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ABSTRACT 

Climate change will impact freshwater fish communities in Ontario. Warmwater species 

are expanding their ranges northward while cool and coldwater species are expected to shift or 

decline under the current rates of warming.  Our first objective was to examine how a 

warmwater predator, smallmouth bass (Micropterus dolomieu) and a coolwater predator, walleye 

(Sander vitreus), will respond to climate change. Our second objective was to determine if 

smallmouth bass expansions negatively influence Ontario walleye abundances. Data was 

provided by the Ontario Ministry of Natural Resources, Intergovernmental Panel on Climate 

Change, and Climatic Research Unit. We projected that smallmouth bass will undergo range 

expansions throughout Ontario while walleye will become extirpated in their southern ranges 

and shift into northern waters. We also observed that there were fewer walleye at the landscape 

scale when they share lakes with smallmouth bass. These findings underscore the importance of 

proactive fisheries management and curbing climate change. 
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GENERAL INTRODUCTION 

 The most recent climate report from the Intergovernmental Panel on Climate Change 

(IPCC 2013) predicts that global air temperatures will rise by 0 to 4.8°C by the year 2100.  These 

changes are expected to affect global biodiversity across multiple biomes (Sala et al., 2000; 

Newbold et al., 2015), leading to numerous extinction events (e.g. Thomas et al., 2004; Bellard 

et al., 2012), as well as range contractions, shifts, and expansions of certain species depending on 

their temperature preferences (e.g Walther et al., 2002; Parmesan & Yohe, 2003; Chu et al., 

2005). Freshwater systems are especially vulnerable to climate change, whereby previous 

research has demonstrated how physical, chemical and biological properties of lakes respond 

rapidly to climate-related changes (ACIA 2004; Adrian et al., 2009). In Ontario, temperatures 

are projected to increase while precipitation is predicted to decrease (IPCC, 2013). Higher air 

temperatures coupled with decreased precipitation rates will lead to higher water temperatures, 

earlier and longer periods of lake stratification, and decreased run off into lakes (De Stasio et al., 

1996; Livingston & Lotter, 1998; Adrian et al., 2009). 

 Freshwater fishes are particularly sensitive to these changes as they require specific 

climatic conditions to effectively grow, feed, and spawn (Magnuson et al., 1990; Shuter & Post, 

1990).  Climate projections from previous research have indicated that climate change will result 

in future range contractions for coldwater fish, expansions or shifts for coolwater fish, and range 

expansions for warmwater fish (Shuter et al., 2002; Chu et al., 2005; Sharma et al., 2007). More 

recently Alofs et al. (2014) documented unprecedented northerly expansions of many warmwater 

predators between 1957 and 2011 in Ontario lakes, indicating that the predicted effects of 

climate change have already begun to occur in freshwater systems. 

 We chose to research the effects of climate change on Ontario walleye (Sander vitreus) 

populations because they are freshwater predators that play an important role in shaping aquatic 
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communities through top-down trophic interactions, and are also sensitive to changes in 

temperature and water clarity (McMahon et al., 1984; Lester et al., 2004; Pandit et al., 2013). 

Walleye tend to prefer waters that are between 18 and 25°C (Koenst & Smith Jr., 1975; 

Hokanson 1977).  Optimal growth occurs between 20 and 24°C and if possible, walleye seek 

refuge in waters above 24°C (McMahon et al., 1984). They also tend to prefer turbid lakes 

because of a reflective tissue layer in their retina called the tapetum lucidum that makes them 

sensitive to light (Lester et al., 2002).  If lakes are too oligotrophic, walleye feeding hours 

become limited to after dusk (Lester et al., 2002).  

We were also interested in predicting the effects of climate change on smallmouth bass 

(Micropterus dolomieu) populations in Ontario.  Smallmouth bass are aggressive warmwater 

predators that are currently undergoing northerly range expansions (Alofs et al., 2014) and have 

been previously observed to outcompete other top predators for prey resources (Vander Zanden 

et al., 1999; Johnson et al., 2008). Typically smallmouth bass live in waters that are between 20 

to 32°C, however their ideal temperatures for growth are between 26 and 29°C (Clancey 1980; 

Shuter et al., 1980; Edwards et al., 1983). Historically, temperature has been the most limiting 

factor preventing northerly smallmouth bass range expansions as their growth stops in waters 

below 14°C (Edwards et al., 1983). If mean water temperatures do not reach 14°C during the 

summer, smallmouth bass are unable to grow to an adequate size that would allow them to 

successfully overwinter (Shuter et al., 1980). 

As temperatures are expected to increase as a result of climate change, warm and 

coolwater species may undergo range contractions, shifts, or expansions depending on their 

thermal preferences (Magnuson et al., 1997; Rahel, 2002; Chu et al., 2005). These distribution 

changes may lead to novel biotic interactions in lakes colonised by non-native species (Sharma et 
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al., 2009; Alofs & Jackson, 2015), increased competition and predation pressure on native 

species (MacRae & Jackson, 2001; Sharma et al., 2007), and  changes in ecosystem food web 

dynamics (Vander Zanden et al., 1999; Galster et al., 2012).   

Our research objectives for this project were twofold: first we wanted to predict how 

climate change would alter the distributions of both walleye and smallmouth bass across 

Ontario’s landscape; second, we were interested in examining how the projected smallmouth 

bass invasions may influence walleye abundance in Ontario lakes.  Smallmouth bass invasions 

have previously been associated with cyprinid declines (MacRae & Jackson, 2001) as well as 

declines of some predator species (especially salmonids) (Vander Zanden et al., 1999; Vander 

Zanden et al., 2004) and may negatively influence walleye populations. This would be damaging 

to the economy of the Great Lakes region because their recreational and commercial walleye 

fisheries produce over 10-million dollars per year (Kinnunen 2003; Pandit et al. 2013).  We 

hypothesized that under climate change scenarios smallmouth bass would continue to expand 

their range northward while walleye populations would either undergo northerly range 

expansions as well, or undergo northerly range shifts (Shuter et al., 2002; Chu et al., 2005; 

Sharma et al., 2007). We further hypothesized that as smallmouth bass ranges expand, they will 

cause reductions in native walleye abundance. 
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ABSTRACT 

Aim: As global air temperatures continue to rise in response to climate change, environmental 

conditions for many freshwater fish species will change.  Warming air temperatures may lead to 

warming lake temperatures, and subsequently, the availability of suitable thermal habitat space.  Our 

objectives are to identify the responses of two fish species from different guilds to climate change in 

Ontario and consequently, the potential for novel competitive interactions between them. We focus 

on lakes in Ontario because it is a dynamic region that encapsulates the northern range extents of 

many warmwater fish species. 

Methods: Using lake morphology, water chemistry, climate, and fish occurrence data for 

smallmouth bass (warmwater predator) and walleye (coolwater predator) we modelled the 

occurrence rates of two fish in 2050 and 2070 under 126 scenarios of climate change.  We also 

calculated the percent change in co-occurrence of walleye and smallmouth bass in 2050 and 2070. 

Results: Smallmouth bass occurrence rates were predicted to increase by ~306% by 2070 relative to 

their current distributions while walleye were projected to decline by 22%. By 2070, walleye-

smallmouth bass co-occurrence was predicted to increase by 11%, increasing walleye vulnerability  

in central and northern Ontario as a result of increased competition with smallmouth bass. 

Main conclusions: These results highlight two unique responses to climate change: range 

expansions, and northward range shifts, for warmwater, and coolwater fish species, respectively. 

Alterations in distributions of these two ecologically important fish species may lead to shifts in fish 

community structure and novel species interactions in Ontario lakes, exacerbating the vulnerability 

of native coolwater predators to climate change.  
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INTRODUCTION 

Mean global air temperatures are predicted to rise by 0.3-4.8°C by the year 2100 (IPCC, 

2013) – a major concern for the structure and functioning of aquatic ecosystems. Lakes are 

particularly vulnerable because surface water temperatures, water levels, ice phenology, lake 

chemistry, and the intensity of biotic interactions are all sensitive to changes in air temperature and 

precipitation caused by climate change (Adrian et al., 2009).  This vulnerability is exacerbated by 

their relative isolation from one another within landscapes and their overexploitation by humans 

(Woodward et al., 2010).  As global air temperatures rise, lake water temperatures are expected to 

also increase (Livingstone & Lotter, 1998). 

Changing water temperatures can influence the distribution of fish across landscapes by 

altering their available thermal habitat space (Magnuson et al., 1990; Adrian et al., 2009). Fish are 

expected to respond to these habitat modifications differently based on their individual thermal 

preferences.  Our research focuses on how future changes in climate may modify distributions and 

potential future interactions of fish that prefer warm (~25-29°C), and cool (~20-24°C), (Magnuson et 

al., 1990). Fish from these guilds are expected to respond differently to climate change (e.g. Shuter 

et al., 2002; Chu et al., 2005; Sharma et al., 2007).  Within the past 30 years, sportfish in Ontario 

have shifted their range northwards by 12.5-17.5 kilometres per decade while baitfish have shifted 

southwards in response to a changing climate and species interactions (Alofs et al., 2014). Previous 

research has predicted that warm and coolwater fish will expand northward (Chu et al., 2005; 

Sharma et al., 2007) while coldwater fish will decline from their current ranges and potentially shift 

their distributions northward under future scenarios of climate change (Sharma et al., 2011; Herb et 

al., 2014). We aim to predict how climate change will impact warm and coolwater predator species 

and analyse how these changes may lead to increased rates of co-occurrence and potential biotic 
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interactions. Smallmouth bass (Micropterus dolomieu) was chosen to represent the warmwater guild, 

and walleye (Sander vitreus) was chosen as our coolwater species 

Smallmouth bass are a warmwater (preferred water temperatures: 26-29°C) predatory fish 

found mainly in the central United States and southern Ontario (Shuter et al., 1980; Edwards et al., 

1983; Scott & Crossman, 1998). Their current range is expanding throughout North America via 

natural and human-mediated dispersal (Sharma & Jackson, 2008). The distribution of smallmouth 

bass has been historically limited to the south and south-central regions of Ontario where July air 

temperatures exceed 18°C (Shuter et al., 1980).  In regions where July air temperatures are below 

16.6°C, young of the year smallmouth bass cannot grow to sufficient sizes to successfully 

overwinter (Shuter et al., 1980; Wismer et al., 1985). Under scenarios of climate change, 

smallmouth bass are predicted to expand their range northward (e.g. Chu et al., 2005; Sharma et al., 

2007). 

Walleye are a coolwater (preferred water temperatures: 18-25°C) predatory species, whose 

native range extends from the Gulf coast of Alabama in the United States, up into the Yukon 

territories of Canada (Koenst & Smith Jr., 1975; Scott & Crossman, 1998).  Previous studies have 

suggested that increases in air temperature and changes in precipitation will translate to a greater 

number of habitable northern lakes for walleye, allowing them to expand their distributions northerly 

(Chu et al., 2005; Fayram et al., 2014). Warmer spring air temperatures can lead to earlier spring ice 

break up, and warmer spawning waters which can increase young-of-year growth, and increase the 

risk of walleye predation in northern lakes (Fayram et al., 2014). 

Alterations in warmwater and coolwater fish species distributions resulting from climate 

change may facilitate changes in food web dynamics and ecosystem function, increasing the 

frequency of novel biotic interactions, leading to greater competition and predation pressures 
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(Vander Zanden et al., 1999; Sharma et al., 2009). Non-native species expansions, such as 

smallmouth bass in Ontario, can have devastating effects on native biota, trophic structure, and 

ecosystem processes (Vander Zanden et al., 1999; Jackson & Mandrak, 2002; Sharma et al., 

2009). Increases in co-occurrence of walleye and smallmouth bass across Ontario may result in 

novel competitive interactions for shared food resources (Johnson & Hale, 1977; Frey et al., 2003; 

Wuellner et al., 2011). 

Research objectives 

The overall goal of this study is to identify the differential responses of ecologically 

important predatory fishes from warm and coolwater guilds to climate change and how distributional 

changes may alter the potential for biotic interactions between invasive and native top predators.  We 

focus our study in the province of Ontario, a dynamic region that encapsulates the northern range 

extent of warmwater species and is in the middle range of coolwater species. More specifically, our 

first objective is to identify the important abiotic and climatic predictors of smallmouth bass and 

walleye occurrence in Ontario lakes.  

Our second objective is to develop predictive models to forecast future occurrences of 

smallmouth bass and walleye in the years 2050 and 2070. We projected the occurrence of 

smallmouth bass and walleye under all 126 IPCC climate change scenarios in order to identify the 

likelihood of expansion or extirpation of each species by incorporating uncertainties in air 

temperature and precipitation from each climate model. We hypothesize that smallmouth bass and 

walleye populations will expand across Ontario.  

Our third objective is to determine how co-occurrence rates of two predatory fish, walleye 

and smallmouth bass, will change in response to changing temperature and precipitation regimes. 

We anticipate that these changes in co-occurrence will vary spatially across Ontario.  Since both 
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predatory fish consume similar prey (Frey et al., 2003), it is expected that increased co-occurrence 

rates will lead to novel competitive interactions. As smallmouth bass are stronger competitors than 

walleye (Wuellner et al., 2011), increases in smallmouth bass habitat suitability across Ontario could 

increase walleye vulnerability.  These interactions may be further exacerbated with the onset of 

climate change, threatening to alter aquatic species community composition in the future.  
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METHODS 

Data acquisition: survey and climate data 

Historical data were obtained from the Ontario Ministry of Natural Resources (OMNR) 

Aquatic Habitat Inventory (AHI) for 9885 lakes between 1957 and 1986 (Dodge et al., 1985). The 

survey collected data on lake geography (latitude and longitude), morphology (i.e. mean depth, 

surface area), chemistry (i.e. secchi depth, pH) and climate variables (i.e. growing degree days). 

Additional data were also obtained from the OMNR Broad Scale Monitoring (BSM) Program for 

722 lakes between 2008 and 2012 (Sandstrom et al., 2010).  Similar variables for lake geography, 

morphology, and chemistry data were included in this contemporary dataset. Of the 722 lakes, 605 

overlapped with the AHI dataset which were subsequently updated to reflect more recent data. With 

117 new lakes added from the BSM program, we compiled a dataset of 10,001 Ontario lakes (Table 

S1).  A dataset comprised of 9736 lakes was resolved from the 10,001 as 265 lakes contained 

incomplete data.  Fish occurrence data on 134 fish species from the AHI and 100 species from the 

BSM were also provided. Surveys in the contemporary period were able to effectively sample for 

both large and small-bodied fish with the use of a wider range of gillnet and trapnet mesh sizes, 

while historical data likely under-sampled smaller fish. Northern regions of Ontario and the Hudson 

Bay lowlands continue to be undersampled (Minns, 1986; Sandstrom et al., 2010). 

Historical climate data and future climate change scenarios were obtained from the 

Intergovernmental Panel on Climate Change (IPCC, 2013).  Historical climate data were represented 

as climate averages between 1950-2000.Variables included total monthly precipitation, and monthly 

mean, minimum, and maximum air temperatures (Hijmans et al., 2005). Future climate scenarios for 

2050 (average for 2041-2060) and 2070 (average for 2061-2080) were also obtained from the latest 

IPCC 5 report (IPCC, 2013). Projected air temperature and precipitation values from 19 general 
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circulation models (GCMs) under four greenhouse gas scenarios (representative concentration 

pathway (RCP) 2.6, 4.5, 6.0 and 8.5) were extracted for 2050 and 2070.  Eleven of the 19 GCMs 

projected future climate under all four RCPs for 2050 and 2070, while the remaining GCMs 

predicted for only select scenarios. Each GCM is unique and calculates climate values based on 

various assumptions of atmosphere, ocean, sea-ice, and land components (Hijmans et al., 2005; 

Stocker et al., 2013; IPCC, 2013).The scenarios of future greenhouse gas concentrations (including 

RCP 2.6, 4.5, 6.0, and 8.5) represent a gradient where RCP2.6 is the most conservative estimate of 

future greenhouse gas (GHG) emissions, projecting a decrease in overall emissions by 2100, while 

RCP 8.5 is the ‘business-as-usual’ scenario, which estimates continuous increases of GHG emissions 

through 2100 (van Vuuren & Riahi, 2011; Moss et al., 2010; Rojeli et al., 2012). A total of 126 

climate change scenarios were used to project smallmouth bass, walleye and cisco occurrence.  

Data analysis: fish occurrence models 

We developed logistic regression models for smallmouth bass and walleye occurrence in 

Ontario lakes. We divided our combined AHI-BSM dataset (n=9736) into two random and 

independent subsets: 80% of the dataset was retained for model training, 20% for model validation. 

Variables were assessed for normality: surface area, maximum depth, mean depth and secchi depth 

data were log-transformed to meet the assumptions of normality. Multicollinearity was found to be 

low among environmental predictor variables used in each species distribution model. To develop 

each species distribution model, a forward selection procedure with a dual-criterion (α = 0.05 and 

R
2

adj) was used to identify significant predictor variables for smallmouth bass, walleye and cisco 

occurrence (Blanchet et al., 2008).  

We used Receiver Operating Characteristics (ROC) curves to identify thresholds (0 – 1) that 

maximize the sensitivity (percent of correctly predicted presences) and specificity (percent of 
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correctly predicted absences) of each species distribution model. This procedure is recommended 

when species presences and absences are not equal within the data (Fielding & Bell, 1997; Sharma 

& Jackson, 2008). A Cohen’s Kappa statistic for each logistic model was also calculated to assess 

the model’s predictive power (Fielding & Bell, 1997). All analyses were performed in the R-

language environment (R Development Core Team, 2012).  

Fish projections under climate change 

We predicted smallmouth bass and walleye occurrences under 126 future climate 

scenarios for the years 2050 and 2070. We used all possible climate scenarios to incorporate the 

variability between GCMs and RCPs on fish projections. The probability of fish occurrence was 

calculated for each lake by averaging the predicted species occurrence rates under each climate 

scenario for both 2050 and 2070. Ordinary kriging was performed using ArcGIS 10.1 to illustrate 

the probability of each fish occurrence across the landscape of Ontario in 2050 and 2070 (ESRI, 

2011) under 126 scenarios of climate change.  Ordinary kriging is a smoothing process that 

interpolates the probability of fish occurrence across landscapes.  The probability of occurrence 

for each pixel across Ontario’s landscape was calculated by averaging the probability of 

occurrence of the nearest 50 lakes. 

Percent change in walleye-smallmouth bass co-occurrence 

Percent change in walleye and smallmouth bass co-occurrence was calculated in Ontario 

lakes under historical and future climate change scenarios using the AHI lakes (n=9641, 244 of 

the 9885 AHI lakes were omitted due to incomplete data). Lakes were categorized as follows: 

walleye only, smallmouth bass only, and co-occurrence of walleye and smallmouth bass. The 

median percent change in occurrence between historical and future periods was calculated for 
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each category and for three different latitudinal regions of Ontario. The latitudes between 50.5°N 

and 48.1°N were classified as central Ontario (ncentral=3546), while northern latitudes were above 

50.5°N (nnorthern=674), and southern latitudes were below 48.1°N (nsouthern=5421).  Percent 

change in co-occurrence of walleye and smallmouth bass in these regions was calculated to 

better incorporate spatial variability in biotic interactions across the province.  
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RESULTS 

Fish occurrence models 

Smallmouth bass preferred larger, clearer lakes, in regions with higher temperatures and 

lower precipitation (Table 1). Model validation yielded a classification success of 84% (Table 2). 

Walleye preferred larger, turbid lakes, in cooler regions with higher precipitation (Table 1). This 

model had a classification success of 80% (Table 2) when tested on an independent validation 

dataset. 

Fish projections 

Smallmouth bass were present in 19% (nsmallmouth bass = 1834, ntotal = 9736) of south-central 

Ontario lakes (Fig.1a). By 2050 and 2070, smallmouth bass are predicted to expand their range 

northerly, occupying many lakes in north-western Ontario (Fig. 1b,c). Under the most conservative 

scenario, in 2050 (RCP 2.6), there was a 0-40% likelihood of smallmouth bass expansion into central 

and northern Ontario lakes (see Fig. S1). In the most extreme scenario, in 2070 (RCP 8.5), there was 

an 80-100% likelihood of smallmouth bass expansion in all northern regions of Ontario (Fig. S1). 

Smallmouth bass are also predicted to invade 7873 new lakes by 2070 under the most extreme 

scenario.  Changes in temperature and precipitation under future scenarios of climate warming may 

result in a -8 to +418% (x̄=260% increase) change in smallmouth bass occurrence by 2050 and a 55-

422% increase (x̄ = 306% increase) by 2070 (Fig. 2a,b).  Ontario lakes became completely saturated 

by smallmouth bass under climate scenarios if mean July air temperatures increases by more than 

4°C. 

Walleye were present in 28% (nwalleye = 2781, ntotal = 9736) of lakes sampled in Ontario (Fig. 

1d). By 2050 and 2070, walleye are predicted to become extirpated from lakes in southern and 

south-central Ontario, leaving populations in central Ontario the most vulnerable to extirpation under 
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scenarios of climate change (Fig. 1e,f). Changes in temperature and precipitation may result in a -42 

to a +6% change (x̄ = 17% decline) in walleye occurrence by 2050 and a -56 to a +1% change (x̄ = 

22% decline) by 2070 (Fig. 2c,d). The most conservative greenhouse gas scenario predicts a loss of 

14% of walleye populations by 2050 (Fig. S2).  If greenhouse gas emissions continue to follow this 

conservative trajectory, we can expect a 12% decline in walleye occurrence rates by 2070; this 

indicates a 2% increase in walleye occurrences from the 2050 projection (Fig. S2). 

Walleye-smallmouth bass co-occurrence 

The number of lakes with walleye-smallmouth bass co-occurrence is expected to increase 

across Ontario by 10% by 2050 and 11% by 2070 (nhistorical co-occurrence= 633 lakes) under projected 

scenarios of climate change (Fig. 3a,b). Specifically, walleye only lakes are predicted to decline by 

15% in 2050 and 19% in 2070 while smallmouth bass only lakes are predicted to increase by 41% in 

2050 and 51% in 2070. Co-occurrence is likely to increase across the province because smallmouth 

bass are predicted to invade regions historically occupied by walleye.   

Grouping lakes by region (south, central, and north) suggests that walleye-smallmouth 

bass co-occurrence is expected to increase by 20% and 68% in the central and northern regions 

respectively, by 2070. Walleye only lakes are expected to decline by 32% in the central region and 

67% in the northern region of Ontario by 2070, whereas smallmouth bass only lakes are expected to 

increase by 39% and 18% for central and northern regions respectively.  Conversely, the southern 

region may experience a slight decline in walleye-smallmouth bass co-occurrence by 0.3%, (Fig. 

S4).   
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DISCUSSION 

This study highlights two unique responses of fish species from warm and coolwater guild to 

climate change in an especially sensitive region where warmwater fishes are at their current northern 

extent and coolwater fishes are in the middle of their extent.  We forecasted how the warmwater 

predatory fish, smallmouth bass, would expand their range northwards and invade the majority of 

Ontario lakes.   Walleye, a coolwater predator, were projected to shift their range northwards and 

undergo extirpations from southern regions within Ontario where they are currently found in high 

abundances.  Lastly, we determined that co-occurrence of smallmouth bass and walleye would 

increase, specifically in central and northern regions of Ontario. We expect that fish distributions 

will change faster and at times, in unexpected directions (e.g., walleye) than previously projected by 

older climate models (e.g. projections made using the IPCC 2001 data). For example, fish 

projections using ‘extreme’ climate scenarios based on earlier climate models (e.g., Chu et al., 2005; 

Sharma et al., 2007) are now considered conservative estimates of fish distribution changes as 

greenhouse gas emissions continue to increase.  Even in the past 30 years, increases in mean annual 

air temperatures have been linked to northerly range shifts of warm- and coolwater sportfish species 

and southern range contractions of many baitfish at rates much faster than expected (Alofs et al., 

2014).  Such drastic changes in projections for ecologically important predatory and forage fish from 

all thermal guilds will have implications for species interactions and community assembly for lakes 

in the future. 

How climate data was utilised in the models   

To better understand the uncertainty in species range expansions and contractions, we 

projected species distributions using all 19 General Circulation Models (GCMs) and their respective 

greenhouse gas emissions scenarios (RCPs), over 2 time periods (mid-century and late-century), 



21 
 

 

totalling 126 different climate change scenarios from the most recent IPCC assessment (IPCC, 

2013). Previous studies have commented on the large variability between GCMs and resulting 

implications for species distribution forecasts (e.g. Thuiller, 2004; Buisson et al., 2008; Sharma et 

al., 2011). This variability can be attributed to several differences among GCMs, including their 

spatial and vertical resolutions, their representation and calculations of various physical processes 

(such as clouds, water vapour, ocean mixing processes, etc.), and their representation of climate 

feedback mechanisms (e.g. their ability to simulate feedbacks relating to clouds, water vapour, and 

snow) (Beaumont et al., 2008; IPCC, 2013). As such, using a wide range of climate change 

scenarios has been recommended by the IPCC to reduce the uncertainty inherent within each GCM 

and better reflect the likelihood of species expansion or extirpation within a particular site 

(Beaumont et al., 2008; Sharma et al., 2011).  

Smallmouth bass 

We project that smallmouth bass may expand their range northwards under scenarios of 

climate change.  If July air temperatures increase by more than 4°C, smallmouth bass thermal habitat 

increases, allowing smallmouth bass to saturate all lakes in Ontario.  Historically, populations of 

smallmouth bass in Ontario have been limited to the south and south-central regions of 

Ontario.  This boundary has largely been attributed to cooler summer temperatures in central and 

northern Ontario lakes, which reduce the size of young-of-year smallmouth bass and prevent 

successful overwintering, thereby limiting northern shifts (Shuter et al., 1980; Wismer et al., 1985; 

Sharma et al., 2007).  In a recent publication, Alofs et al. (2014) documented that this boundary is 

already beginning to expand northward as warmwater sportfish (including smallmouth bass) are able 

to colonise lakes in many previously uninhabitable northern lakes at rates of 12.5 to 17.5 kilometres 

per decade.  Under climate change, July air temperatures are projected to increase by 2050 and 2070, 
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allowing more lakes to become thermally suitable for smallmouth bass, enabling them to expand 

their range northerly provided that smallmouth bass continue to disperse at current rates via natural 

and human-mediated pathways (Sharma et al., 2009; Alofs et al., 2014). This expansion may be 

further accelerated by decreasing precipitation rates under scenarios of climate change (IPCC, 

2013).  Carter et al., (2010) demonstrated that smallmouth bass feed less selectively in clearer 

lakes.  As precipitation and sediment runoff into lakes decreases, lakes in Ontario are expected to 

become clearer (Miller & Russell, 1992), thereby facilitating potentially stronger smallmouth bass 

predation and competition pressures on other native fish (Sweka & Hartman, 2003). 

Walleye 

We predict that walleye will shift their range northwards, become extirpated in many 

southern and central Ontario lakes, and remain sensitive to extirpation in many north-central Ontario 

lakes.  As temperatures are projected to increase at greater rates than previously anticipated (IPCC, 

2013), lakes in southern and south-central Ontario will become thermally unsuitable for 

walleye.  Previous studies have predicted expansions of walleye under older scenarios of climate 

change. For example, under a scenario of doubled atmospheric CO2 concentrations walleye 

populations were predicted to undergo a slight northward shift (Shuter et al., 2002), while a 

“business-as-usual” scenario suggested a 54% expansion across Canada by 2050 (Chu et al., 2005).  

Historical climate change between 1957 and 2011 suggested more favourable climates for coolwater 

fish (e.g. Alofs et al., 2014), however as air temperatures continue to increase through 2050 and 

2070, it is expected that these habitats will shift to thermally unsuitable states. Increasing air 

temperatures may affect walleye spawning behaviour as they tend to spawn in cold (6-12°C), 

shallow waters (McMahon et al., 1984).  In 6-12°C water walleye egg-survival rates range from 

61.5-84%, while a drop to 15% survival is observed in 13°C waters (Koenst & Smith Jr., 1975). 
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Larger increases in air temperatures may lead to longer periods of lake stratification (Adrian et al., 

2009), which can negatively affect walleye survival by increasing oxidative stress in the epilimnion 

(Leach et al., 1977; McMahon et al., 1984).  The latest IPCC climate models also predict that 

summer precipitation levels in Ontario will decline by 0.4mm in 2050 and 1.2mm in 2070 (IPCC, 

2013).  We show that decreasing precipitation can be expected to negatively impact walleye as 

sediment runoff would be reduced into lakes, thereby decreasing lake turbidity (Miller & Russel, 

1992). As adult walleye exhibit a negative phototactic response (Lester et al., 2004), and require 

low-light conditions to feed (Ryder, 1977), decreasing precipitation could lead to increased 

starvation rates, as well as greater competition with fish that prefer clear waters. 

Implications of climate change on biotic interactions 

We estimate an increase in walleye-smallmouth bass occurrence by 20% in central Ontario 

and 68% in northern Ontario by 2070 under scenarios of climate change.  The projected northward 

expansion of smallmouth bass and the range shift of walleye populations in Ontario could lead to 

novel competitive interactions, further increasing the vulnerability of native walleye populations in 

central and northern Ontario.  

Smallmouth bass are voracious predators that have been found to out-compete coldwater 

predators, such as lake trout, for energetically-rewarding littoral prey fish (Vander Zanden et al., 

1999). The effect of smallmouth bass expansion on coolwater fish is less clear because there are 

large geographic regions of habitat overlap, and evidence that suggest co-existence is possible when 

prey availability is high (Johnson & Hale, 1977; Frey et al., 2003; Galster et al., 2012). Competitive 

exclusion is more likely to occur under future climate change for three main reasons: (1) smallmouth 

bass invasions cause declines in prey resources (e.g. cyprinids) in northern regions (MacRae & 

Jackson, 2001); (2) increased metabolic rates create additional food demands at higher temperatures 
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(Brett, 1971); and (3) the range contractions of many forage species that have already begun in 

response to changing temperature regimes will become more pronounced (Alofs et al., 2014). 

Furthermore, a study by Wuellner et al., (2011) suggests that smallmouth bass are slightly more 

effective predators than walleye, which could give them a slight advantage during times of resource 

limitation.  As smallmouth bass are such effective predators, it is likely that their colonisation of 

northern Ontario lakes would either displace coolwater predators or decrease their total abundance, 

as many of these fish compete for the same littoral resources. 

 Conclusion 

The impacts of climate change on ecologically important predatory fishes across two thermal 

guilds also have significant implications for commercial and recreational fisheries (Matsuzek et al., 

1990; Post et al., 2002; Dove-Thompson et al., 2011). Canadian recreational fisheries alone are 

valued at over 4.6 billion dollars annually (Shuter et al., 1998). With climate change, as smallmouth 

bass invade new lakes, the persistence of native fish assemblages becomes threatened. These 

colonisations can result in homogenised lake communities, which may decrease the profitability of 

certain fisheries (Rahel, 2002; Jackson, 2002). Smallmouth bass represent a strong competitive 

pressure to native top predators, in both cool- (e.g. walleye) and coldwater (e.g. lake trout) fish 

guilds.  We project that the likelihood of smallmouth bass invasions and extirpations of walleye are 

substantially reduced under conservative climate change scenarios of reduced greenhouse gas 

emissions (e.g., RCP 2.6). Consequently, co-occurrences of smallmouth bass and walleye are also 

reduced under the more conservative scenarios, thus lowering the probability of potentially 

competitive biotic interactions.  Curbing greenhouse gas emissions is urgently needed to limit the 

invasion of warmwater predators into northern lakes and the extirpation of coolwater and coldwater 

predators from southern lakes.  
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TABLES 

Table 1:  Coefficients of significant (p<0.01) predictors for logistic regression models for 

smallmouth bass and walleye populations. Mean conditions of environmental characteristics in lakes 

with fish present and absent. 

  

 Selected Variables Model 

Coefficients 

Environmental 

characteristics 

with fish present 

Environmental 

Characteristics with 

fish absent 

Smallmouth 

Bass 

Surface area (ha) 

 

1.33 615.5 293.9 

 Secchi depth (m) 

 

1.54 4.1 3.5 

 Mean July air 

temperature (°C) 

 

1.03 18.8 17.5 

 July precipitation (mm) 

 

-0.07 76.7 83.5 

Walleye Surface area (ha) 

 

2.09 944.6 118.5 

 Secchi depth (m) 

 

-2.52 3.0 3.9 

 Mean August air 

temperature (°C) 

 

-0.11 16.1 16.5 

 Mean summer 

precipitation (mm) 

0.02 86.5 84.4 
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Table 2: Classification success, specificity, sensitivity, and kappa statistic values of the predictive 

smallmouth bass and walleye occurrence models.  

 

 

Classification 

success (%) 

Specificity (%) Sensitivity (%) Kappa statistic 

Smallmouth bass 84 89 59 0.48 

Walleye 80 86 66 0.52 
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FIGURES 

 

Figure 1: Distributions of smallmouth bass (a) historically, (b) in 2050, and (c) in 2070 under 126 

scenarios of climate change. Distributions of walleye (d) historically, (e) in 2050, and (f) in 2070. 

Mean probabilities of occurrence were calculated in 2050 and 2070 using all climate change 

scenarios for each period.   



34 
 

 

 

Figure 2: Percent change in occurrence of smallmouth bass under 126 scenarios of climate change 

in 2050 and 2070 as temperature changes (a), and as precipitation changes (b). Percent change in 

occurrence of walleye under climate change scenarios as temperature changes (c), and as 

precipitation changes (d).  
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Figure 3: Projected change in walleye and smallmouth bass occurrence (a) in 2050 and (b) in 

2070.  



36 
 

 

SUPPORTING INFORMATION 

Table S1: Summary of geographic, environmental and climate variables of the lakes in our dataset. 

Variable Minimum Maximum Mean 

Latitude 42.1 55.3 47.6 

Longitude -95.1 -74.5 -83.6 

Surface area (ha) 

Perimeter (km) 

Lake elevation (m) 

0.1 

0.1 

42.0 

79771.6 

938.3 

875.0 

354.4 

14.0 

338.9 

Maximum depth (m) 0.2 213.5 17.0 

Mean depth (m) 0.1 47.5 5.6 

Secchi depth (m) 0.2 22 3.6 

pH  

Total dissolved solids (mg/L) 

Conductivity (uS/cm) 

Dissolved Oxygen (mg/L) 

Mean July air temperature (°C) 

4.0 

2.0 

3.0 

0.7 

14.1 

10.0 

1294.0 

1243.1 

15.4 

22.4 

7.4 

59.1 

86.8 

8.4 

17.8 

Mean August air temperature (°C) 12.9 21.6 16.4 

Mean annual air temperature (°C) -4.2 9.5 2.5 

July precipitation (mm) 55 106 82.2 

Mean summer precipitation (mm) 66.7 97.3 85.0 
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Figure S1: Probability of smallmouth bass occurrence for each greenhouse gas scenario in 2050 and 

2070.
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Figure S2: Probability of walleye occurrence for each greenhouse gas scenario in 2050 and 2070.  
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Figure S3: Projected change in walleye and smallmouth bass occurrence in southern (a,b), 

central (c,d) and northern (e,f) regions of Ontario in 2050 (a,c,e) and 2070 (b,d,f).  
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ABSTRACT 

 Increases in global air temperatures associated with climate change are expected to 

facilitate northerly range expansions of smallmouth bass, and range shifts of walleye populations 

in Ontario.  Continued northward smallmouth bass expansion may create novel competitive 

interactions in northern lakes where smallmouth bass have been historically absent.  We aim to 

identify how the invasion of smallmouth bass influences walleye abundances across Ontario at 

the landscape scale.  Smallmouth bass were found to prefer different lake environmental 

conditions than walleye, however, when walleye and smallmouth bass were found in the same 

lakes, walleye abundance was reduced. Multiple-regression and zero-inflated negative binomial 

models suggested that walleye abundance is negatively influenced by smallmouth bass 

occurrence. Subsequently, we predicted that under future scenarios of climate change the 

overlapping occurrence of walleye and smallmouth bass will increase by 86% to 332% by the 

year 2070.  As walleye abundance is reduced in lakes with smallmouth bass, we predict that 

increased co-occurrence between smallmouth bass and walleye will result in Ontario-wide 

walleye reductions under scenarios of climate change.  
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INTRODUCTION 

Walleye (Sander vitreus) are a coolwater predator species (Koenst & Smith Jr. 1975) that 

play an important role in lake-ecosystem dynamics by shaping aquatic communities through top-

down trophic cascades (Bowlby et al. 2010; Pandit et al 2013). Walleye are also popular angling 

targets for commercial and recreational fisheries, generating over ten million dollars in revenue 

annually for the economy of the Great Lakes region (Kinnunen 2003; Pandit et al. 2013).  

Smallmouth bass (Micropterus dolomieu) are warmwater predators (Edwards et al. 1983) 

and an invasive species in central and northern Ontario (Vander Zanden et al. 2004).  Unlike 

walleye, who only feed in dim-light conditions, smallmouth bass are opportunistic, generalist 

feeders that eat constantly over 24-hour periods (Johnson & Hale 1977; Warren 2009; Wuellner 

et al. 2011). Historically, lakes that have been invaded by smallmouth bass (either naturally or by 

human stocking) see declines in prey-fish density (especially cyprinids) (Macrae & Jackson 

2001; Jackson 2002; Sharma et al. 2007). Many predator species, such as salmonids also 

experience population declines after smallmouth bass invasions (Vander Zanden et al. 1999). 

Laboratory studies have revealed smallmouth bass to be stronger competitors than walleye under 

food-limiting conditions (Wuellner et al. 2011). Whole lake studies however, yielded mixed 

results, some illustrating that smallmouth bass introductions have negative effects on walleye 

population levels (Johnson & Hale 1977; Inskip & Magnuson 1983) while others have found 

smallmouth bass have no effect on walleye fitness (Hall & Rudstam 1999; Fayram et al. 2005). 

Research objectives 

Our primary research objective is to identify how smallmouth bass influence walleye 

populations in Ontario lakes. Smallmouth bass are a voracious, competitive species that are 

expected to experience range expansions under increasing temperature regimes (e.g. Sharma et 
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al. 2007; Van Zuiden & Chen et al. in review). The consequence of these expansions on walleye 

populations at the landscape level has not been previously explored. Ontario was chosen as our 

study region because it contains a popular, valuable walleye fishery (Lester et al. 2003; Pandit et 

al. 2013), and comprises the northern range limit of smallmouth bass (Shuter et al. 1980; Scott & 

Crossman 1998; Sharma et al. 2007). Our research objective comprises four questions: i) Do 

walleye and smallmouth bass prefer the same lakes? ; ii) how does the presence of smallmouth 

bass influence walleye abundance?; iii) which environmental conditions favour smallmouth bass 

and walleye co-occurrence?; and iv) how will smallmouth bass-walleye co-occurrence alter in 

Ontario under scenarios of climate change?  We hypothesize that smallmouth bass will 

negatively influence walleye populations as they may outcompete walleye (Galster et al. 2012).  

As smallmouth bass are projected to increase their range northwards (Sharma et al. 2007; 

Sharma & Jackson 2008; Van Zuiden & Chen et al. in review) and walleye populations are 

projected to be extirpated in southern Ontario and shift their range northwards (Van Zuiden & 

Chen et al. in review), we hypothesize that co-occurrence of walleye and smallmouth bass will 

increase under climate change, further exacerbating walleye populations in Ontario under 

scenarios of climate change.   
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METHODS 

Lake survey and climate data acquisition 

 The Ontario Ministry of Natural Resources (OMNR) Broadscale Monitoring (BSM) 

Program collected data on 722 lakes between 2008 and 2012.  The program was designed to 

sample fish habitats at several different depths (Sandstrom et al. 2010).  Variables measured in 

this program include lake geography (latitude, longitude), morphology (surface area, depths), 

chemistry (pH, secchi depth, oxygen levels, etc.), climate (growing degree days), fish 

occurrence, and fish abundance of over 100 different species.  

 Climate data for historical (1950-2000) and contemporary (2000-2012) periods was 

obtained from both the fifth climate assessment report by the IPCC (2013), and the Climatic 

Research Unit, University of East Anglia (Harris et al. 2014). Climate data for these periods are 

represented as averages across all years. Climate variables include values for monthly mean, 

minimum, and maximum air temperatures, as well as total monthly precipitation. Future climate 

projections for 2050 (2041-2060 average) and 2070 (2061-2080 average) were also obtained 

from the fifth IPCC climate assessment report (IPCC 2013). Projected future air temperature and 

precipitation values were extracted from 19 general circulation models (GCMs), each containing 

between one to four representative concentration pathways (RCPs) that correspond to differing 

levels of greenhouse gas (GHG) emissions. Each of the 19 GCMs projects climate values using 

unique calculations and assumptions of atmosphere, ocean, sea-ice, and land components 

(Hijmans et al. 2005; Stocker et al. 2013; IPCC 2013). The RCP2.6 scenario has the lowest 

projected GHG emissions in 2050 and 2070 while the RCP8.5 is the “business as usual” scenario 

and projects the highest GHG emissions (IPCC 2013). The RCP4.5 and 6.0 are intermediate 

climate scenarios, corresponding to moderate increases in future GHG emissions (IPCC 2013). 
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Do walleye and smallmouth bass prefer the same lakes? 

 A redundancy analysis (RDA) was utilised to identify the environmental conditions that 

structure fish community composition in Ontario lakes. From the 722 lake dataset (Fig. 1), 645 

lakes were used to construct the RDA. We excluded 77 lakes because they were missing data for 

many of the predictor variables that were included (most notably total phosphorus and dissolved 

organic carbon). 

Response variables in the RDA include occurrence of walleye and smallmouth bass, and 

fishes from the percid, centrarchid, pike, cyprinid, gasterpsteid, sculpin, catostomid, and 

salmonid families.  A species was excluded if it was rare (occurred in fewer than 5% of lakes). 

Lake morphology (surface area; maximum depth), water chemistry (secchi depth; dissolved 

organic carbon; total phosphorus), and climate (2000-2012 July mean temperature and total 

precipitation) were used as explanatory variables to explain variation in the fish community of 

Ontario lakes. 

In the RDA, fish are represented as points in ordination space while the environmental 

predictors are represented by arrows.  If a fish point is oriented close to an arrow, it suggests that 

the fish tends to occur in lakes where that specific environmental variable is high.  If the fish 

point occurs 180° opposite of the arrow, it suggests that the fish species tends to occur in lakes 

where that environmental variable has low values. 

How does the presence of smallmouth bass influence walleye abundance?  

Boxplots were constructed to determine the abundance of walleye (expressed as catch per 

unit effort: CPUE) in lakes with and without smallmouth bass. We developed multiple linear 

regression models to identify the influence of smallmouth bass occurrence and environmental 

conditions on walleye abundance. Multiple linear regression models were utilised because 
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walleye CPUE is a continuous variable with integer values, and these models perform best when 

the response variable is continuous. Using CPUE as a response variable in place of total catch is 

preferable because it accounts for sampling effort of fish habitats at different depths (Tonn & 

Magnuson 1982; Jackson & Harvey 1997). 

In addition to multiple linear regressions, zero-altered negative binomial (ZANB) models, 

and zero-inflated negative binomial models (ZINB) were also used to identify the influence of 

smallmouth bass occurrence and environmental conditions on walleye abundance. Zero inflated 

models were utilised because approximately 31% of lakes in the BSM dataset contain walleye 

abundances of zero. ZANB and ZINB models will only run when count data are used as the 

response variable, thus total walleye catch was used for these models.  To accommodate for 

sampling effort in the ZANB and ZINB models, the total number of nets used in each lake was 

specified as an offset value to adjust the response variable such that sampling effort was 

considered (Zuur et al. 2009). 

Poisson and zero-inflated Poisson models were excluded from this analysis because of 

the considerable overdispersion in both walleye CPUE and total catch data (see Wenger & 

Freeman 2008; Zuur et al. 2009). A negative binomial model was also excluded as it could not 

compensate for the large proportion of zeros present in the BSM dataset. 

We divided the 697 lakes into two random, independent data subsets. Eighty percent of 

the data was kept for model training while the remaining 20% was used for model validation. All 

predictor variables were tested for normality: lake surface area, maximum depth, and secchi 

depth were log-transformed to meet assumptions of normality. Multicollinearity among predictor 

variables in each subsequent model was found to be low. A forward selection procedure 

containing a double-stop criterion (α = 0.05, and R
2
adj) developed by Blanchet et al. (2008) was 
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then implemented to identify which factors were important predictors of walleye abundance. The 

effectiveness of each model was evaluated by observing how well it was able to predict walleye 

abundance values from the validation dataset (i.e. we used the model with the highest fit on 

validation data). 

Which environmental conditions favour smallmouth bass and walleye co-occurrence? 

 We developed a logistic regression model for walleye-smallmouth bass co-occurrence in 

Ontario inland lakes. Data from the 605 lakes where the BSM program resampled lakes from the 

Aquatic Habitat Inventory (AHI) survey were used. The AHI survey was conducted between 

1957 and 1986 and we chose to analyse the 605 overlapping lakes so that we could compare the 

rates of walleye-smallmouth bass co-occurrence between historical and contemporary time 

periods. Similar to the walleye abundance models, these 605 lakes were divided into 80% 

training and 20% validation datasets; predictor variables were tested for normality, and were 

subsequently transformed if assumptions were not met; and were subjected to a double-stop 

criterion forward selection procedure (Blanchet et al. 2008) for variable selection. To maximise 

the sensitivity (proportion of true positives) and specificity (proportion of true negatives) of the 

walleye-smallmouth bass co-occurrence model, Receiver Operating Characteristics (ROC) 

curves were used. ROC curves are recommended as the number of co-occurrences and non-co-

occurrences were not equal within the data (Fielding & Bell 1997; Sharma & Jackson 2008). 

Lastly a Cohen’s Kappa statistic was calculated to evaluate the model.  A Kappa statistic 

between 0-0.4, 0.4-0.75, and 0.75-1 represent poor, good, and excellent predictive models 

respectively (Fielding & Bell 1997). 
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Projections of walleye-smallmouth bass co-occurrence under future climate change regimes 

 The strongest predictive model of walleye-smallmouth bass co-occurrence was used to 

project future co-occurrence under all 126 future climate scenarios for the years 2050 and 2070. 

The percent change in co-occurrence for each of the 126 scenarios was then calculated relative to 

contemporary (2008-2012) co-occurrence rates. The R-coding environment was used to perform 

all statistical analyses (R Development Core Team, 2015).   
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RESULTS 

Do walleye and smallmouth bass prefer the same lakes? 

Twenty percent of the variation in the fish community in Ontario lakes can be explained 

by lake morphology, water chemistry, and climate. The RDA suggests that walleye prefer larger, 

more turbid lakes (low secchi depth), in addition to other members of the percid family, many of 

which are prey for walleye, and pike species (Fig. 2). The RDA also revealed that smallmouth 

bass along with other centrarchids prefer lakes that are in warmer regions (Fig. 2). This RDA 

suggests that walleye and smallmouth bass do not prefer similar environmental conditions. 

How does the presence of smallmouth bass influence walleye abundance? 

Despite their preference for different environmental conditions, walleye and smallmouth 

bass still coexist in 37% of the lakes from the BSM dataset. Walleye abundance was 

approximately 2.5 times lower in lakes that also contain smallmouth bass (Fig. 3).  The median 

CPUE of walleye in lakes with smallmouth bass was 1.26 whereas lakes without smallmouth 

bass had a median walleye CPUE of 3.16 (Fig. 3). 

Multiple linear regression models were used to evaluate how smallmouth bass presence 

influences walleye abundance. The most parsimonious model included lake surface area, 

maximum lake depth, mean July temperature (2000-2012), mean July precipitation (2000-2012), 

and the occurrence of smallmouth bass as predictor variables of walleye abundance (expressed as 

CPUE) (Table 1).  The model indicates that walleye abundance increases in larger, shallower 

lakes, with lower temperatures, high precipitation, and no smallmouth bass (Table 1). After 

adjusting for the number of predictor variables used, this model was found to explain 32% of the 

variation in walleye abundance (R
2

adj = 0.32). 
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The most effective ZINB model included lake surface area, maximum lake depth, mean 

July precipitation (2000-2012), and the occurrence of smallmouth bass as predictor variables of 

walleye abundance (expressed as a total catch with number of nets used as an offset value to 

accommodate for sampling effort) (Table 1).  This model indicates that walleye abundance 

increases in larger, shallower lakes, with more precipitation, when smallmouth bass are not 

present (Table 1). The ZINB model performed slightly better than the ZANB model as it had a 

higher adjusted R
2
 value, higher Pearson, and Spearman correlations, and a lower RMSE 

calculation (Table S1).  The RMSE of this model on the validation dataset was 76.9, indicating 

that mean error in predicted abundance would be 76.9 walleye counts.  Overall this model was 

found to explain 41% of the variation in walleye abundance in Ontario lakes (R
2

adj = 0.41).   

Which environmental conditions favour smallmouth bass and walleye co-occurrence? 

 Smallmouth bass and walleye co-occurred in 240 lakes in the 2008-2012 sampling 

period, an increase of 100 co-occurrences, or 71.4% from the initial sampling of those lakes 

between 1957 and 1986. The logistic regression model suggested that walleye and smallmouth 

bass were found to co-occur in large lakes, in warm regions, with lower precipitation rates (Table 

2). This model had a classification success rate of 75%, a sensitivity of 69%, specificity of 78% 

and a kappa statistic of 0.44, indicating that it was a “good” predictor of walleye-smallmouth 

bass co-occurrence (Fielding & Bell 1997). 

How will co-occurrence change under future climate projections? 

Changes in temperature and precipitation are projected to lead to a 246% increase 

(ranging between 48-332%) in walleye-smallmouth bass co-occurrence by 2050 and a 269% 

increase (between 86-332%) in co-occurrence by 2070 (Fig. 4) relative to the number of co-

occurrences in the historical period (between 1957 and 1986). Lower temperatures (projected by 
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the RCP2.6 scenario) more frequently produce fewer co-occurrences while the scenarios with 

higher temperature projections (e.g. the RCP8.5) have higher incidences of co-occurrence (Fig. 

4).  If changes in July temperatures exceed 4°C, or if precipitation declines by more than 25mm, 

a saturation effect is predicted whereby all lakes in the dataset are projected to contain both 

walleye and smallmouth bass (Fig. 4).  
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DISCUSSION 

Although our study demonstrates that walleye and smallmouth bass prefer different 

environmental conditions, we found that when they both occur in the same lakes, walleye 

abundance is reduced at the landscape level. Other studies have documented that smallmouth 

bass are better competitors than walleye in food-limited laboratory conditions (Wuellner et al. 

2011), and that they displace walleye from feeding in littoral zones by outcompeting them for 

prey and by displaying aggressive territorial behavioural at the individual lake level (Galster et 

al. 2012). Our study is the first to describe a negative relationship between walleye abundance 

and smallmouth bass occurrence across a landscape of 697 lakes. Specifically, we found that 

walleye prefer lakes that are larger, and have low secchi depths (low water clarity) while 

smallmouth bass prefer lakes that are in warmer regions.   This illustrates how temperature is the 

primary limiting abiotic factor for smallmouth bass (and all centrarchids). In lakes where 

temperature is not limiting and where smallmouth bass and walleye co-exist, we found that 

walleye abundance was reduced in the presence of smallmouth bass and that smallmouth bass 

presence was a significant, negative predictor of walleye abundance. Future climate projections 

suggest that temperatures will rise in response to increased greenhouse gas emissions in Ontario 

(IPCC 2013).  Under these future climate regimes, it was projected that walleye-smallmouth bass 

co-occurrence increases on average by 257% as a result of increased temperatures that facilitate 

smallmouth bass expansions, potentially further exacerbating vulnerability of walleye 

populations. 

Climate change impacts on Ontario Lakes 

Climate change has already begun to affect fish communities in Ontario lakes. The range 

boundaries of some coolwater, and many warmwater predators have undergone northerly 
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expansions in response to increasing temperatures between 1957 and 2011 (Alofs et al. 2014).  

This is especially true of species from the centrarchid family, all of which are expected to expand 

northward in response to climate change (Sharma et al. 2007; Alofs & Jackson 2015; Van Zuiden 

and Chen et al., in review).  Climate change projections for smallmouth bass indicate that by 

mid-to-late century they could expand their range across all of Ontario (Van Zuiden & Chen et 

al. in review), and potentially across the entirety of Canada (Sharma et al. 2007). Alternatively, 

cold and some coolwater species are expected to be negatively affected by increasing 

temperatures, and are projected to decline in the future due to climate change (Hari et al. 2006; 

Sharma et al. 2011; Van Zuiden & Chen et al. in review). Walleye in Ontario are projected to 

experience northerly range shifts under climate change projections, whereby they become 

extirpated from their southern ranges, vulnerable in their central ranges, and increase in their 

northern ranges (Van Zuiden & Chen et al. in review). 

There are numerous mechanisms through which this shift in walleye distributions could 

be facilitated.  The availability of spawning waters could decline under warming temperature 

regimes as walleye prefer spring water temperatures 6-12°C (McMahon et al. 1984). Shallow 

lakes preferred by walleye (McMahon et al. 1984; STC 2007) are expected to warm faster than 

deeper lakes (Williamson et al. 2008; Adrian et al. 2009), which could cause the availability of 

suitable habitat to decline. Lower future precipitation rates (IPCC 2013) will reduce lake 

turbidity, forcing walleye to feed less frequently during the day. Walleye could also experience 

increased incidences of competitive interactions as more warmwater predators invade lakes that 

were historically too cold for them (Alofs et al. 2014; Alofs & Jackson 2015). Walleye growth 

and survival could be negatively affected by these additional stresses, hence facilitating their 

northern shift into more suitable habitats. 
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How smallmouth bass negatively influence walleye abundance? 

  We found that walleye abundance is reduced across a landscape in the presence of 

smallmouth bass.  A number of different mechanisms could explain why walleye abundance is 

reduced when lakes are shared with smallmouth bass.  The first is predation, whereby 

smallmouth bass have been observed to eat young walleye, causing an inverse relationship of 

abundances between the two species when they both live in the same lakes (Johnson & Hale 

1977; Zimmerman 1999; Hoxmeier et al. 2006). This predation is more prevalent when habitat 

conditions are favourable for smallmouth bass i.e. when lakes are smaller, warmer, and less 

turbid (Krishka et al. 1996). As walleye are already heavily predated upon by other pike and 

centrarchid species (Bozek et al. 1999; Fayram et al. 2005), the added pressure of smallmouth 

bass predation could explain why walleye abundance is reduced in lakes shared by both species. 

 Competition for space and prey resources is another possible reason for walleye 

reductions in the presence of smallmouth bass. Early research on which species is the stronger 

competitor yielded mixed results. Kempinger & Carline (1977) noted that smallmouth bass 

populations in northern Wisconsin lakes declined when walleye were introduced while Johnson 

& Hale (1977) found that walleye populations declined after smallmouth bass introductions in 

Minnesota lakes.  Together these studies illustrate that introductions of either walleye or 

smallmouth bass into lakes where the other dominates results in a reduction of the native 

predator. As most lakes in Ontario are native to walleye and not smallmouth bass, it is more 

likely that the results from the Johnson & Hale (1977) study will be mirrored across Ontario’s 

landscape. 

The competitive mechanism for this reduction in walleye is not well understood.  

Although walleye and smallmouth bass utilise many of the same prey resources (Fedoruk 1966; 



55 
 

 

Zimmerman 1999) the proportions of each prey item consumed differ. Diet overlap studies have 

found that the gut contents of adult walleye contain mostly fish while those of adult smallmouth 

bass contain invertebrates and fish (Johnson & Hale 1977; Frey et al. 2003). The difference in 

prey preferences may not directly explain why walleye reductions occur when smallmouth bass 

are present, however it is possible that prey items preferred by walleye share similar diets to 

smallmouth bass.  For example, yellow perch (Perca flavescens) are a preferred prey species of 

walleye (Nielsen 1980; Kerr et al. 1997; Scott & Crossman 1998) and feed on littoral 

invertebrates similar to smallmouth bass (Brown et al. 2009). If smallmouth bass outcompete 

yellow perch for the same prey resources, walleye reductions could occur as a by-product of 

yellow perch declines.  Walleye may also be competitively excluded from sharing the same 

resources as smallmouth bass when both are present in the same system, potentially explaining 

why overlap of prey preferences was found to be low in some studies (Frey et al. 2003; Wuellner 

et al. 2011). 

 Walleye reductions can also occur if smallmouth bass displace them from littoral feeding 

zones.  Galster et al. (2012) found that walleye typically derive their energy from benthic prey 

resources in the absence of smallmouth bass whereas they rely more heavily on pelagic prey 

resources when smallmouth bass are present. This dietary shift likely occurs because smallmouth 

bass exhibit agonistic feeding behaviour in the presence of competitors, aggressively eating at all 

times when other predators (including other smallmouth bass) are present (Wuellner et al. 2011). 

This voracious feeding behaviour has been linked with massive littoral prey declines (especially 

cyprinids) in lakes where smallmouth bass have been introduced (MacRae & Jackson 2001; 

Jackson 2002; Sharma et al. 2007). In smaller lakes where pelagic prey resources are limited, 

walleye abundance would likely decline in the presence of smallmouth bass as they tend to 
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diminish the availability of prey before other predators get a chance to feed (Wuellner et al. 

2011). In oligotrophic systems this would be especially problematic for walleye as they would 

only be able to feed during the night due to their negative phototactic response (Lester et al. 

2002; Lester et al. 2004) while smallmouth bass are able to feed consistently throughout the day 

(Johnson & Hale 1977; Warren 2009). 

Implications of increasing co-occurrence 

To project future co-occurrence rates of walleye and smallmouth bass, all climate change 

climate change scenarios were utilised, as advised by the IPCC due to the large amount of 

variability between each GCM. This variability is attributable to how each GCM represents and 

calculates physical processes (e.g. clouds, water vapour, ocean mixing processes), and climate 

feedback mechanisms (Beaumont et al. 2008; IPCC, 2013).  As each GCM is highly variable, 

using more of them creates a broader uncertainty envelope that is better able to reflect the 

likelihood of future co-occurrence rates (Sharma et al. 2011). 

Many scenarios of future climate change predict that temperatures across Ontario will 

increase, while precipitation will decrease (IPCC 2013).  Earlier studies suggest that these 

climatic changes will have positive effects on smallmouth bass distributions, and potential 

negative effects on walleye populations (Chu et al. 2005; Sharma et al. 2007; Van Zuiden & 

Chen et al. in review). The occurrence rates of smallmouth bass are projected to increase faster 

than walleye are projected to decline (Van Zuiden & Chen et al. in review).  This likely occurs 

because lakes become suitable for smallmouth bass more quickly than they become unsuitable 

for walleye under future climate projections. Ultimately, this leads to increased rates of co-

occurrence, particularly in central and northern Ontario (Van Zuiden & Chen et al. in review). 

Smallmouth bass-walleye co-occurrence rates have already increased by approximately 71% 
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since 1957-1986 and are projected to increase by an average of 269% by 2070.  As co-

occurrence rates are predicted to continue to increase, we predict walleye abundance will decline 

due to the increased presence of a superior competitor.  These declines are likely to be further 

exacerbated under future climate scenarios as lake temperatures increase because the availability 

of preferable thermal habitat for smallmouth bass is likely to increase, while thermal habitat 

space for walleye is expected to decrease (Hokanson 1977; Shuter et al. 1980; Edwards et al. 

1983; McMahon et al. 1984). 

 Although our model predicts that walleye and smallmouth bass could co-occur in all 

lakes under future climate regimes, it is unlikely that small lakes would be able to sustain 

populations of both species (Krishka et al. 1996). Walleye prefer lakes that are larger than 400 

ha, but are able to establish themselves in lakes closer to 100 ha if they form larger, highly 

connected systems (Colby et al. 1979; Kerr et al. 1997). Approximately 15% of lakes used in this 

model are smaller than 100 ha, and will therefore be unlikely to support walleye, let alone a 

combination of both walleye and smallmouth bass. 

Conclusions 

 The implications of our study will be important when making future fisheries 

management decisions as northerly invasions of smallmouth bass will continue to decimate 

native prey populations as air temperatures increase (MacRae & Jackson 2001; Sharma et al. 

2007; Van Zuiden & Chen et al. in review). Forage fish contractions have already begun to occur 

as a result of climate change and it is highly probable these contractions are exacerbated further 

by the expansions of warmwater predators (Alofs et al. 2014).  The over-predation of forage fish 

and their subsequent range contractions not only negatively affect walleye, but also other native 

northern predators such as lake trout (e.g. Vander Zanden et al. 1999; Sharma et al. 2009). 
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Despite the overwhelming evidence that fish community composition is heavily influenced by 

predator-prey relationships (Harvey, 1981; Jackson et al. 1992; Jackson 2002), ecologists have 

largely ignored how species interactions affect biodiversity when examining the effects of 

climate change (Gilman et al. 2010). 

 It is important to take these relationships into consideration in future studies as there is 

considerable value in Canada’s freshwater fisheries (approximately 4.7 billion dollars) (Shuter et 

al. 1998).  As climate change continues to facilitate smallmouth bass invasions into new lakes, 

Canada’s native fisheries are at greater risk of collapse. These consequences underline the 

importance of reducing greenhouse gas emissions and invasion of non-native species in the 

future, as the continued existence of native fisheries is at stake.    
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TABLES 

Table 1: The most parsimonious models used to predict walleye abundance and walleye-

smallmouth bass co-occurrence in lakes across Ontario. 

Model Response variable Predictor variables Model 

coefficients 

Significance 

level (p-value) 

Multiple linear 

regression 

Walleye abundance 

(CPUE) 

Surface area (ha) 1.67 < 0.01 

  Max depth (m -3.83 < 0.01 

     

  Mean summer temperature (°C) 

(2000-2012) 

-0.40 < 0.01 

     

  Mean July precipitation (mm) 

(2000-2012) 

0.02 < 0.01 

     

  Occurrence of smallmouth bass -0.48    0.01 

     

Zero-inflated 

negative binomial 

Walleye total catch Surface area (ha 0.54 < 0.01 

  Max depth (m) -1.63 < 0.01 

     

  July precipitation (mm) (2000-

2012) 

0.02 < 0.01 

     

  Occurrence of smallmouth bass -0.53 < 0.01 

     

Logistic 

regression 

Walleye-smallmouth 

bass co-occurrence 

Surface area (ha) 1.01 < 0.01 

  Mean August temperature (°C) 

(2000-2012) 

0.81 < 0.01 

     

  Mean August precipitation (mm) 

(2000-2012) 

-0.04    0.03 
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FIGURES 

 

Figure 1: Distribution of the 722 lakes surveyed in the BSM program during 2008 and 2012.  
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Figure 2: Redundancy analysis describing the association between fish and their environments 

across Ontario lakes. Fish species and families are represented by points. Lake characteristics 

and climate variables are represented by arrows.  Environmental variables used are as follows: 

secchi depth, dissolved organic carbon (DOC), mean July precipitation between 2000 and 2012, 

total phosphorus (P), lake surface area, mean July temperature between 2000 and 2012, and 

maximum lake depth.  Environmental variables describe 20% of the variation in fish 

communities in Ontario lakes (R²adj. = 0.20). The relationship between fish and their 

environments is significant (p < 0.05). 
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Figure 3: Walleye abundances in lakes when smallmouth bass are present (left box plot) and they 

are absent (right box plot).  The median abundance of walleye when bass are present is 1.26 and is 

3.16 when they are absent.  
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Figure 4: Percent change in walleye-smallmouth bass co-occurrence under 126 climate change 

scenarios in 2050 and 2070 as temperature increases (a), and precipitation changes (b). 

Calculations for percent change in co-occurrence are relative to the historical period (1957-1986) 

when there were 140 lakes in which walleye and smallmouth bass co-occurred.  

(a) (b) 
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SUPPORTING INFORMATION 

Table S1: Model comparison of zero-altered and zero-inflated negative binomial (ZANB and 

ZINB, respectively) models. Total walleye catch was used as a response variable for both models 

below and number of nets was used as an offset value to allow the models to take the sampling 

effort of each lake into consideration. 

Model Predictor variables Adj. R
2
 r p RMSE SMB effect size 

ZANB SA - MxD + July pre - SMB 0.407 0.641 0.702 77.2 -0.53 

 

ZINB SA - MxD + July pre - SMB 0.409 0.643 0.707 76.9 -0.53 

 

Note: Values calculated for each model include Adjusted-R
2
 (Adj. R

2
), Pearson correlation 

coefficient (r), Spearman rank correlation (p), and root mean square error (RMSE). Abbreviated 

terms for predictor variables are as follows: lake surface area (SA); lake maximum depth (MxD); 

July precipitation for the years 2000-2012 (July pre.); occurrence of smallmouth bass (SMB).  
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SUMMARY AND CONCLUSIONS 

Using climate data from the most recent IPCC climate assessment report (2013) we were 

interested in predicting how walleye, a coolwater fish, and smallmouth bass, a warmwater fish, 

would respond to future changes in temperature and precipitation as a result of climate change. 

Walleye were projected to undergo northerly range shifts in response to climate change; a novel 

response, as previous research using older IPCC climate data projected future walleye 

expansions (e.g. Shuter et al., 2002; Chu et al., 2005).  Smallmouth bass were predicted to 

expand across Ontario in response to climate change.  Although this finding is agreement with 

previous literature (e.g. Sharma et al., 2007) we were shocked to observe that projections from 

“the business as usual” scenarios often yielded complete saturation of Ontario lakes with 

smallmouth bass by the year 2070. As smallmouth bass were projected to expand into numerous 

walleye lakes, we were also interested in elucidating how walleye abundance is affected by the 

presence of smallmouth bass.  We found that walleye abundance was reduced in lakes where 

smallmouth bass were present at the landscape level and that under future climate projections 

walleye-smallmouth bass co-occurrence increased. 

As water temperatures become more ideal for smallmouth bass and less favourable for 

walleye it is likely that naturally occurring walleye populations will experience declines or 

extirpations as smallmouth bass populations continue to expand northward.  This presents 

fisheries managers with a difficult task, as northern fisheries might be in danger of becoming 

homogenised or collapsing upon smallmouth bass invasion (MacRae & Jackson, 2001; Rahel, 

2002; Jackson, 2002). To date, fisheries managers have facilitated smallmouth bass expansions 

in Ontario through the introduction of stocking programs (Jackson, 2002). These stocking efforts 

continue despite the growing evidence that smallmouth bass are a “winner-species” that easily 
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outcompete other top predators under scenarios of climate change (Vander Zanden et al., 2004; 

Sharma et al., 2007; Pease & Paukert, 2014). In order to maintain a viable walleye fishery across 

Ontario, management of smallmouth bass expansions will need to become more stringent in the 

future. Although preventative management decisions could slow the impending expansion of 

smallmouth bass, continued attention must also be paid to curbing greenhouse emissions. If 

temperatures are allowed to increase along their current trajectory the outcome for Ontario 

fisheries could be disastrous. 
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APPENDIX 

 
 

Appendix figure 1: Methodological workflow overview, outlining the steps required to repeat this 

chapter 1 of this project.  Red boxes indicate our approach to answering research questions while 

blue boxes expand on these approaches with more specific detail. 
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Chapter 1 workflow  

 

Data quality control 

1. Ensure extraction is correct 

a) Check all lakes to ensure that extracted climate values have a numerical value that is 

not 0 or 9999 

 

2. Delete lakes with anomalous data 

a) Lakes with recorded depths or surface areas of 0 were deleted 

b) Lakes where mean depth or secchi depth of the lake exceeded max depths were 

deleted 

c) Lakes with latitudes or longitudes with inappropriate signs were deleted 

 

3. Check multicollinearity 

a) To test which environmental variables are correlated with one another, create a 

correlation matrix in the computer program R using the “cor.test” function 

b) The resulting correlation matrix will display the correlation coefficients (r-values) 

between all environmental variables 

c) If a resulting correlation coefficient between two variables is higher than 0.70, they 

cannot both be simultaneously in any of the following variable selection or model 

creation steps  

 

4. Randomly divide data into 80% training, and 20% validation subsets 

 

Forward selection 

a) Install the “packfor” package in R to use the “forward.sel” function 

b) From the training dataset, group environmental variables (including climate) and fish 

occurrence variables separately 

c) Set either walleye or smallmouth bass occurrence as the response variable and the 

group of non-correlated environmental variables as explanatory variables in the 

“forward.sel” equation 

d) Explanatory variables that were found to be significant (p<0.05) predictors of either 

walleye or smallmouth bass occurrence were used in the following steps 

e) Lakes with missing data for important predictor variables were deleted 

 

Logistic regression 

1. Model training 

a) Using the “glm” equation in R, set walleye or smallmouth bass occurrence as the 

response variable 

b) Set a combination environmental variables that were significant predictors of walleye 

or smallmouth bass occurrence from forward selection as explanatory variables in the 

logistic regression model 

c) Ensure that the “glm” equation is set to model binomial response data by adding 

“family=binomial” to the equation 
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d) Ensure model is running on the training data 

e) Run numerous models with various combinations of explanatory variables to assess 

which is the best predictor of either walleye or smallmouth bass occurrence 

 

2. Model validation 

a) Run the model again using the validation subset of data 

b) Use Receiver Operating Characteristic (ROC) curves to determine a threshold that 

optimizes the sensitivity and specificity of the model using the “roc” function in R 

 

Mapping future projections of fish occurrence 

1. Projecting occurrence rates for 2050 and 2070 

a) Use the optimized logistic regression model with optimized ROC curve threshold to 

project the occurrence of walleye and smallmouth bass using data from 2050 and 2070 

scenarios of projected climate change 

b) Calculate probabilities of occurrence using all 126 scenarios of climate change 

c) Calculate the average projected occurrence rates for walleye and smallmouth bass in 

2050 and 2070 by averaging the occurrence rates from all scenarios of climate change 

for each year 

2. Creating maps for 2050 and 2070 

a) Using ArcGIS, plot the average projected occurrence rates of walleye and smallmouth 

bass in 2050 and 2070 as points 

b) Use the “ordinary kriging” function in ArcGIS to interpolate the probability of 

walleye and smallmouth bass occurrence across the landscape of Ontario 

c) Ensure that the probability of each interpolated pixel is calculated by using the mean 

probability of the nearest 50 lakes 
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Appendix figure 2: Methodological workflow overview, outlining the steps required to repeat this 

chapter 2 of this project.  Red boxes indicate our approach to answering research questions while 

blue boxes expand on these approaches with more specific detail. 



79 
 

 

 

Chapter 2 workflow 

 

Data quality control 

1. Ensure extraction is correct 

a) Check all lakes to ensure that extracted climate values have a numerical value that is 

not 0, or 9999 

 

2. Delete lakes with anomalous data 

a) Lakes with recorded depths or surface areas of 0 were deleted 

b) Lakes where mean depth or secchi depth of the lake exceeded max depths were deleted 

c) Lakes with latitudes or longitudes with inappropriate signs were deleted 

 

Redundancy analysis (RDA) 

a) Group fish species into their respective families (excluding walleye and smallmouth 

bass) 

b) Omit lakes from the RDA where environmental variables are missing data 

c) Set walleye and smallmouth bass occurrence as response variables using “rda” code in 

the R statistical programming software 

d) Set fish family richness as response variables 

e) Set environmental and climate variables as predictors of the fish response variables 

 

Abundance boxplots 

a) Create a comparative boxplot in R by plotting walleye abundance in lakes where 

smallmouth bass are present against walleye abundance in lakes where smallmouth 

bass are absent 

 

Data quality control 

1. Check multicollinearity 

a) To test which environmental variables are correlated with one another, create a 

correlation matrix in the computer program R using the “cor.test” function 

b) The resulting correlation matrix will display the correlation coefficients (r-values) 

between all environmental variables 

c) If a resulting correlation coefficient between two variables is higher than 0.70, they 

cannot both be simultaneously in any of the following variable selection or model 

creation steps 

 

2. Randomly divide data into 80% training, and 20% validation subsets 

 

3. Forward selection 

a) Install the “packfor” package in R to use the “forward.sel” function 

b) From the training dataset, group environmental variables (including climate) and fish 

occurrence variables separately 
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c) Set either walleye or smallmouth bass occurrence as the response variable and the 

group of non-correlated environmental variables as explanatory variables in the 

“forward.sel” equation 

d) Explanatory variables that were found to be significant (p<0.05) predictors of either 

walleye or smallmouth bass occurrence were used in the following steps 

e) Lakes with missing data for important predictor variables were deleted 

 

Multiple linear regression and zero-inflated models 

1. Multiple linear regression model training 

a) Using the “glm” equation in R, set walleye abundance (CPUE) as the response 

variable 

b) Set a combination environmental variables that were significant predictors of walleye 

abundance from forward selection (including smallmouth bass occurrence) as 

explanatory variables in the logistic regression model 

c) Ensure that the “glm” equation is set to model continuous response data by adding 

“family=family” to the equation 

d) Ensure model is running on the training data 

e) Run numerous models with various combinations of explanatory variables to assess 

which is the best predictor of walleye abundance 

 

2. Multiple linear regression model validation 

a) Run the model again using the validation subset of data 

b) Analyse how well the model fits the validation data (R
2

adj. value) 

 

3. Zero-inflated negative binomial model training 

a) Using the “zeroinfl” equation in R, set walleye abundance (as count values) as the 

response variable 

b) Set a combination environmental variables that were significant predictors of walleye 

abundance from forward selection (including smallmouth bass occurrence) as 

explanatory variables in the logistic regression model 

c) Add an offset value to the model by including “offset(sampling effort variable name)” 

syntax so that sampling effort is taken into account when modeling pure count values  

d) Ensure that the “zeroinfl” equation is set to model continuous response data by adding 

“family=family” to the equation 

e) Ensure model is running on the training data 

f) Run numerous models with various combinations of explanatory variables to assess 

which is the best predictor of walleye abundance 

 

4. Zero-inflated negative binomial model validation 

a) Run the model again using the validation subset of data 

b) Analyse how well the model fits the validation data (R
2

adj. value) 

 

 

Walleye-smallmouth bass co-occurrence logistic regression model 

1. Create a co-occurrence variable by summing walleye and smallmouth bass occurrences 

together 
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2. Use the forward selection procedure to identify important predictors of co-occurrence of 

walleye and smallmouth bass 

 

3. Model training 

a) Using the “glm” equation in R, set walleye-smallmouth bass co-occurrence as the 

response variable 

b) Set a combination environmental variables as predictors of co-occurrence 

c) Ensure that the “glm” equation is set to model binomial response data by adding 

“family=binomial” to the equation 

d) Ensure model is running on the training data 

e) Run numerous models with various combinations of explanatory variables to assess 

which is the best predictor of either walleye or smallmouth bass occurrence 

 

4. Model validation 

a) Run the model again using the validation subset of data 

b) Use Receiver Operating Characteristic (ROC) curves to determine a threshold that 

optimizes the sensitivity and specificity of the model using the “roc” function in R 

 

 

 


