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GENERAL ABSTRACT 

Absolute pitch (AP) is a rare ability that is defined by being able to name musical pitches 

without a reference standard.  This ability has been of interest to researchers studying music 

cognition and the processing of pitch information because it is very rarely expressed and raises 

questions about developmental interactions between biological predispositions and musical 

training. This dissertation focuses mainly on the peripheral and central neural substrates and is 

divided into seven chapters. 

The first chapter reviews the anatomy, function, and frequency resolution of the auditory 

peripheral and central nervous system. It includes background information pertaining to the 

origins of AP and describes inconsistencies reported throughout a number of studies that 

characterize AP emergence. Chapter two details a series of peripheral experiments on twenty AP 

and thirty-three control subjects recruited for testing at two locations. The goal was to test 

whether frequency resolution differences could be resolved at the level of the cochlea within 

both groups as a potential correlate for the genesis of AP.  

Chapter three details two behavioural tests that were administered to assess the smallest 

frequency difference that AP musicians could resolve and to test how well they could detect 

melodic mistuning excerpts compared to non-AP musicians and controls without musical 

experience. Both AP musicians and non-AP musicians did significantly better in both tests 

compared to non-musicians. However, there were no differences between the AP and non-AP 

musician groups. Chapter four details a functional MRI study that measured frequency tuning in 

the cortex using a population receptive field (pRF) model that estimates preferred frequency 

bandwidth in each voxel. This method was also tested in auditory subcortical nuclei such as the 

inferior colliculus and medial geniculate nucleus. 

Chapter five reports the neuro-anatomical correlates of musicianship and AP using 

structural MRI. Here we investigated cortical thickness and volume differences among the three 

groups and found a number of regions differed significantly. Cortical thickness was significantly 

greater in the left Heschl’s gyrus (an area that acts as a central hub for auditory processing) in AP 

musicians compared to non-AP musicians and non-musicians. AP and non-AP musicians also 

exhibited increased cortical thickness and volume throughout their cortex and subcortex. In line 
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with previous studies, AP musicians showed decreased cortical thickness and volume in frontal 

regions such as the pars opercularis part of the inferior frontal gyrus.  

 

Chapter six reports the neuro-anatomical correlates of musicianship and AP using 

diffusion tensor imaging (DTI) to measure connectivity and white matter structural integrity in 

regions associated with audition and language processing. Tracts connecting language processing 

regions were reduced in volume in AP musicians compared to their non-AP counterparts. 

Chapter seven includes the general discussion, which integrates the findings and results from the 

five experiments. Our findings indicate that the sharpness of frequency tuning did not differ in 

either peripheral or central auditory processing stages among AP and non-AP groups. This 

implies that AP possessors do not encode or represent auditory frequency any differently than 

other groups, from the periphery through auditory cortex; instead, the neural substrate of their 

abilities must lie elsewhere. The automatic and working memory independent categorization 

abilities in AP may reflect more refined efficiency in local but not global functional connectivity.  
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Chapter 1 
 
1.1 General Introduction 
 

Absolute pitch (AP), also referred to as perfect pitch, characterizes the ability to identify or 

recreate a given note or collection of notes in the absence of a reference note (Ward, 1999; 

Deutsch, 2013). It is not simply a better ability to hear, but the ability to mentally class sounds into 

remembered categories. There is still debate as to whether AP is genetic or a learned ability that is 

linked to one’s exposure to music during critical period of development.  The prevalence of AP is 

relatively rare, with estimates of less than 1 in 10,000 reported (Bachem, 1955; Profita & Bidder, 

1988; Deutsch, 2013), affecting both genders equally (Deutch et al., 2005). Additionally, higher 

rates of AP ability have been reported in students at music conservatories (Gregersen et al., 1999). 

Nonetheless, AP ability remains difficult to acquire even among expert musicians who have had 

the same amount of musical training, i.e., spending tens of thousands of hours practicing and 

reading scores (Deutsch & Dooley, 2009). Reported prevalence rates among expert musicians 

differed between cultures with estimates between 1–20% found in Western musicians (Vitouch, 

2003) and close to 50% in musicians from Japan (Miyazaki, 1988; Gregerson et al., 1999). An 

explanation for this deviation stems from the Suzuki method used in Japan that trains musicians to 

play by ear rather than relying on sight-reading scores. In this way, this former method heavily 

relies on auditory feature learning that may play a role in AP development.  

 

Since AP ability is found in only a subset of musicians, examples of noted musicians who 

had AP are Mozart, Bach and Beethoven, whereas Wagner and Schumann lacked AP ability 

(Sacks, 2007). The mechanisms underlying AP are not well understood. It is worth noting that 

although this ability is rare, one might wonder why being able to label a pitch without a reference 

tone is not universal, akin to being able to automatically label a colour one perceives. Five 

experiments have been outlined in this dissertation that investigate how AP ability emerges with 

the prospect of understanding its underlying mechanism.  

 

The first experiment examined whether there was evidence for a peripheral (i.e., cochlear) 

basis of AP based upon otoacoustic emissions (OAEs, which are low-level sounds emitted by the 

cochlea that provide information on inner ear health). The chief motivations were that both AP and 

spontaneous otoacoustic emissions (SOAEs) appear to have genetic components and anecdotal 
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observations of prevalence in certain populations, for example, a relatively higher incidence of 

both in Asians (Deutch et al., 2005; Gregerson et al., 2001).  

 

The second experiment looked at behavioural differences in AP musicians, non-AP 

musicians, and control groups without musical training. The idea behind using a non-AP musician 

group was to control for differences that may have been associated with musical training. In this 

way we were able to tease apart AP ability on its own. The smallest frequency difference, or just 

noticeable difference (JND) thresholds were determined at two different test frequencies to discern 

which group fared better. Melody mistuning tasks were administered that tested how well each 

group detected slight differences in timbre, duration, and tempo of musical excerpts that were held 

in working memory. This was motivated by research that found that AP possessors had an 

enhanced auditory digit span as compared to matched non-AP musicians, signifying that auditory 

working memory may be involved in AP emergence (Deutsch & Dooley, 2013). 

 

The purpose of the third experiment was to find evidence of a central basis for AP by using 

functional magnetic resonance imaging (fMRI). Looking for differences in the tonotopic map 

would be one approach to finding if neural markers distinguishing the AP musician group 

compared to the non-AP musician and control groups exist. We established a tonotopic mapping 

protocol of the auditory cortex. Participants were subjected to an auditory stimulus consisting of 

pure tone logarithmic sweeps modified from DeMartino et al. (2013) and the data were analyzed 

using an adaptation of the population receptive field (pRF) technique developed by Dumoulin and 

Wandell. (2008) used initially for retinotopic mapping. The pRF approach was used to estimate 

different neuronal population quantities such as sound frequencies in the auditory cortex. Our 

model treated the pRF underlying each voxel's response as a one-dimensional Gaussian function of 

frequency. This technique provided an estimated sensitivity function for each voxel with a given 

center, or preferred frequency, and standard deviation, or tuning bandwidth. The fundamental 

question of how the auditory cortex is organized in AP musicians, non-AP musicians and non-

musicians with different pitch discrimination abilities would help reveal differences in auditory 

processing abilities. This work was motivated in conjunction with the behavioural JND experiment 

that tested if frequency discrimination was enhanced in AP possessors. One could then predict 

sharper frequency tuning in AP musicians to better explain their enhanced pitch categorization 

ability. 
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This brings us to the fourth experiment that looked at cortical thickness and volume 

differences globally to find evidence of a central basis for AP using structural MRI. Previous 

studies have reported inconsistent findings based on structural differences found in AP possessors. 

However, the general consensus seems to suggest that cortical auditory and frontal regions are 

implicated in its development. We had used a larger sample size compared to previous studies and 

predict to find similar regions affected that are associated with AP emergence.  Lastly, the fifth 

experiment measured the connectivity of the arcuate fasciculus (AF) that connects Wernicke’s area 

located in the posterior section of the superior temporal gyrus (STG) of the temporal cortex, known 

for its role in language comprehension (Wernicke, 1875;1995) to Broca’s area located in the 

frontal lobe, known for its role in language processing and music perception (Brown et al., 2006; 

Fadiga et al., 2009) using diffusion tensor imaging (DTI). The AF has not been directly studied in 

AP. However, a previous study found enhanced connectivity within the STG and middle temporal 

gyrus (MTG) of the temporal cortex in AP musicians compared to non-AP musicians using DTI 

(Loui et al., 2011). In contrast, another study found that the superior longitudinal fasciculus (SLF) 

that is comprised of the AF showed reduced white matter tract integrity (Oechslin et al., 2010a). 

This motivated us to look at the AF in AP since the STG is associated with one of the regions it 

connects with. Likewise, the AF has been looked at in congenital amusia (tone-deafness) with 

inconsistent findings that report it being significantly decreased in congenital amusic participants 

(Loui & Schlaug, 2009), whereas another study found no differences between amusics and controls 

(Chen et al., 2015).  

 
Overall, the findings of all these experiments provide information that fill the gaps in 

current literature on the manifestation of AP ability and help tie in commonalities and 

discrepancies from previous studies. AP possessors are known for their enhancements in pitch 

categorization and perception ability that is rare in the population. In order to be able to isolate AP 

ability, matched musicians and controls without musical ability need to be included for testing. To 

understand how the human auditory system develops, we cannot do manipulative experiments, and 

instead rely on populations with altered ability and development. It is by studying rare populations 

such as AP that provides insight to the genetics and categorization of auditory processing that 

would add to the body of knowledge on how the normal auditory system develops and matures. 

Being able to detect if any subtle behavioural, peripheral, or central differences exist can be 

beneficial in providing a behavioural and neural marker for AP emergence and in turn may 
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correlate with auditory processing deficits such as amusia.  

 
1.2 Hypotheses 

We initially wanted to test if there were any peripheral differences in acoustic processing in 

AP possessors. There have not been any previous reports that looked at cochlear functioning via 

OAE measurements in AP musicians, with only inconsistent findings in non-AP musicians. For 

example, previous studies that looked at the medial olivocochlear system (MOCS), (a peripheral 

efferent neural pathway projecting from the brainstem to both cochlea) in musicians found variable 

results.  The MOC system is thought to be modulated centrally via the descending auditory 

pathway as well as modulate downstream cochlear functions. It is normally measured 

noninvasively by the suppression of OAEs using contralateral noise (Perrot & Collet, 2014). It was 

previously reported that MOC activity was significantly enhanced bilaterally in musicians 

compared to non-musicians (Perrot et al., 1999) suggesting that musicians may have enhanced 

auditory selective attention, improved hearing in noise, and better protection against acoustic 

trauma (Perrot & Collet, 2014).  However, other studies did not find significant MOC 

enhancements in musicians (Brashears et al., 2003; Stuart & Daughtrey, 2016) suggesting auditory 

processing and MOCs is similar between different levels of musicianship. Furthermore, since AP 

possessors and SOAEs have been linked to a higher prevalence in certain populations, and 

audiometric thresholds are typically lower at the frequencies SOAEs are found, we predicted to see 

an increase in the number of SOAEs in AP. We also measured stimulus-frequency emissions 

(SFOAE), which are sound delays emitted from the ear in response to an auditory stimulus. 

SFOAEs act as a proxy measure of peripheral frequency selectivity of the ear and we predict that 

AP possessors have longer delays, suggesting sharper frequency tuning of the auditory filters. If 

significant differences are not observed, this may then suggest that frequency selectivity does not 

occur at the level of the cochlea in AP and may then amplify as auditory information is processed 

centrally.  

We then wanted to measure the smallest frequency difference that AP possessors could 

detect compared to non-AP musicians and non-musicians behaviourally.  There has been only one 

previous study that looked at JND thresholds in AP that reported differences between musicians 

and non-musicians and no difference between AP and non-AP musician groups (Fujisaki & Makio, 

2002). We wanted to replicate this study using our large data set since Fujisaki et al. (2002) did not 
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indicate sample size as well as a number of other factors in their study. We therefore predict that 

JND thresholds would be smaller in musicians compared to non-musicians, whereas AP musicians 

may have lower thresholds overall that may or may not be significantly different compared to non-

AP musicians. 

 

Next, we wanted to find novel evidence for a central basis of AP by using the pRF model 

for our fMRI experiment. We hypothesize that AP possessors have more sharply tuned pRFs that 

may indicate a role of the ascending pathway for its underlying mechanism.  However, if 

differences are not found in frequency discrimination nor the degree of tuning, then perhaps AP is 

a more salient cognitive manifestation, and its underlying mechanism can be explained via 

different measures, for example differences in connectivity or neuroanatomical variations. 

Furthermore, this may mean that AP and control groups have the essential neural circuitry to 

process fine-grained pitch differences, and brain enhancements in AP might therefore lie in the 

fronto-temporal networks involving auditory and inferior frontal cortices. This brings us to the next 

central experiment which sought to determine if structural similarities and differences in cortical 

thickness and volume are evident in AP. There have been a number of inconsistencies reported on 

the neuroanatomy in AP. However, based on the general consensus we hypothesize that AP 

possessors have enhanced structural differences in a number of regions including auditory 

structures such as Heschl’s Gyrus (HG) and planum temporale (PT), and decreased cortical 

thickness in frontal regions. Furthermore, we looked at the AF, a structure that has been implicated 

in tone deafness with the hypothesis that connectivity within this structure may be altered in AP. 

Based on previous findings, we predict that we will find either enhancements in feed-forward 

connections to the frontal cortex, or instead will find reduced white matter tract integrity as 

observed with the STG finding that Oechslin et al. (2010a) reported. 

 
1.3 Anatomy and Function of the Auditory Peripheral Nervous System (PNS) 
 

In human hearing, the ear is responsible for the perception of sound by converting air 

pressure fluctuations (compression and rarefaction of a gas) to electrical impulses that travel 

through the auditory nerve to the brain. The ear can be separated into three sections (outer, middle, 

and inner) for the process of hearing.  As sound waves propagate through air, they enter through 

the outer ear comprised of the pinna (skin-covered cartilaginous flap) and pass through the external 

auditory meatus (external ear canal) traveling to the tympanic membrane (eardrum). The sound 
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waves cause the tympanic membrane to vibrate causing the air-filled cavity of the middle ear 

ossicles (three tiny bones malleus, incus and stapes) to vibrate, amplifying the sound. The ossicles 

link the tympanic membrane to the oval window of the cochlea and are responsible for acoustic 

impedance matching since the incoming sound waves propagate through air and need to be 

transferred to fluid within the cochlea of the inner ear. Since fluid is heavier and harder to vibrate 

than air, in order to hear sound, the middle ear mechanically amplifies the sound so that sound 

energy is sufficient when it is carried into cochlear fluids (Hamill & Price, 2014). Air pressure is 

equalized within the middle ear by the Eustachian tube that links the middle ear to the uppermost 

part of the throat. 

 

Within the inner ear lies the cochlea, a fluid filled snail shaped organ responsible for the 

conversion of mechanical pressure waves into electrical signals. The movement of sound waves 

causes pressure imbalances in the cochlea, specifically in the scala tympani and scala vestibule. As 

the stapes vibrates in the oval window, the cochlear fluids in the inner ear move, and it is this 

motion that permits hearing.  Since the fluids in the cochlea cannot be compressed, when the stapes 

footplate moves inward towards the inner ear, there will be a corresponding outward movement of 

the round window to allow for pressure relief, conversely when the stapes footplate moves outward 

toward the middle ear, the round window moves inwards. This inwards and outwards motion of the 

stapes footplate occurs at the same rate as the sound wave’s frequency, for example a 2000 Hz tone 

would create the stapes footplate to move in and out 2000 times per second (Hamill & Price, 

2014). 

 

Inside the cochlea, the movement of fluid creates ripples on the Reisner’s and the basilar 

membrane that cause deformations of the organ of Corti leading to the back and forth movement of 

the tectorial membrane. This movement is sensed by inner hair cells (IHCs) that have hair like 

projections (stereocilia) attached to the basilar membrane on the bottom and tectorial membrane on 

the top, while its nucleus lies centrally within the cell. As the basilar membrane vibrates, a shearing 

force is created causing the stereocilia to bend back and forth thereby converting the membrane 

movement into electrical signals that travel to the auditory nerve which connects to the brain for 

interpretation.  
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Outer hair cells (OHCs) differ in that they have stereocilia at the top of the cell, and a 

nucleus at the bottom and become stimulated by the auditory nerve causing the hair like 

projections to change in length with every sound wave. Their role is to change the compliance of 

certain sections of the tectorial membranes and by doing this some sound frequencies are amplified 

and some are attenuated.  This allows us to hear quiet sounds that for example are used when 

trying to listen to a conversation or some sound of interest in a noisy environment, and is known as 

cochlear filter sharpening (Evans, 1975; Hamill & Price, 2014). Within each human cochlea, there 

are approximately 3,500 IHCs that are considered to be the primary sensory hair cells of the 

cochlea and are innervated by dendrites of the auditory nerve. There are more OHCs within each 

cochlea, approximately 11,000 in humans and are arranged in 3–4 rows (Ashmore, 2008).  

 

1.4 Frequency Resolution: PNS 

 

Auditory input is received from the organ of Corti in the inner ear that acts as a sound 

frequency analyzer. Within this region, the basilar membrane of the cochlea is made up of hair 

cells tuned to higher frequencies at the base and lower frequencies at the apex. The hair cells form 

synapses with nerve fibers retaining the tonotopic organization towards the auditory cortex. A 

number of tonotopic progressions can then be found in the peripheral ear followed by a number of 

structures of the auditory nuclei in the brainstem (cochlear nucleus CN and superior olivary 

complex, SOC), midbrain (inferior colliculus, IC), thalamus (MGN), and in the auditory cortex 

(Reese & Palmer, 2010; Saenz & Langers, 2013). Based on psychoacoustic experiments in 

humans, it is generally agreed that the bandwidth of the peripheral filters have a width of about a 

sixth of an octave, or a critical band of 10–15% of the stimulus frequency (Moore, 1982). 

 

1.5 Anatomy and function of the Auditory Central Nervous System (CNS) 

 

From the periphery, auditory information is sent via the auditory nerve to central nervous 

system (CNS), first innervating the CN that subdivides auditory information into two different 

streams, one for processing binaural sound localisation, and the other for sound identification. The 

ventral stream primarily functions on sound localization and innervates the SOC that extracts the 

direction of the sound source by associating timing and intensities of sound stimuli received by the 

two ears. The auditory information is then sent to the IC, where the dorsal stream primarily 
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functions in extracting temporal variation, spectral, and sound information from the CN to get 

mapped onto the IC. The IC combines auditory information from both streams forming a 

representation of an auditory object that further sends projections to the MGN. The ventral division 

of the MGN projects predominantly to the primary auditory cortex (A1). The IC has been 

designated as an essential relay for auditory input to the MGN, however it has been reported that 

some neurons that send projections to the MGN bypass the colliculus (Malmierca et al., 2002). 

 

The auditory cortex is located on the upper surface of the temporal lobe in a region known 

as the superior temporal plane within the Sylvian fissure, also known as the lateral sulcus. The 

primary auditory cortex core is located in the posterior-medial part of Heschl’s gyrus (Brodmann 

area 41 (BA41)). The auditory core region is surrounded by belt and parabelt regions. The human 

auditory cortex can be divided into three areas on a macroscopic scale, which includes in the 

anterior posterior direction, the planum polare, the transverse temporal gyrus (Heschl’s gyrus 

(HG)), and planum temporale. The HG convolution is evolutionarily new, and has not been 

identified in the macaque monkey (Baumann et al., 2013), and only detected in a subset of 

chimpanzees (Hacket et al., 2001). 

 

 Auditory cortical cells show a variety of tuning curves that span from broad to narrow 

tuning, respond to single or multiple peaks in frequency sensitivity, and respond to stimuli 

modulated in amplitude, frequency, and sound location. Auditory cortical neurons progressively 

become more complex when they span from core to parabelt regions. Previous studies interpret 

auditory core neurons more responsive to simpler stimuli such as sound localization and detecting 

the direction of frequency change, whereas belt and parabelt regions respond to more complex 

stimuli (Pickles, 2012). 

 

Tonotopy refers to the topographical arrangement of sound frequency responsivity in the 

brain.  Just like with retinotopy where the organization of spatial location in the retina is preserved 

on the cortical surface, so is tonotopy, which reflects the frequency organization of the cochlea. 

Tonotopic maps provide insight as to how the auditory system is functionally organized and also 

allow us to subdivide the central auditory system into properties such as acoustic features and 

attention (Saenz and Langers, 2013).  Although frequency is the main acoustic feature that is 

mapped, other emerging features including tuning bandwidth form complementary maps (Moerel 
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et al., 2012). Tonotopic mapping of the auditory cortex has proven particularly challenging for 

human neuroimaging. This is most likely due to the small size of the auditory cortical fields in 

relation to the spatial neuroimaging resolution as well as disagreements of the architectonic 

definition of the primary auditory cortex (A1), resulting in different interpretations of the auditory 

fields.  Nevertheless, spatial patterns of frequency preference remain highly consistent in the 

human auditory cortex (Saenz & Langers, 2013).  

 

Throughout previous studies, a substantial consensus regarding the spatial distribution of 

frequency tuning regions of auditory cortex surrounding HG in humans has been made. The most 

recent findings converge onto the interpretation of the spatial orientation of A1 in humans that is 

consistent with that of non-human primates (Baumann et al., 2013).  In humans, the core fields A1 

and R are positioned on the caudal and rostral banks of HG that spread across the HG rather than 

along it. According to these data, an elongated zone on HG was found to respond favourably to 

lower frequencies, whereas zones posterior and anterior to HG were found to respond favourably 

to higher frequencies (Da Costa et al., 2011; Herdener et al., 2013; Humphries et al., 2010).  

 

1.6 Frequency Resolution: CNS 

 

The cochlea is the first place in the auditory system where frequency resolution takes place. 

It resolves different frequency bands that are tonotopically organized, and this organization is 

maintained throughout the auditory pathways up to the primary auditory cortex. A number of 

studies have looked at how frequency resolution changes as auditory signals traverse the central 

nervous system, as well as how lateral inhibition affects the frequency resolution of individual 

neurons. Frequency resolution pertains to the ability of resolving a narrowband spectral element 

residing in a broadband stimulus, whereas frequency discrimination refers to the ability in 

discerning two narrowband stimuli presented one after the other. Psychoacoustical evidence 

suggests that the auditory frequency just noticeable difference in well-trained subjects is about 30 

times smaller than the apparent bandwidth of the peripheral filters (i.e. critical bands that are 

around a sixth of the octave in human hearing) (Evans, 1997). 

 

Within the brainstem auditory nucleus, the IC is subdivided into 3 sections, the central 

nucleus referred to as the lemniscal nucleus that receives the majority of input, and the external and 
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dorsal cortex referred to as the non-lemniscal nuclei, that receive more diffuse inputs that surround 

the central nucleus (Morest & Oliver, 1984). Previous studies reported in anaesthetized cats, the 

majority of central IC neurones have sharp tuning curves while a smaller subset had shallow low 

frequency tails to the tuning curves (Aitkin et al., 1975), while in the awake chinchilla the response 

areas to IC neurons was more complex categorized by more than one excitatory area and multiple 

areas of inhibition (Ramachandran et al., 1999). Neurons in the external and dorsal nucleus of the 

IC have been reported to be more broadly tuned and to habituate rapidly. Furthermore, neurons in 

the dorsal cortex of the IC primarily respond to monaural stimuli, whereas in the external nucleus 

primarily responds to binaural responses (Aitkin et al., 1975). 

 

In primates, the MGN is organized into different sections; the ventral principle division, 

and adjacent posterodorsal, anterodorsal and medial divisions (Jones, 2003). Neurons in the 

ventral section of the MGN have sharp tuning curves as found in cats (Aitkin & Webster, 1972) 

and in awake marmosets (Barlett &Wang, 2011). In all species reported, the MGN neural tuning 

curves do not increase in width based on stimulus intensity to the same degree as in the auditory 

nerve. This means that within the MGN, frequency resolution is independent of stimulus intensity 

(Pickles, 2012). Furthermore, lateral inhibition interactions initially obtained in the dorsal CN are 

further enhanced by the MGN and have been reported to enhance cues for sound localization in 

the vertical direction (Samson et al., 2000) 

 

Very few studies have been able to resolve the frequency resolution of auditory cortical 

neurons in humans. A previous study used extracellular single unit recordings of cortical neurons 

in Heschl’s gyrus in four human epileptic patients. Electrodes were placed bilaterally in Heschl’s 

gyrus of the primary auditory cortex. Frequency resolution of the auditory neurons was determined 

by matching the neural response to the auditory stimulus presented, and by changing the spacing of 

the tones presented. The stimulus consisted of random chord tones and speech segments from a 

film. These neurons could reliably distinguish frequencies of less than 3% (Bitterman et al., 2008). 

Their results suggest that the frequency tuning in single neurons recorded from human auditory 

cortex in response to random-chord stimuli is far narrower than that typically described in any 

other mammalian species (besides bats), and considerably surpasses that attributed to the human 

auditory periphery i.e., human critical bands are roughly 10–15% of the stimulus frequency 
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(Bitterman et al., 2008). These findings suggest the frequency tuning in humans sharpens when 

auditory information traverses from the peripheral to the central auditory regions.  

 

In other non-human mammals, the frequency tuning widths in auditory cortical neurons 

have been reported to be much broader than in humans. For example, neuronal tuning widths 

ranged from one octave in anesthetised cats (Read et al., 2012) and about a fifth to a third octave in 

anesthetised rats (Gaese & Ostwald, 2001; Honey & Schnupp, 2015). Tuning bandwidths have 

repeatedly been shown to be broader in the same species of awake animals as found in cats (Qin et 

al., 2003) and rats (Gaese & Ostwald, 2001). In awake macaques, reported auditory cortical neuron 

tuning widths were typically half to one octave and very narrowly tuned neurons were reported 

rare (Recanzone et al., 2000). Taken together, these results suggest that the hyperacuity of 

frequency discrimination in humans is substantially better than other mammals with evidence that 

suggests our enhanced cognitive skills involving language (Benasich & Tallal, 2002), learning 

aptitudes, and working memory (Banai & Ahissar, 2006) may play a factor. 

 

Previous animal studies have found that the most responsive neurons in A1 have sharp 

tuning with a single frequency area of maximum sensitivity as found in cats (Phillips & Irvine, 

1981). In awake marmosets, approximately 27% of A1 neurons had sharper tuning than what was 

observed in the auditory nerve during the sustained rather than onset part of the response (Bartlett 

et al., 2011). In another study on awake marmosets, 20% of A1 neurons that were recorded were 

found to have two or more regions of maximum sensitivity, known as multi-peaked responses that 

in a number of cases had their peaks harmonically associated to the cell’s characteristic frequency 

(Kadia & Wang, 2003). In cats, multi-peaked neurons were primarily found in the dorsal rather 

than central portion of A1 (Schreiner et al., 2000). As well, in cats and primates, A1 neurons can 

have broad tuning curves that span several octaves and are spatially separated from sharper tuned 

neurons.  

 

Just like other regions in the auditory system, A1 neurons can be inhibited when 

stimulating areas outside the excitatory response region. In addition, a large number of A1 neurons 

can be inhibited by stimuli comprised of one or more frequency bands that are isolated from central 

excitatory or inhibitory regions (Kadia & Wang, 2003). Part of this inhibition is thought to reside 
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in cortical networks, evidenced by decreases in activity when the GABA blocker bicuculline is 

locally applied, based on a previous experiment in the cat auditory cortex (Yuan et al., 2011). 

 

 It should be noted that subcortical and brainstem auditory nuclei receive both reciprocal 

and descending (top-down) auditory inputs from higher stages of the auditory system. Auditory 

cortical regions send sizeable descending projections to the MGN primary from the region it 

received ascending inputs, and also to auditory brainstem nuclei including the IC, SOC and CN, 

and non-auditory regions including thalamic nuclei, the amygdala, the tegmentum, and motor 

nuclei of the pons and striatum (Winer, 2006; Suga, 2012). The tonotopic regions of A1 project to 

the tonotopic regions of the MGN, maintaining a close coupling in the loop of the afferent and 

efferent fibers that act as a suggested single integrated unit. As well, cortical projections to the IC 

terminate predominantly in the extralemniscal areas of the colliculus. As such, frequency 

representations in the MGN and IC can be manipulated when the auditory cortex is electrically 

stimulated such that their responses are enhanced at the frequencies represented in the region of the 

auditory cortex stimulation (Suga & Ma, 2003).  

 

As found in single-neuron recordings of the macaque monkey auditory cortex, core 

neurons were found to be more narrowly tuned than surrounding belt neurons implying that 

voxel tuning widths may also be determined in the human auditory core (Rauschecker et al., 

1995).  Human fMRI data looks at each voxels BOLD response in a population of hundreds of 

thousands of neurons together across cortical layers and neuronal types (104–105 neurons per 

mm3 in cortex), which is why correlating data from single neuron tuning widths to large 

populations in voxels is not very straightforward (Saenz & Langers, 2013). Nevertheless, MRI 

is still a valuable tool to infer how population of neurons respond to auditory stimuli non-

invasively. Using a 7T scanner, a recent study in humans has demonstrated both tonotopic and 

tuning width maps for the human inferior colliculus and auditory cortex revealing a high-low-

high frequency gradient in tonotopic maps and narrower tuning widths in A1 and R (De 

Martino et al., 2013).  

 

Recent studies have used natural sound stimuli (vocal, environmental, and tool sounds) 

for tonotopic mapping of preferred frequency and tuning width of a population of auditory 

cortical neurons within each voxel (De Martino et al., 2013; Moerel et al., 2012). These studies 
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used natural stimuli that revealed similar frequency preference maps that were also obtained 

from separate scan runs that used more standard pure tone stimuli. In these studies, natural 

stimuli were characterized by their spectral profiles throughout 40 frequency bins using 

regularized regression to estimate each voxel’s response to all spectral bins. Gaussian fits to the 

resulting response profiles allowed estimation of voxel-wise preferred frequency and tuning 

width. The benefit of this modelling technique enabled an extensive range of stimulus types (for 

example, broadband noise), without imposing constraints on stimulus order, and it also provided 

useful estimates of tuning width. 

 

To date, auditory tuning width maps from human fMRI data are minimal, complex and an 

attractive field to study because it still remains to be seen if repeated studies reveal the same or 

convergent views.  It still needs to be determined if special populations with different pitch 

discrimination abilities or deficits have differences in tonotopic and tuning width maps.  The 

purpose of our fMRI experiment described in Chapter 4 was to determine if more expert pitch 

detectors as found in AP subjects have more sharply tuned auditory pRFs. Sharper tuning widths 

would imply an enhanced ability in pitch processing mechanisms that may relate to their better 

ability in pitch categorization and perception. However, not finding any differences in tuning 

would suggest that AP possessors have the same auditory processing mechanisms as non-AP 

subjects, and that their ability may be further explained by neuroanatomical differences in 

working memory and structure associated with higher order perceptual encoding 

 

1.7 Background: Absolute Pitch Origins 

 

AP ability has been debated over the past century, primarily due to the characterization of 

pitch class categorization and by its mechanism for development. This chapter will cover the latest 

findings and theories stemming from behavioral cognitive experiments to neuroimaging findings 

that will help uncover the debate of AP origin. These findings are based on genetic, environmental, 

neural, and biomechanical paradigms that may reveal scientific models of brain structure and 

function. 
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1. 8 Genetic Studies 
 

There have been numerous genetic studies that have suggested that AP ability arises as an 

inherited trait and includes a genetic origin as part of it manifestation. One of the first genetic 

studies looked at 35 AP probands (referring to the member being studied) from 19 families. It was 

first suggested that due to the significant family incidence of this trait, a possible mode of AP 

inheritance was by an autosomal dominant gene with incomplete penetrance (referring to the 

proportion of individuals that have a particular genetic change or mutation of an allele i.e., one that 

can code for AP ability that ends up being expressed in some individuals and not in others), that 

has an estimated segregation ratio (AP to non-AP) between ~1:3 (.37) and ~ 1:4 (.24) (Profita and 

Bidder, 1988). Recently, a larger sample size of 1463 AP 1 probands yielded the segregation ratio 

of ~ 1:11 (.089), suggesting that AP was not inherited in a simple Mendelian fashion (referring to 

highly penetrant alleles that when present, generally express the phenotype). In addition, this also 

suggested that multiple genetic factors may be involved in acquiring AP, such as a combination of 

environmental and genetic factors (Theusch & Gitschier, 2011). 

 

AP may also occur by different genetic variants at different chromosomal locations, both 

within and across populations of different ancestries. A genome-wide linkage study looked at 73 

families of European, East Asian, Ashkenazi Jewish and Indian descent in the US and Canada. In 

each family there were at least 2 AP possessors. In European, Ashkenazi Jewish, and Indian AP 

possessors, there was linkage on chromosome 8q21.11, and 8q24.21, where one of the four genes 

found near the linkage peak on 8q24.21 was adenylate cyclase 8 (AC-8). AC-8 was found to be 

expressed almost exclusively in the brain and is implicated in learning and memory processes. The 

linkage region on 7q22.3 was also observed in a subset of European and East Asian ancestry 

(Theusch et al., 2009).   

 

A small percentage of AP possessors have synesthesia (characterized as a neurological 

occurrence where the stimulation of one sensory pathway leads to the involuntary perception of 

another sensory pathway, i.e., blending of senses), particularly associating musical pitches with 

colours.  Synesthesia is a rare condition and appears to have a genetic predisposition. A recent 

study looked at AP and synesthesia finding that 151 out of 768 individuals (20.1%) reported 

synesthesia where pitch and colour associations were the most common (84%), whereas the other 
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synesthetes with AP had synesthesia with smell, shapes and other complex sensory experiences. 

This study also conducted a combined linkage analyses of AP and synesthesia finding a common 

region of association on chromosome 6q over a 20 Mb region as well as linkage on chromosome 2. 

A number of candidate genes in these linked regions responsible for both phenotypes were 

investigated such as EPHA7 and CNR1 involved in neurodevelopment which likely reflect the 

common neurodevelopmental mechanisms in brain connectivity (Gregersen et al., 2013).  

 

Further supporting evidence of genetic origins in AP ability come from studies that 

examined different ethnic groups. Among these, a previous study reported a higher prevalence 

(47.5%) in AP ability as found in Asian (Korean, Japanese, and Chinese) music theory students 

compared to a lower prevalence (9%) in Caucasian students (Gregerson et al., 2001). Another 

study found the same finding of a higher prevalence of AP in music conservatory students from 

China where the tonal language Mandarin is spoken compared to the US, where the non-tonal 

language English is spoken (Deutch et al., 2005). An explanation of the higher prevalence of AP 

ability in Asians described by Henthorn & Deutsch (2007) was attributed to early tonal language 

exposure. However, the ‘tonal language’ explanation may not be entirely acceptable since AP 

ability has been found to have a higher incidence in all Asian sub-groups, and Asian languages 

such as Korean and Japanese are not tone languages (Sohn, 1999; Zatore, 2003; Kubozono, 2012). 

 

1.9 Environmental (Critical Period) Hypothesis: 

 

Supporting evidence for the environmental mechanism suggests a critical period, or early 

learning hypothesis, which describes that a child must be exposed to musical training in note 

labeling up until the age of seven for AP ability to emerge (Levitin & Zatorre, 2003; Russo et al., 

2003, Miyazaki & Ogawa, 2006; rev., Deutsch, 2013). This has been supported with studies that 

found that an earlier onset of musical training was linked with a higher probability of AP 

development (Deutch et al., 205; Miyazaki & Ogawa, 2006). Although debated, further claims that 

AP is linked to a critical period suggest that musical training after the age of nine very seldom 

leads to AP emergence, which is additionally supported by no reported cases in adults successfully 

developing it (Brady, 1970, Ward & Burns, 1999; Levitin & Rogers, 2005). 
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To further test how a critical period may be necessary for AP development, a recent study 

tested adult men with no musical experience by having them associate pitches with names when 

taking valproate (VPA), a drug commonly administered for epilepsy and bipolar disorder. VPA has 

been implicated in altering connections that have been established after the critical period.  

Those participants who took VPA learned to identify pitch significantly better in the AP task than 

those taking the placebo—evidence that VPA facilitated critical-period learning in the adult human 

brain. In this way VPA acted by altering the cellular processes of neuroplasticity by establishing 

perceptual preferences that were otherwise impossible to acquire after youth, further supporting the 

critical period hypothesis (Gervain et al., 2013).  

A problematic view can arise when one questions whether musical experience is even 

needed for AP to manifest. This view would then suggest that a critical period alone is not essential 

for AP to emerge. In an extremely rare self-reported case, an individual largely musically untrained 

referred to as R.M had demonstrated to possess AP. A recent study devised a new paradigm that 

tested for AP that is pre-categorical and did not require any musical knowledge. In this test, 

subjects had to reproduce the target sine tone they heard which was followed by a delay filled with 

distractor tones and had to reproduce the original tone they heard using a digital sine function 

generator. R.M was able to perform a pitch memory task at a level indistinguishable from AP 

musicians. However, it was later described that R.M has a non-negligible history of musical 

training where during a note naming AP test he scored at the top end range of the non-AP 

musicians, as well as performed intermediate to non-AP and AP musicians on a number or tone-

matching tests (Ross, 2004). Nonetheless, subject R.M’s case does implicate the natural variability 

in the musically untrained population to extract pitch information, and further demonstrates that an 

early onset of music training (or any music training) may not be fully essential for AP ability to 

emerge (Ross et al., 2003). This may also suggest that AP and non-AP possessors may be using 

different pitch processing mechanisms (McLachlan et al., 2013) that in part, reflect genetically 

influenced neuroanatomical differences.  

To further support that other factors may be involved other than a critical period alone, 20% 

of the AP possessors that were recruited for the studies in this dissertation pertaining to 

experiments 2–5 (Chapters 3–6), did not have any musical training before the age of seven (the 

critical period window), and only started any formal musical training and note association labeling 
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in their early to late teens. Our findings suggest that genetics may play a more salient role for AP 

ability to emerge in neurodevelopment as opposed to a critical period alone. 

 

1.10 Central Studies 

 

By understanding the function of AP in the brain, a number of inferences could be made 

about its development. These neural correlates could provide more information on how musical 

training, ethnicity, and language factor into its genesis as evidenced by structural and functional 

neuroimaging, and electrophysiology findings. 

 

 
 
Figure 1.1 Central auditory regions associated with Absolute Pitch. Regions abbreviated in red 

associated with auditory processing: Heschl’s Gyrus (HG), Planum Temporale (PT), Superior 

Temporal Gyrus (STG), Superior Temporal Sulcus (STS), Middle Temporal Gyrus (MTG).  

Structural MRI findings: Increased right HG volume in AP (Wengenroth et al., 2014).  Increased 

left PT volume asymmetry compared to right PT volume in AP (Schlaug et al., 1995a; Chen et al., 

2000, Keenan et al., 2001; Luders et al., 2004).  No difference in left or right PT asymmetry in AP 

(Zatorre et al., 1998; Bermudez & Zatorre 2005; Bermudez et al., 2009). Increased cortical 

thickness in bilateral STG in AP (Dohn et al., 2013). Increased connectivity between left STG and 
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MTG (Loui et al., 2011). Increased fMRI activation, in left STG, STS, MTG (Shulze et al., 2009; 

Loui et al., 2012).  

 

The following descriptions of auditory central regions associated with AP are summarized 

and referred to in Figure 1.1. Located within the primary auditory cortex, Heschl’s gyrus (HG) also 

known as the transverse temporal gyrus, is the first structure within the cortex that processes 

auditory information. Using magnetoencephalography (MEG), differences in functional roles were 

found within the HG depending on the hemisphere. The left HG was implicated in a more holistic 

or global perception of musical information, whereas the right HG was responsible in more fine-

tuned spectral sound processing of frequency information (Schneider et al., 2005). Structural MRI 

revealed that AP musicians had a larger right HG volume compared with non-AP musicians 

(implicating the relationship between the right HG and spectral sound perception). There were no 

differences between the left HG volumes between groups (Wengenroth et al., 2014). It is not 

known if the right HG enlargement is an outcome or the cause of AP and was reported as a 

potential structural marker for AP.  

The planum temporale (PT) is a structure located in the posterior superior temporal 

gyrus (STG), behind the Heschl’s gyrus within the Sylvian fissure that also acts as a hub of 

auditory processing. Structural neuroimaging data reveal discrepancies within the PT volume in 

AP musicians, non-AP musicians, and controls with minimal to no musical experience.  In the 

normal population, the left PT volume on average is larger than the right (Geschwind & 

Levitsky, 1968; Steinmetz, 1996). This leftward asymmetry was significantly increased in AP 

musicians compared to non-AP musicians (Schlaug et al., 1995a; Chen et al., 2000; Luders et 

al., 2004) and in self-reported AP possessors (Keenan et al., 2001). Since the left planum 

temporale houses Wernicke’s area which is involved in language comprehension, this leftward 

bias in AP may be indicative of the ability of verbal associations in pitch identifications found in 

AP. As well, it was put forth that when considering PT surface area instead of asymmetry, the 

absolute size of the right PT predicted musical ability. These findings suggest a possible 

developmental mechanism that involves pruning of the right PT that in turn results in a larger 

left PT volume that may act as a developmental marker in AP. In this case, the etiology of AP 

has been described as having both a genetic and environmental origin in that coding for 

hemispheric asymmetry combined with an early environmental exposure to music may be 
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involved for AP to manifest (Keenan et al., 2001).  

 In contrast, more recent studies did not find PT volume asymmetry in AP and non-AP 

subjects (Zatorre et al., 1998; Bermudez & Zatorre 2005; Bermudez et al., 2009), except when 

comparing the musician group to non-musicians i.e., AP musicians did not differ from non-AP 

musicians in PT volume (Burmudez & Zatorre, 2005), suggesting that the PT volume 

asymmetry may be due to musical ability and not an AP marker alone. As well, Zatorre et al. 

(1998) reported that the right PT volume asymmetry was not evident. Instead, the right PT 

volume was larger in the AP group, although was not significant contrary to previous findings.  

These discrepancies in PT asymmetry and volume may be partly due to inconsistent and 

arbitrary delineations of PT boundaries, human error, and morphological variability with 

automated methods such as cortical thickness and voxel-based morphometry VBM methods 

(Zatorre et al., 1998; Bermudez et al., 2009). 

 Further inconsistencies in whole brain gray matter (GM) structural analyses have been 

found. In one study, AP possessors had thinner cortex in areas that included frontal and parietal 

regions (Bermudez et al., 2009). However, no differences were found in AP subjects compared to 

non-AP musicians in another study that instead had reported increased cortical thickness (CT) in a 

number of regions including bilateral superior temporal gyrus (STG), left inferior frontal gyrus, 

and right supramarginal gyrus (Dohn et al., 2013). Furthermore, CT covariations were assessed in 

AP musicians compared to non-AP musicians, and non-musicians using graph theoretical analysis 

that found decreased global interconnectedness and increased local connectivity in peri-sylvian 

language regions in AP (Jäncke et al., 2012).  
 

Another structural method that compares the microstructure of white matter 

connectivity has been assessed in AP subjects. Diffusion tensor imaging (DTI) is a type of MRI 

scan that measures the diffusion of water molecules in white matter. In one study, the superior 

longitudinal fasciculus (SLF) comprised of the arcuate fasciculus (AF) that connects the superior 

temporal lobe and frontal lobe was assessed. Fractional anisotropy (FA) is a DTI parameter that 

measures water molecular diffusion within white matter. A lower FA value closer to zero 

indicates unrestricted molecular diffusion and a higher value closer to one indicates more 

restricted diffusion primarily along one axis that reflects increased white matter tract integrity, 

myelination, fiber density and axonal diameter. FA values were increased in the left compared to 
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right SLF in AP subjects, however this asymmetry was not observed in non-AP musicians. As 

well, AP subjects had lower FA in the SLF compared to non-AP musicians, which suggests that 

AP subjects had lower axonal/white matter tract integrity in the region. The researchers 

proposed a pioneering axon theory which argues that peripheral white matter development 

instead of compact core white matter regions are more susceptible to environmental influences 

like musical training that could account for their findings of lower FA values (Oechslin et al., 

2010a). 

Other DTI studies revealed increased structural connectivity between the superior temporal 

gyrus (STG) and middle temporal gyrus (MTG) bilaterally. The volume of the tract connecting the 

left STG and MTG was significantly correlated with behavioral measures of AP acuity and 

predicted AP performance (Loui et al., 2011). However, a whole brain, tract-based-spatial-statistic 

(TBSS) analysis found one significant cluster in the right temporal lobe only in AP musicians 

compared to non-AP musicians. This study reported a rightward asymmetry with higher FA in a 

single significant cluster within the path of the right inferior fronto-occipital fasciculus (IFOF), the 

uncinate fasciculus (UF), and the inferior longitudinal fascicles  (ILF) (Dohn et al., 2015). A 

number of explanations were proposed to describe the discrepancies found in asymmetry; Dohn et 

al. (2015) used a larger sample size that could have improved the power in detecting differences, 

had controlled for more matching criteria that could have accounted for variation in FA that may 

not have been related to AP ability alone, and had used different methodologies (TBSS is a whole 

brain analysis that corrects for multiple comparisons), suggesting that differences in the left SLF as 

found by Oechslin et al. (2010a) and left MTG, STG as found in Loui et al. (2011) may not be 

accounted for due to low effect size, or multiple comparisons.  

 

Functional MRI (fMRI) studies reveal increased activation in the left superior temporal 

sulcus (STS), (a region involved in the categorization of varied sounds) in AP musicians during 

a pitch memory task compared to non-AP musicians. In contrast, non-AP musicians showed 

increased activation in the parietal lobe (which may play a role in visual-spatial mapping 

schemes between pitch and spatial configuration) (Schulze et al., 2009). As well, in another 

study, AP musicians had increased functional activations in the superior temporal gyrus (STG) 

(an area important for sound perception) that extended into the STS and a number of structures 

related to a reward-system and emotional processing (bilateral amygdala, hippocampus and 
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ventral tegmental area) as compared to the non-AP musicians during a music listening task. This 

task required the participants to focus on assessing emotional judgements to musical excerpts 

(Loui et al., 2012). Taken together, these studies suggest that AP musicians have enhanced 

capability for auditory categorical processing and that AP subjects may inherently find music 

listening more rewarding (Loui, 2014). 

Of note, very few studies investigated if AP ability can be transferred to other skills 

other than music perception. In a functional study, Oechslin et al. (2010b) looked at the direct 

link between processing speech in AP musicians compared to non-AP musicians and non-

musicians. AP subjects showed an increased left lateralized activation in the lower portion of 

the posterior superior temporal sulcus (STS) based on segmental speech stimuli consisting of 

flattened speech  (comprised of pure lexical syntax information without dynamic pitch contour 

with and without sentence meaning), and delexicalized speech (comprised of speech prosody or 

pitch contour). This study supports that AP ability is not only confined to music processing, but 

can also transfer to speech processing.  

 

A number of electrophysiological studies have been carried out in AP possessors that 

measure the event-related brain potentials (ERP) from electroencephalography (EEG) responses. 

ERP measures time-sensitive neural responses in relation to perceptual or cognitive stimuli such 

as listening to music. P300 waves are ERP components that occur in decision-making, stimulus 

categorization or evaluation processes.  A number of these electrophysiological studies found a 

reduction or absence of the P300-evoked response (a positive waveform ~ 300 msec after the 

onset of the stimulus) in AP subjects. Interpretations of this finding suggest that AP subjects 

lack in updating auditory working memory, and instead use working memory independent 

strategies to process auditory information (Klein et al., 1984; Wayman et al., 1992; Hantz et al., 

1992). Taken together, an interpretation of these results suggest that AP subjects may utilize pre-

determined frameworks or pitch categories to hold pitch class information that does not depend 

on conventional working memory dependent mechanisms. In contrast, other studies have found 

that the P300-evoked response was present in AP subjects (Bischoff Renninger, et al., 2003; 

Hirose et al., 2002). These latter results suggest that working memory in AP may be sensitive to 

individual differences in the approach used to encode pitch as well as differences in task 

instruction (identification compared to detection of infrequent notes of the experiment (Loui, 
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2014)).  

 

1.11 Conclusion 

 

The etiology of AP has been controversial with varying models supporting different claims. 

To summarize, one can conclude that AP is linked to heredity and learning; AP is based on a 

genetically determined trait in some instances; AP is related to early musical experiences; and AP 

possessors must have had some musical training, where the degree of AP tended to correlate with 

the age of onset of musical training. 

 

Having an enhanced auditory working memory may play a fundamental role in being able 

to learn AP, as evidenced by AP musicians that had a larger auditory working memory compared 

to matched musicians (Deutsch & Dooley, 2013). Here in lies the ‘chicken or egg’ problem in 

relation to working memory in AP. It may be that having a larger auditory working memory 

capacity fosters AP to develop, or it may mean that having AP in the first place is what leads to an 

increased auditory working memory capacity (Van Hedger et al., 2015). If it is the former, it may 

be the case that those rare non-musical adults with AP had increased executive functioning in the 

auditory domain, such as an enhanced tonal working memory that allowed them to selectively 

attend to pitch-chroma categories, even when presented with a number of interfering tones (Van 

Hedger et al., 2015). 
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Chapter 2 
 
Experiment 1: Peripheral Basis for Absolute Pitch 
 
2.1 Abstract 
 

Absolute pitch (AP) is the ability to identify or produce the perceived pitch of a sound 

(e.g., fundamental frequency of a piano note) without an external reference. This ability is 

relatively rare (~1/10,000 individuals possess it) and the mechanisms underlying AP are not well 

understood. This study examined whether there was evidence for a peripheral (i.e., cochlear) 

basis for AP based upon otoacoustic emissions (OAEs). The chief motivations were that both AP 

and spontaneous emissions (SOAEs) appear to have genetic components and a higher prevalence 

in certain populations (e.g., relatively higher incidence of both in Asians). We examined SOAE 

and stimulus-frequency emissions (SFOAE) in both control (N = 33) and AP (N = 22) normal 

hearing populations. We found no substantial differences in SOAE activity between groups. 

SFOAE phase-gradient delays, measured using several probe levels (20–50 dB SPL), also 

showed no significant differences. This latter observation argues against sharper frequency 

selectivity in AP subjects. Taken together, these data support the prevailing view that AP 

mechanisms arise at a central nervous system processing level at the brainstem or higher. 

  

2.2 Background: Otoacoustic Emissions 
 

Otoacoustic emissions (OAEs) are the sounds produced in the inner ear canal when sound 

stimulates the cochlea. Healthy ears emit OAEs, typically thought to be a by-product of an 

underlying amplification mechanism at work in the cochlea. Although it remains uncertain 

exactly how auditory information is initially peripherally encoded during forward transduction, 

there is much agreement to date that this is based on the ‘active ear’ paradigm. OAEs are thought 

of as backward traveling waves that are generated from the energy of the cochlear amplification 

process in response to outer hair cell (OHC) vibration. This nonlinear amplification mechanism 

(i.e., reverse transduction) enhances the detection of low-level sounds that results in an almost 

inaudible backward traveling wave through the middle ear (Hudspeth, 2008; Bergevin et al., 

2015). OAEs are measured through a probe that is inserted in the outer third of the ear canal. The 

probe contains a loudspeaker that generates sounds and a microphone that measures the resulting 
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OAE’s produced in the cochlea that are reflected back through the middle ear into the outer ear 

canal. The resulting sound that is picked up by the microphone is digitized and processed by 

specially designed hardware and software. The very low-level OAEs are separated by the 

software from both the background noise and from the evoked stimulus. 

 
In this way, OAEs act as non-invasive probes of cochlear mechanics and can infer an 

indirect monitor of the amount of cochlear amplification (Shera & Guinan, 2007). Therefore, to 

obtain an OAE one needs an unobstructed outer ear canal, absence of significant middle ear 

pathology, and functioning cochlear OHCs. OAEs are useful to measure since their detection 

allows for characterization of auditory function and dysfunction. Their detection has been an 

essential component for audiological diagnostic test batteries in that they help screen for 

differences in cochlear status and are useful in differentiating sensory from neural disorders. As 

well, they provide evidence of how sound stimulation interacts with the cochlea (Kemp, 2008).  

To date there have been two theoretical approaches as to how they arise. 

 

First, the local-oscillator model predicts that OAEs occur solely through the local, self-

directed oscillation of OHCs within the organ of Corti (e.g., the active process underlying the 

cochlear amplifier). The ‘local’ aspect to this model predicts that these oscillators are directly 

coupled to their nearest neighbours. As such, this model assumes that OHC movement produces 

spontaneous movement of the basilar membrane, which in turn creates a traveling wave towards 

the base of the cochlea generating emissions (Gold, 1948; Martin & Hudspeth, 2001; Hudspeth, 

2008; Vilfan & Duke, 2008; Dierkes et al., 2008; Gelfand et al., 2010).  

 

Second, another view describes a global standing-wave model to explain OAEs. It 

presumes that OAEs can also be induced by spontaneous movements of the OHCs, but in 

contrast to the first model, dismisses that they themselves generate the OAEs. This model 

assumes that the actual emissions are generated by cochlear standing waves created by multiple 

internal reflections within the cochlea (Shera, 2003). In this analogy, impedance differences at 

the organ of Corti can be attributed to hair cell movement at the location of the basilar membrane 

where a forward traveling wave is at its maximum. When these differences build up at this 

frequency location on the basilar membrane, forward traveling wave reflections can arise. When 
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they do, they also will be partly reflected into the cochlea again due to impedance differences 

between the middle and inner ear. A forward traveling wave will be produced, amplified, and 

reflected back at the same location on the basilar membrane where impedance differences of 

OHCs took place. When enough of these traveling waves become in phase, a standing wave can 

arise within the cochlea and becomes emitted as an OAE (Kemp, 1979; Kemp, 1986; Davis, 

1983; Zweig, 1991; Talmadge & Tubis, 1993; Zweig & Shera, 1995; Talmadge et al., 1998, 

Shera & Guinan, 1999; Shera, 2003; Duke & Jülicher, 2003; Ku et al., 2009; Epp et al., 2010; 

Bergevin et al., 2015). There are different types of OAEs, two of which are described in the 

following section that were collected on control and AP subjects.  

 

2.3 Spontaneous otoacoustic emissions (SOAEs) 

 

Spontaneous otoacoustic emissions (SOAEs) are low-intensity sounds emitted by the 

inner ear in the absence of any stimulus. Their prevalence is in about 40–60% of normal hearing 

people (Talmadge et al., 1993; Snihur & Hampson, 2011). Roughly 80% of all emitting ears 

have more than one SOAE, with a median of 5 SOAEs per emitting ear (Talmadge et al., 1993).  

The prevalence of SOAEs is more frequent in women than in men and more frequent in the right 

than in the left ear (Bilger et al., 1990; Penner et al., 1993; Talmadge et al., 1993; Penner & 

Zhang, 1997; Snihur & Hampson, 2011). The presence of SOAE’s is usually considered to be a 

sign of cochlear health, but the absence of SOAE’s is not necessarily a sign of abnormality. They 

are unique to each individual, just like a fingerprint. Previous studies on subjects with and 

without SOAEs found sharper tuning in ears with emissions based on psychophysical tuning 

curves (PTC) measurements. PTCs represent masker levels required to mask a tonal probe fixed 

in frequency and level as a function of varied masker frequencies. Subjects with SOAEs had 

sharper PTCs at 2 kHz, however there were no differences at 1 kHz or 4 kHz frequencies 

(Micheyl & Collet 1994).  In addition, subjects who had SOAEs tended to have lower auditory 

thresholds at the SOAE peak, i.e., subjects could hear softer pure tones at the SOAE frequency 

(Baiduc et al., 2014). Therefore, we predicted that there might be more SOAEs in subjects with 

AP relating to sharper tuning at those frequencies. 
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2.4 Stimulus frequency otoacoustic emissions (SFOAEs) 

 

Stimulus frequency otoacoustic emissions (SFOAEs) are sound delays (latencies) evoked 

from the ear in response to pure tones. They provide a measure of mechanical delay within the 

cochlea and are related to the frequency selectivity of the ear (Kemp 1986; Shera & Guinan 

2003; Joris et al., 2011).  SFOAEs do not act as a mere echo of the applied sound stimulus (even 

though they are similar in acoustic characterization), but rather act as a complex transformation 

of it. They arise due to linear discontinuities within the cochlea, typically impedance 

mismatches, resulting from the coherent scattering of cochlear traveling waves off small, random 

perturbations in the mechanical properties of the cochlea (Shera, 2002). A previous study found 

that when SOAEs were observed, then SFOAEs demonstrated a localized increase at the SOAE 

peak. However, the opposite was not always the case, i.e., you can have robust SFOAEs in the 

absence of SOAEs (Bergevin et al., 2012).  

 

2.5 Methods: Participants 

Prior to OAE testing, each participant filled out an ethics and questionnaire describing the 

protocol. We examined SOAEs and SFOAEs in both control (N = 33, 40 ears) and AP (N = 20, 

31 ears) normal hearing populations. Data were collected independently at the University of 

Western Ontario (UWO) [control (N = 26, 26 ears) and AP (N = 9, 9 ears)] and York University 

[control (N = 7, 14 ears) and AP (N = 11, 21 ears)] with comparably sized pools using the same 

acquisition parameters and data analysis. A majority of subjects only had their dominant ear 

tested due to time constraints particularly at the UWO location, as well as other factors that 

hindered usable data from noisy measurements. Cumulatively from both testing locations, 

sixteen participants were excluded from further analyses due to either hearing loss, too much ear 

wax build-up obstructing proper OAE extraction, or no usable data from noisy measurements. 

AP participants were recruited from notices at University music departments and by word of 

mouth.  More females were tested in each group due to a higher incidence of SOAEs found 

(Table 2.1). The present study was approved by the University Ethics Committees at York 

University and Western University.  
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A standardized AP test was given for all participants 

[http://www.musicianbrain.com/aptest/] developed in lab of Gottfried Schlaug, allowing for 

objective classification of AP status. The AP test consisted of 24 sine wave tones taken from the 

chromatic scale (C4–B4 repeated twice and randomized per trial). Data were collected on four 

trials (for a total of 96 tones presented). AP ability was confirmed if the accuracy was 90% or 

above on the responses given that were within one semitone difference from the presented tone 

(Miyazaki 1998; Zatorre & Becket 1989; Hamilton et al., 2004). Normal audiometric thresholds 

were confirmed for each participant using an audiometer. During the recording sessions, the 

subjects remained awake sitting quietly on a chair in a double-walled acoustic chamber (Istrial 

Acoustics Co.). 

 

 

2.6 Methods: Data Acquisition and Measurements 

 

Right ears were typically tested first due to a higher incidence of OAEs (Snihur & 

Hampson, 2011) unless audiometric thresholds and ear preference were markedly better for the 

left ear. All subjects included here had normal audiometric thresholds. OAEs were measured by 

an Etymotic ER-10C probe that contained the two stimulus transducers (loudspeakers that 

generated the sounds) and a microphone that measured the resulting OAEs. The resulting sound 

was picked up by the microphone was digitized and processed using signal averaging 

methodology using Matlab (Figure 2.1). 

Table 2.1 
Participant background information 

Group AP  Controls  
 York U UWO Total York U UWO Total 
Number of subjects 
Number of ears tested 

11  
22  

9 
9 

20  
31  

7 
14 

26  
26  

33 
40 

Gender (male/female) 5/6 3/6 8/12 1/6 2/24 3/30 
Age (Mean ± SD) 25 (9.5) 22.6 (4) 24.5 (3.4) 26 (4.51) 24.2 (3) 24.1 (7.4) 
Handedness 
            Right-handed 
            Left-handed 
            Ambidextrous 

 
9 
1 
1 

 
6 
3 
— 

 
15 
4 
1 

 
6 
1 
— 

 
25 
1 
— 

 
31 
2 
— 

AP Test (Mean ± SD) 98.5 (2.8) 100 99.2 (2.2) 14.2 (7.2) 18.2 (13.1) 17.3 (12.8) 
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Figure 2.1 Illustration of an otoacoustic emission recording and images of the set-up procedure.  
(A) Each participant had their ear sealed with a soft plastic tip probe (P). It contained the 
loudspeaker (L) that provided the auditory stimulus, and a microphone (M) that recorded the 
emissions within the sealed ear canal (C). Emissions were recorded from spontaneous 
otoacoustic emissions (SOAEs) that arose from vibrations of the eardrum (D) driven by the 
cochlea through the middle ear that connects the stapes (S) with the eardrum (D). With evoked 
OAEs such as stimulus frequency otoacoustic emissions (SFOAEs), a continuous pure tone 
produced by the loudspeaker at a specific frequency caused a traveling wave to oscillate the 
stapes (S). This in turn displaced cochlear fluid that produced a traveling wave (T) along the 
basilar membrane in the forward direction (F). The traveling wave (T) excites the sensory hair 
cells within the spiral organ of Corti (illustrated as a cross-section from an electron micrograph 
image (O)). With SFOAEs, there is a distinct area where the maximum vibration of the BM 
happens just basal to an area where the energy is absorbed and the wave is halted. Around this 
peak, some wave energy is retransmitted back to the base of the cochlea described as a reverse 
traveling wave in the direction (R).  This reverse traveling wave then stimulates the stapes (S) 
and round window (RW) due to cochlear fluid vibration, causing the vibration of the middle ear 
bones, which in turn stimulate the eardrum (D). This results in sound pressure to be recorded as 
the resulting emissions of the same frequency as the stimulus. (B) Image of the double-walled 
acoustic chamber and testing station at York University (C) Image of a probe used for recording 
OAEs. 
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2.7 Methods: Procedure SOAEs 

Canal calibration was confirmed throughout the experiment to ensure proper probe and 

suppressor coupling. SOAE measurements were taken at the beginning and end of each 

experiment per ear. If SOAEs were present, a 120s waveform at Sample Rate (SR) = 44.1kHz 

was taken. The SR was needed to determine the frequency bins. For SOAE analysis, the SOAE 

spectrum (Figure 2.2.B) was obtained by spectrally averaging 60 samples of sounds. We used 60 

sample buffers (32,768 points per buffer), i.e., the number of points in the FFT buffer for the 

averaged spectrum.  

2.8 Methods: Procedure SFOAEs 

Four SFOAE swept tone measurements were acquired that ranged from 0.5–6 kHz, with 

30 logarithmic steps, at probe levels ranging from 20–50 Hz with a suppressor level of +15 Hz 

per probe level. For example, if the probe level was 30 Hz, the suppressor level was 45 Hz that 

was used to suppress the OAE. 34 averages were taken with 367,920 points per buffer.  

To measure SFOAEs, swept tones were presented as a single probe tone alone, or with 

the addition of a second suppressor tone that was slightly higher in level and nearby in frequency 

(Shera and Guinan, 1999; Brass & Kemp 1993; Neely et al., 2005; Kalluri & Shera, 2013). The 

separation of the emission from the stimulus is a challenge for SFOAE measurements because 

they occur at the same frequency. This was achieved by the vector subtraction of the stimulus 

component from the signal containing both the stimulus and SFOAE. For example, from the 

SFOAE run, the red and blue traces show the microphone response at the probe frequency when 

the tone was presented at a constant level (Lp = 30 dB SPL) for two conditions: probe alone (blue 

curve) and probe and suppressor (red curve; suppressor level 45 dB SPL and 40 Hz higher in 

frequency) (Figure 2.2.A).  

 When the suppressor was also presented (red trace), it inhibited the cochlear generation 

of the SFOAE and caused the SFOAE measured in the ear canal to be reduced or eliminated. 

SFOAE presence can be interpreted as a backward-traveling wave within the cochlea. The 
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residual SFOAE (blue trace Figure 2B) can be extracted from the response interval without the 

suppressor by subtracting the response in the interval with the suppressor (Neely et al., 2005). 

The magnitude indicates the size of the SFOAE (Figure 2.2.B.) and the slope of the phase curve 

with respect to frequency reveals the delay, also called the phase-gradient delay (Figure 2.2.C).  

We then calculated SFOAE group delays, defined as the negative of the slope of the 

emission-phase (in cycles) versus frequency function—from unwrapped phase responses and 

expressed them in dimensionless form as the equivalent number, NSFOAE, of stimulus periods 

(Shera et al., 2002). Phase gradient delays are a proxy measurement of tuning. A longer delay 

reflects a higher store of energy; where the longer the delay, the sharper the tuning. These delays 

are hypothesized as the build-up time toward the steady state response of the underlying filters. 

Furthermore, these delays can be thought of as the energy spread comprising a round-trip delay, 

that is, a delay that is relative to the stimulus for a specific frequency to reach its characteristic 

frequency region, as well as the delay for the OAE coming from the characteristic frequency 

cochlear region to propagate to the ear canal (Neely et al., 1988).  Mathematically, these delays 

are related to the rate of change of the phase with frequency based on the signal frequency 

(Goodman et al., 2004). 

Phase-gradient delays were computed from the slope of the unwrapped phase (Fig 2.2.C) 

using peak-picking algorithms (Shera & Bergevin, 2012) (Figure 2.3). Otoacoustic trend lines 

were computed using locally linear regression, with confidence intervals determined using 

bootstrap resampling.  
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Figure 2.2 OAE data from a representative absolute pitch (AP) participant [male, age 21] in the 

first column, and control participant [female, age 26] in the second column. In this example, 

OAEs recorded from the right ears are displayed in both participants. SFOAEs were measured 

when swept tones were presented as a single probe tone alone, and with the addition of a second 

suppressor tone slightly higher in level and nearby in frequency.  

2.2.A) The probe-alone condition (blue trace) depicts the measured pressure at the stimulus 

frequency as a combination of both the stimulus and the emission, whereas when the suppressor 

is also presented (red trace), the interference at the probe frequency diminishes, indicating 

greater dominance of the stimulus. 

2.2.B) SFOAEs (blue curve), were extracted by comparing the complex-valued spectral response 

at the probe frequency between the two conditions. The magnitude indicates the size of the 

emission. As well, SOAE spectrums, which are the emissions in the absence of any stimuli are 

overlaid (black curves). They were taken just before the SFOAE run.  

2.2.C) The SFOAE (unwrapped) phase (Lp = 30 dB SPL). The slope of the phase curve with 

respect to frequency reveals the delay (also known as the phase-gradient delay).  
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Figure 2.3 Representative SFOAE data from a single ear showing the “peak-picking” algorithm 

used for extracting SFOAE phase gradient delays [denoted as open red circles].  

2.9 Results 

Our results indicate no obvious/salient differences in the amount of SOAEs in AP 

compared to controls based on our pooled SOAE count differences in AP (N = 20, 31 ears) and 

control (N = 33, 40 ears) subjects (Figure 2.4). SOAE incidence was similar in comparison 

between both groups, with a median of 2 SOAEs in both AP and non-AP groups. Figure 2.5 

shows an example of an AP and control subject with robust SOAEs compared to an AP and 

control subject with no SOAEs.  



	
  

	
  	
   33	
  

 

 

Figure 2.4 SOAE count differences in AP (N = 20, 31 ears) and control (N = 33, 40 ears) 

subjects. SOAE incidence was similar in comparison between both groups, as well as compared 

when including the same number of unique ears and the same subject pool sample size.  
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Figure 2.5 SOAE differences in representative control and AP subjects. Panel 2.5.A) illustrates 

robust SOAE peaks, whereas Panel 2.5.B) illustrates no SOAE peaks present in both control and 

AP subjects. 

SFOAEs delays in dimensionless form (NSFOAE), represent the delay in periods on the 

stimulus frequency. SFOAE delays (and thereby a proxy measure of peripheral tuning) were 

similar between both AP and control groups. The trend across frequency is quite robust; the 

scatter apparent in the data is typical of SFOAEs and does not arise from pathology or 

measurement noise (the measurements are quite reproducible) but reflects the role of mechanical 

irregularity inherent in the process of emission generation (Shera et al., 2008; Joris et al., 2011).  

With respect to the pooled NSFOAE results from control (seven ears from York, 26 ears 

from UWO; N = 33) and AP (eleven ears from York, nine ears from UWO; N = 20) unique 

individuals, to the first order we observed no substantial differences between AP and control 

groups. Interestingly, there may be some slight difference at the lower frequencies, which may 
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suggest minor frequency-dependent differences between groups (Figure 2.6). If these differences 

do exist, then they may get amplified as one ascends the central nervous system (CNS).  

 

Figure 2.6: Number of stimulus periods of delay (NSFOAE) extracted from phase-gradient delays 

in pooled Control (N = 33) and AP (N = 20) unique individual ears, Lp = 30 dB SPL. Shaded 

areas indicate a 95% confidence interval (CI) via bootstrapping across subjects. Results suggest 

no overall improved frequency selectivity in AP subjects. Similar relationship exists at other 

stimulus levels, although delays get progressively longer for lower stimulus levels. 
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2.10 Discussion and Conclusion 
 

Scientific findings chiefly revolve around the notion of neuroanatomical differences 

found in AP. For example, at the level of the central nervous system, structural differences reveal 

an increased leftward asymmetry of the PT volume in subjects with AP compared to controls 

(Keenan, 2001), and enhanced functional networks at the cortical level (Schulze et al., 2009; 

Loui et al., 2012). Our primary question regarded whether cortical/cognitive differences were 

sufficient to explain AP development, or if there were other differences that could be found 

downstream. We examined whether there was evidence for a peripheral (i.e., cochlear) basis of 

AP based upon OAEs. The predominant motivations were that both AP and SOAEs appear to 

have genetic components and a higher prevalence in certain populations, for example there is a 

relatively higher incidence of both in Asians (Deutch et al., 2005; Gregerson et al., 2001). We 

sought to address if SOAEs were more prevalent in AP subjects.  Using SFOAE delays as a 

proxy measure for frequency tuning, we tested if AP subjects exhibit differences in selectivity. 

This has been the first study to measure SOAEs and SFOAEs in AP participants. A 

possible limitation in our study was not controlling for musicianship. This would have been 

achieved by including a separate group that had musical experience without AP. However, a 

previous study found no significant difference in the mean evoked OAE amplitude between 

musicians and non-musicians (Perrot et al., 1999), further supporting our findings of no OAE 

differences in our AP musician group. Furthermore, Perrot et al. (1999) also reported increased 

activity in the bilateral medial olivocochlear system bundle (MOCS) (a region that comprises a 

large number of fibers originating in the medial nuclei of the superior olivary complex (SOC) 

that reach the OHCs within the cochlea), in musicians compared to non-musicians using a 

broadband auditory stimulus. The MOCS is found in the final chain of the descending auditory 

pathways beginning in the auditory cortex (Huffman & Henson, 1990). Therefore, it has been 

stipulated that the differences between the musician and non-musician groups may have been 

attributed to more central auditory structure activations, which are in line with our findings.  	
  

In conclusion, our results indicate no obvious/salient differences in the amount of SOAEs 

in AP compared to controls (e.g., no evidence for one or more strong SOAEs that could act as a 

cue). For both groups, SFOAE delays continually got larger with decreasing frequency down to 

at least Lp = 20 dB SPL.  
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SFOAE phase-gradient delays, measured using several probe levels ranging from 20–50 

dB SPL, also showed no significant differences (Figure 2.6). These findings suggest that tuning 

may amplify as auditory information is processed towards the CNS. Taken together, these data 

support the prevailing view that AP mechanisms arise at a processing level in the central nervous 

system at the brainstem or higher. Therefore, we conclude that OAEs suggest no clear peripheral 

difference between AP and non-AP participants. Instead, we argue that the required mechanisms 

lie centrally. 
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Chapter 3 
 
Experiment 2: Behavioural Mechanism for Absolute Pitch 
 
3.1 Abstract and Background  
 

For the following experiment, we looked at behavioural differences in AP musicians, 

non-AP musicians, and control groups without musical training. Described next is a brief 

background in musical characteristics that will help address further concepts. In a musical scale, 

there are 12 semitones within an octave and a semitone is made up of 100 cents where 1 cent 

equates to 1% of a semitone. Pitch is perceived logarithmically in relation to frequency. For 

example A4 = 440 Hz, and to find the frequency of a semitone above of A#4 you would multiply 

440 Hz by (21/12) or 1.05946 since there are 12 notes within an octave, to get 466.16 Hz. Since 

pitch is spaced logarithmically on the basilar membrane, music is perceived as a ratio between 

frequencies. For example, A3 = 220 Hz to A4 = 440 Hz is the same interval as A = 440 Hz to 

A5= 880 Hz even though the pairs have different frequency ranges between them, they still share 

the same frequency ratio of 2:1. Cents are a measurement unit between intervals and cannot be 

converted to Hz because they are not a measurement of frequency. The advantage of using the 

cents notation allows every tempered semitone to be the same, whereas expressing semitones as 

Hz creates differences in semitone. Stated another way, 1 just noticeable difference (JND) 

roughly equals 4.3 cents, approximately 0.36 Hz within an octave of 1000–2000 Hz, whereas 1 

JND roughly equals 40 cents, approximately 2 Hz within an octave of 62–125 Hz. 

 

The JND limit is closely related to the critical band characteristic of the auditory system. 

Critical bands refer to the frequency bandwidth of the auditory filter within the cochlea, whereas 

equivalent rectangular bandwidths (ERBs) refer to the association between the auditory filter, 

critical bandwidth and frequency such that as center frequency increases so does the ERB. 

Previously Zwicker et al. (1957) ran a psychoacoustic experiment that used sinusoidal stimuli 

that had fixed wave shapes and constant sound intensity level and duration. They reported that 

the JND was approximately one thirtieth of the critical bandwidth across the hearing range 

(musically equivalent to ~one twelfth of a semitone). This tells us that the JND in pitch is much 

smaller than the resolution of the analysis filters (critical bandwidth—which is around a third of 

an octave for much of the frequency range, but is greater at lower frequencies).  Furthermore, 
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Zwicker et al. (1957) reported that throughout most of the frequency ranges from 60–10,000 Hz, 

there are roughly 30 JNDs in one critical band.  

	
  

In normal hearing human adults, pitch differences tend to be reliably differentiated at 25 

cents (1/4 semitone), whereas adults with congenital amusia, have trouble differentiating pitches 

of 100 cents (1 semi-tone) or more (Peretz & Hyde, 2003). A previous study looked at JND 

thresholds in Mandarin speaking controls and congenital amusics that found the JND average for 

controls to be ~6 Hz (a third of a semitone) compared to the JND in amusics with tone agnosia 

~21 Hz (1.25 semitones) when the test tone of 250 Hz was used (Huang et al., 2015). Expert 

musicians were found to have JNDs reported between 10–16 cents (which relates to 1/6 to 1/10 

of a semitone (Burns, 1999). 

 

3.2 Just Noticeable Difference (JND) Test  

 

Each of the sixty-one subjects participated in the JND in frequency threshold test to 

determine the smallest detectable difference between two pitches. Human hearing ranges from 

20 Hz–20 kHz, with the greatest sensitivity in the 200–2000 Hz range, which occupies up to two-

thirds of the basilar membrane (Kollmeier, 2008). The JND threshold for pitch depends on the 

frequency of the tone and sound level, as well as duration and the suddenness of the frequency 

change. Previous studies described that a stronger familiarity and experience with a particular 

musical timbre would affect AP performance (a pianist would recognize piano target tones better 

than stringed tones for example (Bahr et al., 2005; Brammer, 1951). As such, two pure tones 

were used for testing AP ability for the JND test, one at 1 kHz and the other at 987.76 kHz. The 

latter tone is equivalent to an equitempered note (B5), which was used to test if the musician 

groups performed better with the familiar frequency. As well, pure tones were used in order to 

remove any biases an AP possessor may have had to an instrumental timbre as a function of 

experience. 

3.3 Methods: Participants  

A total of 61 participants were recruited for the behavioural and central studies for  

Experiments 2–5: 20 AP musicians (AP) (mean age (± SD) 25.2 ± 7.6 years, 13 males), 20 non-
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AP musicians (MUS) (mean age 25.5 ± 7.4 years, 13 males) and 20 non-musicians with minimal 

to no musical background (mean age 25.4 ± 7.4 years, 13 males) matched for age (F(1,59) = 

0.011, p = .99), gender (F(1,59) = 0, p =1), handedness (F(1,59) = 0.38, p = .69), and number of 

languages spoken (F(1,59) = 0.66, p = .52) (Table 4.1). Each group had 3–4 participants who 

spoke a tonal language (e.g. Mandarin). An additional musician participant was considered a 

special case in that she did not realize she had AP, denoted as quasi-AP (q-AP). This participant 

did not score as high on the AP test, and unlike the other AP subjects, she had used a tonal 

reference for one note (middle C) for solving the AP test tones by using relative pitch 

comparisons to the reference tone she could mentally class. The ability to judge one note in 

relation to another given a reference tone is known as relative pitch (RP). RP is very common, 

and all musicians (those with and without AP) reported having RP in this study. AP musicians, 

and non-AP musicians were recruited from notices advertised in university music departments 

and by word of mouth. 

 

AP musicians and non-AP musicians were matched on their primary instrument, onset 

age of musical training (F(1,39) = 1.26, p = .27) , and the number of hours of musical training 

per week (F(1,39) = 2.40, p = .44). In the control group, minimal musical training was defined as 

not having any current musical training in any instrument and having less than three years of any 

musical training and exposure overall. Out of the 20 control participants, 11 had no musical 

training or exposure to any instrument, while 9 control subjects had minimal exposure, less than 

3 years and practice under 6 hours/week during that time.  All of the participants had normal 

structural MRI scans, did not have any hearing impairments, and did not suffer from any 

neurological disorders. York University’s Human Participants Review Committee approved the 

study.  

 

Prior to the collection of data, written informed consent was obtained from each 

participant after detailed explanation of the experimental procedure. A comprehensive auditory 

questionnaire was collected for each participant that pertained to musical background, education, 

primary instrument/voice, age of onset of musical training and AP (Table 3.1).  
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Table 3.1 
Participant demographics 

Group AP MUS CON q-AP 

Number 20 20 20  1  
Gender (male/female) 13/7 13/7 13/7 Female 
Age (years) 25.2 ± 7.6 25.5 ± 7.4 25.4 ± 7.4 22 
Handedness 
            Right-handed 
            Left-handed 
            Ambidextrous  

 
17 
2 
1 

 
15 
3 
2 

 
16 
3 
1 

 
— 
1 
— 

Languages spoken 
            Monolingual 
            Bilingual 
            Trilingual 

 
11 
7 
2 

 
10 
7 
3 

 
9 
8 
3 

 
— 
1 
— 

Tonal languages spoken 4 3 3 — 
Years of formal education 16.3 ± 2.1 16.8 ± 2.81 17.1 ± 2.24 15 
Age of musical training 
onset (years) 

5.7 ± 3.3 6.8 ± 3.1 — 6 

Hours of practice per week 11.9 ± 7.6 9.6 ± 5.1  — 8 
Primary Instrument 
            Piano 
            Guitar 
            Trombone 

 
17 
2 
1 

 
17 
2 
1 

 
— 
— 
— 

 
1 
— 
— 
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A standardized AP test was given for all participants developed in the lab of Gottfried 

Schlaug [http://www.musicianbrain.com/aptest/], allowing for objective classification 

of AP status. The AP test consisted of 24 sine wave tones taken from the chromatic scale (C4–B4 

repeated twice and randomized per trial). Data were collected on four trials (for a total of 96 

tones presented). AP ability was confirmed if the accuracy was 90% or above on the responses 

given that were within one semitone difference from the presented tone (Miyazaki 1998; Zatorre 

& Becket 1989; Hamilton et al., 2004). Normal audiometric thresholds were confirmed for each 

participant using an audiometer. Data were further analyzed using SPSS 23 for Mac. 

 

Figure 3.1 Absolute pitch test scores (mean ± SEM) for AP (black open circles), musician 

(MUS) (dark gray open triangles), and control (CON) (light gray open square) participants (N = 

60). The quasi-AP subject (N = 1) is denoted by the open filled orange diamond symbol. AP 

subjects did significantly better on the AP test compared to musician and controls. ***ps < .001.  

 

A one-way ANOVA revealed a significant main effect of group (F(1,59) = 1248.6, p < 

.001) between AP-musicians, non-AP musicians and non-musician control groups for the AP 

test.  Post hoc Bonferonni tests for multiple comparisons revealed significantly increased scores 

for AP musicians compared to non-AP musicians and AP musicians compared to non-musician 
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controls 1000 Hz tone (p < .001). There were no significant differences between non-AP 

musician and non-musician control groups (p = .977). The AP test average score in AP 

musicians was  (mean ± SD) 99.6 ± 1.2%, in non-AP musicians was 10.0 ± 9.1% and in non-

musician controls was 7.9 ± 6.7 %.  
 

3.4 Method: JND Test  

The JND experiment was programmed in Matlab using the Psychoacoustics Toolbox and 

consisted of two tones played in succession. Pitch discrimination thresholds were determined by 

a 250 ms pure tone at 1000 Hz and 987.76 Hz (the equitempered tone of B5) using a two-

alternative forced choice task, where the subject pressed 1 or 2 to indicate the temporal position 

of the higher pitch. Thresholds were estimated using the Maximum Likelihood Procedure (MLP) 

toolbox (Grazi & Soranzo, 2009; 2014). For each testing frequency, there were 5 blocks 

presented consisting of 30 trials per block. Data were further analyzed using SPSS 23 for Mac. 

 

3.5 Results 

 
 

Figure 3.2: JND thresholds (mean ± SEM) for AP (black open circles), musician (MUS) (dark 

gray open triangles), and control (CON) (light gray open square) participants (N = 60). The 

quasi-AP subject (N = 1) is denoted by the orange open diamond symbol. AP and musician 
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subjects did significantly better at discerning the smallest frequency at both tones compared to 

controls. **p < .01, *** p < .001. 
 

A 3 × 2 mixed model analysis of variance (ANOVA), with group (AP, MUS, and CON) 

as the between-groups variable and JND threshold for each condition (1000 Hz and 987.76 Hz) 

as the within-group variable revealed a significant main effect of group (F(1,57) = 13.0, p < 

.001) between AP musician (AP), non-AP musician (MUS), and non-musician (CON) groups for 

the JND test at 1000 Hz and 987.76 Hz. Post hoc pairwise comparisons (Bonferroni adjusted 

alphas = .025) revealed significantly increased scores for 1000 Hz tone and 987.76 Hz tone (ps < 

.001) in AP musicians compared to control participants, and significantly increased scores for 

1000 Hz (p = .002) and 987.76 Hz (p = .001) tones in non-AP musicians compared to controls.  

There were no significant differences in scores for the 1000 Hz tone (p = .13) or 987.76 Hz tone 

(p = .217) in AP compared to musicians. There were no significant differences between the 1000 

Hz and 987.76 Hz tone in AP musician (p = .84), non-AP musician (p = .23), and non-musicians 

control (p = .174) groups, meaning the equitempered 987.76 Hz equivalent to a B5 tone did not 

fare better than the 1 kHz tone. 

 

In AP participants, the JND at 1000 Hz averaged (mean ± SD) 5.2 ± 2.6 Hz, and at 

987.76 Hz was 4.9 ± 2.1 Hz. In non-AP musicians, the JND at 1000 Hz averaged 10 ± 10 Hz, 

and at 987.76 Hz was 8.5 ± 9.9 Hz. In non-musician controls, the JND at 1000 Hz averaged 20 ± 

14 Hz, and at 987.76 Hz was 19 ± 12 Hz. 

 
3.6 Melody Mistuning (MM) Test  

 

An additional behavioural test was administered pertaining to melody mistuning/tone-

deafness detection developed by Dr. Mandell (online source: http://jakemandell.com/tonedeaf/). 

The test involved 36 short musical phrases that repeated twice. The participant would then 

indicate if the melodies were both the same or different. The test was made purposefully difficult 

such that expert musicians on averaged scored 75% correct. Each melodic excerpt ranged in 

musical timbre, duration, and tempo. 
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3.7 Results 

 

 

Figure 3.3 Melody mistuning detection test results. The first panel shows the melody mistuning 

detection test (mean ± SEM) for AP, musician (MUS) and control (CON) groups. Both AP and 

musicians did significantly better than controls **p < .01, *** p < .001. The second panel shows 

data from over 61,000 participants that had taken the online test that shows where AP, musician, 

and control subjects fared overall. 

 
A one-way ANOVA revealed a significant main effect of group (F(1,59) = 9.27, p < 

.001) for the melody mistuning test. Post hoc Bonferonni tests for multiple comparisons revealed 

significantly increased scores for AP musicians compared to non-musician controls (p < .001) 

and non-AP musicians compared to non-musician controls (p = .021). There were no significant 

differences between AP and non-AP musicians (p = .47). The AP test average score in AP 

participants was (mean ± SEM) 81.1 ± 1.4%, in non-AP musicians was 77.4 ± 2.1% and in non-

musician controls was 70.0 ± 1.8%.  

 

3.8 Discussion 

 

Processing pitch is essential not only in understanding musical perception, but also in 

speech processing, particularly useful for tone languages. Our initial behavioral test looked at the 

smallest frequency that could be detected (JND) by playing two tones in quick succession with 
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the listener being asked if there was a difference between the two pitches. Here, we report 

significant differences in JND thresholds in AP musicians and non-AP musicians compared to 

non-musician control groups at both 1000 Hz and 987.76 Hz testing frequencies. Although the 

AP subjects did better than musicians, it was not significant. Also, there were no significant 

differences between testing tones, meaning that neither group fared better at 1000 Hz, a 

frequency of B5 on the equitempered Western scale, compared to a tone that is not 

equitempered.  

 

A number of behavioural and neurophysiological studies have recognized quasi-absolute 

pitch (q-AP) musicians who had limited AP ability in that they did not score as high on AP tests 

and who commonly had a tonal reference for white notes of the piano or the strings of their 

primary instrument (Bermudez & Zatorre, 2009; Wilson et al., 2009). Similar to the q-AP subject 

who was tested in our experiment, these musicians often rely on RP judgements for pitches that 

they cannot label right away and therefore have less associations between verbal pitch category 

labels and the stimulus representation (McLachlan et al., 2013). Accordingly, the q-AP 

musicians may then have fewer templates to categorize verbal labels with than AP musicians 

do. We took into consideration where the q-AP subject ranked, which was more similar to the 

AP group than the musician group. 

 

A number of studies have compared JND thresholds at various test tones in musicians 

compared with non-musicians and all reported consistent results that showed musicians had 

enhanced pitch discrimination ability (smaller JNDs) than non-musicians. The differences in 

thresholds were increased in musicians by a factor of 2 (Spiegel & Watson, 198; Kishon-Rabin et 

al., 2001), and in another study by a factor of 6 (using 330 Hz i.e., E4 on the equitempered 

Western scale as their test tone). The explanation for the larger JND difference in musicians was 

thought to be due to the stringent selection criteria among both musician and non-musician 

groups as compared to the previous studies (Micheyl et al., 2006). However, a recent study using 

a 1 kHz test tone found very similar JND thresholds in musician (JND = ~10 Hz) and non-

musician (JND = ~25 Hz) groups (Kuhnis et al., 2013). Our results found that the JND 

thresholds were larger in the control group with no musical experience (JND = ~20 Hz) which 

significantly differed by a factor of two compared to the non-AP musician group (JND = ~10 
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Hz). Our AP group (JND = ~5 Hz) on average did better than the non-AP musician group 

although not significant.  

 

There has been only one other reported study that looked at JND thresholds in AP 

subjects. They used the same test tones (1000 Hz and 987.76 Hz) and did not find significant 

differences between groups (AP, q-AP, and non-AP musicians had JND thresholds ~20 Hz and 

controls had JND thresholds of ~25 Hz for both test tones) concluding that AP possessors may 

not have particularly 'good ears' (Fujisaki & Makio, 2002). What was interesting still was that the 

controls were not significantly different than any musician group, while all other studies reported 

significant differences. There were a number of gaps in this study in that they did not report the 

sample size of subjects within each group, age, gender, ethnicity, and did not elaborate on the 

methodology in enough detail. The main consensus still holds—JND differences were not 

significant in AP musicians compared to non-AP musicians as found within our study, which 

further suggests that other salient features may be responsible in AP manifestation than 

difference limen alone.  

A proposed model of AP ability has been explained as a hierarchical two-stage model 

where pitch representation in long term memory is the first stage and pitch labeling is the second 

stage (Levitin & Rogers, 2005). The overall representation of pitch in fixed classes has been 

considered common to all humans, however the association between pitch and the labels 

assigned to them grouped into nominal categories is thought to result in only a few select 

individuals—those with AP (Zatorre, 2003). An additional part to this model can encompass an 

enhancement in auditory working memory as evidenced in AP musicians compared to non-AP 

musicians (Deutsch & Dooley, 2013). As was demonstrated in our second behavioural task, AP 

subjects did significantly better in holding a melodic excerpt that differed in timbre, duration and 

tempo in working memory to detect if differences exist as compared to controls. Although AP 

subjects did better than the musician group, this difference was not significant.  

Nevertheless, another study described an opposing viewpoint that suggested AP 

possessors have note categories that are plastic and not fixed in absolute frequency referents as 

established early in age. In this study, AP subjects listened to music detuned in steps that was 

below the JND that permitted the subtle change in perceptual frequency experience without the 
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subject being aware. In just 45 minutes, AP subjects showed significant changes in the tuning of 

their note categories when they heard detuned music by a fraction of a semitone (Hedger et al., 

2013). Furthermore, this study suggests that the stability of AP categories may not be related to a 

critical period of early musical exposure, and instead by cultural norms accepted for tuning 

music (Hedger et al., 2013). Taken together, the behavioural tests in this study report that AP 

subjects along with non-AP musicians did fare significantly better in difference limen thresholds 

and compared melodic mistuning excerpts better in working memory than their non-musical 

counterparts. Although musicianship did play a factor, the underlying AP marker may be more 

representative in central studies as described in the upcoming sections. 
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Chapter 4 
 
Experiment 3: Central Basis for Absolute Pitch (functional MRI) 
 
4.1 Abstract 
 

The focus of our study was to determine whether central differences in the precision of 

frequency representation might account for the special abilities in AP.	
  Advancements in fMRI 

have established tonotopic mapping in the human auditory cortex. To date, there still remains a 

debate of where the exact orientations of the primary gradients occur in Heschl's gyrus (HG) of 

the primary auditory cortex (A1) (Saenz & Langers, 2014). As well, there is limited data on the 

tonotopic organization of subcortical auditory structures: the inferior colliculus (IC) and medial 

geniculate nucleus (MGN), which are harder to resolve due to their small volumes.  

 

Previous fMRI studies revealed an increase in activation in the left superior temporal 

sulcus in AP musicians during a pitch memory task compared to controls (Schulze et al., 2009), 

and increased functional activations in the STG, bilateral HG, and middle temporal gyrus (MTG) 

in the AP group compared to control group during a music listening task (Loui et al., 2012). 

These studies suggest that AP subjects have improvements in sound processing and perception 

compared to controls.  

 

What is not known is if there exist differences in the sharpness of tuning between AP 

musicians, non-AP musicians, and non-musician control groups. We approached this question by 

the use of the population receptive field (pRF) model and tonotopic/tuning width analysis of the 

auditory cortex. Our goal was to determine the center frequency and tuning width of the auditory 

regions (A1), rostral (R) and rostral-temporal (RT) regions of the cortex, with the prediction that 

AP musicians had sharper frequency selectivity than non-AP musicians and controls without 

musical training.  

 

4.2 Methods: Participants  

 

Before performing our pRF protocol on the AP-musician, non-AP musician, and non-

musician control subjects, we had initially experimented with a number of stimuli in order to 
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reliably identify tonotopic and tuning curve maps in the cortex and subcortex, including the 

MGN and IC. With further refinements of the stimulus, sixty-one participants were scanned with 

a modified protocol in order to detect differences in CF and BW in cortical auditory regions 

Participant information is described in Table 3.1. 

 

4.3 Method: Data Acquisition, Processing, and Measurements 

 

All images were acquired using a 3T Siemens Trio MRI scanner with a 32-channel head 

coil at York University. To reduce head motion, cushions were placed around the participants’ 

heads. Each participant was instructed to listen to the auditory stimulus they heard. 

Participants were presented with an auditory stimulus consisting of pure tone logarithmic 

sweeps and the data were analyzed using an adaptation of the population receptive field (pRF) 

technique developed by Dumoulin and Wandell (2008), used initially for retinotopic mapping. 

The pRF approach was used to estimate different neuronal population quantities such as sound 

frequencies in the auditory cortex. Our model treated the pRF underlying each voxel's response 

as a one-dimensional Gaussian function of frequency. This technique provided an estimated 

sensitivity function for each voxel with a given center, or preferred frequency, and sigma, or 

tuning bandwidth. Sigma was computed as one standard deviation of the normal distribution. 

The sharpness of tuning (Q) was computed as the ratio between center frequency CF and 

bandwidth of the Guassian response function (full width at half maximum (FWHM) that was 

centered about the CF. For each voxel this was defined as CF/FWHM, where FWHM = 2.355 * 

SD). This means that sharper tuning relates to a higher Q value, whereas broader tuning relates to 

a lower Q value.  The SD was the sigma or tuning width parameter computed from the pRF 

model.  

 

A high resolution T1 weighted three-dimensional MPRAGE scan of the entire head was 

collected on every subject with the following parameters: TR = 1.9 s, TE = 2.52 ms, 1 mm thick 

slices, 256 × 256 matrix (1 mm3
 isotropic voxel size).  
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A whole head echo-planar image (WHEPI) was collected that was used for registration 

with the following parameters: acquisition time 30 s, 128 × 128 matrix, seventy-seven 2 mm 

thick slices, TR = 7 s, TE = 30 ms, flip angle = 90°.  

For control participants that had their subcortex analyzed, a proton density weighted (PD) 

scan was acquired to delineate subcortical ROIs of the MGN and IC. Forty (PD) weighted 

images were acquired with the following parameters: 89 s acquisition time, 192 mm field of view 

(FOV), up-sampled to a 512 × 512 matrix (0.375 × 0.375 × 1 mm3 voxel size), concatenated, 

motion corrected, and averaged using FSL. Future PD scans will use a different protocol to 

reduce scan time to ~15 min. Following this protocol, only a minimum of 5 PD scans would be 

required using the following parameters: acquisition time 179 s, acquisition matrix 512 × 512 

(0.3 × 0.3 × 1 mm3 voxel size), TR = 3.25 s, TE = 32 ms, flip angle = 120°, interleaved slice 

acquisition, FoV read = 160 mm, FoV phase = 100%, parallel imaging (GRAPPA) with an 

acceleration factor of 2, bandwidth 40 Hz/pixel, 18 slices, each 1 mm thick, FOV = 160 mm, as 

described in McKetton et al. (2015). 

 

The first auditory stimulus was used to test whether we could achieve reliable tonotopic 

maps of the subcortex. We initially used an auditory stimulus that consisted of eight 32 s 

logarithmic sweeps from 20 Hz–20 kHz (4:16 min each run). Within one session, between 10–15 

functional runs were collected. Functional EPI (echo-planar imaging) parameters: 4:16 min 

acquisition time, 192 mm FOV and 128 × 128 matrix (1.5 × 1.5 × 2 mm3 voxel size resampled to 

0.75 mm isotropic), TR = 2 s, TE = 30 ms, twenty-two 2 mm thick slices per slab (Figure 4.1 b). 

In the example showing the subcortex, at least three sessions worth of data were required (~35 

scans) for reliable tonotopic and tuning width maps. For cortical data, a minimum of one session 

(10 scans) was necessary.  

The second auditory stimulus was modified to include blanks. This allowed us to model 

the hemodynamic response function (HRF) delay better, resulting in an improved signal-to-noise 

ratio (SNR). We used this stimulus for collecting functional data on the 61 participants for the 

study. The second auditory stimulus consisted of 6 ascending and 6 descending 24 s long sweeps 

from 20 Hz-10 kHz jittered with four 8 s blanks. Ten functional runs were collected per session 
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with the following parameters: 5:20 min acquisition time, 192 mm FOV, 128 matrix (1.5 × 1.5 × 

2 mm3 voxel size resampled to 0.75 mm), TR = 2 s, TE = 30 ms, twenty-two 2 mm thick slices. 

ROIs were traced in surface inflated space by a rater blind to group membership 

following boundaries of auditory regions consistent with interpretations from (Moerel et al., 

2014; Kaas & Hackett 2000). 

4.4 Data Analysis 

 

Data were preprocessed using Matlab, Freesurfer, and AFNI 

[http://afni.nimh.nih.gov/afni/]. Data were deskulled, and the functional runs were time shifted, 

deobliqued, upsampled to twice the resolution, motion corrected, highpass filtered, and 

registered to the WHEPI within the session, and then to the master WHEPI that was then 

registered to the anatomical T1. MGN ROIs were delineated from the PD weighted mean (Figure 

4.1 c–e), IC ROIs were delineated from T1 weighted scans (Figure 4.2 a–b) both using FSL 

[http://fsl.fmrib.ox.ac.uk/fsldownloads/fsldownloadmain.html], whereas functional cortical ROIs 

were delineated using the AFNI surface mapper SUMA [http://afni.nimh.nih.gov/afni/suma] 

(Figure 4.2 d). 
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Figure 4.1 

Neuroimaging slice selection plan and MGN localization. a) Sagittal view of a T1 weighted 

image displaying the slice selection box (yellow) used as a template for collecting the PD slab 

used for MGN ROIs.  b) Slice selection box used as template for collecting functional runs 

covering auditory cortex and subcortex.  c) Coronal PD averaged slab (512 matrix) of a control.  

The yellow box encloses both the right and left MGN.  d) Zoomed view.  e) Outline of the right 

and left MGN ROI. 

 

 
 

Figure 4.2 IC and auditory cortex localization. a) Sagittal and b) Coronal T1 weighted view of 

the IC ROI outline (red). c) Axial and d) sagittal view of the functional auditory cortex ROIs.  

4.5 pRF Model  

 

Data were analyzed using an adaptation of the pRF technique from the pRF code 

developed by Kevin DeSimone [http://kdesimone.github.io/popeye/]. This model treated the pRF 

underlying each voxel's response as a 1D Gaussian function of frequency providing an estimated 

sensitivity function for each voxel with a given center, or preferred frequency, and standard 
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deviation, or tuning bandwidth (Figure 4.3). pRF maps were thresholded at r2 = .0625 (r = .25), p 

= .01. Cortical data were further 3D visualized with AFNI’s surface mapper SUMA. 

 

 
 
Figure 4.3 Population receptive field (pRF) model used in fMRI data collection to establish the 

tonotopic mapping of cortex and subcortex. This model provides an estimated sensitivity 

function for each voxel with a given center frequency and bandwidth. 

 

  

Figure 4.4 Auditory voxel time course compared to model in A) HG of the auditory cortex, and 

B) MGN of the subcortex.  Threshold: r2 = .0625 (r= .25), p = .01. 

 
 
 



	
  

	
  	
   55	
  

4.6 Subcortical Results  
 

We applied our pRF model that estimated the best frequency tonotopic maps and tuning 

bandwidth maps of the auditory cortical and subcortical (IC, MGN) regions in healthy control 

human subjects that listened to the first auditory stimulus. Cortical data were consistent with 

previous findings that showed lower frequencies on the crest of HG that were flanked by two 

high-frequency zones posteromedially towards the planum temporale and anteromedially 

towards the circular sulcus. Consistent with the current paradigm, this gives rise to at least two 

primary tonotopic gradients oriented in a distinct V-shaped high-low-high frequency pattern 

(Figure 4.5).  

 

 

Figure 4.5 Tonotopic pRF and tuning curve map of the auditory cortex using auditory Stimulus 

1 on controls as a proof of concept that our model worked. Center frequency gradient and tuning 

curve maps were plotted on the unfolded cortical surface for each hemisphere. Left and right 

hemispheres of the primary A1 that colocalise with Heschl’s gyrus (HG), a transverse superior 

temporal gyrus, that separates the planum polare (PP) on the anterior side from the planum 

temporale (PT) posteriorly. Panel A shows the left and right hemisphere from a control subject 

from 3 sessions of data (35 functional runs). Panel B shows left and right hemisphere pRF maps 

and C) tuning sharpness (Q) maps from a control subject from 1 session of data (10 functional 

runs). All data show significant voxels thresholded at r2 = .0625 (r = .25), p = .01. 
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The tonotopic map of the IC displays a high-to-low frequency gradient from the ventral 

(V) to dorsal (D) orientation in the sagittal plane consistent with one other study (DeMartino et 

al., 2013) (Figure 6.6). Moving through the slice selection from (a–c; [anterior-posterior 

direction]), we interpret a low-to-high-to-low tonotopic gradient that starts to emerge in the 

superior-inferior direction (Figure 4.7).   

 

Figure 4.6 Tonotopic and Tuning Width Maps of the IC.  

a) (Top) Sagittal, (bottom) zoomed in view of the IC displaying the Center Frequency (CF) 

tonotopic maps showing the high-to-low frequency gradient from the ventral (V) to 

dorsal (D) orientation. 

b) (Top) Coronal, (bottom) zoomed in view of the right and left tonotopic maps of the IC. 

c) (Top) Sagittal, (bottom) zoomed in view of the IC displaying tuning sharpness (Q) maps. 

d) (Top) Coronal, (bottom) zoomed in view of the right and left tuning sharpness maps of 

the IC. 
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Figure 4.7 Tonotopic map of the MGN. Panels (a–c) display the tonotopic organization and (d–

f) display the tuning sharpness (Q) maps of the right MGN. 
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4.7 AP Results  

 
 

Figure 4.8 Tonotopic pRF and tuning curve map of the auditory cortex in representative subjects 

from the absolute pitch (AP) musician group (1st column), musician without AP group (2nd 

column), and control participant without musical training (3rd column) from 1 session. Panel (A) 

shows left surface inflated hemispheres. Panel (B) shows the left zoomed in view of the pRF 

map for A1, R, RT and belt regions. Solid black lines indicate boundaries between tonotopic 

maps, and black arrows indicate direction of tonotopic gradient (low-high) consistent with 

interpretations from (Moerel et al., 2014; Kaas & Hackett 2000). Panel (C) shows the left 

zoomed in view of the tuning sharpness maps (Q) for A1, R, RT and belt regions.  
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Figure 4.9 Center frequency (CF) means ± SEM for auditory ROIs in musicians with absolute 

pitch (AP) non-AP musicians (MUS), and controls without any musical background (CON). 

Only significant voxels corresponding to the auditory stimulus were used in the analyses (r2 = 

.0625, p < .05). Panel (A) shows left and right primary auditory cortex (A1) region of interest 

(ROI). Panel (B) shows left and right rostral core (R) ROIs. Panel (C) shows left and right 

rostral-temporal core (RT) ROIs.   

 

Center frequency (CF) for each auditory ROI was subjected to a 3 × 2 mixed model 

analysis of variance (ANOVA), with group (AP, MUS, and CON) as the between-groups 

variable and hemisphere as the within-group variable.  There were no significant group by 

hemisphere interactions for the A1 (F(1,57) = .74, p = .48), R (F(1,57) = 1.31, p = .28), or RT 

(F(1,57) = 1.96, p = .15) ROIs.  There was a significant effect of hemisphere in A1 (F(1,57) = 

18.5, p < .001), but not in the R (F(1,57) =1.33, p = .25) or RT (F(1,57) = 0.28, p = .60) ROIs. 

There was no effect of group in the A1 (F(1,57) = 0.74, p = .48), R (F(1,57) = .18, p = .83), or 

RT (F(1,57) = 0.18, p = .83) ROIs. 

 

Post hoc pairwise comparisons (Bonferroni adjusted alphas = .025) revealed no 

significant differences in CF in the A1 ROI for the left (p = .82) or right (p = .37) hemispheres in 

AP subjects compared to musicians, the left (p = .81) or right (p = .24) hemispheres in AP 

subjects compared to controls, or the left (p = .99) or right (p = .79) hemispheres in musicians 

compared to controls. There were no significant differences in the R ROI for the left (p = .30) or 

right (p = .62) hemispheres in AP subjects compared to musicians, the left (p = .33) or right (p = 

.43) hemispheres in AP subjects compared to controls, or the left (p = .94) or right (p = .76) 
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hemispheres in musicians compared to controls. Likewise, there were no significant differences 

in the RT ROI for the left (p = .19) or right (p = .30) hemispheres in AP subjects compared to 

musicians, the left (p = .06) or right (p = .84) hemispheres in AP subjects compared to controls; 

or the left (p = .53) or right (p = .22) hemispheres in musicians compared to controls. There was 

a significant difference between the left and right hemipheres in A1 for both musician and 

control groups (ps < .01), where CF was larger in the right hemisphere, but not in the AP group 

(p = .13). There were no significant differences between the left and right hemispheres in R for 

AP (p = .06), musician (p = .94), or controls (p = .95) groups. Likewise, there were no significant 

differences between hemispheres in RT for AP (p = .54), musician (p = .69), or control (p = .06) 

groups. 

 
 
Figure 4.10 Tuning sharpness (Q) (means ± SEM) for auditory ROIs in musicians with absolute 

pitch (AP), musicians without AP (MUS), and controls without any musical background (CON). 

Only significant voxels corresponding to the auditory stimulus were used in the analyses (r2 = 

.0625, p < .05). Panel (A) shows left and right primary auditory cortex (A1) region of interest 

(ROI). Panel (B) shows left and right rostral core (R) ROIs. Panel (C) shows left and right 

rostral-temporal core (RT) ROIs. *p < .05. 

	
  

Tuning sharpness (Q) for each auditory region ROI was analyzed with a 3 × 2 mixed 

model analysis of variance (ANOVA), with group (AP, MUS, and CON) as the between-groups 

variable and hemisphere as the within-group variable. It revealed no significant group by 

hemiphere interactions in the A1 (F(1,57) = 0.20, p = .82),  R (F(1,57) = 0.053, p = .95), or RT 

(F(1,57) = 0.74, p = .48) ROIs. However, there was a significant effect of hemisphere in A1, 
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(F(1,57) = 9.41, p = .003), but not in the R (F(1,57) = 0.21, p = .65) or RT (F(1,57) = 0.20, p = 

.66) ROIs. There were no significant effects of group for the A1 (F(1,57) = 0.20,  p = .82), R 

(F(1,57) = 0.053, p = .95), or RT (F(1,57) = 0.74, p = .48) ROIs.  

 

Post hoc pairwise comparisons (Bonferroni adjusted alphas = .025) revealed no 

significant differences in tuning sharpness (Q) in the A1 ROI for the left (p = .60) or right (p = 

.63) hemispheres in AP subjects compared to musicians, the left (p = .61) or right (p = .33) 

hemispheres in AP subjects compared to controls, or in the left (p = .99) or right (p = .62) 

hemispheres in musicians compared to controls. There were no significant differences for the left 

(p = .92) or right (p = .78) hemispheres in AP subjects compared to musicians; the left (p = .64) 

or right (p = .76) hemispheres in AP subjects compared to controls, or in the left (p = .72) or 

right (p = .98) hemispheres in musicians compared to controls. Likewise, there were no 

significant differences in the RT ROI for the left (p = .98) or right (p = .97) hemispheres in AP 

subjects compared to musicians, the left (p = .27) or right (p = .62) hemispheres in AP subjects 

compared to controls, or the left (p = .28) or right (p = .64) hemispheres in musicians compared 

to controls. 

 

 There was a significant difference between hemispheres in A1 for controls (p = .026), 

but not for the AP (p = .14) or musician (p = .13) groups. There were no significant differences 

between hemispheres in R for AP (p = .79), musician (p = .98), or control (p = .63) groups. 

Likewise, there were no significant differences between hemispheres in RT for AP (p = .79), 

musician (p = .83), or control (p = .22) groups. 
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Figure 4.11 Volume of Auditory ROIs (means ± SEM) in musicians with absolute pitch (AP) 

non-AP musicians (MUS), and controls without any musical background (CON). Only 

significant voxels corresponding to the auditory stimulus were used in the analyses (r2 = .0625, p 

< .05). Panel (A) shows left and right primary auditory cortex (A1) region of interest (ROI). 

Panel (B) shows left and right rostral core (R) ROIs. Panel (C) shows left and right rostral-

temporal core (RT) ROIs.  ***ps < .001, **ps < .01, *ps < .05. 

 

The volume of each auditory ROI was analyzed with a 3 × 2 mixed model analysis of 

variance (ANOVA), with group (AP, MUS, and CON) as the between-groups variable and 

hemisphere as the within-group variable.  It revealed no significant group by hemisphere 

interaction in the A1 (F(1,57) = 0.49, p = .61), R (F(1,57) = 0.19 , p = .83), or RT (F(1,57) = 

0.35, p = .70) ROIs; however, there was a significant effect of hemisphere in A1 (F(1,57) = 16.6, 

p < .001) and R (F(1,57) = 4.57, p = .037), but not in RT (F(1, 57) = 2.91, p = .093) ROIs. There 

was a significant effect of group in A1 (F(1,57) =21.8, p < .001), R (F(1,57) = 5.12, p = .009), 

and RT (F(1,57) = 6.08, p = .004) ROIs. 

 

Post hoc pairwise comparisons (Bonferroni adjusted alphas = .025) revealed significant 

differences between the volumes of the A1 ROIs for the left and right hemispheres in AP 

subjects compared to musicians and AP subjects compared to controls (ps < .001), but not 

between the left (p = .83) or right (p = .47) hemispheres in musicians compared to controls. 

There was a significant difference in volume in R for the right (p = .005) hemisphere and 

approaching significance for the left hemisphere (p = .055) in AP subjects compared to 

musicians. There was a significant difference in the right (p = .049) hemisphere R volume and 
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approaching significance in the left (p = .059) hemisphere in AP subjects compared to controls. 

There were no significant differences in R ROI volume for the right (p = .35) or left (p = .97) 

hemispheres in musicians compared to controls. There was a significant difference in the RT 

ROI volume for the right (p = .008) hemisphere and marginal significance for the left (p = .056) 

hemisphere in AP subjects compared to musicians.  There were significant differences in volume 

for both the left (p = .012) and right (p = .018) hemispheres in AP subjects compared to controls, 

but no significant differences in RT volumes for either the left (p = .52) or right (p = .76) 

hemispheres in musicians compared to controls. There were no significant differences in the left 

or right A1 volume for AP (p = .12); however there were differences between the musician (p = 

.004), and control (p = .016) groups where the left side was larger. There were no significant 

differences in the left and right R volumes for AP (p = .16), musicians (p = .13), or controls (p = 

.47), nor the left or right RT volumes for the AP (p = .25), musician (p = .15), or control (p = .75) 

groups. 

 

Figure 4.12 Percentage of significant pRF activation means ± SEM for auditory ROIs in 

musicians with absolute pitch (AP), non-AP musicians (MUS), and controls without any musical 

background (CON). Only significant voxels corresponding to the auditory stimulus were used in 

the analyses (r2 = .0625, p < .05). Panel (A) shows left and right primary auditory cortex (A1) 

region of interest (ROI). Panel (B) shows left and right rostral core (R) ROIs. Panel (C) shows 

left and right rostral-temporal core (RT) ROIs. *ps < .05. 

 

The percentage of voxels with significant pRF activation (r2 = .0625, p < .05) for each 

auditory ROI was subjected to a 3 × 2 mixed model analysis of variance (ANOVA) with group 

(AP, MUS, and CON) as the between-groups variable and hemisphere as the within-group 



	
  

	
  	
   64	
  

variable.  It revealed no significant group by hemisphere interaction in the A1 (F(1,57) = 0.19, p 

= .83), R (F(1,57) = 0.15 , p = .86), or RT (F(1,57) = 0.059, p = .94) ROIs, and no significant 

effects of hemisphere in A1 (F(1,57) = 0.001, p = .98), R (F(1,57) = 1.51, p = .70), or RT 

(F(1,57) = 2.45, p = .12) ROIs. There were no significant effects of group in A1 (F(1,57) = 

0.001, p = .98) or RT (F(1,57) = 0.60, p = .56) ROIs, but there were in R (F(1,57) = 3.56, p = 

.035). 

 

Post hoc pairwise comparisons (Bonferroni adjusted alphas = .025) revealed no 

significant differences in A1 for the left (p = .59) or right (p = .99) hemispheres in AP subjects 

compared to musicians, the left (p = .092) or right (p = .09) hemispheres in AP subjects 

compared to controls, or in the left (p = .248) or right (p = .088) hemispheres in musicians 

compared to controls. There were no significant differences in R for the left (p = .28) or right 

hemisphere (p = .70) in AP subjects compared to musicians. However, there was a significant 

difference in the left (p = .012) and marginally significant in the right (p = .058) hemisphere for 

AP subjects compared to controls, but no significant difference in the left (p = .14) or right (p = 

.13) hemispheres in musicians compared to controls. Likewise, there was no significant 

difference in RT for the left (p = .88) or right (p = .70) hemispheres in AP subjects compared to 

musicians, the left (p = .44) or right (p = .72) hemispheres in AP subjects compared to controls, 

or the left (p = .35) or right (p = .46) hemispheres in musicians compared to controls. There were 

no significant differences between the left and right hemispheres in A1 for AP (p = .68), 

musician (p = .66), or control (p = .93) groups, in R for AP (p = .89), musician (p = .54), or 

controls (p = .86) groups, or in RT for AP (p = .52), musician (p = .36), or control (p = .26) 

groups. 

 

Since there were no significance differences between hemispheres for the percentage of 

pRF activation for either auditory ROI, we collapsed the hemispheres for further analyses.  
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Figure 4.13 Percentage of significant pRF activation (means ± SEM) for auditory ROIs in 

musicians with absolute pitch (AP) non-AP musicians (MUS), and controls without any musical 

background (CON), collapsed across hemispheres. Only significant voxels corresponding to the 

auditory stimulus were used in the analyses (r2 = .0625, p < .05). Panels (A–C) shows each 

subjects data point for the A1, R, and RT ROI respectively. **p < .01 , * p < .05.	
  

 

There was a significant main effect of group for the percentage of pRF activation in the 

A1 (F(1,117) = 3.46, p = .035) and R (F(1,117) = 5.26, p = .006) ROIs, collapsed across 

hemispheres.  Post hoc Bonferonni tests for multiple comparisons revealed a significant increase 

in the percentage of pRF activation for AP participants compared to controls within A1 ROIs (p 

< .05) and within R ROIs (p < .01), collapsed between hemispheres. 

  

4.8 Discussion 

 

This has been the first study to look at tonotopic and tuning width maps in AP musicians, 

non-AP musicians, and non-musician groups within A1, R, and RT subdivision of Heshl’s 

Gyrus. We did not find significant differences in the center frequency or tuning width maps 

using our pRF model between groups suggesting that similar frequency selectivity mechanisms 

reside within these auditory cortical regions despite the level of musicianship. Furthermore, these 

results may indicate that other salient mechanisms are at play to account for the enhanced pitch 

categorization and auditory working memory abilities found in AP. Frequency selectivity or the 

sharpness of tuning reflects the gamut of frequencies neurons respond to. Previous studies that 

recorded these neurons in non-human primates found sharper (narrower) tuning within A1 core 
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regions as compared to broader tuning widths in neurons in belt regions (Rauschecker et al., 

1995; Hackett et al., 1998; Rauschecker & Tian, 2004; Kajikawa et al., 2005; Kusmierek & 

Rauschecker, 2009). Tuning widths were also reported narrower in the human auditory core 

regions compared to non-human primates based on previous electrophysiological recordings 

(Bitterman et al., 2008).  

 

It is often hard to compare frequency tuning widths in multiple auditory pathway areas 

using electrophysiology recordings due to the location (i.e., cortical, subcortical, brainstem) that 

neural responses are being recoded from (Barlett et al, 2011). The use of fMRI allows for full 

brain coverage and has the capability to probe both cortical and subcortical regions within each 

single subject and extract both tonotopic and tuning width maps (De Martino et al., 2013). De 

Martino et al. (2013) conducted an fMRI study using a 7T scanner and reported the selectivity of 

spectral tuning (i.e., tuning width) within the cortex and IC. Their results indicated narrow tuning 

within the center and broader tuning around the outer shell of the IC, and narrow tuning within a 

region along HG and broader tuning around belt regions of the auditory cortex. Furthermore, a 

number of IC voxels were more narrowly tuned up to 0.45 octaves (Q = 3.23) compared to 

broader tuning 0.6 octaves (Q = 0.45) within cortical regions. Our subcortical results of the IC 

are somewhat in line with DeMartino et al. (2013) in that sharper tuning was found more in the 

inferior central portion of the IC. Similarly, we also report narrower tuning within HG compared 

to broader tuning surrounding belt and parabelt regions where broader tuning was more 

pronounced on the posterior side of HG. 

 
Tuning widths extracted from fMRI data take into account a population of thousands of 

neurons within a voxel. Comparing fMRI data to electrophysiology single neuron recordings 

may not be straightforward. De Martino et al. (2013) reported cortical tuning within a voxel 

spanned over a wide range of values and at their lower boundaries were roughly half (0.45) of an 

octave. These values differed from human (Bitterman et al., 2008) and monkey data (Barlett et 

al., 2011) from single neuron recordings that showed narrower tuning widths up to 1/12 octave. 

These disparities can be attributed to the lower spatial resolution of fMRI compared with 

electrophysiology studies. Moreover, broader tuning widths would then be designated to voxels 

that have a number of different best frequencies, further skewing the neuroimaging results to 
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more voxels that display broader tuning widths. In addition, noise can further skew the resulting 

tuning width maps since the voxel’s response to the auditory stimulus may not represent all the 

varied receptive field responses neurons can have.  Also, the pRF model that we used in our 

study compares to DeMartino’s et al. (2013) model that measured sigma or tuning width as the 

width of the main center frequency or spectral peak within the voxel.  As such, other spectral 

peaks within the voxel would not be included in our pRF fitting, so any correlation with tuning 

width and spectral complexity would not be warranted. Lastly, it has been shown that neural 

tuning width can be related to how loud the stimulus is such that tuning gets broader the louder 

the sound level. Therefore, direct comparisons to eletrophysiological research that normally use 

~10 dB to measure tuning widths, may not be directly comparable to neuroimaging studies that 

normally use ~60 dB to deliver their stimulus (De Martino et al., 2013). 

 

Both center frequency and tuning sharpness within all the ROIs were not significantly 

different and were generally distributed evenly within groups. Taken together, there were no 

significant differences in tuning sharpness when comparing AP musicians to non-AP musicians 

and non-musicians in our large sample size. Our results may indicate that AP subjects do not 

have sharper frequency selectivity that is linked to their performance in pitch acuity at the level 

of the population of neurons responding to the auditory stimulus.  

 

Furthermore, a number of myeloarchitectonic studies in non-human primates (Hackett et 

al., 1998) and humans (Beck 1928; Hopf 1954; rev Nieuwenhuys, 2012) revealed heavy 

myelination due to increased staining for cortical myelin density on post-mortem tissue within 

the most caudally located A1 region of the primary auditory cortex, and less so in R and RT 

regions of HG, reflecting an increased density of thalamocortical connections with the MGN. 

These findings were corroborated with recent in vivo mapping of cortical myelin density non-

invasively using MRI with quantitative T1 (Sigalovsky et al., 2006), or T2/T2* weighted 

contrasts (Glasser & Van Essen, 2011; De Martino et al., 2014) and had shown that HG was 

more densely myelinated compared to surrounding belt and parabelt regions. In addition, the 

human A1 (hA1) subdivision of HG was the most densely myelinated region (De Martino et al., 

2014; rev Moerel et al., 2014). Of importance, it was described that the myelin-related contrast 

displayed individual variability among hemispheres and individuals (De Martino et al., 2014). 
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This may be in part due to differences in pitch processing abilities, which were not accounted for 

in either study. Since the MGN receives heavy reciprocal connections from the auditory cortex, 

this indicates that the cortex and MGN are grouped together as a functional unit. Taken together, 

our findings suggest that despite the level of musicianship and AP ability, the MGN may also not 

show differences in frequency selectivity—although future research in assessing differences in 

tuning width of the MGN in AP and non-AP musicians would still need to validate this assertion.  

 

Furthermore, our results found consistent tonotopic maps of the cortex that did match 

previous studies which found: a high to low progression in A1, followed by a reversal gradient of 

low to high in R, followed by a gradient of high to low in RT, with extended gradients into 

neighbouring belt regions as found in neuroimaging studies in humans (Da Costa et al., 2011; 

Moerel et al., 2012; DeMartino et al., 2013, Moerel et al., 2014) and in micro-electrode studies 

non-human primates (Morel et al., 1993; rev Kaas & Hacket., 2000). The auditory cortical 

anatomical model in the monkey has been well defined predominantly based on neuro-electrical 

recordings (rev Kaas, 2011). However, there exist many differences in the human auditory cortex 

as compared to the monkey auditory cortex. Some differences include larger cortical surface 

areas, additional gyri, more inter-individual variability, and sharper frequency tuning in humans 

(Galaburda et al., 1978; Hackett et al., 2001, Bitterman et al., 2008). Therefore, it may not be as 

straightforward to apply the monkey model to the human brain for direct comparisons. 

 

To our best knowledge, this has been the first study to extract the volume of auditory ROIs 

comprising Heschl’s gyrus separately (A1, R and RT) in humans categorized by pitch perception 

attributes. Of most significance, A1 volumes were significantly larger in both hemispheres in AP 

musicians as compared to non-AP musicians and non-musician controls in this study. As well, 

our results are consistent with reported findings that A1 of the primary auditory cortex occupies 

approximately half of the HG volume (Rademacher et al., 2001). Furthermore, we report all left 

auditory ROIs comprising HG (A1, R and RT) were larger than those comprising the right HG in 

each group, however only the left A1 volumes in the non-AP musician and control groups were 

significantly larger than the right A1 volume.  
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A number of previous studies have reported the left HG was larger than the right using 

MRI (Penhune et al., 1996; McCarley et al., 2002; Sumich et al., 2002; Dorsaine-Pierre et al., 

2006; Takahashi et al., 2006; Golestani et al., 2007; Salisbury et al., 2007) and post mortem 

(Chance et al., 2008; Smiley et al., 2013). Overall, the asymmetry differences described in these 

studies showed that the left HG on average was 10–30% larger than the right HG. We have 

found the similarity only in the A1 ROI, and taking together all ROIs comprising HG in 

summation, we did not find significant difference in the overall HG volume between 

hemispheres in all three groups. We had used boundary delineations of the recent working model 

of the human auditory cortex that is more stringent and only includes auditory regions 

comprising A1, R and RT to demark HG core in our analyses (Moerel et al., 2014). Our results 

are in line with other neuroimaging studies including those with large sample sizes that did not 

report hemispheric asymmetry of the HG (Kulynych et al., 1995; Franguo et al., 1997, Schneider 

et al., 2002; Knaus et al., 2006). Taken together these results in asymmetry discrepancies are 

likely due to various interpretations and methods of defining the borders of HG. It is frequently 

agreed that the auditory core comprises HG. There are a few studies that also include 

surrounding areas of the planum temporale and planum polare leading to considerable 

overestimation of the auditory core size and potential biases on asymmetry differences (Da Costa 

et al., 2011, Herdener et al., 2013; Langers, 2014).   

 

As well, we report more significantly activated voxels in AP compared to control subjects 

when listening to the auditory task in A1 and R ROIs. Although non-AP musicians showed 

higher activations in these regions compared to controls, the results were not significant.  
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Chapter 5 
 
Experiment 4: Central Basis for Absolute Pitch (structural MRI) 
 
5.1 Abstract  
 

The brains of musicians have been long studied. With the advent of neuroplasticity, 

questions pertaining to how musical practice affects learning, auditory processing, and motor 

skills have been described in a number of studies that looked at anatomical differences in 

musicians. Such findings include increased corpus callosum (Schlaug et al., 1995b; Gaser & 

Schlaug, 2003), cerebellum, and primary motor cortex volumes in musicians (Gaser & Schlaug, 

2003; Hutchinson et al., 2003; rev Schlaug et al., 2001; Münte et al., 2006), increased gray 

matter density in Broca’s area in male musicians (Sluming et al., 2002), increased volumes in 

premotor regions, parietal areas, Heschl’s and inferior frontal gyri in expert musicians (Gaser & 

Schlaug, 2003) all compared to non-musician controls. There have not been many studies that 

looked at anatomical differences in AP, however a structure that has commonly been implicated 

in AP possessors is the planum temporale (PT). Based on structural neuroimaging, discrepancies 

within the PT volume in AP musicians, non-AP musicians, and controls with minimal to no 

musical experience have been reported. Some studies reported a leftward asymmetry in volume 

(Schlaug et al., 1995a; Chen et al., 2000; Keenan et al., 2001; Luders et al., 2004), while others 

do not (Zatorre et al., 1998; Bermudez & Zatorre 2005; Bermudez et al., 2009). Furthermore, 

inconsistencies have also been found using whole brain gray matter structural analyses and 

cortical thickness in AP. Some studies reported thinner cortex in AP (Bermudez et al., 2009), 

whereas other studies reported thicker cortex in AP (Dohn et al., 2013). The purpose of the 

following study was to compare cortical thickness and volume differences in a large sample size 

of AP musicians, non-AP musicians, and controls with minimal to no musical experience (N = 

61), to see where our results diverge and compare with previous studies. 

5.2 Methods: Participants  

 

A high-resolution structural MRI scan was collected on 61 participants for the following 

experiment. Participant information is described in (Table 3.1). 
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5.3 Method: Data Acquisition, Processing, and Measurements  

 

All images were acquired using a 3T Siemens Trio MRI scanner with a 32-channel head 

coil at York University. Each subject (N = 61) had a high-resolution T1 weighted three-

dimensional MPRAGE scan of the entire collected on every with the following parameters: TR = 

1.9 s, TE = 2.52 ms, 1 mm thick slices, 256 × 256 matrix (1 mm3
 isotropic voxel size). 	
  

Freesurfer 5.3.0 was used to automatically segment all ROI structures from subcortical 

and cortical parcellations based on the Destrieux 2009 atlas on AP, musician, and control 

subjects (N = 60). Visual inspection was performed to ensure quality assurance of all datasets. 

All ROIs were run through SPSS for statistical analysis. Results were obtained using post hoc 

pairwise comparisons (Bonferroni adjusted alphas = .025), p < .05 for all significant structures. 

Data for all tests were normally distributed as confirmed by the Shapiro-Wilk test (p > .05). 
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5.4 Results: Cortical Thickness and Volume 

 
 
Figure 5.1 Cortical and subcortical areas showing significantly increased structures in thickness 

and volume in AP compared to musicians (red), AP compared to controls (yellow), and 

musicians compared to controls (pink). Results were displayed on an AP participant’s semi-

inflated cortical surface and whole brain volume as an example.  

(A) Semi-inflated cortex, L and R lateral showing the region of interest (ROI) in red indicating a 

significant increase in cortical thickness of the in AP compared to musicians.  

(B) Top row: L and R lateral, Second row: L and R medial, Third row: superior, inferior, and 

whole brain coronal views. Regions of interest (ROIs) in yellow indicate significant increases in 

cortical thickness (HG, PC) cortical volume (AG, CS, SS, PS), and subcortical volume (Amyg 

and Pal) in AP compared to controls. (C) Top row: L and R lateral, Second row: L and R medial, 

Third row: superior, inferior, and whole brain coronal views. Regions of interest (ROIs) in pink 
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indicate significant increases in cortical thickness (HG, PC), cortical volume (PS), and 

approaching significance as denoted with an asterisk in cortical (AG) and subcortical volume 

(Amyg) in musicians compared to controls. Results were obtained using post hoc pairwise 

comparisons (Bonferroni adjusted alphas = .025), p < .05 for all structures. 

 

 

 
 
Figure 5.2 Cortical areas showing significantly decreased structures in thickness and volume in 

AP compared to controls (blue), and AP compared to musicians (green). Results were displayed 

on an AP participant’s semi-inflated cortical surface. (A and B) Semi-inflated cortex: R and L 

lateral view. Blue ROIs indicate areas of significant decreased cortical thinning (IFO) and 

volume (CI) in AP compared to controls, and in AP compared to musicians (green). Results were 

obtained using Post hoc pairwise comparisons (Bonferroni adjusted alphas = .025), p < .05 for all 

structures.  
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Table 5.1 
Cortical and Subcortical Thickness and Volume 

Structure                                                                                              p-values   
Thickness   Side AP > MUS    AP > CON  MUS > CON 
Heschl’s gyrus (HG) 
(Anterior transverse temporal gyrus of Heschl) 

Left .038 .001  
Right  .001 .036 

Pericallosal sulcus (PC) 
(Pericallosal sulcus of corpus callosum) 

Left  .004 .026 
Right  .012  

Volume     
Angular Gyrus (AG) (Parietal Inferior) Left  .025 *.057 
Amygdala  (Amyg) Left  .022 *.081 
Pallidum	
  	
  (Pal) (Globus pallidus) Right  .039  
Anterior transverse collateral sulcus (CS) Left  .004 .005 
Suboribital sulcus (SS) 
(sulcus rostrales, supraorbital sulcus) 

Right  .025  

Precentral sulcus (PS) (superior part) Left  .026 .018 
Thickness    AP < MUS  AP < CON  
Inferior frontal opercular gyrus (IFOG) 
(Opercular part of the inferior frontal gyrus) 

Left .045   
Right .014 .037  

Volume 
Circular insular sulcus  (CIS)   Left 

Right 
.016 .001 

.028 

* Marginally significant 
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Heschl’s gyrus: left and right Heschl’s gyrus (HG) thickness 
 

The cortical thickness of Heschl’s gyrus was analyzed with a 3 × 2 mixed model analysis 

of covariance (ANCOVA), with group (AP, MUS, and Control) as the between-groups variable 

and hemisphere as the within-group variable, using gender, brain volume, and age as covariates.  

There was no significant group by hemisphere interaction (F(1,54) = 0.27, p = .77) and no 

significant effect of hemisphere (F(1,54) = 0.006, p = .94). However, there was a significant 

main effect of group (F(1,54) = 10.3, p < .001). For all analyses, the covariates were never 

significant. 

 

Post hoc pairwise comparisons (Bonferroni adjusted alphas = .025) reveal significantly 

increased left (p = .038) but not right (p = .18) HG thickness in AP participants compared to 

musicians, significantly increased left and right (ps = .001) HG thickness in AP participants 

compared to controls, and significantly increased right (p = .036) but not left (p = .20) HG 

thickness in musicians compared to controls. 

 

There were no significant differences between the left and right HG thickness in AP (p = 

.70), musician (p = .20), or control (p = .67) groups. 

 

  In AP participants, the left HG thickness averaged 2.61 ± 0.23 mm (mean ± SD) and the 

right HG thickness averaged 2.64 ± 0.20 mm. In musicians, the left HG thickness averaged 2.45 

± 0.19 mm and the right HG thickness averaged 2.54 ± 0.19 mm. In controls the left HG 

thickness averaged 2.36 ± 0.28 mm and the right HG thickness averaged 2.38 ± 0.27 mm.  

Pericallosal sulcus: left and right pericallosal sulcus (PC) thickness 

A 3 × 2 mixed model analysis of covariance (ANCOVA), with group (AP, MUS, and 

Control), as the between-groups variable and PC hemisphere as the within-group variable, using 

gender, brain volume, and age as covariates, revealed no significant group by hemisphere 

interaction (F(1,54) = 0.59, p = .56) and no significant effect of hemisphere (F(1,54) = 2.68, p = 

.11). However, there was a significant main effect of group (F(1,54) = 7.09, p = .002). 
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Post hoc pairwise comparisons (Bonferroni adjusted alphas = .025) reveal significantly 

increased left (p = .004) and right (p = .012) PC thickness in AP participants compared to CON, 

significantly increased left (p = .026) but not right (p = .29) PC thickness in musicians compared 

to controls, and no significant increases in the left (p = .46) or right (p = .14) PC thickness in AP 

compared to musicians.   

 

There were significant differences between the left and right PC thickness in musicians (p 

= .15) and marginally significant in the AP group (p = .071) where the left PC thickness was 

larger. There were no significant differences between the left and right PC thickness (p = .34) in 

the control group. 

 

  In AP participants, the left PC thickness averaged (mean ± SD) 2.46 ± 0.32 mm and the 

right PC thickness averaged 2.31 ± 0.35 mm. In musicians, the left PC thickness averaged 2.39 ± 

0.31 mm and the right PC thickness averaged 2.17 ± 0.22 mm. In controls the left PC thickness 

averaged 2.17 ± 0.28 mm and the right PC thickness averaged 2.11± 0.23 mm. 

	
  

Amygdala: left amygdala volume 

	
  

A 3 × 2 mixed model analysis of covariance (ANCOVA), with group (AP, MUS, and 

CON) as the between-groups variable and amygdala hemisphere as the within-group variable, 

using gender, brain volume, and age as covariates, revealed no significant group by hemisphere 

interaction (F(1,54) = 1.05, p = .36) and no significant effect of hemisphere (F(1,54) = 0.79, p = 

.38), and no effect of group (F(1,54) = 1.77, p = .18).  

 

Post hoc pairwise comparisons (Bonferroni adjusted alphas = .025) revealed only a 

significantly increased left (p = .022) but not right (p = .27) amygdala volume in AP participants 

compared to controls. The left amygdala in musicians approached significance (p = .081) 

compared to controls. There was no difference between the right amygdala in musicians 

compared to controls (p = .83), and no difference between the left (p = .56) and right (p = .35) 

amygdala volumes between AP and musicians. There were no significant differences between 
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the left and right amygdala volumes in AP (p = .57), musician (p = .83), and marginally 

significant within control (p = .076) groups. 

 

In AP participants, the left amygdala volume averaged 1612 ± 126 mm3 and the right 

amygdala volume averaged 1638± 231 mm3. In musicians, the left amygdala volume averaged 

1583 ± 218 mm3 and the right amygdala volume averaged 1582 ± 187 mm3. In controls the left 

amygdala volume averaged 1491 ± 178 mm3 and the right amygdala volume averaged 1552 ± 

244 mm3. 

 

Angular gyrus (parietal inferior): left parietal inferior angular gyrus (AG) volume 

A 3 × 2 mixed model analysis of covariance (ANCOVA), with group (AP, MUS, and 

CON) as the between-groups variable and AG hemisphere as the within-group variable, using 

gender, brain volume, and age as covariates, revealed no significant group by hemisphere 

interaction (F(1,54) = 1.20, p = .31) and no significant effect of hemisphere (F(1,54) = 2.72, p = 

.11) or group (F(1, 54) = 1.73, p = .19).  

 

Post hoc pairwise comparisons (Bonferroni adjusted alphas = .025) revealed only a 

significantly increased left (p = .025) but not right (p = .62) AG volume in AP participants 

compared to controls. In musicians the left AG volume approached significance (p = .057) 

compared to controls. There was no significant difference between the right AG volume in 

musicians compared to controls (p = .87), and between the left (p = .73) or right (p = .74) AG 

volumes in AP participants compared to musicians. 

 

There were significant differences between the left and right AG volume in all three 

groups (ps < .001), where the right AG volume was larger than the left. 

 

In AP participants, the left AG volume averaged 6584± 1119 mm3 and the right AG 

volume averaged 7847 ± 1118 mm3. In musicians, the left AG volume averaged 6549 ± 921 mm3 

and the right AG volume averaged 7798 ± 1223 mm3. In controls the left AG volume averaged 

5804 ± 954 mm3 and the right AG volume averaged 7641 ± 1079 mm3.  
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Pallidum: right pallidum volume 

A 3 × 2 mixed model Analysis of Covariance (ANCOVA) with group (AP, MUS, and 

CON) as the between-groups variable and pallidum hemisphere as the within-group variables 

using gender, brain volume, and age as covariates revealed no significant group by hemisphere 

interaction, F(1,54) = 2.68, p = .078 and no significant effect of hemisphere (left vs. right), 

F(1,54) = 0.84, p = .37, and no effect of group, F(1,54) = 1.45, p = .24.  

 

Post hoc pairwise comparisons (Bonferroni adjusted alphas = .025) revealed only a 

significantly increased right (p = .039) but not left (p = .875) pallidum volume in AP participants 

compared to controls.  There were no significant differences between the left (p = .16) or right (p 

= .18) pallidum volumes in AP compared to musicians, and no differences in the left (p = .22) or 

right (p = .45) pallidum volumes in musicians compared to controls. 

 

There was a significant difference between the left and right pallidum volumes in AP and 

musicians (ps < .001) where the right pallidum volume was larger, but not in the control group (p 

= .25).  

 

  In AP participants, the left pallidum volume averaged 1444 ± 327 mm3 and the right 

pallidum volume averaged 1656 ± 283 mm3. In musicians, the left pallidum volume averaged 

1350 ± 227 mm3 and the right pallidum volume averaged 1575 ± 363 mm3.  In controls, the left 

pallidum volume averaged 1398 ± 253 mm3 and the right pallidum volume averaged 1445 ± 220 

mm3. 

 

Anterior Transverse Collateral Sulcus: Left Collateral Anterior Transverse Sulcus (CS) 

Volume 

A 3 × 2 mixed model analysis of covariance (ANCOVA) with group (AP, MUS, and 

CON) as the between-groups variable and CS hemisphere as the within-group variables using 

gender, brain volume, and age as covariates revealed no significant group by hemisphere 

interaction (F(1, 54) = 2.629, p = .081) and no significant effect of hemisphere (F(1, 54) =1.28 , p 

= .26). However, there was an effect of group (F(1, 54) = 4.22, p = .02).  
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Post hoc pairwise comparisons (Bonferroni adjusted alphas = .025) revealed significantly 

increased left (p = .004) but not right (p = .084) CS volumes in AP participants compared to 

controls, and significantly increased left (p = .005) but not right (p = .30) CS volumes in 

musicians compared to controls. There was no significant difference between the left (p = .98) or 

the right (p = .48) CS volumes between AP and musician CS volume. There were significant 

differences between the left and right CS volumes in controls (p = .015) where the right CS 

volume was larger, whereas no difference was found between the left and right CS volumes in 

the AP (p = .78) or musician (p = .49) groups.  

 

In AP participants, the left CS volume averaged 1976 ± 540 mm3 and the right CS 

volume averaged 1993 ± 440 mm3. In musicians, the left CS volume averaged 1998 ± 443 mm3 

and the right CS volume averaged 1933 ± 417 mm3. In controls the left CS volume averaged 

1526 ± 386 mm3 and the right CS volume averaged 1739 ± 349 mm3. 

 

Suboribital Sulcus: Right Suboribital Sulcus (SS) Volume 

A 3 × 2 mixed model analysis of covariance (ANCOVA) with group (AP, MUS, and 

CON) as the between-groups variable and Suborbital Sulcus (SS) hemisphere as the within-

group variables using gender, brain volume, and age as covariates revealed no significant group 

by hemisphere interaction (F(1, 54) = 0.24, p = .79) and no significant effect of hemisphere (F(1, 

54) = 0.17, p = .68). However, there was an effect of group (F(1, 54) = 4.47, p = .042).  

 

Post hoc pairwise comparisons (Bonferroni adjusted alphas = .025) revealed significantly 

increased right (p = .025) but not left (p = .16) SS volumes in AP participants compared to 

controls.  There were no significant differences between the left (p = .36) or right (p = .26) SS 

volumes between AP and musicians, and the left (p = .61) or right (p = .25) SS volumes between 

musicians and controls. There were significant differences between the left and right SS volumes 

in AP, musicians, and controls (ps < .001), where the left SS volume was larger. 

 

In AP participants, the left SS volume averaged 1100 ± 171 mm3 and the right SS volume 

averaged 637 ± 250 mm3. In musicians, the left SS volume averaged 1037 ± 211 mm3 and the 
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right SS volume averaged 557 ± 204 mm3. In controls the left SS volume averaged 1002 ± 246 

mm3 and the right SS volume averaged 479 ± 199 mm3. 

 

Precentral Sulcus (Superior Part): Left Precentral Sulcus (PS) Volume 

A 3 × 2 mixed model analysis of covariance (ANCOVA) with group (AP, MUS, and 

CON) as the between-groups variable and Precentral Sulcus (PS) superior part hemisphere as the 

within-group variables using gender, brain volume, and age as covariates revealed no significant 

group by hemisphere interaction (F(1, 54)  = 1.92, p = .16) and no significant effect of 

hemisphere ( F(1, 54) =1.11, p = .30) or group (F(1, 54) = 2.11, p = .13).  

 

Post hoc pairwise comparisons (Bonferroni adjusted alphas = .025) revealed significantly 

increased left (p = .026) but not right (p = .63) PS volumes in AP participants compared to 

controls, and significant left (p = .018) but not right (p = .39) PS volumes in musicians compared 

to controls.  There was no significant difference between the left (p = .88) or right (p = .18) PS 

volumes between AP and musicians. Pairwise comparisons revealed no significant difference 

between the left and right PS volumes between in the AP group (p = .66), and in musicians (p = 

.30). There were significant differences between the left and right PS volumes in controls (p = 

.024), where the right PS volume was larger.  

 

In AP participants, the left PS volume averaged 2327 ± 557 mm3 and the right SS volume 

averaged 2258 ± 557 mm3. In musicians, the left PS volume averaged 2375 ± 406 mm3 and the 

right PS volume averaged 2518 ± 639 mm3. In controls, the left PS volume averaged 1942 ± 475 

mm3 and the right PS volume averaged 2309 ± 589 mm3. 
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Inferior Frontal Opercular Gyrus: Right and Left Inferior Frontal Opercular Gyrus (IFOG) 
Thickness 

A 3 × 2 mixed model analysis of covariance (ANCOVA) with group (AP, MUS, and 

CON) as the between-groups variable and IFOG hemisphere as the within-group variables using 

gender, brain volume, and age as covariates revealed no significant group by hemisphere 

interaction (F(1, 54) = 0.70, p = .50) and no significant effect of hemisphere ( F(1, 54) = 0.021, p 

= .89), but a significant effect of group (F(1, 54) = 4.07, p = .023).  

 

Post hoc pairwise comparisons (Bonferroni adjusted alphas = .025) revealed significantly 

increased right (p = .037) but not left (p = .45) IFOG thickness in controls compared to AP 

participants, and both significantly increased left (p = .045) and right (p = .014) IFOG thickness 

in musicians compared to AP participants. There were no differences between the left (p = .22) 

and right (p = .74) IFOG thickness in musicians compared to controls. There were no significant 

differences between the left and right IFOG thickness in AP (p = .79), musicians (p = .43), or 

controls (p = .065).  

 

  In AP participants, the left IFOG thickness averaged 2.91 ± 0.14 mm and the right IFO 

thickness averaged 2.92 ± 0.15 mm. In musicians, the left IFOG thickness averaged 3.00 ± 0.15 

mm and the right IFOG thickness averaged 3.05 ± 0.13 mm. In controls, the left IFOG thickness 

averaged 2.95 ± 0.22 mm and the right IFOG thickness averaged 3.03 ± 0.20 mm. 

 

Circular Insula Sulcus (Superior Part): Left and Right Circular Insular (CIS) Volume 

 

A 3 × 2 mixed model analysis of covariance (ANCOVA) with group (AP, MUS, and 

CON) as the between-groups variable and the Circular Insula Sulcus (CIS) superior part 

hemisphere as the within-group variables using gender, brain volume, and age as covariates 

revealed no significant group by hemisphere interaction (F(1,54) =1.76, p = .18) and an effect of 

hemisphere approaching significance ( F(1,54) =3.21, p = .079). There was a significant main 

effect of group (F(1,54) = 6.79, p  = .002).  

 

Post hoc pairwise comparisons (Bonferroni adjusted alphas = .025) revealed significantly 

increased left (p = .001) and right (p = .028) CIS volumes in controls compared to AP 
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participants, and only increased left (p = .016) but not right (p = .18) CIS volumes in musicians 

compared to AP participants. There were no differences between the left (p = .11) or right (p = 

.18) CIS volumes in musicians compared to controls.  There were significant differences 

between the left and right PS volumes in all three groups (ps < .001), where the Left CIS volume 

was larger. 

 

In AP participants, the left CIS volume averaged 2721 ± 383 mm3 and the right CIS 

volume averaged 2272 ± 377 mm3. In musicians, the left CIS volume averaged 2929 ± 381 mm3 

and the right CIS volume averaged 2365 ± 409 mm3. In controls the left CI volume averaged 

2968 ± 331 mm3 and the right CIS volume averaged 2380 ± 256 mm3. 

Planum Temporale (PT) Volume 
 

The same model was applied for probing the planum temporale (PT) volume. Post hoc 

pairwise comparisons (Bonferroni adjusted alphas = .025) revealed no significant difference 

between left (p = .48) and right (p = .74) PT volumes in AP and non-AP musicians, between left  

(p =.73) and right (p = .56) PT volumes in AP and controls, and between left (p = .72) and right 

(p = .37) PT volumes in non-AP musicians and controls. However, there were significant 

differences between the left and right PT volumes within AP (p = .44), non-AP musicians (p = 

.003), and approaching significance in the control (p = .078) group, where the left PT volume 

was lager. In AP participants, the left PT volume averaged 2047 ± 591 mm3 and the right PT 

volume averaged 1771 ± 313 mm3. In non-AP musicians, the left PT volume averaged 2177 ± 

540 mm3 and the right PT volume averaged 1748 ± 390 mm3.  In controls, the left PT volume 

averaged 2004 ± 494 mm3 and the right PT volume averaged 1787 ± 584 mm3. 
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5.5 Discussion 
 

A predominant field of neuroscience studies how normal variation in brain anatomy 

relates to differences in brain function. The human auditory cortex is a good model to examine 

these relationships due to its known inter-hemispheric differences in both structure and function. 

Neural systems process both speech and music throughout the brain (Tervaniemi & Hugdahl, 

2003; Hickok & Poeppel, 2007), however studies have shown a leftward laterization bias for 

language processing based on rapid acoustic changes, and rightward laterization bias for music 

processing based on complex frequency information (Zatorre et al., 2002). In our study, the only 

structure that was significantly increased in AP musicians compared to non-AP musicians was 

the left HG thickness within the auditory cortex. As well, bilateral HG thicknesses were 

significantly increased in the AP group compared with non-musician controls, and only the right 

HG thickness in non-AP musicians compared to non-musician controls.  

 

We do not report any volume differences in HG from the automated Freesurfer 

parcellations, however we did find significant differences in A1 volumes (that make up 

approximately half of the HG volume) manually segmented in AP musicians, compared to non-

AP musicians, and non-musicians bilaterally as reported in Chapter 4.  Although no previous 

studies have reported increased thickness of the HG in AP and musician groups, our volumetric 

results are in line with previous studies that found enhancements in HG gray matter in musicians 

compared to non-musicians across hemispheres (Schneider et al., 2002; 2005). These studies 

reported that HG gray matter positively correlated with higher musical aptitude scores and 

enhanced early cortical responses to tonal stimuli. In Schneider et al. (2002), professional 

musicians generally had an increase in gray matter of HG bilaterally, suggesting that the HG 

within the auditory cortex played an important function in tonal perception and early evoked 

response even in musicians who do not have AP. Schneider et al. (2005) further reported that the 

relative left or right volumetric size of lateral HG gray matter predicted how participants 

perceived ambiguous tones; those focussing on fundamental frequency exhibited a leftward 

asymmetry, whereas those focussing on spectral cues exhibited a rightward asymmetry.  Taken 

together, these studies relate the absolute size of HG gray matter volume to musical ability and 

the laterization of early cortical response preference mimicked the anatomical asymmetry. 

Furthermore, even though volumetric measurements and boundary delineations within the 
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auditory cortex have varied between studies, there still remains a consensus of how anatomical 

variations in HG affect how auditory spectral information is processed both at the fundamental 

acoustic processing level and in perception. 

Recently, HG volumes were found to be increased in AP musicians compared to non-AP 

musicians predominantly in the right hemisphere suggesting an enhanced spectral sound 

perception property in AP musicians (Wengenroth, 2014).  Our results were similar in that the 

right A1 volume was enlarged that comprised approximately 50% of HG. We also found 

substantial increases in the left A1 in our study that may indicate the AP possessors may also 

have enhancements in holistic perception to acoustic information. The slight discrepancies in our 

findings that show both A1 volumes larger within AP subjects instead of just the right HG 

volume as Wegenroth et al. (2014) described may be due to our increased sample size and 

inclusion of a control group. In addition, we incorporated more stringent inclusion criteria that 

also matched AP musicians, non-AP musicians, and non-musicians on the number and type (i.e., 

tonal vs. atonal) languages spoken.  

We also report an increased thickness of the Pericallosal sulcus (or sulcus of the corpus 

callosum) bilaterally in AP musicians compared to non-musicians, and only in the left 

hemisphere in non-AP musicians compared to non-musicians. The callosal sulcus is located 

between the superiorly situated cingulate gyrus and the inferiorly situated corpus callosum deep 

within the medial longitudinal fissure bilaterally. Although no previous studies have reported 

differences in the callosal sulcus thickness, anatomically this sulcus separates the corpus 

callosum from the overlying cingulate gyrus and surrounds the corpus callosum by curving 

ventrolaterally to become the hippocampal sulcus (Bhatnagar, 2002). The corpus callosum is a 

well-known white matter structure comprised of the largest fiber pathway that connects both 

hemispheres together in the brain. The newer Freesurfer parcellations Destreux atlas had 

removed the corpus callosum segmentation, therefore future work by manual segmentation of 

the corpus callosum on this data set may reveal more similarities to previous published data. A 

number of studies have reported an increased corpus callosum volume in musicians (Schlaug et 

al., 1995b; Lee et al., 2001; Ozturk et al., 2002), however Gaser and Schlaug (2003) did not 

report differences in corpus callosum size in musicians. A possible explanation was suggested 

based on the methodology used in that voxel-based morphometry (VBM) may not have been 
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sensitive enough to pick up on white matter differences. Only one previous study reported 

increased cortical thickness of the left subcallosal cingulate gyrus (SCG) in AP, a region that 

lies ventrally to the corpus callosum. This structure is anatomically close to the corpus callosum 

sulcus where we report significant differences in AP musicians and non-AP musicians to non-

musicians (Dohn et al., 2013). Although Dohn et al. (2013) did not report significant differences 

in the corpus callosum using diffusion tensor imaging (DTI), it would be interesting to test our 

data set compared with previous findings on this structure. 

 

Furthermore, we also report an increased volume in the parietal inferior portion of the left 

angular gyrus in AP musicians compared to non-musicians, and approaching significance in non-

AP musicians compared to non-musicians.  The angular gyrus is located within the parietal lobe 

close to the superior edge of the temporal lobe, just posterior to the supramarginal gyrus. The 

parietal inferior portion of the AG where we report volumetric differences has been implicated in 

a number of functions spanning from language, number, semantic, spatial processing, memory, 

attention and theory of mind (rev. Seghier, 2013). Binder et al. (1996) reported that music, 

reading, and language processing have activated similar networks in the brain, one of which is 

the AG that responded both to musical tones and words. New research supports the idea that 

training-induced neuro-anatomic plasticity can occur in adulthood, resulting in noticeable 

structural changes that follow learning new skills (rev Draganski, 2008). We report only an 

increase in the left AG in AP musicians and non-AP musicians compared to non-musicians. Our 

findings coincide with studies that found increased gray matter density detected only in the left 

AG and bilateral mid-temporal regions after training on a new task e.g., juggling (Draganski et 

al., 2004), and bilateral AG cortical thickness in those who measured high on creative 

productivity scores across different skills, one of which included music (Jung et al., 2010). This 

has been the first study to find anatomical differences in the AG of AP musicians and non-AP 

musicians compared to non-musicians, and may support the idea that musical abilities may be 

influenced by enhanced language and memory processing, as well as with learning new skills 

that the AG has been implicated with.  

 

Additionally, we report an increased volume of the left amygdala in AP musicians 

compared to non-musicians and marginally significant larger in non-AP musicians compared to 
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non-musicians. The amygdalae are two almond shaped nuclei that are part of the limbic system, 

and are located within the temporal lobes. They are involved in a number of functions that 

include memory processing, decision-making, emotional reactions, and play a role in learning 

the fear response to negative stimuli. 

 

The medial portion of the MGN and posterior intralaminar nucleus both receive inputs 

from the IC. Also, they both have nearby anatomical links with the amygdala. A previous study 

in rabbits found that when an auditory stimulus was paired with a fear-inducing stimulus such as 

an electric shock to the foot, the input from the amygdala had modified the response of neurons 

located within the medial MGN (Duvel et al., 2001). Furthermore, a recent fMRI study found 

increased activation in the bilateral amygdala in AP compared to non-AP groups when subjects 

had to rate musical stimuli on emotional valence and arousal. This suggested that the AP group 

had increased integration for emotional memory and reward processing during music listening 

(Loui et al., 2012). Another study found that bilateral damage of the amygdala with the rest of 

the temporal lobe intact had impaired the recognition of sad and scary music, evidenced by a 

case study in subject S.M (Gosselin et al., 2007).  As well, a large study that assessed 270 

students with no musical background found larger gray matter volume of the bilateral amygdala 

that correlated with better interval judgments (Li et al., 2014). Taken together, our study has 

been the first to report significant differences in the amygdala volume within AP musicians 

compared to non-musicians. Our findings are in line with previous studies that suggest that the 

amygdala, a neural structure associated with emotional processing, is also involved in music 

perception and music processing. 

 

The right globus pallidus (pallidum) was significantly increased in AP musicians 

compared to non-musicians. The pallidum is a sub-cortical motor nucleus of the thalamus that is 

located within the basal ganglia and has a number of functions that include regulation of 

controlled movements, behaviour and emotions. Previous neuroimaging studies found activation 

in the pallidum in the context of music imagery, specifically vividness in anticipatory imagery 

(Leaver et al., 2009). Similar to our findings, the right pallidum showed increased activation 

when control subjects moved to imagined music (Schaefer et al., 2014). As well, the right 

pallidum showed increased activation in musicians compared to non-musicians during tonal 
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working memory, suggesting that musicians may use a specialized and more complex neural 

system for memorizing pitches (Schulze et al., 2011)—although this wasn’t tested in AP. Our 

findings suggest that this structure may also be implicated in AP ability.  

We further report a significant increase in the left anterior transverse collateral sulcus 

volume in AP musicians and non-AP musicians compared to non-musicians. The collateral 

sulcus is located below and lateral to the calcarine sulcus from which it is separated by the 

lingual gyrus. It is a temporal sulcus that runs anteroposteriorly. A previous neuroimaging study 

found that reading words activated two foci within the collateral sulcus (Drury & Van Essen, 

1997). As well, the left collateral sulcus has been implicated in having an increased number of 

tonality sensitive voxels within eight expert musicians, two of which reported having AP (Janata 

et al., 2003).  

As well we report increased right suborbital sulcus volumes in AP musicians compared to 

non-musicians.  The suboribital sulcus, also referred to as the sulcus rostrales or supraorbital 

sulcus is located parallel to the anterior part of the cingulate sulcus that lies towards the frontal 

pole (Destreux, 2010). Brodmann area 47 (BA47), also known as the orbital area 47 in humans 

surround the caudal portion of the orbital sulcus extending to the orbital part of the inferior 

frontal gyrus. BA47 has been associated with musical syntax and semantic language processing 

(Levitin & Menon, 2003).  

Moreover, we found significantly increased left precentral sulci volumes in AP musicians 

and non-AP musicians compared to non-musicians. The precentral sulcus is located parallel to 

and in front of the central sulcus. The precentral gyrus (BA4) is bounded posteriorly and 

anteriorly by the precentral sulci, and the left precentral gyrus has been implicated in processing 

sad music with lyrics (Brattico et al., 2011), enhanced gray matter density within musicians 

(Gaser & Schlaug, 2003), and similar to our findings, increased intrasulcal length of the 

precentral gyrus in musicians (Bengtsson et al., 2005). More interestingly, hand finger movement 

representations have been associated with the precentral gyrus (Yousry et al., 1997; Herve et al., 

2005). A gross anatomical structure known as the inverted omega sign, also referred to as a 

‘hand knob’ within the precentral gyrus has been linked with the representation of finger 

movements that span from being barely visible in some individuals to highly prominent in others 

(Stewart, 2008). Previous studies reported that piano players exhibited an increased omega sign 
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gross anatomical feature on the left hemisphere, whereas violinists displayed the omega sign 

feature on the right hemisphere (Bangert & Schlauge, 2006).  Taken together, the majority of our 

subjects in both AP and non-AP musician groups were piano players, and the increased volume 

in the left precentral sulcus (a region surrounding the left precentral gyrus) may be indicative of 

their piano aptitude.  

In our study we report decreased cortical thickness in the inferior frontal opercular gyrus 

in the left and right hemispheres in AP musicians compared to non-AP musicians, and only the 

right opercular gyrus thickness in AP musicians compared to non-musicians. We also report 

reduced volumes of the left circular insular sulcus in AP musicians compared to non-AP 

musicians and non-musicians, and only the right circular insular sulcus volume in AP musicians 

compared to non-musicians. The circular sulcus is also referred to as the limiting sulcus that is 

located in the boundary between the cortex of the insula and of surrounding gyri of frontal, 

parietal and temporal lobes. Overall, the most significant results we discovered were reduced 

thickness in pars opercularis in AP musicians. The inferior frontal gyrus is also known as the 

pars opercularis (BA 44). It is located within the frontal cortex and corresponds to the opercular 

part of the inferior frontal gyrus. Interestingly enough, BA44 of the left hemispheres houses 

Broca’s area involved in speech and semantic tasks. BA44 also has been implicated in music 

perception (Brown et al., 2006) and in hand movements (Rizzolatti et al., 2002). 

 

To date, there have only been two previous studies that reported cortical thickness 

differences in AP. Our results replicate the findings in the first study that found significantly 

reduced cortex within the right pars opercularis in AP musicians compared to non-AP musicians 

(Bermudez et al., 2009). Bermudez et al. (2009) also reported other areas that had thinner cortex 

in AP including the right ventral premotor area, frontal, and parietal regions. Only the 

precalcarine cortex showed increased thickness with increased AP proficiency. As well, AP 

musicians exhibited an anatomical profile that was different than the non-AP musicians since 

none of the AP differences overlapped with the non-AP group. However, we do report a 

marginally significant difference between AP musicians and non-AP musicians in the left pars 

opercularis. The predominant difference we found was in the right hemisphere. This may be due 

to pruning of the right hemisphere in AP since the left hemisphere houses Broca’s area that may 

be more involved in AP ability. This is still open to interpretation, since we do not report any 
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asymmetries between hemispheres within either group for the pars opercularis structure. 

Furthermore, Dohn et al. (2013) reported that AP subjects did not have thinner cortex compared 

to non-AP musicians, and instead only had increased cortical thickness in a number of regions 

including the bilateral STG, left inferior frontal gyrus, and right supramarginal gyrus (Dohn et 

al., 2013). These differences may be due to different methods being used within each study. In 

addition, our study had an increased sample size within each group, and we included more 

stringent matching criteria compared to both previous studies. Although our findings of reduced 

cortical thickness are not quite clear, it may be due to AP possessors incurring different pruning 

and training effects than non-AP musicians (Bermudez et al., 2009). 

  

Lastly, we looked at the planum temporal (PT) volume in our data due to the 

inconsistences reported in AP. Structural neuroimaging data reveal discrepancies within the PT 

volume in AP musicians, non-AP musicians, and controls with minimal to no musical 

experience. We did not find a significant difference in volumes between AP, non-AP musician, 

and non-musician groups, however we found the left PT volume was significantly larger than the 

right PT volume within AP musicians, and non-AP musicians but only approached significance 

within the non-musician group. This leftward asymmetry has been well documented in normal 

populations (Geschwind & Levitsky, 1968; Steinmetz, 1996), and reported to be significantly 

increased in AP musicians compared to non-AP musicians (Schlaug et al., 1995a; Chen et al 

2000; Luders et al., 2004) and in self-reported AP possessors (Keenan et al., 2001). It was 

thought that since the Wernicke’s area involved in language comprehension is located within the 

PT, this leftward bias in AP might be indicative to the ability of verbal associations in pitch 

identifications. In contrast, our results are more in line with recent studies that did not find 

significant differences in PT volume in AP and non-AP subjects (Zatorre et al., 1998; Bermudez 

and Zatorre 2005; Bermudez et al., 2009). However, there was a difference in PT volume 

asymmetry based on musicianship (i.e., AP musicians and non-AP musicians had a larger PT 

volume asymmetry than non-musician controls) (Burmudez & Zatorre, 2005), suggesting that the 

PT volume asymmetry may be due to musical ability and not as an AP marker alone. However, 

Zatorre et al. (1998) reported that the right PT volume asymmetry was not evident, and that the 

right PT volume was larger in the AP group, although was not significant contrary to previous 

findings. Another study reported no differences in PT volume or left-right asymmetry in 
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musicians compared to non-musicians (Gaser & Schlaug, 2003).  These discrepancies in PT 

asymmetry and volume have been suggested to be partly due to inconsistent and arbitrary 

delineations of PT boundaries, human error, and morphological variability with automated 

methods such as cortical thickness and voxel-based-morphometry VBM methods (Zatorre et al., 

1998; Bermudez et al., 2009). 
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Chapter 6 
 
Experiment 5: Central Basis for Absolute Pitch (diffusion MRI) 
 
6.1 Abstract  
 

Diffusion tensor imaging (DTI) is a well-established tool in neuroimaging that can reveal 

abnormalities in white matter fiber structure and integrity. It provides models of brain 

connectivity, and is used as a standard method in imaging for white matter disorders. The 

following study looked at the arcuate fascicles (AF) that connects Wernicke’s areas for language 

comprehension (Wernicke, 1995) to Broca’s area for language processing and music perception 

(Fadiga et al., 2009) using DTI. There have been inconsistencies pertaining to the AF in a 

number of studies. For example, the AF has been implicated in a number of studies that looked at 

musical disorders. In one study, the AF was reported significantly decreased in congenital 

amusia (tone-deafness) (Loui & Schlaug, 2009), whereas a more recent study found no 

differences between amusics and controls in AF size (Chen et al., 2015). For each hemisphere, 

we sought to look at the AF volume and white matter tract integrity as measured by fractional 

anisotropy (FA, a parameter in DTI that measures the diffusivity of water within biological 

tissue) and compare between groups of different pitch processing abilities. 

 

6.2 Methods: Participants  

 

A diffusion MRI scan was collected on 61 participants for the following experiment. 

Participant information is described in Table 3.1. 

 

6.3 Method: Data Acquisition, Processing, and Analysis 

 
All images were acquired on a 3T MRI scanner using a 32-channel head coil.  For each 

participant (N = 61), a diffusion tensor weighted (DTI) scan was acquired with the following 

parameters: acquisition time 8 min 5 s, 64 diffusion directions, b-value of 1000 s/mm2 (reference 

image with low b-value of 0 s/mm2), 192 mm field of view, TR = 6900 ms, TE = 86 ms, 2 mm 

slice thickness, 128 × 128 matrix, field of view 192 mm, 1.5 × 1.5 mm in-plane resolution, 56 
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contiguous (no gap) slices with 2 mm thickness, 1 average, parallel imaging (iPat GRAPPA) 

with an acceleration factor of 3. 

Previously reported, the detection of the AF depends on the tractography algorithm (Chen 

et al., 2015). Deterministic tracking methods model only one fiber orientation per voxel and are 

derived from the first eigenvector, or dominant orientation of the diffusion tensor. A number of 

studies using deterministic tractography were unable to track the AF in the majority of cases 

(Catani et al., 2007; Glasser & Rilling, 2008; Lebel & Beaulieu, 2009, Loui et al., 2009; Kaplan 

et al., 2010; Thiebaut de Schotten et al., 2011) which is why a more standard and appropriate 

probabilistic model was used for our analyses that has shown reliable AF reconstruction (Chen et 

al., 2015). In this study, probabilistic tractography was implemented that used a tracking 

algorithm to model crossing fibers. This method allowed for connectivity maps to be created that 

showed the probability of where a voxel occurred within a tract between two regions of interest 

(ROIs).  

 

Pre- and post-processing of DTI scans were run through FSL (Eddy current correction 

and brain extractions followed by DTIFIT).  BedpostX estimation of diffusion parameters (FSL) 

generated all files required for tractography. Both seed (BA22, which houses the Wernicke’s 

area) and target ROI masks (BA44 which houses Broca’s area) connecting the AF, were created 

in DSI Studio for each subject in diffusion space using the Brodmann Atlas for seed and target 

masks. The seed and target masks were both bilateral ROIs extracted for each subject in 

diffusion space. Therefore, in order to run tractography, both the left and right cerebral white 

matter masks were also created in diffusion space from the FreeSurfer Segmentation atlas for 

each subject that were used as regions of avoidance during probabilistic tractography. All masks 

were saved as Nifti files that were run in Probtrack within the FDT FSL software package for 

further analyses. For probabilistic tracking, ProbtrackX was run for each hemisphere separately 

with the following parameters: 5000 samples, 0.2 curvature, loopcheck applied, and modified 

Euler selected for computing probabilistic streamlines from advanced options for increased 

accuracy. 

 

Broca’s area (BA 44) has been reported to differ considerably in its size, location, and 

shape across different brains (Tomaiuolo et al., 1999). A number of researches brought up the 
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idea that given such variability in this structure, group analyses should be used with caution 

when bringing the data into common space since it may obscure the results. Instead, individual 

analyses were recommended as a more appropriate measure to conduct (Novick et al., 2010). As 

such, we performed tractography on each individual subject per hemisphere and group analyses 

was done afterwards.  Probabilistic-based FA values were derived from ProbtrackX2 output 

fdt_paths files. The 3D tract density images that cover the AF were created when the fdt_path 

files were binarized using fslmaths, and multiplied by the FA map from dtifit using fslmaths. 

Mean FA values from each AF tract per hemisphere were extracted using fslmeants, and run 

through SPSS 23 for Mac for further analyses. Furthermore, FA maps of the AF were 

thresholded to 50% intensity to compare with the unthresholded FA maps. 
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Figure 6.1 Example of the arcuate fasciculus (AF) tractography in a musician participant. Panel 

(A) shows sagittal and axial views of the right AF tract (not thresholded). Panel (B) shows the 

sagittal and axial views of the right AF (thresholded to 50 % intensity). 
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6.4 Results  

 
Figure 6.2 Thresholded mean FA (means ± SEM) of the AF in AP musicians (AP), non-AP 

musicians (MUS), and non-musicians (CON) for the left and right hemispheres. ***p < .001. 

 

A 3 × 2 mixed model analysis of covariance (ANCOVA) was used to analyze the FA of 

the AF non-thresholded tracts, with group (AP, MUS, and CON) as the between-groups variable 

and hemisphere as the within-group variable, using gender, brain volume, and age as covariates 

revealed no significant group by hemisphere interaction (F(1,54) = 0.41, p = .66), or effect of 

hemisphere (F(1,54) = 0.35, p = .56) or group (F(1,54) = 1.13, p  = .33).  The same analyses 

were applied to the FA of the thresholded tracts that also revealed no significant group by 

hemisphere interaction (F(1,54) = 0.26, p = .78) or effect of hemisphere (F(1,54) = 0.84, p = .37) 

or group (F(1,54) = 0.47, p = .63). For all analyses, the covariates were never significant. 

 

Post hoc pairwise comparisons (Bonferroni adjusted alphas = .025) revealed no 

significant differences in the unthresholded and thresholded FAs between groups, however there 

were significant differences between the left and right hemisphere for the unthresholded and 

thresholded FA within the AFs for all groups (ps < .001) that showed an increase in the left FA 
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of the AF tracts.  The same trends were observed with the thresholded and unthresholded FA 

maps.  

 

 
Figure 6.3 Thresholded volumes (means ± SEM) of the AF in AP musicians (AP), non-AP 

musicians (MUS), and non-musicians (CON) for the left and right hemispheres. **p < .01, *p < 

.05. 

 

A 3 × 2 mixed model analysis of covariance (ANCOVA) was used to analyze the volume 

of the AF non-thresholded tracts, with group (AP, MUS, and CON) as the between-groups 

variable and hemisphere as the within-group variable, using gender, brain volume, and age as 

covariates.  There was no significant group by hemisphere interaction (F(1,54) = 1.62, p = .21) 

or effect of hemisphere (F(1,54) = 0.007, p = .93), but there was a significant main effect of 

group (F(1,54) = 5.07, p  = .01).  The same analyses were applied to the FA of the thresholded 

volume tracts that also revealed no significant group by hemisphere interaction (F(1,54) = 0.69, 

p = .50) or effect of hemisphere (F(1,54) = 0.21, p = .65), and a significant main effect of group 

(F(1,54) = 3.37, p = .042). 

 

Post hoc pairwise comparisons (Bonferroni adjusted alphas = .025) revealed significant 

differences in the left unthresholded AF tract volume between the AP musicians and non-AP 
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musicians (p < .001), and approaching significance between the left AF unthresholded volume 

between AP musicians and non-musicians (p = .071). Similarly, post hoc pairwise comparisons 

also revealed significant differences in the left thresholded AF tract volume between the AP 

musicians and non-AP musicians (p = .008), and AP musicians and non-musicians (p = .02). 

 

As well, post hoc pairwise comparisons revealed significant differences between the left 

and right hemispheres for AF unthresholded volumes in AP musicians (p = .033), non-AP 

musicians (p < .001), and non-musicians (p = .001) where the left hemisphere was larger. With 

the thresholded volumes the left was larger than the right although it was not significant within 

each group. 

 

6.5 Discussion 
 

A common model in cognitive neuroscience focuses on structural differences in the brain 

linked to behaviour. Recent studies utilized different models that also looked at differences in 

brain connectivity within white matter tracts in order to explain brain networks that may function 

in abilities such as AP. Fractional anisotropy (FA), is a property in DTI analyses that measures 

the direction-dependent diffusivity of water molecules within tissues and is associated with white 

matter tract integrity. In our study, we report significantly increased FA in the left hemisphere 

compared to the right hemisphere in all groups, however, no significant differences in FA were 

found between AP musicians, non-AP musicians and non-musician groups.  As well, we further 

report significantly smaller left AF tract volumes in AP musicians compared to non-AP 

musicians and non-musicians. Our results are similar and more in line with a previous DTI study 

that traced the superior longitudinal fasciculus (which includes the AF) in AP musicians, non-AP 

musicians, and non-musicians. AP subjects showed a leftward asymmetry in the superior 

longitudinal fasciculus and reduced FA within the white matter tracts compared to the other 

groups. The authors described a pioneering axon theory to explain their results of finding 

reduced FA in AP subjects. This theory suggests that the development of peripheral white matter 

differs from white matter in core regions and may be more susceptible to environmental factors 

such as musical training over a long period of time in postnatal life (Oechslin, 2010a).  
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However, if peripheral white matter development may be influenced by environmental 

factors, then white matter structures might be larger elsewhere in regions associated with 

auditory processing in musicians with more musical training. A previous DTI study was 

conducted on AP musicians compared to non-AP musicians where they hand-drew ROIs of the 

middle temporal gyrus (MTG) and the superior temporal gyrus (STG) in the temporal lobe. 

Performing deterministic tractography, they revealed increased structural connectivity and tract 

volume between these regions in the left hemisphere in AP compared to non-AP musicians (Loui 

et al., 2011). 

 

Another DTI study on AP used the probabilistic tract-based spatial statistics (TBSS) and 

found one significant cluster within the path of the inferior fronto-occipital fasciculus and the 

inferior longitudinal fasciculus that was increased in FA in the right hemisphere in AP compared 

to non-AP musicians (Dohn et al., 2013). Using deterministic tractography, they found higher 

FA in AP musicians within the path of the inferior fronto-occipital fasciculus, the uncinate 

fasciculus, and the inferior longitudinal fasciculus. These regions are located close to the right 

STG and MTG. Taken together, the latter two studies that found significant FA values had 

differed in regions that may be due to the methodology used. Loui et al. (2011) hand drew ROIs 

in two regions and found enhanced connectivity and volume in the left peripheral tract 

connecting the STG and MTG within the temporal lobe. This differed from the whole brain 

comparison using an automated diffusion imaging algorithm that Dohn et al. (2013) used that 

found a significant cluster in the right hemisphere in regions close to the STG and MTG that 

were enhanced in FA in AP subjects. A possible explanation that Loui (2014) described was the 

TBSS algorithm that labeled significant regions of inferior longitudinal fasciculus and inferior 

frontal occipital fasciculus may have also included voxels that extended to other peripheral 

regions of the SLF that comprised the AF. Overall, our study was the only one that directly 

looked at the AF in AP, non-AP musicians, and non-musicians which reported similar results 

that Oechslin et al. (2010a) did when they performed tractography on the larger SLF structure 

that also included the AF.  
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Chapter 7: General Discussion 

7.1 Summary and Conclusions            

The ability of AP to name a note or collection of notes without a reference is generally 

considered to be extremely rare. The prevailing view describes its origins based on a 

combination of genetic/neural developmental cues and in some circumstances adheres to a 

critical period for its development on average. In our study we report that 20 % of our subjects in 

Experiments 2-5 that had AP only started musical training past the critical period, a feature that 

was hypothesized to be required in its manifestation from previous studies. In a noteworthy piece 

entitled ‘The puzzle of absolute pitch’, the author Diana Deutsch, who has AP, described that the 

puzzle surrounding AP is not why some people have it, but rather why it’s so rare to begin 

with—much like our perception of the colour blue is direct, and not done so by comparing it to 

another colour and assessing the relationship between the two. One can reason that a lack of AP 

is akin to the rare syndrome of colour anomia, where patients can tell differences between 

different colours and can tell if two objects are of the same colour, but cannot label then.  
 

Taken together, the nature versus nurture debate underlying AP development has been 

predominantly based on behavioural, genetic, cognitive neuroscience and cross-cultural 

experiments.  Not many studies have been brought in from translational or diagnostic medicine 

simply because AP ability is thought of as a blessing (remarkable ability) rather than a curse 

(neurological/psychiatric disorder) (Loui, 2014). It has been suggested that models describing 

psychiatrics disorders may be useful in describing AP origins, one of which is known as the 

diathesis stress model (Zuckermann, 1999). In this model, a disorder can manifest itself when 

genetic and other dispositional vulnerabilities are brought on by a stressor. It may be that the 

origins of AP ability are caused by developmental influences which are most sensitive to a 

critical period, musical training, tonal language influence, as well as disposition (or 

vulnerability) that may be influenced by AP family history, ethnicity and neural correlates in 

genes coding for temporal lobe hemispheric differences (Loui, 2014). These pathways may then 

influence neural networks responsible for working memory and sound categorization as found to 

be enhanced in AP ability. For the neural requirements of AP to emerge, it may be that at least 

one developmental factor and at least one predisposition may be needed (Loui, 2014). 
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Although a plausible explanation, there are a number of gaps and inconsistencies in the 

literature on AP development and origins. We first tested if any differences could be detected 

initially within the cochlea in AP prior to further neural processing. We used OAEs as a means to 

probe for a peripheral basis for AP. Low-level OAEs are believed to arise primarily in the 

periphery and provide measures of both frequency sensitivity and selectivity. As such, they 

provide a possible means to objectively distinguish between peripheral versus central origins 

of AP. In short, we found no evidence that the periphery (i.e., cochlear responses) differ 

between AP and controls. Specifically, we report no obvious differences in SOAE activity or 

frequency tuning (as measured via pooled trends of SFOAE phase-gradient delays). A limitation 

in the peripheral study was not controlling for musicianship. Therefore, the slight differences 

between groups may be due to musical expertise, rather than an AP marker alone. Although 

unclear, these findings do suggest that the sharpness of tuning may become amplified as auditory 

information progresses towards the CNS. Taken together, these observations strengthen the 

notion that the primary mechanisms allowing for AP to arise lie centrally. 

 

Based on our behavioural tests in this study, we report that AP musicians along with non-

AP musicians had significantly smaller JND thresholds than their non-musical counterparts. Our 

findings are in line with previous studies that did not reveal differences in JND thresholds in AP 

and non-AP musicians (Fujisaki & Kashino, 2002), although musicians overall did significantly 

better than non-musician controls (Micheyl et al., 2006). Similarly, AP musicians along with 

non-AP musicians compared melodic mistuning excerpts better in working memory than non-

musicians. Although musicianship did play a factor, we further report that the underlying AP 

marker may be more representative in central studies as we tested with functional, and structural 

MRI. 

 

We used the pRF model to estimate the best frequency tonotopic maps and tuning 

bandwidth maps in cortical and subcortical auditory regions. We measured both center frequency 

and tuning width averages within A1, R, and RT ROIs comprising HG. In each region, both 

center frequency and tuning widths were not significantly different and were generally 

distributed evenly within groups. Our results may indicate that AP musicians do not have sharper 

frequency selectivity compared to their counterparts based on the population of neurons that 
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responded to the pure tone logarithmic sweeps. It would be interesting to test if natural sounds 

elicit the same response within the groups.  

 

Areas outside of the auditory core including belt, parabelt, and regions beyond may play 

a more relevant role in pitch perception. For example, a previous fMRI study reported cortical 

activation in response to pitch height that extended past auditory core regions into the posterior 

planum temporale, whereas cortical activation in response to pitch chroma (i.e., pitch class, 

where a set of pitches are related to each other by octave) extended to the planum polare, a 

region just anterior to A1 (Warren et al., 2003). A hierarchical stream of pitch processing was 

proposed by Warren et al. (2003) to account for their findings that showed areas beyond the 

primary auditory cortex had specialized perceptual roles. More anterior regions to the core were 

responsive to object-independent auditory stimuli, whereas more posterior regions to the core 

including the planum temporale were more responsive to object identification. Future studies 

need to account for these extended regions that are involved in pitch processing, instead of 

focusing on single auditory cortical pitch centers to explain how cortical neurons encode pitch, 

frequency selectivity, and pitch judgments. Furthermore, it may be that differences in 

musicianship and specifically AP-ability are found in these extended regions. 

 

In addition, we report significantly larger bilateral A1 volumes in AP musicians compared 

to non-AP musicians and non-musicians. Within A1, neurons have shown characteristic 

responses to harmonic spectral stimuli and periodic temporal modulations (Wang, 2013). 

Previously, a study in rats that had their bilateral A1 inactivated showed impairments in their 

response to pure tone frequency changes (Talwar et al., 2001). It seems that A1 does have some 

related function with auditory pitch discrimination. However, it is not certain if only a subset of 

A1 neurons take part in pitch encoding and other neurons function in analyzing temporal or 

spectral components of sound, or it may be the case that pitch is more preferentially encoded in 

secondary cortical fields that extend A1. Nonetheless, A1 still has been implicated in AP, 

suggesting that its enhanced volume may relate to AP ability in pitch categorization and 

perception. Furthermore, we report more significantly activated voxels in A1 and R ROIs for AP 

musicians compared to non-musicians when listening to the auditory task. Similarly, non-AP 
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musicians did show increased activations in these regions compared to non-musicians, although 

the results were not significant.  

 

 There are currently no existing models that predict functional or anatomical correlates to 

AP ability, and the only reasonable replication in a few studies describe the planum temporale 

volume as a marker, although this structure has shown inconsistencies from previous studies. 

This has been the first study to look at tonotopic and tuning width maps in these groups with 

different pitch processing abilities. Frequency selectivity at the level of cortex was not observed 

with respect to tuning revealing that other mechanisms in AP ability exist. We were also able to 

reliably extract tonotopic maps and tuning width maps of auditory subcortical structures of the 

IC and MGN in controls that are in line with previous neuroimaging and electrophysiological 

studies. Our functional results may further support Ross et al. (2005) explanation that musicians 

who have AP possess the Ability to Perceptually Encode (APE). This notion that AP musicians 

are biologically different in specific and discrete ways comes from the idea that they have better 

representation of frequency information in the form of a place code for pitch within the auditory 

system (Ross et al., 2005). Therefore, it may be that AP possessors have a better reference for 

internal pitch class representations that may be independent of sharper frequency selectivity as 

auditory information ascends the CNS. 

 

We further investigated the neuro-anatomical correlates of musicianship and AP using 

structural MRI by investigating cortical thickness and volume differences among the three 

groups. Cortical thickness (CT) was significantly greater in the left HG in AP compared to non-

AP musicians, a region known to function as a central hub for auditory processing. AP and non-

AP musicians also had increased CT in the pericallosal sulcus of the corpus callosum compared 

to non-musicians. As well AP and non-AP musicians had larger angular gyrus, amygdala, 

anterior transverse collateral sulcus, and precentral sulcus volumes compared to non-musicians, 

and only AP musicians had larger pallidum and suborbital sulcus volumes compared to non-

musicians. Interestingly enough, AP musicians had decreased CT in the inferior frontal opercular 

gyrus and decreased circular insular sulcus volumes compared to non-AP musicians and non-

musicians. Previous studies also have reported significantly thinner cortex among AP possessors 

in a number of regions, including frontal cortices (Burmudez et al., 2009). Lastly, we further 
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report significantly smaller left AF volumes in AP compared to non-AP musicians and controls. 

A number of features can influence cortical thickness and white matter tract density such as the 

quantity of cells, cell size, myelination and packing density (Gittins & Harrison, 2004). Although 

we report reduced thickness and volume in frontal regions associated with AP, it may be that 

these regions were optimally reduced to form the most efficient network, which further supports 

the notion that AP possessors have stronger local but not global connectivity. Moreover, it may 

be that AP musicians are better able to bypass certain forms of processing done by most non-AP 

musicians (Klein et al., 1984; Wayman et al., 1992) that translates into neuroanatomical 

differences. For example, while AP is known as an enhancement in the ability of being able to 

label pitches without a reference, other skills like relative pitch judgments were reported worse 

in AP musicians compared to non-AP musicians (Miyazaki, 1993, 1995; 2004). This in turn may 

influence the gross anatomy in regions processing these abilities that require different training 

effects in AP compared with non-AP possessors (Burmudez et al., 2008). 

 

Based on both structural findings in our study we found significantly reduced cortical 

thickness in the pars opercularis part of the inferior frontal gyrus (BA44) of the frontal cortex in 

AP as well as reduced volumes in the left AF that connects BA22 to BA44 together. These 

results were in line with Burmudez et al. (2009) that also found reduced CT in BA44 within AP 

musicians compared with non-AP musicians.  

 

A different and more speculative view has been proposed to account for the reduction in 

CT found in AP. A previous study revealed abnormal cortical folding in the pars opercularis 

region (BA44) within autistics, further supported by findings that showed inversely correlated 

mirror neuron activity in BA44 in response to emotional expression and imitation with the 

degree of autistic symptoms (Dapretto et al., 2006). These were the same regions that were 

implicated in our findings that showed thinner cortex and also included an area that showed 

reduced volume in white matter tract integrity. Brown et al. 2003 softly implies that AP 

musicians may have mild cognitive, social, perceptual predispositions that are linked with 

autistic spectrum behaviours.  It is also noteworthy to point out that there was no overlap 

between the differences found in AP compared with non-AP musicians and non-musicians in 
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decreased CT and volume, suggesting that the anatomical profile in AP stands alone compared 

with their non-AP counterparts.  
 

7.2 Future Directions  

 

There are a number of prospective lines of experimentation that could further increase the 

body of knowledge on AP ability and normal auditory development following the synthesis of 

our results. Future studies would include testing the pRF model in the subcortex (MGN and IC) 

in AP and non-AP musicians, and non-musicians, as well as in regions that extend the auditory 

core regions. Since sharper frequency selectivity was not observed at the level of the cortex 

within the auditory core region, it would be interesting to see if surrounding belt, parabelt, 

planum polare and planum temporale regions are implicated.  

 

Moreover, this has been the first study that delineated A1, R and RT ROIs of the auditory 

cortex in a large sample size that can be further used in generating automated atlases for these 

regions. Future work on this data set would also include looking at structural differences in the 

corpus callosum since the automatic Freesurfer parcellation algorithm did not extract this region 

in the analyses.  Although AP is thought to be more or less of a circumscribed trait, future 

research needs to address the degree to which this unique ability may transfer towards other 

skills and extra musical domains. As well, further research needs to be conducted on 

characterizing why decreases in cortical thickness and volume regions in AP are commonly 

found. Furthermore, future studies need to address to what degree memory is associated with AP 

ability, both at the structural and functional level. 

 
7.3 Concluding Remarks 
 

There still remains a debate over the origins of AP although evidence suggests that the 

clearest form of AP will develop when an innate predisposing biology is combined with 

experiential factors, such as musical training that uses a stable tuning system all during a normal 

developmental stage in childhood. These factors may give rise to the enhancements in AP that 

enable automatic and working memory independent categorization ability. AP ability also shares 

certain commonalities with other special populations, and is described to both include increased 
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and decreased neural networks as evidenced by cortical thickness, grey matter volume, and white 

matter connectivity, as well as higher efficiency in local but not global functional connectivity.  

Overall, our findings suggest that sharpening of auditory tuning information as it 

originates at the peripheral level and traverses centrally is not evident in AP. It seems that there 

are no difference in how frequency information is encoded despite the level of musicianship. The 

underlying AP marker based on the JND is not found when comparing AP to non-AP musicians, 

although JND differences are found when comparing musicians to non-musicians despite AP 

ability. This tells us that musical aptitude does allow one to perceive frequency thresholds better, 

however does not improve with AP ability. Two regions have been implicated in AP, increased 

volume and thickness in HG (a hub for auditory processing), and decreased cortical thickness 

and tract volume in pars opercularis of the frontal lobe (known for its involvement in language 

processing). These two regions seem to compliment each other in that they support the idea that 

AP ability has structural differences in enhanced local connectivity (surrounding auditory 

processing regions), and reduced global connectivity, indicative of feed forward connections to 

the frontal lobe. These structures may be optimally enhanced and reduced to form the most 

efficient network for AP to emerge. Furthermore, it seems that memory associated regions for 

pitch categorization are evident in AP as the most probable candidate in conjunction with 

neuroanatomical differences mentioned as a marker for AP. 
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