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Abstract 

 

Finding one’s way in different environments is a common everyday experience. As experiences 

navigating an environment accumulate over time, spatial representations of visuoperceptual 

identities of landmarks and geometric relations between them are formed in the brain. 

Navigation in a familiar environment may be guided by a neural interaction between different 

types of spatial representations: visual percepts and long-term spatial knowledge of geometric 

relations, resembling schemas. This thesis explores whether navigation in a virtual-reality 

simulation of a familiar environment can be explained by analysis of eye movements during 

travel periods and the quality of spatial memories, which were acquired when individuals 

navigated the same environment in real life over months to years. Results show a link between 

spatial memory integrity and eye movements during navigation in virtual reality. In multilevel 

models of navigation performance, the interaction between spatial memory and eye movements 

did not adequately predict outcomes after practice effects were controlled. These findings 

suggest that analysis of eye movements during navigation in a familiar environment may 

provide insight into retrieval cues that activate schema-like spatial representations to guide 

optimal wayfinding decisions. 
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Introduction 

Many of our everyday experiences involve navigating familiar environments to reach 

a destination. As we move through our environment towards a goal, we must retrieve 

knowledge from our memory stores, plan our actions and make decisions in response to 

incoming sensory stimuli. We often need to update our plans depending on the degree of 

consistency between our ‘mental representations’ and perceived sensory cues from the 

surroundings. Visual cues are crucial to human navigation (Ekstrom, 2015), however, the exact 

nature of these cues and their role in mediating memory retrieval remains unclear.  

 

Research on spatial navigation spans a wide range of disciplines, including 

neurophysiology, cognitive neuroscience, linguistics, urban planning, computational 

neuroscience, and artificial intelligence (Waller & Nadel, 2013). Our scientific understanding 

of navigation comes from studies at different scales of analysis in diverse species such as 

rodents, macaques, and humans (Ekstrom et al., 2018; Epstein et al., 2017). This diversity has 

resulted in a lack of clarity with respect to key concepts and interpretations in the field, 

emphasizing the need for a common approach to understanding the cognitive processes 

underlying navigation. I approach this topic from the perspective of multiple memory systems 

in the human brain. I hold the view that cognitive processes underlying navigation should be 

studied by examining the relationship between the perception of visual cues in an environment 

and spatial representations at different levels of abstraction in the brain, akin to the concept of 

‘schematization’ 1  of memories, which is delineated in systems consolidation theories 

(Tonegawa et al., 2018).  

 

Previous research on memories of environments learned long ago (i.e., remote spatial 

memories) primarily relied on patient-lesion methods, for example, in individuals who 

sustained neurological damage to structures within the medial temporal lobe (MTL), a region 

crucial for encoding and storing episodic memories (Penfield & Milner, 1958; Rosenbaum et 

al., 2000; Spiers & Maguire, 2007). These patient studies often relied on mental navigation 

tasks2 involving highly familiar environments such as one’s place of residence or childhood 

 
1 Schematization: a term that refers to the time-dependent transformation of memories from context-rich forms to 
context-independent representations that retain only the essential elements of an episode (i.e., gist). These gist-

like spatial representations are thought to be stored in the neocortex. 
2 Mental Navigation Tasks: refers to tasks that involve imagining the experience of navigation or retrieving 

information about abstract spatial relations such as relative distances and directions between landmarks, without 

engaging in locomotive aspects of navigation. 
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neighbourhood. Subsequent neuroimaging studies using these tasks highlighted the role of the 

hippocampus (HPC) within the MTL, and cortical regions, notably the retrosplenial cortex 

(RSC), parahippocampal place area (PPA), posterior parietal cortex (PPC), and prefrontal 

cortex (PFC) for successful retrieval of spatial memories in navigation (Ekstrom et al., 2018; 

Rosenbaum et al., 2004). Research in this field may have become stagnated because of a lack 

of flexible experimental paradigms that enable researchers to study diverse populations’ 

naturalistic abilities to navigate in their familiar environments.  

 

This thesis has several aims: 1) provide a review of literature pertinent to an 

interdisciplinary study of navigation, 2) identify a current gap in the literature, 3) introduce a 

novel methodology to address a theoretical gap, and 4) present the findings of a study that uses 

this methodology to narrow this gap. The first section of the literature review aims to mitigate 

existing challenges regarding different interpretations of concepts in the field by first 

introducing the adopted framework.  
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Chapter 1: Review of Literature 

1.1 Frames of reference   

Navigation refers to the goal-directed movement of the self through the environment 

(Montello, 2005). It consists of two components: locomotion and wayfinding (Montello, 2005; 

Wiener et al., 2009). Locomotion relates to efferent motor commands in response to immediate 

sensory information such as proprioceptive, vestibular, and visual signals that are processed by 

different perceptual modalities (Montello, 2005). This component entails an egocentric 

mechanism for navigation (Figure 1) because it is dependent on information concerning the 

spatial relations between at least two objects in relation to the observer’s body (Ekstrom et al., 

2014; Wang & Spelke, 2000). In comparison, wayfinding entails spatial decision-making for 

often distant locations in macro-scale environments, which are not processed from a single 

viewpoint (i.e., beyond the observer’s vista space3) (Ekstrom et al., 2018; Wolbers & Hegarty, 

2010). Wayfinding is associated with an allocentric frame of reference in which spatial 

relations amongst objects are represented with respect to each other, independent of the 

observer’s position in the environment (Wiener et al., 2009). This classification is generally 

well-established, but there are important limitations (Ekstrom et al., 2014).  

 

The adoption of a reference frame depends on several factors, including the scale of an 

environment, the navigation task at hand and individual characteristics (Wolbers & Hegarty, 

2010). In general, reliance on allocentric representations increases as the scale of an 

environment increases (Ekstrom et al., 2018). Wayfinding in macro-scale environments exerts 

higher demands on mnemonic functions such as spatial memory retrieval, partly because the 

goal location is hidden from the observer’s vista space (Epstein & Vass, 2014). Navigation 

towards a goal could also depend on a second mechanism known as path integration or dead 

reckoning, which involves calculating changes in magnitude and direction of travel from a start 

location (Etienne & Jeffery, 2004). Path integration is a survival mechanism that helped 

animals in finding their way back to their nest or home after exploration (Ekstrom et al., 2018). 

Path integration is implicated in both allocentric and egocentric modes of spatial processing 

and strategies (Ekstrom et al., 2014; Ekstrom et al., 2018; Moser et al., 2017).  

 
3 Vista space: small-scale environment surrounding the observer which can be comprehended from a single 

viewpoint 
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Moreover, most navigation tasks studied in humans fall on an egocentric-allocentric 

spectrum; therefore, there are hardly any experimental tasks that purely depend on one kind of 

representation (Ekstrom et al., 2014). In most studies, mnemonic aspects of wayfinding are 

primarily associated with allocentric representations because these often require the 

hippocampus (Epstein et al., 2017; Maguire et al., 2006). However, it is now understood that 

the hippocampus is not required for all allocentric representations (Ekstrom et al., 2018; 

Rosenbaum et al., 2000). Egocentric processing is deemed more critical for primates than for 

rodents because primates spend more time processing objects in peri-personal spaces (e.g. for 

reaching and grasping food items) (Summerfield et al, 2020). The engagement of multiple 

interacting human brain networks during navigation indicate that the two modes of processing 

are highly overlapped in their neural underpinnings and behavioural expressions (Ekstrom et 

al., 2017).  

 

1.2 Neural correlates of navigation  

According to an influential model of navigation known as the ‘BBB’ model, most 

navigation requires a translation between egocentric and allocentric forms of representations 

(Byrne et al., 2007). It further argues that this translation can be achieved via a mathematical 

operation (i.e. a linear transformation), and a mechanism is likely to exist in the brain for this 

computation (Ekstrom et al., 2017). There is evidence for the involvement of the RSC as the 

neural locus of the translation between different frames of reference (Marchette et al., 2014; 

Figure 1. Allocentric and Egocentric Frames of Reference  
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Vann et al., 2009). RSC not only receives input from the PPC, a region important for egocentric 

processing of body movements, it also has reciprocal connections with MTL structures that 

encode allocentric spatial representations (Vann et al., 2009). Importantly, a navigator relies 

on the RSC to determine her heading direction and position in the broader context (Epstein & 

Vass, 2014). Allocentric spatial knowledge stored in MTL needs to be retrieved and aligned 

with a body-centred frame of reference to identify heading direction and guide immediate 

navigation decisions (Epstein & Vass, 2014). An alternative network-based model of 

navigation considers RSC and PPC as hubs that support allocentric and egocentric 

representations, respectively (Ekstrom et al., 2017). This does not, however, imply that the two 

systems are neuroanatomically distinct from one another.  

 

Recent findings implicate the PPC in abstracting the structure of natural scenes over 

their content (Summerfield et al, 2020), a function that is also attributed to ventromedial 

prefrontal cortex (vmPFC), particularly concerning autobiographical memory (Ciaramelli, 

2008; Ciaramelli et al., 2010; Ghosh et al., 2014). Neuropsychological studies in patients with 

PPC damage reveal deficits in the patients’ abilities to describe imagined routes when 

navigating a familiar environment (Ciaramelli et al., 2010). Their experience is marked by a 

sense of disembodiment and poor alignment of spatial relations between their bodies and 

landmarks (Ciaramelli et al., 2010). Damage to PPC can also lead to constructional apraxia, 

which is characterized by an inability to assemble parts into a whole (Summerfield et al, 2020). 

These findings suggest that PPC is involved in representing abstract spatial relations, which 

are often associated with allocentric processing in an egocentric frame of reference, thus, 

further blurring the divide between these two forms of spatial processing. It has been suggested 

that representations of visuoperceptual identities and geometric relations can be supported by 

both MTL and PPC structures (Summerfield et al, 2020). In primates, PPC structures are part 

of the dorsal visual stream and may be particularly useful for generalizations and abstractions, 

whereas MTL structures are specialized for encoding visuoperceptual identities (Summerfield 

et al, 2020; Barense et al, 2012). Parallel to the overlap between networks that support 

egocentric and allocentric processing of space, dorsal and ventral visual streams have 

functional similarities, thus, the visual streams are not as independent as previously thought 

(Freud et al, 2016).   

 

In spatial cognition literature, the term ‘landmark’ is loosely defined. In general terms, 

landmarks are entities in the environment that have orientational value, and, therefore, 
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modulate cognitive mechanisms underlying navigation (Epstein & Vass, 2014). Orientational 

value can be gained either by virtue of the entity’s physical properties such as size and 

appearance, or its semantic characteristics, such as cultural, historical, or autobiographical 

significance (Auger et al., 2015; Chan et al., 2012). Alternatively, entities can gain ‘landmark 

status’ due to their presence at navigationally relevant locations (Epstein & Vass, 2014), for 

example, decision points, which are commonly at the intersections of roads. There are no 

standard guidelines for pre-selecting objects in an environment as ‘landmarks’ that are 

important in navigation, and further research is needed in this area.  

 

Even though landmarks can come in the form of discrete objects (e.g., buildings, trees), 

they are encoded differently compared to objects in the human brain (Epstein & Vass, 2014). 

For example, the PPA, which is located at the boundary of parahippocampal/lingual gyri, is 

specialized in landmark processing (Epstein & Kanwisher, 1998; Epstein et al., 2017). 

Evidence for the involvement of PPA in landmark processing comes from neuroimaging 

studies in which human subjects viewed different everyday objects such as vehicles, tools, 

appliances, as well as environmental stimuli such as buildings, scenes, rooms and landscapes 

(Epstein & Vass, 2014). A stronger functional magnetic resonance imaging (fMRI) response 

is observed in PPA when subjects view the latter category of items, which have orientational 

value compared to common everyday objects (Epstein & Vass, 2014). It is peculiar that the 

human brain developed a specialized mechanism for processing landmarks, given that 

extensive neural machinery dedicated to object recognition exists in the lateral occipital cortex 

(Epstein & Vass, 2014). The specialization of PPA for landmark processing parallels the 

specialization of the fusiform face area (FFA) for processing faces (Ekstrom et al., 2018; 

Epstein et al., 2017). This observation highlights the importance of spatial cognition in humans, 

which possibly extends beyond the domain of space (Bellmund et al, 2019).  

 

Consistent with these findings, patients with damage to the PPA exhibit difficulties in 

identifying landmarks and scenes, yet they seem able to recognize a location using 

visuoperceptual details (Ekstrom et al., 2018; Epstein & Vass, 2014). In contrast, patients with 

damage to RSC seem to have no difficulties with identifying landmarks. However, they cannot 

use these landmarks to orient themselves in the broader context (Aguirre & D'Esposito, 1999; 

Alsaadi et al., 2000; Takahashi et al., 1997). Neuropsychological studies show some 

dissociation in PPA and RSC for landmark and scene recognition, but whether these processes 

depend on conceptually distinct operations remains unclear. That is, the perception of a scene 
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and a landmark often overlap. For example, in addition to responding to buildings located at 

decision points (i.e., landmarks) or objects with navigational history for the observer, the PPA 

also encodes the geometry of a local scene (Epstein et al., 2017; Epstein & Vass, 2014). Multi-

voxel pattern analyses found that PPA responds to the 3-dimensional (3D) arrangement of 

major surfaces in a scene, such as the layout of empty rooms, in addition to landscapes and 

urban scenes (Epstein et al., 2017; Epstein & Vass, 2014).  

 

   In neuroimaging studies, both the PPA and RSC show enhanced responses to scenes 

in familiar locations (Epstein & Vass, 2014). In neuropsychological studies of remote spatial 

memory, RSC is shown to track distance to goal in a familiar environment, and the PPA seems 

to code for the correct recognition of a familiar landmark (Patai et al., 2019; Rosenbaum et al., 

2004). On the other hand, HPC has been shown to track proximity to goal in a newly learned 

environment and to be necessary for retrieval of visuoperceptual details of an environment that 

enable an episodic-like recollection of navigational experiences (Herdman et al., 2015; Howard 

et al., 2014; Patai et al., 2019). Furthermore, in the absence of functioning HPC, individuals 

with long-term knowledge of an environment are still capable of successful navigation using 

major street arteries and landmarks (Maguire et al., 2006; Rosenbaum et al., 2000; Spiers & 

Maguire, 2007). These findings suggest that PPA and RSC support the storage of essential 

components of long-term spatial memories and may play a role in connecting prior spatial 

knowledge to visual percepts (Epstein & Vass, 2014).  

It is also suggested that RSC is involved in encoding locations without their identifying 

visuoperceptual features. In contrast, the PPA links visual snapshots of locations to the larger 

constellation of spatial relationships (Epstein & Vass, 2014). The representation of landmarks 

and scenes is a perceptual process which often but not always occurs through the visual 

modality (Schinazi et al., 2016). Neuroimaging studies in congenitally blind individuals show 

that PPA and RSC are activated for haptic or imagined exploration of scenes, on par with the 

activity of these regions during visual exploration of the same stimuli by sighted individuals 

(Kupers et al., 2010; Schinazi et al., 2016). Together these findings provide evidence for the 

presence of ‘amodal’ spatial representations, which do not necessarily depend on visual 

processing of the environment (Schinazi et al., 2016). Spatial representations likely consist of 

fragments of different types of spatial knowledge. These can come in the form of 

visuoperceptual details of landmarks, scene geometry, or amodal representations of spatial 

relationships in different frames of reference.  

 



 

8 

 

1.3 Systems Consolidation  

The proposition that spatial representations can be amodal - abstract and superseding 

sensory content - may be supported by systems consolidation theories (Tonegawa et al., 2018) 

including the multiple trace theory (MTT) (Moscovitch et al., 2016; Nadel & Moscovitch, 

1997) and the complementary learning systems (CLS) theory (Kumaran et al., 2016; 

McClelland et al., 1995). Memories continue to be processed and transformed after encoding 

via consolidation (Winocur et al., 2007), the process by which transient memories initially 

encoded within hippocampal-neocortical ensembles become stabilized over time (Tonegawa 

et al., 2018). During a new experience, a population of hippocampal neurons undergoes 

neurophysiological changes, producing an ‘engram’ or memory trace representing that 

experience, which is selectively reactivated during its retrieval (Tonegawa et al., 2018).  

 

The CLS framework proposes that there are two learning systems in the brain (Kumaran 

et al., 2016; McClelland et al., 1995). A fast-learning system mediated by the HPC is suited to 

differentiate similar experiences and a slow-learning system mediated by the neocortex, which 

is involved in integrating information to create generalizations that can be flexibly applied to 

different situations. The hippocampal formation has anatomical and functional properties that 

support sparse spatial codes (Kumaran et al., 2016; Marr, 1971; Moser et al., 2017). 

Furthermore, sparse codes in HPC enable the storage of orthogonal representations of different 

environments and experiences, an essential feature for a system that supports both navigation 

and episodic memory (Preston & Eichenbaum, 2013). The neocortex system, however, exhibits 

less sparsity, a property that promotes generalizations (Kumaran et al., 2016). 

 

Theories of consolidation generally agree on an indexing mechanism mediated by the 

interactions between the hippocampus and the neocortex (Tonegawa et al., 2018). The memory 

trace is thought to consist of an ensemble of hippocampal-neocortical neurons bound together 

(Moscovitch et al., 2016; Teyler & DiScenna, 1986). A sparse memory trace acts as an index 

which remains in the hippocampus at encoding and aids the retrieval of neocortical 

representations (Teyler & DiScenna, 1986). According to MTT, detailed hippocampal 

representations transform into schematized or gist-like forms that become less context-

dependent during periods of rest or sleep, over time (Winocur & Moscovitch, 2011). Different 

theories debate the extent to which HPC is necessary for the retrieval of long-term memories 

that have been consolidated in the neocortex. Figure 2 depicts the hypothetical process of 

schematization for a landmark.  
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According to MTT, one form of representation is concerned with gist or schematic 

representations and another type of representation with visuoperceptual details (Moscovitch et 

al., 2016). A schematic memory representation is formed through the transformation of a 

memory trace into a gist which captures the essential elements of an experience (Gilboa & 

Marlatte, 2017; Robin & Moscovitch, 2017). The gist of a memory is devoid of its contextual 

details, and the integration of overlapping gists may give rise to a schema. Studies of remote 

spatial memory suggest that the overall layout of a familiar environment learned long ago is 

analogous to a spatial gist, and it is not dependent on the hippocampus (Robin & Moscovitch, 

2017). A spatial gist captures the essential features of an environment which are necessary for 

navigation within that environment. The retrieval of contextual details of encoded experiences 

continue to depend on the hippocampus for their retrieval according to MTT regardless of time 

passed (Rosenbaum et al., 2001; Winocur & Moscovitch, 2011). The role of a temporal 

gradient on consolidation differentiates MTT from CLS.  

 

 

Overall, sparsity (Kumaran et al., 2016) reflects the degree to which neuronal 

population codes reflect separation versus integration (Schlichting et al., 2015), detail versus 

gist (Robin & Moscovitch, 2017), and context-dependence versus schematization of stored 

knowledge (Kumaran et al., 2016; Winocur et al., 2007). These theories support the idea that 

the HPC and neocortex store different kinds of representations, and this concept can be 

extended to spatial memories (Winocur et al., 2010; Winocur et al., 2005; Winocur et al., 2007). 

It follows that the retrieval of long-term spatial representations for familiar environments are 

less prone to recall error if the consistency between sensory cues and spatial schemas are 

altered.  

Figure 2. The process of schematization as it applies to spatial representations over time 
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1.4 Neurophysiological basis of ‘cognitive maps’ 

To provide neurophysiological evidence for different types of spatial knowledge and 

explain how they inform our understanding of human spatial representations, it is crucial to 

turn to findings from navigation studies in rodents and macaques. This section focuses on 

relating the concept of a ‘cognitive map,’ born out of classic studies of navigation in rodents, 

to the broader concept of ‘spatial representations’ or prior knowledge in humans, which was 

originally rooted in the episodic memory literature.  

 

The hippocampus is home to neurons that fire in response to specific locations in space, 

also known as ‘place cells’ (O'Keefe & Dostrovsky, 1971). The population activity of place 

cells in response to spatial learning of an environment gives rise to a neural representation 

specific to that particular environment, referred to as a ‘cognitive map’ (Moser et al., 2017)4. 

In contrast, the medial entorhinal cortex (MEC) is home to neurons that fire maximally in 

regular hexagonal patterns that cover the floor of an environment at varying scales (Hafting et 

al., 2005). These MEC neurons are referred to as ‘grid cells’ and provide input to hippocampal 

place cells. Given their regular firing patterns, grid cells are thought to provide metric input to 

allocentric cognitive maps instantiated by hippocampal place cells and play an active role in 

distance and direction calculations needed in path integration (Epstein et al., 2017). 

Hippocampal place cells have the capacity to store multiple unique cognitive maps of different 

environments or different states of the same environment. In contrast, grid cell inputs provide 

a yardstick for these allocentric representations (Epstein et al., 2017). Other interpretations 

suggest that grid cells provide the neurophysiological basis of “structure” while place cells 

encode the “content” of scenes (Summerfield et al, 2020).   

 

 Hippocampal place cells respond differently to changes in appearance versus geometric 

cues in the environment (Latuske et al., 2017). Geometry refers to the shape of extended 3D 

surfaces, such as the arrangement of walls or building facades, and is thought to be used for 

orientation (Cheng, 1986; Lee & Spelke, 2010; Marchette et al., 2017; Marchette et al., 2014). 

Appearance refers to 2D visual patterns, such as textures or surface features, which are used to 

identify goal locations and recognize landmarks (Lee & Spelke, 2010; Wystrach & Beugnon, 

 
4 Cognitive Map: The term was first coined by Edward Tolman in 1948. He observed that rodents took 

unexpected shortcuts to find food rewards in maze arm experiments, a behavior that could not be explained by 

stimulus-response learning. He suggested that the rats acquired an integrated map-like representation or a 

cognitive map. John O’keefe and Lynn Nadal proposed a cognitive map theory of hippocampal function aimed 

to explain the formation of map-like representations that may shape cognition beyond the domain of space. 
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2009). The activity patterns of place cell ensembles change in response to modifications to 

familiar environments in a process known as ‘remapping’ (Kubie et al., 2019; Latuske et al., 

2017). Experimental evidence from rodent studies indicates that remapping is more substantial 

when geometric features (e.g., shape or boundaries) rather than appearance features (e.g., 

colours or textures) are changed (Kubie et al., 2019; Leutgeb et al., 2005; Muller & Kubie, 

1987).  

Specialized processing of geometry and appearance cues is observed in many species, 

including humans (Becu et al., 2019; Epstein & Vass, 2014; Lee & Spelke, 2010; Spiers et al., 

2015). Past studies suggest that geometric cues are particularly important for navigation (Becu 

et al., 2019; Spiers et al., 2015). For example, ants show rotational errors when they search for 

the location of a hidden food reward (Cheng, 1986). They are equally likely to search the 

correct corner of a rectangular environment and its geometrically equivalent corner (i.e., 

rotation of 180 degrees). Ants continue to search using geometric cues even when visual or 

olfactory cues are present and could help them find the reward with fewer errors. Similarly, 

human children reorient themselves in a room using geometric cues such as the relationship 

between a short and a long wall, rather than the colours or textures on the walls (Lee et al., 

2006). These findings are consistent with the specialization of different brain regions such as 

the PPA and RSC for processing landmark and geometry cues, respectively (Bullens et al., 

2010; Epstein et al., 2017), in addition to, amodal spatial representations signifying long-term 

knowledge stored in these regions (Schinazi et al., 2016).  

 

An interesting question that arises is the extent to which amodal spatial representations 

reflect the generalizations of geometric properties of macro-scale environments (e.g., regularity 

in recurring structural forms such as colonnades) or the arrangement of surfaces that make-up 

discret landmarks (e.g., the configuration of 2D surfaces making up its shape). Alternatively, 

amodal spatial representations are akin to semantic knowledge, concepts, categories or 

prototypes of space (Ralph et al., 2017). In addition, a psycholinguistic attribute associated 

with a landmark - ‘a place I call home’ - could modulate early perceptual processing of its 

complex visual features (Gilboa & Marlatte, 2017; McAndrews et al., 2016; Waller & Nadel, 

2013). This top-down influence is observed in several studies that examine the effects of 

schemas on decision-making and perceptual processes (Gilboa & Marlatte, 2017). This 

observation parallels the influence of ‘expectations’ on early visual perception in a Bayesian 

framework for information processing in the brain (de Lange et al., 2018). Overall, the nature 

of long-term human spatial representations that may serve as ‘templates’ or schemas for 
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guiding navigation decisions for immediate and distant goals remains unclear. This is a subject 

of current interest and debate that will be touched on in the present thesis.  

 

The concept of a cognitive map is similar to the idea of a schema or an expectation, 

albeit with important distinctions, at least in humans. A cognitive map is sometimes taken to 

be synonymous with a cartographic map of an environment encoded in the brain. Evidence for 

real-distance coding in the rodent hippocampus is stronger than that in humans (Ekstrom, 2015; 

Peacock & Ekstrom, 2019). Findings from human spatial cognition studies show that semantic 

knowledge and language cues exert a powerful influence on human spatial judgements (Noack 

et al., 2017; Waller & Nadel, 2013). These studies show that human spatial representations are 

prone to systematic biases and distortions (Poucet, 1993; Tversky et al., 1999). For example, 

distances from less familiar to more familiar places are often underestimated, compared to 

estimates of distances from more familiar to less familiar places (Tversky, 1992). Angles of 

intersections are remembered as being closer to 90 degrees (Waller & Nadel, 2013). Distances 

between two locations are overestimated if they are separated by a barrier or boundary, for 

example, in the case of country or state borders (Waller & Nadel, 2013). Spatial boundaries 

promote the regionalization of space (Noack et al., 2017). Landmarks belonging to a semantic 

category (vehicles, animals, buildings) result in implicit semantic regions that exert their 

influence on navigation decisions. Specifically, individuals prefer to take routes that cross 

fewer semantic regions even if they are the same length as routes that contain more regions.  

 

A recent fMRI study showed that the presence of environmental barriers modulates the 

activity of grid-like cells in the human entorhinal cortex (He & Brown, 2019). These findings 

suggest that spatial memories are categorically and hierarchically organized, similar to the 

structure of semantic knowledge. A mathematical model of the hierarchical organization of 

spatial knowledge consists of two parameters of precision and bias. This model suggests that 

encoding for object locations occurs at a fine-grained level and at a categorical level (Waller 

& Nadel, 2013). The precision of memory at these levels differs, and recall bias can occur due 

to both category and boundary effects. These findings highlight that human spatial 

representations are often fragmented, meaning certain areas are more familiar than others, and 

these properties are highly dependent on the individual’s personal experiences with an 

environment (i.e., prior knowledge). These findings also present a challenge for drawing a 

parallel between a cognitive map as understood from neurophysiological observations in 

rodents and mental representations of space in humans.   
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1.5 A theoretical gap: linking long-term spatial knowledge with visual percepts   

 

Based on the findings presented, it can be established that 1) there are different kinds 

of spatial knowledge and 2) human spatial representations are distinct from rodent cognitive 

maps, and their characteristics are not well understood. Then, what aspect of human navigation 

may account for biases in human spatial judgements and guide us in a direction to better 

understand cognitive processes underlying navigation? Given that vision has a privileged role 

in egocentric navigation in humans compared to rodents (Ekstrom, 2015), it seems reasonable 

to question whether vision modulates the formation and retrieval of allocentric spatial 

representations in humans.  

 

Rodents and primates are capable of using egocentric and allocentric modes of 

processing space; however, rodent HPC is larger and has increased functional significance 

compared to the neocortex in primates (Summerfield et al, 2020). Furthermore, rodents spend 

a greater amount of time moving through space using allocentric navigation, whereas, primates 

rely preferentially on their highly developed saccadic system to move and reach for items in 

their peri-personal and vista space using egocentric navigation (Summerfield et al, 2020). 

Despite the importance of vision for primate navigation, the link between visual percepts and 

long-term spatial knowledge for guiding goal-directed behaviour in humans remains largely 

unclear. Therefore, there is a gap in our understanding of the relationship between visual 

processing and spatial memory and their interactions with the adoption of different frames of 

references in guiding human navigation.  

 

Recent neurophysiological studies provide insights into the relationship between task 

structure (i.e. geometry of goal locations) and visuoperceptual aspects of an environment 

(Baraduc et al., 2019). This dichotomy has also been referred to as mnemonic versus sensory 

representations in some primates studies (Gulli et al., 2020). In one study, macaques searched 

star-shaped arm mazes in search of food reward. After learning the spatial layout, animals were 

tested on their ability to find rewards in a novel environment that had the same geometry but 

altered visuoperceptual properties (i.e., different landmarks) (Baraduc et al., 2019). A group of 

hippocampal neurons termed ‘schema cells’ were observed to remain active in both 

environments, which shared task structure but not visuoperceptual properties (Baraduc et al., 

2019).  
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Interestingly, the activity of these neurons was not driven by gaze density maps 

indicating that visual similarity between the environments did not derive the spatial selectivity 

of schema neurons (Baraduc et al., 2019). In a more recent study in primates, the question of 

whether separate hippocampal neuron populations code for space and sensory properties of 

stimuli was investigated (Gulli et al., 2020). This is an important question because some 

theories of consolidation hold that detailed aspects of memories, presumably, their sensory 

properties, continue to depend on the hippocampus regardless of time passed. This introduces 

a paradox about the representation of structure and content in the same brain region. The 

hippocampus houses place cells, which are highly spatially selective neurons and schema cells 

that represent similar task structure - goal and geometry. Findings suggest that the same 

neuronal population can code both mnemonic and sensory features of environments depending 

on the task at hand, as long as the geometry of the environment is preserved (Gulli et al., 2020).  

 

Is geometric similarity also crucial for human navigation? A recent study in humans 

suggests that the use of geometry versus landmark cues for navigation can be predicted based 

on individuals’ patterns of eye movements (Becu et al., 2019). For example, individuals who 

use geometric cues have a gaze bias towards the correct location and its geometrically opposite 

location when searching for a goal (Becu et al., 2019). These studies indicate that the encoding 

of geometry is an essential feature of spatial representations, and the retrieval of spatial 

knowledge for geometry facilitates navigation tasks. Whether preserving the geometry of a 

previously learned environment but not the visuoperceptual properties impairs humans’ ability 

to navigate in a highly familiar large-scale environment is not clear. This thesis seeks to tackle 

this theoretical question using a novel methodology that combines eye tracking with a 

simulation of a real-world environment in virtual reality. 

 

 

 

 

 

 

 



 

15 

 

Chapter Two: Proposal for a Novel Methodology 

 

In order to study the extent to which spatial memory and visual exploration contribute 

to human navigation in familiar environments in the lab, a novel methodology is needed. 

Several criteria that must be considered in the creation of a new paradigm are 1) ecological 

validity, 2) immersion, 3) visual realism, 4) eye-tracking protocol and 5) landmark selection. 

Other factors such as 6) experimenter control and 7) the selection of an appropriate statistical 

method should also be considered.  

 

2.1 Ecological Validity  

Ecological validity refers to the ability to generalize experimental findings to real-world 

settings. In this context, ecological validity is improved by studying navigation in a virtual 

environment for which individuals encoded spatial memories in real life compared to training 

individuals to navigate a pre-selected environment. This criterion ensures that individuals are 

tested in a macro-scale familiar environment for which they have naturalistically acquired 

spatial knowledge through personal experience. Moreover, it is assumed that the larger scale 

of an outdoor environment places greater emphasis on retrieving allocentric representations. 

The availability of procedural 3D modelling tools (Smelik et al., 2009) provides a unique 

opportunity to address some of the limitations of previous studies through the creation of 

detailed large-scale 3D models of urban environments, allowing researchers to capture 

navigation behaviours in a simulation in the lab.  

 

2.2 Immersion 

The criterion of immersion is important because most research findings in human 

navigation are based on experimental set-ups that use small field-of-view (FOV) 2D displays 

with fixed head and body positions. In VR, subjects can experience the environment with an 

increased sense of immersion compared to traditional experimental set-ups as they offer larger 

FOVs and flexible head and body positions. The choice of the locomotion method in a virtual 

environment influences navigation performance (Paris et al., 2019). The decision for a 

locomotion method depends on factors such as the sense of presence, simulator sickness, room 

size and configuration, and the scale of the virtual environment (Paris et al., 2019). One study 

examined the influence of two types of discrete and continuous locomotion methods on 

navigation performance (Paris et al., 2019). An example of a discrete method is teleportation, 
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whereas continuous methods are more similar to using a joystick. Teleportation is usually based 

on ray-casting – a ray of about 20 m in length is cast forward towards the ground plane from 

the user’s hand controller. Subjects point towards the ground plane near the desired location to 

move to and pull the trigger to be transported to the (x, z) coordinates of their goal location. 

Teleportation is associated with the least amount of simulator sickness (Paris et al., 2019), a 

feature critical for developing experimental tools with future applications in clinical 

populations. Teleportation provides a reduced sense of presence compared to other locomotion 

methods in VR. However, the ability to move head and body movements, in addition to a wider 

FOV, is an improvement to traditional experimental set-ups in many navigation studies. 

 

2.3 Visual realism  

The level of realism in the virtual environment impacts navigation decisions when 

memory retrieval demands are increased - navigators must rely on visual cues rather than prior 

knowledge to make decisions. In one study, a virtual environment with varying levels of 

realism was used to route recall performance in young and older adults in different conditions  

of visual realism (Lokka et al., 2018). This study found that reduction in the overall amount of 

visual realism (e.g., colours and textures of buildings along a route) in a virtual environment 

and increased realism of landmarks at decision points led to improved route learning for both 

age groups (Lokka et al., 2018). Therefore, increased realism is not necessarily associated with 

improved navigation performance. A factor that modulates this relationship is visual attention. 

Even in highly familiar environments where the retrieval of reportedly gist-like or schematic 

spatial memories is sufficient, interference due to visual similarity may hinder wayfinding 

(Lokka et al., 2018).   

 

2.4 Eye-tracking Protocol  

There are similarities between neural mechanisms that support cognitive processes 

involving vision, memory and navigation (Ekstrom, 2015; Meister & Buffalo, 2016b; Nau et 

al., 2018). Eye movements captured using eye trackers measure a person’s visual attention but 

also memory for past experiences (Hannula et al., 2010; Meister & Buffalo, 2016b). Under 

normal conditions, visual input to the cortex consists of an alternation between rapid eye 

movements (saccades) and periods of fixation, typically 200-300 milliseconds in duration, 

during which gaze is stabilized on various parts of a scene  (Hannula et al., 2010; Meister & 

Buffalo, 2016b).  
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  Recognition memory depends on the number of fixations rather than the duration of 

time a picture is viewed, suggesting that fixations serve as an index of memory (Meister & 

Buffalo, 2016b). The number of fixations decrease while fixation durations increase when 

subjects view familiar stimuli, even in the absence of conscious awareness of recognition 

memory (Hannula et al., 2010). Whether fixation rate can also be used as a measure of long-

term spatial memories of familiar environments is unclear, and a paradigm that combines VR 

with eye-tracking provides an opportunity to investigate this question.  

 

 

The identification of eye movement events, such as fixations, from raw eye tracker data, 

is achieved by translating gaze points to fixations using different algorithms (Salvucci & 

Goldberg, 2000). Depending on the frequency at which the eye tracking device is operating, 

many gaze points will be recorded every second. For example, Vive Pro Eye VR head-mounted 

displays (HMDs) operate based on the gaze frequency of 120 Hz, therefore, a gaze point will 

be recorded about every eight milliseconds. Different types of event detection algorithms, such 

as dispersion-based, velocity-based and area-based algorithms that classify gaze data into 

fixations, can produce different results (Nyström & Holmqvist, 2010; Salvucci & Goldberg, 

2000). Fixations consist of sequences of gaze points that are grouped. Whereas gaze points 

only have spatial (x,y) locations, fixations have locations and durations. Therefore, the 

minimum duration of a fixation included in these computations can significantly influence 

fixation detection results (Nyström & Holmqvist, 2010). Dispersion-based algorithms identify 

fixations as groups of consecutive points within a particular dispersion (Salvucci & Goldberg, 

2000). Dispersion is calculated as the average of the largest horizontal and vertical distances 

between any two samples within a duration window that has a length equal to the minimum 

fixation duration (Nyström & Holmqvist, 2010).  

 

Figure 3. Fixation Identification using a dispersion-based algorithm 
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Dispersion-based algorithms have been used in commercial software such as Tobii 

technology and Cognitive3D. Other commercial software such as EyeLink uses a velocity-

based algorithm combined with an acceleration criterion (Nyström & Holmqvist, 2010). Past 

research on the relationship between eye movements and memory has been almost exclusively 

based results from the Eyelink system, and most past studies analyzed fixations from gaze 

points on 2D visual displays. Eye-tracking in VR has an added challenge of tracking 

movements on moving stimuli, also known as smooth pursuit movements (Andersson et al., 

2017). However, fixation event identification calculations are not different when an object is 

moving or stationary in 3D. The Cognitive3D platform can be used to obtain fixation data from 

raw gaze data collected from several VR HMDs. For the observer in VR to be able to move 

around in the environment and still fixate on the same point, fixation points are recorded as 

real points in 3D space rather than spatial locations in a 2D projection.  

 

2.5 Landmark selection 

As discussed previously, landmarks are loosely defined in spatial cognition literature 

to encompass any features in an environment that are useful for navigation. There is no 

guideline for selecting landmarks in the real-world environment since individuals have varied 

navigational experiences. The characterization of a method to identify landmarks is essential 

for future human navigation studies. Although robust findings indicate a specialization for 

landmark processing in the PPA, a set of visual features that consistently activate this region 

have not yet been proposed. Intuitively, however, most humans familiar with a city or 

neighbourhood learn a relatively common set of landmarks that they deem “central” for 

describing that environment and giving directions. This intuition has been a subject of 

extensive inquiry in urban design and architectural theory and has been expanded to 

understanding the organization of city blocks and neighbourhoods (Lee et al, 2017). A fresh 

perspective from urban planning can inform the neuroscientific studies of navigation in real-

world settings.  

 

Space syntax is a set of theories that aims to explain the relationship between social 

behaviour and spatial geometry (Hillier, 2007). Space syntax methods can be used to make 

predictions about landmarks that are salient for the group of individuals who are familiar with 

a particular environment, thus, predict which landmarks may appear in most individuals’ 

mental representations of an environment (Emo, 2018; Filomena et al., 2019; Lynch, 1960). 

These methods have been successful in predicting pedestrian navigation decisions (Emo et al., 
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2012; Filomena et al., 2019). An urban theorist, Kevin Lynch in the Image of the City, proposed 

that landmarks, nodes, edges, paths, and districts are the basic urban elements that define the 

shared mental image of a city (Figure 4) (Filomena et al., 2019). A computational reformulation 

of Lynch’s approach has shown correspondence for all elements, including nodes but not 

landmarks (Filomena et al., 2019). One reason for the challenge in identifying landmarks is the 

influence of personal experiences with different locations. A node may be the closest element 

to a landmark, and it can be used as a proxy for landmark locations. Although individuals 

develop idiosyncratic spatial representations, a shared cognitive map can be hypothetically 

derived to define strategic foci expected to guide navigation for most residents or frequency 

travellers of a region (e.g. a university campus). 

 

    To operationalize a node, a circulation network can be represented as a graph (Porta et 

al., 2006), where junctions are the ‘nodes,’ and path segments are the ‘links.’ The degree 

centrality measure of ‘betweenness’ can be calculated for each node to identify crucial decision 

points that are structurally positioned to be traversed most often (i.e., nodes with the highest 

betweenness centrality scores). A recent fMRI study found that activity in the hippocampus 

and prefrontal cortex correlates with changes in degree centrality measures as individuals 

navigate the streets of London (Javadi et al., 2017). This study provides some neurobiological 

support for the encoding of degree centrality measures in the brain, which can be used to 

identify locations of importance for navigation and spatial memory representations.  

 

 

 

2.6 Experimental control  

Figure 4. Kevin Lynch’s five elements of a city  
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Factors such as age, sex, gender, strategies, anxiety level, economic wealth, 

developmental experiences, perspective-taking abilities result in high inter-individual 

variability in navigation performance (Coutrot et al., 2018; Wolbers & Hegarty, 2010). 

Perspective-taking is a measure of one’s ability to acquire spatial knowledge from navigation 

experience (Hegarty & Waller, 2004; Kozhevnikov & Hegarty, 2001), therefore, improved 

performance may indicate an individual has a more detailed spatial representation of an area, 

given similar familiarity to another individual with lower perspective-taking abilities. In one 

study, better performance on a perspective-taking test was associated with the increased use of 

landmark cues compared to geometric cues in navigation (Becu et al., 2019), suggesting a 

correlation with egocentric representations that are scene-dependent. Sex differences are also 

observed in navigation behaviours, although findings are often mixed. A relatively robust 

finding is that females tend to preferentially use landmark cues and scene-based strategies, 

whereas the use of cardinal directions, metric distances and map-based strategies are more 

commonly reported in males (Wolbers & Hegarty, 2010).  

 

  When designing a study to assess navigation performance in a highly familiar 

environment, it is important to minimize constraints on participants’ routine behaviour. For 

example, asking participants to navigate to a given location from a starting location using the 

routes they usually take adds fewer constraints than training individuals on specific routes to 

reach goals for an experiment. Even when specific routes are cued for retrieval, the training 

procedure introduces different biases in learning as individuals use different strategies to 

acquire spatial knowledge. Another factor is the influence of practice effects. Previous 

experience with VR environments and exposure to graphics quality of the simulation may 

influence results. A key feature of most tests of memory is that the subject is not ‘primed’ for 

the material that is to be retrieved from memory. Training subjects within the test environment 

will inevitably reduce or abolish reliance on long-term spatial knowledge and increase reliance 

on short-term working memory. Therefore, there is a trade-off in exposing subjects to the 

environment before retrieval tasks. Studying navigation in highly familiar environments is 

imbued with a lack of control for satisfying the requirements of basic experimental conditions. 

Since individuals take different routes to reach the same destination, the relationship between 

eye movements and navigation outcomes may be due to differences in stimuli within routes, 

rather than the relationship between visual exploration and navigation.  

 

2.7 Selection of a Statistical Method  
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 The selection of an appropriate statistical method for handling the rate of change in 

learning as subjects are exposed to the virtual environments may help reduce the influence of 

practice effects. Multilevel models (MLM) provide several advantages over repeated-measures 

analysis of variance (ANOVA) for analyzing hierarchical data (Singer et al., 2003) and in 

answering research questions related to learning and memory (Gordon, 2019). These are 

particularly helpful in understanding the contribution of variation due to time delays in memory 

experiments (Gordon, 2019).  

 

 Observations collected from an individual completing navigation tasks have a nested 

structure. Observations are nested within individuals and tasks. Having observations that 

belong to the same individuals in the dataset violates the assumption of independence needed 

in ANOVAs, and other ordinary least squares regression methods. The MLM approach helps 

in handling correlated residuals arising from observations belonging to the same individual. 

When practice effects are present, the performance on tasks is expected to change over time 

systematically. MLM allows the selection of a more flexible covariance structure (e.g. a first-

order autoregressive covariance structure), which assumes that observations closer in time are 

more highly correlated. Therefore, the effects of practice across repeated navigation tasks can 

be accounted for in the model. Due to flexibility in the selection of covariance structures, MLM 

is also better able to handle bias due to missing data compared to traditional statistical methods 

such as repeated measures ANOVA.  

 

The novel methodology proposed in this thesis aims to address discussed challenges 

associated with studying human navigation in highly familiar environments by considering 

factors such as ecological validity and immersion using a VR simulation, landmark selection 

procedure using space syntax methods, eye-tracking in 3D, and selection of an MLM statistical 

method for analyzing hierarchical observational datasets. The promise of this methodology for 

informing an interdisciplinary understanding of cognitive processes underlying human 

navigation is explored in the forthcoming study. 
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Chapter Three: The Current Experiment 

Rationale 

The ability to find our way in different environments is crucial to everyday life. A 

theoretical gap exists in our understanding of the link between long-term spatial knowledge 

and visual percepts for guiding navigation in highly familiar environments in humans. To 

narrow this gap, navigation success and eye movements of individuals navigating between 

different landmarks in a VR simulation of a large-scale environment are explored based on a 

proposed model of navigation depicted in Figure 5. Navigation performance is measured using 

travel time and path deviation - navigation outcomes that are correlated with hippocampal 

function based on neuroimaging findings (Spiers & Barry, 2015). Long-term spatial knowledge 

is assessed using standard paper-and-pencil mental navigation tasks such as sketch-mapping 

and placement of landmarks on a map (Howard et al., 2014; Schinazi et al., 2013). Fixation 

rate is used as a measure of memory-driven visual exploration (Hannula et al., 2010; Meister 

& Buffalo, 2016b). The immersive virtual reality environment has preserved geometry of the 

originally encoded environment, which participants navigated in real life for months to years, 

but it has altered appearance – reduced overall level of visual realism. The following 

hypotheses are tested: 

 

Hypothesis 1: Given that geometry modulates the stability of cognitive maps in rodents 

(Mallory et al., 2018), it is expected that individuals familiar with the environment can still 

successfully navigate to various goal locations within that environment if geometric relations 

between landmarks are preserved, even if landmark appearances are impoverished in realistic 

detail.  

 

Hypothesis 2: Since fixation rate serves as an index of memory (Meister & Buffalo, 

2016b), it is hypothesized that fixation rates during navigation are correlated with performance 

on spatial memory tasks such as sketch-mapping, landmark recognition, and landmark 

placement. Specifically, better performance on spatial memory tasks is expected to correlate 

with a lower average fixation rate.  

 

Hypothesis 3: Brain regions implicated in storing long term spatial memories, such as 

PPA and RSC, are also involved in scene-processing functions and have been suggested to link 

long-term spatial knowledge with visual percepts to guide navigation (Epstein & Vass, 2014). 
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It is hypothesized that the interaction between spatial memory and fixation rate predicts 

individual navigation outcomes in a highly familiar environment.    

 

Hypothesis 4: It is expected that preference for allocentric (map-based) vs. egocentric 

(scene-based) navigation strategies (Brunec et al., 2018) interacts with spatial memory and 

fixation rate in predicting navigation outcomes. Specifically, a higher correlation between 

spatial memory and fixation rate predicts better navigation performance when a map-based 

rather than a scene-based strategy is preferred.  

 

 

 

 

 

 

 

 

Methods 

 

Participants 

Figure 5. A theoretical model of navigation 
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  Fifty young adults (28 males, 22 females, mean age = 25.67; SD = 6.11) with normal or 

corrected-to-normal vision were recruited from the York University community. All subjects 

reported at least six months of experience navigating within the York University Keele campus 

on a weekly basis in Toronto. Exclusion criteria included a history of stroke, epilepsy, or other 

active neurological disease.  Three subjects were excluded due to motion sickness, discomfort, 

and inattention issues during the experiment, resulting in a sample size of 47. Participation was 

voluntary, and informed consent was obtained from all subjects. Subjects received financial 

compensation of $15 for their participation in the experiment, which lasted 1.5 to 2 hours. All 

procedures were approved by the Office of Research Ethics at York University.  

 

Primary Variables  

  Primary independent variables were fixation rate, spatial memory, and navigation 

strategy. Dependent variables were path deviation and travel time. Task order as a measure of 

practice effects was entered treated as a secondary independent variable. The total fixation rate 

was calculated as the number of fixations on 3D objects divided by the time taken to complete 

the task in seconds. Path deviation was calculated as the difference between path distance in 

meters and the Euclidean distance between origin and destination landmark main entrances 

(Figure 5). Travel time was the total time elapsed in seconds when the subject reported reaching 

the goal location.  
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Figure 6. Path Deviation as a navigation outcome 

 

VR Simulation  

   The wayfinding portion of the experiment was performed in a VR visualization of the 

York University campus in Toronto, Canada. A rendered 3D model of the campus was created 

in Esri CityEngine (https://www.esri.com/en-ca). The study area was bounded by Steele Ave 

West on the north, Pond Road on the south, Ian Macdonald Blvd on the east and Keele Street 

on the west. An experimental framework was built in Unity3D (https://unity.com) to set up 

navigation trials between pairs of buildings in the 3D model and record spatial behaviour 

during travel periods. See appendix for a depiction of the paradigm. An HTC Vive Pro Eye 

HMD was used in this set-up (Figure 4). The Vive Pro Eye HMD has a gaze frequency of 120 

Hz; the device records the position of eyes every 8.3 milliseconds. The gaze accuracy range is 

between 0.5° and 1°. Calibration accuracy is within 5 points, and the field of view is 110°. 

https://www.esri.com/en-ca
https://unity.com/
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Eye-tracking Protocol  

   The Cognitive3D platform (https://cognitive3d.com) was used to detect fixations on 

model objects using a dispersion threshold technique by averaging directions from both eyes:  

gaze directions within 1° were identified as a common fixation, and if gaze fell outside this 

range for 10 milliseconds or more, the fixation was considered terminated. If the viewer’s gaze 

was not directed toward an object in the model for 500 milliseconds or more, the fixation was 

also considered terminated. In Unity, a fixation point represents a point in the real-world rather 

than a direction obtained from the HMD using ray-casting. This means that the user can walk 

around a fixation point as long as steady eye contact is maintained. Ray-casting is used to 

determine where the user is looking at in a given moment. Several gaze points are recorded 

over multiple frames and converted to screen space to check whether gaze direction is within 

the threshold of fixation using a dispersion-based algorithm.  

 

Navigation Task  

   Each subject completed a total of 12 navigation tasks consisting of different origin-

destination landmark pairs in VR simulation of the study area.  Ordering of route pairs was 

randomized across subjects.  Four key landmarks were buildings identified using an analysis 

of street network centrality with a software package developed in a previous study (Filomena 

et al., 2019) and other criteria described in the appendix. Routes consisted of the same start and 

end locations in different combinations (e.g. Vari Hall to Bergeron, Lassonde to Vari Hall, 

Bennett to Bergeron). Subjects were instructed to navigate using the teleportation method as 

quickly as possible from a given start location to a goal location. They were instructed to end 

Figure 7. VR Set-up 

https://cognitive3d.com/
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the task by pressing a controller button when they arrived within 5 meters of the goal building. 

A task was deemed successful if the subject’s position at the end of the task was within 50 

meters of the goal building. All subjects completed one training trial to ensure that that the task 

was understood.  

 

 

Spatial Memory Assessment  

  The subjects’ prior knowledge of the environment was assessed using three tasks: sketch 

mapping, landmark recognition and landmark placement. A simple average of scores on these 

tasks was used to derive a single spatial memory index. The assessment strategy employed was 

based on the training method London taxi drivers use to learn the layout of London (Howard 

et al., 2014). This procedure was adapted and modified for the York University campus. In the 

first method, subjects were given a schematic template of the campus and asked to draw a 

sketch-map indicating as many buildings and roads as they could remember. This template 

only included the boundaries of the study region, one prominent landmark (Vari Hall), and an 

arrow pointing north  (Figure 8 bottom right). Sketch maps were assessed using three criteria: 

number of elements (i.e. roads and buildings), placement of elements, and map orientation 

Figure 8. Sketch Mapping Task 
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(Figure 8 bottom panel). An overall sketch-map score was assigned as a percentage of the 

highest-ranking drawing. The second method employed a landmark recognition task in which 

subjects were shown 22 photographs of major buildings in the study region. In this task, they 

rated their familiarity with these locations on Likert scales ranging from 1 to 5 with the a 

maximum value of 110 (Figure 9). In the third task, a more detailed template of the study region 

was shown that included building and road information (Figure 10). Subjects were then asked 

to indicate using numbers where the locations of the landmarks previously rated on the 

landmark recognition task should be on this map.  This task was scored based on the correctness 

and precision of responses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Spatial Abilities Questionnaires  

  The Santa Barbara Sense of Direction Scale (SBSOD) was used to assess individuals’ 

spatial ability (Hegarty et al., 2002). This standardized self-report 15-item measure assesses 

the respondent’s ability to update their location in space. The recommended scoring procedure 

for the scale was followed (Hegarty et al., 2002). An example item in SBSOD is: “I tend to 

think of my environment in terms of cardinal direction (N,S,E,W).  

 

  The Navigational Strategy Questionnaire (NSQ) was used to assess the tendency for 

map-based or scene-based navigation strategy. Each item corresponds to either a map-based, 

scene-based or another strategy. The mapping tendency was calculated as the difference 

between the number of map-based and scene-based responses (Brunec et al., 2018).  A positive 

mapping tendency score indicates the use of a map-based strategy, and a negative score 

Figure 9. Landmark Recognition Task 
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indicates the use of a scene-based strategy. An example item in NSQ is: “Would you give 

directions to a friend in terms of landmarks (i.e. when you see the subway stop, turn left?) or 

in terms of map directions (i.e. walk north four blocks, then turn left?)?” 

 

  The Perspective-taking Test (PTT), in which participants are asked to determine the 

direction of a target object given different imagined viewpoints, was used to assess the ability 

to imagine how a scene looks from different viewpoints (Hegarty & Waller, 2004; 

Kozhevnikov & Hegarty, 2001). In this test, participants see a picture of an array of objects 

(e.g. cat, stop sign, house, tree) and a circle containing an error underneath. A question appears 

under the circle that asks about the direction between some of the objects given a particular 

standing location. For example, the subject is required to move the arrow within the circle to 

correct direction from cat to tree if he or she is standing at the house. A concrete example is 

shown in the Appendix. This test measures spatial orientation - the ability to learn large-scale 

spatial layout from navigational experiences (Wolbers & Hegarty, 2010). An openly available 

computerized version of this task (https://github.com/TimDomino/ptsot) was used.  The 

average error in degrees across 12 time-limited trials was obtained for each individual. More 

details about PTT can be found in the appendix.  

 

Statistical analysis 

Hierarchical data structure  

Figure 10. Landmark Placement Task 

https://github.com/TimDomino/ptsot


 

30 

 

The structure of this observational dataset is hierarchical. There are two levels; 

navigation performance observations are nested within individuals (Figure 11). For each 

person, there are 12 observations. These observations are correlated with each other since they 

belong to one person, therefore, a statistical analysis method is needed that does not rely on the 

assumption of independence. In this dataset, practice effects need to be considered. Multilevel 

linear models have several advantages (Singer et al., 2003). A covariance structure is needed, 

which can account for systematic changes in the relationship between variables as a function 

of time. A first-order autoregressive covariance structure can accommodate the fact that 

observations closer in time are more highly correlated than those observations farther apart in 

time (Field et al., 2012; Singer et al., 2003). Therefore, practice effects can be controlled. These 

models are also more robust to missing data compared to ordinary least squares regression.   

 

Figure 11. Two-level dataset structure 

Fixed and Random Effects  

Multilevel models are sometimes also referred to as mixed-effects models and have 

been proposed to provide powerful statistical tools for researchers investigating learning and 

memory (Gordon, 2019). MLMs are also used to distinguish between fixed and random effects. 

A fixed effect refers to an effect where all possible conditions that a researcher is interested in 

are present in the experiment, therefore, can only be generalized to situations in the study. A 

random effect relates to an effect in an experiment that contains only a random sample of 

possible conditions, therefore, it can be generalized beyond the conditions in the study (Field 

et al., 2012). It is important to distinguish between fixed and random effects versus time-fixed 

and time-varying variables. Fixed variables do not change over time, for example, individual 
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characteristics such as sex fall into this category. Time-varying variables vary over time, for 

example, repeated measures of performance on a task. Unlike other ordinary regression 

derivatives, parameters of a mixed-effects or MLM are not always fixed. In the case of a 

random parameter, we do not assume that the model fits the relationship between variables 

across the entire sample, in other words, the slopes and intercepts of the parameters vary across 

different levels. For example, slopes and intercepts can differ between observations in the same 

individual (level 1), but they also differ across different individuals (level 2). A random 

parameter estimates the intercept of the overall model in addition to the variability of intercepts 

around the overall model . Therefore, each individual in the dataset can have a “personal” 

intercept and slope (Field et al., 2012).  

 

Model building and assessing model fit  

The overall fit of a multilevel model is usually assessed using a chi-square likelihood 

ratio test. The smaller the value of the log-likelihood, the better the fit (Field et al., 2012; Singer 

et al., 2003). There are two adjusted forms of log-likelihood values, which are usually used to 

compare the fit of different models. Akaike’s information criterion (AIC) provides a goodness-

of-fit measure that takes into account the number of parameters estimated. Bayesian 

Information Criterion (BIC) is more conservative than AIC in terms of penalizing for the 

number of additional parameters estimated. It is recommended to be used when the sample size 

is large, and the number of parameters is small. It is also recommended that for building a 

multilevel model, fixed coefficients are added first, followed by random coefficients and other 

covariates. The improvement in fit can then be assessed by performing a log-likelihood ratio 

test. The model selection procedure is less prone to error when cross-validation is used. 

However, cross-validation is needed when the analysis aims to find the ‘best’ model for 

predicting a particular outcome. The possible combinations of different predictors are used to 

create several models, and the combination with the highest fit is selected as the best predictive 

model. In the case of a hypothesis-driven analysis, particularly in the context of the current 

observational study, the goal is not to find the best statistical model. Rather, the interest lies in 

understanding the relationship between variables of interest, without the need to find the best 

combination of variables that predict an outcome.  

 

The first step in the process of assessing the need for an MLM is to build a simple model 

with fixed effects only and determine the interclass correlation coefficient (ICC) (Singer et al., 

2003). The ICC is a measure of the dependency between observations that are nested within 
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other variables, which, in this case, are individuals (Field et al., 2012). In this two-level dataset 

structure, ICC represents the proportion of the total variability in the outcome that is attributed 

to within-individual variability. Therefore, a smaller ICC indicates that much of the variability 

is not explained by variation in the performance of a task in the same individual, rather, it is 

explained by differences between individuals. A small ICC indicates that individual 

characteristics have less influence on observations compared to the influence of independent 

variables, therefore, variability is small within level 1, but large within level 2. In this study, A 

baseline model predicting path deviation (outcome) from only the intercepts, which are allowed 

to vary across people (Random Intercept Model) was built as follows (i = observations (level 

1), j = person (level 2)): 

 

𝑷𝒂𝒕𝒉𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗ሺ𝑰𝑫ሻ+ 𝜀𝑖𝑗 

𝛽0𝑗 = 𝛽0 + 𝜇0𝑗 

𝛽1𝑗 = 𝛽1 + 𝜇1𝑗 

 

The ICC for this model was calculated to be 0.082 using the following equation: 

 

𝐼𝐶𝐶 =
𝜎𝛽

𝜎𝛽 + 𝜎𝜀
 

 

 

This value indicates that approximately 91.8% of the variability in the outcome can be 

explained by variability across individuals and independent variables that will be later added. 

Only 8.2% of the variability is attributed to within-subject variability. Next, the effect of 

practice was added as a predictor: 

 

𝑷𝒂𝒕𝒉𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏𝑖𝑗 = 𝛽
0𝑗
+ 𝛽

1𝑗
ሺ𝑰𝑫ሻ+ 𝛽

2
ሺ𝑷𝒓𝒂𝒄𝒕𝒊𝒄𝒆ሻ+ 𝜀𝑖𝑗 

 

The log-likelihood ratio test was used to compare the random intercept model with the 

model that includes the effect of practice on outcome was significant, χ2 (1) = 5.82, p = .016. 

This shows a significant improvement in fit when practice effects are accounted in the model. 

Next, this model was updated to allow the slopes in addition to the intercepts to differ across 

individuals with a random effects term for practice: 
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𝑷𝒂𝒕𝒉𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗ሺ𝑰𝑫ሻ+ 𝛽2𝑗ሺ𝑷𝒓𝒂𝒄𝒕𝒊𝒄𝒆ሻ+ 𝜀𝑖𝑗 

 

Following this initial step, hypothesis-driven independent variables were added using 

fixed effects terms. These included fixation rate, memory, strategy and a 3-way interaction 

term for these variables with the final model taking the following form: 

 

𝑷𝒂𝒕𝒉𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑭𝒊𝒙𝒂𝒕𝒊𝒐𝒏 + 𝛽2𝑴𝒆𝒎𝒐𝒓𝒚 + 𝛽3𝑺𝒕𝒓𝒂𝒕𝒆𝒈𝒚 +

𝛽4ሺ𝑭𝒊𝒙𝒂𝒕𝒊𝒐𝒏𝑥𝑴𝒆𝒎𝒐𝒓𝒚𝑥𝑺𝒕𝒓𝒂𝒕𝒆𝒈𝒚ሻ + 𝛽5𝑗ሺ𝑷𝒓𝒂𝒄𝒕𝒊𝒄𝒆ሻ + 𝜀𝑖𝑗  

  

A similar procedure was followed for travel time as the outcome variable and resulted 

in the following final model: 

 

𝑻𝒓𝒂𝒗𝒆𝒍𝑻𝒊𝒎𝒆𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑭𝒊𝒙𝒂𝒕𝒊𝒐𝒏 + 𝛽2𝑴𝒆𝒎𝒐𝒓𝒚 + 𝛽3𝑺𝒕𝒓𝒂𝒕𝒆𝒈𝒚 +

𝛽4ሺ𝑭𝒊𝒙𝒂𝒕𝒊𝒐𝒏𝑥𝑴𝒆𝒎𝒐𝒓𝒚𝑥𝑺𝒕𝒓𝒂𝒕𝒆𝒈𝒚ሻ + 𝛽5𝑗ሺ𝑷𝒓𝒂𝒄𝒕𝒊𝒄𝒆ሻ + 𝜀𝑖𝑗  

 

Statistical software  

All analyses were conducted in RStudio, Version 1.1.463. The nlme (Pinheiro, Bates, 

DebRoy, Sarkar & R Development Core Team, 2010) package was used for multilevel 

modelling in R. A long format dataset was compiled such that each row corresponded to one 

observation and an ID column was used to specify the individual to whom the observation 

belonged. Maximum likelihood estimation was used; variables were grand-mean centred. 

Grand mean entering was used as a way to reduce the effects of multicollinearity between 

predictor variables. This is helpful when predictors do not have meaningful zero points, such 

as the spatial memory index, which has arbitrary units (a.u). The interclass correlation 

coefficient was calculated to understand the proportion of variance due to inter-individual 

variability. Model selection was carried out using several statistics including the log-likelihood 

ratio tests. Graphs and figures were created using the ggplot2 package. A complete list of 

packages and scripts that are used are provided in the Appendix section to encourage the 

reproducibility of the current findings.  Descriptive statistics are reported using means and 

standard deviations. Pearson correlations are computed to examine associations between 

measures of spatial memory, eye movements, and navigation. An alpha level of 0.05 is used 

for significance testing. Target sample size was based a power analysis prior to the study.  
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Results 

 

Variable summaries are presented in Table 1. An approximately equal proportion of 

scene and map-based strategies was reported. About 64% of individuals had experience with a 

VR environment prior to the study. On average, participants recognized 72% of landmarks 

presented using both names and photographs, and correctly placed 60% of presented landmarks 

on a map of the study region, though performance was highly variable between individuals. 

   

Sketch maps produced by subjects were varied in terms of the amount of detail and 

accuracy (Figure 8). There was a decreasing trend for fixation rate, travel time, and path 

deviation across navigation tasks indicating that practice effects are present (Figure 12). The 

proportion of successful trials in the first half of the navigation tasks was significantly lower 

Figure 13. Practice effects 

First Half 

Second Half 

Figure 12. Navigation Success 
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than the proportion of trials in the second half of the tasks; χ2 (1) = 192.31, p < .0001 (Figure 

13). 

 

Hypothesis 1: Overall navigation success in VR simulation  

A total of 467 navigation tasks were completed by subjects with a success rate of 82.1 

% using a success criterion of arriving within 50 meters to a target location (Figure 12). The 

average distance to goal location across all navigation tasks was 31.26 m (SD = 104.28), and 

the average travel time was 39.83 s (SD=17.05). These findings suggest that subjects were 

mostly successful in navigating to different target locations in the VR simulation of their 

familiar environment. 

 

Hypothesis 2: Association between spatial memory and fixation rate  

There is a relationship between spatial memory measured using paper-and-pencil tasks 

and fixation rate measured during VR navigation. A scatterplot of this relationship is presented 

in Figure 14. Pearson correlation between spatial memory and fixation rate was significant with 

moderate strength in the negative direction, r (37) = -.33, p = .043. The bivariate relationships 

between these variables are presented in Table 2. 

 

 

Figure 14. Scatterplot of fixation rate and spatial memory 
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Table 1. Variable Summary  

Variable n/Mean %/SD 

Age  25.67 6.04 

Education (years) 15.46 3.57 

Familiarity (years) 3.85 3.74 

Sex   

Male 23 58.97 

Female 16 41.03 

Strategy (NSQ)   

Scene 19 48.72 

Map 20 51.28 

VR Experience   

Yes 25 64.10 

No 14 35.90 

Landmark Recognition   

Raw (Scored %) 79.71 (0.72) 16.32 (0.15) 

Landmark Pairs (/10)   

Pair A: Vari-Lassonde 8.85 1.78 

Pair B: Bergeron-Lassonde 7.74 2.18 

Pair C: Vari-Bergeron 8.02 2.12 

Pair D: Bergeron-Bennett  6.26 2.33 

Pair E: Bennett-Lassonde  6.99 2.18 

Pair F: Bennett-Vari  7.36 2.01 

Sketch Mapping   

Raw (Scored) 13.82 (0.39) 8.19 (0.23) 

Landmark Placement    

Raw (Scored) 13.23 (0.60) 5.18 (0.24) 

Spatial Memory Index 0.57 0.16 

Notes. Spatial Memory Index is a simple average of scores on three memory tasks. NSQ = 

Navigational Strategies Questionnaire; a score above 0 is categorized as map-based, a score 

below 0 is categorized scene-based (Brunec et al., 2018).  
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Table 2. A correlation matrix with confidence intervals  

Variable M (SD) 1 2 3 4 5 6 

        

1. Spatial  

    Memory  

0.57  

(0.16) 
            

        

2. SBSOD 

(1:7) 

4.43  

(1.07) 
.28**           

   [.19, .36]           

3. PTT  

(°) 

37.18  

(30.65) 

-.36** 

[-.44, -.28] 

-.21** 

[-.29, -.12] 
        

4. NSQ  
-0.45  

(5.39) 
.45** .80** -.43**       

   [.37, .52] [.77, .83] [-.50, -.35]       

5. Fixation  

Rate (c/s) 

5.01  

(1.24) 
-.33** .14** -.16** .14**     

   [-.40, -.24] [.05, .23] [-.25, -.07] [.05, .23]     

6. Path  

Deviation 

(m) 

458.56  

(151.56) -.41** -.17** .52** -.44** .05   

   [-.48, -.33] [-.26, -.08] [.45, .58] [-.51, -.36] [-.04, .14]   

7. Travel  

Time (s) 

39.83  

(17.05) 
-.25** -.37** .44** -.52** -.35** .66** 

   [-.34, -.17] [-.45, -.29] [.37, .51] [-.58, -.45] [-.42, -.26] [.61, .71] 

Note. M  and SD are used to represent mean and standard deviation, respectively. Values in square brackets 

indicate the 95% confidence interval for each correlation. * indicates p < .05. ** indicates p < .01. SBSOD = 

Santa Barbara Sense of Direction Scale, PTT = Perspective-taking Test, NSQ = Navigation Strategies 

Questionnaire (positive values indicate higher tendency for map-based navigation) 
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Hypothesis 3 & 4: Interactions between fixation rate, memory, and strategy 

 

Path Deviation MLM 

The bivariate relationships between fixation rate and path deviation grouped by 

navigation strategy is presented in Figure 15, and the bivariate relationship between spatial 

memory and path deviation is shown in a scatterplot in Figure 16. Pearson correlations and 

confidence intervals are presented in Table 2. Multilevel model analysis showed that the main 

effects of fixation rate (𝛽= -1.523, t (388) = -0.1878, p = 0.851, 95% CI = [-17.29, 14.24]), 

spatial memory (𝛽= 103.319, t (35) = 0.677, p = 0.503, 95% CI = [-203.30, 409.94]), and scene 

strategy (𝛽= 25.821, t (35) = 0.724, p = 0.473, 95% CI = [-45.74, 97.39]) on path deviation 

were not significant.  

 

The 3-way interaction for these variables was also not significant (𝛽= 3.559, t (388) = 

.044, p = 0.964, 95% CI = [-152.47, 159.58]). However, the interaction between spatial 

memory and egocentric strategy was marginal (𝛽= -448.786, t (35) = -1.99, p = 0.0537, 95% 

CI = [-900.27,2.70]). This shows that individuals with higher spatial memory who rely more 

on egocentric strategy have smaller overall deviation in their navigation trajectories from an 

Figure 15. Scatterplot of fixation rate and path deviation  
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optimal distance. The relationship between these variables and path deviation showed 

significant variance in intercepts across individuals (𝛽= 4.12.638, t (388) = 11.987, p < .0001, 

95% CI = [345.67, 479.60]), showing that individuals’ baseline performances differ from one 

another. The main effect of practice on path deviation was not significant (𝛽= -4.471, t (388) 

= -0.966, p = 0.335, 95% CI = [-13.47, 4.53]) showing that, after taking into account practice 

effects, the relationships between independent variables and path deviation, nor their 

interactions, is significant. The predicted values from the model and a linear regression trend 

is shown in Figure 17.  

 

 

Figure 16. Scatterplot of spatial memory and path deviation 
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Figure 17. Scatterplot of model predicted values for path deviation 

 

Travel Time MLM 

The bivariate relationships between fixation rate and travel time grouped by navigation 

strategy are presented in Figure 18. Similarly, the bivariate relationship between spatial 

memory and travel time is shown in a scatterplot in Figure 19. Pearson correlations and 

confidence intervals are presented in Table 2. Multilevel model analysis showed that the main 

effects of fixation rate (𝛽= -2.753, t (388) = -4.163, p <0.0001, 95% CI = [-4.40, -1.46]) and 

egocentric strategy (𝛽= 7.495, t (35) = 2.196, p = 0.034, 95% CI = [0.64, 14.35]) on travel time 

were significant. These results show that individuals with higher fixation rates navigate to goal 

locations faster. Also, individuals who use a scene strategy tend to be slower in reaching their 

goal destinations.  

 

The main effect of spatial memory was not significant (𝛽= 16.81, t (35) = 1.167, p = 

0.251, 95% CI = [-12.11, 45.73]). The 3-way interaction for these variables was also not 

significant (𝛽= 7.065, t (388) = 1.059, p = 0.289, 95% CI = [-5.90, 20.03]). However, the 

interaction between spatial memory and egocentric strategy was significant (𝛽= -55.368, t (35) 

= -2.612, p = 0.013, 95% CI = [-97.94,-12.79]). This shows that individuals with higher spatial 

memory who rely less on egocentric strategy complete navigation tasks faster. The relationship 
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between these variables and travel time showed significant variance in intercepts across 

individuals (𝛽= 51.39, t (388) = 15.78, p < .0001, 95% CI = [45.05, 57.72]), showing that 

individuals’ baseline performances differ from one another. The main effect of practice on 

travel time was significant (𝛽= 51.39, t (388) = 25.78, p < 0.0001, 95% CI = [-3.53, -2.14]), 

showing that travel time is significantly decreased over repeated task performance. These 

findings are controlled for practice effects. The predicted values from the model and a linear 

regression trend is shown in Figure 20. 

 

 

Figure 18. Scatterplot of fixation rate and travel time  
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Figure 19. Scatterplot of spatial memory and travel time 

Figure 20. Scatterplot of model predicted values for travel time 
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Discussion 

 

This study examined navigation performance and eye movements in a novel VR 

simulation of a macro-scale environment for which individuals acquired spatial representations 

via personal experience in real-world navigation. Specifically, individuals’ ability to 

successfully navigate a virtual environment with preserved geometric relations and reduced 

appearance level was observed. The relationship between performance on static mental 

navigation tasks, fixation rate during travel to goal locations, allocentric-egocentric strategy 

preference, and overall navigation performance (i.e., travel time and path deviation) was 

explored. More than 80% of navigation tasks that required individuals to travel to various goal 

locations from randomly selected start locations were successfully completed – navigators 

reached within 50 meters of goal landmarks. This finding demonstrates that preserved 

geometry between landmark locations rather than high levels of visual detail is sufficient for 

successful navigation in a familiar environment.  

 

Main results 

 

A relationship was found between eye movements during navigation and long-term 

spatial knowledge for the familiar environment that was navigated. On average, individuals 

made approximately five fixations per second during travel periods, and better spatial memory 

on standard measures was significantly correlated with reduced fixation rates during 

navigation. This finding suggests that individuals who have acquired a more integrated spatial 

representation of an environment make fewer fixations per second on visual stimuli that they 

encounter along routes to goal. Therefore, fixation rate in a virtual environment may provide 

an index for spatial memory of that environment, acquired via real-world navigation. This 

finding supports the hypothesis of a link between long-term spatial knowledge and visual 

percepts for navigation.  

 

 Some evidence of construct validity was found for a composite measure of spatial 

memory obtained by combining performance on the standard spatial memory measures (sketch 

mapping, landmark recognition, and landmark placement). A significant positive correlation 

was found between this spatial memory index and SBSOD – a standardized measure of 

cognitive functions involved in navigation, including the ability to keep track of heading 



 

45 

 

direction and judging directions between landmarks using allocentric coordinates (Wolbers & 

Hegarty, 2010). In addition, a significant negative relationship was found between the spatial 

memory index and errors on a perspective-taking task (i.e. PTT). Perspective-taking is related 

to the ability to learn spatial layouts from direct navigation experience. This task requires 

participants to estimate directions to landmarks given different imagined viewpoint locations 

(Kozhevnikov & Hegarty, 2001). These relationships provide evidence of convergent validity 

for this spatial memory index because the measure is related to the hypothesized construct – 

the ability to acquire and use allocentric spatial representations.  

 

A related finding is a positive correlation between the spatial memory index and a 

higher tendency for using a map-based (i.e. allocentric) navigation strategy compared to a 

scene-based (i.e. egocentric) strategy. This tendency was measured using a navigational 

strategies questionnaire (i.e. NSQ) in which map-based strategy items correlate with inter-

voxel similarity patterns in the human hippocampus (Brunec et al., 2018). This finding provides 

some evidence of divergent validity for the spatial memory index introduced and suggests that 

performance is preferentially related to allocentric representations that are supported by MTL 

structures, including the hippocampus. Overall the findings suggest that the proposed 

composite measure of spatial memory has some construct validity.  

 

A significant improvement in navigation success was observed as individuals 

completed more navigation tasks in the virtual environment. Specifically, the success rate in 

the first half of navigation tasks was at 67%, which was improved to 86% in the second half of 

the navigation tasks. This finding shows that visual cues influence navigation, even if their 

presence is not crucial to navigation (Maguire et al., 2006). Therefore, increased exposure to 

the familiar virtual environment impacts wayfinding, possibly independent of pre-experimental 

spatial memory.  

 

Some differences in main effects and two-way interactions between path deviation and 

travel time models were found. In the model of path deviation, neither the main effects of 

fixation rate, spatial memory, and strategy nor their interaction was significant, however, the 

two-way interaction between spatial memory and strategy was marginal. In individuals who 

adopt a scene-based strategy, higher spatial memory predicts better navigation performance as 

indicated by travelling routes that deviate less in the distance from an optimal (i.e. Euclidean) 

path. However, for individuals who use a map-based strategy, higher spatial memory is not 
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associated with reduced path deviation. A similar interaction pattern was found to be significant 

in relation to predicting travel time. In individuals who adopt a scene-based strategy, higher 

spatial memory is predictive of faster travel time. In contrast, the relationship between spatial 

memory and travel time is not significant for individuals who primarily use a map-based 

strategy. Since the spatial memory index primarily relates to the quality of allocentric 

representations, this finding suggests that individuals who can adopt different strategies given 

the specific demands of the task at hand may develop better spatial learning and navigation 

capabilities (Wolbers & Hegarty, 2010). This is indicated by a positive trend of navigation 

performance in those who primarily use scene-based or landmark cues for navigation. An 

egocentric strategy may have been more useful in finding goal locations in a virtual 

environment (Doeller & Burgess, 2008), and those who adopted this strategy benefited more 

from increased exposure to specific visual cues in the simulation.  

 

 A second difference between navigation outcomes was found in the effect of practice. 

Learning was a significant predictor of travel time but not path deviation. Similarly, the main 

effect of fixation rate was only a significant predictor of travel time. Given a decreasing trend 

of fixation rate as a function of task order, these findings suggest that the relationship between 

fixation rate and travel time may be heavily influenced by the portion of variability shared 

between these two variables, rather than capturing a process-pure measure. The adoption of a 

scene-based strategy was predictive of lower travel time, possibly reflecting additional time 

taken for visual exploration of scenes prior to making decisions. However, the significant 

interaction between spatial memory and scene-based strategy is predictive of reduced travel 

time, indicating that allocentric representations and egocentric factors jointly influence 

navigation outcomes.  

 

 

Relation to Prior Work  

 Previous findings on spatial navigation in familiar environments are based on 

performance in mental navigation tasks using paper-and-pencil or virtual navigation with 

photographs obtained from applications such as google street view (Patai et al., 2019; 

Rosenbaum et al., 2004; Spiers & Maguire, 2007). Few studies have used simulations of real-

world environments. One exception is a landmark neuroimaging study that examined 

navigation in a virtual simulation of central London in taxi drivers with decades of experience 

in the area and patient TT, who sustained a bilateral hippocampal lesion (Maguire et al., 2006). 
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More recent studies have begun to use virtual 3D environments projected on 2D displays, or 

VR paradigms for novel environments that participants did not have prior real-world navigation 

experience (Becu et al., 2019; Chrastil & Warren, 2015; Kim & Maguire, 2018; Lokka et al., 

2018). Very few navigation studies provide behavioural data combined with eye-tracking 

(Becu et al., 2019; Spiers & Maguire, 2008), particularly in VR. The current study is novel in 

analyzing navigation behaviour and gaze data obtained from individuals who navigated a 3D 

reconstruction of a real-world environment that they had personally experienced from months 

to years prior to testing. As expected, individuals were able to find target landmarks in various 

regions of the environment from multiple start locations, even though the environment had 

reduced levels of visual realism.  

 

 The finding that preserved geometry but not appearance is sufficient for navigation is 

consistent with experimental evidence in early human development and other species (Lee et 

al., 2006; Lee & Spelke, 2010). Moreover, individuals with damage to the hippocampus were 

still able to judge distances and directions between major landmarks in a highly familiar 

environment, draw accurate sketch maps and successfully navigate to different goal locations 

within that environment, even though they appear to no longer retain visual details contained 

within it (Herdman et al., 2015; Maguire et al., 2006; Rosenbaum et al., 2000; Spiers & 

Maguire, 2007). Since the hippocampus is needed for the retrieval of detailed aspects of 

autobiographical and spatial memories which enable rich re-experiencing of past events 

(Herdman et al., 2015), these patients likely relied on a different kind of spatial representation 

reflecting geometric features of encoded environments. 

 

The relative independence of two types of spatial representation is also demonstrated 

by different types of recall errors for spatial location (Marchette et al., 2017). In one study, 

individuals learned the locations of objects positioned within four visually distinct but 

geometrically similar buildings (Marchette et al., 2017). The buildings were arranged in a 

larger environment with a spatial layout that was independent of the layout of objects within 

buildings. It was observed that individuals frequently used a common local representation that 

specified the location of the object and applied that template or “schema” when searching an 

incorrect building (Marchette et al., 2017). This type of geometric error was consistently 

observed even when the appearance of buildings (e.g., textures) was altered and only reversed 

when geometry was altered. This study provided evidence for independence between spatial 

representations at global and local levels, and further highlighted the role of geometry in 
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navigation. Given past findings, it is not surprising that individuals in this study did not have 

significant difficulties navigating an environment with impoverished visuoperceptual details, 

since geometric relationships were unchanged.  

 

An interesting finding was the association between a measure of long-term spatial 

knowledge and a measure of eye movements in virtual navigation. This is a novel finding, as 

previous studies have not examined this relationship in virtual reality. Past studies have 

examined the relationship between eye movements and memory using images projected onto 

2D displays with small FOV. Different types of eye movements can be analyzed based on raw 

gaze data obtained from eye-trackers. Amongst these measures, fixations have been referred to 

as a “currency of memory” (Meister & Buffalo, 2016a). The use of fixations as an index of 

memory depends on the specific mechanisms involved in encoding and retrieval. For example, 

during encoding, a higher number of fixations is associated with improved picture recognition 

(Kafkas & Montaldi, 2011). 

In contrast, when freely viewing visual scenes, a higher number of fixations is 

associated with scene novelty rather than familiarity. This finding is observed in 2D images 

(Meister & Buffalo, 2016a; Ryan et al., 2000) and virtual 3D environments (Kit et al., 2014). 

In the current study, a negative association between fixation rate and spatial memory was 

found, in agreement with findings related to memory mechanisms associated with encoding. 

This is a surprising finding because individuals were not previously exposed to the specific 

visual cues in the virtual environment, whereas in previous studies, memory-mediated eye 

movements were analyzed after individuals encoded the presented stimuli as part of the 

experiment. While the 3D reconstruction of the real-world environment was novel to subjects 

in this study, the average fixation rate was correlated with an objective measure of spatial 

memory related to allocentric representations of an external environment (i.e., external to the 

virtual environment). Therefore, the decreasing trend in fixation rate with practice may indicate 

reduced novelty to the stimuli, rather than indexing a mental representation. 

 

The finding that the interaction between eye movements, memory, and strategy did not 

significantly predict navigation outcomes is inconsistent with a theory-driven hypothesis – that 

the link between long-term spatial knowledge and visual percepts guides goal-directed 

navigation. One possibility is that this hypothesis relates to the interactions of brain regions at 

the systems level based on theories of consolidation, however, it may not be directly observable 

at the level of human behaviour. An alternative is that an observational approach to studying a 
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multi-component behaviour such as navigation is not equipped with fine-grained analytic 

power needed to detect an interaction. Significant inter-individual differences in navigation 

may also mask the detection of effects, despite selecting a statistical method that can 

disentangle these contributions. The finding that the choice of strategy influences the degree to 

which prior knowledge predicts navigation performance highlights the significance of inter-

individual differences.   

 

Limitations  

This study has several limitations. While the aim was to observe unrestrained 

navigation in individuals familiar with an environment, one restriction on movement had to be 

placed because the interiors of buildings were not available in the virtual simulation. A 

restriction was placed so that individuals navigated between landmarks without travelling 

through buildings. This restriction likely results in individuals taking routes that they would 

not normally take in real life, as many individuals familiar with the study area seem to travel 

through some buildings, particularly in colder months. A second limitation relates to the sense 

of immersiveness in virtual reality. Although individuals were provided with a relatively wide 

field-of-view to explore the environment and were able to freely move their heads and bodies, 

they were not able to navigate by walking. Instead, they had to rely on teleportation, which is 

the least immersive movement method in VR. A third limitation is about changes in the level 

of detail in the 3D models of landmarks. For example, many different types of details that may 

be particularly important for navigation purposes were not modelled, including several building 

facades, campus signage, outdoor furniture, campus art, and trees. This limitation rules out the 

possibility of understanding the different types of non-geometric cues that guide navigation 

decisions. Lastly, tasks used to assess spatial memory for the study area were experimental and 

not previously validated. Although similar tasks such as sketch mapping have been extensively 

used to assess spatial knowledge of a familiar environment, these have usually included larger 

urban areas with landmarks that have cultural and global significance, such as the CN Tower 

in Toronto. Landmarks in a campus setting may not benefit from this memory boost. 

Moreover, familiarity with specific landmarks in this type of environment could be a 

function of specific academic activities performed by different individuals rather than a shared 

integrated representation. Interestingly, whether different individuals share a mental 

representation of the environment is related to a shared sense of community. For this reason, 

community engagement and shared values in an institution relate to whether individuals 
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working or studying in that environment have similar and integrated spatial representations in 

their memory stores (Lynch, 1960).  

 

Future Work 

 Future research is needed in this area to investigate the theoretical gap in our 

understanding of the link between mnemonic and perceptual functions in spatial cognition 

using experimental study designs that employ different measures of eye movements. For 

example, examining the pattern of visual attention during navigation decision periods by 

analyzing saccades can provide a more fine-grained tool for understanding the relationship 

between visual perception and spatial memory in the context of navigation (Bicanski & 

Burgess, 2019). A future direction is to compare differences in visual exploration between 

healthy young adults, older adults, and clinical populations. For example, in older adults with 

dementia, explicit retrieval of memories through direct reporting may hinder access to care and 

social engagement (Hannula et al., 2010), and spatial deficits are proposed early diagnostic 

markers of memory decline in at-risk populations (Coughlan et al., 2018). Extending the use 

of eye movements as an index of memory for space can help researchers better understand the 

impact of various spatial designs in indoor and outdoor environments on wayfinding abilities. 

Further work is also needed to understand the role of different brain regions in encoding 

landmark and geometric cues in similar environments. It remains unclear how we construct 

internal schemas that guide navigation decisions in the face of unexpected changes in our 

environments.   
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General Conclusion 

 

 This thesis aimed to present a new interdisciplinary approach to the study of spatial 

navigation in familiar environments in humans. It reviewed findings from neurophysiology and 

cognitive neuroscience to present a theoretical framework that is grounded in memory systems 

consolidation and highlighted the concept of schematization in relation to space. It proposed 

that a current gap exists in understanding the relationship between long-term spatial knowledge 

and visual percepts in humans by drawing attention to distinctions between highly biased 

human spatial judgements and rodent cognitive maps. A novel methodology that combines eye 

tracking in virtual reality was applied to explore several hypotheses generated from the 

proposed theoretical rationale. Findings suggest that eye movements relate to long-term spatial 

representations and that the choice of a map-based or a scene-based navigation strategy 

moderates this relationship. Future research is needed to replicate and validate obtained 

findings and understand the types of spatial cues that help us better navigate and, consequently, 

feel more connected to others and the environments in which we live.   
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Appendix A: Virtual Reality Paradigm 
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Figure A. Top panel showing a sample trial in VR as seen from the subjects’ point of view. Middle panel 
showing the distribution of fixations in the same navigation scene by two individuals denoted using 

different colors. Bottom panel showing average fixation across all subjects and navigation tasks for 

different landmarks in the virtual environment. The color bar indicates the length of fixations with red 

indicating longer durations. 
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Figure B. Navigation Task Example. Left side is showing an example prompt inviting the subject to 

navigate to a specified goal location. The right side is showing the real-time position of the subject on the 
map as they navigate to the goal location (only seen by the experimenter and recorded for future analysis). 

 

Figure C. Twelve navigation tasks consisting of different combinations of 4 landmark pairs 
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Appendix B: Spatial Memory Tasks 
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ID:    Date:    Time:    Task # 1 

 

Please draw a sketch-map of the York University campus as you remember it using the boundaries provided. Include as many paths and 

buildings as you can. The location of Vari Hall has been marked for you. 
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ID:    Date:    Time:    Task #2 

 

Part A: Landmark Familiarity 
 

a)  Please indicate whether any of these places are familiar to you: (i.e. have you walked past them?)  

 
# Place Name Familiarity Rating (1 = no familiarity, 5 = very familiar) 

1 Vari Hall  

2 Bergeron Engineering Building  

3 Bennett Centre  

4 Behavioural Science Building  

5 Lassonde Building  

6 Central Square  

7 Seneca@York  Building  

8 Technology Enhanced Building  

9 York Lanes  

10 Life Sciences Building  

11 Seymour Schulich Building  

12 The Pond Road Residence  

13 Steacie Science Building  

14 Calumet College  

15 Tennis Canada Aviva Centre  

16 Accolade West  

17 Curtis Lecture Hall  

18 Ross Building  

19 Scott Library  

20 York Lanes Parking Garage  

21 Second Student Centre  

22 Sherman Health Science 

Research Centre 
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ID:    Date:    Time:    Task #2 

 

Part B: Landmark Placement 

 
a) Indicate using the numbers where your familiar places are on the map. Try to mark as many 

locations as you can remember. 
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ID: Date: Time: Task # 3 

Landmark Recognition 

 1 2 3 

 4 5 6 

 7 8 9 
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ID: Date: Time: Task # 3 

 11 

13 14 15 

16 17 18 

10 12 
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ID:    Date:    Time:    Task # 3 
 
 
 
 

 

 

 

 
 
 
 

20 19 

21 22 
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Perspective-taking Test 
 

                                                                                 Source: https://github.com/TimDomino/ptsot 
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Appendix C: Questionnaires 
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Today’s Date:    

 

Part A: Basic Information 

PARTICIPANT SCREENING FORM  

 
Subject #:  _   

 

1. In which month, year and place were you born?  Date  /    

Month Year 

Place:  . 

2. Sex/gender: Male Female Other 

3. First language: English Other:  . 

4. Which language do you speak most often? English Other:  . 

5. Handedness: left right ambidextrous 

6. Highest Level of Professional/Masters/PhD High School Graduate 
Education Completed: University/College Degree Some High School 

Vocational/Technical Elementary School 
Diploma/Certificate.  Prefer not to answer 

7. Occupation(s):  . 
 

Part B: Health Information 

8. Have you suffered from a stroke, concussion or closed-head injury? Yes No 

 If yes, please elaborate:  . 
 

9. Do you take any medication that is known to affect the brain or other parts of the central nervous system 

functioning (e.g. mood, attention, memory)? Yes No 

  If yes, please specify:  . 
 

10. How is your vision? 

Normal Corrected to normal with glasses Glaucoma/cataract/macular degeneration 

 

Part C: York Campus Familiarity 

11. What is your current position at York University (please circle option)? 
 

Undergraduate Student (Full-time/Part-time) 
Graduate Student (Master/PhD) 
Faculty or Staff 
Alumni 

 
12. What is your field of study or area of service?  . 

 
13. For how many years have you been working or studying in your current role on York University Keele 
Campus?  . 

 
14. Which building(s) on campus are you the most familiar with?  . 
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15. How many days per week on average do you spend time on campus?  . 

16. Do you drive to campus?        Yes        No 

 If yes, where do you park?  . 

 
17. How would you rate your confidence in navigating between campus buildings and remembering 
their locations on campus from a scale of 1 (no confidence) to 5 (very confident)? 

 

18. Please provide 3 routes that you travel on most often on campus by specifying their start and end 
locations, and your frequency of travel (average # per week, including travel in both directions): 

 
Route 1:   Start  .   End  .   Frequency of Travel:  . 

Route 2:   Start  .   End  .   Frequency of Travel:  . 

Route 3:   Start  .   End  .   Frequency of Travel:  . 
 

Part D: Technology Skills 

19. Do you play video or computer games on a regular basis? Yes No 

 If yes, how many hours a week?  . 

 For how many years have you played games regularly?  . 

20. How would you rate your experience with video or computer games from a scale of 1 (no 

experience at all) to 5 (a lot of experience)? 

 
 
21. How would you rate your skills with video or computer games from a scale of 1 (no skills at all) to 
5 (very good skills)? 

 
 

22. Do you experience motion sickness? Yes No Specify:  . 

23. Do you have experience with VR? Yes, specify (how many times?):  . No 
 
 
 
 
 
 
 

@ Delaram Farzanfar 2020 
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Navigational Strategies Questionnaire 
 

This questionnaire contains questions about your experience navigating, the strategies you use, 

and what helps you to navigate. Circle the answer for each question that best describes how 

you navigate or describe your answer in the space beside ‘‘Other’’ if neither applies. 

 
1. When planning a route, do you picture a map of your route or do you picture scenes of 

what you will see along the way? 

 
Map Scenes Other:  . 

 
2. Do you consider yourself a good navigator? 

 
Yes No 

 
3. Do you find it easy to read and use maps? 

 
Yes Somewhat No 

 
4. How often do you get disoriented while finding your way around? 

 
Very often Somewhat often Very rarely 

 
5. When thinking about a familiar street, how well can you picture the buildings along it? 

 
Very clearly Somewhat clearly Hardly at all 

 
6. Would you give directions to a friend in terms of landmarks (i.e., when you see the subway 

stop, turn left?) or in terms of map directions (i.e., walk north four blocks, then turn left?)? 

 
Landmarks Map Directions Other:    

 

7. Do you picture traveling a route on street level or from a bird’s eye view? 

 
Street-level Bird’s Eye View Other:    

 

8. When navigating in an area you know well, do you usually just know where to go or do you 

need to look around at the surroundings to decide (e.g., coming out of a subway station)? 

 
Know it Some of each Need to look around 

 
9. When traveling along a new route, do you usually remember what buildings you’ve 

passed? 

 
Yes Somewhat Rarely 
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ID:   Date:    
 
 

10. Would you prefer to navigate using a list of directions or a map? 

 
Directions Map No preference 

 
11. Do you use landmarks (i.e., familiar buildings) to orient yourself when navigating? 

 
Often Sometimes Rarely 

 
12. Do you find you’re flexible navigating along routes (i.e., you can take new shortcuts 

easily), or do you prefer to follow the same path every time? 

 
Flexible Somewhat flexible Prefer the same route 

 
13. How easily could you draw a map of an area of the city that you know well? 

 
Very easily Somewhat easily Not easily 

 
14. Do you think that you navigate by following a mental map, or working on scene at a time? 

 
Maps Scene at a time Other 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: Brunec, I. K., Bellana, B., Ozubko, J. D., Man, V., Robin, J., Liu, Z. X., ... & Moscovitch, M. (2018). Multiple 

scales of representation along the hippocampal anteroposterior axis in humans. Current Biology, 28(13), 2129-2135. 
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3 
 
 

Santa Barbara Sense of Direction Scale  
 

This questionnaire consists of several statements about your spatial and navigational abilities, preferences, and 

experiences. After each statement, you should circle a number to indicate your level of agreement with the 

statement. 

 

Circle "1" if you strongly agree that the statement applies to you, "7" if you strongly disagree, or some number in 

between if your agreement is intermediate. Circle "4" if you neither agree nor disagree. 

 

 

1. I am very good at giving directions 
 

strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
 

2. I have a poor memory for where I left things. 
 

strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
 

3. I am very good at judging distances. 
 

strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
 

4. My "sense of direction" is very good. 
 

strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
 

5. I tend to think of my environment in terms of cardinal direction (N, S, E, W). 
 
 

strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
 

6. I very easily get lost in a new city. 
 

strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
 

7. I enjoy reading maps. 
 

strongly agree 1 2 3 4 5 6 7 strongly disagree 
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4 
 
 

8. I have trouble understanding directions. 
 

strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
 

9. I am very good at reading maps. 
 

strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
 

10. I don't remember routes very well while riding as a passenger in a car. 
 
 

strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
 

11. I don't enjoy giving directions. 
 

strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
 

12. It's not important to me to know where I am. 
 
 

strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
 

13. I usually let someone else do the navigational planning for long trips. 
 
 

strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
 

14. I can usually remember a new route after I have traveled it only once. 
 
 

strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
 

15. I don't have a very good "mental map" of my environment. 
 
 

strongly agree 1 2 3 4 5 6 7 strongly disagree 
 
 

Source: Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self- 

report measure of environmental spatial ability. Intelligence, 30(5), 425-447. 
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Exploration of Study Area - Site Analysis 
 

Figure A. Visibility graph analysis from DepthMap (https://www.ucl.ac.uk/bartlett/architecture/ 

research/space-syntax/depthmapx) Figure B. Landmark Selection Criteria 

 
 

 

Figure B. Landmark Selection Criteria 

http://www.ucl.ac.uk/bartlett/architecture/
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Figure C. Interior circulation network is shown on the left, followed by the exterior circulation grid 
 

 

 

Figure D. Landmarks of Interest 
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Space Syntax Analyses 

 
Table A. List of Campus Points of Interest and 3D Landmark detail level 

 
Number Name Latitude Longitude Type Function High 

Detail 
Low Detail 

1 190 Albany 
Road 

43.77916 -79.49957 Building Admin   

2 Accolade East 43.77337 -79.49902 Building Academic  Yes 

3 Accolade West 43.77247 -79.50169 Building Academic   

4 Atkinson 43.77063 -79.50179 Building Academic   

5 Behavioural 
Science 

43.77524 -79.50395 Building Academic   

6 Bennett Centre 
for Student 
Services, 
Admissions 

43.77233 -79.498689 Building Admin Yes  

7 Bergeron Centre 
for Engineering 
Excellence 

43.77268 -79.50459 Building Academic Yes  

8 Calumet College 43.77284 -79.50916 Building Academic   

9 Central Square 43.77268 -79.50459 Area Social Yes  

10 Central Utilities 
Building 

43.77774 -79.49847 Building Admin   

11 Centre for Film 
& Theatre 

43.77247 -79.50169 Building Academic  Yes 

12 Chemistry 43.7739 -79.50757 Building Academic   

13 Curtis Lecture 
Halls 

43.77268 -79.50459 Building Academic Yes  

14 Executive 
Learning Centre 

43.77337 -79.49902 Building Academic   

15 Farquharson 
Life Sciences 

43.77524 -79.50395 Building Academic Yes  

16 Founders 
College 

43.77615 -79.50238 Building Academic   

17 Health, Nursing 
& 
Environmental 
Studies 

43.77088 -79.50413 Building Academic   

18 Ignat Kaneff 
Building, 
Osgoode Hall 
Law School 

43.77088 -79.50413 Building Academic   

19 Joan & Martin 
Goldfarb Centre 
for Fine Arts 

43.77247 -79.50169 Building Academic   

20 Kaneff Tower 43.77546 -79.50042 Building Admin   

21 Kinsmen 43.77843 -79.49541 Building Admin   

22 Lassonde 
Building 

43.773964 -79.50525 Building Academic Yes  
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Number Name Latitude Longitude Type Function High 
Detail 

Low Detail 

23 Life Sciences 
Building 

43.7739 -79.50757 Building Academic Yes  

24 Lorna R. 
Marsden Honour 
Court & 
Welcome Centre 

43.77337 -79.49902 Building Admin   

25 Lumbers 43.77524 -79.50395 Building Admin   

26 McLaughlin 
College 

43.77615 -79.50238 Building Academic   

27 Norman Bethune 
College 

43.77284 -79.50916 Building Academic   

28 Observatory, 
Petrie 

43.7739 -79.50757 Building Academic   

29 Petrie Science & 
Engineering 

43.7739 -79.50757 Building Academic   

30 Physical 
Resources 
Building 

43.77795 -79.49745 Building Academic   

31 Rob and Cheryl 
McEwen 
Graduate Study 
& Research 
Building 

43.774181 -79.497235 Building Academic   

32 Ross Building 43.77268 -79.50459 Building Academic Yes  

33 Scott Library 43.77268 -79.50459 Building Academic Yes  

34 Scott Religious 
Centre, CSQ 

43.77268 -79.50459 Building Academic Yes  

35 Seymour 
Schulich 
Building 

43.77337 -79.49902 Building Academic  Yes 

36 Sherman Health 
Science 
Research Centre 

43.7751 -79.51186 Building Academic Yes  

37 Steacie Science 
& Engineering 
Library 

43.77382 -79.50569 Building Academic   

38 Stedman Lecture 
Halls 

43.77524 -79.50395 Building Academic   

39 Stong College 43.77284 -79.50916 Building Academic   

40 Student Centre 43.77524 -79.50395 Building Commercia 
l 

  

41 Tait McKenzie 
Centre 

43.77441 -79.50959 Building Athletic   

42 Vanier College 43.77615 -79.50238 Building Academic   

43 Vari Hall 43.77268 -79.50459 Building Academic  Yes 

44 Victor Phillip 
Dahdaleh 
Building 
(Formerly TEL) 

43.771406 -79.500781 Building Academic   

45 West Office 
Building 

43.77554 -79.50815 Building Admin   
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Number Name Latitude Longitude Type Function High 
Detail 

Low Detail 

46 William Small 
Centre 

43.7729 -79.50713 Building Admin   

47 Winters College 43.77615 -79.50238 Building Academic   

48 York Lanes 43.77456 -79.50161 Building Commercia 
l 

Yes  

49 320 Assiniboine 
Road 

43.76857 -79.5025 Building Residential   

50 340 Assiniboine 
Road 

43.76857 -79.5025 Building Residential   

51 360 Assiniboine 
Road 

43.76857 -79.5025 Building Residential   

52 380 Assiniboine 
Road 

43.76857 -79.5025 Building Residential   

53 Atkinson 
Residence 

43.77063 -79.50179 Building Residential   

54 Bethune 
Residence 

43.77284 -79.50916 Building Residential   

55 Calumet 
Residence 

43.77284 -79.50916 Building Residential   

56 Founders 
Residence 

43.77615 -79.50238 Building Residential   

57 Passy Gardens, 
2-18 Passy Cres. 

43.7691 -79.505 Building Residential   

58 The Pond Road 
Residence 

43.77063 -79.50179 Building Residential   

59 Stong Residence 43.77284 -79.50916 Building Residential   

60 Tatham Hall 43.77615 -79.50238 Building Residential   

61 Vanier 
Residence 

43.77615 -79.50238 Building Residential   

62 Winters 
Residence 

43.77615 -79.50238 Building Residential   

63 Arboretum Lane 
Parking Garage 

43.77254 -79.50697 Building Parking   

64 Student Services 
Parking Garage 

43.77202 -79.49794 Building Parking   

65 York Lanes 
Parking Garage 

43.77456 -79.50161 Building Parking   

66 Art Gallery of 
York University 

43.77337 -79.49902 Building Artistic   

67 Burton 
Auditorium 

43.77247 -79.50169 Building Artistic   

68 Gales Gallery 43.77337 -79.49902 Building Artistic   

69 Joseph G. Green 
Studio Theatre 

43.77337 -79.49902 Building Artistic   

70 McLean 
Performance 
Studio 

43.77337 -79.49902 Building Artistic   

71 Price Family 
Cinema 

43.77337 -79.49902 Building Artistic   

72 Sandra Faire & 
Ivan Fecan 
Theatre 

43.77337 -79.49902 Building Artistic   
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Number Name Latitude Longitude Type Function High 
Detail 

Low Detail 

73 Tribute 
Communities 
Recital Hall 

43.77337 -79.49902 Building Artistic   

74 Tait McKenzie 
Centre 

43.77441 -79.50959 Building Athletic   

75 York Stadium 43.77625 -79.5126 Building Athletic   

76 York Lions 
Stadium 

43.77551 -79.50666 Building Athletic   

77 Skennen’kó:wa 
Gamig 

43.77088 -79.50413 Building Historic   

78 Hoover House 43.76835 -79.50922 Building Historic   

79 Stong Barn 43.78009 -79.4974 Building Historic   

80 Stong House 43.78009 -79.4974 Building Historic   

81 Archives of 
Ontario 

43.77546 -79.50042 Building Admin   

82 Canlan Ice 
Sports 

43.77452 -79.51399 Building Athletic   

83 Computer 
Methods 
Building 

43.77843 -79.49541 Building Academic   

84 Harry Sherman 
Crowe Housing 
Co-op 

43.77628 -79.49812 Building Residential   

85 Seneca @ York, 
Stephen E. 
Quinlan 
Building 

43.77145 -79.49969 Building Academic   

86 Tennis Canada - 
Aviva Centre 

43.77524 -79.50395 Building Athletic   

87 Track & Field 
Centre 

43.77551 -79.50666 Building Athletic   

88 The Quad 
Student Housing 

43.76999 -79.50054 Building Residential   

89 York University 
TTC Subway 
Station 

43.77399 -79.50004 Building Transportat 
ion 

  

90 Pioneer Village 
TTC Subway 
Station 

43.77696 -79.50946 Building Transportat 
ion 

  

91 Second Student 
Centre 

43.77088 -79.50413 Building Admin Yes  

92 Stong Pond 
Pavillion 

43.771549 -79.506774 Area Social   

Total      13 4 
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Figure E. Network analysis for York University Keele Campus from “Computational Image of 

the City” (https://github.com/g-filomena/Computational-Image-of-the-City) (Filomena et al, 

2018). 

 
 

Table 2. Betweenness centrality (BC) scores for the first 20 nodes 

 
x y nodeID height BC Sc 

304944.9138 4847361.476 1 2 12245 0.725141287 

303436.5234 4846672.889 2 2 11026 0.661681518 

304484.2045 4847471.711 4 2 1269 0.621162354 

304530.5331 4848334.777 5 2 10919 0.706007574 

305023.2237 4847247.528 6 2 6195 0.736799506 

304567.2603 4848418.886 7 2 4754 0.733251027 

304628.2293 4847123.499 9 2 6596 0.706413238 
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304082.6168 4848146.348 10 2 23205 0.683206307 

304463.1027 4847314.612 11 2 37346 0.661504656 

304344.1521 4847414.816 12 2 18814 0.616867782 

303831.8063 4846340.168 13 2 0 0.631295299 

303486.4619 4847284.582 14 2 0 0.51024249 

304114.5491 4846392.425 15 2 0 0.644113968 

303513.0365 4847937.796 16 2 22699 0.695520796 

303640.2886 4846303.681 17 2 6900 0.678971165 

305446.8092 4847205.261 18 2 4064 0.77536828 

304971.202 4846692.405 19 2 100 0.719383788 

304602.6786 4846740.643 20 2 1432 0.653839368 

 

Table 3. Landmark Selection based on betweenness centrality scores (BC) 

 
Buildings with Textures Node ID (close by) BC 

Bergeron 1219 5201 

Bennett Centre 1570 5201 

Scott Library 1524 11327 

York Lanes 1031 28636 

Second student centre 1050 42722 

Life Science Building 850 50462 

Ross Building 436 59098 

Curtis Lecture Hall 400 62735 

Lassonde School 400 62735 

Farquason life science 1250 68272 

Central Square 671 145017 

Sherman 135 151294 



89 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix E: Supplementary Graphs 
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Figure A. Graph showing path deviation for each individual (denoted by a unique color) for each trial 
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Figure B. Graph showing travel time for each individual (denoted by a unique color) for each trial 
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Figure C. Regression diagnostics plots for travel time as the outcome of interest 
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Figure D. Regression diagnostics plots for path deviation as the outcome of interest 
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Figure E. Lattice plot showing the correlations between fixation rate and path deviation for each 
individual. Each circle represents data from a trial. 
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Figure F. Graphs showing practice effects across trials for several variables (path deviation, fixation rate, 
distance traveled, fixation duration, fixation count, and travel time) 
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Figure G. Boxplots showing group differences in spatial memory and fixation rate across sex, 
strategy and VR experience. The horizontal line represents the mean and box heighted is 

determined by the interquartile range. 
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Figure H. Boxplots showing group differences in path deviation and travel time across sex, 

strategy and VR experience. The horizontal line represents the mean and box heighted is 

determined by the interquartile range. 
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Appendix F: R script for statistical analyses 
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###DF Thesis 2020 

####Import dataset and load libraries ---- 

#Install dependencies 

library(psych) #for basic functions 

library(ggplot2) #for plotting 

library(data.table) #for fast data management 

library(nlme) #for mixed effects models 

library(plyr) #for data management 

library(EnvStats) # for outliers 

library(grDevices) # for pdf output 

library(car) # for recoding variables 

library(sjPlot) # for table functions 

library(sjmisc) # for sample 

library(lme4) # for R^2 - MLM 

library(MuMIn) # for R^2 - MLM 

library(stargazer) #output tables 

library(tableone) # for summary tables 

library(summarytools) #for summary tables 

library(apa) # for apa style 

library(gridExtra) # for figure layout 

library(dplyr) # for bar graphs 

library(RColorBrewer) # for color theme 

library(sjPlot) #residual plots 

library(lattice) #for plots 

 
#control settings 

ctrl <- lmeControl(opt='optim'); #MLM optimizer 

options(scipen = 999) #change digit notation 

 

#Import dataset 

longdat <- read.csv("longdat.csv") 

 
#removing pilot,intoxicated and confused participants 

ldat <- longdat[!longdat$ID == "P003" & !longdat$ID == "P035" & 

!longdat$ID == "P040", ] 

 
####Identify Potential Outliers ---- 

#outcome 1: path deviation 

x <- ldat$PathEucDev 

x[which(x %in% boxplot.stats(x)$out)] 

rosnerTest(x, k = 20, warn = F) 

ldat <- ldat[!ldat$PathEucDev == 5112.94 & !ldat$PathEucDev == 3917.15 & 

!ldat$PathEucDev == 3187.29 & !ldat$PathEucDev == 

2922.88,] 

#outcome 2: travel time 

x <- ldat$TimeTravelled 
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x[which(x %in% boxplot.stats(x)$out)] 

rosnerTest(x, k = 20, warn = F) 

 

####Recode variables -- 

 

#Recode trials to start at 0 for MLM 

ldat$Trial <- ldat$Trial-1 

#Recode route type as factor 

ldat$RouteCode <- as.factor(ldat$RouteCode) 

#Recode strategy as factor variable 

ldat$Strategy <- car::recode(ldat$MapStrategy, "0:20 = 'Map'; else = 

'Scene'") 

ldat$Strategy <- as.factor(ldat$Strategy) 

#Recode past VR experience as factor 

ldat$VR <- as.factor(ldat$VR) 

ldat$VR <- car::recode(ldat$VR, "0= 0; else= 1") 

 
 

####Compute variables ---- 

#calculate mean of variables based on 12 trials for each subject in long 

format 

##fixation rate 

FR <- aggregate (FixationRateTime ~ ID, ldat, mean) 

names(FR)[2] <- "MeanFixation" 

ldat <- merge(ldat,FR, by="ID") 

##fixation length 

FRD <- aggregate (FixationDuration ~ ID, ldat, mean) 

names(FRD)[2] <- "MeanFDuration" 

ldat <- merge(ldat, FRD, by="ID") 

##path deviation 

FRD2 <- aggregate (PathEucDev ~ ID, ldat, mean) 

names(FRD2)[2] <- "MeanPathDeviation" 

ldat <- merge(ldat, FRD2, by="ID") 

##travel time 

FRD3 <- aggregate (PathEucDev ~ ID, ldat, mean) 

names(FRD3)[2] <- "MeanTime" 

ldat <- merge(ldat, FRD3, by="ID") 

##goal distance 

FRD4 <- aggregate (DistancetoGoal ~ ID, ldat, mean) 

names(FRD4)[2] <- "MeanGoalDistance" 

ldat <- merge(ldat, FRD4, by="ID") 

 
##spatial memory 

FRD8 <- aggregate (ldat$SMIndex ~ ID, ldat, mean) 

names(FRD8)[2] <- "MeanSM" 

ldat <- merge(ldat, FRD8, by="ID") 

 
#calculate mean of variables based on trial number in wide format 

dataset 
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FRD5 <- aggregate (FixationRateTime ~ Trial, ldat, mean) 

names(FRD5)[2] <- "MmeanFixation" 

tdat <- FRD5 #add to a new dataset 

FRD6 <- aggregate (PathEucDev ~ Trial, ldat, mean) 

names(FRD6)[2] <- "MmeanPath" 

tdat <- merge(tdat, FRD6, by="Trial") 

FRD7 <- aggregate (TimeTravelled ~ Trial, ldat, mean) 

names(FRD7)[2] <- "MmeanTime"  

 tdat <- merge(tdat, FRD7, by="Trial") 
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####Grand-mean center variables ---- 

#Center fixation rate variable 

ldat$FixationRateTime.c <- ldat$FixationRateTime - 

mean(ldat$FixationRateTime, na.rm = TRUE) 

cor.test(ldat$FixationRateTime.c,ldat$FixationRateTime) #check that 

centering was done correctly 

#Center Spatial Memory Index 

ldat$SMIndex.c <- ldat$SMIndex - mean(ldat$SMIndex, na.rm = TRUE) 

#Center SBSOD 

ldat$SBSOD.c <- ldat$SBSOD - mean(ldat$SBSOD, na.rm = TRUE) 

#Center Age 

ldat$Age.c <- ldat$Age - mean(ldat$Age, na.rm = TRUE) 

#Center Fixation duration 

ldat$FixationDuration.c <- ldat$FixationDuration - 

mean(ldat$FixationDuration, na.rm = TRUE) 

 

#######################MLM1 Path Deviation Models A0,A1,A2------- 

#random Intercept model 

RandomIntercept <- lme(fixed = PathEucDev ~ 1, 

random= ~ 1|ID, 

data=ldat, 

na.action = na.exclude, method = 'ML', control = 'ctrl') 

summary(RandomIntercept) 

#fixed intercept 

VarCorr(RandomIntercept) 

RandomEffectsUCM <- as.numeric(VarCorr(RandomIntercept)[,1]) 

RandomEffectsUCM 

ICC1 <- RandomEffectsUCM[1]/(RandomEffectsUCM[1]+RandomEffectsUCM[2]) 

ICC1 

 
#add task as fixed effect 

timeRI <- update (RandomIntercept, .~. + Trial) 

 
#add task as a fixed effect and make a random effect of task over people 

timeRS <- update (timeRI, random = ~ Trial|ID, 

control=lmeControl(opt="optim")) 

 

 
#MLM1:  compare  random  and  fixed  slope 

anova(RandomIntercept,timeRI,timeRS) # no significant improvement in fit 

when task is also added as random effect, 

#that is the rate of change of the effect of task on path deviation may 

not vary across individuals 
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#######################MLM1 Path Deviation Final Model------- 

#MLM1: add fixed effect predictors 

mod1Final <- lme(fixed = PathEucDev ~ 1 + Trial + FixationRateTime.c + 

SMIndex.c + Strategy 

+ FixationRateTime.c*SMIndex.c*Strategy, 

random= ~ 1 + Trial|ID, 

data=ldat, 

na.action = na.exclude, method = 'ML', 

control=lmeControl(opt="optim")) 

summary(mod1Final) 

intervals(mod1Final, which = 

"fixed") 

ldat$fittedmlm1 <- fitted.values(mod1Final) 

 
#######################MLM2 Travel Time Models B0,B1,B2------- 

RandomIntercept2 <- lme(fixed = TimeTravelled ~ 

1, random= ~ 1|ID, 

data=ldat, 

na.action = na.exclude, method = 'ML', control = 

'ctrl') summary(RandomIntercept2) 

#ICC Unconditional means model 

VarCorr(RandomIntercept2) 

RandomEffectsUCM2 <- as.numeric(VarCorr(RandomIntercept2)[,1]) 

RandomEffectsUCM2 

ICC_UCM2 <- 

RandomEffectsUCM2[1]/(RandomEffectsUCM2[1]+RandomEffectsUCM2[2]) 

ICC_UCM2 

 

#MLM2 task as fixed effect 

timeRI2 <- lme(fixed = TimeTravelled ~ 1 + Trial, 

random = ~ 1 |ID, 

data=ldat, 

na.action = na.exclude, method = 'ML', control='ctrl') 

summary(timeRI2) 

intervals(timeRI2) 

 

#MLM2 task as fixed adn random effect 

timeRS2 <- lme(fixed = TimeTravelled ~ 1 + Trial, 

random = ~1 + Trial |ID, 

data=ldat, 

na.action = na.exclude, method = 'ML', 

control=lmeControl(opt="optim")) 

summary(timeRS2) 

#intervals(timeRS2) 

anova(timeRI2,timeRS2) 

#######################MLM2 Travel Time Conditional Growth Models------- 

mod2Final <- lme(fixed = TimeTravelled ~ 1 + Trial + FixationRateTime.c 

+ SMIndex.c + Strategy 
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+ FixationRateTime.c*SMIndex.c*Strategy, 

random= ~ 1 + Trial|ID, 

data=ldat, 

na.action = na.exclude, method = 'ML', 

control=lmeControl(opt="optim")) 

summary(mod2Final) 

intervals(mod2Final, which = 

"fixed") 

 

ldat$fittedmlm2 <- fitted.values(mod2Final) 

 

 

#######################MLM1 Path Deviation Summary of All Models------- 

#1summary of all models 

summary(RandomIntercept) 

summary(timeRI) 

summary(timeRS) 

summary(mod1Final) 

 

 
#1variance stats in all models 

VarCorr(RandomIntercept) 

VarCorr(timeRI) 

VarCorr(timeRS) 

VarCorr(mod1Final) 

 

#1summary of variance deviance between models 

anova(RandomIntercept,timeRI,timeRS) 

 

#MLM1 marginal and conditional R^2 

round(r.squaredGLMM(RandomIntercept, round), digits = 3) 

round(r.squaredGLMM(timeRI), digits = 3) 

round(r.squaredGLMM(timeRS), digits = 3) 

round(r.squaredGLMM(mod1Final), digits = 3) 

 

#######################MLM2 Travel Time Summary of All Models------- 

#2summary of all models 

summary(RandomIntercept2) 

summary(timeRI2) 

summary(timeRS2) 

summary(mod2Final) 

 

 
#1variance stats in all models 

VarCorr(RandomIntercept2) 

VarCorr(timeRI2) 

VarCorr(timeRS2) 

VarCorr(mod2Final) 
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#1summary of variance deviance between models 

anova(RandomIntercept2,timeRI2,timeRS2) 

 

#MLM1 marginal and conditional R^2 

round(r.squaredGLMM(RandomIntercept2, round), digits = 3) 

round(r.squaredGLMM(timeRI2), digits = 3) 

round(r.squaredGLMM(timeRS2), digits = 3) 

round(r.squaredGLMM(mod2Final), digits = 3) 

 

#######################Output MLM1 Path Deviation Result Tables------- 

stargazer(RandomIntercept, type = "text",digits=3, 

out="output/regression/Path/RandomIntercept.txt") 

stargazer(timeRI, type = "text",digits=3, 

out="output/regression/Path/timeRI.txt") 

stargazer(timeRS, type = "text",digits=3, 

out="output/regression/Path/timeRS.txt") 

stargazer(mod1Final, type = "text",digits=3, 

out="output/regression/Path/mod1Final.txt") 

tab_model(RandomIntercept,timeRI,timeRS,mod1Final, file 

= "output/regression/Path/outcome1PathDev.doc") 

 

#######################Output MLM2 Travel Time Result Tables------

- stargazer(RandomIntercept2, type = "text",digits=3, 

out="output/regression/Time/RandomIntercept2.txt") 

stargazer(timeRI2, type = "text",digits=3, 

out="output/regression/Time/timeRI2.txt") 

stargazer(timeRS2, type = "text",digits=3, 

out="output/regression/Time/timeRS2.txt")  

stargazer(mod2Final, type = "text",digits=3, 

out="output/regression/Time/mod2Final.txt") 

tab_model(RandomIntercept2,timeRI2,timeRS2,mod2Final, file 

= "output/regression/Time/outcome2Time.doc") 

 

#######################Reshape data and Sample Descriptive Statistics 

Tables------- 

wdat <- reshape(data=ldat,idvar="ID", 

timevar = "Trial", 

direction="wide") 

subldat <- subset(ldat, select = c("SBSOD", 

 
"RecognitionRaw","PlacementRaw","SketchMapRaw",   "MapStrategy", 

"PTT"

, 

"DistanceTravelled","TimeTravelled","c.error","TrialSpeed", 

 
"DevDis","FixationRateTime","FixationRateDistance", 

"AvgPointingError", 

 
"SMIndex","PathEucDev","Avg.DistancetoGoal","MeanFixation","MeanTime")) 
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subwdat <- reshape(data=subldat,idvar="ID", 

timevar = "Trial", 

direction="wide") 

 
library(apaTables) 

apa.cor.table(subldat, filename="Output/Correlation/CorTable1.doc") 

apa.cor.table(subldat) 

 
tab1sw <- print(CreateTableOne(data = subldat)) 

#write.table(tab1sw, file = "output/Summary/Wide/tab1w.txt", sep = ",", 

quote = FALSE, row.names = T) 

#tabs2w <- descr(subwdat) 

#write.table(tab2,file="output/Summary/Wide/tabs2w.csv",sep=",", 

col.names= T) 

 

#######################Boxplot by group Figure in Results Section------

- 

 

 

My_Theme2 = theme( 

axis.title.x = element_blank(), 

axis.text.x = element_blank(), 

axis.title.y = element_text(size = 10), 

axis.text.y = element_text(size = 10)) 

 

b1s <- ggplot(ldat, aes(x="Group", y=PathEucDev, fill=Sex)) 

+ geom_boxplot() 

b1s <- b1s + labs(y="Path Deviation (m)") + scale_fill_brewer(palette = 

"Pastel2") + My_Theme2 

 
b4s <- ggplot(ldat, aes(x="Group", y=AvgTimeTravelled, fill=Sex)) 

+ geom_boxplot() 

b4s <- b4s + labs(y="Travel Time (s)") + scale_fill_brewer(palette = 

"Pastel2") + My_Theme2 

 

b2s <- ggplot(ldat, aes(x="Group", y=MeanFixation, fill=Sex)) + 

geom_boxplot() 

b2s <- b2s + labs(y="Fixation Rate (count/s)") + 

scale_fill_brewer(palette = "Pastel1") + My_Theme2 

 
b3s <- ggplot(ldat, aes(x="Group", y=SpatialMemory, fill=Sex)) + 

geom_boxplot() 

b3s <- b3s + labs(y="Spatial Memory") + scale_fill_brewer(palette = 

"Pastel1") + My_Theme2 

 
b1 <- ggplot(ldat, aes(x="Group", y=PathEucDev, fill=Strategy)) + 

geom_boxplot() 

b1 <- b1 + labs(y="Path Deviation (m)") + scale_fill_brewer(palette = 

"Pastel2") + My_Theme2 
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b2 <- ggplot(ldat, aes(x="Group", y=AvgTimeTravelled, fill=Strategy)) + 

geom_boxplot() 

b2 <- b2 + labs(y="Travel Time (s)") + scale_fill_brewer(palette = 

"Pastel2") + My_Theme2 

 
b3 <- ggplot(ldat, aes(x="Group", y=MeanFixation, fill=Strategy)) + 

geom_boxplot() 

b3 <- b3 + labs(y="Fixation Rate (count/s)") + scale_fill_brewer(palette 

= "Pastel1") + My_Theme2 

 
b4 <- ggplot(ldat, aes(x="Group", y=SpatialMemory, fill=Strategy)) + 

geom_boxplot() 

b4 <- b4 + labs(y="Spatial Memory") + scale_fill_brewer(palette = 

"Pastel1") + My_Theme2 

 

v1 <- ggplot(ldat, aes(x="Group", y=PathEucDev, fill=VR)) 

+ geom_boxplot() 

v1 <- v1 + labs(y="Path Deviation (m)") + scale_fill_brewer(palette = 

"Pastel2") + My_Theme2 

 

 

v2 <- ggplot(ldat, aes(x="Group", y=AvgTimeTravelled, fill=VR)) 

+ geom_boxplot() 

v2 <- v2 + labs(y="Travel Time (s)") + scale_fill_brewer(palette = 

"Pastel2")  + My_Theme2 

 

v3 <- ggplot(ldat, aes(x="Group", y=MeanFixation, fill=VR)) 

+ geom_boxplot() 

v3 <- v3 + labs(y="Fixation Rate (count/s)") + scale_fill_brewer(palette 

= "Pastel1") + My_Theme2 

 
v4 <- ggplot(ldat, aes(x="Group", y=SpatialMemory, fill=VR)) + 

geom_boxplot() 

v4 <- v4 + labs(y="Spatial Memory") + scale_fill_brewer(palette = 

"Pastel1")  + My_Theme2 

 

#output 

grid.arrange(b1s,b1,v1,b4s,b2,v2,b2s,b3,v3,b3s,b4,v4,   ncol=2) 

#pdf("output/VariablePlots/Boxplots.pdf") 

#grid.arrange(b1s,b1,v1,b4s,b2,v2,b2s,b3,v3,b3s,b4,v4,   ncol=2) 

#dev.off() 

 
#######################Trial Line graph Figure in Results Section------- 

My_Theme3  = theme( 

axis.title.x = element_text(size = 10), 

axis.text.x = element_text(size = 12), 

axis.title.y = element_text(size = 10), 

axis.text.y = element_text(size = 12)) 
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q <- ggplot(data=tdat, aes(x=Trial, y=MmeanFixation)) + 

geom_line(linetype="solid", color="steelblue1", size=1.2)+ 

geom_point() + My_Theme3 + labs(y = "Mean Fixation Rate (count/s)") 

q <- q + scale_x_discrete(name ="Trial", 

 
limits=c("1","2","3","4","5","6","7","8","9","10","11","12")) 

q2 <- ggplot(data=tdat, aes(x=Trial, y=MmeanPath)) + 

geom_line(linetype="solid", color="steelblue3", size=1.2)+ 

geom_point() + My_Theme3 + labs(y = "Mean Path Deviation (m)") 

q2 <- q2 + scale_x_discrete(name ="Trial", 

 
limits=c("1","2","3","4","5","6","7","8","9","10","11","12")) 

q3 <- ggplot(data=tdat, aes(x=Trial, y=MmeanTime)) + 

geom_line(linetype="solid", color="steelblue2", size=1.2)+ 

geom_point() + My_Theme3 + labs(y = "Travel Time (s)") 

q3 <- q3 + scale_x_discrete(name ="Trial", 

 
limits=c("1","2","3","4","5","6","7","8","9","10","11","12")) 

#output 

grid.arrange(q2,q3,q,ncol = 1) 

#pdf("output/VariablePlots/Line.pdf") 

#grid.arrange(q2,q3,q,ncol = 1) 

#dev.off() 

 

#######################Bar graphs in Results Section------

- My_Theme = theme( 

axis.title.x = element_text(size = 16), 

axis.text.x = element_text(size = 12), 

axis.title.y = element_text(size = 16), 

axis.text.y = element_text(size = 14)) 

 

#fixation time 

ldat_summary <- ldat %>% # the names of the new data frame and the data 

frame to be summarised 

group_by(RouteCode) %>% # the grouping variable 

summarise(mean_PL = mean(FixationRateTime, na.rm=TRUE), # 

calculates the mean of each group 

sd_PL = sd(FixationRateTime, na.rm=TRUE), # calculates 

the standard deviation of each group 

n_PL = n(), # calculates the sample size per group 

SE_PL = sd(FixationRateTime, na.rm=TRUE)/sqrt(n())) 

# 

calculates the standard error of each group 

 
p <- ggplot(ldat_summary, aes(RouteCode, mean_PL, fill = RouteCode)) + 

geom_col() + 

geom_errorbar(aes(ymin = mean_PL - SE_PL, ymax = mean_PL + SE_PL, 

width = 0.1)) 
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p  <-  p  +  scale_fill_brewer(palette  =  "Pastel1")+ 

labs(y="Fixation Rate (count/s)", x = "Route Type") + 

My_Theme 

 

#path deviation 

ldat_summary <- ldat %>% # the names of the new data frame and the data 

frame to be summarised 

group_by(RouteCode) %>% # the grouping variable    

summarise(mean_PL = mean(PathEucDev, na.rm=TRUE), # calculates 

the 

mean of each group 

sd_PL = sd(PathEucDev, na.rm=TRUE), # calculates the 

standard deviation of each group 

n_PL = n(), # calculates the sample size per group 

SE_PL = sd(PathEucDev, na.rm=TRUE)/sqrt(n())) # calculates 

the standard error of each group 

 
p2 <- ggplot(ldat_summary, aes(RouteCode, mean_PL, fill = RouteCode)) + 

geom_col() + 

geom_errorbar(aes(ymin = mean_PL - SE_PL, ymax = mean_PL + SE_PL, 

width = 0.1)) 

p2 <- p2 + scale_fill_brewer(palette = "Pastel1")+ 

labs(y="Path Deviation (m)", x = "Route Type") + 

My_Theme 

 
#time travelled 

ldat_summary <- ldat %>% # the names of the new data frame and the data 

frame to be summarised 

group_by(RouteCode) %>% # the grouping variable 

summarise(mean_PL = mean(TimeTravelled, na.rm=TRUE), # calculates 

the 

mean of each group 

sd_PL = sd(TimeTravelled, na.rm=TRUE), # calculates 

the standard deviation of each group 

n_PL = n(), # calculates the sample size per 

group SE_PL = sd(TimeTravelled, 

na.rm=TRUE)/sqrt(n())) # 

calculates the standard error of each group 

 
p3 <- ggplot(ldat_summary, aes(RouteCode, mean_PL, fill = RouteCode)) + 

geom_col() + 

geom_errorbar(aes(ymin = mean_PL - SE_PL, ymax = mean_PL + 

SE_PL, width = 0.1)) 

p3 <- p3 + scale_fill_brewer(palette = 

"Pastel1")+ labs(y="Time (s)", x = "Route 

Type") + My_Theme 

 

#time travelled 

ldat_summary <- ldat %>% # the names of the new data frame and the data 
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frame to be summarised 

group_by(RouteCode) %>% # the grouping variable 

summarise(mean_PL = mean(RouteFamiliarity, na.rm=TRUE), # 

calculates the mean of each group 

sd_PL = sd(RouteFamiliarity, na.rm=TRUE), # calculates the 

standard deviation of each group 

n_PL = n(), # calculates the sample size per group 

SE_PL = sd(RouteFamiliarity, na.rm=TRUE)/sqrt(n())) 

# 

calculates the standard error of each group 

 
p4 <- ggplot(ldat_summary, aes(RouteCode, mean_PL, fill = RouteCode)) + 

geom_col() + 

geom_errorbar(aes(ymin = mean_PL - SE_PL, ymax = mean_PL + SE_PL, 

width = 0.1)) 

p4 <- p4 + scale_fill_brewer(palette = "Pastel1")+ 

labs(y="Pair Recognition Score", x = "Route Type") + My_Theme 

 
#output 

grid.arrange(p,p2,p3,p4,ncol = 2) 

#pdf("output/VariablePlots/Bargraphs.pdf") 

#grid.arrange(p,p2,p3,p4,ncol = 2) 

#dev.off() 

 
#######################Graph of individual performance in Results 

Section------- 

#pdf("output/VariablePlots/lineIDgraphs.pdf") 

#plotting path deviation for individuals over trial 

ggplot(data = ldat, aes(x = Trial, y = PathEucDev, group = ID, color=ID, 

alpha=0.8)) + 

ggtitle("Variation in Path Deviation for individuals") + 

geom_line() + 

xlab("Trial Number") + 

ylab("Path Deviation (m)") + ylim(-100,2000) + 

scale_x_continuous(breaks=seq(1,12,by=1)) 

 

#plotting time travelled for individuals over trial 

ggplot(data = ldat, aes(x = Trial, y = TimeTravelled, group = ID, 

color=ID, alpha=0.8)) + 

ggtitle("Variation in Time travelled for individuals") + 

geom_line() + 

xlab("Trial Number") + 

ylab("Travel Time (s)") + ylim(-5,400) + 

scale_x_continuous(breaks=seq(1,12,by=1)) 

 

#plotting fixation rate for individuals over trial 

ggplot(data = ldat, aes(x = Trial, y = TimeTravelled, group = ID, 

color=ID, alpha=0.8)) + 

ggtitle("Variation in Fixation rate for individuals") + 
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geom_line() + 

xlab("Trial Number") + 

ylab("Fixation Rate (count/s)") + ylim(-5,400) + 

scale_x_continuous(breaks=seq(1,12,by=1)) 

#dev.off() 

 
#######################Regression Model Assumptions------- 

#outcome1: path deviation 

#pdf("output/Regression/Path/PathDx.pdf") 

plot(modRC) 

hist(modRC$residuals) 

qqnorm(modRC)  

plot_model(modRC, type='diag') 

#dev.off() 

 
#outcome2: travel time 

#pdf("output/Regression/Time/TimeDx.pdf") 

plot(modRC2) 

qqnorm(modRC2) 

hist(modRC2$residuals) 

plot_model(modRC2, type='diag') 

#dev.off() 

 
#######################Outcome1: Path Deviation MLM Model Graphs------- 

#pdf("output/Regression/Path/Latticeplots.pdf") 

xyplot(PathEucDev ~ FixationRateTime| ID, data=ldat, type = c("p","r")) 

xyplot(PathEucDev ~ FixationRateTime| RouteCode, data=ldat, type = 

c("p","r")) 

xyplot(PathEucDev ~ SMIndex| RouteCode, data=ldat, type = c("p","r")) 

#dev.off() 

 
# The following graphs were created using the scripts made available 

here: 

# https://quantdev.ssri.psu.edu/tutorials/growth-modeling-basics 

 
#plotting PREDICTED intraindividual change 

ldat$pred_um <- predict(um_fit) 

ldat$resid_um <- residuals(um_fit) 

 

 

c1 <- coeffs(um_fit) 

 
pg1 <- ggplot(data = ldat, aes(x = Trial, y = pred_um, group = IDN)) + 

ggtitle("Outcome 1. Unconditional Means Model 1") + 

geom_line(size=0.5) + 

theme(axis.text=element_text(size=12), 

axis.title=element_text(size=12)) + 

xlab("Trial") + 

ylab("PREDICTED Path Deviation") + ylim(0,1000) + 
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scale_x_continuous(breaks=seq(1,12,by=1)) 

 

#plotting RESIDUAL intraindividual change------- 

ggplot(data = ldat, aes(x = Trial, y = resid_um, group = ID)) + 

ggtitle("Outcome 1. Unconditional Means Model") + 

# geom_point() + 

theme(axis.text=element_text(size=12), 

axis.title=element_text(size=12)) + 

geom_line() + 

xlab("Trial") + 

ylab("RESIDUAL Path Deviation") 

scale_x_continuous(breaks=seq(1,12,by=1)) 

 
#overlay PROTOTYPE (average individual)------- 

#create the function for the prototype 

fun_um <- function(x) { 

c1 + 0*x 

} 

#add the prototype as an additional layer 

pg2 <- ggplot(data = ldat, aes(x = Trial, y = pred_um, group = ID)) + 

ggtitle("Outcome 1. Unconditional Means Model") + 

# geom_point() + 

theme(axis.text=element_text(size=12), 

axis.title=element_text(size=12)) + 

geom_line() + 

xlab("Trial") + 

ylab("PREDICTED Path Deviation") + ylim(100,1000) + 

scale_x_continuous(breaks=seq(1,12,by=1)) + 

stat_function(fun=fun_um, color="red", size = 1) 

 
#Linear Growth Model - Fixed slope------- 

summary(fl_ri_fit) 

c2 <- coeffs(fl_ri_fit)[c(0,1)] 

c2b <- coeffs(fl_ri_fit)[c(2,0)] 

#Place individual predictions and residuals into the dataframe 

ldat$pred_fl_ri <- predict(fl_ri_fit) 

ldat$resid_fl_ri <- residuals(fl_ri_fit) 

#Create a function for the prototype 

fun_fl_ri <- function(x) {c2 + c2b*x} 
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#plotting PREDICTED intraindividual change 

pg3 <- ggplot(data = ldat, aes(x = Trial, y = pred_fl_ri, group = ID)) + 

ggtitle("Linear Growth Fixed Slope") + 

theme(axis.text=element_text(size=12), 

axis.title=element_text(size=12)) + 

# geom_point() + 

geom_line() + 

xlab("Trial") + 

ylab("PREDICTED Path Deviation") + ylim(-100,1000) + 

scale_x_continuous(breaks=seq(1,12,by=1)) + 

stat_function(fun=fun_fl_ri, color="red", size = 1) 

 
#plotting RESIDUAL intraindividual change 

pg4 <- ggplot(data = ldat, aes(x = Trial, y = resid_fl_ri, group = ID)) 

+ 

ggtitle("Linear Growth Residual Fixed Slope") + 

theme(axis.text=element_text(size=12), 

axis.title=element_text(size=12)) + 

# geom_point() + 

geom_line() + 

xlab("Trial") + 

ylab("RESIDUAL Path Deviation") + #ylim(0,100) + Note the removal of 

limits on y-axis 

scale_x_continuous(breaks=seq(1,12,by=1)) 

 

 

#Place individual predictions and residuals into the dataframe 

ldat$pred_fl_rl <- predict(fl_rl_fit) 

ldat$resid_fl_rl <- residuals(fl_rl_fit) 

c3 <- coeffs(fl_rl_fit)[c(0,1)] 

c3b <- coeffs(fl_rl_fit)[c(2,0)] 

#Create a function for the prototype 

fun_fl_rl <- function(x) { 

c3 + c3b*x 

} 

 
#plotting PREDICTED intraindividual change 

pg5 <- ggplot(data = ldat, aes(x = Trial, y = pred_fl_rl, group = ID)) + 

ggtitle("Linear Growth Random Slope") + 

theme(axis.text=element_text(size=12), 

axis.title=element_text(size=12)) + 

# geom_point() + 

geom_line() + 

xlab("Trial") + 

ylab("PREDICTED Distance Deviation") + ylim(-500,1000) + 

scale_x_continuous(breaks=seq(1,12,by=1)) + 

stat_function(fun=fun_fl_rl, color="red", size = 1) 
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#plotting RESIDUAL intraindividual change 

ggplot(data = ldat, aes(x = Trial, y = resid_fl_rl, group = ID)) + 

ggtitle("Outcome 1. Random Slope") + 

theme(axis.text=element_text(size=12), axis.title=element_text(size=12)) 

+ 

# geom_point() + 

geom_line() + 

xlab("Trial") + 

ylab("RESIDUAL Distance Deviation") + #ylim(0,100) + Note the removal 

of limits on y-axis 

scale_x_continuous(breaks=seq(1,12,by=1)) 

 
grid.arrange(pg2,pg3,pg4,pg5, ncol=2) 

pdf("output/Regression/Path/MLMplots.pdf") 

grid.arrange(pg2,pg3,pg4,pg5, ncol=2) 

dev.off() 

 

#######################Outcome2: Travel Time MLM Model Graphs------- 

#pdf("output/Regression/Time/Latticeplots.pdf") 

xyplot(TimeTravelled ~ FixationRateTime| ID, data=ldat, type = 

c("p","r")) 

xyplot(TimeTravelled ~ FixationRateTime| RouteCode, data=ldat, type = 

c("p","r")) 

xyplot(TimeTravelled ~ SMIndex| RouteCode, data=ldat, type = c("p","r")) 

#dev.off() 

 
#plotting PREDICTED intraindividual change 

ldat$pred_um2 <- predict(um_fit2) 

ldat$resid_um2 <- residuals(um_fit2) 

c12 <- coeffs(um_fit2) 

 
pg12 <- ggplot(data = ldat, aes(x = Trial, y = pred_um2, group = IDN)) + 

ggtitle("Outcome 2. Unconditional Means Model") + 

geom_line(size=0.5) + 

theme(axis.text=element_text(size=10), 

axis.title=element_text(size=10)) + 

xlab("Trial") + 

ylab("PREDICTED Time") + ylim(0,250) + 

scale_x_continuous(breaks=seq(1,12,by=1)) 

 
#plotting RESIDUAL intraindividual change------- 

ggplot(data = ldat, aes(x = Trial, y = resid_um2, group = ID)) + 

ggtitle("Outcome 2. Unconditional Means Model") + 

# geom_point() + 

theme(axis.text=element_text(size=10), 

axis.title=element_text(size=10)) + 

geom_line() + 

xlab("Trial") + 

ylab("RESIDUAL Time") 
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scale_x_continuous(breaks=seq(1,12,by=1)) 

 
#overlay PROTOTYPE (average individual)------- 

#create the function for the prototype 

fun_um2 <- function(x) { 

c12 + 0*x 

} 

#add the prototype as an additional layer 

pg22 <- ggplot(data = ldat, aes(x = Trial, y = pred_um2, group = ID)) + 

ggtitle("Outcome 2. Unconditional Means Model") + 

# geom_point() + 

theme(axis.text=element_text(size=10), 

axis.title=element_text(size=10)) + 

geom_line() + 

xlab("Trial") + 

ylab("PREDICTED Time") + ylim(0,100) + 

scale_x_continuous(breaks=seq(1,12,by=1)) + 

stat_function(fun=fun_um2, color="red", size = 2) 

 

#Linear Growth Model - Fixed slope------- 

summary(fl_ri_fit2) 

c22 <- coeffs(fl_ri_fit2)[c(0,1)] 

c2b2 <- coeffs(fl_ri_fit2)[c(2,0)] 

#Place individual predictions and residuals into the dataframe 

ldat$pred_fl_ri2 <- predict(fl_ri_fit2) 

ldat$resid_fl_ri2 <- residuals(fl_ri_fit2) 

#Create a function for the prototype 

fun_fl_ri2 <- function(x) { 

c22 + c2b2*x 

} 

 
#plotting PREDICTED intraindividual change 

pg32 <- ggplot(data = ldat, aes(x = Trial, y = pred_fl_ri2, group = ID)) 

+ 

ggtitle("Linear Growth Fixed Slope") + 

theme(axis.text=element_text(size=10), 

axis.title=element_text(size=10)) + 

# geom_point() + 

geom_line() + 

xlab("Trial") + 

ylab("PREDICTED Time") + ylim(-100,250) + 

scale_x_continuous(breaks=seq(1,12,by=1)) + 

stat_function(fun=fun_fl_ri2, color="red", size = 2) 

 
#plotting RESIDUAL intraindividual change 

pg42 <- ggplot(data = ldat, aes(x = Trial, y = resid_fl_ri2, group = 

ID)) + 

ggtitle("Linear Growth Residual Fixed Slope") + 

theme(axis.text=element_text(size=10), 
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axis.title=element_text(size=10)) + 

# geom_point() + 

geom_line() + 

xlab("Trial") + 

ylab("RESIDUAL  Time") + 

scale_x_continuous(breaks=seq(1,12,by=1)) 

 

 

#Place individual predictions and residuals into the dataframe 

ldat$pred_fl_rl2 <- predict(fl_rl_fit2) 

ldat$resid_fl_rl2 <- residuals(fl_rl_fit2) 

c32 <- coeffs(fl_rl_fit2)[c(0,1)] 

c3b2 <- coeffs(fl_rl_fit2)[c(2,0)] 

#Create a function for the prototype 

fun_fl_rl2 <- function(x) { 

c32 + c3b2*x 

} 

 
#plotting PREDICTED intraindividual change 

pg52 <- ggplot(data = ldat, aes(x = Trial, y = pred_fl_rl2, group = ID)) 

+ 

ggtitle("Linear Growth Random Slope") + 

theme(axis.text=element_text(size=10), 

axis.title=element_text(size=10)) + 

# geom_point() + 

geom_line() + 

xlab("Trial") + 

ylab("PREDICTED Time") + ylim(0,250) + 

scale_x_continuous(breaks=seq(1,12,by=1)) + 

stat_function(fun=fun_fl_rl2, color="red", size = 1) 

 
#plotting RESIDUAL intraindividual change 

ggplot(data = ldat, aes(x = Trial, y = resid_fl_rl2, group = ID)) + 

ggtitle("Outcome 2. Random Slope") + 

theme(axis.text=element_text(size=10), 

axis.title=element_text(size=10)) + 

# geom_point() + 

geom_line() + 

xlab("Trial") + 

ylab("RESIDUAL Path") + #ylim(0,100) + Note the removal of limits on 

y-axis 

scale_x_continuous(breaks=seq(1,12,by=1)) 

 
grid.arrange(pg22,pg32,pg42,pg52, ncol=2) 

#pdf("output/Regression/Time/MLMplots.pdf") 

#grid.arrange(pg22,pg32,pg42,pg52, ncol=2) 

#dev.off() 
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################################################# 

library(MASS) 

#Create a custom color scale 

library(RColorBrewer) 

myColors <- brewer.pal(4,"Paired") 

names(myColors) <- levels(ldat$Strategy) 

colScale <- scale_colour_manual(name = "Strategy",values = myColors) 

 
######################################### 

 

 

scatter <- ggplot(ldat, aes(FixationRateTime,PathEucDev, colour = 

Strategy, alpha = 0.1)) 

scatter <- scatter + geom_point(aes(shape = Strategy), position = 

"jitter", size = 2) + 

geom_smooth(method = "rlm",aes(Strategy = "Blue"), alpha = 0.1) + 

scale_alpha(guide = 'none') + colScale 

 

scatter + labs(x = "Fixation Rate (count/s)", y = "Path Deviation (m)") 

+ scale_x_continuous(limits = c(0, 20)) + 

scale_y_continuous(limits = c(0, 200)) 

s1 <- scatter + labs(x = "Fixation Rate (count/s)", y = "Path Deviation 

(m)") + scale_x_continuous(limits = c(0, 20)) + 

scale_y_continuous(limits = c(0, 200)) 

ggsave("scatterPathFixation.png") 

 

 
scatter <- ggplot(ldat, aes(SpatialMemory,PathEucDev, colour = Strategy, 

alpha = 0.1)) 

scatter <- scatter + geom_point(aes(shape = Strategy), position = 

"jitter", size = 2) + 

geom_smooth(method = "rlm",aes(Strategy = "Blue"), alpha = 0.1) + 

scale_alpha(guide = 'none') + colScale 

scatter + labs(x = "Spatial Memory (a.u)", y = "Path Deviation (m)") 

s2 <- scatter + labs(x = "Spatial Memory (a.u)", y = "Path Deviation 

(m)") 

ggsave("scatterPathMemory.png") 

 
################################# 

scatter <- ggplot(ldat, aes(FixationRateTime,TimeTravelled, colour = 

Strategy, alpha = 0.1)) 

scatter <- scatter + geom_point(aes(shape = Strategy), position = 

"jitter", size = 2) + 

geom_smooth(method = "rlm",aes(Strategy = "Blue"), alpha = 0.1) + 

scale_alpha(guide = 'none') + colScale 

scatter + labs(x = "Fixation Rate (count/s)", y = "Travel Time (s)") + 

scale_x_continuous(limits = c(0, 20)) + 

scale_y_continuous(limits = c(0, 200)) 

s3 <- scatter + labs(x = "Fixation Rate (count/s)", y = "Travel Time 
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(s)") + scale_x_continuous(limits = c(0, 20)) + 

scale_y_continuous(limits = c(0, 200)) 

ggsave("scatterTimeFixation.png") 

 

 
scatter <- ggplot(ldat, aes(SpatialMemory,TimeTravelled, colour = 

Strategy, alpha = 0.1)) 

scatter <- scatter + geom_point(aes(shape = Strategy), position = 

"jitter", size = 2) + 

geom_smooth(method = "rlm",aes(Strategy = "Blue"), alpha = 0.1) + 

scale_alpha(guide = 'none') +  colScale 

scatter + labs(x = "Spatial Memory (a.u)", y = "Path Deviation (m)") 

s4 <- scatter + labs(x = "Spatial Memory (a.u)", y = "Travel Time (s)") 

ggsave("scatterTimeMemory.png") 

 
grid.arrange(s2,s4, ncol=2) 

grid.arrange(s1,s3, ncol=2) 

 
grid.arrange(s1,s2,s3,s4, ncol=2) 

ggsave("scatterx4.png") 

 

##################################### 

scatter <- ggplot(ldat, aes(fittedmlm1,PathEucDev, colour = Strategy, 

alpha = 0.1)) 

scatter <- scatter + geom_point(aes(shape = Strategy), position = 

"jitter", size = 2) + 

geom_smooth(method = "rlm",aes(Strategy = "Blue"), alpha = 0.1) + 

scale_alpha(guide = 'none') + colScale 

scatter + labs(x = "Predicted Values", y = "Path Deviation (m)") 

s5 <- scatter + labs(x = "Predicted Values", y = "Path Deviation (m) ") 

+ scale_x_continuous(limits = c(250, 600)) + scale_y_continuous(limits 

= c(0, 2000)) 

s5 

ggsave("scatterFittedPath.png") 

 

scatter <- ggplot(ldat, aes(fittedmlm2,TimeTravelled, colour = Strategy, 

alpha = 0.1)) 

scatter <- scatter + geom_point(aes(shape = Strategy), position = 

"jitter", size = 2) + 

geom_smooth(method = "rlm",aes(Strategy = "Blue"), alpha = 0.1) + 

scale_alpha(guide = 'none') + colScale 

scatter + labs(x = "Predicted Values", y = "Time Travelled (s)") 

s6 <- scatter + labs(x = "Predicted Values", y = "Time Travelled (s) ") 

+ scale_x_continuous(limits = c(0, 80)) + scale_y_continuous(limits = 

c(0,200)) 

s6 

ggsave("scatterFittedTime.png") 

 

grid.arrange(s5,s6, ncol=2) 
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####################################### 

scatter <- ggplot(ldat, aes(SpatialMemory,FixationRateTime, colour = 

"Blue", alpha = 0.5)) 

scatter <- scatter + geom_point(aes(), position = "jitter", size = 2) + 

geom_smooth(method = "rlm",aes(), alpha = 0.1) + scale_alpha(guide = 

'none') + colScale 

scatter + labs(x = "Spatial Memory", y = "Fixation Rate") 

s7 <- scatter + labs(x = "Spatial Memory (a.u)", y = "Fixation Rate 

(count/s)") + scale_x_continuous(limits = c(0, 1)) + 

scale_y_continuous(limits  = c(0,15)) 

s7 

ggsave("scatterMemTime.png") 

 

 

####################################### 

 
# Change line color and fill color 

ggplot(ldat, aes(x=TrialSuccess))+ 

geom_histogram(color="darkblue",  fill="lightblue") 

 

 

ldat$TrialSuccess <- factor(ldat$TrialSuccess, levels = c(0,1), 

labels = c("fail", "success")) 

 

 

bp <- ggplot(data 

= ldat, aes(x = TrialSuccess, y = ..prop.., group = 2, 

alpha =0.1, size = 2)) + 

geom_bar( fill = "lightblue") + 

xlab("Navigation Outcome") + 

ylab("Relative Frequency") 

bp 

 
##################################################### 

mindat2 <- subset(ldat, subset = 

(Trial > 5)) 

 
mindat1 <- subset(ldat, subset = 

(Trial < 5.5)) 

 
table(mindat1$TrialSuccess) 

table(mindat2$TrialSuccess) 

 
bp1 <- ggplot(data 

= mindat1, aes(x = TrialSuccess, y = ..prop.., group = 2, 

alpha =0.1, size = 2)) + 

geom_bar( fill = "lightblue") + 

xlab("Navigation Outcome") + 
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ylab("Relative Frequency") 

bp1 

 
bp2 <- ggplot(data 

= mindat2, aes(x = TrialSuccess, y = ..prop.., group = 2, 

alpha =0.1, size = 2)) + 

geom_bar( fill = "dodgerblue3") + 

xlab("Navigation Outcome") + 

ylab("Relative Frequency") 

bp2 

 
############################################## 

 
t1 <- cbind(mindat1$TrialSuccess,mindat2$TrialSuccess) t1 

<- table(t1) 

chisq.test(t1)




