association with obesity (Weisberg et 

al., 2003; Xu et al., 2003b). 
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The increase in non-esterified fatty acids (NEFA) levels observed in obesity and 

type 2 diabetes may be responsible for inducing insulin resistance and impairing β-cell 

function (Boden, 1997; Reaven et al., 1988). An increase in NEFA levels causes the 

intracellular accumulation of fatty acid metabolites such as fatty acyl-coenzyme A (fatty 

acyl-coA) and diacylglycerol (DAG), which activate a serine/threonine kinase cascade (e.g. 

protein kinase C) leading to phosphorylation of insulin receptor substrate-1 (IRS-1) and 

insulin receptor substrate-2 (IRS-2), preventing the receptors’ ability to activate 

downstream signaling via PI3K. Hence, downstream insulin-receptor signaling is 

diminished (Shulman, 2000). Previous studies have shown that increased serine/threonine 

phosphorylation of IRS-1 and IRS-2 can significantly reduce their ability to interact with 

the insulin receptor, and impair insulin-induced tyrosine phosphorylation on the receptor 

β-subunit, affecting propagation of insulin signaling in Fao cells (Paz et al., 1997; Paz et 

al., 1996). Furthermore, NEFAs can also bind to the G-protein-coupled receptor GPR40 on 

the cell membrane to activate glucose-stimulated insulin secretion in β-cells, or generate 

fatty acyl-CoA and DAG, which will increase insulin levels through stimulating insulin 

granule exocytosis from β-cells (Itoh et al., 2003; Prentki et al., 2002).  

β-cells are known for their ability to regulate insulin release, which ensures plasma 

glucose concentrations to remain within a healthy range. Increased levels of glucose induce 

insulin release from the secretory granules in the β-cells by increasing intracellular ATP 

(Wilcox, 2005). The adaptive response to insulin resistance involves changes in both 

function and mass of β-cells. Studies have demonstrated that obesity can alter β-cell 

function as well as cell volume. A study using mice fed on a high-fat diet (12 months) to 

induce obesity and insulin resistance has found an increase in islet size rather than new 
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islet formation to accommodate for increased secretory demand (Hull et al., 2005). Human 

studies have also suggested that obese individuals are prone to hypertrophy of existing b-

cells rather than cell proliferation, with volume increasing around 50% (Butler et al., 2003; 

Kloppel et al., 1985).  It has been proposed that activation of the insulin-like growth factor 

1 (IGF-1) receptor leads to phosphorylation of IRS-2, and activation of PI3K/protein 

kinase-B (PKB/Akt) and Ras, leading to the activation of the mitogen-activated protein 

(MAP) kinases ERK-1/2. All of these pathways promote β-cell proliferation, tissue 

regeneration, and survival. In IRS-2 knockout mice, reintroduction of β-cell IRS-2 alone 

can increase β-cell replication and cell mass, hence reversing the diabetic phenotype. 

Therefore, the IGF-1 pathway is important for regulation of β-cell mass (Bernal-Mizrachi 

et al., 2001; Rhodes, 2005; Rui et al., 2001).  

1.2.2 Skeletal muscle and glucose metabolism 

Skeletal muscle has been identified as a major site for insulin-stimulated glucose 

disposal, and hence is a main locus of insulin resistance. Studies have shown that an 

intramuscular triglyceride pool exists within human skeletal muscle as a source of energy 

(Dagenais et al., 1976). Studies utilizing a high fat diet-fed rat model suggested that the 

increase in triglyceride storage within the muscles is clearly associated with impairment in 

insulin-stimulated glucose metabolism, as assessed by euglycemic clamp (Storlien et al., 

1991). They concluded high triglyceride accumulation impaired insulin action.  

 The inability of adipose tissue to store excess energy results in elevated release of 

free fatty acids, causing metabolic dysregulation. The mitochondria have been postulated 

to be key regulators of insulin resistance development. Mitochondria are known for their 

role in energy production; it is the site of oxidative phosphorylation that couples the 
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electron transfer from respiratory substrates to oxygen with ATP synthesis. The respiratory 

chain involves four protein complexes on the inner mitochondrial membrane. Complexes 

I and II transfer electrons to ubiquinone, then to complex III, cytochrome c, complex IV, 

and finally to oxygen (Navarro and Boveris, 2007). There are several theories regarding 

the relationship between mitochondrial dysfunction and insulin resistance. Early studies in 

obese and insulin-resistant individuals have shown a mitochondrial dysfunction phenotype 

(Kelley et al., 1999). One study proposed that the loss of mitochondrial content or function 

resulted in insufficient fatty acid oxidation and excessive lipids in circulation, leading to 

an intracellular accumulation of fatty acyl-coA and DAG in skeletal muscles that interfere 

with insulin signalling (Lowell and Shulman, 2005). Further studies demonstrated that in 

type 2 diabetes patients, skeletal muscles exhibited lower respiratory chain activity due to 

the reduction in the expression of genes encoding mitochondrial enzyme subunits (Kelley 

et al., 2002; Mootha et al., 2003; Patti et al., 2003; Ritov et al., 2010).  

1.2.3 Insulin signalling  

The insulin receptor (IR) is a transmembrane glycoprotein belonging to the receptor 

tyrosine kinases family. It is composed of α- and β- subunits linked by disulfide bonds. The 

α-subunits serve as the extracellular binding site for insulin, whereas the β-subunits contain 

the insulin-regulated tyrosine kinase activity responsible for initiating the signalling 

cascade (Ullrich et al., 1986). The signalling pathway begins with the interaction between 

insulin and the α-subunit of the insulin receptor on the cell surface (Fig. 1). This interaction 

leads to the stimulation of tyrosine kinase activity on the receptor β-subunit. The 

phosphotyrosine-binding (PTB) domain of the insulin receptor substrate (IRS) recognizes 

the activation of IR, subsequently leading to the phosphorylation of tyrosine residues on 
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IRS. Phosphorylated IRS is recognized by the Src homology 2 (SH2) domain on the p85 

regulatory subunit of PI3-kinase, further leading to the activation of PI3K. PI3K facilitates 

the translocation of the insulin-responsive glucose transporter (GLUT4) towards the 

plasma membrane. The link between PI3K and glucose transport is not completely 

understood.  However, several studies suggest that PI3K activation is mediated by the 

recruitment and activation of 3-phosphoinositide-dependent kinases (PDK), and the 

subsequent phosphorylation of serine/threonine kinase (Akt). Akt has several downstream 

substrates including protein kinase C (PKC) and glycogen synthase kinase 3 (GSK3) 

(Bandyopadhyay et al., 1997; Bandyopadhyay et al., 1999). Furthermore, clinical studies 

have demonstrated obesity and type 2 diabetes both exhibit reduced IRS-1 tyrosine 

phosphorylation and reduced PI3K activity by inhibitor kappa B kinase (IKK) and c-Jun 

amino-terminal kinases (JNK) (Aguirre et al., 2000). 
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Figure 1: Insulin signaling pathway in skeletal muscles. The signalling pathway begins 

with the interaction between insulin and the α-subunit of the insulin receptor on the cell 

surface (Fig. 1). The interactions lead to the stimulation of tyrosine kinase activity on the 

receptor β-subunit. The phosphotyrosine-binding (PTB) domain of the insulin receptor 

substrate (IRS) recognizes the activation of IR, subsequently leading to the 

phosphorylation of tyrosine residues on IRS. Phosphorylated IRS is recognized by the Src 

homology 2 (SH2) domain on the p85 regulatory subunit of PI3-kinase, further leading to 

the activation of PI3K. Through a series of additional steps, PI3K facilitates the 

translocation of the insulin-responsive glucose transporter (GLUT4) towards the plasma 

membrane. 

1.3 Glucocorticoids  

1.3.1 Association of glucocorticoids with diabetes 

Glucocorticoid (GC) is a natural hormone secreted by the adrenal cortex under the 

control of the neuroendocrine feedback system for the regulation of circadian rhythms and 

stress. Exposure to GCs in large amounts during treatment for disorders such as Cushing 

syndrome or mental stress induces insulin resistance (Buren and Eriksson, 2005; Ruzzin et 

al., 2005). Skeletal muscles, adipose tissue, and liver were found to be insulin resistant 

after GC treatment (Witchel and DeFranco, 2006) 

1.3.2 GC receptor and control of energy homeostasis 

The glucocorticoid receptor (GR) is crucial for the survival of mice, as GR 

knockout was found to be lethal (Cole et al., 1995). In the absence of a GR-ligand, this 

nuclear receptor stays within the cytosol as part of a multi-protein chaperone complex. 

Upon hormone binding, the GR translocates to the nucleus and binds directly to DNA at 
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glucocorticoid response elements (GREs) on target genes (Schoneveld et al., 2004). The 

concentration of GC in the blood generally rises during stress, fasting, conditions of 

decreased glucose uptake in muscles and fat, or during gluconeogenesis in the liver to 

maintain normal blood glucose levels (Makimura et al., 2003; Munck et al., 1984)  

High levels of glucocorticoid were found in conditions of obesity, hypertension and 

impaired glucose homeostasis (Bjorntorp and Rosmond, 2000; Lemke et al., 2008). In fact, 

an increase in GR activity leads to lower protein and insulin synthesis in skeletal muscles 

(Vegiopoulos and Herzig, 2007). Studies from cultured muscle fibres treated with 

Dexamethasone (Dex) were found to have lower GLUT4 translocation, and reduced 

glycogen synthase activation, leading to the conclusion that Dex diminished glucose uptake 

under insulin-stimulated conditions (Dimitriadis et al., 1997; Weinstein et al., 1998) 

1.3.3 Use of GC as an anti-inflammatory and immunosuppressive drug 

Under normal conditions, GCs have the ability to inhibit inflammatory responses. 

GCs inhibit the vasodilation and vascular permeability that occurs during inflammation, 

and decreases leukocyte accumulation into the inflamed sites. The result is an acute 

reduction in inflammatory events (Perretti and Ahluwalia, 2000). Additionally, in the long 

term, GCs bind to the GR to regulate NF-κB and AP-1 transcription in leukocytes (Ashwell 

et al., 2000), or repress transcription of pro-inflammatory related cytokines, chemokines, 

and cell adhesion molecules that are involved in the initiation of the host inflammatory 

response (Smoak and Cidlowski, 2004).  

1.3.4 Glucocorticoid-induced diabetes models  

Rats injected with Dex were found to have decreased insulin-stimulated Akt 

phosphorylation at both Ser473 and Thr308 sites (Buren et al., 2008). In rat L6 myotubes 
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treated with Dex, a reduction in insulin receptor substrate (IRS-1) protein and PI3K/Akt 

signalling were also observed (Zheng et al., 2010). 

Long term usage of GCs potentially lead to adverse side effects such as osteoporosis, 

chronic interstitial nephritis, retinopathy, and diabetes (Kessing et al., 2010; Perneger et 

al., 1994; Wolfe and Marmor, 2010; Yang et al., 2006). In senior patients, the risk of 

diabetes doubled after 1 year of exposure to GCs  (Blackburn et al., 2002). Moreover, 38% 

of young people who are chronically treated with steroids have undergone regular 

monitoring for diabetes (Blackburn et al., 2002) (Panthakalam et al., 2004).  

 

1.4 Iron and diabetes risk  

1.4.1 Association between iron and metabolic syndrome 

The connection between iron and metabolism is well established. To examine the 

link between iron and diabetes, a group of researchers generated human hemochromatosis 

protein knockout (HFE KO) mice, which exhibited impaired glucose-stimulated insulin 

secretion and increased β-cell apoptosis (Cooksey et al., 2004). The crosstalk between iron 

metabolism and diabetes has also been demonstrated by Tanner and Lienhard, who 

observed co-localization of transferrin receptors and glucose transporters on the membrane 

of adipocytes in vitro. Their study suggested that the regulation of iron occurs in parallel 

with its effects on glucose transport (Tanner and Lienhard, 1989). Increased iron storage is 

associated with the development of type 2 diabetes (Fernandez-Real et al., 2002). Ferritin 

is one of the key proteins regulating iron homeostasis and it is a widely used clinical 

biomarker of iron status. Clinical studies have shown that higher serum ferritin levels were 

found in patients with metabolic syndrome and insulin resistance. Thus, high iron level is 



	 11	

associated with increased risk of type 2 diabetes, suggesting it may be a prevalent cause of 

diabetes (Moreno et al., 2015) 

Thalassemia is a disorder characterized by a deficiency in the β-globin subunit of 

hemoglobin. Patients become overloaded with iron from increased iron absorption, because 

the patients’ body is unable to maintain normal erythrocyte levels in the blood to uptake 

the iron that is taken up by the gut (Weatherall, 1998). Clinical studies on thalassemia have 

also found that these patients have insulin deficiency and resistance, which may lead to a 

prediabetic state and the development of diabetes (Messina et al., 2002).  

1.4.2 Iron homeostasis 

Serum and tissue iron levels are regulated by hepcidin. Hepcidin promotes 

internalization and ubiquitin-mediated degradation of ferroportin (FPN), an iron exporter. 

Hepcidin therefore inhibits iron release and reduces circulating iron levels, but accumulates 

iron in tissues. The main source of iron for most cells is through the uptake of transfferin 

(Tf)-bound iron and its receptor (TfR1). Tf is a protein produced by the liver that binds to 

iron molecules. Tf enters and is redistributed to the cells via TfR1, which is internalized 

through clatherin-mediated endocytosis. The circulating ferric form of iron is released, and 

the Tf-TfR1 complex is recycled back to the cell membrane where the complex is 

separated. Hepcidin is not normally involved in the regulation of iron release unless Tf is 

saturated, leading to the formation of non Tf-bound iron (NTBI). When Tf is saturated and 

NTBI is formed, the free cellular iron is toxic and redox-active.  

1.4.3 Iron overload in humans (e.g., Hereditary hemochromatosis) 

Although type 2 diabetes is largely attributed to the obesity epidemic, the 

underlying genetic cause of this metabolic syndrome is unknown. Hereditary 
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hemochromatosis (HH) is an autosomal recessive disorder characterized by excess iron 

concentration in the body. The most common form of this disease is caused by a mutation 

in the HFE gene resulting in a C282Y substitution in the HFE protein. The HFE protein is 

responsible for iron metabolism by acting as an iron sensor for the body to regulate iron 

absorption in the small intestine, and the recycling of iron by macrophages (Feder et al., 

1996). While HFE normally functions through the stimulation of hepcidin, a mutation in 

HFE causes a decline in hepcidin expression, resulting a higher than normal iron absorption 

(Nemeth et al., 2004). Mutation in HFE was thought to be an adaptive response in 

populations with an iron-deficient diet (Toomajian et al., 2003). Clinical studies have 

demonstrated HH patients cannot respond to increased insulin secretion demand primarily 

due to the β -cell pathology. In these patients, insulin sensitivity will improve after 

phlebotomy therapy to achieve iron depletion. Hence, these patients are at a higher risk to 

develop diabetes (Abraham et al., 2006; McClain et al., 2006).  

1.4.4 Iron overload – animal models 

An alteration in iron homeostasis allows uncontrolled iron entry to different organs, 

progressively leading to tissue damage and organ failure. To study this phenomenon, many 

laboratories have created a genetic knockout model of hemojuvelin (HJV), a membrane 

protein that acts as a co-receptor in the SMAD pathway to regulate hepcidin expression. 

Hepcidin is a key regulator of iron metabolism that works by binding to the iron export 

channel ferroportin, the resulting inhibition of iron transport results in an iron overload. 

Iron accumulation and morphological damage of the retina has been shown in mice with 

HJV deletion (Gnana-Prakasam et al., 2012). Moreover, a murine iron overload model was 

achieved by HJV deletion in combination with dietary iron supplement and iron injection. 
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It increased oxidative stress and myocardial fibrosis, resulting in heart disease (Das et al., 

2015).  

1.4.5 Iron overload and glucose metabolism 

The liver is the major site of iron storage in the body as transferrin-bound iron is 

taken up by hepatocytes via TfR1. When excess iron is stored in the liver it interferes with 

glucose metabolism and causes hyperinsulinemia (Niederau et al., 1984). Insulin enhances 

the uptake of extracellular iron by inducing expression of TfRs at the cell surface, as well 

as down regulating the expression of hepcidin (Davis et al., 1986; Wang et al., 2014).  

1.4.6 Physiological effects of iron 

Iron is an essential nutrient that plays an important role as a cofactor for fuel 

oxidation and electron transport, as well as being required for normal cellular structure and 

functions such as cell growth and proliferation (Gozzelino and Arosio, 2016).  However, 

excessive amounts of iron could be toxic if not carefully regulated. Iron, combined with 

Hydrogen Peroxide (H2O2), generates various Reactive Oxygen Species (ROS) through the 

Fenton reaction. This process causes oxidation of organic pollutants such as pesticides 

(Mirzaei et al., 2017). In rodent models, changes in iron homeostasis led to uncontrolled 

iron entry and deposition in skeletal muscles, and progressively caused insulin resistance, 

a key contributor to diabetes (Huang et al., 2011) 

1.4.7 Cellular effects of iron 

Oxidative stress has long been known to be a major causal factor for diabetes and its 

complications. For example, elevated ROS reduced metabolite clearance in patients with 

chronic renal failure (Toborek et al., 1992). Free radicals also disrupt tight junction (TJ) 

function by altering the cell-cell adherence properties of TJ proteins, and by inducing 
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reorganization of the actin filament network (Wichmann et al., 2015; Won et al., 2011). 

Another study suggested that iron overload in mice led to elevated ROS. Interestingly, iron 

overload was associated with decreased levels of TJ structural proteins occludin and zonula 

occludens 1 (ZO-1), and hence caused a disruption in TJ structure, resulting in increased 

permeability of hippocampal endothelial cells isolated from TFI-induced iron overloaded 

rats. Endothelial dysfunction contributes to the pathogenesis of atherosclerosis in diabetes 

(Handa et al., 2016; Won et al., 2011). Furthermore, previous research has found that 

inflammation coexisting with increased oxidative stress occurs in end-stage renal disease 

(Raj et al., 2005). ROS enters human skeletal muscles and activates an inflammatory 

cascade via activation of nuclear factor-kB (NF-κB), as well as upregulation of expression 

of various cytokines, including interleukin- 6 and 10 (IL- 6, 10) and TNF-α, in response to 

stimuli. The impaired glucose tolerance is associated with increased serum concentrations 

of these cytokines (Muller et al., 2002) 

1.5 Adiponectin  

1.5.1 Association of adiponectin with diabetes 

The adipose tissue is an endocrine organ that secretes various adipokines to mediate 

metabolic effects (Valencak et al., 2017). Adiponectin (Ad) is one such adipokine, and its 

gene is located on a chromosome that has been identified as a diabetes-susceptible locus in 

genome-wide association studies (Mori et al., 2002; Vionnet et al., 2000). Hence, it is 

theorized to be a diabetes-related hormone. Ad is a 30kD protein that is primarily secreted 

by adipocytes and circulates abundantly in the blood stream at 3-30 µg/ml. The adiponectin 

protein must undergo post-translational modification before being secreted into the 

circulation (Dadson et al., 2011). Ad can exist as a full-length protein, or as a globular 
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fragment. The monomers can form trimers (low molecular weight (LMW) form), hexamers 

(medium molecular weight (MMW) form), and higher order oligomers (high molecular 

weight (HMW) form). The mixture of these different oligomeric forms is termed full length 

Ad (fAd). The globular form of Ad is generated during the posttranslational modification 

of fAd, and is smaller, consisting of the carboxyl-terminal domain, but it can also mediate 

biological effects (Dadson et al., 2011).  

Many studies have recognized the role that a reduction in adiponectin action has in 

the metabolic syndrome and obesity-related diseases. The level of circulating adiponectin 

has an inverse relationship with BMI, plasma glucose, and serum triglycerides (Ouchi et 

al., 2011), and it is significantly reduced in obese/diabetic mice and humans (Hu et al., 

1996; Yamauchi et al., 2001). Furthermore, Ad mRNA expression is down regulated in 

db/db obese diabetic mice (Hu et al., 1996). Thus, a reduction in circulating adiponectin 

levels is consistently observed in conditions associated with insulin resistance. Two main 

mechanisms that have been proposed for impaired adiponectin action in tissues are: 1) 

decrease circulating levels of adiponectin, or 2) reduced adiponectin sensitivity, both of 

which may promote inflammation in obesity and diabetic conditions, as adiponectin has 

potent anti-inflammatory effects (Yamauchi and Kadowaki, 2013).  

1.5.2 Regulation of adiponectin production 

Adiponectin is the product of the APM1 gene, which has been mapped to the human 

chromosome 3q27 locus, a diabetes-susceptible site. The gene is under transcriptional 

regulation by peroxisome proliferator activated receptor γ (PPARγ). It is a ligand-activated 

transcription factor belonging to the nuclear family of receptors. PPARγ deletion in mice 

reduces circulating adiponectin levels, hence diminishing adiponectin’s antidiabetic and 
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cardioprotective effects. An increase in PPARγ activity increases adiponectin levels in the 

circulation. The most well-known and commonly used anti-diabetic drugs, such as 

rosiglitazone, belong to the thiazolidinedione (TZD) class of drugs. These drugs work to 

enhance insulin sensitivity and lower blood glucose levels by increasing adiponectin levels 

through PPARγ activation (Maeda et al., 2001). In contrast to PPARγ, cAMP response 

element-binding protein (CREB) has been identified as a repressor of adiponectin gene 

expression. This transcription factor is indirectly responsible for hyperglycemia and insulin 

resistance by down regulation of adiponectin through upregulation of ATF3, a gene 

repressor. (Kim et al., 2006). TNF-α is a pro-inflammatory cytokine that is known to 

suppress upstream adiponectin signalling through inhibition of PPARγ, and preventing SP-

1 promotor binding, hence decreasing gene expression as well as reducing signalling 

cascades (Park et al., 2008).  

1.5.3 Adiponectin signalling 

The adiponectin signalling cascade is initiated by the interaction of circulating 

adiponectin with its transmembrane adiponectin receptor isoforms AdipoR1/R2. The 

receptors have seven transmembrane domains with an intracellular N-terminus and an 

extracellular C-terminus (Lee et al., 2008). It has been suggested that these receptors get 

phosphorylated at the tyrosine site and undergo conformational changes to initiate the 

signalling cascade. AdipoR1 is most abundant in the skeletal muscles and has a higher 

affinity for gAd as compared to fAd. The liver mainly expresses AdipoR2. Adaptor protein 

phosphotyrosine interacting with PH domain and leucine zippers 1 (APPL1) is an adaptor 

protein that interacts with the N-terminal intracellular domain of AdipoR1/R2 through its 

PTB domain (Lee et al., 2011). APPL1 has been shown to interact with the p110 catalytic 
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subunit and p85 regulatory subunit of PI3K, and also with Akt (Backer, 2010). Hence, 

APPL1 is a key adaptor protein responsible for the crosstalk between adiponectin and the 

insulin signalling pathway. Translocation of the glucose transporter GLUT4 to the cell 

surface was diminished in APPL1 knockdown in a skeletal muscle cell model (Dadson et 

al., 2011). Other than its role in mediating the insulin-sensitizing effects of adiponectin, 

the signalling cascades activated by APPL1 are also known for roles in cell proliferation, 

chromatin remodeling, and cell survival (Liu et al., 2017)  

AMP-activated protein kinase (AMPK) is a downstream target of AdipoR/APPL1 

signalling. AMPK belongs to the family of energy sensing enzymes that are activated by 

ATP depletion. Fatty acid uptake and oxidation is the primary energy source for cardiac 

cells, a process which is upregulated by Ad. Conversely, Ad also suppresses fatty acid 

synthesis through the activation of AMPK, p38 MAPK and PPARα. AMPK 

phosphorylation is critical for the activation of palmitoytransferase-1 (CPT-1), a 

mitochondrial outer membrane protein responsible for transporting long chain fatty acids 

(LCFAs) into the mitochondria. In its dephosphorylated and activated state, acetyl CoA 

carboxylase (ACC) produces malonyl-CoA, which inhibits CPT-1 activity and prevents the 

mitochondrial import of LCFAs. However, AMPK phosphorylates and deactivates ACC 

and releases the inhibition of CPT-1, allowing LCFAs to be transported into the 

mitochondria for oxidation (Yoon et al., 2006). 

PPARα (a ligand-activated nuclear hormone receptor) controls the expression of a 

number of genes involved in mitochondrial β-oxidation such ACO, CPT1, and FABP3 for 

the generation of energy from fatty acid oxidation in the liver, heart, kidney, and skeletal 

muscles (Rodriguez et al., 1994). Studies using PPARα knockout mice have demonstrated 
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defects in fatty acid oxidation, resulting in elevated plasma free fatty acid levels and 

hypothermia (Hashimoto et al., 2000; Kersten et al., 1999).  

p38 mitogen-activated protein kinase p38 MAPK is activated by inflammatory 

cytokines and has an important role in initiating an immune response upon metabolic stress 

(e.g. muscle contraction, ischemia). These physiological conditions are similar to those 

associated with AMPK activation, suggesting possible crosstalk between the AMPK and 

p38 MAPK signalling pathways (Hayashi et al., 2000). 

1.5.4 Physiological effects of adiponectin 

The physiological significance of Ad as an insulin-sensitizing adipokine is well 

established. Although adipocytes are the main source of circulating Ad, several studies 

have now demonstrated the potential for Ad production by skeletal muscles (Liu et al., 

2009). Since skeletal muscle is the main site for glucose disposal in the body, it makes 

sense for it to be an important peripheral target tissue for Ad to exert its metabolic effects, 

and indeed has proved to be a site of Ad’s anti-diabetic action. Cultured mouse and rat 

skeletal muscle cells demonstrate enhanced glucose uptake with Ad treatment (Ceddia et 

al., 2005; Yamauchi et al., 2002). Furthermore, administration of Ad to ob/ob mice was 

shown to reverse hyperglycemia (Xu et al., 2003a)  

1.6 Transport of hormones across vascular endothelium  

1.6.1 Structure and function of vascular endothelium 

A monolayer of endothelial cells lines the entire circulatory system of the body. 

This endothelium acts as a barrier which regulates the exchange of hormones, proteins, and 

small molecules between the vascular compartment and the interstitial space (Goddard and 

Iruela-Arispe, 2013; Pries and Kuebler, 2006). The actions of a hormone or nutrient on a 
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target tissue are implicitly dependent upon the ability of these factors to gain access to the 

target. Numerous studies have indicated that hormone and nutrient concentrations in blood 

differ from those surrounding cells on the tissue side of the blood vessel endothelium 

(Barrett et al., 2011; Bodenlenz et al., 2005; Chiu et al., 2009; Chiu et al., 2008; Herkner 

et al., 2003; Kolka et al., 2010; Maggs et al., 1995; Sjostrand et al., 1999; Yang et al., 

1994). In this regard, it is our contention that the significance of the endothelium as a 

regulator of hormone and substrate access to target tissues is often underappreciated. Two 

distinct pathways can regulate endothelial permeability: 1) the transcellular pathway, 

where solutes are actively transported across the endothelium, primarily via caveolae-

mediated transcytosis; or 2) the paracellular pathway, where solutes passively move 

through the intercellular space between adjacent endothelial cells. 

1.6.2 Transcellular and paracellular transport  

The transcellular movement of solutes involves energy-dependent trafficking of 

vesicles across the endothelium (Goddard and Iruela-Arispe, 2013). This often requires 

their recognition by receptors in caveolae on the luminal surface of the endothelium, 

though it may also involve vesiculo-vacuolar organelles, or occur via transcellular channels 

(Goddard and Iruela-Arispe, 2013). Caveolae are cholesterol- and sphingolipid-rich non-

clathrin-coated pits, and are abundant in endothelial cells. After ligand binding to receptors 

in caveolae, dynamin-mediated endocytosis occurs, followed by vectorial transport and 

fusion of the vesicle with the basolateral plasma membrane, resulting in the release of 

contents by exocytosis (Goddard and Iruela-Arispe, 2013). As a general concept, 

transcellular vesicle trafficking is important in the transport of larger macromolecules 
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across the endothelium, since the paracellular route is typically restricted to passaging of 

solutes smaller than 3 nm in radius (Gunzel and Fromm, 2012; Gunzel and Yu, 2013). 

The paracellular mode of transport across the endothelium depends upon 

concentration gradients between blood and interstitial fluid. One regulatory mechanism of 

paracellular movement involves tight junctions (TJs), which are composed of strands of 

transmembrane and cytosolic proteins that closely control paracellular flux and have been 

established to be important in regulating hormone transport (Gunzel and Yu, 2013; Kolka 

and Bergman, 2012; Kolka et al., 2010). As a component of the cell-cell junctions between 

endothelia, TJs provide a selective barrier to solute movement between cells (Gunzel and 

Fromm, 2012). The perm-selectivity of the TJ barrier is dependent on the variable 

assemblage of TJ proteins that comprise the complex. Proteins such as occludin, tricellulin, 

and claudins directly establish the TJ barrier and form the backbone of TJ strands while 

the cytosolic proteins, such as ZO-1, provide structural support to the TJ complex. The 

incorporation of specific TJ protein isoforms can enhance TJ barrier function (i.e., make 

TJs tighter) or form channels to increase TJ permeability (i.e., make TJs leakier) (Gunzel 

and Fromm, 2012). Importantly, skeletal muscle and heart vasculature have continuous 

endothelium with TJs between cells (Aird, 2007a, b). However, the liver and spleen have 

a discontinuous endothelium with large holes, which allow rapid equilibration of plasma 

with the underlying tissue (Aird, 2007a, b). It was suggested that this expedited exposure 

of the liver to plasma solute changes, due to its characteristic fenestrated endothelium, may 

partly explain its earlier susceptibility to insulin resistance (Braet and Wisse, 2002; Kim et 

al., 2003).  

1.6.3 Endothelial dysfunction in diabetes 
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Impaired vascular endothelial function is an early marker for atherosclerosis, which 

causes cardiovascular complications. The concept of endothelial dysfunction in diabetes is 

well established (Ding and Triggle, 2010). However, this typically refers to vascular 

functions independent of transendothelial solute flux. The endothelium is also a dynamic 

interface that responds to various stimuli, and synthesizes and liberates vasoactive 

molecules such as nitric oxide, prostaglandins and endothelin. Accordingly, vascular 

complications in diabetes include outcomes occurring in large (atherosclerosis, 

cardiomyopathy) and small (retinopathy, nephropathy, neuropathy) vessels (Symons and 

Abel, 2013). We believe that diabetes-induced deleterious alterations in paracellular solute 

movement also represent a form of endothelial dysfunction which should be fully 

characterized to establish its physiological significance. 

1.7 Research	objectives/	hypothesis	&	specific	aims		
	
As described above, regulation of the permeability of the endothelial barrier is an 

important way in which hormone access to the target tissue is controlled. I hypothesized 

that targeting tight junctions to alter endothelial permeability could control adiponectin 

flux, and consequently its cellular and physiological functions. To test this hypothesis, the 

following objectives were established: 

Objective 1: Test whether using glucocorticoids to increase tightness of endothelial tight 

junctions could restrict adiponectin flux and action. 

Aim 1: Use the synthetic glucocorticoid Dex to modify Human Umbilical Vein Endothelial 

Cells (HUVEC) tightness and test for changes in permeability of adiponectin.  
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Aim 2: Test mechanisms underlying changes observed in Aim 1: examine changes in 

endothelial tight junction components using Western blot and mRNA. Examine 

adiponectin flux in HUVEC where claudin-7 expression was reduced using shRNA. 

Aim 3: Determine the effect of glucocorticoid Corticosterone (Cort) on the expression of 

adiponectin, its receptors, and tight junction components in rats treated with Cort. 

Objective 2: Investigate whether iron could change endothelium tightness and alter 

metabolism  

Aim 1: Test whether iron directly modifies Human Dermal Microvascular Endothelial Cell 

(HDMEC) permeability and adiponectin flux.  

Aim 2: Using a mouse model of iron overload, test whether insulin sensitivity and glucose 

clearance was altered.  

Aim 3: Determine tissue-specific effects and molecular mechanisms responsible for 

changes in glucose metabolism and activity using comprehensive lab animal monitoring 

system and western blotting.  
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Chapter 2: Study 1 

Transendothelial movement of adiponectin is restricted by glucocorticoids 

1.1 Abstract  

Altered permeability of the endothelial barrier in a variety of tissues has implications 

both in disease pathogenesis and treatment. Glucocorticoids are potent mediators of 

endothelial permeability and this forms the basis for their heavily-prescribed use as 

medications to treat ocular disease. However, the effect of glucocorticoids on endothelial 

barriers elsewhere in the body is less well-studied. Here we investigated glucocorticoid-

mediated changes in endothelial flux of Adiponectin (Ad), a hormone with a critical role 

in diabetes. First, we used monolayers of endothelial cells in vitro and found that the 

glucocorticoid dexamethasone increased transendothelial electrical resistance and reduced 

permeability of polyethylene glycol (PEG, molecular weight 4000kDa). Dexamethasone 

reduced flux of Ad from the apical to basolateral side, measured both by ELISA and 

Western blotting. We then examined a diabetic rat model induced by treatment with 

exogenous corticosterone, which was characterized by glucose intolerance and 

hyperinsulinemia. There was no change in circulating Ad but less Ad protein in skeletal 

muscle homogenates, despite slightly higher mRNA levels, in diabetic versus control 
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muscles. Dexamethasone-induced changes in Ad flux across endothelial monolayers were 

associated with alterations in the abundance of select claudin (CLDN) tight junction (TJ) 

proteins. shRNA-mediated knockdown of one such gene, claudin-7, in HUVEC resulted 

in decreased TEER and increased adiponectin flux, confirming the functional significance 

of Dex-induced changes in its expression. In conclusion, our study identifies 

glucocorticoid-mediated reductions in flux of Ad across endothelial monolayers in vivo 

and in vitro. This suggests that impaired Ad action in target tissues, as a consequence of 

reduced transendothelial flux, may contribute to the glucocorticoid-induced diabetic 

phenotype. 

1.2 Introduction	
 As the primary barrier to the movement of circulating endocrine factors from the 

bloodstream to the interstitial space, the endothelium plays a critical role in hormone action 

(Kolka and Bergman, 2012; Yoon et al., 2014). Endothelial permeability can significantly 

impact hormone action by preventing or delaying access of the hormone to target tissues 

(Kolka and Bergman, 2012; Won et al., 2011). Transendothelial solute movement can 

occur via the transcellular pathway where solutes are transported across the endothelium 

cell membrane or via the paracellular pathway where solutes passively move through the 

intercellular space between adjacent endothelial cells (Yoon et al., 2014) .Previous work 

has shown that hormone and nutrient concentrations in blood differ from surrounding cells 

on the tissue side of the blood vessel endothelium (Barrett et al., 2011; Herkner et al., 2003; 

Yang et al., 1994).Of note, this has been best documented in the case of insulin where 

concentrations of the hormone are significantly lower in the target tissue than in the 

circulation (Kolka and Bergman, 2012). 
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 Glucocorticoids are among the most commonly prescribed anti-inflammatory and 

immunosuppressive medications worldwide (Clark and Belvisi, 2012). They are also 

commonly used in oncology treatment (Lin and Wang, 2016) and for the treatment of 

macular edema and, more recently, retinopathy (Agarwal et al., 2015; Zhang et al., 2014). 

However, glucocorticoids have been shown to have potent effects on restricting endothelial 

transport (Felinski and Antonetti, 2005; Witt and Sandoval, 2014) and they contribute to 

the development of diabetes at least in part by increasing hepatic glucose production and 

reducing GLUT4 translocation in muscle (Beaudry et al., 2015) . Yet despite these 

observations, the potential importance of glucocorticoid-induced alterations in the 

transendothelial flux of circulating glucoregulatory hormones such as Ad is unclear. 

 Ad is one of the most abundant plasma proteins and exists in three different 

isoforms: low molecular weight (LMW; trimer), medium molecular weight (MMW; 

hexamer) and high molecular weight (HMW; oligomer) (Dadson et al., 2011). Ad has 

important and beneficial anti-diabetic, anti-inflammatory and cardioprotective actions 

(Arita et al., 2002; Dadson et al., 2011). Ad levels, in particular HMW, are decreased in 

obese individuals and this correlates with development of associated complications, 

including diabetes and cardiovascular disease (Kadowaki et al., 2006; Peters et al., 2013). 

Transendothelial movement of Ad across the blood-brain barrier (BBB) into cerebrospinal 

fluid (CSF) was studied and only LMW and MMW were found in the CSF, suggesting that 

passage of HMW complexes were restricted (Kubota et al., 2007; Kusminski et al., 2007; 

Neumeier et al., 2007). This may be functionally significant since HMW Ad is often 

considered to be the most biologically active and physiologically relevant form (Dadson et 

al., 2011; Nanayakkara et al., 2012). A recent study calculated the Stokes radii for the Ad 
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oligomers and found that endothelial barriers controlled Ad transport in a cell- and tissue-

specific manner (Rutkowski et al., 2014). Thus, emerging evidence suggests that Ad action 

may be at least in part mediated by endothelial transport, although whether this is 

influenced by glucocorticoid-induced changes in transendothelial permeability remains 

unknown. 

 Given the large size of Ad multimers it seem likely that transendothelial Ad 

movement is an important variable in determining it presence within, and action on, target 

tissues. Therefore we hypothesized that glucocorticoid-induced alterations in 

transendothelial permeability will modulate the transendothelial movement of Ad. In this 

regard, the objective of this study was to examine how glucocorticoid treatment of a 

cultured endothelium influences Ad flux in association with changes in permeability and 

apical junction protein abundance as well as investigate Ad content within the skeletal 

muscle in a diabetic rat model induced by exogenous glucocorticoid treatment. The overall 

goal of this work was to significantly advance our understanding of the glucocorticoid-

induced diabetic phenotype by determining whether Ad movement out of the circulatory 

system might play a role in its pathogenesis. 

1.3 Material	and	Methods	
	

1.3.1 HUVEC cell culture and treatments 

Normal primary human umbilical vein endothelial cells (HUVECs; Pooled, PCS-100-

013) were obtained from ATCC (Manassas, VA, USA) and grown at 37°C and 5% CO2 on 

uncoated T75 flasks in vascular cell basal medium (ATCC, PCS-100-030) containing 10% 

fetal bovine serum (FBS), VEGF endothelial cell growth kit (ATCC, PCS-100-041) and 

treated with DEX using 2% FBS (both medium were prepared without hydrocortisone 
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hemisuccinate), 100 units/mL penicillin and 100 µg/mL streptomycin. Cells were kept 

frozen in medium containing 10% DMSO (Bio-Rad Laboratories Canada Ltd., 

Mississauga, ON, Canada). For experiments, passage 3 was used. Cells were counted using 

a haemocytometer and seeded onto permeable polyethylene terephthalate (PET) filters at 

the base of BD Falcon cell culture inserts (BD Biosciences, Mississauga, ON, Canada) at 

a density of 0.5 x 106 cells/insert.  

Dexamethasone (DEX) was obtained from Sigma-Aldrich (Oakville, ON, Canada), and 

full-length Ad was produced in-house using a mammalian expression system (i.e. HEK 

293 cells) according to methods described by (Wang et al., 2002; Xu et al., 2004). HUVECs 

were treated for 5 days with DEX (1 µM) starting 24 h after seeding cells into inserts, 

HUVECs were treated with DEX added to both apical and basolateral sides of inserts at 

concentrations indicated above 

1.3.2 shRNA-mediated knockdown of claudin-7 in HUVEC 

We used pGPU6/Neo-claudin-7 shRNA vector with target sequence (5’- 

GGCCATCAGATTGTCACAGAC-3’) (GenePharma Co., Ltd., Shanghai, China). These 

were transfected into HUVEC using LipofectamineTM 3000 Reagent (Invitrogen, Carlsbad, 

CA, USA) exactly according to manufacturer’s protocol. Non-specific scrambed target 

sequence shRNA vector was used as control. Following selection with 50 ug/ml Neomycin 

(Sigma-Aldrich, Oakville, ON, CA) for 24 hours, cells were seeded onto inserts for analysis 

of TEER, examining adiponectin flux or preparation of cell lysates to confirm claudin-7 

knock-down.  

2.3.3 Transendothelial electrical resistance (TEER),and [3H]PEG4000 and Adflux 
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TEER was measured daily using chopstick electrodes (STX-2) connected to an EVOM 

voltohmmeter (World Precision Instruments, Sarasota, FL, USA). As a measure of 

paracellular permeability, apical to basolateral flux rates of [3H] polyethylene glycol at 1 

µCi; 1 h flux(molecular mass 4000 Da; PEG-4000; PerkinElmer, Woodbridge, ON, 

Canada)or Ad (10 µg/mL; 24 h flux) to apical culture medium were determined across 

HUVEC endothelia. [3H]PEG-4000 in basolateral culture medium was detected using a 

liquid scintillation counter, Ad was detected using a mouse Ad ELISA kit (Antibody 

Immunoassay Services, Hong Kong) or Western blot. Permeability measurements were 

expressed according to calculations previously outlined by (Wood et al., 1998). 

2.3.4 Quantitative real-time PCR analysis 

Total RNA was isolated from control and DEX-treated HUVECs and from soleus 

skeletal muscle using TRIzol Reagent . Extracted RNA was then treated with DNase I and 

first-strand cDNA was synthesized using SuperScript III reverse transcriptase and 

oligo(dT)12-18 primers (Life Technologies Inc.,Manassas MA, USA). Quantitative real-time 

PCR (qRT-PCR) analyses were conducted using gene specific primers. SYBR Green I 

Supermix (Bio-Rad Laboratories Canada Ltd.Mississauga, ON, Canada) and a Chromo4 

Detection System (CFB-3240; Bio-Rad Laboratories Canada Ltd.) Samples were run in 

duplicate. For all qRT-PCR analyses, TJ protein mRNA expression was normalized to 

GAPDH transcript abundance. For the expression profile, TJ protein transcripts were 

expressed relative to occludin mRNA. For TJ protein transcripts that were not detected in 

HUVECs, normal human adult kidney cDNA was obtained (BioChain Institute, Inc., 

Newark, CA, USA) and used as a positive control in qRT-PCR reactions. Agarose gel 
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electrophoresis verified single qRT-PCR products at predicted amplicon sizes from 

positive control reactions. 

2.3.5 Animal model of diabetes induced by exogenous corticosterone treatment 

We used a well-established hyperinsulinemic/hyperglycemic rodent model of chronic 

glucocorticoid treatment (Beaudry et al., 2013; Beaudry et al., 2015; D'Souza A et al., 

2012; Shikatani et al., 2012; Shpilberg et al., 2012). Upon experiment cessation, the tibialis 

anterior (TA) and soleus skeletal muscles were excised and immediately frozen in liquid 

N2 and kept at -80oC until future analysis. 

2.3.6 Measurement of hydraulic conductivity (Lp) in individually perfused rat mesenteric 

microvessel 

Female Sprague-Dawley rats of 220 to 250 g (2 to 3 mo old, Sage Laboratory Animal, 

PA) were used for the experiments. All procedures and animal use were approved by the 

Animal Care and Use Committee at Pennsylvania State University. Inactin hydrate (Sigma) 

was used for anesthesia and given subcutaneously at 170 mg/kg body weight. Microvessel 

permeability was assessed by measuring Lp in individually perfused microvessels, which 

measures the volume of water flux across the microvessel wall. Details have been described 

previously (Yuan and He, 2012; Yuan et al., 2014).  

2.3.7 Immunohistochemistry of Ad and dystrophin in skeletal muscle 

Tibialis anterior (TA) from Control and CORT treated rats were cryostat sectioned (10 

µm thick) for analysis of muscle Ad content. Sections were stained as previously described 

(Krause et al., 2008). Quantification was performed using Zen 2.0 software. The total Ad 

and dystrophin signal was determined bythe sum of red/green signal intensity obtained 

arbitrary values in the field of view. Diagram view intensity was recorded by the software 
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in form of histograms. Intracellular quantification was done on Ad images (without 

dystrophin), images were changed to 8-bits on Image and the arbitrary intensity was 

calculated as mean intensity per area. 

2.3.8 Western blot analysis 

Control and DEX-treated HUVECs, and L6 or H9C2 cells treated with HUVEC-

conditioned medium and soleus skeletal muscle were lysed in sample buffer (80 mMTris-

HCl (pH 6.8), 2% (w/v) SDS, 20% glycerol, 3.3% (v/v) β-mercaptoethanol 0.01% w/v 

bromophenol blue) containing protease and phosphatase inhibitors (3 mM EDTA, 10 uM 

E64, 1 mM Na3VO4, 1 µM leupeptin, 1 µM pepstatin A, 1 µM okadaic acid and 200 µM 

PMSF). Apical and basolateral HUVEC-conditioned media collected from Ad flux 

experiments were concentrated with Amicon Ultra-4 Centrifugal Filter Units with Ultracel-

30 membranes (EMD Millipore, Billerica, MA, USA) and subjected to nondenaturing, 

nonreducing conditions to allow the analysis of the different forms of Ad (HMW >250 

kDa, MMW ~180 kDa, and LMW ~90 kDa). Primary antibodies specific for the following 

proteins: T-cadherin (1:1000, R&D Systems), occludin (OCLN, 1:3000), tricellulin (TRIC, 

1:3000), claudin-7 (CLDN-7, 1:500), CLDN-10 (1:800), CLDN-11 (1:1000), phospho-

AMPKα (Thr172) (1:1000), phospho-p38 MAPK [pT180/pY182] (1:1000), Ad 

(1:1000),β-actin (1:1000). OCLN, TRIC, CLDN-7, CLDN-10 and phospho-p38 MAPK 

[pT180/pY182] antibodies were obtained from Life Technologies, CLDN-11 and Ad 

antibodies were purchased from EMD Millipore and Signalway Antibody (College Park, 

MD, USA) respectively, and phospho-AMPKα (Thr172) and β-actin antibodies were 

obtained from Cell Signaling Technology (New England Biolabs Ltd., Whitby, ON, CA). 

Protein detection using enhanced chemiluminescence (Bio-Rad) and quantification by 
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densitometry using ImageJ analysis software. TJ protein expression was normalized to β-

actin, Tubulin protein abundance. 

2.3.9 Statistical analysis 

All data are expressed as mean values ± SEM. A one-way analysis of variance 

(ANOVA) followed by a Student-Newman-Keuls test was used to determine significant 

differences (P ≤ 0.05) between groups. When appropriate, a Student’s t-test was also used. 

All statistical analyses were conducted using Prism 5, Excel SigmaStat 3.5 softwares.  

2.4 Results 
 
2.4.1 Dexamethasone induces endothelial tightening and inhibits Ad movement across 

endothelial cell monolayers 

We first investigated the effect of dexamethasone (DEX), a synthetic glucocorticoid, on 

tightness of an endothelial monolayer of HUVECs. Addition of DEX to culture media 

significantly elevated TEER (Fig. 1A) and correspondingly reduced the endothelial 

permeability of the paracellular transport marker [3H]PEG-4000 (Fig. 1B). Similar trends 

regarding permeability were observed in microvessels of DEX-treated rats. DEX treatment 

(n = 4) did not cause a significant reduction in baseline Lp compared to normal control 

group (n = 6), but lowered the mean value from 1.5 ± 0.1 to 1.1 ± 0.2 (× 10-7 cm/s/cm H2O). 

When each vessel was exposed to platelet activating factor (PAF, 10 nM) that is known to 

cause transient increases in Lp(Zhou and He, 2011), microvessels in DEX-treated rats 

showed significantly attenuated Lp response. The mean peak Lp value was reduced from 

11.1 ± 1.8 (normal control) to 6.0 ± 0.4(× 10-7 cm/s/cm H2O, Figure 1C). We then assessed 

flux of Ad from the apical to basolateral side of HUVEC monolayer and found a reduced 

total amount of Ad in basolateral media after DEX treatment (Fig. 1D-F). When monitoring 
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absolute flux rates in control cells, Ad flux rate was 4.4 ± 0.12 cm s-1 x 10-9 which 

significantly decreased after DEX treatment to 3.2 ± 0.30cm s-1 x 10-9 (Fig. 1D). Following 

a 24 h flux period, Ad levels detected in basolateral media were 64.8 ± 5.7 ng/mL. Using 

Western blotting to examine various oligomeric forms of Ad LMW (~90 kDa), MMW 

(~180 kDa) and HMW (>250 kDa), we found that flux of all forms was reduced by DEX 

(Fig. 1E&F). Additionally, the functional activity of Ad appearing in basolateral media was 

confirmed by using this media to treat L6 skeletal muscle cells and H9C2 cells derived 

from rat heart ventricle. In both cell types the media increased AMPK phosphorylation 

(supplementary Figure 1A-B) 

2.4.2 Dexamethasone treatment alters transcript and protein abundance of select TJ 

proteins in HUVEC monolayers 

A tissue expression profile of transcripts encoding 26 TJ proteins in HUVECs revealed the 

presence of 15 (Fig. 2A). The most abundant transcript was found to be CLDN-11, while 

CLDN-7, CLDN-12 and ZO-1 exhibited relatively high abundance and OCLN, TRIC, 

CLDN-10 and CLDN-15 exhibited moderate levels of abundance (Fig 2A). Transcripts not 

detected in HUVECs included CLDN-3, -4, -5, -8, -9, -16, -17, -18, -19, -23 and -25 (Fig. 

2A & Supplementary figure 1C). Human kidney cDNA was used as a positive control for 

transcripts that were not detected in HUVECs (Supplementary figure 1C). To explore the 

response of TJ proteins to DEX- treatment, we first compared mRNA abundance of 

expressed target genes in HUVECs. DEX increased CLDN-6 mRNA abundance while 

CLDN-2, -20, -22, -24 and ZO-1 mRNA showed significant decreases (Fig. 2B). DEX 

treatment had no significant effect on mRNA encoding OCLN, TRIC, CLDN-1, -7, -10, -

11 -12 and -15(Fig. 2B). Following DEX treatment, the protein abundance of CLDN-1, -
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7, -11 and ZO-1 was examined and found to be significantly upregulated following DEX 

treatment when compared to the control group (Fig. 2C, D). On the other hand, CLDN-10 

protein levels were significantly decreased when compared with the expression in control 

conditions (Fig. 2C, D). In order to validate the functional significance of Dex-induced 

changes in expression of tight juntion proteins we used shRNA to target claudin-7 and this 

effectively reduced its expression by 71% on average (Fig. 3A). Furthermore, HUVEC 

with reduced levels of claudin-7 showed reduced TEER and a small but significant increase 

in flux of adiponectin from apical to basolateral side (Figs 3B-D). 

2.4.3 Examination of changes in transcellular endothelial flux 

 The possible contribution of transcellular receptor-mediated Ad movement across 

HUVEC monolayers was then investigated by analysis of expression levels of three 

identified Ad receptors. Intracellular Ad content in these cells was detected, although at 

low level, and expression levels did not change significantly with DEX treatment (Fig. 4A). 

However, DEX significantly increased T-cadherin protein abundance (Fig. 4B), but had no 

effect on protein abundance of AdipoR1 and AdipoR2 (Fig. 4C).  

2.4.4 Skeletal muscle Ad content in a rat model of exogenous glucocorticoid-induced 

diabetes 

 We then examined whether the increased endothelial cell barrier tightness observed 

after DEX treatment would be paralleled in a diabetic rodent model of chronic 

glucocorticoid exposure. As expected based on previously published work (D'Souza A et 

al., 2012; Shikatani et al., 2012; Shpilberg et al., 2012), two weeks of exogenous 

corticosterone (CORT) treatment resulted in severe fasting hyperinsulinemia and impaired 

glucose tolerance (Supp Fig 2A). In addition, CORT treatment caused mild/moderate 
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elevations in fasted blood glucose concentrations (5.12± 0.2 mM to 8.3 ± 1.88 mM, Supp 

Fig 2B) despite the significantly increased fasted insulin concentrations (0.76±0.25 ng/ml 

to 4.68±0.72 ng/ml , Supp Fig 2C). CORT treatment also caused a change in skeletal 

muscle fibre type composition; a switch from predominantly slow to fast-twitch skeletal 

muscle fibers, within the tibialis anterior muscle (Supp Fig 2D).  

 To explore whether CORT-treatment affects circulating Ad levels, we measured 

plasma Ad levels in these animals before CORT pellet implantation and at 7 days post 

pellet implantation, at 0800h. Circulating Ad levels were unaffected by CORT treatment 

(Fig 5. A). Interestingly, there was an apparent elevation in skeletal muscle Ad mRNA 

levels (Fig 5. B), yet Ad protein content was significantly reduced (Fig 5. C&D). Upon 

immunohistochemical analyses, we also observed that the total amount of Ad was 

decreased in skeletal muscle from the COR-treated rats versus control rats (Fig 5. E-H). 

Dystrophin, was used to assess the structural integrity of the skeletal muscle and was 

unaffected by CORT treatment. Representative images are shown (Fig 5. E) with 

quantification of the total and intracellular Ad signal (Fig 5. G-H). Since CORT-treatment 

is known to preferentially target fast-twitch skeletal muscle (Beaudry et al., 2015), 

representative images accordingly depict smaller IIb/x fiber area (Supp Fig. 2D) within the 

CORT-treated rats. CORT-treatment was also found to cause a significant reduction in 

individual myocyte size (Fig. 5F).  

2.4.5 AdipoR abundance in a rat model of exogenous glucocorticoid-induced diabetes 

 Both Ad receptor isoforms (AdipoR1 and AdipoR2) genes were expressed in rat 

soleus skeletal muscle and although an apparent increase in AdipoR1 mRNA abundance 

was seen in the diabetic rat model, neither was significantly altered (Fig. 6 A,B). However, 
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a significantly increased level of ADIPO-R1 protein (approximately 3.4 fold compared to 

the control) was seen (Fig. 6F). There were no changes in ADIPO- R2 nor in T- Cadherin 

protein levels (Fig. 6E, G). 

2.4.6 CORT treatment altered Tight Junction genes in rat soleus skeletal muscle after 

2 weeks 

 We then measured changes in mRNA abundance of tight junction, Cldn-1, -2, -3, -

4,-5, -6, -7, -9, -10, -11,  -12, -24,-14, -15, -19, -20, -22, -23 and Ocln, Tricand Z0-1 were 

found to be no significant changes  with in diabetic rat skeletal muscle (Fig. 6C), with  only 

Cldn -5, -10, -11, -22 significantly decreased (Fig. 6D). 
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Figure 1: Effects of DEX on permeability. HUVECs (Human Umbilical Vein Endothelial 

Cell) were seeded onto permeable polyethylene terephthalate (PET) filters and treated with 

or without 1µM of DEX every other day in both top and bottom of compartments. Tightness 

of the monolayer was measured on the 5th day of DEX treatment.  A)  Transendothelial 

Electrical Resistance (TEER). B) [3H]PEG-4000 permeability across HUVEC monolayer. 

C) Measurements of hydraulic conductivity (Lp) in individually perfused mesenteric 

venulesfrom normal (n = 6) and Dex-treated(n = 4) rats. DEX treatment significantly 

attenuated the Lp responses to PAF that was known to cause transient increases inLp.  D-

F) 10 µg of full-length Ad was added onto the apical side. After 24 hrs, the medium on 

basolateral was collected. D) Total Ad amount was quantified using ELISA. E) The 

collected basolateral medium was concentrated and separated by PAGE. 3 forms of Ad are 

labeled as LMW (~90 kDa), MMW (~180 kDa), HMW (>250 kDa). F) Representative 

Western blot for full-length Ad flux across control and Dex-treated monolayers. Data are 

expressed as mean values ± SEM (n = 4-8). *Significant difference (P ≤ 0.05) from control 

(Con) group. 
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Figure 2: Effect of DEX on Tight Junction Components. A) mRNA abundance by qRT-PCR 

analysis. HUVECs grown to confluence on permeable PET inserts. Total RNA was isolated 

from control cells on the 5th day. Transcript abundance was normalized to GAPDH and 

each gene examined was expressed relative to OCLN transcript abundance.  B) TJ 

transcript levels in DEX-treated cells were normalized to GAPDH, and expressed relative 

to the control group (Blue - increasing compared to control; Green- decreasing compared 

to control). Data are expressed as mean values ± SEM (n = 3-5). C) Protein abundance in 

HUVECs grown on cell culture inserts. Protein abundance were normalized toβ-ACTIN, 

and expressed relative to the control group. D) Representative Western blots of CLDN- 1, 

-7, -10, -11, -15, TRI, OCC, Z0-1. Data are expressed as mean values ± SEM (n = 3-8). * 

indicates significant difference (P ≤ 0.05) from control (Con) group.  
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Figure 3: Knockdown of claudin-7 alters transendothelial electrical resistance and 

adiponectin flux. We used shRNA to reduce levels of claudin-7 in HUVEC and average 

efficiency of knockdown was 71% with a representative Western blot shown in A. In cells 

transfected with scrambled (Control) or claudin-7 shRNA we then tested TEER (B) and 

flux of adiponectin with representative Western blot shown in C and quantitation in D. In 

B and D values are mean ± SEM (n = 3) and *indicates significant difference (P ≤ 0.05) 
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from control group.

 

Figure 4: Expression of Ad and its receptors in HUVEC. A) Ad expression in HUVECs 

treated with DEX after 5 days. B) T- CADHERIN expression in HUVECs with DEX 

treatment.  C) ADIPO -R1/ -R2 expression in HUVECs. Data are expressed as mean values 

± SEM (n = 3-6). *indicates significant difference (P ≤ 0.05) from control (Con) group. 

  



	 40	

 

Figure 5: Ad level in CORT treated animals. A) Using ELISA, circulating Ad was 

calculated in 1 week treated rat serum. B) Ad mRNA expression after 14 days of CORT. 

C&D) Representative Western blotting and quantitation of reduced Ad (~30 kDa) in soleus 

skeletal muscle. E) Immunohistochemical detection of dystrophin (green), Ad (red) in 

skeletal muscle isolated from rats after 2 weeks of CORT treatment, together with 

quantitation in F. G) Quantification of changes in intracellular Ad levels and H) cell 

number. Quantification of Ad shown as the intensity expressed per cell in arbitrary units 

and are expressed as mean values ± SEM (n = 3-5).* indicates significant difference (P ≤ 

0.05) from control (Con) group.  

  



	 41	

 

Figure 6: Ad receptor expression in skeletal muscle. Rats were treated with CORT for 2 

weeks. A,B) mRNA expression of Ad and its receptors after 14 days of CORT. Data are 

expressed as mean values ± SEM (n = 4-5). C-D) mRNA profile of tight junction in soleus 

skeletal muscle isolated from 2 weeks CORT- treated rats.  mRNA abundance by qRT-PCR 

analysis. Transcript abundance was normalized to GAPDH mRNA abundance, and mRNA 

abundance for each gene examined was expressed relative to control group transcript 

abundance. Control group gene transcript were normalized to 1. C) mRNA profile of TJ 

that are increased after 2 weeks CORT treatment compared to control. Blue- CORT- 

treated, Red- Control. D) TJ genes that are decreased after 2 weeks of CORT treatment.  . 

E- G) Protein expression in soleus. E) T- CADHERIN. F) Ad receptor 1. G) Ad receptor 2. 

Data are expressed as mean values ± SEM (n = 3). * indicates significant difference (P ≤ 

0.05) from control group 
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2.5 Discussion 

Glucocorticoids are potential mediators of endothelium permeability. Our study 

was designed investigate the its influence on endothelium permeability and consequently 

the changes in Ad movement across the endothelium barrier and the underlying 

mechanism. More recently, a similar proposed mechanism for regulation of Ad action was 

suggested both by us and others (Rutkowski et al., 2014; Yoon et al., 2014). To the best of 

our knowledge, the regulation of this process by glucocorticoids had not been studied 

before. Our vitro model using DEX treated HUVEC and CORT treated rats to integrate the 

established observations that glucocorticoids can restrict paracellular transport across 

various endothelia (Keaney and Campbell, 2015; Rao et al., 2015; Rochfort and Cummins, 

2015) with the fact that glucocorticoids, commonly prescribed medications, have numerous 

side effects, including insulin resistance and diabetes (Beaudry et al., 2015). Furthermore, 

we examined whether the emerging phenomenon that transendothelial movement of Ad 

may regulate the anti-diabetic effects of this hormone and whether this was regulated by 

glucocorticoids (Rutkowski et al., 2014; Yoon et al., 2014). Specifically, our approach 

involved the use of endothelial cell monolayers and individually perfused intact 

microvessels to examine whether glucocorticoid altered Ad flux was through reduced 

microvessel permeability. We also used a rat model of diabetes induced by exogenous 

glucocorticoid treatment to determine changes in Ad content in muscle as well as peripheral 

insulin sensitivity. 

 

As indicated in the introduction, strong rationale for this work comes from previous 

studies with other circulating hormones, most notably insulin. Concentrations of insulin at 
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the cell surface have been shown to be very different from those observed in plasma in 

microdialysis experiments (Herkner et al., 2003; Sjostrand et al., 1999), direct interstitial 

sampling (Bodenlenz et al., 2005) and lymph measurements (Chiu et al., 2008; Yang et al., 

1994). It was noted that insulin-mediated glucose uptake lagged behind the increase in 

plasma insulin (Freidenberg et al., 1994), whereas in cultured skeletal muscle cells, insulin-

mediated glucose uptake occurs within 10 min (Somwar et al., 2001). The time delay seen 

in vivo (Freidenberg et al., 1994) reflects a delay in insulin access to the myocyte which is 

mediated in part via altered paracellular or transcellular endothelial transport. Thus, 

modification of access to skeletal muscle can have major effects on insulin action and 

metabolism, suggesting that reaching the interstitial space is the limiting factor for insulin-

mediated glucose uptake (Kolka and Bergman, 2012). Indeed, delivery of insulin to the 

interstitial space has been shown to be altered by diet (Kubota et al., 2011).  

 

We confirmed the ability of the synthetic glucocorticoid DEX to alter endothelial 

transport properties, in this case of HUVEC monolayers, as indicated by changes in TEER 

and PEG-4000. Similar effects were observed in DEX-treated rats, where we saw a 

significant reduction of permeability in rat mesenteric venules. We then showed that DEX 

reduced Ad flux across cultured endothelial monolayers by ELISA detection of total Ad 

content. Western blotting of Ad isoforms indicated that all three oligomeric forms of Ad 

(trimer, hexamer and oligomer) were reduced in basolateral media from DEX-treated cells, 

and although the magnitude of change was more evident in the case of LMW adiponectin, 

all isoforms were significantly altered and we do not believe this data infers a preferential 

restriction of LMW flux. This demonstration of restricted flux is important to establish 
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from several perspectives. First, many studies have suggested that oligomeric high 

molecular weight complexes of Ad are most tightly correlated with insulin resistance (Liu 

et al., 2007; Pajvani et al., 2004). Second, the concept that endothelial transport regulated 

Ad action was also proposed by a recent study which estimated the size of different Ad 

forms by calculating a Stokes radius (Rutkowski et al., 2014). The Stokes radii were 3.96 

nm for trimeric Ad, 6.01 nm for hexameric Ad and 10.1 nm for various HMW oligomeric 

forms (Rutkowski et al., 2014) and these sizes are likely to be in the range that can be 

physically obstructed or facilitated by changes in endothelial cell tight junction size. 

Indeed, it was concluded that Ad bioavailability and action in target cells was attenuated 

under stressed conditions due to reduced trans-endothelial transport (Rutkowski et al., 

2014). We concur that regulation of Ad flux across endothelium is particularly relevant 

since the target tissues where Ad mediates its physiological effects have a wide-range of 

endothelial permeability. Liver, for example has highly fenestrated endothelium that may 

permit the passage of HMW Ad, which has potent effects on hepatic metabolism. In 

contrast, the central effects of HMW Ad may be limited by its transport across the 

comparatively tighter blood brain barrier (Yoon et al., 2014).  

 

The well-established effect of glucocorticoids to restrict endothelial transport has 

been proposed to be mediated via regulation of TJ and adherens junction (AJ) proteins 

(Blecharz et al., 2008; Felinski and Antonetti, 2005). Strands of transmembrane and 

cytosolic proteins form TJ and AJ complexes that regulate permeability between 

endothelial cells (Gunzel and Fromm, 2012). Functional characteristics of the vertebrate 

TJ complex are dependent on the variable assemblage of TJ proteins such as occludin 
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(OCLN), tricellulin (TRIC) and in particular, claudins (CLDNs) which directly establish 

the TJ barrier and form the backbone of TJ strands, while cytosolic ZO-1 and other cortical 

TJ proteins provide structural support to the TJ complex (Gunzel and Fromm, 2012). The 

CLDN superfamily consists of at least 27 isoforms in mammals and the incorporation of 

specific CLDN isoforms in TJs can modulate TJ barrier function by making the paracellular 

pathway tighter or leakier (Gunzel and Yu, 2013). The main observations in our study were 

increased CLDN-7 and decreased CLDN-10 protein abundance in HUVEC in response to 

DEX and these changes may underlie the functional properties of paracellular transport 

limiting Ad flux. Little is known about CLDN-7, although CLDN-7 knockout is lethal in 

murine models and it seems that CLDN-7 most likely facilitates anion movement across 

vertebrate epithelia. CLDN-7 was previously found to form a complex with the epithelial 

cell adhesion molecule (EpCAM) which enhanced cell-cell interaction (Krug et al., 2012; 

Verma and Molitoris, 2015) . We suggested that the functional role of CLDN-7 in our 

model is tightening of the endothelium in association with an increase in abundance, and 

that this may help to explain, in part, the restricted movement of Ad in DEX-treated 

HUVEC as well CORT-treated rats. Further supporting this idea, a reprevious studies 

which have found that CLDN-7 (-/-) can cause colonic inflammation and enhance the 

paracellular flux of small organic solutes (Tanaka et al., 2015), as well as observations that 

CLDN-7 (-/-) results in the presence of intercellular gaps below TJs and cell matrix 

loosening (Ding et al., 2012). Thus, we used shRNA to target claudin-7 in HUVEC and 

observed that this caused a decrease in TEER and increase in adiponectin flux across 

monolayers, further indicating an important mechanistic role for Dex-mediated changes in 

claudin-7 expression. Interestingly, another group found that NLRP3 inflammasome 
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promoted endothelial disruption via production of HMGB1 to disrupt the junctions and 

increased paracellular permeability (Chen et al., 2015). Finally, (Tatum et al., 2010) 

reported that urine Na(+), Cl(-), and K(+) were significantly increased in CLDN-7(-/-) mice 

compared with that of CLDN-7(+/+) mice. Taken together, the studies outlined above and 

our data indicate an important functional consequence for CLDN-7 reduction and 

compromised epithelial permeability as the result of tight junction disruption, and this 

supports the view that increased CDLN-7 abundance, as seen in these experiments, may 

contribute to endothelial tightening and reduced Ad flux. 

 

In contrast, CLDN-10 isoforms in vertebrate epithelia have been described to impart both 

charge and size selective properties to the paracellular pathway. Previous studies 

investigated the role of CLDN-10 deficient mice using Cre-Lox found that serum 

phosphate concentration was 28% higher and serum Mg2+ concentration was almost two-

fold higher in cKO mice compared with controls. However, the same study also found that 

CLDN-10 transports molecules in a charged selective manner (Breiderhoff et al., 2012). 

To the best of our knowledge, Ad is uncharged. Therefore, the transport of Ad is less likely 

to be affected by CLDN-10. Nevertheless, it would be very interesting to explore whether 

the consistent decrease in CLDN-10 observed in this study has a functional role in the 

modulation of Ad transport across the endothelium barrier. 

In the glucocorticoid-induced diabetic rodent model used here, a decrease in 

CLDN-10 mRNA expression in skeletal muscle was also observed. Although changes in 

expression profiles of other tight junction proteins do not entirely match the changes in 
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HUVEC treated directly with DEX, this is not entirely surprising since there are multiple 

factors impinging upon tight junction protein expression in skeletal muscle tissue in vivo.  

We believe that reduced paracellular transport is the main mechanism of reduced 

Ad flux observed, yet we also tested possible indicators of altered transendothelial flux 

(Yoon et al., 2014). In DEX-treated endothelial cells, there was no major change in 

ADIPO-R1 or ADIPO-R2 mRNA and protein expression, although in skeletal muscle 

homogenates, ADIPO-R1 protein expression levels increased significantly in CORT-

treated animals. This may reflect a compensatory mechanism to reduced Ad availability in 

order to increase sensitivity to available Ad. We also observed that DEX increased 

expression of T-cadherin in HUVEC. T-cadherin has been identified as a non-functional 

receptor for Ad (Hug et al., 2004). This is in agreement with a previous study showing that 

DEX enhanced T-cadherin expression in human osteosarcoma cells (Bromhead et al., 

2006). One possible interpretation of our finding is that binding to endothelial T-cadherin 

may trap Ad in the vasculature, as has recently been proposed (Matsuda et al., 2015). 

We also investigated potential alterations in endothelial transport of Ad in a rodent 

model of glucocorticoid-induced diabetes (Shpilberg et al., 2012). In these rats, we found 

normal circulating Ad levels but significantly reduced total Ad protein content within 

skeletal muscle without an accompanying decrease in muscle Ad gene expression. This 

suggests less flux of Ad from circulation could be a contributory mechanism. Indeed, upon 

immunohistochemical analysis we found reduced Ad content in the interstitial space. 

Although not a direct comparison to the in vitro studies we used here, it suggests that 

skeletal muscle Ad availability, and thus action, may be limited in this animal model 
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possibly contributing to its diabetic phenotype (Beaudry et al., 2013; Beaudry et al., 2015; 

Beaudry et al., 2014; Shpilberg et al., 2012; Yoon et al., 2014). 

In conclusion, our study indicates that glucocorticoid-mediated tightening can 

reduce flux of Ad across endothelial monolayers, and that this may be due to alterations in 

the expression profile of tight junction proteins. Furthermore, in a rat model of diabetes 

induced by exogenous glucocorticoids, we observed reduced interstitial and intracellular 

levels of Ad in skeletal muscle. Thus, we propose that reduced Ad action in target tissues, 

as a consequence of reduced endothelial flux from circulation to interstitial space, may 

contribute to the diabetic phenotype occurring after glucocorticoid treatment. Since 

glucocorticoids are one of the most commonly prescribed medications, our discovery of 

reduced Ad transport in response to glucocorticoids is a particularly important and novel 

finding with potentially far-reaching consequences.  
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Supp. Figure 1: A) Effect of treatment with HUVEC-conditioned basolateral medium from 

Ad flux experiments onp-AMPK and p-p38 MAPK phosphorylation in rat L6 and H9C2. 

Phosphorylated AMPK and p_p38 MAPK protein abundance was normalized to β-actin, 

and expressed relative to the corresponding time-matched control group. In (C), Western 

blots of p-AMPK, phospho-p38 MAPKare shown. Data are expressed as mean values ± 

SEM (n = 3). B) Non-detected genes in figure 1(C) was ran on 1% gel in order to confirm 

the absence. Human kidney was used as positive control.  Data are expressed as mean 

values ± SEM (n = 3 - 16). *Significant difference (P ≤ 0.05) from control (Con) group. 
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Supp. Figure 2: Circulation of metabolites in CORT treated rats. A) Glucose tolerance in 

response to an oral glucose tolerance test (OGTT). B) Fasted blood glucose and C) fasted 

insulin concentrations measured at the onset of the OGTT after 12 days of CORT treatment. 

D) Representative images of the tibialis anterior (TA) depicting fiber type staining with 

Metachromatic myosin ATPase. Data are expressed as mean values ± SEM (n =5 ). 

*Significant difference (P ≤ 0.05) from control (Con) group. 
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was written by T. Dang and edited by Dr. G. Sweeney  

Chapter 3: Study 2 

Modification of endothelium tightness by iron & the effects of iron on glucose metabolism  

3.1 Abstract 

There is a strong, clinically-proven, link between iron overload and diabetes. 

Limiting tissue access to adiponectin by an alteration in paracellular permeability can affect 

glucose metabolism. Iron is a potential mediator of endothelium tightness. We 

hypothesized that iron restricts adiponectin access to target tissues via tightening of the 

endothelium, and hence will impair glucose clearance. First, we confirmed iron overload 

in HDMEC cells using fluorescent imaging of intracellular iron using PGSK dye, and 

further with an iron response element (IRE)-CFP reporter construct. We found that iron 

did not affect the endothelium tightness, despite inducing an elevation in ROS. To further 

elucidate iron’s effect on whole-body metabolism, we established an iron overload mouse 

model that mimics a physiological condition of hemochromatosis. We i.p. injected mice 5 

days per week for one month to test the effect of iron overload on glucose metabolism. We 

found iron deposits in various skeletal muscles, liver, and fat using intracellular iron 

imaging and Prussian blue assays. We performed glucose and insulin tolerance testing to 

show better glucose tolerance in iron overload mice. Then we used the Comprehensive Lab 

Animal Monitoring System (CLAMS) to characterize activity, but found no significant 
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change. Furthermore, we found upregulation of pAkt in gastrocnemius muscle, but no 

change in glycogen content in skeletal muscles or liver. In addition to that, visceral 

adiposity was diminished, correlating with reduced adiponectin production. However, 

circulating insulin was not affected. Lastly, the iron overload induced higher glucose 

excretion through urine.  From our study, we found that the iron treatment did not have an 

effect on endothelium tightness and adiponectin transport in vitro. However, in our in vivo 

study, we found iron overload mice exhibit better glucose tolerance and higher Akt 

phosphorylation, indicative of increased insulin signalling. Our data suggest that the 

endothelium might not be the key target of iron in altering glucose metabolism. The 

improved glucose clearance resulted mainly from pAkt upregulation as well as constant 

glucose excretion.  

 3.2 Introduction 

Excessive amounts of iron promote insulin resistance in mice, which greatly 

increases the risk for developing diabetes and its complications (Yu et al., 2015) The 

connections between iron and metabolism are well established. Hereditary 

hemochromatosis (HH) is an autosomal recessive disorder characterized by excess iron in 

the body. The most common form of this disease is caused by a mutation in the HFE gene 

resulting in a C282Y substitution in the HFE protein. The HFE protein is responsible for 

iron metabolism by acting as an iron sensor for the body, regulating iron absorption in the 

small intestine, and recycling of iron by macrophages (Feder et al., 1996). To support the 

link between iron and diabetes, a group of researchers found that HFE KO mice exhibit 

impaired glucose-stimulated insulin secretion and increased β- cell apoptosis (Cooksey et 

al., 2004). Furthermore, in thalassemia, a disorder characterized by a deficiency in the β-
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globin subunit of hemoglobin, patients become iron-overloaded from increased iron 

absorption because the body is unable to maintain a normal level of erythrocytes in the 

blood to uptake the iron that gets into the circulation through the gut (Weatherall, 1998). 

Clinical studies on thalassemia patients have found that they have insulin deficiency and 

insulin resistance, which may lead to a prediabetic state and the development of full-blown 

diabetes (Messina et al., 2002).  

The cross-talk between iron metabolism and diabetes has also been reported by 

Tanner and Lienhard, who observed co-localization of transferrin receptors with glucose 

transporters on the membrane of adipocytes in vitro. Their study suggested that the 

regulation of iron occurs in parallel with its effects on glucose transport (Tanner and 

Lienhard, 1989). Increased iron storage is associated with the development of type 2 

diabetes (Fernandez-Real et al., 2002). Ferritin is one of the key proteins regulating iron 

homeostasis and is a widely used clinical biomarker of iron status.  Clinical studies have 

shown that higher serum ferritin levels were found in patients with metabolic syndrome 

and insulin resistance. High iron levels are associated with increased risk of type 2 diabetes, 

and thus may be a prevalent cause of diabetes (Moreno et al., 2015) 

Iron is also known for its effect on elevating oxidative stress, a major causative 

factor for diabetes and its complications. In addition to elevated ROS reducing metabolic 

clearance (Toborek et al., 1992), free radicals disrupt tight junction (TJ) function by 

altering cell-cell adherence of TJ proteins and causing reorganization of the actin filament 

network (Wichmann et al., 2015; Won et al., 2011). Previous work has suggested that iron 

overload in mice leads to elevated ROS. Interestingly, it was associated with decreased 

levels of the TJ structural proteins occludin and zonula occludens 1, and hence caused a 
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disruption in TJ structure. This resulted in increased permeability in hippocampal 

endothelial cells that were isolated from the TFI-induced iron overload rat model.  

Endothelial dysfunction contributes to the pathogenesis of atherosclerosis, a 

complication of diabetes (Handa et al., 2016; Won et al., 2011). Furthermore, previous 

research found that inflammation coexisting with increased oxidative stress occurred in 

end-stage renal disease (Raj et al., 2005). ROS enter human skeletal muscles and activates 

an inflammatory cascade via activation of nuclear factor- kB (NF-kB), as well as 

upregulating the expression of various cytokines including interleukin-6, -10 (IL-6, -10) 

and tumor necrosis factor-α (TNF-α) in response to stimuli. Increased serum concentrations 

of these cytokines are associated with impaired glucose tolerance (Muller et al., 2002). A 

monolayer of endothelial cells lines the entire circulatory system of the body. This 

endothelium acts as a barrier that regulates the exchange of hormones, proteins and small 

molecules between the vascular compartment and the interstitial space (Goddard and 

Iruela-Arispe, 2013; Pries and Kuebler, 2006). The actions of a hormone or nutrient on a 

target tissue is implicitly dependent upon the ability of these factors to gain access to the 

target. Adiponectin is an important hormone to stimulate glucose clearance. Therefore, 

changing adiponectin access to the target tissue through altering permeability could alter 

glucose metabolism.  

Based on previous literature, the goals of this study were first to examine whether 

excess iron treatment causes a change in ROS production (using CellRox red) leading to 

alterations in endothelium tightness, hence changing adiponectin movement by TEER and 

flux experiments in vitro. I have developed an iron overload model that mimics the 

pathological conditions of thalassemia and hemochromatosis to examine glucose 
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metabolism. I have used well-established methods both in intro and in vivo to confirm iron 

overload i.e., intracellular iron, IRE-CFP construct, PGSK, and Prussian blue staining. To 

study whole body glucose metabolism, I used GTT and ITT to evaluate glucose clearance 

in iron overloaded mice. I also used CLAMS to characterize this new mouse model to 

evaluate respiration and ambulatory activity. Characterizing physical activity is important 

in this study as it can have a potential effect on glucose metabolism. I then examined Akt 

phosphorylation under insulin-stimulated conditions. Glucose to glycogen conversion rate 

was tested in liver and skeletal muscles using a glycogen content assay to evaluate whether 

this process contributes to changes in circulating glucose levels with iron overload. I further 

investigated circulating insulin and adiponectin levels as possible contributors to changes 

in circulating glucose using ELISA. Since adiponectin is mainly secreted by adipocytes, 

fat content was also evaluated by isolated fat weight and whole body micro-CT scan.  

3.3 Materials and Methods  
 
3.3.1 HDMEC culture and treatments  

Human dermal microvascular endothelial cells (HDMECs) were obtained from 

ATCC (Manassas, VA, USA) and grown at 37°C and 5% CO2 on uncoated T75 flasks in 

vascular cell basal medium (ATCC, PCS-100-030) containing 10% fetal bovine serum 

(FBS), VEGF endothelial cell growth kit without hydrocortisone hemisuccinate (ATCC, 

PCS-100-041), 100 units/mL penicillin, and 100 µg/mL streptomycin. Following two 

passages, cells were trypsinized and transferred to medium containing 10% dimethyl 

sulfoxide (DMSO), frozen as aliquots in liquid nitrogen and designated as HDMECs at 

passage 3 (P3). For experiments, P3 aliquots of HDMECs were quickly thawed, plated to 

uncoated T75 flasks, and grown to ~90% confluence in medium described above. Cells 
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were then trypsinated, pelleted by centrifugation (380 x g, 10 min) and gently resuspended 

in vascular cell basal medium containing 2% FBS, VEGF endothelial cell growth kit 

without hydrocortisone hemisuccinate, 100 units/mL penicillin, and 100 µg/mL 

streptomycin. Cells were counted using a haemocytometer and seeded onto permeable 

polyethylene terephthalate (PET) filters (0.9 cm2 growth area; 0.4 µm pore size; 1.6 x 

106/cm2 pore density) at the base of BD Falcon cell culture inserts (BD Biosciences, 

Mississauga, ON, Canada) at a density of 0.5 x 106 cells/insert. Inserts were held in BD 

Falcon 12-well companion plates with inserts (apical side) and companion wells 

(basolateral side) containing 1 mL of medium each. 

3.3.2 Cell viability 

HDMEC were seeded in a 96-well plate and incubated with MTT (3-(4,55-

Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) (Sigma, St. Louis, MO) 

dissolved in PBS for 5 hours at 370C. DMSO was used to dissolve the precipitate formazan 

during the incubation, and a Multiskan Spectrum Spectrophotometer (Thermo Electron 

Corp) was used to detect concentration at 550 nm.  

3.3.3 IRE transfection 

HDMEC were first transfected with the IRE-CFP construct (Dongiovanni et al., 

2013) using LipofectamineTM 3000 Reagent (Invitrogen, Carlsbad, CA, USA) according to 

the manufacturer’s protocol, and then treated with iron. The fluorescent signal was 

normalized to the transfected-control group. Exposing the cells to iron increased CFP 

fluorescence. This was followed by selection with 50 ug/ ml Neomycin (Sigma-Aldrich, 

Oakville, ON, CA) for 24 hours. 

3.3.4 Iron detection by immunofluorescence 
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Half an hour prior to the end of iron treatment, cells were treated with 250 

µM ferrous sulfate (FeSO4; Sigma, St. Louis, MO), 3 µM Phen Green SK (PGSK) or 5 µM 

of CellRox Deep Red reagent (Invitrogen, Waltham, MA). Cells were then fixed with 4% 

PFA (Sigma, St. Louis, MO) followed by quenching with 1% glycine, and permeabilized 

with 0.1% Triton X- 100 (Bioshop, Burlington, ON). A control group at each time point 

was included in fluorescence quantification. 

3.3.5 Animal protocols 

Wild type (WT) male C57BL6 mice (Jackson Laboratory, Bar ME) were purchased 

at 8 weeks of age and were housed for one week of acclimatization in the facilities prior to 

experimentation (12h/12h light/dark cycle). Intraperitoneal injection of 10 mg of iron 

dextran (Santa Cruz, Dallas, TX) per 25g body weight was injected on a 5 day/week 

schedule for a duration of 4 weeks with a total volume of 300 µL per injection. 10% 

dextrose (Sigma, St. Louis, MO) was injected as a placebo. All mice were given chow diet. 

Individual mice were kept in the comprehensive lab animal monitoring system (metabolic 

cage) for 3 days for measurement of metabolic parameters. Night time data were recorded 

between 7:00 PM and 6:00 AM, day time data collected between 7:00 AM and 6:00 PM. 

All experiments were approved by the Animal Care and Use Committee at York 

University. 

3.3.6 Glucose and insulin tolerance test 

Animals were fasted prior to tolerance testing (6 hrs for insulin tolerance test, 16 

hours for glucose tolerance test). Mice were i.p. injected with glucose at 2g/kg of body 

weight. Blood glucose was recorded over a period of 120 minutes at times 0, 20, 30, 60 90, 

and 120 minutes post-injection. For the Insulin Tolerance Test (ITT), mice were i.p. 
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injected with insulin at 1 unit/kg of body weight. Blood glucose was recorded over a period 

of 80 minutes with 10 minutes intervals. Blood glucose was measured via saphenous vein 

bleed using a sterile needle (25G) and glucometer (Accu-Chek). Plasma was collected for 

analysis of adiponectin and insulin using ELISA kit (AIS, Hong Kong).  

3.3.7 Intracellular Iron 

Lysates were added to iron releasing agent (equal volume of 1M HCl and 4.5% 

KMnO4) and incubated at 600C for 2 hours. After incubation, iron detection reagent 

(6.5mM ferrozine, 6.5mM neocuproine, 2.5M ammonium acetate, 1M ascorbic acid; 

Sigma, St. Louis, MO) was added to samples and incubated at room temperature for 30 

minutes. A spectrophotometer was used to determine the iron concentration at 550 nm. A 

standard curve was generated, and the amount of iron was normalized to protein 

concentration of the lysate.  

3.3.8 Prussian blue staining 

Tissues were embedded with O.C.T. compound (VWR, Radnor, PA) for Perl’s Prussian 

blue staining for localization of iron. Section of 5-microns thickness were treated with 5% 

HCl to liberate ferric ions, then treated with 5% potassium ferrocyanide to produce 

insoluble ferric ferrocyanide.  Sections were then counterstained with neutral red using the 

method previously described (Khan et al., 2004). 

3.3.9 Micro-CT quantification 

Mice were anesthetized using 5% isoflurane for imaging by Bruker micro-CT. The 

threshold was established using whole mice to determine total body and fat volume using 

CT analysis software. Visceral fat was determined by manually highlighting the regions 
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inside the mouse around the organs. Subcutaneous fat was calculated by subtracting 

visceral fat from the total fat.  

3.3.10 Glycogen content  

Briefly, skeletal muscles and liver were digested in 1M KOH. pH of digested 

muscles was adjusted to 4.8 before addition of acetate buffer and 0.5 mg/ml 

amyloglucosidase. Subsequently, glycogen was hydrolyzed overnight at room temperate. 

A spectrophotometer was used to determine the glycogen concentration at 340 nm (Fediuc 

et al., 2006).  

3.3.11 Western blot analysis  

HDMEC were lysed in a buffer containing protease and phosphatase inhibitor 

cocktail tablets (Sigma, St. Louis, MO) then heated to 95°C for 10 min. Equal amounts of 

protein frome ach sample were resolved by SDS-PAGE, transferred to PVDF membrane, 

blocked with 3% bovine serum albumin (BSA) in wash buffer, and then incubated 

overnight at 4°C with primary antibodies specific for the following proteins: pAkt Thr308, 

PEPCK, pGSKSer9. Antibodies were obtained from Cell Signaling Technology (New 

England Biolabs Ltd., Whitby, ON, CA). Protein expression was normalized to GAPDH 

protein abundance. 

3.3.12 Statistical analysis 

All data are expressed as mean values ± SEM (n), where n represents the number 

of independent experiments conducted, except in Fig. 3 where n represents the number of 

inserts sampled from 1 out of 3 independent experiments conducted with equivalent results. 

A two-way analysis of variance (ANOVA) test was used to determine significant 

differences (p≤0.05) between groups. When appropriate, a Student’s t-test was also used. 
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All statistical analyses were conducted using Prism 6 software (GraphPad Software, La 

Jolla, California, USA). 

3.4 Results 

3.4.1 Iron overloaded HDMEC showed increased ROS but no change in adiponectin 

movement  

To create an IO (iron-overload) endothelium model, we used 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) assay to determine the iron concentration at 

which the cells’ viability will reduce significantly. MTT is a compound that gets reduced 

into a purple dye by AD(P)H-dependent oxidoreductase in a living cell. Therefore, a lower 

reading at OD550 nm indicates less cell viability, or conversely, more cell death. We found 

that starting from 500 uM treatment of iron for 48 hrs, the cell showed significantly reduced 

viability and 250 uM was therefore chosen for further experiments. 500 µM hydrogen 

peroxide was used as a positive control (fig. 1A). Furthermore, we found that iron 

accumulation was the highest in HDMEC after 48 hrs using the 250 uM treatment (fig. 

1B).  

 To confirm iron has an effect in HDMEC, we transfected HDMEC with an Iron 

Response Element (IRE)-CFP (cyan fluorescent protein) fusion construct. IRE is a short 

stem-loop sequence that is found on the mRNA of ferritin (iron storage protein). High 

concentration of iron causes an increase in transcription and translation of CFP (Meehan 

and Connell, 2001). We then checked for green signal from the non-transfected, transfected 

control, and transfected cells treated with iron for 48 hrs (fig. 2A). The greater green 

fluorescent signal suggested the IRE was activated by the iron treatment, as the 

quantification showed an 3.6-times enhanced signal (fig. 2B). To further confirm iron did 
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accumulate inside HDMEC, we used PGSK, which is a fluorescent dye that accumulates 

intracellularly and gets quenched by iron. The green fluorescent signal was reduced by 3.5 

times in the iron-treated group (fig. 2C), as confirmed by quantification (fig. 2D), showing 

that iron did accumulate inside the cells. 

We hypothesized that iron could potentially alter endothelium tightness via reactive 

oxygen species (ROS) production. To confirm this theory, CellRox Red was used to detect 

ROS elevation induced by iron. It is a cell-permeant dye that is non-fluorescent in a reduced 

state, however, upon oxidation by ROS it exhibits fluorescence. We saw a significant, 1.46-

time increase in ROS after 48 hrs of iron treatment (fig. 3A,B). As a functional effect of 

iron, we checked for transepithelial electrical resistance (TEER), an indicator of 

endothelium tightness. If the TEER decreased, it suggested that the endothelium is leakier 

and more hormones will able to access the tissue. After 48 hrs, the tightness of control 

HDMEC was determined to be 36.40 ± 2.14 Ω*cm2, while under iron treatment with 

tightness was 38.80 ± 2.56 Ω*cm2 (fig. 3C), hence there was no significant change in flux 

of fAd (fig. 3D,E.).  

3.4.2 Iron Overload (IO) Mice Showed Enhanced Glucose Clearance and insulin 

signaling  

As IO turned out to have no effect on endothelium tightness or Ad flux, we then 

further investigated how iron affects glucose metabolism in the whole body. To create an 

IO mouse model, we injected the mice with iron intraperiotneally five days per week for 

four weeks. After 4 weeks (10mg/ 25g body weight) of injection, we found circulating iron 

increased significantly from 16.08 ± 0.08 mM to 51.80 ± 6.0 mM (fig. 4A) in the iron-

treated mice. In order to characterize this new mouse model, we used a glucose tolerance 
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test (GTT) to evaluate the ability of the mice to use glucose. We found that IO mice have 

improved glucose clearance, corresponding to a lower area under the curve (28%) 

compared to control mice (fig.4D,E). IO also exhibited better insulin sensitivity, as there 

was an approximate 23% reduction in the area under the curve from the insulin tolerance 

test compared to controls (fig. 4F,G).  

As validation of this model, iron accumulation was also shown in various skeletal 

muscle tissues. In tibialis anterior muscle (TA), control mice displayed and iron 

concentration of 0.42 ± 0.024 mM/ug protein compared to 0.79 ± 0.13 mM/ug protein in 

IO mice (fig. 5A,B). Similar observations were made in gastrocnemius muscles (Gas), 

where control mice accumulated 0.34 ± 0.04mM/ug, whereas IO mice deposited 0.58 ± 

0.054 mM/ug protein (fig. 5C,D). Furthermore, as compared to other skeletal muscles, 

soleus (sol) accumulated the least iron at 0.71 ± 0.043mM/ug protein, but this was still 

higher than the control mice at 0.57 ± 0.01 mM/ug protein (fig. 5E,F). The change in iron 

accumulation in muscles was further confirmed by Prussian blue histology from isolated 

muscles. Interestingly, we also found that control mice had a body weight of 24.67 ± 0.49 

g, but weight was reduced to 21.67 ± 0.56 g  after 4 weeks injection in the IO group (fig. 

6A). Circulating adiponectin was reduced from 28.36 ± 1.16 ug/ml to 16.91 ± 0.56 ug/ml 

in the IO mice compared to control (fig. 6B) However, circulating insulin in control was 

1.83± 0.01ng/ml and did not change significantly in the IO condition, reaching 1.84 ± 0.01 

ng/ml (fig. 6C).  

3.4.3 IO mice showed no change in activity  

To further characterize this IO mouse model, activity level along with other metabolic 

parameters were measured using Comprehensive Lab Animal Monitoring System 
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(CLAMS) for a 3 day period. All mice had free access to food and water and were subjected 

to light-dark cycle. 

The mice showed a characteristically higher CO2 elimination and O2 consumption at night, 

compared to the day (fig. 7A,B), as further quantified in fig. 7C,G, reflecting the normal 

nocturnal activity of mice. Thus, their respiratory exchange ratio was also higher at night 

(fig. 8A,B). IO mice were found to be less active (20%), and produced less heat as 

compared to the control mice (fig. 9A,B), as quantified in fig. 9C,D.  

3.4.4 Effect of iron on skeletal muscles 

There are various tissues responsible for glucose utilization; therefore we wanted 

to determine the tissue-specific effect and molecular mechanism responsible for the 

enhanced glucose tolerance observed in IO mice. We first looked at skeletal muscles since 

they are the main sites for glucose disposal. We isolated TA, gastro and sol and examined 

phosphorylation of Akt and GSK, downstream kinases of insulin receptor signaling (fig. 

10). We found gastro had an increase in Akt phosphorylation under insulin-stimulated 

conditions (fig. 10B), as shown in a representative blot (fig. 10G).  

The amount of glucose being converted into glycogen also could explain the IO 

mouse phenotype. However, there was no significant difference in glycogen content in 

tissues from IO mice as compared to the control group (fig. 11A-C) 

3.4.5 Effect of iron on liver metabolism  

The liver is an important metabolic organ and is the major site for iron storage. Iron 

concentration was quantified by intracellular iron assay showing control mice had 0.20 ± 

0.02M/ug protein, which was increased significantly to 3.25 ± 0.49M/ug protein in the IO 

mice.  Iron accumulation was further confirmed by Prussian blue staining (fig. 12A,B). 
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Corresponding to the iron accumulation, the liver enlarged from 0.93 ± 0.01 g to 1.9 ± 0.09 

g with IO (Fig. 12C,D). Iron did not have an effect on the insulin signaling pathway, as 

shown by no change in insulin-stimulated Akt phosphorylation or PEPCK expression in 

the liver (Fig.12E,F). Furthermore, there was no significant difference in glycogen content 

in the livers isolated from IO mice (fig.11D) 

3.4.6 Iron diminished fat content  

To understand the cause of the lower body weight and body fat in IO mice, we 

examined their daily food intake and energy expenditure together. We isolated two 

different fat depots to study the change in fat composition in the IO condition. We isolated 

perirenal (peri) and epididymal (epi) fats to represent visceral fat. The weight for epi fat 

reduced from 0.39 ± 0.07 g to 0.02 ± 0.01 g (fig. 13B). Peri fat had an average weight of 

0.15 ± 0.03 g (fig.13C) under control conditions, but could not be detected in the IO 

condition. Furthermore, weight of isolated fat from the inguinal region, representing 

subcutaneous fat (Sub), did not change; control mice weighed an average of 0.29 g ± 0.02 

and this was not significantly changed in IO mice at 0.26 ± 0.03 g (fig. 13A).  Since 

subcutaneous fat is another tissue that accumulates iron, we also quantified iron 

accumulation in this depot. Under control conditions sub fat had 0.67 ± 0.03 mM/ug 

protein, which was increased to 2.61 ± 0.36 mM/ug protein in IO (fig. 13D). This 

observation was also reflected in Prussian blue histology staining (fig. 13E). The reduction 

in fat is reflected in the computerized tomography (CT) scan (Fig. 13F) and body weight 

(Fig. 6A). Total body fat volume reduced from 717.6 ± 38.87 to 143.5 ± 22.96 mm3 in IO 

(fig. 14B). Hence, total percentage body fat reduced from 10.60 ± 0.62 to 2.30 ± 0.36 in 

IO condition (fig. 14A). Quantification of the volume of each fat depot showed a reduction 
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of both subcutaneous fat (from 548.9 ± 29.55 mm3 to 122.5 ± 19.36 mm3) and visceral fat  

(from 168.7 ± 14.00 mm3 to 20.99 ± 5.23 mm3) in IO (fig.14C,D). Interestingly, on average 

per day IO mice had no difference in food consumption (4.66 ± 0.47 g) as compared to 

control mice (4.38 ± 0.83 g) (fig. 13G).  
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Figure 1: Characterizing the HDMEC IO model. A) Determining treatment dose. Different 

doses of iron was applied to HDMEC. MTT is a dye which is reduced into a purple dye by 

AD(P)H-dependent oxidoreductase in a living cell. Hydrogen Peroxide was used as 

positive control for cell death. 250 uM is the concentration used for further experiments. 

B) Determining treatment time. Time-course showing accumulation of intracellular iron. 

HDMECs were treated with 250 uM of iron over a period of 48 hrs to determine treatment 

time. Amount of iron was normalized to protein concentration of the cell lysate. We 

determined HDMEC would be treated for 48 hrs to create an IO model. Data are expressed 

as mean values ± SEM (n = 3). Two-way ANOVA was used comparing treatment group to 

control (fig. A) or at t0 (fig. B). * indicates significant difference (p ≤ 0.05) from control 

group.   
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Figure 2: Further confirmation of the IO HDMEC model using iron response element 

(IRE) and Phen Green SK (PGSK). A) Confirmation of IO in HDMEC by IRE-CFP 

construct. Representative images for HDMEC transfected with IRE-CFP. Cells were 

transfected with IRE-CFP construct then treated with iron. Fluorescent signal was 

normalized to transfected- control group. Exposing the cells to iron increased CFP 

fluorescence. B) Quantification of (A). C) Representative images for PGSK. PGSK is a 

fluorescent dye that accumulates intracellularly and gets quenched by iron. D) 

Quantification obtained from total green fluorescence per field of view. 5-10 images 
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were used per n number.  Data are expressed as mean values ± SEM (n = 3). Two-way 

ANOVA and  Student’s t-test were used. * indicates significant difference (p ≤ 0.05) 

from control group. 

 

 

 

Figure 3: The effects of iron on HDMEC monolayer. A) Representative image of reactive 

oxygen species (ROS) upon iron treatment. CellRox Red is a dye that becomes fluorescent 

upon oxidation by ROS. 5 uM of CellRox Deep Red reagent was added half an hour before 
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iron. B) Quantification of A. Total red signal in the field of view was normalized to total 

DAPI signal in that field of view. 5-10 images were used per n number.  C) TEER after 48 

hrs iron treatment. E) adiponectin flux after 48 hrs iron treatment by western blots. Data 

are expressed as mean values ± SEM (n = 3-4). Two-way ANOVA and Student’s t-test were 

used. * indicates significant difference (p ≤ 0.05) from control group.  

 

 

Figure 4: Characterizing IO mouse model. Mice were intraperitoneally (i.p.) injected with 

iron for 4 weeks, 5 days per week at 10mg/ 25g of body weight to generate the IO model. 

Control mice were i.p injected with 10% dextrose. A) Circulating iron. Serum was used to 

test for circulating iron. B) Secreted glucose (non- fasted) determined in urine. C) Secreted 

glucose (fasted) determined in urine. D) Glucose Tolerance Test (GTT). Mice were i.p 
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injected with glucose at 2g/ kg of body weight. Blood glucose was recorded over period of 

120 minutes at indicated times. E) Quantification of GTT, area under the curve. F) Insulin 

Tolerance Test (ITT). Mice were i.p injected with insulin at 1 unit/kg of body weight. Blood 

glucose was recorded over period of 80 minutes at indicated times. G) Quantification of 

ITT, area under the curve. Data are expressed as mean values ± SEM (n = 3-9). * indicates 

significant difference (p ≤ 0.05) from control group. Student’s t-test was used. 

 

 

Figure 5: Iron accumulation in IO mouse skeletal muscles. Tissues were isolated after 4 

weeks injection with or without iron. Tissue lysates were used to detect intracellular iron. 

Amount of iron was normalized to protein concentration. A) Iron accumulation in tibialis 

anterior (TA) muscle. C) Iron accumulation in gastrocnemius (gastro). E) Iron 
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accumulation in soleus (sol). B,D, F) Representative images for Prussian blue staining in 

TA, gastro and sol. Data are expressed as mean values ± SEM (n = 3). * indicates 

significant difference (p ≤ 0.05) from control group. Student’s t-test was used. 

 

 

 

 

 

Figure 6: Hormonal changes in IO mice. A) Mouse body weight after 4 weeks of dextrose 

(Con) or iron injection. B) Circulating fAd. Mouse adiponectin (fAd) ELISA kit was used 

to detect serum fAd. C) Circulating insulin. Mouse insulin ELISA kit was used to detect 

serum insulin. Data are expressed as mean values ± SEM (n = 3-9). * indicates significant 

difference (P ≤ 0.05) from control group. Student’s t-test was used. 
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Figure 7: Characterizing IO mouse respiration. Individual mice were kept in the 

comprehensive lab animal monitoring system (metabolic cage) for 3 days for measurement 
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of numerous metabolic parameters. Night time data were recorded between 7:00 PM and 

6:00 AM, day time data collected between 7:00 AM and 6:00 PM. A) Oxygen (O2) 

consumption. Data were collected as total amount of oxygen consumed by individual mice 

per hour then expressed as an average per hour for all 3 days for all animals. B) Carbon 

dioxide (CO2) elimination. Data were collected as total amount of carbon dioxide 

eliminated by individual mice per hour then expressed as an average per hour for all 3 

days for all animals. C) Quantification of O2 consumption. Data expressed as an average 

of total O2 consumed for all 3 days.  D) Quantification of CO2 elimination. Data expressed 

as an average of total CO2 eliminated for all 3 days. Data are expressed as mean values ± 

SEM (n = 6-7). Two-way ANOVA was used comparing during day or night between groups. 

* indicates significant difference (p ≤ 0.05) from control group.  
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Figure 8: IO mouse Respiratory Exchange Ratio.  A) Respiratory Exchange Ratio. Data 

were calculated by taking the ratio of total carbon dioxide eliminated over oxygen 

consumed by individual mice per hour then expressed as an average per hour for all 3 days 

for all animals. B) Quantification of respiratory exchange ratio. Data expressed as 

averaged ratio over 3 days. Data are expressed as mean values ± SEM (n = 6-7). Two-way 

ANOVA was used comparing during day or night between groups. * indicates significant 

difference (p ≤ 0.05) from control group.  
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Figure 9: Characterizing IO mouse phenotype. Individual mice were kept in the 

comprehensive lab animal monitoring system (metabolic cage) for 3 days for measurement 

of numerous metabolic parameters. A) Total ambulatory activity. Data were collected as 

total number of beam breaks (step counts) by individual mice per hour. This was then 

expressed as an average per hour from all animals for all 3 days. B) Heat production. Data 

was collected as total heat production per hour by individual mice, then expressed as an 

average per hour for all 3 days for all animals. C) Quantification of total ambulatory 

activity. Data expressed as an average of total step counts for all 3 days. D) Quantification 

of heat production. Data expressed as an average of total heat production for all 3 days 

for all animals.  Data are expressed as mean values ± SEM (n = 6-7). Two-way ANOVA 

was used comparing during day or night between groups. * indicates significant difference 

(p ≤ 0.05) from control group.  
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Figure 10: Insulin signaling under IO conditions. Tissues were isolated after 4 weeks of 

iron injection. Mice were injection with 4U/ kg of insulin 5 minutes prior isolation of 

tissues. A-C) pAkt expression. A) TA. B) Gastroc. C) Soleus. D-F) pGSK expression. D) 

TA. E) Gastroc. F) Soleus. G) Representative western blots. Data are expressed as mean 
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values ± SEM (n = 3). * indicates significant difference (p ≤ 0.05) from control group. 

Student’s t-test was used. 

 

 

Figure 11: Glycogen content in skeletal muscles and liver. A) TA. B) Gastroc. C) Soleus. 

D) Liver. Data are expressed as mean values ± SEM (n = 3-5). Data are expressed as mean 

values ± SEM (n = 3). * indicates significant difference (p ≤ 0.05) from control group. 

Student’s t-test was used. 
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Figure 12: Effects of iron on the liver. A) Intracellular liver iron content. B) Prussian blue 

staining for iron. C) Isolated liver weight. D) Isolated liver. E) PEPCK protein abundance. 

F) pAkt308 protein abundance G) representative blots for PEPCK protein. H) 

representative blot for pAkt308. Data are expressed as mean values ± SEM (n = 6-7). Data 
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are expressed as mean values ± SEM (n = 3). * indicates significant difference (p ≤ 0.05) 

from control group. Student’s t-test and two-way ANOVA were used. 

 

 

Figure 13: Effects of iron on fat content. A) Weight of isolated subcutaneous fat from the 

inguinal region. B) Visceral fat- epididymal (epi) weight. C) visceral fat- perirenal (peri) 

weight. D) intracellular iron. E) Prussian blue staining for iron detection. F) micro-CT 

scan images. G) micro-CT scan quantification H) food intake. Data are expressed as mean 
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values ± SEM (n = 3-4). * indicates significant difference (p ≤ 0.05) from control group. 

Student’s t-test was used. 

 

Figure 14: Micro-CT quantification. Threshold was determined using whole mice to find 

the total body and fat volume using CT. Visceral fat was determined by manually 

highlighting the regions inside the mouse around the organs. Subcutaneous fat was 

calculated by subtracting visceral fat from the total fat. A) total percentage body fat. B) 

Total fat volume. C) Visceral fat volume. D) Subcutaneous fat volume. Data are expressed 
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as mean values ± SEM (n = 3). * indicates significant difference (p ≤ 0.05) from control 

group. Student’s t-test was used. 

 

 

Figure 15: Summary the effects of iron on different tissues.  
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3.5 Discussion  

We validated the HDMEC IO model using multiple methods including PGSK and 

IRE-CFP, and used this model for monitoring alterations in Ad movement (fig. 2). We 

concluded from our study, which consisted of 48 hrs of iron treatment, that transport of 

hormones did not alter, because there was no change in TEER or movement of Ad across 

the endothelium (fig. 3D,E). We further elucidated whether iron has an impact on 

metabolism in an animal model by creating an IO mouse model to investigate the effect of 

iron on metabolism. This model mimicked genetic HH disease. We successfully elevated 

iron levels in the blood (Fig. 4A) and iron accumulation in various skeletal muscles and fat 

(fig. 5). Our observation by GTT and ITT was that IO mice had better glucose clearance 

(fig. 4D,F). This contradicted previous findings that chronic IO results in decreased glucose 

clearance (Dongiovanni et al., 2013; Yu et al., 2015). Insulin signalling was enhanced in 

gastroc, as determined by pAkt activation that was stimulated by insulin (fig. 10B). Akt is 

involved in the regulation of many cellular functions including energy metabolism, cell 

proliferation, and apoptosis. The PI3K pathway is a key component in the regulation of 

glucose metabolism. Currently, there are no reports of enhancing pAkt activation in 

skeletal muscle under IO condition. However, in mouse hippocampal neurons, studies have 

shown the presence of iron caused an increase in the phosphorylation level of Akt in a 

PI3K-dependent manner. Additionally, nuclear localization of PI3K and Akt increased 

upon iron treatment as shown by immunohistochemistry. In contrast, nuclear localization 

of GSK3β decreased in the presence of iron (Uranga et al., 2013). This could potentially 

explain why phosphorylated Akt was unable to activate GSK3β via direct phosphorylation. 

With the currently accepted model of Akt phosphorylation/activation in skeletal muscle, 
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Akt is translocated from the cytoplasm and activated at the inner leaflet of the plasma 

membrane, rather than in the nucleus as shown in mouse hippocampal neurons (Motti et 

al., 2004; Santi and Lee, 2010; Zhou et al., 2001), Hence, further immunohistochemistry 

could be performed to confirm the hypothesis of GSK translocation by using MAPK/ERK 

as nuclear and cytosolic markers. Despite the GSK translocation theory, a glycogen content 

assay is needed to further confirm the functional effect of iron on GSK-3β activity. We 

speculated the lower blood glucose level resulted in more glycogen production in both liver 

and muscles. Hence, we examined the effect of iron-induced protein kinase activation on 

glycogen metabolism. Previous studies show that chelation reversed iron’s effect on insulin 

signaling by increasing pAkt and GSK-3β, therefore enhancing glycogen synthesis in the 

liver (Dongiovanni et al., 2008). Interestingly, there was no change in GSK-3β 

phosphorylation or glycogen content in either skeletal muscles or liver in the current study 

(fig. 11). 

  Mouse activity level was tested as a potential contributor to lowered blood glucose 

levels, as blood glucose would decrease when the mice are active.  Thus we hypothesized 

that enhanced glucose clearance observed in IO mice was due to higher physical activity. 

A group of researchers previously used genetic IO and found these mice had better glucose 

tolerance (Huang et al., 2007). The study concluded that increased glucose disposal does 

not result from increased insulin action. Instead, these mice demonstrated increased Ad 

levels and activation of AMPK. However, AMPK level can be closely associated to the 

activity of the mice; if the mice are more active, pAMPK increases (Huang et al., 2007). 

We utilized metabolic cages to confirm whether the IO mice are more active as compared 

to the control. If they have normal activity compared to control mice, we could explain the 
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phenotype using AMPK activity level (Huang et al., 2007). When they are more active, 

pAMPK is usually increased (Huang et al., 2007), hence decreasing blood glucose. 

Interestingly, IO mice did not exhibit higher activity compared to control mice (fig. 9). 

Circulating levels of insulin did not change with IO (fig. 6C). Furthermore, 

circulating Ad was reduced by almost half (fig. 6B), potentially due to a significant 

reduction in visceral fat (fig.13B,C, 14C). Therefore, the observed effect in this study is 

limited. 

There is a strong link between iron overload and kidney dysfunction.  As reported 

from clinical studies, urine analysis of β-thalassemia patients had higher albumin and β2-

macroglobulin, as well as higher NAG activity, which are positively correlated with serum 

ferritin and iron deposition (Koliakos et al., 2003).  Hence, we tested whether iron affects 

glucose excretion. We observed an increased urine glucose level in mice in the non-fasted 

state after iron injection. Under basal conditions, iron-injected mice secreted more glucose, 

similar to the STZ-induced diabetic condition (Montilla et al., 2005). This observation 

suggested that iron treatment can have a diuretic effect and may eventually lead to iron-

induced diabetic nephropathy in these mice if the injection was to continue further. Renal 

failure could possibly have contributed to lowered blood glucose levels. Furthermore, as 

kidneys play a major role in glucose homeostasis through reabsorption via the sodium 

glucose cotransporter (SGLT) (Kalra et al., 2016), down-regulation of SGLT could 

potentially explain the increased glucose excretion.  

Phosphoenolpyruvate carboxylase (PEPCK), a protein that regulates blood glucose 

levels through hepatic glucose production, is supressed by an anti-diabetic substance 

(D_xylose), hence reducing glucose production in the liver on top of enhancing the 
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regeneration of pancreas tissues to increase insulin levels. Therefore, these mice have better 

glucose clearance by enhanced glucose uptake (Kim et al., 2016). The basal level of 

PEPCK after iron treatment did not change (fig. 12G). Therefore, the lower blood glucose 

(enhanced glucose clearance) was not due to supressing glucose production or secretion by 

the liver under IO conditions. The synthesis of glucose into glycogen in the liver 

contributes to the regulation of circulating glucose levels (Irimia et al., 2010). The 

improved glucose clearance might be a homeostatic strategy for the liver to compensate 

for the effects of excess iron. In mice with type 2 diabetes, treatment with obestatin showed 

improved insulin sensitivity and reduced liver mass, while glycogen content was higher in 

these obestatin treated mice (Kolodziejski et al., 2017).  

Adipocytes are known for their function to store energy, and play an important role 

in energy balance. To further examine the role of adipocytes as regulators of energy balance 

in IO, we demonstrated that iron accumulated in fat tissue (fig. 12D,E), which may be due 

to an increase in hepcidin expression levels, as reported in cultured adipocytes (Andrews 

and Arredondo, 2012). IO mice induced a lipodystrophy-like condition, a heterogeneous 

autosomal recessive disorder that results in abnormal and degraded adipose tissues. 

Lipodystrophies are often associated with loss of subcutaneous adipose tissue and increase 

in visceral fat mass, and they exhibit pathophysiology of insulin resistance and abnormal 

triglyceride metabolism (Akpinar et al., 2015). However, the fat loss observed in IO mice 

was limited to the visceral depot, which is the opposite of lipodystrophy. Hence, lipolysis 

is likely a more accurate word to describe the observation. A similar observation was 

reported in cultured adipocytes, where iron increased lipolysis (Rumberger et al., 2004). 

The fat loss induced by IO was partial/selective rather than whole body. Only visceral fat 
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was affected in these IO mice. There were reports that patients with lipodystrophy had 

higher circulating levels of free fatty acids. Under normal conditions, adipocytes enlarge 

and store more triglycerides (TG).  However, in patients that lack adipocytes, the excess 

TG gets stored in liver and skeletal muscles. This abnormal TG storage will eventually lead 

to insulin resistance and its complications (Muniyappa et al., 2014; Petersen et al., 2002).  

 This loss in fat induced by iron is responsible for the reduction in circulating Ad, 

similar to previously reported data (Gabrielsen et al., 2012).  The elevated iron level might 

impair the Ad signalling pathway, hence leading to the onset of diabetes. Iron chelation 

therapy with desferrioxamine and deferiprone has significantly increased Ad levels in β-

thalassaemia patients (Chaliasos et al., 2010).  

In summary, acute IO did not affect circulating insulin levels. However, Ad levels 

were reduced by half. This phenotype might be an indicator of impaired Ad signalling 

induced by excessive iron. This IO model can be a potential tool for studying the underlying 

mechanisms in the progression of diabetes induced by iron. In adipose tissue, the DNA-

binding protein high mobility group box 1 (HMGB1) was shown to be a pro-inflammatory 

mediator by releasing cytokines such as tumor necrosis factor-α (TNF-α) and promoting 

immune cell activation. Activated immune cells including macrophages secrete additional 

HMGB1 to further recruit additional immune cells. It has been demonstrated in obese mice 

that immune cell infiltration in adipose tissue contributes to the development of type 2 

diabetes by supressing insulin-stimulated Akt phosphorylation (Feuerer et al., 2009; Winer 

et al., 2009). Adipose tissue dysfunction is considered as one of the main causes of diabetes. 

Future experiments to understand macrophage infiltration are needed, as it has been 

demonstrated that increased inflammatory cells in visceral adipose tissue impair adipocyte 
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function by reducing lipogenesis and increasing lipolysis (McGillicuddy et al., 2009; Souza 

et al., 2003). Current experiments may explain the observable decrease in fat tissue. 

Furthermore, the phenotype could be explained by six transmembrane protein of prostate 

2 (STAMPS), a protein that is well known for its anti-inflammatory role and maintaining 

normal glucose level.  Previous studies have shown overexpression of STAMPS reduced 

adipocyte size in obese mice (Wang et al., 2017). Hence, measuring adipocyte size can also 

be a good indicator for the progression of diabetes in these IO mice.  

Lastly, previous research has shown the antioxidant role of activated Akt against 

oxidative stress that is induced by iron via an increase in ROS production.  Such cells 

exhibited higher ROS levels when treated with a combination of iron and LY294002 (an 

Akt inhibitor), as opposed to treatment with iron alone. Conversely, using a cell line 

overexpressing Akt, it was possible to observe a reduction in ROS, hence protecting the 

cells from oxidative stress (Uranga et al., 2013).  Oxidative stress has been considered a 

main contributor to impaired insulin signaling.  Multiple experimental approaches have 

lead to the suggestion that the PI3K/Akt pathway is the initial response in preventing the 

negative effect of increasing cellular ROS levels generated by iron exposure. The mice 

under iron treatment will potentially progress to insulin and adiponectin resistance. Hence, 

early protection against excessive iron is required to arrest the progression and the 

deleterious effects. Such prevention can include the use of iron chelator, as clinical studies 

have demonstrated the effectiveness of iron chelation on the maintenance of normal 

glucose tolerance (Cooksey et al., 2010).   
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Chapter 4: Conclusion 

4.1 Summary of research  

I started my Masters research using HUVECs as a model. They are considered to 

have a leaky endothelium due to its venous derivation, and have been used in many studies 

to examine the effect of Dex (Goodwin et al., 2013; Wang et al., 2015). More recently, we 

used what we believe is a more physiologically relevant model, HDMEC. Since the 

microvascular complications of diabetes such as diabetic retinophaty, are well-known 

(Sacks et al., 2014). As HDMEC is also a tighter endothelium model compared to HUVEC, 

we hypothesized that we would be better able to see a change if iron causes the endothelium 

to be leakier. Regardless, they both are good representative models of endothelium.  

Our study indicated that glucocorticoid-mediated tightening of endothelium can 

reduce flux of Ad across endothelial monolayers, and that this may be due to alterations in 

the expression profile of tight junction proteins. Furthermore, in a rat model of diabetes 

induced by exogenous glucocorticoids, we observed reduced interstitial and intracellular 

levels of Ad in skeletal muscle. Thus, we propose that reduced Ad action in target tissues, 

as a consequence of reduced endothelial flux from circulation to interstitial space, may 

contribute to the diabetic phenotype occurring after glucocorticoid treatment. Since 

glucocorticoids are one of the most commonly prescribed medications, our discovery of 

reduced Ad transport in response to glucocorticoids is a particularly important and novel 

finding with potentially far-reaching consequences, leading to the rationale for a second 

project to study whether iron could regulate endothelium Ad movement, hence altering 

glucose metabolism. Using a more physiologically-relevant iron overload HDMEC model, 

we have found that iron did not change the endothelium tightness nor Ad movement to the 
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target tissues, despite the elevated ROS production. To further elucidate the effect of iron 

on whole body glucose metabolism, we have successfully created an IO mouse model. I 

have found these mice have better glucose clearance compared to the control mice. We 

proposed that the underlying mechanism involved an upregulation of pAkt and constant 

excretion of glucose through in the urine as a compensatory mechanism to lower blood 

glucose. Additionally, we have shown that circulating Ad is reduced by half whereas 

insulin level was not affected by iron treatment.  

4. 2 Future directions  
 

Iron overload has been well established as a contributor to the development of 

insulin resistance and impairment of glucose metabolism, which is characteristic of 

metabolic disorders such as type 2 diabetes (Rumberger et al., 2004). In addition, research 

has shown the antioxidant role of activated Akt against oxidative stress induced by iron via 

the increase in ROS production.  The cells showed much higher ROS levels when using a 

combination of iron and LY294002 (an Akt inhibitor) compared to treatment with iron 

alone. However, using a cell line overexpressing Akt, they were able to observe a reduction 

in ROS, hence protecting cells from oxidative stress (Uranga et al., 2013).  Oxidative stress 

has been long considered a main contributor to impaired insulin signaling.  This group also 

used multiple approaches to show the protective role of the  PI3K/ Akt pathway as the 

initial response in preventing the negative effect of increased cellular ROS levels generated 

by iron exposure. These mice will potentially progress to insulin and Ad resistance if iron 

treatment is sustained, hence an early prevention is required (Uranga et al., 2013).  Clinical 

studies have shown the effectiveness of using an iron chelator as treatment in obese mice, 

allowing maintenance of normal glucose tolerance (Cooksey et al., 2010). Hence, given 
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the importance of pAkt, I would like to repeat Western blots for pAkt to confirm previous 

protein abundance observations. Furthermore, total Akt is required as loading control to 

see the effect of iron on basal Akt. Also, I would like to check GLUT4 translation using 

immunofluorescence, as this is the key protein involved in intracellular insulin signalling, 

downstream of pAkt (Takenaka et al., 2014). Finally, I would like to evaluate glucose 

uptake in this mouse model using radioactive tracer (Ishino et al., 2017).  

An additional finding in my study was that Ad levels are reduced by half, in 

association with diminished fat content. The same observation was reported in cultured 

adipocytes where iron increased lipolysis (Rumberger et al., 2004). Furthermore, iron 

overload reduced the abundance of adipocyte iron export channel (ferroportin), leading to 

decreased Ad and insulin resistance. Hence, for future studies, a time course iron treatment 

(1, 2, 3 weeks) to study the effect of iron on adipocytes and insulin resistance, characterized 

by mRNA and protein abundance, can be highly beneficial. This future study will help 

address and target the key stages in preventing the deleterious effect of excess iron.  

Finally, kidneys isolated from IO mice could be an important target, as kidneys play 

a major role in glucose homeostasis through glucose reabsorption via sodium glucose 

cotransporter (SGLT). In diabetic patients, the SGLTs gene is upregulated (Kalra et al., 

2016). Therefore, SGLT protein abundance may confirm the underlying mechanism that is 

responsible for glucose excretion.  

 

4.3 Concluding remarks  

In conclusion, my in vitro and in vivo studies present the importance of Ad access 

to target tissues in altering glucose metabolism. My studies have suggested the mechanism 
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through which iron enhanced glucose clearance via upregulation of Akt phosphorylation 

and glucose excretion. With the future plans, I hope to provide more insight into the 

underlying mechanism that is responsible for the enhanced glucose clearance, as well as 

identify potential targets for diabetes therapies.   
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