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ABSTRACT 
  

Cytometry of Reaction Rate Constant (CRRC) is a novel analytical technique which aims to study 

cellular heterogeneity based on the activity of enzymatic reactions. In the past, CRRC was able to assess 

cellular heterogeneity in vitro by investigating the activity of ABC-transporter enzymes. However, CRRC 

showed poor robustness to highly motile cells. Here, I report on the development of a workflow to make 

CRRC robust to cell motility. The novel workflow was used to develop a protocol for in vitro CRRC studies 

of aldehyde dehydrogenase 1A1 (ALDH1A1)-based cell heterogeneity. The data collected suggested a 

potential positive correlation between the activity of ALDH1A1 and the age of a cell line. Finally, I 

demonstrated the robustness of the new CRRC ALDH1A1 assay to a 20% change in the initial substrate 

concentration. Overall, these studies confirm the potential for CRRC to become a reliable analytical tool for 

studies of reaction-based cell heterogeneity.  
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Chapter 1 : INTRODUCTION 

1.1 CELL HETEROGENEITY IN CANCER BIOLOGY 
 

One of the biggest challenges for the treatment of cancer is the great variation of genetic and epigenetic 

behaviors among cancer cells (i.e. intratumor heterogeneity). There is evidence that intratumor heterogeneity 

is correlated with negative clinical repercussions, such as sampling issues (e.g. biopsies are not representative 

of the whole tumor), metastatic potential, increased angiogenic potential, and increased resistance to 

chemotherapy (1). As a ‘one size fits all’ therapeutic approach is no longer desirable, understanding the 

behaviors that govern intratumor heterogeneity can favor the development of better tools for the diagnosis, 

prognosis, and prediction of a variety of tumors, as well as support the discovery of new, ad hoc therapeutics. 

 

1.1.1 The origin of intra-tumor heterogeneity: the stochastic and hierarchical 

models 
 

So far, a stochastic and a hierarchical model have been proposed to explain the origin of intratumor 

heterogeneity. The stochastic model (or clonal evolution model) is based on the concept of natural selection 

and sustains that, over time, the onset of advantageous mutations in distinct subpopulations of tumor cells will 

allow such subpopulations to prevail over others (2-4). On the contrary, the hierarchical model argues that 

tumors are intrinsically composed of two major types of cells: cancer stem cells (CSC) and bulk-tumor cells 

(5). Remarkably, only CSCs possess the ability to initiate and maintain carcinogenesis, as well as cause cancer 

relapse. The hierarchical model proposes a hierarchical organization for CSCs that is similar to the stem cell 

model. In summary, the main difference between these two proposed models lies in the interpretation of the 

probability of each cell to initiate, maintain and sustain carcinogenesis. This probability is equal for all tumor 

cells in the stochastic model, whereas is higher for a particular subset of cells in the hierarchical model (4). It 
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is believed that they both offer a reasonable explanation for the origin of intratumor heterogeneity. As 

explained by Prasetyanti and Medema, the hierarchy proposed by the CSC model implies the concept of cell 

plasticity (2, 5, 6). In fact, under certain conditions, bulk tumor cells can acquire CSC properties and establish 

a new CSC clone. This view merges both the hierarchical and stochastic models (2).  

 

1.2 INTRATUMOR HETEROGENEITY AND CLINICAL 

CHEMORESISTANCE  
 

Currently, the administration of chemotherapeutic agents, which aim to target rapidly dividing cells, 

represents the standard clinical regimen to treat tumors (7). However, it was demonstrated that the presence 

of CSCs within a tumor can induce clinical chemoresistance (i.e. the ability of a tumor to avoid the effects of 

chemotherapeutic drugs) and eventually result in cancer relapse (8). Accordingly, standard chemotherapy is 

expected to be effective only for a percentage of individuals, while patients with chemoresistant tumors are 

often associated with a higher cancer recurrence and shorter life expectancy (8).  

Alternative treatments to classic chemotherapy exist (e.g. immunotherapy, heat ablation, cryotherapy, 

hormone therapy) but they only become feasible options after chemotherapy has been deemed a failure from 

a clinical perspective (figure 1.1). This usually requires the delivery of several rounds of chemotherapy, 

followed by a period where the insurgence of the tumor is monitored (7). Such an approach inevitably impacts 

patients’ quality of life by exposing them to the unpleasant side effects of chemotherapy.  

Importantly, it has been clinically proven that the size of the chemoresistant subpopulation of cells 

correlates with a tumor’s chemoresistance potential (7, 9). Therefore, the development of chemoresistance 

predictors (i.e. predictive biomarkers that forecast the chemoresistant behavior of a tumor based on the size 

of the chemoresistant subpopulation) could represent a valid alternative to the immediate delivery of standard 

chemotherapeutic drugs. Chemoresistance predictors are expected to revolutionize the field of precision 
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oncology by allowing the development of ad hoc treatment plans based on the characteristics of each patient’s 

tumor (i.e. personalized medicine) and, most importantly, without needing to experiment the efficacy of 

chemotherapy (figure 1.1).  

 

1.3 THE DEVELOPMENT OF CHEMORESISTANCE PREDICTORS  

 

1.3.1 Technical requirements for the development of chemoresistance predictors 
 

From a technical point of view, a chemoresistance predictor is designed by establishing a relation 

between a quantitative clinical parameter, which should serve as a proof of chemoresistance (e.g. time to 

tumor progression, overall survival, etc.), and a laboratory parameter (biochemical signatures of 

Figure 1-1 Comparison between the standard clinical treatment plan (left) and the 

proposed predictor-based treatment plan (right) for cancer. Both plans start with a 

diagnosis step. The main difference between the two plans lies in the evaluation of 

chemoresistance. In the current regimen, the evaluation occurs after multiple rounds 

of chemotherapy (trial and error approach). In the predictor-based approach, the 

evaluation occurs prior to the administration of the first round of therapy. Retrieved 

from: Bleker de Oliveira M, Koshkin V, Liu G, Krylov SN. Analytical Challenges in 

Development of Chemoresistance Predictors for Precision Oncology. Anal. Chem. 09 

2020;92(18):12101-12110. doi:10.1021/acs.analchem.0c02644.© 
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chemoresistance, e.g. ALDH, CYP450, ERCC1, MDR, etc) (figure 1.2) (7). It is important to note that the 

laboratory parameter should be assessed prior to the administration of the first round of therapy, as drug-

sensitive cells can acquire CSC properties (including resistance to therapy) upon exposure to 

chemotherapeutics (e.g. acquired chemoresistance) (10). In order to develop reliable chemoresistance 

predictors, two fundamental requirements must be satisfied. First, there must be a strong biological correlation 

between the clinical end point and the lab parameter. Second, the analytical methods utilized to analyze the 

laboratory parameters must meet the conditions of accuracy (i.e. degree of variability between the measured 

parameter and its conventional true value), precision (i.e. degree of variability between multiple measurements 

of a single parameter within a homogeneous sample,) robustness (i.e. ability to remain unaffected by small, 

intentional variations in specific parameters) and ruggedness (i.e. the degree of reproducibility of test results 

in different conditions, such as different labs or different operators) as set by regulatory agencies (7). The 

appropriateness of currently available analytical techniques in measuring laboratory parameters will be 

Figure 1-2 Representation of a chemoresistance predictor. The figure above emphasizes 

the need for a clear correlation between a clinical parameter (e.g. time to tumor 

progression, overall survival, etc.) and a laboratory parameter (e.g. biochemical 

signature of chemoresistance). Adapted from: Bleker de Oliveira M, Koshkin V, Liu G, 

Krylov SN. Analytical Challenges in Development of Chemoresistance Predictors for 

Precision Oncology. Anal. Chem. 09 2020;92(18):12101-12110. 

doi:10.1021/acs.analchem.0c02644.© 
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addressed in the following paragraphs. 

 

1.3.2 Categories of chemoresistance predictors 
 

In this work, I will follow the classification of chemoresistance predictors described by the Krylov lab 

in Bleker-de-Oliveira et al. (7). Importantly, the different levels of classification are suggested based on the 

nature of the lab parameter. 

First of all, we distinguish between chemoresistance predictors that are developed based on: 1) whole-

tumor properties obtained with in situ imaging; for example, the use of ultrasound or magnetic resonance 

imaging to quantify tumor size, vascularization or oxygenation levels, and 2) biochemical analysis of tumor 

specimens; for example, genetic mutations, quantities of molecules and rates of relevant biological 

reactions (7). Importantly, all clinical useful chemoresistance predictors belong to the second group (figure 

1.3). Therefore, our discussion will focus on describing the different types of biochemical chemoresistance 

predictors. There exist two classes of biochemical chemoresistance predictors (figure 1.3). The first class is 

based on genomic abnormalities (e.g. mutations, single-nucleotide polymorphisms, chromosome deletion or 

translocation) (7). For example, HER2/neu genes in breast cancer, BRC-ABL fusion protein in chronic 

Figure 1-3 Different categories of chemoresistance predictors. The figure shows the categorization of 

chemoresistance predictors. Different categories are suggested based on the choice of the lab parameter upon which 

the predictor is built. See text for more details on lab parameters. The recommended path is displayed in green. 
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myeloid leukemia, c-KIT mutations in gastrointestinal stromal tumors and EGFR1 mutations in non-small cell 

lung cancer and colorectal cancer are all examples of genomic-based chemoresistance predictors that were 

proven to be clinically useful (11). Usually, genomic-based chemoresistance predictors are constructed based 

on a dichotomized approach. In short, genomic abnormalities are detected through DNA sequencing or 

Fluorescence In-Situ Hybridization (FISH) techniques. By using this approach, predictors can be developed 

with very low uncertainty as a single abnormality can only be deemed as either present or absent (7). 

Interestingly, despite the use of dichotomized lab parameters (e.g. presence or absence of a mutation) being 

quite advantageous, there are very few genomic-based chemoresistance predictors (7, 11).The explanation for 

having such a low number of clinically useful chemoresistance predictors is simple: although genomic 

aberrations can be considered valid biochemical predictors of chemoresistance, they are only partially 

representative of the mechanisms responsible for chemoresistance. In fact, other biological phenomena (e.g. 

epigenetics, post-transcriptional and post-translational modifications, and enzymatic activities) are known to 

play a significant role in chemoresistance. Then, it is no surprise that the currently accepted genomic-based 

chemoresistance predictors can only be expected to be useful for a portion of all cancer patients (7).  

The second class of biochemical chemoresistance predictors is instead developed based on the 

quantities or rate of chemoresistance molecular signatures (figure 1.3). Importantly, this second class of 

predictors can be further divided into serendipitous and rational predictors. Serendipitous chemoresistance 

predictors are usually developed with wide-screening techniques (e.g. microarrays, RNA-seq, RT-qPCR, 

ELISA), which can survey a large number of mRNAs, proteins, metabolites etc simultaneously. This approach 

identifies a set of recurrent molecular signatures whose quantities correlate with clinical end points. 

Eventually, the quantities of such recurrent molecular signatures are used as lab parameters, and a 

chemoresistance predictors is proposed (7). However, the major problem with the development of 

serendipitous chemoresistance predictors is the unreliability of such wide-screening techniques. As reported 

by Bleker-de Oliveira et al., wide-panel hybridization assays, nucleic acid sequencing, 2D gels and mass 
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spectrometry, which are typically used to propose serendipitous chemoresistance predictors, all suffer from 

poor performance (7, 12). For example, the semi-quantitative nature of microarrays (example of a wide-panel 

hybridization assay) does not allow for precise, accurate, robust and rugged measurements (13). RT-qPCR 

and ELISA, which both offer quantitative analysis, are highly error prone due to the need for molecule 

extraction and enzymatic amplification-based detection, respectively (14-16). Importantly, such techniques 

can still be useful to perform preliminary screening of recurrent molecular signatures of chemoresistance. 

However, I would like to re-emphasize that the validation of putative molecular signatures, and the 

development of chemoresistance predictors, require the use of an accurate, precise, robust, and rugged 

technique. Despite the limitations of wide-screening techniques, several chemoresistance predictors have been 

proposed following the serendipitous approach. For example, Smith et al., by using an antibody microarray 

approach, have correlated an expression decrease of cyclin B1, cyclin D2, cytokeratin 18 and p-ERK with 

doxorubicin resistance in breast cancer (17). Another study by Rahbar et al. used tandem Mass Spectroscopy 

to find that 15 proteins were differentially expressed in mitoxantrone-resistant cell lines of breast cancer (18). 

To the best of our knowledge, and most likely due to the inappropriateness of the available analytical 

techniques, none of the chemoresistance predictors developed with a serendipitous approach have proven to 

be clinically useful (7).   

On the other hand, rational chemoresistance predictors can represent a valid alternative to the 

serendipitous approach (figure 1.3). A rational approach, instead of using wide-screening techniques to 

identify new molecular signatures of chemoresistance, focuses on the development of predictors based on the 

study of three intracellular molecular mechanisms which are known to be the main drive of chemoresistance: 

1) drug extrusion; the chemotherapeutic drug is expelled from the cell before it can exert its cytotoxic effects, 

2) drug metabolism; the drug is metabolized by specific enzymes, and 3) DNA-repair; the DNA damage 

induced by the drug is repaired by specific enzymes and the cancer cell survives. Importantly, because such 

mechanisms are driven by enzymatic processes (e.g. ABC-transporters, cytochrome P450, Aldehyde 
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dehydrogenases, etc.), the activity of such enzymes could serve as lab parameter for the development of 

rational chemoresistance predictors. From this point, I will focus only on aspects that pertain to development 

of rational chemoresistance predictors based on enzymatic reactions that drive the chemoresistant mechanisms 

of drug extrusion, drug metabolism and DNA-repair.  

 

1.4 DIFFERENT APPROACHES FOR THE DEVELOPMENT OF RATIONAL 

CHEMORESISTANCE PREDICTORS 
 

In the following paragraphs, I will outline the most appropriate analytical approaches that should be 

taken while developing rational chemoresistance predictors (figure 1.4). Of note, there are currently no rational 

chemoresistance predictors which were proven to be clinically useful (7). 

1.4.1 Activity vs quantity of relevant molecular signatures 

 

Reliable rational chemoresistance predictors can only be developed if the chosen lab parameter is 

investigated efficiently. In general, lab parameters of enzymatic reactions (relevant to chemoresistance) can 

be assessed by: 1) measuring the abundance of the enzyme that drives the reaction, or 2) measuring the activity 

of the reaction of interest. Immunohistochemistry and hybridization assays are examples of technique that are 

currently used to measure the abundance of the transcriptome or the protein of interest. The problem with this 

approach is that the abundance of neither the gene product, nor the protein, can be used to reliably describe 

the rate of the enzymatic reaction. The reason for this is simple: measuring the quantity of transcriptomics or 

proteomics does not take into consideration post-transcriptional and/or post-translational modifications. On 

the contrary, measuring the activity of such reactions could offer a more robust evaluation of a particular lab 

parameter for the development of rational chemoresistant predictors. A discussion of two different approaches 

to assess the activity of relevant enzymes will follow on paragraph 1.4.3. 
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1.4.2 Single-cell vs population-based approaches 
 

 Before analyzing the different approaches for the evaluation of enzymatic reactions, it is important to 

explore the difference between single-cell and population-based analyses. To understand which approach is 

most suitable for the development of rational chemoresistant predictors, it is necessary to remember that the 

size of the resistant subpopulation correlates with the chemoresistant potential of a tumor (9). Population-

based assays characterize a sample based on average measurements, and thus, are very likely to ignore the 

presence of small subpopulations of cells with high chemoresistant activity (19). Therefore, population-based 

assays are inadequate to investigate intra-tumor heterogeneity (or cell heterogeneity in general) and should 

not be used to develop rational chemoresistant predictors. Single-cell approaches, instead, have the advantage 

to investigate the chosen lab parameter from the perspective of each single cell. A single-cell approach is then 

more suitable to measure cell heterogeneity and, in our case, detect the presence of rare subpopulations of 

cells with an elevated chemoresistant activity. Therefore, single-cell assays should be used while developing 

Figure 1-4 Different approaches for the development of chemoresistant 

predictors. The measurement of the laboratory parameter utilized to develop a 

chemoresistance predictor can follow different approaches. The recommended path is 

displayed in green. See text for a detailed explanation of each approach. 
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rational chemoresistance predictors. 

1.4.3 Kinetic vs non-kinetic approach 
 

 The activity of a relevant enzymatic reaction, at a single-cell level, can be characterized with either a 

non-kinetic or kinetic approach. For a particular reaction, the non-kinetic approach calculates its reaction rate 

and uses it to characterize the size of the chemoresistant subpopulation. Importantly, the reaction rate is 

calculated by measuring the amount of the reaction product at a specific time point. However, investigating 

product formation at a single snapshot in time represents a significant limitation of the non-kinetic approach. 

The reason for this is simple: information collected from a single time point is not representative of the intra-

cellular scenario, which is characterized by a myriad of reactions, including the reaction of interest, that take 

place over an extended period. Consequently, any attempt to measure the size of the chemoresistant 

subpopulation with non-kinetic approaches will lead to unreliable conclusions (20). Flow cytometry, which 

has been extensively used to assess the size of the chemoresistant subpopulation based on the activity of 

enzymatic reactions, follows a non -kinetic approach (21). 

 To measure the size of distinct subpopulations based on the activity of an enzymatic process, a true 

kinetic approach is needed (7). For a given reaction, a true kinetic approach aims to measure its rate constant 

(rather than its reaction rate), since rate constants are known to be the most reliable parameters to describe 

chemical reactions (22). In order to measure a rate constant, the amount of product formed must be 

continuously monitored over time with a time-lapse experiment. Such rate constants can then be used to assess 

the size of the chemoresistant subpopulations. Importantly, the size of the chemoresistant subpopulation can 

serve as lab parameter for the development of rational chemoresistance predictors.  
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1.5 CYTOMETRY OF REACTION RATE CONSTANT (CRRC) AS A 

NOVEL KINETIC TECHNIQUE TO ASSESS REACTION-BASED CELL 

HETEROGENEITY 
 

 The Krylov group has developed CRRC with the intent to provide a kinetic technique to assess 

reaction-based cell heterogeneity at a single cell level, in an accurate, robust, precise and rugged fashion. 

Because CRRC characterizes the size of cell subpopulations using rate constants, such a technique has the 

potential to be used for the development of rational chemoresistance predictors. 

 Figure 1.5 schematically represents the operational procedures of CRRC. First of all, a fluorogenic 

(i.e. an initially non-fluorescent substrate that, upon conversion to its product, will start emitting light) or 

fluorescent substrate is loaded into the cells through passive diffusion. As soon as the substrate is delivered, a 

time-lapse microscopy experiment will begin monitoring the changes in intracellular fluorescence intensity. 

Upon completion of the experiment (time might vary depending on the nature of the reaction observed), the 

images are processed, and, for each single cell, a kinetic trace is obtained. Kinetic traces are then used to 

determine a kinetic constant (through mathematical fitting), which will then be used to characterize each single 

cell. Finally, a kinetic histogram “number of cells vs kinetic constant” is produced.  

 

1.5.1 Application of CRRC to multi-drug resistance (MDR) studies 
 

Figure 1-5 Schematic representation of five major steps in the CRRC analysis: 1) a fluorogenic substrate is loaded 

into the cells, 2) sequential images are captured while the substrate is converted into a fluorescent product, 3) intracellular 

fluorescence intensity is calculated for each cell as a function of time, 4) a value of the reaction rate constants is 

determined for each cell, and 5) a kinetic histogram “number of cells vs. rate constant” is plotted to facilitate accurate 

analysis of tissue heterogeneity 
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 So far, the Krylov group has focused on using CRRC to study the activity of MDR enzymes. MDR 

enzymes belong to the ‘drug extrusion’ group of molecular mechanisms responsible for chemoresistance. 

Several studies have reported the contribution of MDR to chemoresistance in several types of tumors, such 

as: breast, lung, colorectal, and ovarian cancer (23-25). Therefore, the activity of MDR enzymes could be 

investigated and used to develop a reliable chemoresistance predictor.  

 Preliminary CRRC work on MDR enzymes showed that CRRC can be used to accurately and robustly 

evaluate cell heterogeneity based on the activity of MDR enzymes. Specifically, it was shown that the kinetic 

approach used by CRRC is more robust than conventional, non-kinetic approaches in evaluating cell 

heterogeneity (26).  

 

1.5.2 Current limitations of CRRC 
 

 During my undergraduate thesis at the Krylov lab, I focused on expanding the application of CRRC to 

study the activity of the aldehyde dehydrogenase 1A1 isoform (ALDH1A1), an enzyme belonging to the ‘drug 

degradation’ group of molecular signatures responsible for chemoresistance. Nevertheless, my work was 

brought to a stop as I discovered an inherent limitation of the current CRRC protocol, which is based on the 

assumption that cells maintain their original 2D set of coordinates during the course of the time-lapse 

experiment (i.e. cells are relatively immotile). Making this assumption is crucial to carry out our data analysis. 

In fact, to extract the kinetic profiles for each single cell, we identify individual cell contours from a single 

image obtained at the end of the time-lapse experiment. Therefore, the assumption is that such cell contours 

can be used for the whole stack of time-lapse images because each cell maintains its position during the 

experiment. As I started carrying out experiments with relatively motile cell lines (e.g. OVCAR3, TOV112D), 

I realized that CRRC was no longer accurate, or robust, in evaluating cell heterogeneity. Thus, it became clear 

that, to establish CRRC as a competitive tool to be used in both clinical and laboratory settings, a new CRRC 
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protocol had to be developed. Therefore, during my master’s studies, I focused on developing a novel protocol 

to make CRRC robust to cell movement. The following chapters will summarize the content of my work. 
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ABSTRACT 

Cytometry of Reaction Rate Constant (CRRC) is a method for studying cell-population heterogeneity 

using time-lapse fluorescence microscopy, which allows one to follow reaction kinetics in individual cells. 

The current and only CRRC workflow utilizes a single fluorescence image to manually identify cell contours 

which are then used to determine fluorescence intensity of individual cells in the entire time-stack of images. 

This workflow is only reliable if cells maintain their positions during the time-lapse measurements. If the cells 

move, the original cell contours become unsuitable for evaluating intracellular fluorescence and the CRRC 

experiment will be inaccurate. The requirement of invariant cell positions during a prolonged imaging is 

impossible to satisfy for motile cells. Here we report a CRRC workflow developed to be applicable to motile 

cells. The new workflow combines fluorescence microscopy with transmitted-light microscopy and utilizes a 

new automated tool for cell identification and tracking. A transmitted-light image is taken right before every 

fluorescence image to determine cell contours, and cell contours are tracked through the time-stack of 

transmitted-light images to account for cell movement. Each unique contour is used to determine fluorescence 

intensity of cells in the associated fluorescence image. Next, time dependencies of the intracellular 

fluorescence intensities are used to determine each cell’s rate constant and construct a kinetic histogram 

“number of cells vs rate constant.” The new workflow’s robustness to cell movement was confirmed 

experimentally by conducting a CRRC study of cross-membrane transport in motile cells. The new workflow 

makes CRRC applicable to a wide range of cell types and eliminates the influence of cell motility on the 

accuracy of results. Additionally, the workflow could potentially monitor kinetics of varying biological 

processes at the single-cell level for sizable cell populations. Although our workflow was designed ad hoc for 

CRRC, this cell-segmentation/cell-tracking strategy also represents an entry-level, user-friendly option for a 

variety of biological assays (i.e., migration, proliferation assays, etc.). Importantly, no prior knowledge of 

informatics (i.e., training a model for deep learning) is required. 
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2.1 INTRODUCTION 
 

Cancerous tissues are typically very heterogeneous; a single tumor may be composed of several distinct cell 

populations, for example, a population of bulk tumor cells and a population of tumor-initiating cells (27, 28). 

Quantitative characteristics of tumor composition, e.g. the size of the population of tumor-initiating cells, 

define its carcinogenic features, e.g. resistance to chemotherapy (29, 30). Fundamentally, tumor heterogeneity 

is caused by differences in molecular reactions between the cells. If a reaction is associated with tumor 

heterogeneity, it can serve as a basis for characterizing this heterogeneity (31). 

Cytometry is a general approach to study tumor heterogeneity by measuring fluorescence at the single-cell 

level. Cytometry of Reaction Rate Constant (CRRC) is a technique that follows reaction kinetics at the single-

cell level and presents the results as a kinetic histogram “number of cells versus rate constant” (22, 32-36). 

Rate constants are the most robust parameters to characterize chemical reactions, and, accordingly, CRRC can 

support robust and accurate characterization of reaction-based cell-population heterogeneity (26). CRRC may 

be potentially suitable for the development of reliable cancer biomarkers built upon such heterogeneity (7). 

CRRC is based on time-lapse fluorescence microscopy (figure 2.1). Conceptually, a fluorescent or 

fluorogenic substrate, which is involved in the reaction of interest, is loaded into the cells. Fluorescence images 

of a few hundred cells are taken progressively to monitor the change in intracellular fluorescence intensity. 

The images are processed to obtain a kinetic trace “fluorescence intensity versus time” for each cell, which is 

Figure 2-1 Schematic representation of five major steps in the CRRC analysis for a MDR experiment: 1) a fluorescent 

substrate involved in the reaction of interest is loaded into the cells, 2) a time-lapse microscopy experiment is initiated, and 

sequential images are captured to monitor the change in intracellular fluorescence intensity, 3) intracellular fluorescence intensity 

is calculated for each single cell as a function of time, 4) rate constants (k) are determined from reaction kinetics, i.e., dependencies 

of fluorescence intensity on time, and 5) a kinetic histogram “number of cells versus rate constant” is plotted to facilitate accurate 

analysis of tissue heterogeneity. 
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used to determine the rate constant for each cell. Finally, the data are presented as a kinetic histogram: “number 

of cells versus rate constant.” 

CRRC is still in its infancy. The current and only CRRC workflow, which was used for proving CRRC in-

principle, includes confocal fluorescence microscopy, and utilizes a single fluorescence image to manually 

identify cell contours (26). The cell contours identified from this single image are used to determine 

fluorescence intensity of individual cells in every other image of the large time-stack of images. This 

rudimentary workflow assumes that each cell retains its position in the image throughout the entire course of 

time-lapse measurements (26). Such an assumption is impossible to satisfy for motile cells which move 

significantly during the time-lapse measurements. Intracellular fluorescence intensity will become inaccurate 

as cells gradually deviate from the cell contours used to determine fluorescence intensity. Thus, making CRRC 

robust to cell movement requires a new workflow that identifies cell contours for each fluorescence image 

and tracks cell contours through the time-stack of images. 

Several biological assays, such as migration, proliferation, and cell-cycle assays, are based on single-cell 

time-lapse microscopy (37-40). The reliability of such assays largely depends on the assay’s ability to properly 

track each single cell over a stack of images. To serve this purpose, different tracking tools, which rely on 

automatic single-cell segmentation, have been developed (39, 40). It is noteworthy that most of these tracking 

tools are designed to track fluorescently labelled objects (41). However, certain applications (e.g. CRRC) 

require cell tracking to be performed on a set of non-fluorescence (unstained) images (e.g. bright-field (BF), 

differential interference contrast (DIC), and phase-contrast (PC) microscopy). In this case, all tools designed 

to track fluorescently labelled objects are expected to fail. To overcome this issue, advanced tracking tools 

based on deep learning have been proposed (42-46). Although they represent a valid solution for cell tracking 

of images of unstained cells, they are far from being user-friendly as they require the user to have a high level 

of expertise in informatics. Moreover, training a neural network requires a considerable amount of time. 

Therefore, both the complexity and time required to train a deep learning network can present an obstacle for 
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many users. For example, after completing our manuscript, we found a recent publication reporting the 

development of an automated cell-tracking tool reminiscent of the one proposed in our work but requiring a 

model to be trained (43). To the best of our knowledge, there is no workflow that allows tracking single cells 

through a stack of unstained images without relying on the complexity of neural networking. Here we report 

on the development of such a workflow. 

The new CRRC workflow combines two types of optical microscopy: (i) transmitted-light microscopy for 

cell-contour identification and cell tracking through the time-stack of images and (ii) fluorescence microscopy 

for monitoring substrate conversion into the product during the time-lapse imaging. Imaging is done in an 

automated fashion with a transmitted-light image taken right before every fluorescence image. Time-

correlated stacks of transmitted-light and fluorescence images are processed and analyzed automatically to 

produce kinetic traces “fluorescence intensity versus time” which are unaffected by cell displacement. 

Workflow development and validation included three major steps. First, we optimized the use of 

transmitted-light microscopy for cell-contour identification. Second, we proved that cell displacement 

between the adjacent transmitted-light and fluorescence images is negligible even for highly motile cells; 

hence, cell contours determined from transmitted-light images are applicable to fluorescence images. Finally, 

we conducted a comparative study of the original and new workflows in CRRC of cross-membrane transport 

in motile cells. The results clearly demonstrated that limitations of the original CRRC workflow combined 

with those of kinetic-analysis algorithms led to a systematic shift of CRRC histograms to the right. These 

systematic errors in the original CRRC workflow may wrongly identify subpopulations of cells with very high 

rate constants. In contrast, the new CRRC workflow facilitates the determination of accurate kinetic 

histograms. 
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2.2 MATERIALS AND METHODS 

2.2.1 Cell culture 
Ovarian cancer cells TOV-112D were purchased from ATCC and maintained in MCDB 105/Medium 

199 (Sigma-Aldrich, St. Louis, MO, USA, Cat. No. of MCDB 105: M6395, Cat. No. of Medium 199: M5017) 

supplemented with 10% fetal bovine serum (Gibco, Grand Island, NY, USA, Cat. No: 12483-020). Cells were 

cultured in 60-mm (Sarstedt AG&Co, Numbrecht, Germany, Cat. No: 83.3901) and 35-mm dishes for imaging 

(Nest Biotechnology Co, Wuxi, Jiangsu, China, Cat. No: 706001) at 37°C in a humidified incubator with 5% 

CO2. Cells were cultured until they reached approximately 70% confluence. 

2.2.2 Cell Staining 
 

To perform nuclei staining for cell counting in the original workflow, 10 µL of 6.5 mM saponin 

(Sigma-Aldrich, St. Louis, MO, USA, Cat. No: 8047152) and 5 µL of 1 mM propidium iodide (PI, Sigma-

Aldrich, St. Louis, MO, USA, Cat. No: 25535164) were added into the Hanks’ Balanced Salt Solution (HBSS) 

(Gibco, Grand Island, NY, USA, Cat. No:14025092) after completion of the time-lapse experiment (see 

CRRC Experimental flow for more details) (47). After 10 min, cells were imaged with no washing. 

2.2.3 CRRC experimental workflow 
 

Cell imaging was conducted on 35-mm plastic-bottom dishes with one exception when a 50-mm glass-

bottom dish was used instead (Mattek, Ashland, MA, USA, Cat. No: P50G-1.5-14-FGRD). Four steps were 

followed to prepare cells for a CRRC cross-membrane transport experiment. First, we removed culture 

medium and washed cells once with 1 mL of PBS. Second, we incubated cells for 30 min in 1.2 mL of HBSS 

containing 1.5 µM fluorescein (Sigma-Aldrich St. Louis, MO, USA, Cat. No: 518478), the substrate of cross-

membrane transport, and 10 µM glibenclamide (Research Biochemicals International, Natick, MA, USA, Cat. 

No: G106), a cross-membrane transport inhibitor. Third, we removed HBSS, and washed cells three times 

with 1 mL of PBS each. Fourth, we added 1.2 mL of HBSS and started image acquisition with alternating 

transmitted-light and fluorescence modes every 1 min for 1 h. 
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2.2.4 Image acquisition 
 

In the previous CRRC studies, imaging was performed with confocal laser-scanning fluorescence 

microscopy (26, 48, 49). In the current work, we used epifluorescence microscopy with a Leica DMi8 high-

throughput cell-imaging system. This imager allows carrying out fully automated time-lapse image acquisition 

with alternating transmitted-light and fluorescence microscopy. BF, DIC, and fluorescence images were 

acquired with the same apochromatic HC PL APO 10x/0.45 objective lens. PC images were acquired with a 

N Plan 10×/0.25 PH1 objective lens. A FITC filter cube was used for fluorescein and a RHOD cube for PI (a 

nuclei stain). All images were captured with a deep-cooled high-resolution sCMOS camera. See paragraph 

2.2.5 for details on microscope settings and microscopy protocol. 

 

2.2.5 Microscope Settings and Protocol 
 

Imaging was performed with a Leica DMi8 high-throughput cell-imaging system. Four modes were 

used: fluorescence, brightfield (BF), differential interference contrast (DIC), and phase contrast (PC). The 

‘Mark and Find’ feature of the microscope was used to acquire images of multiple regions of the cell plate 

and the ‘Relative Focus Correction’ feature was used to set different Z-positions between the fluorescence 

and BF channels. Image settings for each figure are shown below: 

 

Figure 2.2: 

• BF: no binning, 7.81 ms exposure, high well capacity, intensity 48, aperture 7, transmitted 

light field diaphragm (Tl-Fld) 23, 196–191 intensity threshold 

• DIC: no binning, 7.81 ms exposure, high well capacity, intensity 128, aperture 15, Tl-Fld 

46, bias 50, 192–192 intensity threshold 

• PC: no binning, 7.81 ms exposure, high well capacity, intensity 130, aperture 24, Tl-Fld 

23, 129–128 intensity threshold 
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• Fluorescence: RHOD channel, no binning, 50 ms exposure, low noise, fluorescence 

intensity manager (FIM) 30%, incident light field diaphragm (Il-Fld) 6 

 

Figure 2.4: 

• BF: no binning, 8 ms exposure, high well capacity, intensity 48, aperture 11, Tl-Fld 46, 

84–80 intensity threshold 

 

Figures 2.3, 2.8 and 2.9: 

• BF: no binning, 7.81 ms exposure, high well capacity, intensity 38, aperture 12, Tl-Fld 

46, 196–191 intensity threshold 

• Fluorescence: FITC channel, no binning, 7.81 ms exposure, low noise, FIM: 30%, Il-Fld 

6 

2.2.6 Image Processing Software 
 

We chose Fiji (27), an open-source software, because it can be easily adopted by others and supports 

all image processing and image analysis required for a CRRC workflow: (i) merging transmitted-light and 

fluorescence images, (ii) cell segmentation, i.e., determination of cell contours and, thus, identification of cells 

using the StarDist detector, (iii) cell tracking, including creation of tracks and exclusion of cells with 

incomplete tracks, and (iv) integration of intracellular fluorescence within the cell contours. Advantageously, 

a recent version of the Fiji plugin named TrackMate integrates capabilities for steps (ii) – (iv), which greatly 

simplifies image processing and analysis.  

2.2.7 Extraction and Analysis of kinetic traces 
 

Intracellular fluorescence intensities were extracted from TrackMate and arranged in Microsoft Excel 

to build individual kinetic traces. The kinetic traces were fitted with the exponential decay (ExpDec1) function 



22 

in OriginPro® software from the time of medium exchange at the beginning of the experiment (initiation of 

cross-membrane transport). A custom-made fitting program has been developed using SciPy open-source 

Python library (50), and was used to cross-validate results obtained with OriginPro. The best fits produced 

rate constants of substrate efflux, kefflux, for individual cells. Negative values of kefflux and all kefflux values with 

high uncertainty (relative standard error, RSE > 100%) were removed from further analysis. 

2.2.8 Cell Population 
 

Cross-membrane transport of each cell population was characterized by frequency histograms of kefflux 

values of individual cells. Histograms were plotted in OriginPro software using the Custom Binning mode 

and were characterized by the median (peak position) and skewness (peak asymmetry) values obtained with 

the Descriptive Statistics tool. The comparison of distributions was conducted using the Kolmogorov-Smirnov 

test, considering α = 0.001 as a criterion of statistical significance. 

 

2.3 RESULTS AND DISCUSSION 

 

2.3.1 Need for transmitted-light microscopy  
 

The first key requirement for ensuring CRRC insensitivity to cell movement is that cell contours be 

identified in each fluorescence image in the time-stack of images. The very nature of CRRC prohibits the use 

of fluorescence from the substrate (product) to identify the cell contours. Since CRRC follows kinetics of 

fluorescence decrease (or increase), a portion of the fluorescence images in the time-stack always has too 

weak intracellular fluorescence for cell-contour identification. As such, we identify the cell contours in each 

fluorescence image with a standard multichannel imaging experiment and take an accompanying high-contrast 

image right before each fluorescence image of the substrate (product). 

The accompanying image can be either a fluorescence one or a transmitted-light one, however, using an 
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accompanying fluorescence image necessitates cells’ pre-staining with a fluorescence probe spectrally 

different from the substrate (product). Such a probe would impose an additional chemical stress on the cells 

and could also interfere with measurements of substrate (product) fluorescence intensity due to unavoidable 

spectral overlaps. Therefore, our a priori preference was an accompanying transmitted-light image. Focal 

planes in fluorescence and transmitted-light modes may differ, but modern microscopes provide options of 

separate focusing in both fluorescence and transmitted-light modes. 

Using transmitted-light images for cell-contour identification imposes a challenge: the contrast between 

cells and background in transmitted-light images is much lower than in fluorescence images. All software 

tools available for cell-contour identification perform best when cells appear as bright objects on a dark 

background. Standard transmitted-light images do not provide the required contrast independently on the 

imaging mode: DIC, PC, or BF. Yet, there is a relatively simple solution for this problem since image 

processing can increase the contrast of transmitted-light images. Increasing contrast leads to decreasing 

dynamic range of signal inside the cell image, but, advantageously, CRRC only needs cell contours from 

transmitted-light images in this workflow. Multiple algorithms exist for increasing cell image contrast (51-

54). We chose a method called thresholding for convenience: thresholding is a standard software tool in most 

advanced microscopes. It was shown that thresholding benefits from having a transmitted-light image slightly 

out of focus (53). Having an image out of focus and subjected to thresholding raises a question of whether 

DIC and PC, which have better contrast in raw images than BF, would retain this advantage. Thus, we 

compared these three modes for their utility in cell-contour identification. 

2.3.2 Preferred mode of transmitted-light microscopy 
 

The three transmitted-light modes were assessed for their performance in correctly identifying cells 

compared to manual counting of cells contrasted with PI. PI is a bright fluorescent dye that stains nuclei in 

cells with a permeabilized plasma membrane. The nuclei in images of PI-stained cells are always spaced out 

by the cytoplasm; therefore, fluorescence images of PI-stained cells appear as well-separated bright spots in a 
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mono-layer cell culture. Such images are well suited for manual cell counting (a cumbersome task) and for 

computer assisted cell counting (55). An example of a raw fluorescence image of PI-stained cells is shown in 

the leftmost panel of figure 2.2A. The cells were counted manually in raw fluorescence images, and these 

numbers were used as a reference. BF, DIC, and PC images of the same fields of view were taken immediately 

after the fluorescence image but with a 30 µm lower focal plane. The cells appear out of focus, but they are 

brighter than the background which is beneficial for thresholding (see three rightmost panels in figure 2.2A 

as an example). 

All four raw images (fluorescence, BF, DIC, and PC) were processed before being subjected to automated 

cell-contour determination. The fluorescence images were simply converted from RGB to the 16-bit format 

(see the leftmost panel in figure 2.2B as an example). Transmitted-light images were subjected to live-mode 

Figure 2-2 Comparing three modes of transmitted-light microscopy (BF, DIC, and PC) for the purpose of cell-contour 

determination using TOV-112D cells on a plastic-bottom dish. The ability to identify cells correctly was used as a criterion for 

selecting a suitable transmitted-light microscopy mode. Fluorescence microscopy (fluo) of PI-stained cells was used as a reference 

method. Cells were manually counted in raw fluorescence images, and these numbers were used as a reference. The example image 

in this figure contains 583 cells. Panel A shows raw (red-framed) images. The fluorescence image was in-focus. The three 

transmitted-light images were off focus to facilitate efficient image thresholding for contrast increase. Panel B shows processed 

(green-framed) images to facilitate cell-contour identification. The determined cell contours (magenta) are overlayed with the 

images of the processed cells. The raw fluorescence image was converted from RGB to the 16-bit format and the background was 

subtracted using the “rolling ball radius” algorithm (50 pixels). The raw transmitted-light images were subjected to thresholding 

and converted to the 16-bit format. The percentages of correctly identified cells were: 96% in the edited fluorescence image, 88% 

in the edited BF image, 79% in the edited DIC image, and 43% in the edited PC image. 
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thresholding to obtain high-contrast images (see three rightmost panels in figure 2.2B as an example). We 

refer the reader to paragraph 2.2.5 for details on the thresholding procedure. The cells in multiple adjacent 

fields of view were counted in each of the four processed images with the cell-contour determination software 

(StarDist) using a radius range filter (3 to 12 µm) to ensure that we only counted single cells and excluded 

cell debris or indistinguishable clustered cells. The cell numbers obtained from the processed images were 

compared to the reference numbers obtained via manual counting. 

Since it is known a priori that DIC is poorly suited for imaging cells on birefringent materials such as 

plastics, we performed a comparative study of different transmitted-light modes on TOV cells that were grown 

on both plastic (30-mm) and glass-bottom (50-mm) dishes. For the plastic-bottom dish, we found that the 

software could identify 98 ± 1%, 83 ± 5%, 68 ± 8%, and 47 ± 4% of cells in fluorescence, BF, DIC, and PC 

images, respectively (averaging was performed over multiple fields of view). For the glass-bottom dish, we 

found that the software could identify 99 ± 1%, 75 ± 7%, 70 ± 5% of cells in fluorescence, BF, and DIC 

images, respectively. Although the software identified 74 ± 7% single cells in PC images on a glass-bottom 

dish, it was clear that almost all identified cells had incorrect contours, and for this reason, PC on glass-bottom 

dishes was excluded from any further consideration. 

The best cell-counting result was obtained for the fluorescence mode. Such a result was anticipated as 

fluorescence gives excellent contrast without contrast enhancement. The results for BF, DIC, and PC differ 

from each other beyond experimental error; however, performances of BF, DIC, and PC depend on hard-to-

control experimental parameters. Therefore, instead of suggesting the blind use of BF (on either a plastic or 

glass-bottom dish), we recommend that users of this workflow conduct a similar experiment and determine a 

preferable mode for every specific experimental setting. As BF imaging of cells on a plastic-bottom dish was 

a winner in our competition, we adopted this mode for cell-contour identification and tracking in our work. 

It is important to note that our thresholding method inevitably leads to minor loss of cell area through 

background removal. Since we are interested in kinetics of fluorescence intensities rather than the actual 
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intensity values, the small and consistent loss of cell area should not influence the results significantly. 

Nonetheless, we demonstrated experimentally that similar rate constant distributions were obtained with 

different recognized cell diameters (areas) (figure 2.3). From the CRRC cross-membrane experiment 

(figures 2.5 and 2.6), cells were re- analyzed using the Laplacian of Gaussian (LoG) detector within 

TrackMate. With this detector, cells are recognized based on an estimated diameter that can be varied. The 

estimated cell diameters were 10, 15, and 20 µm. It was found that the kefflux distributions were not 

significantly different, according to the Kolmogorov-Smirnov test at the 0.05 level. 

Therefore, it is appropriate to use our thresholding method for processing transmitted-light images, as the 

results of CRRC are unaffected by the systematic underestimation of cell areas. 

  

Figure 2-3 Illustration of robustness of CRRC to a range of cell diameters. Kinetic histograms of kefflux rate constants 

found in TOV-112D cells using 10, 15, and 20 µm cell diameters are shown. The variation in sample size occurred to 

differences in cell identification and filtering; however, each distribution consisted of over 100 cells. Median kefflux values 

are displayed and their positions are indicated by the arrows. The kefflux distributions were compared using the 

Kolmogorov-Smirnov test and were found not to be significantly different at the 0.05 level. The p values were 0.66 (10 and 

15 µm), 0.82 (10 and 20 µm), and 0.81 (15 and 20 µm). 
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2.3.3 Assumption of cell immobility during acquisition of two consecutive 

images 
 

There is a short but finite time interval of a few seconds between a transmitted-light image and an 

accompanying fluorescence image in our new workflow. To evaluate the effects of cell movement during this 

short time period on the CRRC results, we performed time-lapse imaging of highly motile cells with high-

frequency image acquisition for recording cell tracks (figure 2.4). By using the migration tracks, we found 

that the speed of cell migration did not follow the normal distribution (figure 2.5). The peak of the distribution 

was at approximately 150 µm/h and the interquartile range was 40 µm/h. The fastest cell in the image had a 

speed of v >> 400 µm/h. A maximum time gap between acquiring adjacent transmitted-light and fluorescence 

images is approximately t1 = 3.0 s. The average shift of the fastest cell during this short time was 

x = vt1 = 0.33 µm while the cell diameter was d = 13 ± 3 µm. The error that such a shift in cell position can 

cause in the integration of intracellular fluorescence intensity over the area within cell contours is of the order 

of x/d >> 0.025 (figure 2.6). Accordingly, the error in intracellular fluorescence intensity introduced by a finite 

time interval between the transmitted-light image and an accompanying fluorescence image is approximately 

2.5%, i.e., negligible, even for the fastest moving cells. Therefore, cell positions in these two images can be 

Figure 2-4 Determination of speed for motile (TOV-112D) cells from cell tracks obtained with high-frequency time-lapse 

BF imaging (1 image per 10 s). The three panels show representative cells with different levels of motility; red lines show 

respective tracks. Cell contours (green) show cell positions at the beginning of time-lapse imaging. Average speeds are shown in 

the panels 
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assumed to be identical. We would like to re-emphasize that most advanced microscopes have options of 

separate focusing in both transmitted-light and fluorescence imaging modes.  

 

  

Figure 2-5 Distribution of cell migration speeds (µm/h) found by high frequency (1 

image per 10 s) time-lapse BF imaging. The distribution was not normal according to 

the Shapiro-Wilks normality test at the 0.05 level (P = 2.2 × 10−16). The peak of the 

distribution was approximately 150 µm/h with an interquartile range of 40 µm/h. The 

fastest cell had a speed of approximately 400 µm/h. 
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2.3.4 Testing the new CRRC workflow 
 

The original and new workflows are schematically depicted in figure 2.7. To compare these two workflows 

and assess their sensitivity to cell motility, we performed a CRRC study of cross-membrane transport in TOV-

112D cells. To favor accurate cell tracking in the new workflow, we set the time gap between adjacent 

transmitted-light images (t2) to be shorter than the time required for the fastest cell (with speed v) to cover a 

distance equal to a typical cell diameter d: t2 << d/v. Hence, using the values of v = 400 µm/h and d = 13 µm, 

we set t2 = 1 min (see the previous section). Then, the two workflows were used to process the time-lapse 

images in parallel and obtain time dependencies (kinetic traces) of fluorescence intensities for individual cells. 

Figure 2-6 Schematic representation of the effects of cellular 

movements on fluorescence integration. We will be assuming that x/r << 

1, where x is the distance travelled by the cell and r is a cell radius. In this 

case, the area of the lune encompassing x can be approximated by that of a 

triangle: s = xl/2. The total area that is excluded from the overlap of the two 

circles is S = 2s = 2xl/2 = xl = x(2πr/4) = πxr/2. The area of the circle is: 

Scircle = πr2. The area of the shape of overlap of the two circles is the one 

that will be used for fluorescence intensity determination. It is smaller than 

the area of a single circle by S. The relative error of circle area determination 

is: S = S/Scircle = πxr/(2πr2) = x/(2r) = x/d. 
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Kinetic traces were fitted with a single exponential decay function to find the unimolecular rate constant kefflux 

for every single cell. 

To examine the sensitivity of both workflows to cell motility, we compared kinetic curves corresponding 

to cells with low and high motility. We found that the two workflows expectedly produced drastically different 

kefflux values for high-motility cells due to the inconsistency between the cell-contour mask and actual cell 

position (see example in figure 2.8A). On the contrary, the two workflows returned similar values of kefflux for 

the low-motility cells (see example in figure 2.8B); this result served as cross-validation for the two 

workflows. 

An important conclusion from the detailed comparison of fluorescence-decay kinetics of cells with 

different motility is that the original workflow tends to overestimate the rate constant of substrate efflux for 

high-motility cells. This necessarily leads to the shift of the CRRC histogram produced by the original 

workflow to the right when compared to the histogram obtained with the new workflow (figure 2.9). 

Importantly, a similar overestimation of kefflux values is observed with both OriginPro and a custom-made 

Figure 2-7 Schematic depictions of the original (left) and new (right) workflows. The 

last step is identical for both workflows. 
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fitting program. Another important observation is that the overestimation of rate constant in the original 

workflow can falsely identify a subpopulation of cells with high rate constants. 

We used a non-parametric statistical test to examine whether there was a significant difference in the kinetic 

constant (kefflux) distributions produced by the two workflows. The Kolmogorov-Smirnov test confirmed that 

the histograms in figure 2.9 differed significantly at the 0.001 significance level (D = 0.376, Dα = 0.209, 

p = 2.82 × 10–11. Note, the two distributions in figure 2.9 have different sample sizes; this occurs since the 

two workflows differ in their cell-segmentation steps. The Kolmogorov-Smirnov test is insensitive to 

differences in sample size. Therefore, based on these results we can conclude that the new workflow produces 

a different and more accurate histogram due to its insensitivity to cell motility. 

Figure 2-8 Examples of kinetic curves obtained using the original and new workflows. 

The data from the four different curves was fitted to the exponential decay function in 

OriginPro (ExpDec1 function) and a custom-made curve-fitting program. The line-of-best-fit 

is shown in red. (A) High-motility cell. The original workflow produces a curve that is not a 

single exponential decay. Both curve-fitting programs do not reject the curve giving a kefflux 

value which is 9-fold greater than the one obtained from the new-workflow curve. (B) Low-

motility cell. The two workflows compute almost identical kinetic curves and kefflux values. 
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2.4 CONCLUSION 
 

We reported on the development of a new CRRC workflow which features automated cell identification 

and cell tracking in transmitted-light microscopy. Such a workflow can be used for analyzing a wide scope of 

cell types and can be considered an important move towards making CRRC a practical analytical tool for 

cytometry studies. Our new workflow will allow researchers to start CRRC studies of a wide range of 

intracellular enzymatic reactions in different types of cells, including highly motile cells. In recent years, there 

has been significant progress in rational design of high-quality fluorogenic substrates for intracellular 

enzymes. Specifically, such substrates have been created for enzymes responsible for chemoresistance of 

cancer tissues: aldehyde dehydrogenase (56-58), and cytochrome P450 (57). We foresee that combining our 

new CRRC workflow with these substrates will help discover and validate new types of predictive biomarkers 

Figure 2-9 CRRC final histograms of cross-membrane transport activity in TOV-112D 

cells. The variation in sample size is due to differences in cell-segmentation and filtering 

processes. Both, median and skewness values are shown; the location of the median values on 

the graph are indicated with arrows. The histogram obtained from the original workflow is clearly 

skewed towards the right. The two distributions were found to be statistically different by the 

Kolmogorov-Smirnov test at the 0.001 significance level (p = 2.82 × 10–11). 
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of chemoresistance (7). Finally, the cell-segmentation/cell-tracking tool disclosed here represents an entry-

level, user-friendly option that can be used for a variety of biological assays (i.e., migration, proliferation, 

etc.) and requires no prior knowledge of informatics (i.e., training a model for deep learning).
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Chapter 3 : DE VELOPMENT OF A NOVEL PROTOCOL 

TO ASSESS CELL POPULATION HETEROGENEITY 

BASED ON ALDH1A1 ACTIVITY IN VITRO 
 

3.1 Background 
 

 The ultimate goal of the cytometry group at Krylov lab is to establish CRRC as a reliable 

technique for the development of rational chemoresistance predictors. Before reaching the 

biomarker development stage, it must be shown that CRRC can be reliably used to study cell 

heterogeneity based on the activity of intracellular mechanisms responsible for chemoresistance 

(e.g. drug extrusion, drug metabolism, and DNA-repair). 

After demonstrating the reliability of CRRC in drug extrusion studies (MDR-based cell 

heterogeneity), and the development of an automated workflow to increase CRRC robustness to 

cell movement, we decided to use CRRC’s new workflow to study cell heterogeneity based on the 

activity of Aldehyde Dehydrogenase 1A1 (ALDH1A1), a drug metabolizing enzyme. 

 

3.2 Overview of the ALDH family of enzymes 
 

The oxidation of aldehydes into carboxylic acid and coenzyme A esters has been chosen 

as the reaction of interest for this study. Such a reaction is driven by ALDH enzymes, a superfamily 

of NAD(P)+-dependent, drug-metabolizing enzymes (59-61). At present, a total of 86 cDNAs and 

ALDH genes have been identified in eukaryotes. ALDH genes are classified into families and 

subfamilies. Each subfamily is representative of a distinct cluster of genes found on the same 

chromosome (62). In humans, the ALDH family is composed of 19 genes: ALDH1s (1A1, 1A2, 

1A3, 1B1, 1L1, and 1L2), ALDH2, ALDH3s (3A1, 3A2, 3B1, and 3B2), ALDH4A1, ALDH5A1, 

ALDH6A1, ALDH7A1, ALDH8A1, ALDH9A1, ALDH16A1, and ALDH18A1 (table 3.1) (62). 
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Importantly, the products of such genes are involved in normal processes of embryo formation, 

tissue development, cell proliferation and differentiation by carrying out the following functions: 

1) involvement in the synthesis of retinoic acid (RA); specifically, the isoform ALDH1A1, 

ALDH1A2, ALDH1A3 and ALDH8A1 are involved in the oxidation of all-trans and/or 9-cis 

retinal to RA, 2) detoxification and cell homeostasis maintenance through the irreversible 

conversion of endogenous (e.g. metabolism of amino acids, alcohols, lipids and vitamins) and 

Table 3-1 Human ALDH isoforms. Retrieved from Tomita, H., Tanaka, K., Tanaka, T. & Hara, A. Aldehyde dehydrogenase 

1A1 in stem cells and cancer. Oncotarget 7, 11018–11032 (2016).© 
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exogenous aldehydes (e.g. pharmaceutical drugs and environmental pollutants), 3) reduction of 

reactive oxygen species (ROS) (63). 

 

3.2.2 ALDH1A1 in cancer tissues and CSCs 
 

On top of the three functions discussed in the previous paragraph (synthesis of retinoic 

acid, detoxification of aldehydes, and reduction of ROS), ALDH isoforms are also known to 

contribute to the development of the chemoresistance phenotype in CSCs through degradation of 

chemotherapeutic drugs (64, 65). Given the ability of ALDHs to reduce aldehydes, it is not 

surprising that specific ALDH isoforms primarily target chemotherapeutics drugs which involve 

the formation of aldehyde intermediates. For example, all members of the ALDH1 family (for 

exclusion of ALDH1B1), which are primarily found in the cytosol, are known to oxidize 

chemotherapeutics such as aldophosphamide and oxazaphosphorines (63). 

The first observations linking the activity of ALDH enzymes to CSC behavior were 

reported by Hilton J. in two different publications, dated 1984 and 1990 (66, 67). In these 

occasions, using a cell population approach, the authors reported on the observation of an elevated 

activity of ALDH enzymes in hematopoietic and leukemic stem cell lines known to be resistant to 

cyclophosphamide (a precursor to aldophosphamide, see paragraph 3.2) (63). Historically, 

researchers have relied on traditional techniques (e.g. western blotting, RT-PCR, 

spectrophotometry and immunohistochemistry) to identify ALDH isoforms (68). However, none 

of these techniques allows to study the activity of ALDH isoforms in viable, singe cells (59, 69, 

70). This was made possible with the development of the commercially available Aldefluor Assay 

by Storms et al. (71). In this assay, BODIPY aminoacetaldehyde (BAAA), an uncharged, 

fluorescent substrate, is added to live cells and begins to diffuse across the cell membrane. Once 
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it enters the cytoplasm, BAAA gets converted by ALDH enzymes to negatively-charged BODIPY-

aminoacetate (BAA-); a florescent product which is retained within cells. Importantly, BAA- 

leakage is prevented by using ABC transporters inhibitors. At this point, flow cytometry is used to 

distinguish between ALDHlow and ALDHhi subpopulations based on the evaluation of fluorescence 

intensity associated with BAA-. Finally, diethylaminbenzaldehyde (DEAB), a negative control, is 

used to account for ALDH-independent fluorescence (figure 3.1). 

 

Currently, the Aldefluor Assay is considered to be the gold standard to perform single cell 

studies of the activity of ALDH enzymes in live cells (60). Over the years, the Aldefluor Assay 

was used by many researchers to identify CSCs in many different types of tumors, such as: breast 

Figure 3-1 Schematic representation of the Aldefluor Assay. The fluorescent substrate BAAA enter the cellular 

environment through passive diffusion. The assay comprises both a negative control (left) and an experimental group 

(right). The negative control requires the use of an ALDH1 inhibitor, DEAB, to prevent BAAA conversion to BAA-

. The experimental group requires the presence of ABC transporters inhibitors (Cold Assay Buffer) to prevent BAA- 

leakage. Retrieved from: Ma I, Allan AL. The Role of Human Aldehyde Dehydrogenase in Normal and Cancer Stem 

Cells. Stem Cell Reviews and Reports. 2011-06-01 2011;7(2):292-306. doi:10.1007/s12015-010-9208-4.© 
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cancer, oral squamous cell carcinoma, sarcoma, esophageal squamous cell carcinoma, esophageal 

adenocarcinoma, gastric cancer, colorectal cancer, head and neck squamous carcinoma, ovarian 

cancer, lung cancer, thyroid cancer, pancreatic cancer, osteosarcoma, prostate cancer, bladder 

cancer, glioblastoma, melanoma, cervical cancer, multiple myeloma (72). Importantly, the isoform 

ALDH1A1 has been historically recognized as the main isoform responsible for the ALDHbright 

subpopulations (72). However, this information is considered controversial as it has been 

demonstrated that a total of 9 isoforms (ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1, ALDH2, 

ALDH3A1, ALDH3A2, ALDH3B1 and ALDH5A1) show cross-reactivity with BAAA (72). 

Nevertheless, additional studies have been able to confirm the importance of ALDH1A1 

expression in chemoresistant cells for a variety of tumors. For example, a study from Roy et al. 

observed an overexpression of ALDH1A1 in high-grade serous ovarian cancer patients which 

showed resistance to platinum-based chemotherapy (73). A similar observation was made by 

Nwani et al. for ovarian cancer cells which were resistant to platinum-based chemotherapy (74). 

For acute myeloid leukemia, it was shown that ALDH1A1 expression is associated with increased 

resistance to 4-hydroperoxy-cyclophosphamide (4-HC) (75). For non-small lung cancer (NSCLC), 

it was shown that ALDH1A1 was highly expressed in chemoresistant NSCLC patients (76). In 

esophageal squamous cell carcinoma, an elevated expression of ALDH1A1 was associated with 

the development of chemoresistance against 5-fluorouracil (77). A study from Oria et al. found 

that the silencing of ALDH1A1 directly increased the sensitivity of pancreatic cell lines to 

gemcitabine, radiation or chemoradiation (78). 

Finally, for breast cancer, it was shown that the knockdown of ALDH1A1, and not 

ALDH1A3, increased the sensitivity of MB-468 and SUM159 cells to chemotherapy (paclitaxel 

and doxorubicin) and radiation therapy (79). 
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 Therefore, although conclusions of Aldefluor studies remain controversial, there exist a 

large amount of data which supports the primary role of ALDH1A1 in inducing drug resistance 

for a variety of tumors. 

 

3.2.3 Substrate choice  
 

In this study, we focused specifically on using CRRC to investigate the activity of the 

ALDH1A1 isoform. Our choice was motivated by two reasons: 1) there is an extensive amount of 

data which supports the involvement of ALDH1A1 in driving chemoresistance for a variety of 

tumors, and thus, this isoform can serve as a basis for the development of a rational 

chemoresistance biomarker, and 2) to the best of our knowledge, ALDH1A1 is the only isoform 

which can be studied with a highly selective fluorogenic substrate (as explained in the paragraph 

3.2.2). This last point represents an extremely important condition to perform CRRC studies. In 

fact, for CRRC studies of drug-metabolizing enzymes, it is imperative that the substrate of choice 

meets two fundamental conditions: 1) the substrate must be selective for the isoform/isoforms of 

interest, and 2) the substrate must be fluorogenic (i.e. a non-fluorescent substrate that results in a 

fluorescent product). 

As mentioned in paragraph 3.2.2, the commercially available Aldefluor kit, in combination 

with flow cytometry, is considered the golden standard to study the activity of ALDH enzymes. 

However, there are two major problems associated with the Aldefluor kit: 1) the substrate used in 

this assay, BAAA, is a fluorescent substrate and, as such, the assay requires the use of DEAB to 

account for ALDH-independent fluorescence, and 2) BAAA is known to show cross-reactivity 

among many ALDH isoforms. Therefore, the Aldefluor kit, or its substrate, cannot be used for 

CRRC studies. 



40 

Recently, Chan et al. have developed AlDeSense AM, a fluorogenic substrate for 

ALDH1A1 whose product show absorbance and fluorescence spectra at 496nm and 516nm, 

respectively (figure 3.2) (58). Importantly, the authors demonstrated that AlDeSense AM 

possesses a strong selectivity for the ALDH1A1 isoform specifically, making it a perfect candidate 

for CRRC studies of ALDH1A1-dependenant cell heterogeneity (58). 

We report on the first use of AlDeSense AM to perform kinetic studies of the activity of 

ALDH1A1 in vitro. 

3.2.4 Objectives of the study  
 

Overall, this study had three main objectives: 1) develop a CRRC-based protocol for the 

study of ALDH1A1 activity in vitro, 2) perform CRRC study to assess ALDH1A1-based cell 

heterogeneity in vitro, and 3) demonstrate the robustness of the new protocol for CRRC studies of 

ALDH1A1-based cell heterogeneity. Importantly, the fulfillment of these objectives will candidate 

CRRC as a reliable tool to be used for the development of a rational chemoresistant predictor based 

on the activity of ALDH1A1.   

3.3 MATERIALS AND METHODS 
 

3.3.1 Cell culture 
 

Ovarian cancer cells TOV-112D were purchased from ATCC and maintained in MCDB 

Figure 3-2 AlDeSense AM: a novel substrate for selective ALDH1A1 detection. Intracellular esterase activity is required to 

activate the substrate. Retrieved from: Bearrood TE, Aguirre-Figueroa G, Chan J. Rational Design of a Red Fluorescent 

Sensor for ALDH1A1 Displaying Enhanced Cellular Uptake and Reactivity. Bioconjugate Chemistry. 2020-02-19 

2020;31(2):224-228.© 
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105/Medium 199 (Sigma-Aldrich, St. Louis, MO, USA, Cat. No. of MCDB 105: M6395, Cat. No. 

of Medium 199: M5017) supplemented with 10% fetal bovine serum (Gibco, Grand Island, NY, 

USA, Cat. No: 12483-020). Cells were cultured in 60-mm (Sarstedt AG&Co, Numbrecht, 

Germany, Cat. No: 83.3901) and 35-mm dishes for imaging (Nest Biotechnology Co, Wuxi, 

Jiangsu, China, Cat. No: 706001) at 37°C in a humidified incubator with 5% CO2. Cells were 

cultured until they reached approximately 70% confluence. 

 

3.3.2 CRRC experimental flow 
 

Cell imaging was conducted on 35-mm plastic-bottom dishes). Four steps were followed 

to prepare cells for a CRRC ALDH1A1 experiment. First, we removed culture medium and 

washed cells once with 1 mL of PBS. Second, we added 1 mL of HBSS. Third, we removed HBSS, 

and added 1 mL of HBSS containing the appropriate amount of the AldeSense AM substrate (see 

Results and Discussion paragraph for details on concentration). Fourth, we started image 

acquisition with alternating transmitted-light and fluorescence modes every 30 sec for 35 min. 

 

3.3.3 Image Acquisition 
 

We used epifluorescence microscopy with a Leica DMi8 high-throughput cell-imaging 

system. This imager allows carrying out fully automated time-lapse image acquisition with 

alternating transmitted-light and fluorescence microscopy. BF, DIC, and fluorescence images were 

acquired with the same apochromatic HC PL APO 10x/0.45 objective lens. A FITC filter cube was 

used for AldeSense AM. All images were captured with a deep-cooled high-resolution sCMOS 

camera.  

 



42 

3.3.4 Image Processing Software 
 

Image processing and image was carried out following the protocol described in chapter 2, 

paragraph 2.2.6. 

 

3.3.5 Extraction and Analysis of Kinetic Traces 
 

Intracellular fluorescence intensities were extracted from TrackMate and arranged in 

Microsoft Excel to build individual kinetic traces. The kinetic traces were fitted with the 

exponential decay (ExpDec1) function in OriginPro® software from the time of medium exchange 

at the beginning of the experiment (initiation of cross-membrane transport). The best fits produced 

rate constants of ALDH1A1 activity, kALDH1A1, for individual cells. Negative values of kALDH1A1 

and all kefflux values with high uncertainty (relative standard error, RSE > 100% and R2 < 0.9) were 

removed from further analysis. 

 

3.3.6 Cell Population Analysis 
 

ALDH1A1 activity of each cell population was characterized by frequency histograms of 

kALDH1A1 values of individual cells. Histograms were plotted in OriginPro software using the 

Custom Binning mode and were characterized by the median (peak position), skewness (peak 

asymmetry) and median absolute deviation (MAD) values obtained with the Descriptive Statistics 

tool. The comparison of average ‘median kALDH1A1’ values was conducted using the ANOVA test, 

Kurtis test, and independent two-sample t-test. 
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3.4 RESULTS AND DISCUSSION 

3.4.1 Development of a protocol for CRRC studies of ALDH1A1-based 

cell heterogeneity in vitro 
 

 To develop a protocol for CRRC studies of ALDH1A1-based cell heterogeneity, we took 

three main points into consideration: 1) choice of substrate, 2) initial substrate concentration, 3) 

total time of observation. 

 For the reasons discussed in paragraph 3.1.3 (chapter 3), we chose the substrate developed 

by Chan et. al, namely AlDesense AM, as the preferred substrate for this protocol (58). 

 To assess the optimal initial substrate concentration, it is important to understand how 

CRRC investigates a typical enzymatic reaction such as the one carried out by ALDH1A1. In short, 

the enzymatic reaction carried out by ALDH1A1 involves the formation of an intermediate 

enzyme-substrate species according to the following equation: 

E + S ↔ ES → E + P      (1) 

in our case, the enzyme (E) is represented by ALDH1A1, the substrate (S) is the fluorogenic 

AlDesense AM, ES is the intermediate enzyme-substrate complex, and P is the fluorescent 

product. In a CRRC time-lapse experiment for drug degradation enzymes, we are interested in 

measuring the rate of increase in fluorescence intensity associated with the product formation. 

Importantly, the rate of product formation is described by the Michaelis-Menten equation: 

𝑑[P]

𝑑𝑡
=

𝑉max[S]

𝐾M+[S]
      (2) 

, where Vmax represents the maximum rate achieved by the reaction, [S] is the substrate 

concentration, [P] is the product concentration, t is time, and KM is the Michaelis constant. This 

last parameter, KM, represents the affinity of a substrate for its enzyme, and it is important to 

consider in order to determine the optimal substrate initial concentration ([S]initial) for CRRC 
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studies. In fact, CRRC was designed to evaluate the pseudo-first order kinetic constant k, which is 

known to be equal to the ratio of Vmax / KM. At this point, an important consideration must be made. 

When [S]<< KM, equation 2 can be written as follows: 

𝑑[P]

𝑑𝑡
=

𝑉max[S]

𝐾M
 .    (3) 

In this case, the rate of the reaction depends on [S], the first-order conditions are satisfied, and the 

Vmax/KM. ratio can be evaluated. On the contrary, when [S] >> = KM, equation (2) becomes: 

𝑑[P]

𝑑𝑡
=  𝑉max      (4) 

the rate of the reaction is independent of the [S] and the reaction basically proceeds at Vmax. In this 

case, the reaction follows the zero-order kinetics and the Vmax/KM. ratio cannot be evaluated. 

Therefore, when performing CRRC studies of enzymatic reaction, it is important to ensure the 

condition of pseudo-first order kinetics by choosing a value of [S]initial that is much smaller than 

KM. 

In our case, Chan et al. were not able to measure the KM for the AlDesense AM substrate 

due to an insufficient level of solubility of the substrate. In the absence of a clear KM value, we 

recommend users to rely on a basic concept to ensure the conditions of pseudo-first order kinetics: 

if [S]initial >> KM, then [P] (and hence ‘intracellular fluorescence intensity’) would show a liner 

dependency on time. Cells showing this type of kinetic behaviour would fail the exponential fitting 

(as explained in paragraph 3.3.5). Therefore, mathematical fitting would ensure that only cells 

exhibiting pseudo-first order kinetics are taken into consideration. To further increase the 

selectivity towards cells exhibiting pseudo-first order kinetics, I only considered cells that showed 

a minimum R2 value of 0.9 after the exponential fitting. In conclusion, because it was not possible 

to determine the KM value for the ALDH1A1-AlDesense AM reaction, we could not suggest an 
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exact [S]initial value. Instead, to ensure the conditions of pseudo-first order kinetics, we recommend 

including in the final ‘number of cells vs kinetic constant’ histogram only those cells that pass the 

exponential fitting with a minimum R2 value of 0.9. 

The decision on the total time of observation (ttot) depends on the nature of the cell line to 

be analyzed. In general, in preparation of CRRC studies for a reaction, preliminary experiments 

should be conducted. Such preliminary experiments should utilize a ttot that allows to observe the 

two phases of an enzymatic reaction where [S] < KM: 1) product formation phase (steep increase 

of [P] as the substrate becomes available), and 2) termination phase (i.e. all the substrate has been 

fully converted into the product). Importantly, the exponential fitting will only be applied to data 

collected during the ‘product formation’ phase (tfit). To determine tfit, we recommend performing 

visual inspection of the population kinetics. Figures 3.3, 3.4, 3.5, and 3.6 show the population 
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Figure 3-3 Population kinetics of TOV112D cells analyzed with a [S] = 0.56 µM. CRRC 

was used to investigate ALDH1A1-based cell heterogeneity. The graph shows the average 

dependency of fluorescence intensity (arbitrary unit, A.U.) over time (in minutes) for 176 

cells. The total time of observation (ttot) (green) is 35 min. The two phases of an enzymatic 

reaction (where [S] < KM) are clearly visible: product formation phase (red) and the 

termination phase (light blue). Importantly, only the time points collected during the 

product formation phase will be used to derive the kinetic constant (tfit). The decrease 

observed in fluorescence intensity during the termination phase is most likely due to 

product leakage and/or degradation. 
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kinetics of TOV112D cells analyzed with four different concentrations (0.56 µM, 0.70 µM, 2.8 

µM, and 3.5 µM). All experiments were observed for a ttot of 35 min. Importantly, a qualitative 

analysis of all figures seems to suggest that the duration of the ‘product formation’ phase (hence 

tfit) is consistent across all four different concentrations (tfit = 15 min). The onset and the duration 

of the ‘termination’ phase seems to be constant as well, with this starting at approximately 15 min 

and continuing until the end of the experiment. An important consideration must be made about 

the shape of the curve in the ‘termination’ phase. Ideally, the signal associated with the product 

will remain constant after all the substrate has been converted into product. However, if we 

consider figures 3.3 and 3.4, we observe an approximately linear decrease in fluorescence intensity. 

The slope of the linear curve was -58.6 A.U./sec for figure 3.3, and -68.9 A.U./sec for figure 3.4. 

Similar slopes were also calculated for the ‘termination’ phases curves observed in figures 3.5 and 

Termination phase 

 

Figure 3-4 Population kinetics of TOV112D cells analyzed with a [S] =  0.70 µM. CRRC 

was used to investigate ALDH1A1-based cell heterogeneity. The graph shows the average 

dependency of fluorescence intensity (arbitrary unit, A.U.) over time (in minutes) for 488 

cells. The total time of observation (ttot) (green) is 35 min. The two phases of an enzymatic 

reaction (where [S] < KM) are clearly visible: product formation phase (red) and the 

termination phase (light blue). Importantly, only the time points collected during the 

product formation phase will be used to derive the kinetic constant (tfit). The decrease 

observed in fluorescence intensity during the termination phase is most likely due to 

product leakage and/or degradation. 
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3.6: -67.4 A.U./sec, and -91.1 A.U, respectively (the decreasing trend of the linear curve in the  

‘termination’ phase of figures 3.3 and 3.4 is not observed as easily in figures 3.5 and 3.6 due to a 

different figure scaling in the y-axis). At this point, two considerations must be done.  First, in 

order to calculate the slope of the curves, I considered the line which intersects the maximum value 

of fluorescence intensity and the last observed value at min 35. Importantly, the onset of the highest 

fluorescence intensity value occurred at min 16.5, 17.5, 26 and 23 for figures 3.3, 3.4, 3.5, and 3.6, 

respectively. This observation suggests that the actual duration of the ‘product formation’ phase 

(hence tfit) might vary depending on the initial concentration of the substrate. However, to ensure 

pseudo-first order conditions, and to favour comparative studies across kinetic profiles obtained 

with different concentrations (see following paragraphs), we will recommend the use of tfit = 15 

min, independently of the concentration used.  The second consideration to be made is biological 
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Figure 3-5 Population kinetics of TOV112D cells analyzed with a [S] = 2.8 µM. CRRC 

was used to investigate ALDH1A1-based cell heterogeneity. The graph shows the average 

dependency of fluorescence intensity (arbitrary unit, A.U.) over time (in minutes) for 543 

cells. The total time of observation (ttot) (green) is 35 min. The two phases of an enzymatic 

reaction (where [S] < KM) are clearly visible: product formation phase (red) and the 

termination phase (light blue). Importantly, only the time points collected during the 

product formation phase will be used to derive the kinetic constant (tfit). The decrease 

observed in fluorescence intensity during the termination phase is most likely due to 

product leakage and/or degradation. 
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and aims to explain the reasons behind the decrease in fluorescence intensity observed during the 

‘termination’ phases. Such phenomenon is most likely caused by two processes which are known 

to occur during an intracellular reaction: 1) product leakage and, 2) product degradation. At the 

beginning of the reaction, the rate of product formation is higher than the sum of product leakage 

and product degradation rates. However, as the substrate is consumed (i.e. less amount of substrate 

is available for the enzymes), the gap between the rate of product formation and the rate of product 

disappearance (deriving from degradation and leakage) decreases. Eventually, when all the 

substrate has been consumed, the rate of product formation will be zero. Therefore, the shape of 

the curve in the ‘termination’ phase will only depend on the rate of product disappearance. 

Nevertheless, the shape of the curve observed during the ‘termination’ phase will not impact our 

measurements as the mathematical fitting is performed only on data points collected during the 

‘product formation’ phase (tfit ).  
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Figure 3-6 Population kinetics of TOV112D cells analyzed with a [S] = 3.5 µM. CRRC 

was used to investigate ALDH1A1-based cell heterogeneity. The graph shows the 

dependency of fluorescence intensity (arbitrary unit, A.U.) over time (in minutes). The total 

time of observation (ttot) (green) is 35 min. The two phases of an enzymatic reaction (where 

[S] < KM) are clearly visible: product formation phase (red) and the termination phase (light 

blue). Importantly, only the time points collected during the product formation phase will 

be used to derive the kinetic constant (tfit). The decrease observed in fluorescence intensity 

during the termination phase is most likely due to product leakage and/or degradation. 
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Therefore, for CRRC studies of ALDH1A1 in TOV112D cells, we recommend a tfit of 

approximately 15 minutes. The choice of ttotal is more arbitrary, as long as it is long enough to 

observe the full duration of the product formation phase (hence, ttotal   > tfit ). 

 

3.4.3 Parameters commonly used to characterize cell distributions in 

“number of cells vs kinetic constant” histograms 
 

CRRC evaluates cell-population heterogeneity by outputting a final histogram, which is a 

simple ‘number of cells vs kinetic constant’ distribution. Importantly, the shape of this distribution 

is used to draw conclusion on the heterogeneity of the cell population. For example, if the cell 

population is unimodal (i.e. the population is fairly homogeneous), the final histogram will display 

a distribution characterized by a single peak. Instead, if the cell-population is multimodal (i.e. it is 

composed by n subpopulations, where n > 1), the histogram will present a distribution peak for 

each subpopulation identified (number of distribution peaks = n). Therefore, each distribution peak 

is representative of a distinct population of cells.  

Typically, three parameters are used to describe a distribution: shape, central tendency, and 

variability. Similarly, I used the same approach to characterize CRRC histograms. First, the shape 

suggests whether the distribution of interest meets the conditions of normality. Usually, a visual 

inspection of the histogram is sufficient to spot any asymmetry in the distribution (in the rare cases 

where the visual inspection is inconclusive, we suggest running a normality testy). I used the 

skewness value as a parameter to characterize the shape of our distribution; a value of zero is 

representative of a normal distribution, a positive value indicates a positively skewed distribution 

(i.e. long right tail), while a negative value is representative of a negatively skewed distribution 

((i.e. long left tail) (80). Second, I evaluated a single score which is representative of the entire 

distribution (i.e. central tendency). In our case, the central tendency of the distribution is 
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represented by the position of the distribution peak. For a normal distribution, the peak position 

can be described by the average value of k. For non-normal distributions, the median value of k 

should be used. Third, I evaluated the variability observed around the peak of the distribution. If 

the peak position is described by a mean value, we use the standard deviation of the mean as a 

measure of variability. Instead, if a median value is used to describe the peak position, we use the 

median absolute deviation (MAD) to measure variability around the median.  

I would like to emphasize that the central tendency is the most important parameter for 

CRRC studies and I will solely refer to this parameter when performing comparative studies. The 

other two parameters (i.e. shape and variability) are useful to guide the choice of an appropriate 

statistical test, if needed. 

 

3.4.4 The ALDH1A1-based protocol is compatible with CRRC’s new 

workflow in vitro 
 

To ensure the compatibility of the ALDH1A1-based protocol described in paragraph 3.4.1 

with the new CRRC workflow (described in chapter 2 ), I performed a complete trial experiment 

in vitro (using theTOV112D cell line).. At this point, an important consideration must be made. In 

general, CSCs are known to represent a small portion of tumor cells in vivo (0.05-1%) (81). This 

extremely low percentage of CSCs in primary cancer tissues, in addition with a tendency for CSCs 

to differentiate in culture, makes it extremely difficult to retain CSCs in vitro. Therefore, I did not 

expect to observe a peak for the CSC population in the final histogram. Instead, a unimodal final 

histogram was expected to be produced. I performed two CRRC experiments on two TOV112D 

dishes from the same passage using the following parameters: AlDesense AM substrate, [S]initial = 

3.5 µM, ttot = 35 min, tfit = 15 min. As expected, for both dish 1 and dish 2, CRRC’s new workflow 

produced single peaked histograms (figure 3.7). Importantly, I would like to emphasize that these 
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results do not suggest the homogeneity of the TOV112D cell line. In fact, it is very likely that the 

CSCs were present in an extremely low percentage in this cell line. Instead, the results from this 

experiment served to prove the compatibility of the ALDH1A1 protocol with CRRC’s new 

workflow.  

3.4.5 Testing the effects of cell passaging on CRRC 
 

Current literature suggests that subculturing (i.e. further propagation of a cell line, also 

known as cell passaging) can influence the characteristics of a cell line over time (83, 84). At this 

point, I wanted to assess the effects of cell passaging on the CRRC evaluation of ALDH1A1 

activity in TOV112D cells. I repeated the same experiments outlined in paragraph 3.3.2 after two, 

Figure 3-7 ‘Number of cells vs kALDH1A1’ histogram from trial experiment of CRRC 

studies of ALDH1A1 activity inTOV112D cells. ALDH1A1 based cell heterogeneity 

of two cell dishes from the same passage (P12) were analyzed with the new CRRC 

protocol ([S]initial = 3.5 µM, ttot = 35 min, tfit = 15 min). In both cases, the histograms are 

characterized by a single peak. See main text for interpretation of the unimodality of 

these histograms. Median, MAD and skew values are reported on the graph. 
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three, five, eleven and thirteen passages from the passage shown in figure 3.7. Once again, I 

analyzed two dishes per passage. Similar to figure 3.7, CRRC outputted a unimodal histogram  

(figures 3.8, 3.9, 3.10, 3.11, 3.12).  

 In order to compare the activity of ALDH1A1 from different passage numbers, I 

characterized each subculture with the average ‘median kALDH1A1’ (avg M kALDH1A1 ) obtained from 

the two different dishes. The values are reported in table 3.2. 

For the average ‘median kALDH1A1’ value, the highest difference (a 91% increase) was 

observed between passage 12 and 25. A one-way ANOVA was also performed to compare the 

Figure 3-8 Testing the effects of cell passaging on CRRC: ‘Number of cells vs kALDH1A1’ 

histogram for passage 14. ALDH1A1 based cell heterogeneity of two cell dishes from the same 

passage (P14) was analyzed with the new CRRC protocol ([S]initial = 3.5 µM, ttot = 35 min, tfit = 

15 min). In both cases, the histograms are characterized by a single peak. See main text 

(paragraph 3.4.4) for interpretation of the unimodality of these histograms. Median, MAD and 

skew values are reported on the graph. The average ‘median kALDH1A1’ and its standard deviation 

were used to characterize P14: 0.071±0.031 min-1. 
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differences between the average ‘median kALDH1A1’ values of P12, P14, P15, P17, P23 and P25. A 

statistically significant difference was found between at least two groups (F (5, 6) = [4.87598], p 

= 0.05). A Tukey’s test suggested that the significant difference was found between P25 and P12 

(p = 0.03761, 95% C.I. = [0.00467, 0.14117]). Albeit the Tukey’s test only found a significant 

difference among P12 and P25, the percentage difference (%diff) observed among other passages 

was remarkable in some instances (for example, %diff (P12-P14) = 54%,  %diff (P12-P17) = 84%) 

Importantly, the lack of statistical difference detected among other groups can be attributed to: 1) 

Figure 3-9 Testing the effects of cell passaging on CRRC: ‘Number of cells vs kALDH1A1’ histogram for 

passage 15. ALDH1A1 based cell heterogeneity of two cell dishes from the same passage (P15) was 

analyzed with the new CRRC protocol ([S]initial = 3.5 µM, ttot = 35 min, tfit = 15 min). In both cases, the 

histograms are characterized by a single peak. See main text (paragraph 3.4.4) for interpretation of the 

unimodality of these histograms. Median, MAD and skew values are reported on the graph. The average 

‘median kALDH1A1’ and its standard deviation were used to characterize P15: 0.086±0.0034 min-1. 
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low sample size, and/or 2) unequal variance observed among groups, an assumption of the 

ANOVA test (the Tukey test is conservative when unequal variance is observed among groups). 

Furthermore, apart from the Avg M kALDH1A1 from passage 23, the data from table 3.2 

seems to suggest that higher passage numbers might correlate with a higher M kALDH1A1 value. 

This observation was expected and could be explained by the fact that, as passage number 

increases, more rapidly dividing cells begin to outgrow more slowly dividing cells. Therefore, 

since ALDH1A1 activity is known to be a marker of rapidly diving cells, the Avg M kALDH1A1 is 

Figure 3-10 Testing the effects of cell passaging on CRRC: ‘Number of cells vs kALDH1A1’ histogram for passage 

17. ALDH1A1 based cell heterogeneity of two cell dishes from the same passage (P17) was analyzed with the new 

CRRC protocol ([S]initial = 3.5 µM, ttot = 35 min, tfit = 15 min). In both cases, the histograms are characterized by a 

single peak. See main text (paragraph 3.4.4) for interpretation of the unimodality of these histograms. Median, MAD 

and skew values are reported on the graph. The average ‘median kALDH1A1’ and its standard deviation were used to 

characterize P17: 0. 10±0.026 min-1. 
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higher in populations that contain a higher proportion of rapidly dividing cells. This seems to be 

in line with the current literature. In fact, a similar observation was made by Rubin et al. In their 

study, they concluded that fast growing clones are the major contributors of the gradually 

improving growth of tumor cell populations in culture (85). 

The value of 0.064 min-1 for the Avg M kALDH1A1 in passage 23 seems to contradict the 

apparent potential correlation between higher passage numbers and an increase in ALDH1A1 

activity. In fact, it represents the only recorded decrease in ALDH1A1 activity (44% decrease from 

Figure 3-11 Testing the effects of cell passaging on CRRC: ‘Number of cells vs kALDH1A1’ histogram for passage 

23. ALDH1A1 based cell heterogeneity of two cell dishes from the same passage (P14) was analyzed with the new 

CRRC protocol ([S]initial = 3.5 µM, ttot = 35 min, tfit = 15 min). In both cases, the histograms are characterized by a 

single peak. See main text (paragraph 3.4.4) for interpretation of the unimodality of these histograms. Median, MAD 

and skew values are reported on the graph. The average ‘median kALDH1A1’ and its standard deviation were used to 

characterize P23: 0.064±0.00039 min-1 
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passage 17) in comparison to the respective previous passage. There are two potential explanations 

for this: 1) despite higher passages select for rapidly dividing cells, random variations in 

environmental factors (e.g. pH, temperature, gas) might have influenced the activity of ALDH1A1, 

2) when performing CRRC studies, only a subset of cells within the whole dish are observed. For 

passage 23, the final histograms contain a total of 423 cells for dish 1, and 483 cells for dish 2. For 

each dish, such cells were imaged from three adjacent regions (surface area of each region = 1.74 

mm2). Although unlikely, I cannot exclude the fact that the three regions I selected might not have 

Figure 3-12 Testing the effects of cell passaging on CRRC: ‘Number of cells vs kALDH1A1’ histogram for passage 

25. ALDH1A1 based cell heterogeneity of two cell dishes from the same passage (P14) was analyzed with the new 

CRRC protocol ([S]initial = 3.5 µM, ttot = 35 min, tfit = 15 min). In both cases, the histograms are characterized by a 

single peak. See main text (paragraph 3.4.4) for interpretation of the unimodality of these histograms. Median, MAD 

and skew values are reported on the graph. The average ‘median kALDH1A1’ and its standard deviation were used to 

characterize P25: 0.11±0.011 min-1. 
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contained a high percentage of rapidly dividing cells, and thus, were not representative of the 

whole dish. Nevertheless, it is important to note that none of the five additional passages had an  

Avg M kALDH1A1 that was lower than the one observed in passage 12 (figure 3.7). 

In conclusion, the data collected from CRRC seems to suggest that cell passaging 

influences the characteristics (ALDH1A1 activity in this case) of the TOV112D cell line over time. 

More specifically, there is enough data to speculate that there could be a potential positive 

correlation between increasing passage numbers and ALDH1A1.  

Table 3-2 Summary of ‘M kALDH1A1’, ‘Avg M kALDH1A1’, and ‘SD of Avg M kALDH1A1’ values collected for P12, P14, 

P15, P17, P23 and P25. 

 

3.4.6 Testing CRRC’s technical robustness 
 

I wanted to test the technical robustness of the new CRRC protocol for analysis of 

ALDH1A1 based cell heterogeneity. Robustness is defined as the ability to remain unaffected by 

small, intentional variations introduced in specific parameters. In this case, I hypothesized that a 

 PASSAGE 12 PASSAGE 14 PASSAGE 15 PASSAGE 17 PASSAGE 23 PASSAGE 25  

DISH 1 DISH 2 DISH 1 DISH 2 DISH 1 DISH 2 DISH 

1 

DISH 2 DISH 1 DISH 2 DISH 

1 

DISH 2 

M kALDH1A1 

(min-1) 

0.038685 0.04306 0.092975 0.04947 0.083495 0.08831 0.0848 0.12155 0.06351 0.064055 

 

0.106 0.12159 

Avg M 

kALDH1A1 

(min-1) 

0.041 0.071 0.086 0.10 

 

0.064 0.11 

SD of Avg M 

kALDH1A1(min-

1) 

0.0031 0.031 0.0034 0.026 

 

0.00039 0.011 
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variation of [S]initial from 3.5 µM to 2.8 µM (% diff = 22%) would not result in a significant 

statistical difference between the Avg M kALDH1A1 values of TOV112D cells from the same 

passage. I would like to emphasize the importance of comparing cells within the same passage. In 

fact, any difference in Avg M kALDH1A1 values (as seen in table 3.2) observed in cells from different 

passages should be attributed to cell passaging. I performed CRRC studies of four dishes for two 

passages: P17 and P23. For each passage, two dishes were analyzed using [S]initial = 3.5 µM, the 

other two dishes were analysed using [S]initial = 2.8 µM (20 % difference). Avg M kALDH1A1 values 

were calculated for dishes analyzed with the same [S]initial. Figure 3.13 and figure 3.14 show the 

histograms of all four dishes for P17 and P23, respectively. All the observed values are summarized 

in table 3.3. 

 

Table 3-3 Summary of ‘M kALDH1A1’, ‘Avg M kALDH1A1’, and ‘SD of Avg M kALDH1A1’ values collected for group 1 

(P17 and P23). 

 

 

PASSAGE 17 PASSAGE 23 

Group 1 

[S]initial = 3.5 µM 

Group 2 

[S]initial = 2.8 µM 

Group1 

[S]initial = 3.5 µM 

Group 2 

[S]initial = 2.8 µM 

DISH 1 DISH 2 DISH 1 DISH 2 DISH 1 DISH 2 DISH 1 DISH 2 

M kALDH1A1 

(min-1) 

0.0848 0.12155 0.138975 0.1226 0.06351 0.064055 0.06753 0.08191 

Avg M 

kALDH1A1 

(min-1) 

0.10 0.13 0.064 0.075 

SD of 

MkALDH1A1’ 

(min-1) 

0.026 0.012 0.00039 0.010 
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A two-sample t-test (with Welch correction to account for unequal variance) was 

performed to compare the average ‘median kALDH1A1’ values in dishes analyzed with [S]initial = 3.5 

µM (group 1) and [S]initial = 2.8 µM (group 2). For P17, there was not a significant difference in 

the average ‘median kALDH1A1’ values between group 1 (Mean= 0.10318, SD = 0.02599) and 

group 2 (Mean= 0.13079, SD = 0.01158)); t(2) = -1.37263, p = 0.35086. For P23, there was not a 

significant difference in the average ‘median kALDH1A1’ values between group 1 (Mean= 0.06378, 

SD = 0.0003854) and group 2 (Mean= 0.07472, SD = 0.01017)); t(2) = -1.52012, p = 0.36993.  

Overall, this data suggests that CRRC is robust to a 20% variation in initial substrate 

concentration. 

 

3.4.7 Considerations on intra-passage variability 
 

We quantified a %diff of 26% and 16% between the Avg M kALDH1A1 values of the two 

groups, for P17 and P23 respectively. Such percentage differences are remarkable and are a result 

of the intraplate variation observed between dishes of the same group, as suggested by the SD of 

the average Avg M kALDH1A1 (table 3.3), with dish 1 from ‘group 1 P17’ showing the highest 

variation (SD 0.026 min-1), and dish 1 from ‘group 1 P23’ showing the smallest variation (SD 

0.00039 min-1). Such variation is also noticeable when looking at the final ‘number of cells vs 

kALDH1A1’ histograms obtained for each single dish of both groups, for both P17 and P23 

respectively (figure 3.13 and figure 3.14). At this point, I wondered if the variation observed is 

reflective of the actual scenario, or if it indicates a potential flaw in the CRRC workflow.  
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Importantly, a very important observation emerged by looking at figure 3.13: the histogram of 

group 1, dish 2 (in red) seems to contain a relatively low number of cells (N = 83). In light of this, 

it is less surprising that group 1 showed the highest SD for the average ‘median kALDH1A1’ value 

(table 3.3). Interestingly, by looking at table 3.2, the same observation can be made for P14, which 

reported the highest SD in absolute (SD 0.034). Even in this case, one of the histograms of P14 

(figure 3.8) contained a relatively low number of cells (N = 66). These observations led me to 

Figure 3-13 Testing CRRC intra-passage variability: ‘Number of cells vs kALDH1A1’ histograms for each dish 

obtained from ‘group 1’ ([S]initial = 3.5 µM) and ‘group 2’ ([S]initial = 2.8 µM) of passage 17. ALDH1A1 based cell 

heterogeneity of four cell dishes from the same passage (P17) was analyzed with the new CRRC protocol. Dishes 

from group 1 (black and red) were analyzed with the following parameters: [S]initial = 3.5 µM, ttot = 35 min, tfit = 15 

min. Dishes from group 2 (blue and green) were analyzed with the following parameters: [S]initial = 2.8 µM, ttot = 35 

min, tfit = 15 min. All four histograms are characterized by a single peak. See main text (paragraph 3.4.4) for the 

interpretation of the unimodality of such histograms. Median, MAD and skew values are reported on the graph. The 

average ‘median kALDH1A1’ and its standard deviation were used to characterize group 1( 0.10±0.026 min-1) and group 

2 ( 0.13±0.012 min-1) 
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speculate that relatively high variations in the calculation of the Avg M kALDH1A1 value are most 

likely the result of a relatively small number of cells observed per dish. Importantly, P23, which 

showed the smallest SD and %diff (SD = 0.00039 min-1 and %diff = 0.8%) in absolute, had a total 

number 423 and 484 cells for dish 1 and dish 2 histograms, respectively (figure 3.14, group 1). 

Therefore, it is possible that having a sample size of approximately 400 cells after fitting could 

help minimize the variation observed among supposedly identical cells (i.e. cells from the same 

Figure 3-14 Testing CRRC intra-passage variability: ‘Number of cells vs kALDH1A1’ histograms for each dish 

obtained from ‘group 1’ ([S]initial = 3.5 µM) and ‘group 2’ ([S]initial = 2.8 µM) of passage 23. ALDH1A1 based cell 

heterogeneity of four cell dishes from the same passage (P23) was analyzed with the new CRRC protocol. Dishes 

from group 1 (black and red) were analyzed with the following parameters: [S]initial = 3.5 µM, ttot = 35 min, tfit = 15 

min. Dishes from group 2 (blue and green) were analyzed with the following parameters: [S]initial = 2.8 µM, ttot = 35 

min, tfit = 15 min. All four histograms are characterized by a single peak. See main text (paragraph 3.4.4) for the 

interpretation of the unimodality of such histograms. Median, MAD and skew values are reported on the graph. The 

average ‘median kALDH1A1’ and its standard deviation were used to characterize group 1 ( 0.064±0.00039 min-1) and 

group 2 ( 0.075±0.010 min-1) 
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passage). 

 

3.5 CONCLUSION 
 In chapter 3, I reported on the development of a protocol to perform CRRC analysis of 

ALDH1A1-based cell heterogeneity in vitro. The protocol is compatible with the new CRRC 

workflow (described in chapter 2) and was used to perform CRRC studies  of ALDH1A1activity 

in TOV112D cells. Several CRRC experiments of ALDH1A1-based cell heterogeneity in 

TOV112D cells suggest that there might be a positive correlation between passage numbers (i.e. 

age of cells) and avg M kALDH1A1. This is most likely because cell passaging applies a selective 

pressure towards more rapidly dividing cells, which can be expected to have a higher ALDH1A1 

activity. Finally, I reported on the technical robustness of the workflow to a 20% change in initial 

substrate concentration. Specifically, it appeared that there was not a significant difference in the 

avg M kALDH1A1 values between group 1 (3.5 µM) and group 2 ([2.8 µM), in two different passages 

(P17, P23). In the evaluation of the effects of cell passaging on CRRC studies of ALDH1A1- based 

cell heterogeneity in TOV112D cells, it is noteworthy that the ANOVA and Tukey tests did not 

detect a significant difference among avg M kALDH1A1 values of dishes from different passages 

which were showing a %diff of up to 80%. These observations suggested potential limitations of 

this study (low number of replicates; only two cell dishes per passage were observed) and, in 

general, of the proposed workflow (relatively low number of cells investigated per dish). Overall, 

this study represents a fundamental move towards the development of a reliable technology to 

assess cell heterogeneity based on the activity of drug metabolizing enzymes.  
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SUMMARY, LIMITATIONS AND FUTURE DIRECTIONS 
 

 The work described here summarizes two major upgrades towards the production of a 

reliable analytical technique (CRRC) to assess reaction-based cell heterogeneity: 1) the 

development of an innovative workflow to make CRRC robust to cell movement, and 2) the 

development of the first CRRC workflow for studies of a drug degradation enzyme correlated with 

chemoresistance (ALDH1A1). Despite all this, there still exist several technical limitations that 

hinder the performance of CRRC.   

 The first limitation is represented by the need for thresholding brightfield images (chapter 

2). Although thresholding is very useful to facilitate automatic single cell identification, this 

process is extremely sensitive to the Z-position of the cells. Cells that change their Z-position 

during the time-lapse experiment will no longer be visible. It is not unusual to perform experiments 

where the majority of cells change their Z-position (most likely due to an inadequate cell adhesion 

to the plate). When this happens, the experiment is invalid and must be repeated. There are also 

instances where only a portion of the cells being investigated will change their Z position. In this 

case, the experiment is not completely invalid, and the analysis will only be performed on cells 

that remain visible throughout the whole time. Importantly, this severely impacts the total number 

of cells investigated, which inevitably becomes lower. In fact, a low sample size represents the 

second major limitation of CRRC.  As explained in chapter 3, a low sample size is most likely the 

reason for observing a high variability between k median values of cells in different dishes, but 

from the same passage. In the future, the development of an ad hoc neural network to perform 

single cell identification and tracking could be the solution for both these problems. In fact, the 

proposed network should be developed with the intent to recognize single cells based on in focus 

brightfield images. This would eliminate the need for applying thresholding and could result in a 
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bigger sample size. It is noteworthy that neural networks, which are built by training the system 

on a set of sample images, should be developed for each type of cell. This is because different cell 

types can have different shapes. Therefore, it is important to develop neural networks that are 

robust to the heterogeneity of cell shapes. The CRRC workflow described in chapter 2 only works 

for cells that assume a round shape (e.g. TOV112D). At the moment, cells that are known to 

assume a spindle shape (e.g. SKOV-3) cannot be investigated by CRRC. Therefore, the lack of 

robustness to different cell shapes represents another limitation of CRRC. The last limitation worth 

considering is represented by the lack of automation in the medium delivery processes. In fact, the 

medium exchange for MDR and ALDH1A1 studies is performed manually by an operator with 

the aid of a pipette. During the process, the human operator can involuntarily disturb the cells, 

causing them to potentially move in every direction along the x, y and z coordinates. In the future, 

the development of an automated medium delivery system will be required to minimize the 

introduction of any systematic and random errors associated with human operations. As new 

solutions are implemented, it will also be of crucial importance to develop CRRC protocols for 

studies of other drug-degradation and DNA-repair enzymes, such as: cytochrome (CYP450), 

glutathione-S-Transferase (GST) and DNA excision repair protein (ERCC-1). 

Finally, it will be necessary to confirm the reliability of any CRRC protocol with ad hoc 

validation experiments. For example, in the case of CRRC studies of ALDH1A1 activity, it could 

be shown that the CRRC protocol here described can reliably detect and determine the size of a 

small subpopulation of cells with a reaction rate different from the one observed in the larger 

subpopulation. Such an experiment was performed by Koshkin et al. for CRRC studies of MDR 

activity in vitro (26). In this case, a population of drug-sensitive and a population of drug-resistant 

cells were mixed in a single dish with a 1:4 ratio, respectively. It was shown that the CRRC 
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protocol for MDR studies was able to: 1) detect two different subpopulations of cells and 2) 

determine the size of both subpopulations, with the size of the smaller subpopulation of cells (drug-

resistant) being 4 times smaller than the size of the larger subpopulation (drug-sensitive). This 

experiment served to validate the ability of CRRC to detect and distinguish two subpopulations of 

cells with different MDR activity and should be repeated to validate the CRRC protocol for 

ALDH1A1 studies here proposed. Finally, the size of the drug-resistant population estimated by 

CRRC could also be cross-validated with magnetic-activated cell sorting method (MACS) and 

fluorescent-activated cell sorting method (FACS) analysis of static cellular markers of 

chemoresistance, such as CD133, CD44, CD117, et (86).   

Altogether, the sets of solutions and future directions proposed here should improve 

CRRC’s reliability in assessing reaction-based cell heterogeneity, and in the long run, to establish 

CRRC as a valid technology to build chemoresistance predictors. 
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