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Abstract

In this dissertation we demonstrate how credit risk assessment using credit rating

transition matrices can be improved, as well as present a novel reinforcement learning

(RL) model capable of determining a multi-layer financial network configuration

with reduced levels of systemic risk. While in this dissertation we treat credit risk

and systemic risk independently, credit risk and systemic risk are two sides of the

same coin. Financial systems are highly interconnected by their very nature. When

a member of this system experiences distress such as default, a credit risk event,

this distress is often not felt in isolation. Due to the highly interconnected nature

of financial systems, these shocks can spread throughout the system resulting in

catastrophic failure, a systemic risk event.

The treatment of credit risk begins with the introduction of our first-order Markov

model augmented with sequence-based clustering (SBC). Once we established this

model, we explored its ability to predict future credit rating transitions, the transition

direction of the credit ratings, and the default behaviour of firms using historical credit

rating data. Once validated, we then extend this model using higher-order Markov

chains. This time around, focusing more on the absorbing behaviour of Markov

chains, and hence, the default behaviour under this new model. Using higher-order

Markov chains, we also enjoy the benefit of capturing a phenomenon known as rating
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momentum, characteristic of credit rating transition behaviour. Other than the

credit rating data set, this model was also applied to a Web-usage mining data set,

highlighting its generalizability.

Finally, we shift our focus to the treatment of systemic risk. While methods

exist to determine optimal interbank lending configurations, they only treat single-

layer networks. This is due to technical optimization challenges that arise when

one considers additional layers and the interactions between them. These layers

can represent lending products of different maturities. To consider the interaction

between layers, we extend the DebtRank (DR) measure to track distress across layers.

Next, we develop a constrained deep-deterministic policy gradient (DDPG) model

capable of reorganizing the interbank lending network structure, such that the spread

of distress is better mitigated.
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Chapter 1

Introduction

We regularly assess and manage the risks that follows us as we navigate our daily

lives. From the more mundane activities such as driving through the streets of

Toronto, to academic endeavors such as embarking on a research project, one is

constantly weighing the value of realizing your goals against the uncertainty of failure.

Understanding the likelihood of adverse events and their consequences is not only

essential to our daily lives but also plays an important role in management and

decision making in the foundational systems of society. In this dissertation, we

will explore how machine learning techniques can improve the assessment of risk in

financial systems.

In the context of finance there are many different types of risk one might be

concerned with. There’s interest rate risk (the risk of a change in interest rates

leading to the change in bond prices, affecting bond holders), exchange-rate risk (the

risk that the price of a currency may change with respect to an asset you currently

hold), and model risk (the risk of loss due to errors and inaccuracies in models used)

to name a few. The types of risk discussed in this dissertation will be credit risk and

1



systemic risk.

Credit risk measures the potential for a debtor (the borrower) failing to repay

their loan, leading to the creditor (the lender) failing to receive their owed money

amounts. The realization of a debtor failing to meet their debt obligation is also

known as default. A popular measure of credit risk is credit ratings. Credit ratings

can be used assess the credit risk for corporations, government bodies, or financial

institutions and their ability to satisfy their loan obligations. These credit ratings are

assigned by credit rating agencies such as Standard & Poor’s, Moody’s, and Fitch.

The ratings are represented by letter grades ranging from AAA (representing the best

credit quality) to D (representing default, the worst credit quality). For investors

and portfolio managers, credit ratings are crucial as they directly influence bond

prices, interest rates offered by the issuers, and credit portfolios (Trueck & Rachev,

2005). The significance of credit ratings extends to banks as a downgrade in credit

ratings can lead to an increase in excess cash holdings (Khieu & Pyles, 2012). For

professionals in risk management and regulatory compliance, the role of credit ratings

in assessing credit risk is not missed. This significance is especially highlighted with

the introduction of the Basel II accords and subsequently, the Basel III accords. This

regulatory framework allows for the use of internal and external credit ratings of

banks in calculating risk-weighted assets which directly affects the calculation of their

capital requirements for credit risk (Bank for International Settlements, 2023; Trueck

& Rachev, 2009).

To measure the likelihood of an upgrade or downgrade, credit rating transition

matrices (also referred to as migration matrices) are used. These matrices explicitly

express the probability of transitioning from one credit rating to another. Typically,

transition matrices are modelled under a Markov assumption where the transition

behaviour is dependent only on the current credit rating. Empirically, credit rating
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transitions display various non-Markovian behaviour, for example, downward rating

momentum (the likelihood of downgrades are increased if the previous transition

was a downgrade), rating persistence (the tendency for firms to main its current

rating), and time non-homogeneity (Altman & Kao, 1992; Baena-Mirabete & Puig,

2018; D’Amico et al., 2019; Frydman & Schuermann, 2008; Lando & Skodeberg,

2002). By not considering these characteristics of credit ratings, this could lead to

an assessment that does not accurately reflect the true level of credit risk present.

Indeed, Güttler and Raupach (2008) highlight the tendency of more naive models to

underestimate the Value-at-Risk (VaR) of credit portfolios by 8% of the correct value

while momentum sensitive models estimate higher VaR in comparison. Therefore,

banks that do not consider rating momentum may hold insufficient capital to buffer

against unexpected losses. Baena-Mirabete and Puig (2018) also found similar

observations when incorporating downward momentum and rating persistence. In this

dissertation, we improve on traditional first-order transition matrices by capturing

characteristics such as rating momentum by using high-order Markov models.

The second type of risk we explore in this dissertation is systemic risk. In the

context of financial systems, systemic risk is the the risk of financial collapse due

to the failure of some portion of the financial network leading to economic decline.

While the realization of a systemic risk event can directly impact the general economy,

elevated levels of systemic risk can also affect various parts of the financial system

before any catastrophe is realized. Using the treasury/eurodollar spread (TED) as a

measure of systemic risk, Bianchi et al. (2010) investigates the relationship between

systemic risk and hedge fund returns. They note that rising levels of systemic risk

can result in behavioural changes of managers resulting in a reduction of equity and

stock momentum exposures and for short sellers, they increase their short exposure.

Another consequence of increasing levels of systemic risk is the weakening of the
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beneficial effects of diversification Busse et al. (2014). Strobl (2016) supports this

idea by finding a large correlation between systemic risk and idiosyncratic risk. Using

marginal expected shortfall and residual volatility of returns as proxies for measures of

systemic risk and idiosyncratic risk respectively, their results suggest that regulations

reducing systemic risk will reduce the overall riskiness of financial institutions.

The most popular example of a systemic risk event is the global financial crisis of

2008. Not only did the financial crisis affect the general economy, but it also heavily

influenced subsequent regulatory policy making. Shortly after the crisis, the Basel

III accord was introduced to address the inefficiencies of the pre-crisis regulatory

framework. These accords introduced various changes, such as placing greater

emphasis on loss-absorbing capital in the form of Common Equity Tier 1 capital,

the increase in the level of capital requirements that needed to be met, and revising

deficient risk-capturing frameworks, among others (Bank for International Settlements,

2018). While minimum capital requirements certainly play a role in mitigating some

aspects of systemic risk, the topology of the network itself also contributes to systemic

risk (Allen & Gale, 2000; Boss et al., 2004; Gai & Kapadia, 2010; Nier et al., 2007).

The importance of considering the network structure has recently been emphasized

with works by authors like Poledna et al. (2017), who has demonstrated that policies

focusing on the interbank network structure may prove to be more effective than

capital requirements. Furthermore, by not considering different layers of the financial

system, the level of systemic risk can be heavily underestimated (Poledna et al.,

2015). In this dissertation, we contribute to the literature by developing a novel

reinforcement learning (RL) method to reorganize multi-layer financial networks,

producing network configurations with reduced systemic risk. Moreover, by extending

the popular DebtRank (DR) measure of systemic risk developed by Battiston et al.

(2012), we introduce a novel DebtRank-like measure to account for how distress might
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propagate through different layers of a financial network.

While the treatment of credit risk and systemic risk in this dissertation is separate,

it is important to note the strong interdependence between these two types of risk. A

notable relationship can be established by considering sovereign credit ratings and

the sovereign ceiling effect. The sovereign ceiling effect describes the tendency for

the credit rating of banks to not exceed their sovereign’s credit rating. A study by

Sehgal et al. (2018) finds evidence suggesting that increased levels of systemic risk can

lower sovereign credit ratings. Consequently, in the presence of sovereign downgrades,

Huang and Shen (2015) suggests that the rating of banks far from the ceiling are still

affected due to the deterioration of government assets they may hold. Conversely,

the rating of banks near the ceiling are mainly determined by the sovereign rating

regardless of the asset type they hold. Individually, the insolvency of a few participants

of the financial system can negatively impact the rest of the financial system. While

at the same time, the organization of the system can exacerbate the individual fall

outs. In other words, better microprudential policies work to provide safer financial

institutions and thus a safer financial system as a whole but whenever such spillovers

are sufficiently strong, the financial system as a whole may be worse off, even though

the behaviour of banks individually may be perfectly rational (Freixas et al., 2015).

Therefore, addressing both credit risk and systemic risk in this dissertation is essential

in improving the overall function of a financial system.

Throughout this dissertation, we will be making use of different elements from

various disciplines, including finance, mathematics, and, most notably, machine

learning. By leveraging techniques from the field of machine learning, we improve

credit rating transition matrix estimation methods and hence, credit risk assessment.

Moreover, we develop a RL framework capable of reducing systemic risk in a multi-

layer financial system. Therefore, ideas of this dissertation can be separated into
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treatments of two types of risk, credit risk, and systemic risk. The issues of credit

migration are addressed in Chapters 2 and 3. The reduction of systemic risk is

addressed in 4.

Finally, we conclude this dissertation in Chapter 5. In this chapter, we discuss

the implications and significance of the work achieved in this dissertation. We believe

that the augmented Markov chain models, enhanced using SBC, offer practitioners

additional approaches to consider the various non-Markovian properties of credit rating

sequences while providing superior predictive performance compared to traditional

transition matrices. While the combination of our RL framework and extended multi-

layer DR measure offers a novel and flexible method to determine the configuration

with lower levels of systemic risk in a multi-layer financial system. This approach

offers additional insight into the structure of low systemic risk systems. Furthermore,

the RL framework introduced in this dissertation is general enough to be applied in

other contexts where the goal is network reorganization, opening up new paths for

research in other fields.
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Chapter 2

First-Order Markov Chains and

Sequence-Based Clustering

In this chapter, we study the effectiveness of estimating credit rating transition

matrices by augmenting first-order Markov chains using sequence-based clustering

(SBC) to better characterize companies using solely historical credit rating sequences.

By better utilizing historical credit rating sequences, we can improve the quality

of estimated credit rating transition matrices, a critical component in credit risk

assessment models. We group firms together based on their sequence matrices and

hence, with similar transition behaviour together. The research presented in this

chapter has been published in Le et al. (2021).

2.1 Introduction

Credit ratings and their revisions can lead to a number of major decisions and hence,

consequences. It is in one’s best interest to invest in better forecasting techniques to
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mitigate any credit rating dependent losses. In this chapter, we will be adapting the

general clustering methodology described in Park et al., 2008 and apply a transition

matrix estimation method to predict future credit behaviours solely from historical

credit ratings. Park et al. (2008) developed a sequence representation scheme based

on Markov models, enabling sequences of web usage activities to be clustered using

vector based distances. This method is known as SBC. As far as we can tell, we are

the first to study the application of SBC using K-means strictly on historical credit

rating sequences. The majority of models observed in literature use a snapshot of a

company’s financial statement and fewer models use a historical sequence of financial

statements (Chen et al., 2013).

Markov chains are commonly used in modelling the behaviour of credit rating

transitions over time. Jarrow et al. (1997) were one of the first to model the term

structure of credit risk spreads using Markov chains in both the discrete and continuous

time case. They estimated the transition probability matrix from historical data by

first estimating the generator matrix from a 1-year estimate of transition probabilities

provided from a credit rating agency. The generator matrix can be estimated either

implicitly from bond market prices or from historical bond transition rating changes.

Thomas et al. (2002) extends the Jarrow–Turnbull model by introducing a hidden

Markov model for the term structure of credit risk spreads. Kiefer and Larson (2004)

tested the effectiveness of using a time-homogeneous Markov model to describe the

credit rating transitions of municipal bonds, commercial paper, and sovereign debt.

They have found that the time-homogeneous Markov model can adequately describe

credit rating transitions of municipal bonds over a period of 5 years and commercial

paper over a period of 6 months. Credit rating transitions for sovereign debt are also

adequately described by Markov models but this conclusion may be the result of the

low number of data samples. Dharmaraja et al. (2017) introduces a hybrid Markov
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model where they incorporate the asset value of the firm in the transition probabilities

of credit ratings. Sharma et al. (2018) investigates the financial performance of

insurance companies by using credit rating transition matrices under a Markov model,

noting that less risky rating grades result in more rating stability.

Studies have shown the promising results that clustering can produce in the

context of credit risk and credit rating predictions. In a study by Guo et al. (2012),

they compared their proposed support vector domain description (SVDD) combined

with fuzzy clustering model with other kinds of support vector machine learning

techniques in the context of corporate credit rating classification. The performance of

each model was evaluated based on the hit-ratio, the ratio of the number of correct

classifications and the overall number of classifications. The variables used as the

input of the model are bond-rating data sets from the Korean and Chinese markets.

The variables range from shareholder’s equity to cash flow from operating activities.

Chen et al. (2013) use a trajectory clustering procedure consisting of two consecutive

self-organizing maps (SOM) processes. Their method allows for the visualizations of

the bankruptcy trajectories of companies enabling a unique perspective and insight

on bankruptcy influences. Their model clusters financial statements containing 29

financial ratios of companies spanning 3 years. Morales et al. (2015) applied different

fuzzy classification methods for the use in rating classifications. They use both credit

ratings and financial statement ratios in their model. Irmatova (2016) introduces a

relative attribute rating model (RELARM) based on relative PCA attributes and

K-means clustering. Using 9 financial and economic parameters, their model assigns

ratings based off the ranked projections of the cluster centres onto a rating vector.

In the case of long-term credit rating prediction, the true rating that a firm receives

in the future will not be known until that future date arrives. During this period,

new credit rating information may become available. Kuncheva and Sánchez (2008)
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terms this type of problem as delayed labelling and investigates the effectiveness of

online nearest neighbour classifiers for treating delayed labelling problems. Plasse and

Adams (2016) developed an online linear discriminant analysis algorithm which was

applied to a real world consumer credit data set where delayed label information was

introduced synthetically. Montiel et al. (2017) proposed two over-indebtedness risk

prediction frameworks, one of which treats over-indebtedness as a streaming learning

problem. Although not done in this study, we may be able to extend our model to

consider delayed labelling by treating credit rating sequences as a streaming data

problem.

The remainder of this chapter is organized into 5 sections. In Section 2.2 we

discuss the methodology and theory behind our proposed model. In Section 2.3 we

provide an overview of the three different classification scenarios that our model will

undertake. In Section 2.4 we introduce the data to be used, and describe the specific

methods of the experiments. In Section 2.5 we present the results and discussions of

our proposed model. Finally we conclude the study with a discussion of the results

in Section 2.6.

2.2 Methodology

In this section, we describe the methods for the first-order Markov model augmented

with SBC. We begin by defining the sequence matrices and their properties. The

sequence matrices will be the main objects that are being clustered. We then describe

credit rating transition matrices as these will be used in the classification algorithm.

Finally, we go over the details of the K-means clustering method.
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2.2.1 Sequence Matrices

We introduce sequence matrices in order to measure the distance between the historical

patterns of credit ratings of firms. Consider an n-state time-homogeneous Markov

chain where each state represents a particular credit rating. In order to begin clustering

these objects, we utilize the representation of sequence vectors and sequence matrices

introduced in Park et al. (2008).

Definition 2.2.1. Let m ∈ N, Xm
1 , Xm

2 , ..., Xm
T be a sequence of random variables,

and S be the state space. Then the mth sequence vector of length Tm ∈ N is defined

by the vector xm(Tm) = (Xm
1 , Xm

2 , ..., Xm
Tm

) with states Xm
t ∈ S.

Definition 2.2.2. Let Nij be the number of transitions from state i to j for the mth

firm with the sequence vector xm(Tm). The corresponding sequence matrix Sm is

then an n× n matrix whose entries are denoted by

Sm[i, j] =


Nij∑

j′
Nij′

if Nij > 0,

0 if Nij = 0,

(2.1)

and so, the entries represent the relative frequency of transitions from state i to j.

Therefore, given a sequence vector xm(Tm) we can generate the corresponding

sequence matrix Sm. This sequence matrix describes the frequency of transitions of

the given sequence vector.

In the context of credit ratings, there tends to be few credit rating transitions

away from the current rating over the period of Tm leading to sparse credit rating

sequence matrices. An extreme example of this observation would be one where a

firm takes only one rating for the entire period of Tm. Suppose Xt = 2 for t ≤ Tm,
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Notation Definition

S State space of the Markov chain
n Number of states in the state space
Xm

t State of the mth sequence at time t
Tm Full length of the mth sequence
xm(t) Sequence vector up to time t, defined by (Xm

0 , ..., Xm
t )

C Total number of clusters used in the K-means algorithm
c The cth cluster among C clusters.
Sm Sequence matrix of the mth sequence
∆t Transition period defined by tl+1 − tl

Pc(∆t)
Representative ∆t-year first-order transition matrix of the
cth cluster

Qc
Sub-matrix of the Pc containing the transition probabilities
from and to transient states

Rc
Vector of Pc containing the transition probabilities from
a transient state to an absorbing state

τ
Number of time steps, indicating how far into the future
we want to predict

rτc
Vector whose entries are the probability of default within
τ time steps

d̂m(t, t
′) The transition direction for a transition from Xm

t to Xm
t′

L Set of labels used for classification
θ Threshold used to compare against the absorption probabilities

ŷm(θ)
Label or prediction made for the mth sequence given for
some threshold θ

K Number of folds used in K-fold cross validation
Ssize Sample size, the number of sequences used in each experiment
dxy Somers’ D

Table 2.1: A table to reference for some notation used throughout this chapter.
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then the resulting sequence matrix would contain a single entry at S[2, 2] = 1 and

S[i, j] = 0 everywhere else.

Now we present some general properties of sequence matrices when using the

Euclidean distance measure for the comparison of different sequence matrices. The

Euclidean distance measure is used to measure the distance between the historical

patterns of credit ratings for the firms. We consider a time-homogeneous Markov

chain X with state space S = {1, 2, ..., n}. For a sequence matrix, the sum of the

entries in a nonzero row is 1, i.e., Sm[i, j] = 0 for all 1 ≤ j ≤ n or,

n∑
j=1

Sm[i, j] = 1.

Lemma 2.2.1. Consider a vector (a1, a2, ..., an) that satisfies
n∑

i=1

ai = 1.

(a) The minimum value of
n∑

i=1

a2i is 1
n

and it is achieved at ( 1
n
, 1
n
, ..., 1

n
).

(b) If 0 ≤ ai ≤ 1 for all i, then the maximum value of
n∑

i=1

a2i is 1, that is,

1

n
≤

n∑
i=1

a2i ≤ 1.

Proof. By the Cauchy-Schwarz inequality,

(
n∑

i=1

a2i

)(
n∑

i=1

12

)
≥

(
n∑

i=1

ai

)2

Since
∑n

i=1 ai = 1,
n∑

i=1

a2i ≥
1

n

where the equality holds when ai = 1
n
, i = 1, ..., n. For the maximum value, we
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consider
n∑

i=1

a2i =

(
n∑

i=1

ai

)2

−
n∑

i ̸=j

aiaj.

Since 0 ≤ ai, aj ≤ 1,
n∑

i=1

a2i ≤

(
n∑

i=1

ai

)2

= 1.

Next we consider two sequence matrices Sm1 and Sm2 that represent Markov

chains Xm1 and Xm2 where each state refers to credit ratings of firm m1 and firm m2.

Let S1 be the set of states where Markov chain Xm1 has ever visited for t < T , i.e.,

S1 = {i : Sm1 [i, j] > 0 for some j}

= {i : Nij > 0 for some j} ⊂ S

Similarly, we let S2 = {i : Sm2 [i, j] > 0 for some j}. The corresponding sequence

matrices Sm1 and Sm2 for Markov chains Xm1 and Xm2 have the following property.

Theorem 2.2.1. Suppose that there is no intersection between S1 and S2, i.e.,

S1 ∩ S2 = ∅, implying two Markov chains Xm1 and Xm2 have not visited the same

state. Then the Euclidean distance ||Sm1 − Sm2|| between Sm1 and Sm2 is

√
2 ≤ ||Sm1 − Sm2|| ≤

√
n

Proof. Let k = |S1| < n. Without loss of generality, we may assume that

S1 = {1, 2, ..., k}

= {i : Sm1 [i, j] > 0 for some j}
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Then1 the sequence matrix Sm1 is of the form

 S′
m1 O

O O


where S′

m1 is a k × k subsection of Sm1 and O is the zero matrix. We have the

Euclidean square distance between S′
m1 and the zero matrix is

||S′
m1 ||2 ≥

1

k
+

1

k
+ · · ·+ 1

k
=

k

k
= 1

by using Lemma 2.2.1. Applying the same argument, the Euclidean square distance

between Sm2 and the zero matrix is greater than or equal to 1. Since S1 ∩ S2 = ∅, we

get

||Sm1 − Sm2||2 ≥ 1 + 1 = 2

therefore, ||Sm1 − Sm2|| ≥
√
2. On the other hand, by Lemma 2.2.1,

k∑
j=1

S ′
m1

[i, j]2 ≤ 1

for each 1 ≤ i ≤ k where S ′
m1

[i, j] are entries of S′
m1 . Thus

||Sm1||2 = ||S′
m1||2 ≤ 1 + 1 + · · ·+ 1 = k.

Since S1 ∩ S2 = ∅, we have |S2| ≤ n− k and ||Sm2||2 ≤ n− k. Then

||Sm1 − Sm2||2 = ||Sm1||2 + ||Sm2 ||2 ≤ k + (n− k) = n.

1This might not be the case when Xm1

T = j and Xm1
t ≠ j for all t < T . We exclude this sequence

here. In this special case, we have a slightly different bound depending on c.
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Therefore, ||Sm1 − Sm2|| ≤
√
n.

Theorem 2.2.2. Suppose that two Markov chains Xm1 and Xm2 have not made the

same transition, i.e.,

{[i, j] : Sm1 [i, j] > 0} ∩ {[i, j] : Sm2 [i, j] > 0} = ∅.

Then the Euclidean distance ||Sm1 − Sm2|| between Sm1 and Sm2 is

√
2 ≤ ||Sm1 − Sm2|| ≤

√
2n.

Proof. The argument is essentially the same as in Theorem 2.2.1. For the upper

bound,
n∑

j=1

Sm1 [i, j]
2 ≤ 1

for each 1 ≤ i ≤ n, so ||Sm1||2 ≤ n. Since Sm1 [i, j]× Sm2 [i, j] = 0 for 1 ≤ i, j ≤ n, we

get

||Sm1 − Sm2 ||2 = ||Sm1||2 + ||Sm2||2 ≤ 2n.

Thus, ||Sm1 − Sm2 || ≤
√
2n.

Definition 2.2.3. For a sequence vector xm(Tm) = (Xm
1 , Xm

2 , ..., Xm
Tm

) of length Tm

for some firm m, it is said to be ascending if Xm
t+1 ≤ Xm

t for all t < Tm. The sequence

vector xm(Tm) is said to be descending if Xm
t+1 ≥ Xm

t for all t < Tm.

Note that there are at most two nonzero entries in each nonzero row for sequence

matrices corresponding to ascending or descending sequence vectors. An ascending

vector indicates the credit ratings of a firm have been upgraded while a descending

vector implies the credit ratings have been downgraded. Credit rating sequences with
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ascending or descending sequences are examples of sequences that exhibit rating drift

behaviour. As noted in D’Amico et al. (2019), rating drift is more pronounced in

downgrades rather than upgrades.

2.2.2 Markov Chains

Credit rating sequences can be modelled as Markov processes. We consider a discrete

n-state time-homogeneous Markov chain. A transition probability is the conditional

probability of a stochastic process transitioning to one state given its current state,

that is,

Pr{Xt = j|Xt−1 = i}, (2.2)

where Xt ∈ S is the credit rating at time t ∈ N with state space S = {1, 2, ..., n}. A

Markov chain must satisfy the Markov property. The Markov property is stated as

the following

Pr{Xt = j | X0 = it, ..., Xt−1 = i} =Pr{Xt = j | Xt−1 = i}, (2.3)

=pij. (2.4)

2.2.3 Transition Matrices

The conditional probabilities pij is called the one-step transition probability and can

be arranged in a matrix P called a transition matrix with entries P [i, j] = pij. With
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n = |S|, the transition matrix satisfies the following properties

pij ≥ 0 ∀i, j ≤ n, (2.5)
n∑

j=1

pij = 1 ∀i ≤ n. (2.6)

The Markov property implies that the transition probabilities only depend on its

current state. To calculate the probability of transitions τ step into the future we use

Theorem 2.2.3 (see for instance, Taylor and Karlin (1998)).

Theorem 2.2.3. Let p(τ)ij = Pr{Xt+τ = j | Xt = i} and pij represent the entry of a

transition matrix P. Then, the τ -step transition probability p
(τ)
i,j of transitioning from

state i to j satisfies

p
(τ)
ij =

∞∑
k=0

pikp
(τ−1)
kj , (2.7)

where we define

p
(0)
ij =

 1 if i = j,

0 if i ̸= j.

Note that Equation (2.7) represents matrix multiplication and using transition

matrices P we have the equivalent representation P(τ) = P × P(τ−1). Given the

assumption of time-homogeneity we can then write more generally

P(τ) = P×P× ...×P = Pτ . (2.8)

Therefore, using Equation (2.8), one can obtain the transition probabilities for any

τ -step transition.

Given the clusters of credit rating sequences formed from the K-means algorithm

one can generate transition matrices based on the members of the respective clusters.
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The industry standard for estimating transition matrices from credit rating sequences

is the cohort approach (Christensen et al., 2004; Gunnvald, 2014).

Definition 2.2.4. (Cohort Approach) Let n = |S|, {xm(Tm) | m ≤Mc ∈ N, c =

1, 2, ..., C} be the set of credit rating sequences in cluster c with a total of Mc members,

T = {tl | 0 ≤ l ≤ T with tl < tl+1} be the set of equally spaced observed time points

of the credit ratings xm(Tm) used in constructing the representative transition matrix.

Then we define transition period ∆t by tl+1 − tl. Then the representative ∆t-year

transition matrix of the cth cluster, Pc(∆t) is an n × n matrix whose entries are

denoted by

Pc[i, j] =

∑
tl∈T

Nij(tl)∑
tl∈T

Ni(tl)
, (2.9)

where Nij(tl) is the number of companies that had transitioned from state i to j in

the ∆t period, Ni(tl) is the total number of companies whose current state was i at

time tl.

To generate longer period ∆t-year transition matrices one can redefine ∆t by

tl+2 − tl instead. Consequently, a drawback of the cohort approach is the possibility

of completely missing the existence of an intermediate credit rating in time if we

choose to sample points when ∆t is large. For example, suppose we have a credit

rating sequence X = (1, 5, 1, 1, 1, 1, 1) with times t0, t1, t2, t3, t4, t5, t6 corresponding to

years 2000, 2001, 2002, 2003, 2004, 2005, 2006. In our example, we will generate our

transition matrices by sampling time points t0, t2, t4, and t6. The observed credit rating

sequence used in the estimation of the transition matrix is then Xobs = (1, 1, 1, 1).

Therefore, the transition to and from credit rating 5 will be completely missed using

the estimated 2-year transition matrix.

An alternative approach that captures the intermediate transitions is the duration
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approach. The duration approach first estimates the transition matrix by taking

the matrix exponential of an estimated generator matrix (Gunnvald, 2014; Lando

& Skodeberg, 2002). The difference between the cohort and duration approach has

been intensively studied by Jafry and Schuermann (2004). They have noted that the

cohort approach overestimates default probabilities (the last column of the transition

matrix) for less risky rating categories and underestimates default probabilities for

the most risky rating categories. By generating a bond portfolio of 400 exposures,

they have also concluded that ignoring the efficiency gain in the duration approach is

more damaging.

2.2.4 Clustering Algorithm: K-means

In our model, we will be making use of a variant of the K-means algorithm to cluster

our data set. The purpose of clustering is to partition the firms into groups that

share similar transition behaviours in their respective credit rating sequences. The

base K-means algorithm is a popular choice in many applications due to its ease

of implementation, simplicity, efficiency, and empirical success (Jain, 2010). Given

the assumption that credit rating sequences can be modelled by an n-state time-

homogeneous Markov chain, it may be natural to immediately consider clustering

transition matrices of the individual firms. Unfortunately, using Euclidean distance to

compare transition matrices leads to the mis-clustering of firms who do not experience

any transitions in their credit rating sequence but belong to different credit ratings

at the same time. For example, let x1 = (2, 2, 2, 2, 2) and x2 = (5, 5, 5, 5, 5) then the

respective transition matrices P1, and P2 are
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P1 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


, P2 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


.

As the above matrices are transition matrices they must satisfy the propoerties

(2.5) and (2.6) and hence, the resulting matrix is the identity matrix. Calculating the

Euclidean distance we have ∥P1 −P2∥ = 0 despite being two firms with completely

different credit rating sequences. If instead we generated the sequences matrices S1

and S2 for x1 and x2 respectively

S1 =



0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, S2 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


,

using the Euclidean distance between S1 and S2 results in ∥S1 − S2∥ =
√
2.

Hence by using sequence matrices, we circumvent this problem as two firms having

experienced no transitions over some period T will be considered "far" from each

other in Euclidean norm. Therefore, by using the Euclidean distance measure on

sequence matrices instead of transition matrices, the differences between the resulting
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clusters will have a more intuitive interpretation.

In the conventional K-means clustering algorithm the initial cluster centroids are

chosen completely randomly. Because the resulting clusters are highly dependent on

the initial cluster centroids, the initialization of the cluster centroids is an important

question to answer. To improve the initialization of the clustering process we choose

to instead use PCA-guided K-means (Xu et al., 2015). The idea of PCA-guided

K-means is that the optimal solution to the minimization problem lies in space known

as the PCA-subspace, a smaller space than the original space. To implement this

algorithm, we first cluster our data in the PCA-subspace and then initialize our cluster

centroids in the feature space based on the cluster membership in the PCA-subspace.

Although the resulting solution is not guaranteed to be the global optimal solution,

the resulting solution tends to be better (in terms of within cluster variance) than

the solutions obtained by just searching within the full data space. Therefore, using

the PCA-guided K-means algorithm we intend to partition Ssize firms into C clusters

such that firms in each cluster share similar credit rating transition behaviour. A

diagram of the first-order SBC model can be found in Figure 2.1.

2.3 Long-Term Credit Rating Model

We will be testing the performance of the model against three different classification

scenarios:

1. The prediction of future credit rating.

2. The prediction of the direction of future credit rating transitions.

3. The classification of risky firms most likely to default.
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Figure 2.1: A diagram detailing the first-order Markov model combined with SBC.

For each classification scenario we first split the entire data set into a training set

and a test set. The model is trained using the training set and is evaluated based

on its classification performance using the test set. García et al. (2015) highlights

the importance of experimental design in credit scoring and bankruptcy prediction.

They note that the choice of data splitting method is dependent on the nature of the

classifiers and complexity of the problem. In our study, we found that the K-fold

cross-validation method suited our goals well. We forgo the use of the single holdout
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method as this results in our model producing a single set of representative transition

matrices. For similar reasons, we forgo the use of leave-one-out cross-validation as the

set of representative transition matrices may remain relatively unchanged by removing

a single sequence matrix from the training set. By using K-fold cross-validation we

test the effectiveness of our model in the case of a variety of different clusters and

the predictive power of their representative transition matrices. After clustering the

training set we generate the representative transition matrix Pc(∆t) for each cluster.

This is done using the cohort approach.

For each scenario we let xm(Tm) be the credit rating sequence of the mth firm from

the test set. For each firm, we generate the sequence matrix Sm based on xm(Tm).

The sequence matrices of the training set are then partitioned into C different clusters.

Using the testing set, we assign a single firm to one of the C clusters based on the

Euclidean distance between Sm and the clusters’ centroid µc. That is, the assigned

cluster c∗ is chosen by

c∗ = argmin
c
∥Sm − µc∥ . (2.10)

After assigning the firm to a cluster, we can estimate the future behaviour of the firm

by using the cluster’s representative transition matrix.

2.3.1 Credit Rating and Transition Direction Prediction

In the credit rating prediction scenario, we intend to determine the most likely credit

rating a firm will take at time t′ in the future given the current credit rating Xt at

time t. We will consider n class labels for an n-state homogeneous Markov chain,

i.e. S = {1, 2, ..., n}. Let τ be the difference t′ − t, then, using the representative

transition matrix Pc(∆t), we calculate the τ -step transition matrix Pτ
c (∆t). Because

we assume time-homogeneity, the τ -step transition matrix can be calculated by using
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Equation (2.8), that is

Pτ
c (∆t) = Pc(∆t)(t

′−t). (2.11)

The prediction of the future credit rating X̂m
t′ for some firm m is then

X̂m
t′ = argmax

j
P τ
c [X

m
t , j]. (2.12)

For the evaluation of multi-class classification performance we will be considering the

number of true positives (TP), false positives (FP), false negatives (FN), and true

negatives (TN). In the binary case, we can organize these counts using a confusion

matrix

Predicted

Positive Negative

Actual
Positive TP FN

Negative FP TN

where our classes are the "Positive" and "Negative" classes. Given the confusion

matrix it can then be observed that the count of TP represent the number of correct

prediction of the positive class, FP represents the number of incorrect predictions of

the positive class, FN represents the number of incorrect predictions of the negative

class, and TN represents the number of correct prediction for the negative class. For

the multi-class classification scenario with classes A, B, C, and D we can generate

the following confusion matrix:
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Predicted classes

A B C D

Actual classes

A c1,1 c1,2 c1,3 c1,4

B c2,1 c2,2 c2,3 c2,4

C c3,1 c3,2 c3,3 c3,4

D c4,1 c4,2 c4,3 c4,4

Then, the number of TP, FP, FN, and TN can be calculated each individual class

in a similar manner to the binary example by treating one of our classes as the positive

class and everything else as the negative. Generally, let L = {Ll | 1 ≤ l ≤ L} be the

set of class labels, then to calculate the number of TP, FP, FN, and TN for class

label Ll ∈ L we must consider the confusion matrix for classes "Ll" and "Non-Ll"

Predicted

Ll Non-Ll

Actual
Ll TPl FNl

Non-Ll FPl TNl

where each cell of the above confusion matrix can be calculated by the following
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equations

TPl = cl,l (2.13)

FPl =
L∑
i=1

ci,l, for i ̸= l (2.14)

FNl =
L∑

j=1

cl,j, for j ̸= l (2.15)

TNl =
L∑
i=1

L∑
j=1

ci,j − (TPl + FPl + FNl). (2.16)

To evaluate the wellness of the estimates made in the multi-class classification scenario

we will be using the average accuracy, denoted by AA, and the micro-averaged F1

score, denoted by F1µ (Sokolova & Lapalme, 2009).

AA =

L∑
l=1

TPl+TNl

TPl+FNl+FPl+TNl

L
(2.17)

F1µ = 2
Prµ · Reµ
Prµ + Reµ

(2.18)

where

Prµ =

L∑
l=1

TPl

L∑
l=1

(TPl + FPl)

(2.19)

Reµ =

L∑
l=1

TPl

L∑
l=1

(TPl + FNl)

(2.20)
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where Prµ and Reµ are the micro-averaged precision and recall respectively. It

should also be noted that when using micro-averaging for multi-class classification

the micro-averaged recall, micro-average precision, and micro-average F1 score are

equal to each other. Micro-averaging is used instead of macro-averaging (that is,

averaging the precision, recall, and F1 across the L classes respectively) because

macro-averaging weights each class’s precision, recall, and F1 score equally across the

classes while micro-averaging takes into consideration the size of each of the classes

for the respective measure. This prevents the smaller classes from over contributing

in the averaging of the F1 score (Sokolova & Lapalme, 2009).

When using K-fold cross-validation, a total confusion matrix is calculated by

summing up the K confusion matrices that were generated at each fold. This total

confusion matrix is then used to calculate TPl,FPl,FNl and TNl as this is the most

unbiased method in computing the F1 score when there is a high class imbalance

(Forman & Scholz, 2010).

In the transition direction prediction scenario, we intend to determine which

direction a firm’s credit rating will move in by time t′ in the future, given the current

credit rating Xm
t at time t. We define this set of class labels as L = {−1, 0, 1} where

-1, 0, and 1 represent the downgrade, stay, and upgrade classes, respectively. Using

the representative transition matrix Pc(∆t), we calculate the τ -step transition matrix

Pτ
c (∆t). The prediction of the direction that firm m’s credit rating will change at

time t′ is then estimated by d̂m(t, t
′) where

d̂m(t, t
′) =


1 if Pu = max(Pu,Ps ,Pd)

0 if Ps = max(Pu,Ps ,Pd)

−1 if Pd = max(Pu,Ps ,Pd)

(2.21)
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where

Pu =
∑
j<Xm

t

P τ
c [X

m
t , j]

Ps = P τ
c [X

m
t , Xm

t ]

Pd =
∑
Xm

t <j

P τ
c [X

m
t , j].

The predicted change in the direction of the credit rating d̂m(t, t
′) is then compared

to the true change in direction dm(t, t
′), calculated by

dm(t, t
′) =


1 if Xm

t′ < Xm
t

0 if Xm
t′ = Xm

t

−1 if Xm
t′ > Xm

t .

(2.22)

To evaluate the wellness of the estimates made using the test set, we again calculate

a total confusion matrix from the K-fold cross-validation and calculate the average

accuracy using Equation (2.17) and micro-average F1 score using Equation (2.18).

2.3.2 Prediction of Default Behaviour

In the default behaviour prediction scenario, we intend to determine whether a firm

will be in default within τ quarters based on their current credit rating. We do so by

checking the probability of default of a firm against an appropriate threshold enabling

the classification of the firm’s default behavior. That is, whether the firm will be in

default or not within τ quarters. The class labels that we will consider are binary.

We define the class label set as L = {1, 0} where 1 represents a firm having defaulted
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within τ quarters and 0 for a firm not defaulting within τ quarters.

Using the representative transition matrix Pc(∆t) of the cth cluster we calculate

the probability of defaulting within the next τ quarters. To calculate the probability

of default within τ time steps we first define the following

Definition 2.3.1. Given state space S and n = |S|, let Pc(∆t) be the n × n

representative ∆t-year transition matrix of cluster c. Then Qc is the (n− 1)× (n− 1)

subsection of Pc(∆t) containing entries Pc[i, j] for 1 ≤ i, j < n and Rc is a vector of

size n− 1 containing entries Pc[i, j] for 1 ≤ i < n and j = n.

Given the subsections Qc and Rc as defined above, we then denote rτc as the

(n− 1)× 1 vector whose entries are the probability of default within τ quarters for a

firm assigned to cluster c and is calculated by

rτc = (I+Qc +Q2
c + ...+Q(τ−1)

c )Rc (2.23)

where I is the identity matrix. The entries of rτc are denoted by rτc (i) for 1 ≤ i < n.

Given a firm m that was assigned to cluster c, the probability of default within τ

quarters based on the firm’s current credit rating Xm
t is then rτc (X

m
t ). Once a firm

has been assigned a probability of default, we will refer to the associated probability

as a "risk score". At every step of the K-fold cross-validation process we assign all

the firms in each of the fold’s respective test set a risk score. By the Kth fold of the

cross-validation process, all of the firms in the data set will be assigned a risk score.

To measure the quality of the classification of the firms’ default state, we will

assess our model based on two different evaluation measures. The first evaluation

is done using the measure Somers’ Delta (Somers’ D). The measure Somers’ D is

an asymmetric measure of association between an independent (x) and dependent
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variable (y) (Somers, 1962; Trueck & Rachev, 2009). Somers’ D measures the

association between the independent and dependent variables by considering the

number of concordant pairs, the number of discordant pairs, and the number of tied

pairs on the dependent variable.

Definition 2.3.2. (Somers’ D) Let C be the number of concordant pairs, D be

the number of discordant pairs, and Y0 be the number of tied pairs on the dependent

variable. A pair (xi, yi) and (xj, yj) is concordant when both xi > xj and yi > yj. A

pair is discordant when xi > xj and yi < yj . A pair is tied on the dependent variable

when yi = yj. Somers’ D is then calculated as

dyx =
C −D

C +D + Y0

(2.24)

so the value of dyx ranges from −1 to 1.

The operational interpretation of Somers’ D is the measure of the proportionate

excess of concordant over discordant pairs among the number of pairs not tied on

the independent variable. Somers’ D can be applied in two types of applications

(Newson, 2006). To measure the effect of the independent variable on the dependent

variable, treating dyx as a measure of "effect size", or, to measure the performance

of the independent variable as a predictor of the dependent variable, treating dyx

as "predictor performance indicator". Given the context of credit risk we let the

estimated risk score be the independent variable and the true default status (whether

a firm has indeed defaulted within the next τ time steps) as the dependent variable.

The second evaluation is done by setting a threshold value θ and then classifying

a firm as being in default or not based on whether their risk score exceeds the chosen

threshold value. This comparison and classification is done using threshold values
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from a discretized interval ranging from 0 and 1. Hence, for each θ chosen, the mth

firm can be assigned a predicted default behaviour ym based on rτc (X
m
t )

ŷm(θ) =

 1 if rτc (X
m
t ) > θ,

0 if rτc (X
m
t ) ≤ θ.

(2.25)

A convenient method for presenting the performance of a classification model is

through the use of a receiver operating characteristic (ROC) curve. A ROC curve

is a plot of the true positive rate, TPR (also known as the recall) against the false

positive rate, FPR. To construct this curve we select a threshold θ, estimate ŷm using

Equation (2.25), generate a confusion matrix, and then calculate the FPR and TPR

by

FPR =
FP

FP + TN
(2.26)

and

TPR = Re =
TP

TP + FN
. (2.27)

This process is done for all thresholds from 0 to 1. At the same time, the precision

and F1 score value can be calculated from the confusion matrix at every threshold.

In practice, it is more useful to choose an optimal threshold or "cut-off" point for

binary classification. By choosing a threshold we set the rate for Type I and Type II

errors. In the context of credit risk, a Type I error can result in opportunity costs

and lost potential profits from lost interest income, while a Type II error can result

in the lost interest and principal through defaults (Trueck & Rachev, 2009). Y. Liu

(2002) calculates the optimal threshold by taking the line tangent to the ROC curve.

This tangent line has a slope that is proportional to the ratio of "good" and "bad"

cases, and inversely proportional to the cost ratio of the Type I and Type II errors.
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In general it is difficult to use costs to evaluate models as different institutions

have different cost and pay-off structures and so, it would be challenging to present a

single cost function and provide a general framework for optimal decision making of a

financial institution (Trueck & Rachev, 2009). Instead, we will be using the methods

described in Sanchez (2016) to determine the optimal threshold in the worst-case

scenario for the purpose of model evaluation. By using game theory and treating

the classifier and "nature" as players, we choose the optimal threshold at the point

where the ROC curve and the descending diagonal line (i.e. the line TPR = 1−FPR)

intersect.

2.4 Data and Experimental Methods

In this section we describe the data and methods used in this study. First, we present

the data, its characteristics, and how the data was processed before classification.

Next, we define the model parameters and present the algorithm used to evaluate the

three classification scenarios described in Section 2.3.

2.4.1 Data

The data set we will be using was collected and provided by National Information

& Credit Evaluation Inc., a major bond-rating company in Korea. The data set

consisted of monthly corporate credit ratings from 1986-09-01 to 2018-09-01 for 1899

firms in Korean indices such as the KOSDAQ and KOSPI. Firms in this data set can
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take any rating from the following set of 22 credit ratings

{AAA, AA+, AA, AA−, A+, A, A−, BBB+, BBB, BBB−,

BB+, BB, BB−, B+, B, B−, CCC+, CCC, CCC−, CC, C, D}.

The firms that take the "D" rating are considered to be in default. Some firms were

"closed" after some time and are considered to be in default. Firms that were missing

credit rating sequences, made for sale, or were merged with another firm were removed

from the data set. After pruning the data set, there are 1648 firms remaining in

the data set. The distribution of the remaining 1648 firms’ credit rating classes for

selected dates can be found in Figure 2.2.

From Figure 2.2, it can be observed that there are very few samples in credit class

CCC+, CCC, CCC−, CC, and C for the selected dates. We mitigate the negative

effects of this imbalanced data set by combining similar categories together reducing

the number of credit rating classes from 22 to 7 classes. Doing so will minimize the

number of classes that contain low instances of that minority class. The particular

mapping of old classes to new classes can be found in Table 2.2. The distribution

New Ratings Old Ratings

AAA {AAA}
AA {AA+, AA, AA−}
A {A+, A, A−}
BBB {BBB+, BBB, BBB−}
BB {BB+, BB, BB−}
B {B+, B, B−, CCC+, CCC, CCC−}
C {CC, C, D}

Table 2.2: The 7 aggregated classes.

of the new aggregated classes can be found in Figure 2.3. By reducing the number
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Figure 2.2: The frequency distribution of the 22 class credit ratings for the years
2002, 2007, 2012, 2017

of classes to 7 we diminish the degree of imbalance that was present in the data

set. Something to note is that the distribution of credit ratings appears to change

dramatically from year to year. This is in part due to the fact that a number of

firms were not rated or did not exist at that time. For example, only 712 firms were

rated on 2002-01-01 where as 1617 firms were rated on 2017-01-01. For the credit

rating prediction and transition direction classification scenarios, we will be using the

relabelled credit rating sequences as outlined in Table 2.2. For the default prediction

classification scenario we will move the old ratings CC and C to the new B rating

group leaving the last class to represent default by containing exclusively D ratings.
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2.4.2 Experimental Method

We treat the credit rating sequences as a Markov process with a state space S =

{1, 2, 3, 4, 5, 6, 7} with the numbers 1 representing the least risky credit class AAA

and 7 representing the most risky credit class C. The total number of clusters C was

set to 15.

For each classification scenario, we set the input date t where t ∈ {2000, 2001, 2002, 2003}.

The input date represents the initial point in time we will begin making our prediction

from. For quarterly transition matrices we set ∆t to be 0.25. The predictions will

be made τ quarters into the future where τ ∈ {20, 40, 60}. Credit rating sequences

with fewer than 5 years of credit rating data will not be used and excluded from

the analysis. Therefore, of the remaining 1648 firms, the number of valid firms was

reduced to the amounts indicated in Table 2.3.

Input Date Number of Valid Firms
2000-01-01 542
2001-01-01 590
2002-01-01 712
2003-01-01 752

Table 2.3: The number of valid firms used in the 5-fold cross-validation based on the
input date.

Each firm is assigned a sequence matrix Sm based on its credit rating sequence

xm(Tm) as described in section 2.2.1. Using 5-fold cross-validation we split the

number of valid firms into two groups, a training set, and test set. 15 clusters are then

generated based off the training set using PCA-guided K-means. A representative

∆t-transition matrix Pc(∆t) was estimated for each cluster where ∆t = 0.25. The

transition matrices are generated as described in Section 2.2.3. Given Pc(∆t) we can

then calculate Pτ
c (∆t) where τ ∈ {20, 40, 60} using Equation (2.11).
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Each firm from the test set is then assigned to a cluster and assigned a predicted

class from a class label set based on the classification scenario as shown in Table 2.4.

This process is done for all of the test sets at each fold. The result is that each valid

firm is assigned to a predicted class by the end of the 5-fold cross-validation process.

Scenario Class Label Set (L)

Credit Rating Prediction {1,2,3,4,5,6,7}
Transition Direction {-1, 0, 1}
Default {1, 0}

Table 2.4: The class labels for each classification scenario.

The effectiveness of our clustering model against the benchmark model will be

based on the performance measures described in Section 2.3. The benchmark model

uses a single representative transition matrix P(∆t) estimated from all of the credit

rating sequences, in the absence of clustering. This single transition matrix is then

used for classification purposes. The results in section 2.5 were calculated by averaging

1000 shuffled 5-fold cross-validation results.

The algorithm used in the different classification scenarios can be grouped into 2

main algorithms found in A.1. The credit rating prediction and transition direction

prediction classification scenario can be found in Algorithm 1. The default prediction

scenario algorithm can be found in Algorithm 2

2.5 Results and Discussion

The brackets beside the performance measures in the following tables are the standard

deviation of the respective measures. The low standard deviation for the benchmark

model is the result of the diagonally dominant matrices produced by the benchmark

38



model. From Table 2.5, the clustering model appears to outperform the benchmark

model in terms of both the AA and the F1µ score in the credit rating prediction

scenario. Predictions were made using representative transition matrices where

τ ∈ {20, 40, 60}. Due to the imbalanced nature of the data set, the significance of the

micro-averaged F1 score should have higher precedence over the averaged accuracy. It

is a more accurate representation of the model’s performance as it takes into account

the size of the individual classes in S.

τ Input Date Predicted Date (C) AA (B) AA (C) F1µ (B) F1µ

15

2000-01-01 2015-01-01 0.8993 (0.0036) 0.8585 (0.0027) 0.6475 (0.0126) 0.5047 (0.0095)
2001-01-01 2016-01-01 0.9013 (0.0033) 0.8705 (0.0011) 0.6546 (0.0115) 0.5467 (0.0038)
2002-01-01 2017-01-01 0.9148 (0.0028) 0.8712 (0.0020) 0.7018 (0.0097) 0.5491 (0.0070)
2003-01-01 2018-01-01 0.9178 (0.0026) 0.8816 (0.0016) 0.7125 (0.0090) 0.5855 (0.0058)

10

2000-01-01 2010-01-01 0.9012 (0.0029) 0.8751 (0.0001) 0.6542 (0.0102) 0.5627 (0.0004)
2001-01-01 2011-01-01 0.9039 (0.0026) 0.8833 (0.0001) 0.6636 (0.0092) 0.5915 (0.0003)
2002-01-01 2012-01-01 0.9126 (0.0021) 0.8748 (0.0002) 0.6942 (0.0075) 0.5617 (0.0007)
2003-01-01 2013-01-01 0.9202 (0.0022) 0.8860 (0.0003) 0.7205 (0.0076) 0.6009 (0.0011)

5

2000-01-01 2005-01-01 0.9207 (0.0024) 0.9135 (0.0001) 0.7225 (0.0084) 0.6974 (0.0003)
2001-01-01 2006-01-01 0.9183 (0.0023) 0.9138 (0.0000) 0.7140 (0.0081) 0.6983 (0.0000)
2002-01-01 2007-01-01 0.9244 (0.0021) 0.9097 (0.0000) 0.7355 (0.0075) 0.6840 (0.0000)
2003-01-01 2008-01-01 0.9264 (0.0018) 0.9179 (0.0000) 0.7425 (0.0062) 0.7128 (0.0000)

Table 2.5: Results from the credit rating prediction scenario. Results under the
column label (C) and (B) represent the results from clustering and the benchmark
model respectively.

Similar to the credit rating prediction scenario, the results in Table 2.6 show that

the clustering model outperforms the benchmark model. This is observed for both

the AA and the F1µ score when making predictions using representative transition

matrices with τ ∈ {20, 40, 60}.

The main diagonal of the transition matrices estimated from credit ratings tend to

be diagonally dominant (Jafry & Schuermann, 2004). The main diagonal represents

the probability that a firm maintains its current credit rating after a transition period.
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τ Input Date Predicted Date (C) AA (B) AA (C) F1µ (B) F1µ

60

2000-01-01 2015-01-01 0.7992 (0.0089) 0.5671 (0.0053) 0.6987 (0.0133) 0.3506 (0.0080)
2001-01-01 2016-01-01 0.8041 (0.0089) 0.5769 (0.0077) 0.7062 (0.0134) 0.3654 (0.0115)
2002-01-01 2017-01-01 0.8293 (0.0084) 0.5746 (0.0044) 0.7440 (0.0125) 0.3619 (0.0066)
2003-01-01 2018-01-01 0.8330 (0.0077) 0.5899 (0.0054) 0.7495 (0.0116) 0.3848 (0.0081)

40

2000-01-01 2010-01-01 0.7945 (0.0076) 0.6371 (0.0040) 0.6917 (0.0114) 0.4557 (0.0060)
2001-01-01 2011-01-01 0.7962 (0.0065) 0.6647 (0.0078) 0.6943 (0.0097) 0.4970 (0.0116)
2002-01-01 2012-01-01 0.8152 (0.0065) 0.6543 (0.0054) 0.7228 (0.0097) 0.4814 (0.0080)
2003-01-01 2013-01-01 0.8270 (0.0066) 0.6772 (0.0059) 0.7406 (0.0099) 0.5158 (0.0088)

20

2000-01-01 2005-01-01 0.8246 (0.0060) 0.7983 (0.0000) 0.7370 (0.0091) 0.6974 (0.0000)
2001-01-01 2006-01-01 0.8189 (0.0063) 0.7989 (0.0002) 0.7284 (0.0095) 0.6983 (0.0003)
2002-01-01 2007-01-01 0.8338 (0.0052) 0.7893 (0.0000) 0.7507 (0.0079) 0.6840 (0.0000)
2003-01-01 2008-01-01 0.8330 (0.0046) 0.8085 (0.0000) 0.7495 (0.0069) 0.7128 (0.0000)

Table 2.6: Results from the transition direction prediction scenario. Results under
the column label (C) and (B) represent the results from clustering and the benchmark
model respectively.

This observation can be commonly found in the benchmark model as it aggregates all

of the training data before estimating the transition matrix. Because the transition

matrix is used during the classification process, a consistently diagonally dominated

transition matrix leads to similar predictions across the 1000 runs. Although the

clustering model uses the same methods in generating the transition matrices, the

results are more accurate. The difference is that the clustering model partitions

firms with similar transition behaviours together and generates a representative

transition matrix from this collection of firms. In other words, it can be said that

the representative transition matrix of each cluster is custom-tailored to the distinct

behaviour of each group of firms. Hence, the predictions are made on a test firm

using a representative transition matrix that best characterizes it.

Judging from the values in Table 2.7, both the clustering and benchmark models

demonstrate some ability in producing risk scores that function well as a predictor of

the dependent variable (the default behaviour of the firms) as both models produce
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dyx > 0. However, despite both models performing well, it can be observed that the

clustering model outperforms the benchmark model by producing "more effective"

risk scores.

τ Input Date Predicted Date (C) dyx (B) dyx

60

2000-01-01 2015-01-01 0.2836 (0.0210) 0.1859 (0.0031)
2001-01-01 2016-01-01 0.2850 (0.0196) 0.1918 (0.0029)
2002-01-01 2017-01-01 0.3470 (0.0194) 0.2137 (0.0028)
2003-01-01 2018-01-01 0.3506 (0.0191) 0.2263 (0.0023)

40

2000-01-01 2010-01-01 0.2649 (0.0188) 0.1863 (0.0028)
2001-01-01 2011-01-01 0.2658 (0.0175) 0.1943 (0.0026)
2002-01-01 2012-01-01 0.3206 (0.0181) 0.2051 (0.0028)
2003-01-01 2013-01-01 0.3392 (0.0184) 0.2223 (0.0023)

20

2000-01-01 2005-01-01 0.2374 (0.0165) 0.1724 (0.0026)
2001-01-01 2006-01-01 0.2353 (0.0150) 0.1792 (0.0022)
2002-01-01 2007-01-01 0.2790 (0.0144) 0.2017 (0.0024)
2003-01-01 2008-01-01 0.2855 (0.0147) 0.2058 (0.0019)

Table 2.7: Results of the Somers’ D for the default behaviour prediction scenario.
Results under the column label (C) and (B) represent the results from clustering and
the benchmark model respectively.

From Table 2.8, it can be observed that the clustering model outperforms the

benchmark model in all performance measures. Treating the false positive rate FPR

as a measure of the Type I error and the false negative rate as a measure of the Type

II error, we find that the clustering model has an overall lower proportion of FP and

FN.

Plotting the F1 score and AA while varying the value of τ we can determine the

effectiveness of each model for different prediction horizons. For practical purposes we

take τ ∈ [1, 15] years, that is, prediction horizons ranging from one to fifteen years into

the future. The transparent areas in the plots of Figure 2.4, represent the standard

deviation of the respective results of each classification scenario. From Figure 2.4 it is

obvious that the clustering model outperforms the benchmark model for the majority

of the tested τ values in terms of both AA and F1µ for all classification scenarios.
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τ Input Date (C) Re (B) Re (C) Pr (B) Pr (C) F1 (B) F1

60

2000-01-01 0.9102 (0.0269) 0.7408 (0.0460) 0.6583 (0.0873) 0.3445 (0.0230) 0.7608 (0.0613) 0.4681 (0.0170)
2001-01-01 0.9179 (0.0225) 0.7486 (0.0421) 0.6812 (0.0937) 0.3526 (0.0261) 0.7783 (0.0633) 0.4774 (0.0188)
2002-01-01 0.9378 (0.0131) 0.7325 (0.0519) 0.7856 (0.0793) 0.3941 (0.0272) 0.8528 (0.0484) 0.5087 (0.0150)
2003-01-01 0.9420 (0.0133) 0.7628 (0.0354) 0.7953 (0.0763) 0.4283 (0.0354) 0.8605 (0.0464) 0.5465 (0.0222)

40

2000-01-01 0.9275 (0.0283) 0.7655 (0.0410) 0.6839 (0.0836) 0.3487 (0.0281) 0.7841 (0.0594) 0.4767 (0.0220)
2001-01-01 0.9412 (0.0212) 0.7836 (0.0388) 0.7289 (0.0843) 0.3742 (0.0382) 0.8186 (0.0564) 0.5027 (0.0284)
2002-01-01 0.9425 (0.0129) 0.7428 (0.0501) 0.7777 (0.0634) 0.3876 (0.0342) 0.8508 (0.0398) 0.5014 (0.0189)
2003-01-01 0.9415 (0.0129) 0.7685 (0.0332) 0.7853 (0.0690) 0.4358 (0.0389) 0.8546 (0.0428) 0.5492 (0.0232)

20

2000-01-01 0.9411 (0.0309) 0.7833 (0.0340) 0.6864 (0.0554) 0.3351 (0.0383) 0.7923 (0.0421) 0.4658 (0.0324)
2001-01-01 0.9595 (0.0237) 0.8111 (0.0303) 0.7565 (0.0275) 0.3731 (0.0555) 0.8456 (0.0200) 0.5058 (0.0450)
2002-01-01 0.9619 (0.0211) 0.7838 (0.0393) 0.8033 (0.0119) 0.3958 (0.0345) 0.8753 (0.0109) 0.5132 (0.0251)
2003-01-01 0.9598 (0.0100) 0.8088 (0.0220) 0.7985 (0.0119) 0.4380 (0.0313) 0.8717 (0.0080) 0.5583 (0.0246)

Table 2.8: Results using the worst-case scenario thresholds for the default behaviour
prediction scenario. Results under the column label (C) and (B) represent the results
from clustering and the benchmark model respectively

As we vary τ there are two observations that can be made. The first observation:

For decreasing values of τ the degree by which the clustering model outperforms the

benchmark model also decreases. It is common for firms to maintain their current

rating across shorter time periods, increasing the performance of the benchmark

model as τ decreases. With longer time periods, firms are more likely to change

ratings, and so the resulting benchmark transition matrix from Equation (2.11) with

large τ does a poor job in catching all the different behaviours of every firm. The

second observation: For increasing values of τ , both the clustering and benchmark

model performance decrease for the credit rating prediction and transition direction

prediction scenarios. The rate at which the performance deteriorates, however, is

higher in the benchmark model. The clustering model’s performance decreases but

then levels out eventually for τ ∈ [1, 15] in all classification scenarios. In the default

prediction scenario the clustering model performance actually increases while the

benchmark model performance decreases with increasing values of τ . It can be stated

that the clustering model’s performance is more consistent over τ ∈ [1, 15]. The
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confusion matrices of each classification scenario and a breakdown of the performance

of the model across each credit rating in terms of the F1 score is presented in Table

A.2 and Figure A.3.

(a) F1µ score results. (b) AA measure results.

Figure 2.4: The results from the credit rating, rating transition direction, and default
prediction scenarios. The labels (C) and (B) represent the clustering and benchmark
models respectively. Note that the F1 score is not micro-averaged for the default
prediction scenario.

2.6 Conclusion

The changes in the credit rating of a firm can have a substantial impact on bond

pricing, valuation of credit derivatives, and management decisions of companies. In

this chapter, we adapted the SBC technique used in web-usage mining to improve

transition matrix estimation methods in the context of credit risk. The clustering

algorithm used was the PCA-guided K-means algorithm and the analysis is in part

possible due to the convenient cluster-ready representation of sequence matrices.

Some properties of sequence matrices were presented which can prove to be beneficial
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for future development and implementation in models that intend to utilize this

sequence matrix representation. Credit rating prediction, credit rating transition

direction prediction, and default behaviour prediction were the three classification

scenarios that were used to test the performance of the clustering model.

The clustering model was compared against the benchmark model where clustering

was absent. The results suggest that by clustering the sequence matrices of firms, the

overall predictive power of the representative transition matrices is greater than just

using a single transition matrix. The performance of the models in the credit rating

prediction and transition direction prediction classification scenarios were evaluated

in terms of the average accuracy and micro-averaged F1 score. The performance of

the models in the default behaviour prediction classification scenario were evaluated

in terms of the recall, precision, and F1 score. The worst-case scenario threshold

provides a suitable means of evaluating our model against the benchmark model.
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Chapter 3

High-Order Markov Chains and

Sequence-Based Clustering

In this chapter, we extend the first-order SBC model introduced in Chapter 2. Instead

of using first-order Markov models, we propose the use of high-order Markov models

augmented with SBC. The efficacy of these models were evaluated under two different

contexts: Default prediction for credit risk assessment and Web-usage mining where

we explore the applicability of the higher-order SBC models in a more general setting.

3.1 Introduction

Many random processes can be modelled using Markov chains. To describe a process

using first-order Markov chains, we assume that the future state of a random process

is only dependent on the current state. Although in many cases this assumption is

sufficient, the accuracy of the model can often be improved by considering additional

information about the process’s history. This can be done by using higher-order
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Markov chains. High-order Markov chains assume that the future state of a random

process is dependent not only on the current state, but also states previously visited

by the process. A higher-order Markov model considers more information further

into the past while a lower-order considers information more closer to the present.

By considering additional information about the past, it has been shown that high-

order Markov chains can appropriately model processes in a number of different

applications including wind power distribution modelling (Carpinone et al., 2015),

rear TV cover batch, DNA sequence reduction (Şahin et al., 2019), software reliability

assessment of CubeSat nano satellites (Yakovyna & Symets, 2021), and secondary

traffic collision due to an initial primary incident (Pugh & Park, 2021). While high-

order Markov chains can be used in a variety of modelling problems, one should be

cautioned that the effectiveness of high-order Markov chains is highly dependent on

the particular application. For example, Şahin et al. (2019) noted that the first-order

model outperformed the second-order model for predicting DNA sequences, noting

that the next piece in a DNA sequence is highly correlated with the previous piece.

Absorbing Markov chains, a specific type of reducible Markov chain, are of

particular interest. An absorbing Markov chain contains absorbing states, where

once the process enters, it is unable to leave. Absorbing states often represent the

case of failure or success, ending the process. Some examples of absorbing states

include finding a service such as a taxi in taxi searching behaviour (Wong et al.,

2005), and drop-out behaviour of students in educational institutions (Kuzilek et

al., 2018; Nicholls, 2007). In this chapter, we investigate the performance of high-

order absorbing Markov chains paired with SBC. As noted in Chapter 2, SBC was

first introduced by Park et al. (2008) and is a clustering framework permitting the

clustering of sequences based on their relative transition frequency. This approach

forms clusters of sequences that express similar transition dynamics. This model
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will be used in the application of corporate credit rating prediction and Web-usage

mining.

In this chapter, we focus on two key applications of high-order Markov chains and

sequence-based clustering. The first of these is corporate credit rating prediction, a

critical aspect of financial risk assessment. Corporate credit ratings are assessments

of the credit risk of a bank or financial institution and their ability to satisfy their

loan obligations. These credit ratings are assigned by credit rating agencies such as

Standard & Poor’s, Moody’s, and Fitch. The ratings are typically represented by letter

grades ranging from AAA (representing the best credit quality) to D (representing

default, the worst credit quality). In this context, the absorbing state for an institution

would be default. Credit ratings play an important role in the finance industry as bond

prices are dependent on risk associated with the issuing institution. An institution

likely to default would need to compensate for this elevated risk by offering a higher

premium. In addition, sovereign credit rating downgrades can also increase the risk

of downgrades for credit ratings and negatively impact the performance of sovereign-

bound firms, that is, firms whose credit ratings are near the rating of their sovereign

(Almeida et al., 2017; To et al., 2022). By better modelling default behaviour of

credit ratings, bonds and other financial products based on credit risk can be more

accurately priced. This would lead to more fairly priced products for investors and

additionally, would lead to better informed credit risk management decision making

for portfolio managers. Furthermore, more accurate default behaviour modelling

may contribute to a better understanding and modelling of the spillover effects of

sovereign downgrades. The second application we are interested in is predicting a

Web user’s navigation on the Web, the primary Web-usage mining topic that has been

studied for decades, but with few applications addressing the absorbing behaviors. In

the Web-usage case, the absorbing state of a Web browsing sessions can be a Web
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page with the user’s desired information, or deciding on a movie after browsing and

previewing a catalogue of streamable movies. Unlike in default prediction, there can

be many absorbing states a user can end their browsing session on in this field.

A practical concern associated with high-order Markov chains is the exponential

increase in number of transition probabilities to be estimated as the order and size

of the state spaces increases. To treat this, Raftery (1985a) introduced a mixture

transition distribution (MTD) model for modelling high-order Markov chains. Building

on the work by Raftery (1985a), Ching et al. (2004) proposed and developed a more

general higher-order Markov chain model for categorical data sequences (estimation

of the lag parameters was done using linear programming). The categorical data

sequences used included DNA sequences, sales demand data, and server log data. The

MTD model was further extended by Nicolau (2014) who proposed a multivariate

Markov chain model based on the MTD model. This extension is also capable of

estimating the transition probabilities of higher-order Markov chains.

Remarkably, in the case of corporate credit ratings, there appears to be little

research that addresses the efficacy of solely using high-order Markov chains, let alone

in combination with machine learning techniques in forecasting default likelihood.

Comparatively, high-order Markov chains were used significantly more in the Web-

usage mining context than in the credit rating context. However, as far as we can

tell there appears to be no literature on utilizing both high-order absorbing Markov

chains and machine learning techniques, especially in the case where SBC is used, in

the context of corporate credit rating and Web-usage mining. The advantage of using

SBC is that we are not required to make restrictive assumptions about the data set

as we use the K-means algorithm for clustering. We do however make the assumption

that the data can be modelled using high-order absorbing Markov chains. SBC

enables the capture of non-Markovian characteristics often observed in credit rating
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sequences while the use of high-order Markov chains explicitly considers previous

state dependencies. We also observe an unexpected benefit where the first-order

Markov model paired with SBC offered a competitive advantage over using strictly

high-order Markov chains in terms of parsimony. Hence, there is potential to use

first-order Markov chains with SBC as an alternative to high-order Markov chains,

given that SBC can sufficiently replace the role of high-order Markov chains.

The remainder of this chapter is organized into 6 sections. In Section 3.2 we

present a review of related works. In Section 3.3, we outline the methodology of

our work. We begin with outlining the theory of high-order Markov chain models,

followed by describing how sequences can be represented using sequence matrices and

how these objects can be used in clustering. The estimation of high-order transition

matrices is also outlined in this section. In Section 3.4 we present the two classification

scenarios our models will be tested against. In Section 3.5, we present the data used

in this chapter. In Section 3.6, we present the results and discussion of the results.

Finally, we conclude the chapter in Section 3.7.

3.2 Related Works

3.2.1 Corporate Credit Ratings

Over time the credit ratings of a firm can transition from one rating to another.

This dynamic provides a natural application for Markov chains. Indeed, there are

many studies that apply Markov chains to credit rating transitions (Jarrow et al.,

1997; Sharma et al., 2018; Thomas et al., 2002). A crucial credit rating transition is

the transition to the default state. An issuer of bonds that receives this rating has

entered into bankruptcy and hence the repayment of the loan is effectively forfeited.
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The default state can be considered an absorbing state and thus, appropriately

modelled using absorbing Markov chains. In Parnes (2010), the complete probability

distribution of time-to default for various credit ratings is presented. They also

consider various credit rating transition sensitivities with the aim of recognizing

developments of bond portfolio. They find it takes a little more than a decade for

very low credit ratings to transition to a default rating while high credit ratings can

take more than a century to default and the credit deterioration of a portfolio is

highly sensitive to the number of bonds that will be upgraded from low investment

grade to medium-high investment grade. Dharmaraja et al. (2017) presented the

mean time to absorption and probability of absorption in closed form under a hybrid

model of credit risk using discrete time first-order Markov chains.

Despite this convenient representation, credit rating transitions are known to

also display a number of non-Markovian effects. D’Amico et al. (2019) lists these

phenomena as downward rating momentum, duration, time non-homogeneity, ageing

effect. To capture these phenomena they review several homogeneous and non-

homogeneous semi-Markov models, including a model based on Markov regenerative

process (Pasricha et al., 2017). Downward momentum specifically refers to the

increase in probability that the next rating change will be a downgrade if the previous

rating change was also a downgrade. In order to capture the idea of rating momentum,

the rating before the current rating should be known (Altman & Kao, 1992; Dos Reis

et al., 2020; Frydman & Schuermann, 2008; Lando & Skodeberg, 2002). Using a

Markov mixture model, Frydman and Schuermann (2008) suggest that the credit

rating a firm is assigned in the future depends not only on its current credit rating

but is also influenced by the previous credit rating assignments. More recently,

Dos Reis et al. (2020) proposed a method based on point processes, a generalization of

Markov processes. They use this model to capture the non-Markovian effect of rating
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momentum. They note their model yields higher probabilities of default for investment

grades and lower default probabilities for some speculative grades. An additional

characteristic observed in credit ratings is the effect of rating persistence. This is

the observation that the longer a firm maintains a credit rating, the likelihood of a

downgrade or upgrade decreases (Fuertes & Kalotychou, 2007; Lando & Skodeberg,

2002).

The non-Markovian characteristic we aim to consider in this study is the downward

momentum observation. This will be accomplished by using a combination of high-

order Markov models and SBC. Regarding high-order Markov chains estimation, we

find that the use of high-order Markov chains in credit rating transitions is a recent

development beginning with the work done by Baena-Mirabete and Puig (2018) who

proposed several parsimonious models for high-order Markov chains. They address

the issue of persistent multistates (where the probability that an asset moves from one

rating to another is small) in credit rating data where the sparseness of the data often

leads to convergence failures in the estimation and unrealistic transition probabilities.

Based on municipal rating data and the estimated transition probabilities, they

further verify the findings in previous literature. Using second-order Markov chains,

they observe downgrade momentum. Additionally, they also observe that the more a

credit rating persists in its current rating, the lower the probability of a downgrade

or upgrade in the future.

3.2.2 Web-Usage Mining

In the context of Web-usage mining an absorbing state is a natural notion representing

the end of a Web session or the purchase of a product. This has led to a number

of studies incorporating this concept using absorbing Markov chains. For example,
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Massa and Puliafito (2002) proposed a graphical monitoring instrument based on

absorbing Markov chains to analyze navigational paths of Web users. In the interest

of journalism research, Vermeer and Trilling (2020) found absorbing Markov chains

to be an effective approach in analyzing and discovering meaningful patterns in the

sequence of Web pages users take to find the online news they are looking for.

While previously mentioned studies use first-order Markov chains, a number of

research have made use of higher-order Markov chains while leveraging machine

learning techniques to mine Web user behaviour. To improve Web user navigation

analysis, Borges and Levene (2007, 2005) utilized K-means clustering to extend

first-order Markov chains to variable-length Markov chains. They suggest that the

efficacy of considering short or long term history is dependent on the specific website.

That is, different sites require different amounts of history to understand. Awad and

Khalil (2012) predicted Web user’s navigation behavior using various combinations

of Markov models and association rule mining models. In particular, they use an

all-Kth Markov model, that is, an ensemble of Markov chain models of varying order

where a prediction is made on the highest feasible order Markov chain. They pair

this model with association rule mining and find that this combination results in

improved prediction accuracy. Pal et al. (2021) developed a real-time user click

stream processing framework making use of the hybrid model that consists of the

K-means clustering algorithm, and the expectation-maximization algorithm followed

by the use of high-order Markov chains to analyze streams of Web user’s browsing

behaviour allowing for the prediction of future Web clicks. Although high-order

Markov models have shown to be effective, in some cases, there is evidence that

suggests this might not always be true in Web navigation behaviour (Piccardi et al.,

2021). In particular, Deshpande and Karypis (2004) developed a method utilizing a

pruning scheme in combination with the all-Kth Markov model to reduce the state
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complexity and improve prediction accuracy. The effectiveness of high-order Markov

chains in the context of Web navigation pattern is also challenged in Singer et al.

(2014). They note that while high-order Markov models are effective in general topic

navigation prediction, they appear to underperform when considering page-to-page

Web navigation prediction. While higher-order Markov models can prove to add

additional predictive power, we also consider the possibility that for certain choices

of kth-order Markov chains, SBC may be a viable alternative to circumvent the issue

of the exponentially growing number of parameters in such models.

While Markov chains alone have shown to be quite effective in modelling Web-

usage mining in contrast to the credit rating context, only a handful of studies

have highlighted the effectiveness of incorporating clustering techniques in Markov

chain modelling (Ansari et al., 2015; Borges & Levene, 2005; Mlika & Karoui, 2020).

These studies have shown that the predictive capabilities of Markov chains can be

bolstered by incorporating clustering techniques in the model. In the context of

Web-usage mining, work done by Cadez et al. (2003) may be an example of the

earliest use of clustering with Markov chains. They use a model-based approach to

cluster sequences, as opposed to the distance-based approach in order to account

for sequences with varying lengths. Park et al. (2008) developed a general SBC

method for Web-usage mining using fuzzy ART-enhanced K-means clustering while

proposing various sequence representation schemes in association with Markov models.

Using their sequence representation schemes, pre-existing distance-based clustering

algorithms can be used for identifying Web user groups of similar navigation behaviors.

Employing similar methodologies, Park and Vasudev (2017) used first-order absorbing

Markov chains to predict Web users’ navigation behavior. Prediction of navigation

behaviour was facilitated by the use of SBC techniques with absorbing Markov

chains. Their results suggest that using absorbing Markov chains in this context may

53



strengthen the accuracy of the estimated remaining time of a Web user’s session or

the probability to purchase a specific product.

3.3 Methodology

3.3.1 High-Order Markov Chains

In this study we treat Web-usage mining sequences and credit rating transitions as

discrete time-homogeneous high-order Markov chains. Let {Xt} be a sequence of

random variables where Xt ∈ S and S is defined to be the set {1, 2, ..., n}, representing

the state space. The kth-order Markov property says that the observation at time t is

dependent only on the last k observations. The transition probabilities of a kth-order

Markov chain are written as

Pr{Xt = i0 | X0 = it, ..., Xt−1 = i1} (3.1)

= Pr{Xt = i0 | Xt−k = ik, ..., Xt−1 = i1} (3.2)

= pik...i0 . (3.3)

When k = 1 we have a first-order Markov chain where the observation of Xt at

time t is dependent only on the previous observation at time t− 1. The following is
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Notation Definition

S State space of the Markov chain
n Number of states in the state space
A Set of absorbing states of a Markov chain
k Order of a Markov chain
Xm

t State of the mth sequence at time t
Tm Full length of the mth sequence
xm(t) Sequence vector up to time t, defined by (Xm

0 , ..., Xm
t )

xm(t | k)
High-order state vector at time t defined by
(Xm

t−k+1, ..., X
m
t ) for the mth sequence

C Total number of clusters used in the K-means algorithm
c The cth cluster among C clusters.
Sk
m kth-order sequence matrix of the mth sequence

Pk
c Representative kth-order transition matrix of the cth cluster

λg gth lag parameter used in the MTDg model

QMTD,g
An n× n transition matrix describing the relationship between the
gth lag and the present

q
(g)
igi0

Non-negative elements of QMTD,g

Qk
c

Sub-matrix of the Pk
c containing the transition probabilities

from and to transient states

Rk
c

Sub-matrix of Pk
c containing the transition probabilities

from a transient state to an absorbing state

τ
Number of time steps, indicating how far into the future we want to
predict

B
k,(τ)
c

Matrix containing the probabilities of being absorbed within τ steps
given the current state xm(t | k) for the cth cluster

m̃k
c

Vector containing the average number of steps before absorption
given the current state xm(t | k) for the cth cluster

L Set of labels used for classification
θ Threshold used to compare against the absorption probabilities

ŷm(θ)
Label or prediction made for the mth sequence given for some
threshold θ

x̃m(t) Remaining length of the mth sequence, defined by Tm − t
K Number of folds used in K-fold cross validation
M Number of K-fold cross validation experiments we run
Ssize Sample size, the number of sequences used in each experiment

Table 3.1: A table to reference for some notation used throughout this chapter.
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an example of a transition matrix of a high-order Markov chain with k = 2 and n = 3

P =



1 2 3

1 1 p111 p112 p113

1 2 p121 p122 p123

1 3 p131 p132 p133

2 1 p211 p212 p213

2 2 p221 p222 p223

2 3 p231 p232 p233

3 1 p311 p312 p313

3 2 p321 p322 p323

3 3 p331 p332 p333



. (3.4)

The size of a transition matrix for a kth-order Markov chain with a state space of

size n is nk × n.

To calculate the absorbing probabilities of a kth-order Markov chain, we use

the language and analysis of k-dimensional matrices described by Elayat (1973). A

k-dimensional matrix is denoted by

A = [aikik−1...i1i0 ], (3.5)

where ij ∈ S for j = 0, 1, ..., k. Therefore, the (ikik−1 . . . i1i0)-th coordinate of A is

represented by A[ik, ..., i0] = aikik−1...i1i0 . For example, the transition matrix (3.4) is a

k-dimensional matrix

P = [pi2i1i0 ], (3.6)

with n = 3 and k = 2. We also note that unlike first-order transition matrices, the
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indices do not correspond to the row and column of the transition matrix.

In general, the transition probability matrices P of a kth-order Markov chain are

of size nk × n. The elements of the transition matrix P are denoted by pikik−1...i1i0

where

pikik−1...i1i0 = Pr{Xt = i0 | Xt−k = ik, ..., Xt−1 = i1}, (3.7)

that is, the probability of transitioning to state i0 is conditioned on the previous k

states for each row of the matrix. The transition probabilities must also satisfies the

following constraints

0 ≤ pikik−1...i1i0 ≤ 1, (3.8)

n∑
i0=1

pikik−1...i1i0 = 1 ∀ik, ik−1, . . . , i1 ∈ S. (3.9)

Next, we define matrix multiplication for k-dimensional transition probability

matrices. Let A, B, C be nk × n matrices. Then we define the product C = AB

where the elements of C are given by

cikik−1...i1i0 =
n∑

j=1

aikik−1...i1jbik−1...i1ji0 . (3.10)

For k-dimensional transition matrices, matrix multiplication as defined by equation

(3.10) satisfies the following properties:

1. AB ̸= BA

2. (AB)C ̸= A(BC)

3. A(B+C) = AB+AC

4. (B+C)A = BA+CA
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The identity matrix I for any matrix P of size nk × n is defined by

PI = P, (3.11)

where the entries of I are iikik−1...i1i0 defined by

iikik−1...i1i0 =

 1 if i1 = i0,

0 Otherwise.

It should also be mentioned that, IP ̸= P by the matrix multiplication properties

noted above. The Chapman-Kolmogorov equation for a transition matrix P is then

p
(τ)
ikik−1,...,i1i0

=
n∑

j=1

pikik−1,...,i1jp
(τ−1)
ik−1,...,i1ji0

, (3.12)

where τ is a positive integer greater than 1. Keeping in mind that the associative law

no longer holds and thus, the order of operations is important. Therefore, the τ -step

transition probability is represented by

P(τ) = PP(τ−1) (3.13)

= P(P(P...(P(PP))...)) (3.14)

= Pτ , (3.15)

where the elements are defined by equation (3.12).

For a time-homogenous absorbing Markov chain of order k and state space

S = {1, 2, ..., n}, we assume 1, 2, ..., n− r are transient states and denote the set of

absorbing states by A = {n− r + 1, ..., n}. Then the rows of the transition matrix P
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of size nk × n can be re-arranged such that

P =

Q R

0 I1

 , (3.16)

where Q is an (n− r)k × (n− r) matrix containing the probabilities of transitioning

from transient states to transient states, R is an (n− r)k × r matrix containing the

probabilities of the one-step transition from the transient states to absorbing states.

The sub-matrix 0 is a zero matrix of size nk − (n− r)k × (n− r), and I1 is matrix

of size nk − (n− r)k × r containing the probabilities

pikik−1,...,i1i0 =

 1 if i0 = iĵ,

0 Otherwise,
(3.17)

where ĵ = max{1 ≤ j ≤ k | ij ∈ A} denotes the greatest index ĵ such that iĵ is in an

absorbing state, in other words, the earliest point in the observable history where the

process is in an absorbing state.

3.3.2 High-Order Sequence-Based clustering

The machine learning technique used to reinforce the Markov chain models will be

SBC. We begin by defining sequence matrices and outlining how these objects will be

clustered.

Definition 3.3.1. Let m ∈ N, Xm
1 , Xm

2 , ..., Xm
Tm

be a sequence of random variables,

and S be the state space. Then the mth sequence vector of length Tm ∈ N is defined

by the vector xm(Tm) = (Xm
1 , Xm

2 , ..., Xm
Tm

) with states Xm
t ∈ S.

Definition 3.3.2. Let Nik,...,i0 be the number of transitions to state i0 given that the
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previous k states are ik, ik−1, ..., i1 for the mth sequence with sequence vector xm(T ).

The corresponding sequence matrix Sm of order k is then an nk × n matrix whose

entries are denoted by

Sk
m[ik, ..., i0] =

Nik,...,i0
n∑

ij=1

Nik,...,i1,ij

(3.18)

and so the entries Sk
m[ik, ..., i0] are the relative transition frequency to state i0 condi-

tional on the previous states being ik, ..., i1.

As outlined in Park et al. (2008), for a given sequence we can construct a sequence

matrix which can be clustered using the K-means algorithm. The K-means algorithm

is used to partition a data set into C clusters by minimizing the within cluster variance

which is equivalent to minimizing the squared Euclidean distance between each data

point in each cluster. Treating the elements of Sk
m as coordinates in Euclidean space,

the Euclidean distance between sequence xm1 and xm2 is defined as

deuc =

√ ∑
ik,...,i0

|Sk
m1

[ik, ..., i0]− Sk
m2

[ik, ..., i0]|2. (3.19)

For each sequence vector xm(Tm) we can generate the sequence matrix Sm. The

sequences matrices are then partitioned into C different clusters based on their

distance to a random initialization of C centroids. How close a sequence matrix is to

a centroid is based on the Euclidean distance. The assignment of a sequence matrix

to a centroid is therefore defined as

c∗ = argmin
c
∥Sm − µc∥ , (3.20)

where µc is the centroid of the cth cluster and c∗ is the new cluster that the mth
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sequence is assigned to. New centroids are calculated once all assignments are made

and the assignment process is repeated considering these new centroids. As the

within cluster sum of squares is reduced, the algorithm stops after convergence or

when a maximum number of iterations has been reached. It should be noted that

the algorithm solution may not be a global minimum as it can get stuck in a local

minimum. After each sequence matrix has been assigned to a cluster we can then

model the transition dynamics of each cluster using high-order absorbing Markov

chains.

3.3.3 Estimating Transition Matrices: The MTD model

To describe the transitions of the high-order Markov chains, we use high-order

transition matrices. As described in Berchtold and Raftery (2002) and Raftery

(1985a), it is a highly laborious task to explicitly estimate every parameter of a kth-

order Markov chain. This is due to the rapid increase in the number of parameters

to be estimated. Since each row of the transition matrices represents a probability

distribution, and so must sum to 1, there are n − 1 parameters in each row that

must be estimated. Therefore, the fully parameterized high-order Markov model

results in nk(n− 1) total parameters to be estimated. To manage the large number of

parameters Raftery (1985a) introduced the following MTD model for modelling time-

homogeneous high-order Markov chains. The transition probabilities are estimated in
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the following fashion

Pr{Xt = i0 | Xt−k = ik, ..., Xt−1 = i1} (3.21)

=
k∑

g=1

λgPr{Xt = i0 | Xt−g = ig} (3.22)

=
k∑

g=1

λgqigi0 , (3.23)

subject to the following constraints

k∑
g=1

λg = 1, (3.24)

λg ≥ 0, (3.25)

where λg are the respective lag parameters of the past observations Xt−g, and qigio

are the non-negative elements of an n×n transition matrix QMTD whose rows sum to

1. Note that this transition matrix is not necessarily the first-order transition matrix.

Constraints (3.24) and (3.25) ensure that the model returns probabilities. Given the

proposed MTD model, we can see that there are k − 1 independent lag parameters

by constraint (3.24), and n(n− 1) parameters of QMTD to estimate. This results in

(k− 1)+n(n− 1) total parameters to estimate. Hence the model proposed by Raftery

(1985a) achieves a substantially more parsimonious model.

A benefit of the MTD model is that the lag parameters can be used to interpret the

dependence of the model on varying degrees of lag. For example, if λ1 is substantially

greater than λ2 and λ3, then the probability of predicting the present value is more

dependent on the first lag than the second or third lag, suggesting the observed

behaviour follows more closely to that of a first-order Markov chain. On the other
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hand, a greater value of λg for g > 1 would suggest a greater dependence on a later

lag and hence, the observed behaviour follows more closely to that of a higher-order

Markov chain. A more general interpretation can be obtained by relaxing constraint

(3.25) allowing for negative λg (Raftery & Tavare, 1994). Allowing for negative lag

parameters presents an opportunity to consider the inverse relationship between the

lag and the present.

In this study, we will use a generalization whereby the transition matrix QMTD

is no longer assumed to be constant and instead, allowed to vary for each lag. This

generalization of the MTD model was first proposed by Raftery (1985b) and is called

MTDg. Similar to equation (3.23), the model is defined as

Pr{Xt = i0 | Xt−k = ik, ..., Xt−1 = i1} (3.26)

=
k∑

g=1

λgq
(g)
igi0

, (3.27)

where q
(g)
igi0

are the non-negative elements of QMTD,g, an n × n transition matrix

describing the relationship between the gth lag and the present. The number of

parameters to be estimated is then (k− 1)+ kn(n− 1). The number of parameters in

the MTDg model is greater than the number of parameters in the MTD model. The

trade-off for the increase in the number of parameters is the increase in generality. In

practice, due to the existence of absorbing states we can further reduce the number

of parameters to estimate by at least |A|. A diagram of the high-order SBC model

can be found in Figure 3.1.
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Figure 3.1: A diagram detailing the high-order Markov model combined with SBC.

3.4 Classification using Sequence-Based Clustering

We will be investigating how well high-order absorbing Markov chains can model

credit rating transitions and Web-usage behaviour. In the credit rating context, we

will be testing the effectiveness of high-order absorbing Markov chains in predicting

the default of companies within some period of time. In the Web-usage context,

we tested the predictive capabilities of the model in predicting the termination of

a browsing session within some number of Web page changes, capturing a similar
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notion of default in the credit rating setting. Finally, the estimated average length of

each browsing session using high-order absorbing Markov chains will be compared to

the empirical session duration. In other words, for a kth-order Markov chain, and

number of transition steps τ , we tested our model against three scenarios:

1. The classification of firms most likely to default within τ transitions based on

the last k credit ratings assigned to the firm.

2. The classification of Web sessions likely to terminate within τ transitions based

on the last k Web pages visited.

3. Determining the remaining length of a browsing session based on the last k

Web pages visited.

Each scenario will be evaluated using K-fold cross-validation. Therefore, we will

be splitting the data sets into their respective training and testing sets. The model is

trained using the training set and is evaluated based on its classification performance

using the testing set.

Using the testing set, we assign a single firm to one of the C clusters based on

the Euclidean distance between Sk
m and the clusters’ centroid µc. After assigning the

sequence to a cluster we can estimate the future behaviour of the sequence by using

the cluster’s representative transition matrix Pk
c .

3.4.1 Absorption Within τ Transitions

In both the credit risk and Web-usage setting, there is only one absorbing state. This

absorbing state represents receiving the default credit rating in the credit risk setting,

and the end of a Web browsing session in the Web-usage setting. We will evaluate
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whether the estimated probabilities given by high-order Markov chains with SBC can

be used to accurately predict whether a sequence will truly be absorbed within τ

transitions.

To calculate the probability of absorption within the next τ transitions, we can

use the representative transition matrix Pk
c of the cth cluster. We first define the

following sub-matrices of Pk
c used in the calculations.

Definition 3.4.1. Given a state space S and absorbing set A, let Pk
c be the kth-order

representative transition matrix of cluster c of size nk × n, we define sub-matrices

Qk
c and Rk

c as in equation (3.16), containing the probabilities of transitions between

the transient states and the probabilities of transitioning to an absorbing state,

respectively.

Using equation (3.12), the given sub-matrices Qk
c and Rk

c as defined above, the

probability of absorption within τ transitions for a sequence assigned to the cth

cluster is given by the τ -term sum

Bk,(τ)
c = Rk

c +Qk
cR

k
c +Qk

c (Q
k
cR

k
c ) + ...+

τ−1︷ ︸︸ ︷
Qk

c (Q
k
c ...(Q

k
c (Q

k
c R

k
c ))...). (3.28)

Definition 3.4.2. Let m ∈ N, Xm
1 , Xm

2 , ..., Xm
T ∈ S be a sequence of random variables

for the mth sequence. Then for k < t ≤ Tm, the current state vector of length k is

the vector xm(t | k) = (Xm
t−k+1, ..., X

m
t ).

During the training process, we cluster sequence matrices based off the entire

history of the sequence. Therefore, the sequence matrices will be based off of xm(Tm).

The point in the sequence where we make a prediction after τ transitions will be

denoted by t′. During the testing process, the assigned probability of default is
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dependent on the current and past k states of the sequence at time t′. That is,

dependent on xm(t
′ | k).

Given the mth sequence that was assigned to the cth cluster, the probability

of default within τ is then given by the entry B
k,(τ)
c [Xm

t′−k+1, ..., X
m
t′ , X

m
t′+τ = a] =

B
k,(τ)
c [xm(t

′ | k), a] where a ∈ A. We will refer to this probability of absorption as

the risk score of the sequence. During the K-fold cross-validation process, we assign

a risk score to each sequence within the current test fold. By the time we reach the

Kth fold of the cross-validation process, all sequences in the data set will have been

assigned a risk score.

What follows is to assign the classification labels for each sequence. Since we

are only interested in whether a sequence has been absorbed or not, we treat the

absorption classification problem as a binary classification problem. The class labels

are defined L = {1, 0} where 1 represents a sequence absorbed within τ transitions

and 0 represents a sequence not absorbed within τ transitions. The decision for

labelling the sequences is dependent on the threshold θ. For a chosen threshold value

θ, the mth sequence can be assigned a label ym based on its risk score given by B
k,(τ)
c

ŷm(θ) =

 1 if Bk,(τ)
c [xm(t

′ | k), a] > θ,

0 if Bk,(τ)
c [xm(t

′ | k), a] ≤ θ.

(3.29)

In other words, if the risk score is greater than this threshold, the sequence is predicted

to default within τ transitions. If the risk score is less than this threshold, the sequence

is predicted not to default within τ transitions.
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3.4.2 User-Session Duration Prediction

For the user session duration prediction problem, we plan to predict the remaining

length of a Web user’s browsing session. Length here does not refer to time but a

number of transitions that the user visits until they end their browsing session. To

estimate this length we use the SBC model to compute the average remaining length

until absorption. This predicted length will be compared to the actual remaining

length until absorption.

As with 3.4.1, we use the results from Elayat (1973) to calculate the remaining

length until absorption by any given absorbing state a ∈ A. We again consider the

sub-matrices Qk
c and Rk

c of the representative transition matrix Pk
c . The average

remaining length until absorption can then be calculated by first considering the

average number of times the process will be in a transient state. So, given by the

following series

Mk,(n)
c = I+Qk

c +Qk,(2)
c + ...+Qk,(n)

c , (3.30)

multiplying on the left side by Qk
c we have

Qk
cM

k,(n)
c = Qk

c +Qk,(2)
c +Qk,(3)

c + ...+Qk,(n+1)
c (3.31)

and subtracting equation (3.30) by (3.31) results in

Mk,(n)
c −Qk

cM
k,(n)
c = I−Qk,(n+1)

c . (3.32)

Then, passing to the limit in equation (3.32) by taking n→∞ we obtain

lim
n→∞

Mk,(n)
c = Mk

c (3.33)
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and

lim
n→∞

Qk,(n+1)
c = 0, (3.34)

which gives

Mk
c −Qk

cM
k
c = I. (3.35)

Again, because the associative law does not hold here we solve for the solution matrix

Mk
c by writing equation (3.35) in vector notation, resulting in

Q̂k
cm

k
c = ikc , (3.36)

where Q̂k
c is a (n− r)k+1× (n− r)k+1 square matrix, mk

c = vec(Mk
c ) is a (n− r)k+1×1

column vector, and ikc = vec(I) is a (n− r)k+1 × 1 column vector defined by

Q̂k
c =


Q̂11 Q̂12 · · · Q̂1(n−r)

Q̂21 Q̂22 · · · Q̂2(n−r)

...
...

...

Q̂(n−r)1 Q̂(n−r)2 · · · Q̂(n−r)(n−r)

 , (3.37)

such that

Q̂ij = 0 for i ̸= j (3.38)

and

Q̂11 = Q̂22 = · · · = Q̂(n−r)(n−r), (3.39)

where Q̂ll is a square matrix of size (n− r)k × (n− r)k. To form the main diagonal
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block matrices we consider first partitioning the lth row ql of Qk
c by

Qk
c =


q1

q2

...

q(n−r)k

 , (3.40)

then we define the permutation on Qk
c by the transformation defined by the block

matrix T of size (n − r)k+1 × (n − r)k. This matrix is first formed by considering

n− r identity matrices of size (n− r)k × (n− r)k. The transformation matrix is then

defined by

T =


I1

I2
...

I(n−r)

 . (3.41)

Before we apply this transformation we will form a new partition on T by forming

(n − r)k blocks of size (n − r) × (n − r)k. In other words, the identity matrices

themselves are further partitioned into (n− r)k−1 blocks per identity matrix resulting

in the matrix of the form

T =


T1

T2

...

T(n−r)k

 . (3.42)

The main diagonal blocks Q̂ll can now be computed using block-matrix multiplication
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in the following fashion

Q̂ll = I−Qk
cT (3.43)

= I−


q1

q2

...

q(n−r)k




T1

T2

...

T(n−r)k

 (3.44)

= I−


q1 ·T1

q2 ·T2

...

q(n−r)k ·T(n−r)k

 (3.45)

for l = 1, 2, ..., r. Using the main diagonal blocks, we can now form Q̂k
c and equation

(3.36). Therefore, the average number of times the sequence visits a transient state is

given by

mk
c = (Q̂k

c )
−1ikc . (3.46)

Finally, the remaining length until absorption is given by the vector m̃k
c defined by

m̃k
c = Mk

c1
′, (3.47)

where 1 = (1, 1, ..., 1) is a vector of ones of length n− r. In other words, each entry

of m̃k
c contains the corresponding row sum of Mk

c .
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3.5 Data

In this section we will describe the data used in this chapter. The experiments

will be conducted using two different data sets, the credit rating transition data

and Web-usage transition data. The behaviour of credit rating data is different

from Web-usage data both in terms of the length of the sequence and frequency of

transitions between different states. By testing our model against both credit rating

and Web-usage data, we can observe the performance of the model across a variety

of different data sets.

3.5.1 Credit Rating Data

The credit rating transition data used in this chapter was collected and provided by

the National Information & Credit Evaluation Inc., a major bond-rating company in

Korea. The data set consists of monthly corporate credit ratings from 1986-09-01 to

2018-09-01 for 1899 firms in Korean indices such as the KOSDAQ and KOSPI. As in

Chapter 2, we will be considering quarterly data, in other words, we only consider

the rating the firm received every quarter. Firms in this data set can take any rating

from the following set of 22 credit ratings

{AAA, AA+, AA, AA-, A+, A, A-, BBB+, BBB, BBB-,

BB+, BB, BB-, B+, B, B-, CCC+, CCC, CCC-, CC, C, D}.

The firms that take the "D" rating are considered to be in default. A number of firms

in the data set were "closed" after some time. With this in mind, we treat these firms

to be in default. Firms that were missing credit rating sequences, made for sale, or

were merged with another firm were removed from the data set. Finally, any firm
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that transitioned out of the default state was removed. After processing the data set,

1648 firms remained in the data set.

New Ratings Old Ratings

AAA {AAA}
AA {AA+, AA, AA-}
A {A+, A, A-}
BBB {BBB+, BBB, BBB-}
BB {BB+, BB, BB-}
B {B+, B, B-, CCC+, CCC, CCC-, CC, C}
D {D}

Table 3.2: The 7 aggregated classes.

We mitigate the negative effects of the imbalanced data set on transition matrix

estimation by combining similar categories together. The aggregation reduces the

number of credit rating classes from 22 to 7 classes with 6 ratings being transient

states and the default state representing the absorbing state. The aggregated classes

are shown in Table 3.2.

The number of sequences that can be used in the SBC model is dependent on the

order and input date t′ used. This is because from the point t′ we need to condition

on an additional k−1 states before time t′. Therefore, not all sequences might contain

enough transitions to condition on. In this study, we take t′ to be 2002-01-01. With

further processing, the actual number of firms used for training and testing can be

found in Table 3.3.

The number of positive (absorbed) and negative (not absorbed) labels will be

dependent on τ . We take τ ∈ {12, 20, 40}. The distribution of the class labels can be

found in Figure B.1a in Appendix B.2. It is clear from these distributions that the

minority class is the default class for all values of τ .
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Order Number of Valid Sequences

1 677
2 653
3 630
4 569

Table 3.3: The number of valid sequences used in the credit rating experiments given
that t′ is January 1, 2002.

3.5.2 Web-Usage Data

The Web-usage data set we will be using is the Wikispeedia data set. The Wikispeedia

data was collected from the Stanford Network Analysis Project (Leskovec & Krevl,

2014). This data set contains human Web browsing navigation paths on the website

Wikipedia. The users that participated in this game were asked to navigate from a

given source to a given target article by clicking only on the hyperlinks embedded

throughout the Wikipedia article the user is currently browsing. There are a total of

76102 sequences. From the raw data of finished browsing sessions, there are a total

of 15 transient states. Each transient state represents the topic of the Wikipedia

Web page that is visited. At the end of the browsing session, users were asked to

rate the difficulty of their run. This resulted in 7 absorption states labelled 16 to

22, with 16 representing users finishing their run without assigning a difficulty, 17

to 21 representing a run rated from very easy to brutal, and 22 representing an

unfinished run. In practice, we are only concerned with whether a sequence has been

absorbed or not. Hence, after removing sequences ending in state 22, we relabelled

the absorbing state of the remaining sequences to be 16, representing the termination

of the sequence. Additionally, we exclude sequences with less than 6 transitions and

longer than 100, ultimately resulting in 37486 sequences remaining.

Again, the number of positive and negative (absorbed and not absorbed) labels
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will be dependent on τ . We take τ ∈ {3, 5, 10, 15}. The distribution of the class

labels can be found in Figure B.1b in Appendix B.2. Unlike in the credit rating data

set, absorption appears to belong to the majority class and becomes even more so

as τ increases. This is not unexpected as by increasing τ , one would expect more

sequences to terminate.

3.6 Results and Discussion

In this chapter there are a number of questions we are interested in. Will using

high-order absorbing Markov chains prove more effective than first-order absorbing

Markov chains? Will there be an increase in performance, if any, when we cluster

the data set and model each cluster using high-order absorbing Markov chains? How

does the high-order SBC model fare when applied to fundamentally different data

sets such as the credit rating and Web-usage data sets?

Before presenting the results, we first provide an overview of the classification

metrics used to evaluate the model using the credit rating and Wikispeedia data

sets. Then, we present the results after applying the model for the credit rating and

Wikispeedia data sets. Note that the SBC model will be often referred to as the

clustering model while the use of the Markov model with no clustering present will

be referred to as the benchmark model.

While collecting the results, we vary several parameters to explore the performance

of the model. The first parameter we explore is the performance for different values

of τ . As noted earlier, for the credit rating and Wikispeedia data set, we use

τ ∈ {12, 20, 40} and τ ∈ {3, 5, 10, 15}, respectively. For each choice of τ , we vary

the clustering choice for the K-means algorithm, denoted by c ranging from 1 to 20.

For each clustering choice c ∈ {1, 2, ..., C}, we use K-fold stratified cross validation
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where K = 5, to partition the data set into a training and testing set. To estimate

the transition matrices using the MTDg model we use the EM algorithm described

in Lèbre and Bourguignon (2008). Due to the stochastic nature in estimating the

transition matrices we run an M number of experiments for each c chosen.

Using the credit rating data, we will shuffle the data set before applying cross-

validation for each of the M experiments. Using the Wikispeedia data set, we will

sample 3000 sequences without replacement from the set of valid sequences. The

reported performance measures found in the tables are presented using the best

clustering choice c and are averaged across M number of experiments with the

respective standard deviation presented in parentheses. We choose M = 10. The

algorithms used can be found in Appendix B.

3.6.1 Performance Measures

When evaluating whether absorption takes place within τ steps, we evaluate the

model using the binary F1, accuracy, precision, and recall. We define the class label

set by L = {1, 0} where 1 represents the absorption of a sequence within τ transitions

and 0 represents the non-absorption of sequence within τ transitions. The state space

and absorbing set using the credit rating data is S = {1, ..., 7} and A = {7} while

the state space and absorbing set using the Wikispeedia data is S = {1, ..., 15} and

A = {16}. To begin the evaluation of our model, we need to count the number of

true positives (TP), false positives (FP), false negatives (FN), and true negatives

(TN) predictions. These counts can be organized into a confusion matrix.
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Predicted

Absorbed Not Absorbed

Actual
Absorbed TP FN

Not Absorbed FP TN

Given the confusion matrix, we can calculate our desired classification metrics.

The accuracy is calculated as

Acc =
TP + TN

TP + TN + FP + FN
. (3.48)

In the case of binary classification, the accuracy may not be a good metric when the

data set is imbalanced and this may result in bias during evaluation, for example, for

a highly imbalanced data set, a high accuracy can be achieved by predicting only the

majority class. Thus, we also report the binary F1 for absorption prediction within τ

steps. The binary F1 can be calculated using the following equation for the positive

class

F1 =
2TP

2TP + FP + FN
=

2Pr · Re
Pr + Re

, (3.49)

where Pr and Re denote the precision and recall, respectively. By using the F1, high

counts of the TNs will not be able to hide low counts of TP. The F1 also considers

the balance between the precision and recall and not only the number of correct

predictions that are made, further reducing the impact of the class imbalance. The
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precision (Pr) and recall (Re) are calculated as

Pr =
TP

TP + FP
, (3.50)

Re =
TP

TP + FN
= TPR. (3.51)

Therefore, the precision is the number of correctly predicted positive cases out of the

total number of predicted positives. The recall is the number of correctly predicted

positive cases out of the total number of actually positive cases. This is also known

as the hit rate. Depending on the context, one might prioritize one measure over

another.

To begin populating the confusion matrix, we need to compare the estimated

probabilities against a threshold level θ for classification. To determine a reasonable

threshold level, we make use of the receiver operating characteristic (ROC) curve.

The ROC curve is a convenient representation of the model performance for all levels

of threshold, constructed by plotting the true positive rate (TPR) against the false

positive rate (FPR) while varying the threshold between 0 and 1. The TPR is equal

to the recall while the FPR is defined as

FPR =
FP

FP + TN
. (3.52)

The optimal θ can be chosen based on the Youden’s index J(θ). The Youden’s index

is defined in terms of the TPR and FPR as

J(θ) = TPR(θ)− FPR(θ) (3.53)

and represents the trade off between the true positive rate and true negative rate.
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The optimal threshold θ̂ is chosen such that J is maximized.

For each of the classification scenarios, we will be aggregating confusion matrix

counts across the K folds. From this aggregated count, we calculate the performance

metrics. Forman and Scholz (2010) noted that this is the most unbiased method in

computing the F1-measure as defined in equation (3.49) when there is a high class

imbalance.

To evaluate the performance of the model for predicting the duration of the

user-session, we compute the error between the expected remaining length and the

true remaining length to absorption. That is, we evaluate the performance using the

mean absolute error (MAE) and the mean absolute error per sequence (MAEPS). Let

M be the total number of sequences in the testing set. Then the MAE is calculated

as

MAE =

∑M
m=1

∑Tm−1
t>k |m̃k

c [xm(t | k)]− x̃m(t)|∑M
m=1 Tm − 1

, (3.54)

where x̃m(t) = Tm − t, the length of the mth sequence at time t. The MAEPS can

be calculated by

MAEPS =
1

M

M∑
m=1

1

Tm − 1

Tm−1∑
t>k

|m̃k
c [xm(t | k)]− x̃m(t)|. (3.55)

3.6.2 Model Performance in Default Prediction

In the default classification scenario, we tested the model’s ability to predict whether

a sequence will transition into default within τ = 40, 20, and 12 quarters or 10, 5,

and 3 years, respectively. The plots of the F1 score and accuracy against the number

of clusters in Figure 3.2 show that as the number of clusters increases, the F1 score

and accuracy also increase. Comparing the y-axis of the respective subplots, we can

observe based on the initial position of the curves that as τ decreases, the overall
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performance of the F1 score and accuracy tend to increase regardless of the number

of clusters. This effect is especially more pronounced when looking at the accuracy.

While a general trend of performance improvement is observed as the number of

clusters increases, the degree of improvement also appears to depend on the Markov

model’s order. For example, we can observe a large increase in the performance when

considering the first-order models as the number of clusters increase. On the other

hand, this level of improvement is not as pronounced in the 4th order models. In

fact, the performance of the 4th order model appears to remain high regardless of

the number of clusters used in this case. That is, we find that the 4th order model

shows the greatest performance while clustering provides marginal benefits.

However, it should be noted that to achieve a good level of performance, it may

not be necessary to use the highest order model. For example, when τ = 20, similar

levels of accuracy achieved using the 4th order model can also be achieved by opting

to use the 1st order model with around 12 clusters instead. It appears that SBC is a

method that permits this level of flexibility, offering a more parsimonious alternative

in this classification problem.

Considering the best performance of the model across different orders, values of

τ , and clustering choice, we tabulate the results in Table 3.4 and Table 3.5. When

making comparisons between the respective performance metrics, we utilize the t-test

for hypothesis testing, where statistical significance is reported using three different

alpha levels α = 0.1, 0.05, and 0.001. That is, statistical significance is reported when

the p-value p is less than or equal to α, with increasing significance for more strict

levels of α.

Comparing the F1 score of the high-order benchmark models over the first-

order benchmark model, we found the greatest improvement of 27%, 44%, and 18%

when τ = 40, 20, and 12 was found using the 4th-order model, respectively. When
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(a) F1 score

(b) Accuracy

Figure 3.2: The F1 score and accuracy plotted against the number of clusters used.
The diamond markers represent the greatest score achieved across the different number
of clustering choices.

considering the accuracy, we found the greatest improvement of 25%, 28%, and 4.8%

when τ = 40, 20, and 12 using the 4th-order model, respectively. While in both cases,

we found a statistically significant level of improvement for all high-order clustering

models over the first-order benchmark model, the greatest improvement can be found

when using the 4th-order clustering or benchmark models, as noted.

While the high-order benchmark models appear to show promise, the addition

of clustering can further enhance the predictive accuracy. Comparing the F1 score
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of the high-order clustering models over the first-order benchmark model, we found

the greatest improvement using the 4th-order clustering model with an improvement

of 38%, 60%, and 23% when τ = 40, 20, and 12, respectively. When considering the

accuracy, we found the greatest improvement of 32%, 32%, and 6.1% in the accuracy

when τ = 40, 20, and 12, respectively. Again, the improvements found here are

statistically significant for all orders over the first-order benchmark model. Ultimately,

the 4th order model dominates in terms of performance, but SBC also provides an

appreciable boost to the performance of the model in terms of F1 and accuracy over

the non-clustering model.

τ Order (C) F1 (B) F1 (C) Accuracy (B) Accuracy

40

1 0.5258 (0.0185)∗∗∗ 0.4596 (0.0093) 0.9003 (0.0022)∗∗∗ 0.6962 (0.0137)
2 0.5449 (0.0030)∗∗∗ 0.4809 (0.0130)∗∗∗ 0.9054 (0.0011)∗∗∗ 0.7305 (0.0228)∗∗
3 0.5718 (0.0183)∗∗∗ 0.4689 (0.0162) 0.9051 (0.0045)∗∗∗ 0.7049 (0.0315)
4 0.6321 (0.0287)∗∗∗ 0.5842 (0.0651)∗∗∗ 0.9197 (0.0125)∗∗∗ 0.8685 (0.0545)∗∗∗

20

1 0.5978 (0.0029)∗∗∗ 0.4375 (0.0246) 0.9264 (0.0009)∗∗∗ 0.7133 (0.0414)
2 0.6209 (0.0040)∗∗∗ 0.4635 (0.0458)∗ 0.9306 (0.0010)∗∗∗ 0.7464 (0.0582)
3 0.6138 (0.0205)∗∗∗ 0.5400 (0.0914)∗∗ 0.9225 (0.0071)∗∗∗ 0.8211 (0.0867)∗∗
4 0.6968 (0.0358)∗∗∗ 0.6309 (0.0442)∗∗∗ 0.9399 (0.0106)∗∗∗ 0.9114 (0.0227)∗∗∗

12

1 0.6452 (0.0044)∗∗∗ 0.5741 (0.0414) 0.9399 (0.0012)∗∗ 0.8885 (0.0375)
2 0.6591 (0.0086)∗∗∗ 0.5930 (0.0415) 0.9413 (0.0023)∗∗ 0.8925 (0.0268)
3 0.6634 (0.0141)∗∗∗ 0.5817 (0.0425) 0.9389 (0.0042)∗∗ 0.8811 (0.0332)
4 0.7056 (0.0453)∗∗∗ 0.6801 (0.0725)∗∗ 0.9425 (0.0137)∗∗ 0.9311 (0.0270)∗∗

Table 3.4: The F1 score and accuracy from the credit rating default prediction
classification scenario. Values under the column label (C) and (B) represent the
clustering and the benchmark model respectively. Bold faced values correspond to
the highest level of performance for each metric. Values appended with *, **, and
*** represent a statistically significant improvement over the first-order benchmark
model at p ≤ 0.1, p ≤ 0.05, and p ≤ 0.001, respectively.

Comparing the precision of the high-order benchmark models over the first-

order benchmark model, we found the greatest improvement of 63%, 87%, and 27%
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when τ = 40, 20, and 12, respectively. It should be noted that while high-order

benchmark models are superior to the first-order benchmark model, not all 4th-order

models performed the best. In some cases, the first-order clustering models, offered

significantly superior performance. That is, there are an improvement of 211%, 232%,

and 84% when τ = 40, 20, and 12, for k = 1, 2, and 1 respectively. With respect to

the recall, we found fewer instances where clustering or high-order models offered

statistically significant levels of improvement. Only the 3rd-order benchmark models

outperformed the first-order benchmark when τ = 40 and 12. We found the greatest

improvement of 3.8%, 6.7%, and 23% in the accuracy when τ = 40, 20, and 12, for

k = 3, 1, and 3 respectively. Therefore, SBC may be able to yield significant levels of

improvement if precision is a concern.

τ Order (C) Precision (B) Precision (C) Recall (B) Recall

40

1 0.9864 (0.0409)∗∗∗ 0.3165 (0.0097) 0.8654 (0.0469)∗ 0.8404 (0.0259)
2 0.9792 (0.0193)∗∗∗ 0.3393 (0.0168)∗∗ 0.8388 (0.0277) 0.8296 (0.0335)
3 0.8530 (0.0753)∗∗∗ 0.3187 (0.0221) 0.8725 (0.0506)∗ 0.8978 (0.0543)∗∗

4 0.7352 (0.1163)∗∗∗ 0.5186 (0.1238)∗∗∗ 0.8058 (0.0674) 0.7159 (0.0818)

20

1 0.9791 (0.0155)∗∗∗ 0.2943 (0.0299) 0.9267 (0.0459)∗∗ 0.8686 (0.0541)
2 0.9897 (0.0171)∗∗∗ 0.3246 (0.0581) 0.8024 (0.0685) 0.8476 (0.0632)
3 0.7819 (0.0819)∗∗∗ 0.4617 (0.1765)∗∗ 0.8421 (0.0807) 0.7750 (0.1306)
4 0.7087 (0.0977)∗∗∗ 0.5512 (0.0745)∗∗∗ 0.7750 (0.0376) 0.7518 (0.0361)

12

1 0.9818 (0.0201)∗∗∗ 0.5349 (0.0764) 0.6701 (0.0721) 0.6403 (0.0680)
2 0.9674 (0.0356)∗∗∗ 0.5397 (0.0834) 0.6946 (0.0623) 0.6757 (0.0472)
3 0.8416 (0.0546)∗∗∗ 0.4895 (0.0675) 0.7870 (0.0667)∗∗ 0.7348 (0.0472)∗∗
4 0.7304 (0.1332)∗∗ 0.6831 (0.1878)∗∗ 0.7655 (0.0426)∗∗∗ 0.7164 (0.0489)∗∗

Table 3.5: The precision and recall from the credit rating default prediction classifica-
tion scenario.

While SBC does provide an appreciable boost to the performance of the Markov

models for the F1 score, accuracy, and precision, the degree of improvement varies

depending on the order of the model and τ . From the plots in Figure 3.3, we observed
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that lower order Markov models experienced the greatest benefit from the introduction

of SBC. In fact, the level of improvement between the clustering model compared

to benchmark model when k = 4, was measured to be lower in magnitude and even

not statistically significant for τ = 12. The value of τ also appeared to play a role

in the degree of improvement, with the most significant boost being observed when

τ = 20 for the F1 score, after SBC was introduced. In general, when τ = 12, the

degree of performance increase is reduced. This suggests that SBC may be more

beneficial for longer-term predictions even with the introduction of higher-order

Markov models. This suggests that if long-term credit risk assessment is a concern,

then a combination of high-order Markov chains and SBC could prove beneficial.

Whereas, for shorter-term credit risk assessment, first-order Markov chains with SBC

may be sufficient. This observation appears to be consistent with the results in Le

et al. (2021).

(a) F1 Improvement (b) Accuracy Improvement

Figure 3.3: The improvement in performance of the clustering model over the
benchmark model with respect to the F1 score and accuracy for each order and
τ using the credit rating data set. Bars are annotated with *, **, and *** and
represent a statistically significant improvement over the respective benchmark model
at p ≤ 0.1, p ≤ 0.05, and p ≤ 0.001, respectively.
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Therefore, both high-order Markov chains and clustering can be used to maximize

default prediction performance. If computing resources are a concern or if the problem

state space is too large, using the first-order Markov chains with SBC may be a viable

alternative. By opting to use the alternative, clustering combined with lower-order

Markov chains, we can avoid the process of estimating high-order transition matrices,

which is computationally intensive and requires significant storage capacity. For

example, for τ = 20, a second-order clustering model provides nearly the same level

of performance as a 4th-order benchmark model.

3.6.3 Model Performance in Web-Usage Mining

Using the Wikispeedia data, we first test the model’s ability to predict whether a

sequence will terminate within τ = 15, 10, 5, and 3 steps. The plots of the F1 score

and accuracy against the number of clusters in Figure 3.4 show that for τ > 5, as the

number of clusters increases, the F1 score and accuracy also increase. For shorter τ

lengths, we observed a marginal increase in the utility when using SBC. This is a

similar observation in the credit rating case. In addition, the higher-order Markov

models did not appear to dominate as greatly as it was observed in Figure 3.2 for

short τ . Unlike in the credit rating case however, for τ > 5, the 2nd-order clustering

model appears to provide a slightly greater level of performance for the majority of

clustering choices.

For the duration prediction scenario, we can see in Figure 3.5 that as the number

of clusters increases, the MAE and MAEPS are reduced for all choices of k. That

is, as the order of the model increases, we find that the performance is dominated

by higher-order models in both the MAE and MAEPS regardless of the number of

clusters used.
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(a) F1 Score

(b) The accuracy

Figure 3.4: The F1 score and accuracy as the number of clusters increase when
predicting the termination of a Web session within τ steps.

Considering the best performance of the model across different orders, values of τ ,

and clustering choices, we tabulate the results in Table 3.6 and Table 3.7. As with

the credit rating data, when making comparisons between the respective performance

metrics, we utilize the t-test for hypothesis testing with the same levels of α used.

Comparing the F1 score and accuracy of the high-order benchmark models over

the first-order benchmark model, we measured no improvement that was statistically

significant. However, the F1 score and accuracy of the high-order clustering models do

show some promise over the first-order benchmark model when τ > 5. We observed
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(a) The MAE (b) The MAEPS

Figure 3.5: The MAE and MAEPS as the number of clusters increase when estimating
the remaining length of a Web session.

an improvement of 34% and 17% in the F1 score for the clustering model with τ = 15

when k = 1 and 2, respectively. With respect to the accuracy, we observed an

improvement of 53%, 30%, and 1% using the clustering model for τ = 15, 10, and 3,

when k = 2, 2, and 1, respectively.

As with the F1 score and accuracy, in Table 3.7, the greater statistically significant

performance was generally observed in the clustering model over the first-order

benchmark, with respect to the precision and recall. However, we note that the

magnitude of the performance increase is low overall. The most notable increase in

performance is observed when considering the recall. We observed an improvement of

59% and 35% in the recall when τ = 15 and 10, using the 2nd-order clustering model

over the first-order benchmark model. It appears that while for the credit rating data

set, one can find improvement in both the clustering and benchmark models, in other

cases such as the Wikispeedia data set, a combination of clustering and high-order

models may be necessary to see any improvement in performance.

In Figure 3.6, we compare the performance of the clustering model to the perfor-

87



Tau Order (C) F1 (B) F1 (C) Accuracy (B) Accuracy

15

1 0.8170 (0.0856)∗∗ 0.6087 (0.1479) 0.7056 (0.1132)∗∗∗ 0.4669 (0.1244)
2 0.8046 (0.2011)∗ 0.5838 (0.1394) 0.7162 (0.2011)∗∗ 0.4419 (0.1169)
3 0.7898 (0.1455)∗∗ 0.6088 (0.2059) 0.6823 (0.1805)∗∗ 0.4860 (0.2106)
4 0.7897 (0.1756)∗ 0.5381 (0.2159) 0.6894 (0.2018)∗∗ 0.4212 (0.2089)

10

1 0.6927 (0.0899) 0.6549 (0.0370) 0.5751 (0.1694) 0.5155 (0.0371)
2 0.7675 (0.1649)∗ 0.6353 (0.1178) 0.6680 (0.1822)∗∗ 0.5068 (0.1024)
3 0.6895 (0.1194) 0.6579 (0.0993) 0.5683 (0.1797) 0.5275 (0.1175)
4 0.6775 (0.1298) 0.6370 (0.1119) 0.5528 (0.1298) 0.5082 (0.1188)

5

1 0.6487 (0.1049) 0.6242 (0.0277) 0.5544 (0.0763) 0.5303 (0.0181)
2 0.6655 (0.1223) 0.5925 (0.0609) 0.5728 (0.0921) 0.5110 (0.0335)
3 0.5513 (0.0373) 0.5857 (0.0580) 0.4819 (0.0227) 0.5066 (0.0325)
4 0.5994 (0.0552) 0.6068 (0.0629) 0.5158 (0.0358) 0.5217 (0.0393)

3

1 0.5801 (0.0235) 0.5754 (0.0290) 0.5435 (0.0071)∗ 0.5377 (0.0093)
2 0.5633 (0.0853) 0.5429 (0.0378) 0.5324 (0.0161) 0.5335 (0.0109)
3 0.5262 (0.0476) 0.5600 (0.0251) 0.5224 (0.0228) 0.5378 (0.0066)
4 0.5560 (0.0363) 0.5448 (0.0313) 0.5352 (0.0094) 0.5326 (0.0114)

Table 3.6: The F1 score and accuracy when predicting when a Web session will
terminate within τ steps.

mance of the benchmark model for each k and τ . Unlike in the credit rating data, we

observe that the 2nd-order Markov models experienced the greatest benefit from the

introduction of SBC, providing a slightly greater performance boost than the 1st or

3rd-order clustering. As with the credit rating data, it appears that the performance

boost gained using SBC in terms of the F1 score and accuracy, is dependent on

whether we are forecasting long-term or shorter-term changes. In this case, the

majority of the performance enhancement provided by SBC appears only when τ > 5.

In fact, for τ ≤ 5 we find that there is actually some decrease in performance, as in

the case when k = 3.

Considering the remaining length prediction scenario, the results found in Table

3.8 suggest that using high-order transition matrices can lead to a significant reduction

in the error between the actual and predicted duration over using first-order transition

matrices. Without clustering, the 4th-order model achieves the greatest reduction,
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τ Order (C) Precision (B) Precision (C) Recall (B) Recall

15

1 0.9681 (0.0130)∗∗ 0.9588 (0.0085) 0.7202 (0.1220)∗∗∗ 0.4614 (0.1360)
2 0.9632 (0.0077)∗∗ 0.9610 (0.0091) 0.7321 (0.2233)∗∗ 0.4332 (0.1301)
3 0.9649 (0.0070)∗∗ 0.9617 (0.0098)∗∗ 0.6955 (0.1958)∗∗ 0.4824 (0.2340)
4 0.9669 (0.0130)∗∗ 0.9639 (0.0090)∗∗ 0.7052 (0.2192)∗∗ 0.4093 (0.2308)

10

1 0.9227 (0.0122)∗∗ 0.9131 (0.0119) 0.5835 (0.2105) 0.5120 (0.0459)
2 0.9200 (0.0151)∗∗ 0.9151 (0.0110) 0.6961 (0.2246)∗∗ 0.4994 (0.1311)
3 0.9219 (0.0155)∗∗ 0.9150 (0.0132) 0.5742 (0.2205) 0.5276 (0.1519)
4 0.9230 (0.0186)∗∗ 0.9147 (0.0137) 0.5561 (0.1621) 0.5039 (0.1521)

5

1 0.7802 (0.0147) 0.7776 (0.0171) 0.5808 (0.1582) 0.5223 (0.0359)
2 0.7805 (0.0144) 0.7822 (0.0167)∗ 0.6121 (0.1847) 0.4816 (0.0717)
3 0.7878 (0.0192)∗∗ 0.7838 (0.0177)∗∗ 0.4276 (0.1248) 0.4719 (0.0701)
4 0.7918 (0.0218)∗∗ 0.7822 (0.0180)∗ 0.4902 (0.0742) 0.5017 (0.0851)

3

1 0.6336 (0.0210)∗∗ 0.6248 (0.0170) 0.5423 (0.0965) 0.5361 (0.0515)
2 0.6316 (0.0238)∗ 0.6386 (0.0159)∗∗∗ 0.5401 (0.1562) 0.4749 (0.0535)
3 0.6363 (0.0190)∗∗ 0.6356 (0.0191)∗∗ 0.4649 (0.1163) 0.5024 (0.0425)
4 0.6410 (0.0172)∗∗ 0.6364 (0.0200)∗∗∗ 0.5005 (0.0567) 0.4782 (0.0454)

Table 3.7: The precision and recall when predicting when a Web session will terminate
within τ steps.

(a) F1 Improvement (b) Accuracy Improvement

Figure 3.6: The improvement in performance of the clustering model over the
benchmark model with respect to the F1 score and accuracy for each order and τ
using the Wikispeedia data set.

reducing the MAE and MAEPS by 31% and 46%, respectively. Comparing the

effectiveness of high-order Markov models over first-order Markov models, with
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Order (C) MAE (B) MAE (C) MAEPS (B) MAEPS

1 2.4375 (0.1292)∗∗∗ 2.6221 (0.1187) 2.0353 (0.0726) 2.2465 (0.0631)
2 1.9563 (0.1224)∗∗∗ 2.0052 (0.1229)∗∗∗ 1.4889 (0.0540)∗∗∗ 1.5624 (0.0569)∗∗∗
3 1.7512 (0.1334)∗∗∗ 1.7845 (0.1308)∗∗∗ 1.2306 (0.0598)∗∗∗ 1.2965 (0.0611)∗∗∗
4 1.6161 (0.1345)∗∗∗ 1.6224 (0.1371)∗∗∗ 1.0183 (0.0509)∗∗∗ 1.0610 (0.0599)∗∗∗

Table 3.8: The MAE and MAEPS for the remaining length prediction.

clustering, the greatest reduction is achieved using the 4th-order model, with a

reduction of 31% and 45% in the MAE and MAEPS respectively. From Table 3.8,

a clear reduction in the MAE and MAEPS is observed for both the clustering and

benchmark case as the order increases.

In Figure 3.7, the degree of improvement of the clustering model over the benhmark

model is presented for the MAE and MAEPS. While the level of reduction when

using the SBC model is superior to the benchmark regardless of the order of the

Markov model, the level of improvement appears to decrease as the order increases

for the MAE. The level reduction in error for both the MAE and MAEPS appears to

decrease for orders greater than 1.

As in the credit rating context for the F1 score and accuracy, the overall per-

formance is greater when clustering is used regardless of the order of the transition

matrices used compared to the benchmark model. While the performance of the

clustering case is overall greater than the benchmark case, the first-order clustering

model still shows quite a substantial increase in performance. This suggests that it

may be beneficial to seriously consider solely using the SBC model with first-order

transition matrices instead of using solely using first-order or higher-order transition

matrices. As in the credit rating context, the benefit of this alternative is that one can

avoid the more computationally demanding and data-hungry process of estimating

high-order transition matrices. This gain from using high-order transition matrices
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(a) The MAE (b) The MAEPS

Figure 3.7: The improvement in MAE and MAEPS of the clustering model over
the benchmark model. The shaded region represents the standard deviation of the
respective model.

in the remaining length prediction scenario however is large enough to warrant the

consideration of using this as the gain in performance is quite significant.

3.6.4 Summary of Results

In the credit rating context, we find that clustering results in improved performance

for the F1 score and accuracy regardless of the order. For the precision and recall,

more consideration may be necessary in the choice of cluster and model order. In

general, using high-order Markov chains with clustering outperforms the first-order

benchmark case. We observe an overall increase in performance as τ decreases;

however, at the same time, we also observe diminishing returns on the benefits of

using high-order Markov models.

In the Web-usage context, for absorption within τ steps prediction, we find that

generally, clustering results in improved performance over the benchmark models for

τ > 5. As the order of the transition matrices used increases, we generally observed
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the performance decreasing, except for some choices of model order for τ > 5. For

the remaining length prediction, while clustering results in some improvement with

respect to the MAE and MAEPS, we find that the greatest impact in reducing the

MAE and MAEPS was observed when we introduced high-order Markov models,

implying an improvement in accuracy when estimating the average duration of user

Web sessions. This observation can be seen with similar degrees of improvement

in both the clustering and benchmark models as the order increases. Overall, the

results show that depending on the data set and context, extending the first-order

SBC model can further enhance the quality of transition matrix estimation in the

high-order case. That is, using SBC in conjunction with higher-order Markov models

can be beneficial in providing improved prediction accuracy of future behaviour both

in credit rating and Web-usage sequences.

3.7 Conclusion

Historical credit rating sequences and Web-usage sequences embody a wealth of

information that can provide valuable insights into the future behaviour of the

process. In some cases, it is sufficient to only consider the present state of a process

to infer future behaviour. However, in other cases, the future behaviour of a process

may also depend on events prior to the present. Using high-order Markov models,

one can capture not only the immediate state dependencies but also previous state

dependencies as well. The purpose of the work done in this chapter was to determine

if high-order Markov models augmented with SBC can offer superior predictive

capabilities compared to traditional first-order Markov models. This new model

was validated against benchmark models where no clustering was present. Two real

world data sets were used, a Korean historical credit rating sequence data set, and a
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Wikispeedia browsing data set. The credit rating data was used to assess our model’s

performance in predicting defaults. The Wikispeedia data set was used to evaluate

our model’s performance in making accurate predictions of absorption within τ steps

and the remaining length of user sessions. This work extends the first-order SBC

model presented in Le et al. (2021) and Park et al. (2023).

We contribute to the literature on high-order Markov chains and SBC in the

context of credit rating and Web-usage mining in a number of ways. We find that

high-order Markov chains, with and without clustering, can accurately estimate

the default probability of a firm given its credit rating history. To the best of our

knowledge, we are the first to validate the use of high-order Markov models with SBC

using real world data sets. The usefulness of our model in the context of credit risk

and Web-usage mining is evident from its ability to improve upon more traditional

first-order models. The clustering algorithm used was the K-means algorithm, a

non-parametric unsupervised clustering algorithm. As a result, we are not required

to make restrictive assumptions about the data itself. For the credit rating data,

SBC allows us to partition sequences with similar dynamics together, capturing

non-Markovian behaviour such as rating momentum.

We assume that transitions are dependent on more than the current state by em-

ploying high-order Markov chains. In doing so, we further capture rating momentum

within the clusters themselves. For practitioners concerned about capturing these

credit rating characteristics in default prediction, first-order SBC model may be a

viable alternative over strictly using high-order Markov chains as SBC allows us to

capture some of these unique characteristics. Using SBC in this fashion allows practi-

tioners to forgo the high data cost of estimating high-order transition matrices while

maintaining respectable levels of performance over just using a first-order Markov

model. If resources permit, practitioners may opt to use a combination of SBC and
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high-order Markov chains of their desired order in order to maximize performance

gains.

With respect to Web-usage mining, web developers may find SBC useful in im-

proving website design, ad placement during a browsing session, and recommendation

systems as SBC can improve the prediction of when a user might end their browsing

session. Furthermore, we find that high-order Markov chains, with and without

clustering, can model the remaining length of Web browsing behaviour well. This

feature is valuable when developers are concerned about the remaining length of a

session. For example, in virtual queue time estimation, redesigning website structure

to minimize the length of time a user might take to make a purchase, as well as ad

placements.
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Chapter 4

Reducing Systemic Risk using

Reinforcement Learning

In this chapter, we introduce a novel framework to assess and manage systemic risk

in a multi-layer financial network by taking advantage of reinforcement learning (RL).

The reduction of systemic risk in the financial network is achieved by applying the

deep deterministic policy gradient algorithm (DDPG) to reorganize the interbank

lending structure of the network into an orientation that better mitigates the spread

of contagion. In addition, we propose a new multi-layer DebtRank (DR) algorithm

taking into account how contagion spreads from one layer to another. The work

presented in this chapter has been published in Le and Ku (2022).

4.1 Introduction

A key property of a financial network is its interconnectedness. This interconnected-

ness, however, is a mechanism for amplifying shocks and distress, leading to contagion
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and potentially resulting in catastrophic failure of the network. The risk of financial

collapse due to the failure of some portion of the financial network leading to economic

decline is called systemic risk. The importance of financial stability and systemic risk

in the financial sector has been underlined after the global financial crisis, and the

monitoring and regulation of systemic risk have become a major concern for regulators,

governments, and financial institutions. The insights gained from the crisis include

the importance of interconnectedness among financial institutions and markets and

the necessity of adopting a system-wide view of stability and risk. One can get useful

insights from analogous problems related to the large-scale (in)stability of systems

with many interconnected components and feedback loops in other disciplines. It

is important to understand the mechanisms underlying systemic risk and financial

instability, metrics for identifying sources of systemic risk, and tools for monitoring

these sources in practice.

A high level of systemic risk can have several effects on members of the financial

system. These effects include impacts on sovereign credit ratings (Huang & Shen,

2015; Pagano & Sedunov, 2016; Sehgal et al., 2018), impacts on hedge fund returns

(Bianchi et al., 2010), and reducing the benefits of diversification in portfolios (Busse

et al., 2014; Strobl, 2016). In this chapter, we explore how RL can be used to

reorganize the connections of a multi-layer financial network in order to reduce the

overall systemic risk in the network.

Complex networks provide a convenient representation of the financial system.

Typically, the nodes in the network represent the banks or financial institutions, while

the edges connecting the nodes represent the relationship between the financial actors.

Such a natural representation of the financial system has spurred the development of

models adopting this framework to study systemic risk in financial systems (Bardoscia

et al., 2021; Eisenberg & Noe, 2001; Gai et al., 2011; Glasserman & Young, 2015;
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Jackson & Pernoud, 2021; Li et al., 2019; Macchiati et al., 2021). The structure of the

network has been intimately tied to the levels of systemic risk present in the network

(Allen & Gale, 2000; Boss et al., 2004; Gai & Kapadia, 2010; Nier et al., 2007).

This idea has introduced a line of study investigating how we can capitalize on the

connection between systemic risk and the network structure to reduce systemic risk.

Poledna and Thurner (2016) and Poledna et al. (2017) implement a systemic risk tax

incentive using agent-based modelling and observe a reduction in systemic risk in the

self-organized network. Diem et al. (2020) reduce systemic risk in a direct-exposure

network using mixed-integer linear programming to reorganize the network. They also

observe that the reorganization of the direct exposure network can yield lower levels

of systemic risk when compared to Basel III-like equity increases. They highlight

some network characteristics expressing low levels of systemic risk, suggesting that

these characteristics should be taken into account when designing policies for tackling

financial market stability. Another study by Pichler et al. (2021) reorganizes an

overlapping bond portfolio network, represented by a bipartite network, in a similar

manner by framing the reorganization problem as an optimization problem.

In order to manage systemic risk, we need to be able to measure systemic risk. In

a network setting, systemic risk can be measured by using network-based measures

(Eisenberg & Noe, 2001; Furfine, 2003; Neveu, 2018). The seminal work by Eisenberg

and Noe (2001) introduces a clearing algorithm while also providing an estimate of

the systemic risk based on the number of "waves" of defaults required for a firm to

fail in the algorithm. The approach taken by Furfine (2003) uses interbank payment

data to simulate the knock-on effects of the failure of a single firm. These measures

do not consider how distress prior to default can lead to contagion. The popular

DR measure by Battiston et al. (2012) tackles this problem by taking into account

the build-up and propagation of distress and its effect on the equity of banks in the
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network. The DR algorithm measures the systemic risk of financial institutions by

propagating their initial distress through the network and calculating the induced

loss as a result. This algorithm was extended by Bardoscia et al. (2015) to allow

banks to propagate distress more than once and by Silva et al. (2017) to consider a

feedback mechanism between the real economy and financial systems.

In reality, there are many different types of financial products and contracts. The

failure of an institution to honour one type of contract is not always felt in isolation. In

fact, Cuba et al. (2021), Montagna and Kok (2013), and Poledna et al. (2015) find that

only considering the systemic risk in single-layer networks severely underestimates the

total systemic risk of a financial system. Poledna et al. (2015) extend the DR measure

to the multi-layer case, allowing for the comparison of systemic risk between layers as

well as the systemic risk of the combined network of projected layers. Poledna et al.

(2021) modify the DR algorithm to account for overlapping portfolios in bipartite

networks, and hence account for indirect exposures. Cao et al. (2021) extend the

DR algorithm to the multi-layer case, accounting for investments of debt and equity

between financial institutions.

Recently, there have been efforts to apply machine learning techniques to improve

systemic risk assessment. Li et al. (2013) use support vector machines to predict

systemic risk in the Chinese banking system. Cerchiello et al. (2016) use financial

twitter and market data in predicting when shocks to the financial system might

occur. Using algorithmic text analysis, Nyman et al. (2021) use financial reports and

news articles to measure relative sentiment shifts based off excitement and anxiety

summary statistics, finding potential in predicting increases in distress in the financial

system. Most recently, So et al. (2022) proposed the use of Latent Dirichlet Allocation

on financial news article data, allowing real-time prediction of systemic risk. For a

more detailed review of machine learning applications in systemic risk, see the survey
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by Kou et al. (2019).

Although there are a number of studies on machine learning applications in

systemic risk, currently, only a handful of studies have adapted RL techniques to a

financial network setting. A. Liu et al. (2018) make use of a multi-agent model based

on temporal difference RL to replicate lending and borrowing dynamics. In particular,

RL here is used to help decide each banks’ counterparties. Their work demonstrates

how the risk preferences of individual banks can assemble networks that are less at

risk for contagion. Although not modifying the interbank relationships themselves,

Petrone et al. (2021) proposes a framework in which an RL agent provides capital

investments for different banks in the network, replicating the capital injections given

by the government to increase the resilience of banks and minimize losses in the

network.

In our study, we take a different approach to reorganizing the financial network by

using RL. The main goal of this chapter is to construct a RL framework to minimize

systemic risk in a multi-layer financial network. In pursuing this goal, we made the

following contributions. First of all, we develop the constraint DDPG algorithm to

reorganize the interbank lending structure of a multi-layer network by modifying the

classical DDPG algorithm, proposed by Lillicrap et al. (2015). To minimize the effects

of network reorganization on the balance sheets of each bank in the network, we

incorporate a safety layer inspired by Dalal et al. (2018). The flexibility that is offered

by RL allows us to easily extend the optimization procedure from the single layer

case to the multi-layer case circumventing the technical optimization challenges noted

by Diem et al. (2020). Second, we propose a new multi-layer DR to measure systemic

risk in our networks. Both optimization procedures in Diem et al. (2020) and Pichler

et al. (2021) were done by minimizing the total direct impact, an approximation of

the DR. Using RL we directly incorporate the DR measure into the model’s objective
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via the reward function. The types of assets used in this study will have different

maturities. Therefore, to account for how contagion might spread in a multi-layer

network of loans with differing maturities, we propose a modified DR measure. We

further highlight the versatility of using RL by considering preferential reduction in

DR through the modification of the reward function to account for highly leveraged

banks.

The remainder of this chapter is organized into 5 sections. In Section 4.2 we

outline how we model our multi-layer complex network and present both the con-

ventional DR and our proposed multi-layer DR measures. In Section 4.3 we detail

the implementation of our RL agent in the context of reducing systemic risk in a

multi-layer complex network environment. In Section 4.4 we outline how to constrain

the action of the RL agent to preserve specific properties of the complex network

and also present the experimental details for the single-layer and multi-layer case

along with the parameters and hyperparameters used in our model. In Section 4.5 we

present the results and discussion. Finally, in Section 4.6 we conclude the chapter.

4.2 Network Model

4.2.1 Multi-Layer Complex Networks

We modelled the interbank liability network as a multi-layer weighted directed graph

withM = {G, Y } where G = {(V,Eα) | α ∈ {1, 2, ...,M} is the set of graphs in the

multi-layer network and Y = {α | α ∈ {1, 2, ...,M}} is the index set for the different

layers of the multi-layer network. The set of nodes in the multi-layer network is

denoted by V = {i | i ∈ {1, 2, ..., N}}. Eα = {(i, j) | i, j ∈ V, i ̸= j} denotes the set

of edges connecting nodes V in layer α. Note that each layer contains the same set of
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Notation Definition

M Total number of layers
Q Adjacency matrix

Lα Liability interbank network, weighted adjacency matrix
for layer α

∆Lα Change in the interbank liability network weights for
layer α

N Total number of banks
A Total assets in the network
θα Interbank loan ratio for layer α
r Degree heterogeneity of network
β Cash deposit ratio
γ Equity capital ratio
Wα

ij Impact of bank i on bank j in layer α
ej Equity of bank j
e Vector containing equities of each bank in the network
si(t)

α State of bank i as distress propagates in layer α at time t
hi(t)

α Level of distress of bank i as distress propagates in layer α at time t
Ri(L

α, e) The DR of bank i for a given liability network Lα, vector e
vα Relative economic value of layer α for layer α
ki Leverage ratio of bank i
w(ki) Credit weight function dependent on the leverage ratio ki
st State of environment at time t
a Action of the RL agent
µ(s) Policy of the RL agent
r(s, a) Reward function for state s and action a
D Constraint matrix
K Basis matrix of the null(D)
d Density of the multi-layer network
J Jaccard similarity index
c Clustering coefficient
kα

total,i Total degree node i in layer α

Table 4.1: A table to reference for some notation used throughout this chapter.
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nodes and the only difference between the layers is the topology of the edges.

In the context of financial networks, each node in the graph will represent a bank.

The directed edge from bank i to j in layer α represents the loan of bank i to bank j

in layer α. This lending amount is denoted by Lα
ij. In the case that bank j defaults,

Lα
ij also represents the impact of bank j on bank i as this is the amount lost by bank

j. We define the adjacency matrix of the graph as Q and denote its elements using

Qα
ij =

 1 if bank i lends to bank j in layer α,

0 otherwise.
(4.1)

Using the methods described in Li et al. (2019) and Maeno et al. (2013), we

can simulate a liability interbank network Lα with parameters N,A, θα, r, β, and γ

representing the total number of banks, the total assets in the network, the interbank

loan ratio, the networks’ degree heterogeneity, the cash deposit ratio, and the equity

capital ratio, respectively. Then the lending amounts that appear on the balance

sheet are calculated as

Lα
ij =

Qα
ij(k

α
out,ik

α
in,i)

r∑N
i=1

∑N
j=1Q

α
ij(k

α
out,ik

α
in,i)

r
θαA, (4.2)

where kα
out,i and kα

in,i are the outgoing degree and incoming degree of the ith bank in the

α layer, respectively. Once the lending amounts are defined for every bank, we can then

calculate the rest of the balance sheet. To calculate the balance sheets of the banks,

we define the following, let θ =
∑M

α=1 θ
α, li =

∑M
α=1

∑N
j=1 L

α
ij, bi =

∑M
α=1

∑N
i=1 L

α
ij,

and TL =
∑N

i=1 li where θ is the total proportion of the assets used for lending, li

is the total lending amount of bank i, bi is the total borrowing of bank i, and TL is

the total amount used for lending in the network respectively. The balance sheet can
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Assets Liabilities & Equity

Interbank loans,
∑M

α=1 l
α
i Interbank borrowings,

∑M
α=1 b

α
i

Cash, ci Deposits, di

Other Assets, oi Equity, ei

Figure 4.1: Balance sheet of the i-th bank for all layers of the multi-layer network.

then be calculated using the following set of equations

oi = max(bi − li, 0) +
[
[(1− θ)− β(1− γ) + βθ]A−

N∑
i=1

max(bi − li, 0)
]
li/TL,

(4.3)

ei =
γ(li + oi)− βγbi

1 + βγ − β
, (4.4)

di =
(1− γ)(li + oi)− βbi

1 + βγ − β
, (4.5)

ci =
β(1− γ)(li + oi)− βbi

1 + βγ − β
, (4.6)

where oi, ei, di, and ci are the other assets, equity, deposits, and cash of bank i. Then

the total assets on bank i’s balance sheet is ai = ci + li + oi and by basic accounting

principles ai = di + bi + ei. The simulated balance sheet for each bank in the network

can be found in Figure 4.1.

4.2.2 DebtRank

We will be measuring the systemic risk contribution of banks in the complex network

in terms of their DR. The algorithm used to calculate the DR was first introduced

by Battiston et al. (2012) and was extended to multi-layer networks by Poledna
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et al. (2015). It should be noted however that Poledna et al. (2015) do not take into

account how distress might propagate between the different layers. In our study, we

introduce our own mechanism for contagion to spread between the different layers of

the multi-layer network. For the completeness, we first provide a brief introduction

of the conventional DR for a single-layer network. The impact of bank i on bank j

can be defined by

Wij = min
[
1,

Lji

ej

]
, (4.7)

where Lji is the lending amount from bank j to bank i and ej is the equity of bank j.

If Lji < ej then the impact of bank i on bank j is Lji/ej < 1. Therefore, given an

adequate level of ej , the impact of bank i on bank j can be mitigated by the buffer ej .

Given a sufficiently low ej, the impact of bank i on bank j could lead to the default

of bank j. For each bank, we define two state variables. Let hi ∈ [0, 1] represent

the level of distress of bank i and si ∈ {U,D, I} be a discrete variable taking three

possible states U,D, and I, representing the undistressed, distressed, and inactive

states, respectively. The dynamics of hi follows

hi(t) = min
{
1, hi(t− 1) +

∑
j|sj(t−1)=D

Wjihj(t− 1)
}
, (4.8)

si(t) =


D if hi(t) > 0; si(t− 1) ̸= I,

I if si(t− 1) = D,

si(t− 1) otherwise,

where hi is calculated for all i at each time step. The DR of a bank i is calculated

after some finite time T has passed or once all the banks are in state U or I. The
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DR of bank i, denoted by Ri, can be calculated as

Ri =
∑
j

hj(T )vj − hi(1)vi, (4.9)

where vi is the relative economic value of each bank defined as

vi =
li∑N
k=1 lk

∀i ∈ V. (4.10)

The relative economic value of each bank is the contribution of bank i’s lending

relative to the entire interbank network. When a bank is in distress, some or all of

its value is lost (the bank is considered in default if all of its value is lost). Therefore,

the DR can be interpreted as the relative economic value of the network that is

potentially lost due to the distress caused by bank i propagating through the network.

Given that the DR is dependent only on Lij and ej, we define Ri(L, e) = Ri for a

given liability network L and vector e whose entries are the equities of the respective

banks.

4.2.3 DebtRank Accounting for Differing Maturity of Loans

In order to take into account how distress in one layer propagates to other layers,

we use the index set Y = {α | α ∈ {1, 2, 3, ...,M}} and let the first layer, α = 1,

represent the interbank liability network of loans with the shortest maturities and the

last layer, α = M , represent the interbank liability network of loans with the longest

maturities. Therefore L1
ij represents the interbank liability matrix of the loans with

the shortest maturities and LM
ij represents the interbank liability matrix of the loans

with the longest maturities. It is assumed that any distress experienced impacts the

short-term liability before the long-term liability. Then the impact matrix for layer
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α > 1 is given by

Wα
ij =


Lα
ji

max

(
Lα
ji, ej−

α−1∑
κ=1

N∑
p=1

Lκ
jph

κ
p (T )

) if Lα
ji > 0,

0 otherwise,

(4.11)

and for α = 1, the impact matrix is given by

W 1
ij = min

(
1,

L1
ji

ej

)
, (4.12)

where hκ
i (T ) is the distress that bank i experiences in layer κ at time T . For α > 1

the equity is reduced by the lending amount affected by the distress in the previous

layers. The DR of the first layer is calculated using the usual initial conditions of

the conventional DR as shown in Equation (4.12), and the dynamics for layers α > 1

follows similarly to the conventional DR algorithm. In other words, we let h1
i ∈ [0, 1]

represent the level of distress of bank i resulting from the initial distress of bank i

in the first layer and s1i ∈ {U,D, I} be the discrete state variable where U,D, and

I represent the undistressed, distressed, and inactive state of a node, respectively.

Then, for each layer, the dynamics of hα
i follows

hα
i (t) = min

{
1, hα

i (t− 1) +
∑

j|sαj (t−1)=D

Wα
jih

α
j (t− 1)

}
, (4.13)

sαi (t) =


D if hα

i (t) > 0; sαi (t− 1) ̸= I,

I if sαi (t− 1) = D,

sαi (t− 1) otherwise,
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where hα
i is calculated for all i at every time step. The calculation for layer α is

stopped as soon as all the banks in layer α are in the state U or I after some finite

time T has passed. The initial distress and state for all nodes i in layers α > 1 are

set according to the following equations

hα
i (0) = hα−1

i (T ), (4.14)

sαi (0) =

D if hα−1
i (T ) > 0,

U otherwise.
(4.15)

Therefore, any node that was distressed in the previous layer will maintain the same

levels of distress at time T in the next layer.2 Furthermore, any nodes that become

inactive after becoming distressed will have their state set to distressed or undistressed

and will be able to propagate distress again in subsequent layers.

The DR of each layer α is calculated after some finite time T has passed or once

all banks are in state U or I. Again, we define the total amount loaned by a bank i

in layer α as lαi =
∑N

j=1 L
α
ij. Then DR of a bank i is calculated as

Rα
i =


∑

j h
α
j (T )v

α
j − hα

i (1)v
α
i if α = 1,∑

j h
α
j (T )v

α
j if α > 1,

(4.16)

where vαi is the relative economic value of each node i in layer α defined as

vαi =
lαi∑N
k=1 l

α
k

∀i ∈ V. (4.17)

2Equation (4.14) can be modified to include a recovery rate to allow banks to reduce the level of
distress that is transferred to the next layer.
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Note that the DR of each layer takes into account the distress from the previous

layers, and therefore the DR of the multi-layered complex network will be greater

than the conventional DR measure. Given that the DR is dependent only on Lα
ij and

ej, we define Ri(L
α, e) = Rα

i for a given liability network Lα in layer α and vector e

whose entries are the equities of the respective banks. The total DR of the multi-layer

network is then calculated by

R(L, e) =
M∑
α=1

N∑
i=1

vαRi(L
α, e), (4.18)

where

vα =

∑N
i=1 l

α
i∑M

α=1

∑N
i=1 l

α
i

. (4.19)

4.2.4 DebtRank Weighted by Leverage and Credit Risk

The DR measures the economic value lost due to the spread of the distress from

a single bank. This measure does not provide insight into how likely a bank is to

default. Credit risk is the measure of the likelihood that a bank will default on a debt

obligation. One might be more concerned about a bank with high DR and high credit

risk than a bank with a low DR but high credit risk, as the impact on the network

due to the failure of the first bank is far greater than impact on the network due to

the failure of the second bank. After generating the balance sheets of the banks in

the complex network, we can use the leverage ratio as a proxy of the bank’s credit

risk. There are several different leverage ratios that are commonly used in finance.

We will use debt-to-assets ratio ki for a bank i as defined below

ki =
di + bi

ci + li + oi
. (4.20)
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This measure will be used to modify the objective of the RL agent to preferentially

reduce the systemic risk of higher leveraged banks. To implement this desired

behaviour we weight the individual DR of the banks by their respective level of credit

risk using a credit weight function w(ki) dependent on the leverage ratio of the bank.

The credit weighted DR is then

Rw(L, e, k) =
M∑
α=1

N∑
i=1

w(ki)v
αRi(L

α, e), (4.21)

where k is the vector of the leverage ratios of each bank. The degree of importance

placed on the level of credit risk when reducing systemic risk can be changed by

modifying the form of w(ki). An alternative estimate of the credit risk can also be

used instead of the defined value of ki in Equation (4.20).

4.3 Reinforcement Learning

In our study, we take a RL approach to reorganizing the financial network. Since the

DR reduction process can be constantly changed, we require an off-policy agent that

maps a high dimensional state space to a high dimensional continuous action space.

So we will adopt the DDPG algorithm. DDPG, proposed in Lillicrap et al. (2015),

is an actor–critic based deep RL algorithm that has made remarkable achievements

in the financial perspective. It uses a neural network as a Q-function approximator.

To address the relatively unstable learned action function, they propose the use of a

replay buffer and soft target updates to improve convergence to the optimal policy.

The classical DDPG algorithm has been developed by considering a Markov

decision process with a state space S, action space A, transition dynamics p(st+1 |

st, at), and reward function r. The return from a state is defined as the sum of
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discounted future reward

Rt =
T∑
i=t

γ(i−t)r(si, ai), (4.22)

where γ ∈ [0, 1] is the discount factor, si ∈ S and ai ∈ A are the observation and the

agent’s action, respectively. The state-action value is defined by

Qµ(s, a) = Eri≥t,si>t∼E,ai>t∼µ[Rt|st, at], (4.23)

and we use the recursive Bellman equation

Qµ(st, at) = Ert,st+1∼E[r(st, at) + γQµ(st+1, µ(st+1))], (4.24)

where rt, st+1 ∼ E indicates that the current reward and the future state are sampled

from the environment. The parametrized actor function µ(s|θµ) maps the states S to

action A. The Q-function will be approximated by the critic by minimizing the loss

L(θQ) = E(st,at,rt,st+1)∼D[(Q(st, at | θQ)− yt)
2], (4.25)

yt = r(st, at) + γQ′(st+1, µ
′(st+1 | θµ

′
) | θQ′

), (4.26)

where D is the replay buffer that stores the transitions of the DDPG agent and

µ′(s | θµ′
) and Q′(s, a | θQ′

) are the target actor and critic networks, respectively.

The weights of the target networks are slowly updated using the learned networks’

weights. The purpose of the target networks is to improve the stability of learning.

The policy µ : S → A of the agent is learned using the actor network. We train the

actor network by maximizing the expected return J with respect to θµ

J = Est∼D[Q(s, a | θQ) |s=st,a=µ(st|θµ)]. (4.27)
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The actor network is updated with the policy gradient using the results from Silver

et al. (2014)

∇θµJ = Est∼D[∇aQ(s, a | θQ) |s=st,a=µ(st) ∇θµµ(s | θµ) |s=st ]. (4.28)

In the context of a complex network of banks, we have a single agent that assigns

different amounts of lending to each bank in the network. In our problem setting

we wish to reward the agent every time a network configuration results in a lower

overall DR. In the following section, we will express our problem setting in an RL

framework.

4.3.1 The Observation Space

The environment consists of N financial institutions or banks. We set M different

types of lending relationships the banks can establish with one another. In our

environment, each layer represents different maturity lengths of loans. Therefore,

there exist M(N2 −N) lending relationships that the agent can assign to form the

complex network. Some examples of different relationships include deposits and loans,

security cross-holdings, derivatives, and foreign exchange, and loans with differing

maturities (Li et al., 2019; Poledna et al., 2015). Every bank in the environment

is given a balance sheet as described in Section 4.2. The objective of the agent is

to find the network configuration with the least amount of systemic risk measured

using Equation (4.16). In our implementation, we let the observation of the agent

consist of the vectorization of the interbank liability network. The vectorization of

the liability matrix L is defined by

vec(L) = (L11, ..., L1N , L21, ..., L2N , ..., LN1, ..., LNN). (4.29)
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Therefore the observation, st, of the DDPG agent is given as

st = {vec(Lα(t))|α = 1, 2, ...,M}. (4.30)

4.3.2 The Action Space

Our DDPG agent will interact with the environment by modifying lending amounts

of each bank in the network based on the observation st. The interbank liability

network at time t is denoted L(t). The action provided by the RL agent will be

denoted by ∆L(t). The quantity ∆Lα(t) is a modification to the current lending

network. Through this action, a new interbank lending network Lα(t + 1) will be

constructed. Therefore the new interbank lending network is given by

Lα(t+ 1) = Lα(t) + ∆Lα(t). (4.31)

After the agent acts on the environment and modifies the complex network, we wish to

conserve the total borrowing and total lending amounts of each bank in the network.

Additionally, we require the new lending amounts of each bank to be non-negative.

Let the lending relationships at time t be given by Lα(t). Then lαi (t) =
∑N

i=1 L
α
ij(t)

and bαi (t) =
∑N

j=1 L
α
ji(t) is the total α-type lending and borrowing amount of the

ith bank, respectively, at time t. Our objective is then to find an Lα(t) where the
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following constraints are satisfied

N∑
j=1

Lα
ij(t) = lαi (0) ∀i ∈ V, α ∈ Y, t ≥ 0, (4.32)

N∑
j=1

Lα
ji(t) = bαi (0) ∀i ∈ V, α ∈ Y, t ≥ 0, (4.33)

Lα
ij(t) ≥ 0 ∀i ∈ V, α ∈ Y, t ≥ 0. (4.34)

In order to construct the action of the RL agent, we will be using the framework

outlined in Section 4.4.1 where we outline how to satisfy the lending and borrowing

constraints by using a linear transformation, and in Section 4.4.2 where we outline

how to satisfy the non-negativity constraints by introducing a safety layer using

quadratic programming (QP). An overview of our constraint DDPG structure and its

interaction with the safety layer can be found in Figure 4.2.

4.3.3 Reward and Episode Termination

The objective of our problem is to minimize the systemic risk with respect to the

multi-layer DR. To do so, we intend to reward the agent every episode when the DR

is reduced. Here we define the DR component of the reward function

r(s, a) = max
(
1− λ

R(L(t+ 1), e)

R(L(t), e)
, 0
)
, (4.35)

where λ ∈ R. In this way, the agent is given a reward if the DR in the next step is

lower than the previous step’s DR. The factor λ can be used to set a threshold on how

low the DR must be before the agent is given a positive reward. In our experiments,

we set λ = 1. The environment is also designed such that the episode ends if the DR
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achieved at time t+ 1 is higher than the DR at time t. Comparing the DR at time

t+ 1 to the DR at time t instead of at time t = 0 has the added benefit that the DR

measured at the end of an episode is the lowest DR achieved in that episode.

Incorporating the credit risk weighted DR into the reward function results in

rw(s, a, k) = max
(
1− λ

Rw(L(t+ 1), e, k)

Rw(L(t), e, k)
, 0
)
. (4.36)

Therefore, the RL agent will be rewarded more when banks with a large leverage

ratio (i.e., more risky in terms of credit risk) have their DR reduced. In this way, we

incentivize reducing the DR of a bank with a high leverage ratio over reducing the

DR of a bank with a lower leverage ratio.

4.4 Proposed Approaches

The classical DDPG agent cannot be directly applied to our problem of reorganizing

the multi-layer complex network as there are a number of properties that we wish

to preserve. To preserve the operational well-being of the banks in the network, we

require that the total lending and borrowing amounts on the stylized balance sheets

to be conserved after reorganization. This idea is expressed through constraints

(4.32) and (4.33). Additionally, after reorganization our model does not allow for

negative lending. This idea is expressed through constraint (4.34). These constraints

are achieved by using the transformation outlined in Section 4.4.1 and the safety

layer presented in Section 4.4.2. The parameters and hyperparameters used in the

construction of the complex multi-layer network and our DDPG agent, respectively,

are outlined in Table 4.2. The constrained DDPG algorithm is outlined in Appendix

C.
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Figure 4.2: A diagram of the constraint DDPG architecture interacting with the
safety layer and environment.
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4.4.1 Lending and Borrowing Constraints

This section will describe how we can modify the network without violating the

lending and borrowing constraint. Note that the α and t in the notation are dropped

in this section. This is because the framework outlined in this section is independent

of the layer in the multi-complex network and the time when the DDPG agent acts

in the environment. We define ∆L as the change in the liability network and the

new network configuration as L′ = L + ∆L. We wish to find a mapping for the

actions generated by the policy to ∆L. For a given liability matrix L we note that

Lij = 0 for i = j, therefore, we are only concerned with finding values of ∆Lij where

i ≠ j, the off-diagonal elements of ∆L. For a matrix A of size N × N we define

offdiag(A) to be the vector of size N(N − 1) containing the off-diagonal elements of

A.

In order to modify the interbank liablity network while satisfying constraints

(4.32) and (4.33), we require that ∆L satisfy the following constraints

N∑
j=1

∆Lij = 0 ∀i ∈ V, (4.37)

N∑
j=1

∆Lji = 0 ∀i ∈ V. (4.38)

To accomplish this, we solve the following homogeneous system of linear equations

Dx = 0, (4.39)
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where we define the solution vector by

x =offdiag(∆L) (4.40)

=(∆L12,∆L13, ...,∆L1N , (4.41)

∆L21,∆L23, ...,∆L2N , ...,

∆LN1,∆LN2, ...,∆LN,N−1).

We then define a constraint matrix D of size 2N ×N(N − 1) by

D =

C1 C2 ... CN

J1 J2 ... JN−1

 , (4.42)

where Cn are the sub-matrices of size N × (N − 1) for 1 ≤ n ≤ N whose entries are

equal to 1 in the nth row and 0 in all other rows. Jn are the sub-matrices of size

N ×N defined by the following recursion

J1 = I, (4.43)

Jn+1 = E(N−1),N ...E23E12Jn, (4.44)

where I is the identity matrix and Eij is the elementary matrix corresponding to the

column swapping transformation between columns i and j. The sub-matrices Cn

in this system constrain each row of ∆L to sum to zero while the sub-matrices Jn

constrain each column of ∆L. An example of the structure of the system for N = 4
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is presented below



1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

1 0 0 0 0 0 0 1 0 0 1 0

0 1 0 0 1 0 0 0 0 0 0 1

0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0





∆L12

∆L13

∆L14

∆L21

∆L23

∆L24

∆L31

∆L32

∆L34

∆L41

∆L42

∆L43



=



0

0

0

0

0

0

0

0

0

0

0

0



. (4.45)

For N ≥ 3, we have 2N ≤ N(N − 1) so the homogeneous system (4.39) has infinitely

many solutions and x ∈ null(D). This null space is useful because the solutions here

satisfy Equations (4.37) and (4.38).

In order for the DDPG agent to make a choice of ∆L, we will have it solve system

(4.39). To accomplish this, we express the vector (4.40) as a linear combination of

the basis vectors of the null space of D. That is, let k1,k2, ...,kd be the basis vectors

of null(D), then all solutions to system (4.39) are given by

Ku = x, (4.46)

where K is the basis matrix and u = (u1, u2, ..., ud) is a vector of size d and ui ∈ R

for i = 1, 2, ..., d.
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For each step in the environment the actor network will need to provide a set of

vectors u for each layer. The action space is therefore A = RMd and the output of

the actor network is then

µ(s) = (u1, u2, ..., u(Md)). (4.47)

We can then partition the elements of vector (4.47) into M vectors of length d to be

applied to the respective layers of the complex network. We will use

uα = (u(α−1)d+1, u(α−1)d+2, ..., uαd) (4.48)

to calculate the non-diagonal values of ∆Lα using Equation (4.46).

Although a more intuitive approach might be to have the DDPG agent directly

calculate ∆L, if we were to do that, the action space would then be RM(N2). However,

by using the basis matrix K as described above we can reduce the dimension of the

action space.

Theorem 4.4.1. Let D be the constraint matrix as described by Equation (4.42) for

a liability network of size N ×N where N ∈ N such that N ≥ 3. Then the dimension

of the action space for a single layer network is reduced by 2N − 1, from N(N − 1) to

N2 − 3N + 1.

Proof. Given a constraint matrix D as described by Equation (4.42), let Di be the

ith row of matrix D. We note that the first row can be written as the following linear

combination

D1 =
2N∑

i=N+1

Di −
N∑
i=2

Di, (4.49)

and so, D1 is linearly dependent and can be made into a zero vector by subtracting
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the first row by Equation (4.49), resulting in

 0 C2 ... CN

J1 J2 ... JN−1

 , (4.50)

where 0 is the N × (N − 1) zero matrix. Second, swapping the first N rows with the

last N + 1 to 2N rows gives J1 J2 ... JN−1

0 C2 ... CN

 . (4.51)

Third, we shift row DN+1 down until we getJ1 J2 ... JN−1

0 C1 ... CN−1

 . (4.52)

Finally adding −DN to DN+1 givesJ1 J2 ... JN−1

0 C1 + Z ... CN−1 + Z

 , (4.53)

where Z is a sub-matrix of size N × (N − 1) with elements

Zij =

−1 if i = 1, j = 1,

0 otherwise.
(4.54)

The matrix D is now in reduced row echelon form and by inspection we find that the
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Rank(D) = 2N − 1. Now by the rank-nullity theorem, we have

Rank(D) + Nullity(D) = N(N − 1), (4.55)

and the Nullity(D) is then given by

Nullity(D) = N(N − 1)− Rank(D), (4.56)

= N(N − 1)− (2N − 1), (4.57)

= N2 − 3N + 1. (4.58)

Therefore, the dimension of the action space for a single layer network is N2 − 3N +

1.

By theorem 4.4.1 the exact size of the action space is reduced by 2N − 1 and, in

fact, the dimension of the action space is d = N2 − 3N + 1. Again we note that the

matrix K is layer-independent and only needs to be calculated once. Therefore the

action space of concern is denoted by A = RM(N2−3N+1).

4.4.2 Safety Layer: Non-negativity Constraints

The framework described above conserves the total lending and borrowing amounts of

each bank but still allows for the possibility of negative lending amounts after a single

step through the environment. In order to maintain the non-negativity conditions on

Lα(t+ 1), we pass the action through a QP problem inspired by Dalal et al. (2018).
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This amounts to solving the following QP problem

arg min
xα

1

2
∥Kxα −Kuα∥2

subject to offdiag(Lα(t)) +Kxα⪰ 0,

(4.59)

where the inequality ⪰ represents an element-wise inequality. The constraints of

problem (4.59) ensure that after a step ∆L the elements of L(t + 1) will be non-

negative. The QP problem itself aims to perturb the off-diagonal elements of ∆L in

the Euclidean norm in order to satisfy constraint (4.34). Practically, we utilize the

CPLEX solver to solve problem (4.59).

By imposing these constraints, the actions from the agent will result in a liability

network where the total lending and borrowing amounts appearing on their balance

sheet are preserved. And after modifying the network structure, the non-negativity

constraint will also be preserved. This will reduce the impact of the change in lending

relationships on the banks’ operations. We also note that by using the methods

described in Section 4.4.1, we are able to avoid including constraints (4.32) and (4.33)

to problem (4.59). A diagram detailing the flow of the policy through the safety layer

can be found in Figure 4.3.

4.4.3 Initializing the Complex Network and DDPG Agent

To generate our complex network we will start by using the R package systemicrisk to

build the interbank liability matrix Lα. In doing so, we can forgo the use of Equation

(4.2). Following Diem (2020), we begin by randomly sampling the row and column
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Optimal Policy

µ(s)

Safety Layer
Non-negativity

Constraint
Row/Column
Constraint

Kx̃α → ∆Lα
argmin

xα
f (s,uα,xα)

u1

u2
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uM
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x̃2
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x̃M

∆L1

∆L2

...
∆LM

Figure 4.3: A diagram describing how the optimal policy is modified using the safety
layer. The optimal policy µ(s) is first partitioned into M policies for the respective
layers of the multi-layer network. Each of these policies are then fed into the safety
layer to operate on the policy to constrain the rows/columns and non-negativity
condition of L(t + 1) respectively. The constrained action Kx̃α contains the off-
diagonal elements of a feasible ∆L.

sum vectors l̂α and âα of Lα, respectively, where

l̂α = (l̂α1 , l̂
α
2 , ..., l̂

α
N),

âα = (âα1 , â
α
2 , ..., â

α
N).

In our experiments, we consider three different network sizes where N ∈ {10, 20, 30}.

Let b ∈ B̂,m ∈ M̂, s ∈ Ŝ be the set of indices denoting the big, medium, and small

banks respectively. The elements of the row and column sum vectors are sampled

from the following uniform distributions

l̂αb ∼ U (6000, 10000), l̂αm ∼ U (2000, 6000), l̂αs ∼ U (500, 2000),
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and

âαb ∼ U (0, 2000), âαm ∼ U (0, 700), âαs ∼ U (0, 150),

where B̂ = {1},M̂ = {2, 3}, Ŝ = {4, ..., N} for N = 10 and B̂ = {1, 2},M̂ =

{3, 4, 5}, Ŝ = {6, ..., N} for N = 20, 30. The systemicrisk package estimates interbank

liability matrices satisfying l̂α and âα based on Bayesian methodology developed by

Gandy and Veraart (2017).

With the liability matrices given, we can set the total asset value of the entire

network using A = s
∑
α

∑
i,j

Lα
ij where s > 1. The relative proportion of the network

value that is used for lending can then be calculated as

θα =

∑
i,j

Lα
ij

A
. (4.60)

Finally, we can generate the balance sheet of each bank in the network using Equations

(4.3) to (4.6). We set the cash deposit ratio to be β = 0.18 and the equity capital

ratio for each bank i to be sampled from the following interval, γi ∈ (0.07, 0.2).

When modifying the reward function to incorporate credit risk, we set γi = 0.2 with

ki ∈ (0.07, 0.12) ∪ (0.85, 1.0). The important quantity to consider on the balance

sheet is the equity given by Equation (4.4) as this value is used in the calculation

of the DR. Other values of the balance sheet may be used to calculate any other

relevant financial variables, as required.

To test the effectiveness of applying RL in reducing systemic risk, we train and

evaluate the RL agent on a number of different network structures. We also tested the

flexibility of using RL by incorporating the notion of credit risk using the modified

reward function, Equation (4.36).
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Given the simulated multi-layer complex network we can begin reducing the

systemic risk using DDPG. We use the Tensorflow TF-Agents framework to accomplish

this task. For both actor and critic networks, we use three-layer neural networks with

node sizes (256, 256, 256). The parameter settings for the DDPG agent can be found

in Table 4.2. Training was done for 8000 total iteration steps.

Table 4.2: Parameter settings for the DDPG agent.

Hyperparameter Value Description

actor lr 3× 10−5 Actor learning rate
critic lr 3× 10−4 Critic learning rate
γ 0.80 Discount factor
τ 0.001 Factor for the soft update of target networks
Nmini 256 Batch size
D 750 Replay buffer size
T 50 Maximum number of steps per episode

4.4.4 Single Layer Case

In the single layer case, we will be investigating the effectiveness of the RL agent

in reducing the systemic risk of the network and the effect of modifying the reward

function for preferential reduction in DR for particular banks across the single layer

network. For the single-layer case experiments, we let N ∈ {10, 20, 30} and M = 1.

The reward function used in reducing the systemic risk is Equation (4.35). To

preferentially reduce systemic risk for highly leveraged banks, we consider the reward

function (4.36) using four different weighting schemes. The DR distribution for the

complex networks when exploring the effectiveness of the different weight functions is

approximately uniform. This allows us to more easily judge the differences between

the weight functions. In this way we can compare the different weight functions in a
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fair manner.

wuniform(ki) = 1.0, (4.61)

wlinear(ki) = ki, (4.62)

wexp,v(ki) = evki . (4.63)

The first and second weighting schemes use a constant weight of 1.0 and linear weights

comprising of the leverage ratio defined by Equations (4.61), and (4.62) respectively.

The third and fourth weighting schemes use an exponential weight dependent on

the leverage ratio defined by Equation (4.63) with parameter v = 1.0 and v = 10.0

respectively.

4.4.5 Multi-layer Case

In the mutli-layer case, we will be investigating the effectiveness of the RL agent in

reducing the systemic risk of the network and presenting some observations on the

network characteristics of multi-layer networks. For the multi-layer experiments we

let N ∈ {10, 20, 30} and M ∈ {1, 2, 3}. Therefore, the RL agent will be tasked with

reducing systemic risk under nine different network sizes. Similar to the single-layer

case, the reward function used in reducing the systemic risk is Equation (4.35). The

DR however, is calculated using the multi-layer DR algorithm outlined in Section

4.2.3.

Given the optimized complex networks, we can observe the different characteristics

of a multi-layer complex network after it has been modified by our RL model. We

present the density, Jaccard distance, clustering coefficient, and average-weighted

neighbour degree. The density for layer α of the multi-layer complex network is given
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by

d =
mα

N(N − 1)
, (4.64)

where mα is the number of edges in layer α and N is the number of banks. This is

the number of edges divided by the total number of possible edges. Therefore, the

density can serve as a measure of sparsity.

To compare the differences between each layer of the network before and after

optimization, we use the Jaccard distance measure. Given the two sets of edges Eα

and Eκ we can calculate the Jaccard distance by

dJ(Eα, Eκ) = 1− J(Eα, Eκ), (4.65)

where J(Eα, Eκ) is the Jaccard similarity index between layers α and κ. The Jaccard

similarity index is calculated as

J(Eα, Eκ) =
|Eα ∩ Eκ|
|Eα ∪ Eκ|

. (4.66)

The Jaccard distance measures the dissimilarity between the different layers by

comparing the proportion of similar edge connections between the layers. The

directed networks are converted to undirected networks before calculating the Jaccard

distance.

Next we compute the clustering coefficient, treating each layer of the network as

a directed unweighted graph. The clustering coefficient ci for node i in layer α of the

multi-layer complex network is given by

ci =
Ti

2(kα
total,i(k

α
total,i − 1)− 2kα

↔,i)
, (4.67)
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where Ti is the number of all directed triangles formed by node i and

kα
total,i = kα

out,i + kα
in,i (4.68)

is the total degree of node i in layer α and kα
↔,i is the number of bilateral edges

between node i and its neighbours. Equation (4.67) measures the clustering coefficient

for a directed unweighted graph. The clustering coefficient is the ratio between all

directed triangles and the number of possible triangles which measures the tendency

of the network to form tightly connected neighbourhoods (Fagiolo, 2007).

Finally, treating each layer of the network as a directed weighted graph, we

compute the average-weighted neighbour degree (Diem et al., 2020). The average-

weighted neighbour degree kα
nn,i for i in layer α of the multi-layer complex network is

given by

kα
nn,i =

1

sαi

N∑
j=1

(Lα
ij + Lα

ji)k
α
total,j, (4.69)

where

sαi =
N∑
j=1

Lα
ij + Lα

ji (4.70)

is the weighted node degree of bank i in layer α.

4.5 Results and Discussion

We will be evaluating the effectiveness of our constraint DDPG model in reducing

systemic risk for two cases: (1) the single-layer case and (2) the multi-layer cases.

It should be noted that given the nature of RL, it cannot be guaranteed that the

reduced DR is a global optimum. However, with this trade-off, we are granted the

flexibility of RL allowing the DDPG agent to directly consider the recursive DR
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measure in its reward. Additionally, we introduce the idea of preferential systemic

risk reduction to the DDPG agent by modifying the reward function whose results

can be found in Section 4.5.1. Furthermore, to adapt the RL model to a multi-layer

case we simply extend the DDPG agent’s action to different layers and modify the

reward function to include the DR of different layers whose results can be found in

Section 4.5.2. The DDPG agent was tested on two types of networks. The first type

consisting of a few number of large banks and the second type consisting of banks of

similar sizes. In all cases we use the same set of hyperparameters described in Table

4.2. With more sophisticated hyperparameter tuning methods, it is suspected that

the DR can be further reduced.

4.5.1 Single-layer Complex Network

The results in Figures 4.4 and 4.5 were generated using Equation (4.35) as the reward

function with N = 30 and M = 1. The DR calculated in this section uses the

conventional DR algorithm. For this particular network, the DR was reduced from

10.21 to 2.58. The DDPG agent achieved a reduction of 74.73%. From Figure 4.4,

it can be observed that every bank has had their DR significantly reduced after

optimization. Although the degree of reduction in DR between each bank varies, we

did not observe an increase in DR for any bank.

From Figure 4.5 we can see how the network changes before and after optimization

by the DDPG agent. An obvious increase in the sparsity can be observed. Using

the policy that provides the greatest minimization of the DR we calculate average

DR reduction across 100 episodes. From Table 4.3 we find that the DR was reduced

significantly for all network types of size N ∈ {10, 20, 30} and M = 1, the level of

reduction achieved ranged from 70% to 75%.
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Figure 4.4: The DR of single-layer network of size N = 30. The banks are ordered
from largest to smallest based on their DR. The red bars represent the initial levels
of DR while the blue bars represent the optimized levels of DR.

The reward functions in this chapter are designed to incentivize the DDPG agent

to reduce the overall systemic risk of the network. By introducing the weight factors

(4.61)-(4.63) and using reward function (4.36), we aim to incentivize the agent to

reduce the overall systemic risk while also preferentially reducing the DR of highly

leveraged banks. The level of reduction in DR using the uniform weight factor (4.61)

will be treated as the benchmark (where there is effectively no weight factor on the

DR of each bank). In Figure 4.6, we compare the total DR for each leverage group.

For the low leverage banks, we find that the total DR when using the linear and

exponential weight functions is similar or greater compared to the benchmark total

DR. The opposite observation is made for the high-leverage group. That is, when
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Figure 4.5: The structure of the single-layer complex network of size N = 30, where
red represents high DR and blue represents low DR. The size of the circle represents
the initial equity of the banks. The directed edges represent the lending relationship
from bank i to bank j

using linear and exponential weight functions, the total DR is lower compared to the

benchmark total DR.

Note that despite higher leveraged banks receiving a greater weight in magnitude

when using the exponential weight functions (4.63) compared to linear weight functions

(4.62), we find that this does not necessarily mean there is a greater prioritization

for the reduction of DR with respect to credit risk. From Figure 4.6, we observe

that the linear weight provides a much more significant bias to reduce the DR of

high leverage banks when compared to using the exponential weights with v = 10.0.

This variability may be due to the stochastic nature of RL in training and the initial

network structure to be optimized. Despite this observation, the modification to the

reward function appears to encode the desired preferential reduction in systemic risk

for highly leveraged banks when compared to not applying any weighting.
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Figure 4.6: The low and high leverage banks were separated into two groups and the
average total optimized DR was plotted for a network of size N = 30,M = 1. The
average and standard deviation (presented as error bars) was calculated using 100
episodes.

Additionally, regardless of the weight function used, the main goal of the DDPG

agent was achieved where the DR of the networks is reduced overall. The change in

the DRs can be found in Table 4.3. The DDPG agent achieved a reduction as low as

67% to as high as 77% in DR depending on the weight function used. Preferentially

reducing systemic risk of highly leveraged banks is beneficial because although some

banks might have high levels of systemic risk, their credit risk might also be lower. In

this case, reducing the systemic risk of banks with higher credit risk can be prioritized
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by simply modifying the reward function.

Table 4.3: The average initial DR, optimized DR, and % reduction under each
weighting scheme (Uniform, Linear, and Exponential with v = 1.0 and v = 10.0).
The results are generated using single layer networks of size N ∈ {10, 20, 30} over
100 episodes. The standard deviations are presented in the brackets.

N
Uniform Linear

Initial DR Optimized DR % Reduction Initial DR Optimized DR % Reduction

10 7.85 (0.41) 2.31 (0.26) 70.52 (3.94) 7.84 (0.38) 2.61 (0.40) 66.62 (5.53)
20 11.37 (0.48) 2.69 (0.16) 76.27 (1.52) 11.36 (0.50) 3.14 (0.19) 72.34 (2.09)
30 13.28 (0.49) 3.31 (0.18) 75.02 (1.55) 13.22 (0.57) 3.05 (0.19) 76.87 (1.65)

Exponential (v = 1.0) Exponential (v = 10.0)

10 7.86 (0.32) 2.36 (0.26) 69.98 (3.50) 7.83 (0.31) 2.60 (0.35) 66.75 (4.76)
20 11.44 (0.49) 3.13 (0.27) 72.62 (2.41) 11.44 (0.52) 3.07 (0.32) 73.07 (3.11)
30 13.28 (0.53) 3.08 (0.16) 76.82 (1.36) 13.23 (0.50) 3.34 (0.36) 74.76 (2.73)

4.5.2 Multi-layer Complex Network

All DRs in this section were reduced using Equation (4.35) as the reward function for

the DDPG agent. Figures 4.7 and 4.8 were generated using a complex network of size

N = 30,M = 3. The initial DR that was calculated before applying the DDPG agent

was 11.10. After training and evaluation, we found that the DR was reduced to 6.53,

a reduction of 41%. In Figure 4.7, a notable increase in DR can be observed across

layers. This is expected as the multi-layer DR algorithm accounts for the inter-layer

contagion spreading through successive layers. As distress accumulates from one layer

to another, the equity of the banks may not be sufficient to cover the default of loans

in higher layers. The equity of the banks in distress are reduced by the lending amount

proportional to the distress experienced in the previous layer described by Equation

(4.11). Despite the additional level of systemic risk accumulated in a multi-layer
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network, we can see that by modifying the previous layers’ structure we can reduce

the overall DR by some amount in the subsequent layers. This is further evident

when we note that the initial DR of the first, second and third layer are 1.14, 3.21,

and 6.74 respectively. After reduction, the DR in the first, second and third layers

was 0.62, 2.05, and 3.85. Therefore, the reduction achieved across the layers was 46%,

36%, and 43%, respectively. We find the greatest reduction in systemic risk in the

first layer, despite having a relatively low level of initial DR compared to the other

layers. Considering that the distress from the first layer propagates to the following

layers, targeting the layer where the distress originates for optimization may prove to

be the most effective. In this example, the DDPG agent targets the first layer, but

other network configurations and different shock propagation dynamics may present

different nodes or layers to prioritize.

The average optimized DRs can be found in Table 4.4. For all network types in

the multi-layer case, we found that the DDPG agent was able to achieve an average

reduction ranging from 8% to 57%. The lowest reduction achieved was in the case of

similar sized banks with N = 30,M = 3 with a reduction of 8%. This may be due to

the already low average initial DR. The network structure consisting of similarly sized

banks in a multi-layer setting may also present some difficulty in DR reduction for

the DDPG agent. Bear in mind Glasserman and Young (2015) report that contagion

effects are more pronounced when node sizes are heterogeneous, suggesting that the

performance of the DDPG agent under the "Few Large Banks" scenario should take

higher precedence. By allowing contagion to accumulate across successive layers, we

find that the increase in overall distress results in an overall lower level of systemic

risk reduction achieved after optimization.

From Figure 4.8, the reorganization of the multi-layer complex network results in

an increase in sparsity of the network based on the density of the edges. The average
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Table 4.4: The average DR of the initial and optimized networks along with the
% reduction after optimization for multi-layer networks of size N ∈ {10, 20, 30}
and M ∈ {1, 2, 3} over 100 episodes. The values in the brackets are the standard
deviations. The DR values are calculated using Equation (4.35). The ratio of large
to medium to small banks under the "Few Large Banks" scenario is 1:2:8 for N = 10
and 2:3:(N -5) for N = 20, 30, while the distribution of bank sizes is uniform under
the "Similar Sized Banks" scenario.

N M
Few Large Banks Similar Sized Banks

Init. DR Opt. DR % Red. Init. DR Opt. DR % Red.

10
1 7.81 (0.30) 3.40 (0.19) 56.38 (2.73) 7.86 (0.33) 2.25 (0.24) 71.32 (3.23)
2 7.00 (0.28) 4.41 (0.22) 36.91 (4.05) 5.53 (0.21) 3.32 (0.12) 39.89 (2.83)
3 7.00 (0.24) 4.70 (0.12) 32.88 (2.79) 4.87 (0.10) 3.13 (0.11) 35.72 (2.32)

20
1 13.88 (0.52) 4.11 (0.33) 70.37 (2.71) 11.62 (0.48) 3.02 (0.12) 73.99 (1.52)
2 11.98 (0.29) 5.54 (0.09) 53.75 (1.18) 6.19 (0.17) 4.24 (0.08) 31.52 (2.21)
3 10.03 (0.20) 5.95 (0.30) 40.68 (3.33) 4.90 (0.08) 4.21 (0.05) 14.05 (1.62)

30
1 18.79 (0.64) 4.04 (0.38) 78.46 (2.10) 13.13 (0.49) 3.20 (0.24) 75.63 (1.87)
2 13.38 (0.38) 5.72 (0.51) 57.21 (4.28) 6.14 (0.11) 4.15 (0.08) 32.38 (1.51)
3 11.29 (0.21) 6.66 (0.13) 41.05 (1.48) 4.81 (0.05) 4.41 (0.03) 8.24 (0.71)
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Figure 4.7: The DR of multi-layer network of size N = 30. The DRs in this plot are
weighted by each layer’s total relative economic value, vα. The banks are ordered
from largest to smallest based on their DR. The red bars represent the initial levels
of DR while the blue bars represent the reduced levels of DR.

density values for each layer of the corresponding networks can be found in Table 4.5.

We observe that in every case of optimization, the average density was lowered. It
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appears that given the larger network size, a larger reduction in density is observed.

Although the increase in sparsity is consistent with what has been observed in other

studies, this observation is not necessarily unique to an optimized network with low

DR, as networks with high DR after optimization have been observed as well (Diem

et al., 2020).

Figure 4.8: The structure of the multi-layer complex network of size N = 30, where
red represents high DR and blue represents low DR. The size of the circle represents
the initial equity of the banks. The directed edges represent the lending relationship
from bank i to bank j

Comparing the Jaccard distances in Table 4.6 across the different layers for the

initial networks, we find that there is some similarity between all layers. After

optimization any similarities between the layers are significantly reduced. That is,

the topology of each layer becomes more dissimilar, suggesting that holding more

dissimilar lending patterns across loans with differing maturities may produce complex

networks more resilient against systemic risk. However, the benefits of diversification

for the reduction of systemic risk are heavily debated and have been shown to be
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Table 4.5: The average initial and optimized density for multi-layer complex networks
of size N ∈ {10, 20, 30}, and M ∈ {1, 2, 3} for each respective layer over 100 episodes.
The values in the brackets are the standard deviations. The initial and optimized
density are the density before and after optimizing the network configuration with
respect to the DR, respectively.

N 30 20 10

M α Init. Density Opt. Density Init. Density Opt. Density Init. Density Opt. Density

1 1 0.55 (0.05) 0.07 (0.00) 0.57 (0.05) 0.11 (0.00) 0.47 (0.06) 0.21 (0.00)

2 1 0.54 (0.04) 0.08 (0.01) 0.55 (0.06) 0.12 (0.01) 0.56 (0.07) 0.25 (0.01)
2 0.55 (0.04) 0.09 (0.01) 0.57 (0.05) 0.10 (0.00) 0.46 (0.05) 0.22 (0.01)

3
1 0.52 (0.04) 0.07 (0.00) 0.57 (0.05) 0.11 (0.00) 0.59 (0.07) 0.22 (0.01)
2 0.54 (0.04) 0.07 (0.00) 0.54 (0.06) 0.11 (0.01) 0.56 (0.08) 0.22 (0.01)
3 0.55 (0.04) 0.07 (0.00) 0.56 (0.04) 0.11 (0.00) 0.46 (0.05) 0.21 (0.00)

intimately related to systemic risk (Gai & Kapadia, 2019; Yang et al., 2020). Acemoglu

et al. (2015) has shown that diversification protects well against small shocks but

poorly against large shocks. Through empirical evidence, Yang et al. (2020) argues

that large and medium sized banks contribute to systemic risk through diversification.

Figure 4.9a depicts the total average neighbour degree of the banks in the multi-

layer complex network. We find that there is a significant change in the network

characteristics after optimization. After optimization, a large number of banks will

have a reduced total average neighbourhood degree. In all layers, it can be observed

that before optimization, networks with high DR will have a large total average

neighbourhood degree. After optimization, the networks have a reduced total DR

and lower total average neighbourhood degree. This is consistent with Teteryatnikova

(2014) who has shown through a tiered banking system that a negative correlation

between neighboring banks’ degree can increase the resilience of the network. Figure

4.9b shows the average clustering coefficient of the multi-layer network, we find that
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Table 4.6: The matrices containing the average Jaccard dissimilarity between the
layers of multi-layer complex networks of size N ∈ {10, 20, 30}, and M = 3 over
100 episodes. The values in the brackets are the standard deviations. The initial
and optimized Jaccard dissimilarity are the Jaccard dissimilarity before and after
optimizing the network configuration with respect to the DR, respectively.

N α
Initial Optimized

1 2 3 1 2 3

10
1 0 0.33 (0.09) 0.41 (0.08) 0 0.63 (0.02) 0.64 (0.03)
2 0.33 (0.09) 0 0.42 (0.08) 0.63 (0.02) 0 0.59 (0.03)
3 0.41 (0.08) 0.42 (0.08) 0 0.64 (0.03) 0.59 (0.03) 0

20
1 0 0.35 (0.05) 0.34 (0.04) 0 0.80 (0.01) 0.83 (0.01)
2 0.35 (0.05) 0 0.35 (0.05) 0.80 (0.01) 0 0.83 (0.01)
3 0.34 (0.04) 0.35 (0.05) 0 0.83 (0.01) 0.83 (0.01) 0

30
1 0 0.37 (0.03) 0.37 (0.04) 0 0.90 (0.00) 0.90 (0.01)
2 0.37 (0.03) 0 0.36 (0.04) 0.90 (0.00) 0 0.93 (0.00)
3 0.37 (0.04) 0.36 (0.04) 0 0.90 (0.01) 0.93 (0.00) 0
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(a) Total average neighbourhood degree (b) Average clustering coefficient

Figure 4.9: The total DR was plotted against (a) the total average neighbour degree∑Navg
i=1 kα

nn,i in layer α. (b) The average clustering coefficient 1
Navg

∑Navg
i=1 ci. Both plots

were generated using multi-layer complex networks of size N = 30, and M = 3 over
Navg = 100 episodes.

after optimization, the average clustering coefficient is reduced for the majority of the

networks. This suggests that the banks in the network begin to form less complete

subgraphs with their neighbours after optimization. This characteristic may help

reduce systemic risk, as the subgraphs have fewer channels for the spread of contagion.

4.5.3 Feasibility and Regulatory Guidance

In our model we delegate the task of discovering lower systemic risk networks to a

single RL agent. To accomplish this task, the RL agent is incentivized through the

use of reward functions. At the same time, we attempt to mitigate the disruption
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to the operation of the banks by constraining the change to the total lending and

borrowing amounts of a bank. In reality, there are many factors such as interest

rates, credit worthiness, and liquidity that influence their decision making process.

Explicitly modifying an actual interbank network presents a practicability issue as

banks have several objectives and constraints to achieve and satisfy.

To clarify, we do not suggest imposing the network configuration designed by the

RL agent on the participants of a real interbank network. Instead, the optimized

networks from our model can serve as a benchmark to aid in designing regulatory

policies when considering the multi-layer aspects of interbank networks, which is a

use case that has been similarly suggested by Diem et al. (2020), Li et al. (2019),

and Pichler et al. (2021). To encourage reorganization of the real interbank network,

Poledna and Thurner (2016) and Poledna et al. (2017) propose to implement a

systemic risk tax. This is a tax on transactions between any two counterparties to

incentivize the formation of lower systemic risk networks. Their systemic risk tax is

dependent on the change in expected systemic loss, a function of the DR of every

bank in the network. In our model, the RL agent is guided by a relative change

in DR of the network after every optimization pass. While the functional forms of

the incentives are different, the marginal change to DR is a similar concept in both

models.

An approach that may admit a more interpretable incentive mechanism would be

to consider a multi-agent RL model such as the Multi-agent DDPG algorithm (Lowe

et al., 2017). In this case, each bank can represent an agent and the environment can

be designed to be competitive with respect to their own objectives or cooperative

with respect to reducing overall systemic risk. The reward functions would then

represent a direct incentive influencing the behaviour of each bank and hence, the

evolution of the interbank network.
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4.6 Conclusion

RL is an incredibly powerful tool that proves to be effective in the context of systemic

risk management. In the final portion of this dissertation, we introduce a systemic risk

reduction framework that takes advantage of RL by modifying the classical DDPG

algorithm. The model reorganizes the interbank lending relationships of banks into a

configuration that better mitigates the effects of contagion. The asset composition of

the multi-layer networks consisted of short-term and long-term debts. In our model,

the repayment of long-term debts is dependent on the solvency of short-term debts.

To calculate the systemic risk of such a network, we propose a new measure of

DR accounting for the contagion that may spread from one layer to another as well

as accounting for the impact of previous defaults on the individual banks’ ability to

repay future debts. The behaviour of the RL agent is guided by the reward function,

and as a result, our RL agent is capable of solving problems in assessing and managing

systemic risk.

To the best of our knowledge, this currently cannot be solved by traditional

optimization techniques, since a recursive algorithm can be challenging to incorporate

into the objective function of the optimization problem. We propose the DR reduction

learning algorithm, called constraint DDPG, to find a network structure with reduced

systemic risk. In order to satisfy the borrowing and lending constraints and maintain

non-negativity with respect to the individual banks’ lending after applying the

DDPG agent’s action, we modify the actor output in two ways. The first is by

proposing a homogeneous system of linear equations whose solutions satisfy the

lending and borrowing constraint. The second is the safety layer, which satisfies the

non-negativity constraint by solving a QP problem. The effectiveness of our model

was tested on different single-layer and multi-layer networks with varying sizes, layers,
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and distribution of assets.

The performance of the RL agent was evaluated based on the level of DR reduction

achieved. In all cases, a reduction in DR was observed, suggesting that RL is indeed

an efficient tool in producing network structures that have reduced systemic risk

in terms of DR. In the single-layer case, a reduction as high as 75% was observed

while in the multi-layer case a reduction as high as 57% was observed. We find that

the optimization process results in considerably different network topologies. The

density, average neighbourhood degree, and clustering coefficient were observed to

decrease after optimization. The Jaccard distance increased between the layers after

optimization.
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Chapter 5

Conclusion

In this dissertation, two areas of risk in finance were addressed. With respect to

credit risk, we augmented the use of traditional Markov chain modelling with SBC

to improve credit rating transition matrix estimation, fundamental in credit risk

assessment. We then made further improvements to the predictive capabilities of

the model by extending the first-order SBC model to higher-order Markov models.

Additionally, the use of higher-order Markov chains allows for the consideration of

credit rating momentum in the estimation process. To reduce systemic risk, we

develop a novel and flexible RL framework capable of generating multi-layer network

configurations possessing lower levels of systemic risk. At the same time, we extend

the traditional DebtRank measure to consider transmission of distress between the

different layers of the financial system. To conclude this dissertation, we summarize

the work done in each chapter, discuss some limitations, and provide some future

research directions.
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5.1 Summary of Works

This dissertation can be effectively split into two parts. We opened the dissertation

with studying the advantages of employing SBC for estimating credit rating transition

matrices in Chapter 2. The transition matrices were estimated strictly from historical

credit rating sequences. The credit rating data set consisted of credit rating sequences

of Korean companies dating from 1986 to 2018. To cluster the sequences, the

sequences must first be converted into sequence matrices. Given the sequence matrix

representation, clusters of sequence matrices were generated using PCA-guided K-

means. Next, first-order transition matrices, representative of each cluster, were

estimated based on the sequences within the respective clusters. Finally, the estimated

transition matrices were used to make predictions about the future behaviour of the

crediting rating sequences given the current rating of the sequence. The proposed first-

order SBC model was evaluated under 3 different long-term classification scenarios;

7 class credit rating prediction, credit rating transition direction (upgrade, stay, or

downgrade) prediction, and default behaviour prediction. All three classification

scenarios produced promising results suggesting that an ensemble of representative

transition matrices based on each respective cluster better describes future credit

rating behaviour than a single transition matrix.

Chapter 3 extended the work done in Chapter 2 by using higher-order Markov

chains to represent each cluster. A higher focus was placed on the absorbing behaviour

of these sequences where absorption represents the realization of default in credit risk.

Just like in the first-order case, we test the higher-order model’s ability to predict

defaults by using strictly historical credit rating sequences from Korean companies

from 1986 to 2018. In addition to credit risk assessment, we explored the higher-order

SBC model’s ability to generalize in the context of Web-usage mining. Web browsing
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data from the Wikispeedia game was used test the model under two classification

scenarios. First, we assessed its ability to predict the likelihood of absorption within

a number of transitions. Second, we evaluated its ability to estimate the remaining

length of a Web browsing session. Using the credit risk data, we found that high-

order Markov models alone exhibit superior predictive performance over first-order

models, where further improvement was observed with the addition of SBC. Using

the Web-usage mining data, SBC provided significant improvement over both first-

order and high-order models in predicting absorption within a specified number of

transitions while high-order Markov models showed considerable promise in estimating

the remaining duration of the browsing session.

Finally, we shifted our focus to the broader context of systemic risk in Chapter

4. We introduced a novel RL framework to assess and manage systemic risk in a

multi-layer financial network by taking advantage of RL. New network configurations

possessing reduced levels of systemic risk were discovered by applying the DDPG

algorithm to reorganize the multi-layer interbank lending networks. The new network

configurations were better able to mitigate the spread of contagion. The reorganization

procedure itself was constrained in order to preserve the balance sheet of every bank.

To achieve this, we developed a constraint DDPG model inspired by Dalal et al.

(2018), consisting of a safety layer coupled with a linear mapping to satisfy the total

borrowing and lending amounts of each bank. Moreover, we extended the traditional

DR measure by taking into account how contagion spreads from one layer to another,

resulting in a new multi-layer DR algorithm. Testing against networks of varying

size and depth, our DDPG agent was able to significantly reduce systemic risk levels,

suggesting the feasibility and utility of employing RL in managing systemic risk

through aiding regulatory policy design. Additionally, we observed an increase in

sparsity and an increase in network dissimilarity between the different layers of the
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network after optimization.

5.2 Limitations and Future Extensions

While the ability of SBC appears to be quite promising there are some limitations.

As demonstrated in Chapter 3, the performance of the model to predict absorbing

behaviour is highly dependent on the data set used and so, one must take care to

ensure the quality of the data is high, sufficiently processed, and can be appropriately

modelled using Markov chains. With respect to the models themselves, an inherent

limitation of high-order Markov chains is the curse of dimensionality. Indeed, the

addition of SBC offers some relief by acting as a viable alternative to high-order

models in the first-order case. While in some cases, this may be sufficient, in other

cases, the best performance in predictive ability is desired. Hence, we provide evidence

that a combination of SBC and higher-order Markov chains can potentially offer

the greatest performance. Meaning, to achieve the greatest performance possible,

higher-order Markov chains are necessary and the curse of dimensionality must be

addressed in some way. By exploring and building upon parsimonous transition

estimation methods such as the MTDg method by Raftery (1985b), our models can

also serve to benefit greatly.

Regarding our credit risk assessment models, there are a number of possible

extensions that can be made. The clustering algorithm used the Euclidean distance

measure to distinguish similarity between different sequence matrices of firms. One

can develop and incorporate a distance measure that considers transition risks. In

the context of credit risk, the Euclidean distance measure is not able to distinguish

clusters by their “riskiness” to start, one can refer to Trueck and Rachev (2005)

for ideas on comparing transition matrices. Another extension could include using
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more sophisticated models making use of other features of financial companies after

clustering their respective sequence matrices.

A number of extensions can also be made with respect to the high-order portion

of our model. In our model we use a single order choice for our high-order transition

matrices for each cluster. However, depending on the resulting clusters generated, a

single order choice may not be enough. That is, the order choice may be dependent

on the characteristics of the cluster one wishes to represent. The question then is

how to decide the degree to which the Markovian characteristics are expressed or not

and which order of the Markov model to use for a particular cluster. SBC appears

to be viable alternative to high-order Markov chains and given its highly tractable

nature, one should be able to seamlessly integrate other models to represent each

cluster generated. Therefore, it would be interesting to explore more sophisticated

models and the effect SBC has on them.

Just like our credit risk models, the systemic risk RL framework proposed in

Chapter 4 is not without limitations. The study was in part made possible thanks

to the simulation methods outlined in Li et al. (2019) and Maeno et al. (2013).

Meaning the results presented were based on a purely simulated multi-layer interbank

lending network. Hence, the network structure and constraints used may not be

representative of what is present in real world interbank lending networks. Another

issue common with some RL problems is the idea of explainability or interpretability

of the actions of the RL agent. Unlike applications of RL in other fields such as

robotics or self-driving vehicles, by choosing the actions of the RL agent as parameters

of a linear combination of bases, this task becomes extremely difficult. Even after

transforming the actions into lending changes, the number of changes scales with the

number of participants of the network which adds to the explainability difficulty.

Finally, we present some potential extensions of our work in systemic risk reduction
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using RL. While we only consider a multi-layer interbank lending network, there

are many different transmission channels for systemic risk. Our model can be

extended to consider lending, security cross-holdings, derivatives, and foreign exchange

transactions using the multi-layer exposure network model presented in Poledna et

al. (2015) to start. Another extension could include a multi-action RL framework

to consider equity levels or redistribution of wealth across different layers. At the

moment, we assign a single DDPG agent with the task to reduce the systemic risk

of an entire multi-layer complex network. The alternative approach to this problem

is to design a multi-agent RL framework and let every bank be its own RL agent

and work cooperatively to reduce the systemic risk. As a final remark, the versatile

nature of the models presented in this dissertation allows for applications beyond the

scope of credit risk and systemic risk. We hope this level of tractability can inspire

innovation and exploration in other fields of research.
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Appendix A

First-Order Study Auxiliary Details

A.1 Algorithm

Algorithm 1 The classification algorithm for the rating prediction and transition
direction scenarios.
1: Initialize the number of clusters C, the number of folds K, state space S, input

time t, predicted time t′, time step τ , order k, and classification labels L
2: Sample Ssize sequences from the data set
3: for i = 1,M do
4: For 1 ≤ m ≤ Ssize, generate the sequence matrix based on xm(t)
5: Begin K-fold cross-validation process and split K folds
6: for j = 1, K do
7: Let the test set be the Kj fold and form the training set by combining

folds Kl for j ̸= l
8: Cluster the training set using PCA-guided K-means.
9: Generate the representative transition matrices Pτ

c for each cluster c
10: For all sequences in the test set, assign to a cluster based on respective Sm

11: Predict X̂m
t′ (∆t) and d̂m(t, t

′) for each sequence m
12: end for
13: Calculate the F1µ,i, AAi

14: end for
15: Average the performance measures across M experiments
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Algorithm 2 The classification algorithm for default behaviour prediction.

1: Initialize the number of clusters C, the number of folds K, state space S, input
time t, predicted time t′, time step τ , order k, and classification labels L

2: Sample Ssize sequences from the data set
3: for i = 1,M do
4: For 1 ≤ m ≤ Ssize, generate the sequence matrix based on xm(t)
5: Begin K-fold cross-validation process and split K folds
6: for j = 1, K do
7: Let the test set be the Kj fold and form the training set by combining

folds Kl for j ̸= l
8: Cluster the training set using PCA-guided K-means.
9: Generate the representative transition matrices Pτ

c for each cluster c
10: For all sequences in the test set, assign to a cluster based on respective Sm

11: Calculate rτc (X
m
t ) for each sequence m

12: Assign ŷm(θ) for each sequence m
13: end for
14: Calculate the F1i, AAi, Pri, Rei, dyx
15: end for
16: Average the performance measures across M experiments
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A.2 Confusion Matrices
In Appendix A.2, we present the confusion matrices for each classification scenario to
highlight the sample size and balance of the classes.

Predicted

AAA AA A BBB BB B C

Actual

AAA 19.3 6.7 0.0 0.0 0.0 0.0 0.0
AA 4.1 44.0 8.9 23.7 3.2 0.0 2.0
A 0.2 8.9 55.8 35.5 14.9 0.8 3.8
BBB 0.0 0.1 13.9 100.5 13.8 1.0 9.6
BB 0.0 0.1 3.3 18.3 69.5 6.9 1.8
B 0.0 0.0 1.0 3.5 4.3 14.3 9.0
C 0.6 0.4 0.6 1.7 0.9 0.4 82.4

(a) Clustering model using τ = 15.

Predicted

AAA AA A BBB BB B C

Actual

AAA 15.0 7.0 4.0 0.0 0.0 0.0 0.0
AA 1.0 26.7 26.2 23.1 7.0 0.0 2.0
A 0.0 5.0 45.8 47.2 18.0 0.0 4.0
BBB 0.0 1.0 6.0 99.0 24.0 0.0 9.0
BB 0.0 0.0 2.0 12.0 83.0 0.0 3.0
B 0.0 0.0 0.0 7.0 11.0 0.0 14.0
C 0.0 1.0 2.0 8.0 23.0 0.0 53.0

(b) Benchmark model using τ = 15.

Predicted

AAA AA A BBB BB B C

Actual

AAA 16.5 4.3 0.2 0.0 0.0 0.0 0.0
AA 1.3 35.3 8.3 1.7 0.0 0.0 0.3
A 0.0 7.7 64.2 40.0 5.7 1.0 3.3
BBB 0.0 1.0 7.7 124.0 32.4 0.4 7.5
BB 0.0 0.9 1.4 10.4 96.8 1.4 7.1
B 0.0 0.0 0.1 2.4 8.6 11.9 6.9
C 0.0 0.0 0.0 2.4 0.8 3.3 72.4

(c) Clustering model using τ = 5.

Predicted

AAA AA A BBB BB B C

Actual

AAA 16.0 4.0 1.0 0.0 0.0 0.0 0.0
AA 0.0 31.0 14.0 2.0 0.0 0.0 0.0
A 0.0 4.0 65.0 43.0 6.0 1.0 3.0
BBB 0.0 1.0 4.0 132.0 31.0 3.0 2.0
BB 0.0 1.0 2.0 11.0 103.0 0.0 1.0
B 0.0 0.0 0.0 4.0 11.0 15.0 0.0
C 0.0 0.0 0.0 4.0 15.0 10.0 50.0

(d) Benchmark model using τ = 5.

Table A.1: The confusion matrices using input date 2001-01-01 under the credit
rating prediction scenario.
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Predicted

-1 0 1

Actual
-1 65.1 21.9 4.0
0 16.0 261.7 43.3
1 11.4 76.8 89.9

(a) Clustering model with τ = 15.

Predicted

-1 0 1

Actual
-1 39.6 38.0 13.4
0 127.7 160.7 32.6
1 61.8 100.8 15.4

(b) Benchmark model with τ = 15.

Predicted

-1 0 1

Actual
-1 34.4 32.3 0.3
0 17.6 380.5 13.9
1 3.6 92.4 15.1

(c) Clustering model with τ = 5.

Predicted

-1 0 1

Actual
-1 0.0 67.0 0.0
0 0.0 412.0 0.0
1 0.0 111.0 0.0

(d) Benchmark model with τ = 5.

Table A.2: The confusion matrices using input date 2001-01-01 under the transition
direction prediction scenario.

Predicted

1 0

Actual 1 82.7 7.3
0 40.3 459.7

(a) Clustering model with τ =
15.

Predicted

1 0

Actual 1 68.0 22.0
0 128.6 371.4

(b) Benchmark model with τ =
15.

Predicted

1 0

Actual
1 65.0 3.0
0 22.6 499.4

(c) Clustering model with τ =
5.

Predicted

1 0

Actual
1 54.4 13.6
0 90.8 431.2

(d) Benchmark model with
τ = 5.

Table A.3: The confusion matrices using input date 2001-01-01 under the default
behaviour prediction scenario.
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A.3 Performance Measures by Credit Rating
In Appendix A.3, we present the performance of the clustering model against the
benchmark model across each credit rating using the F1 -score for each classification
scenario. The input date used for the results in the following section was set to 2001-01-
01. The following results are generated by averaging over 1000 5-Fold cross-validation
runs.

AAA AA A BBB BB B D
Rating

0.0

0.2

0.4

0.6

0.8

1.0

F1
μ

(a) Credit rating prediction with τ = 15.

AAA AA A BBB BB B D
Rating

0.0

0.2

0.4

0.6

0.8

1.0

F1
μ

(b) Credit rating prediction with τ = 5.

Figure A.1: The credit rating prediction performance of the model in terms of the F1
score for τ = 15 and 5. The left (blue) and right (orange) bar graphs are the results
using the clustering and benchmark models respectively.
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(a) Transition direction prediction with τ = 15.
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(b) Transition direction prediction with τ = 5.

Figure A.2: The transition direction performance of the model in terms of the F1
score for τ = 15 and 5. The left (blue) and right (orange) bar graphs are the results
using the clustering and benchmark models respectively.

AA A BBB BB B
Rating

0.0

0.2

0.4

0.6

0.8

1.0

F1

(a) Default behaviour prediction with τ = 15.

AA A BBB BB B
Rating

0.0

0.2
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1.0

F1

(b) Default behaviour prediction with τ = 5.

Figure A.3: The default behaviour performance of the model in terms of the F1 score
for τ = 15 and 5. The left (blue) and right (orange) bar graphs are the results using
the clustering and benchmark models respectively.

171



Appendix B

High-Order Study Auxiliary Details

B.1 Algorithms

Algorithm 3 The classification procedure using the high-order SBC model using the
credit rating data.

1: Initialize the number of clusters C, the number of folds K, state space S, input
time t, time step τ , order k, and classification labels L

2: Sample Ssize sequences from the data set
3: for i = 1,M do
4: For sequences 1 ≤ m ≤ Ssize, generate the sequence matrix based on xm(t

′)
5: Begin shuffled K-fold cross-validation process and split K folds
6: for j = 1, K do
7: Let the test set be the Kj fold and form the training set by combining

folds Kl for j ̸= l
8: Cluster the training set using K-means.
9: Generate the representative transition matrices Pk

c for each cluster c

10: Calculate B
k,(τ)
c

11: Assign ŷm(θ) for each sequence m based on xm(t
′ | k).

12: end for
13: Calculate the F1i, Acci, Pri, and Rei
14: end for
15: Average the performance measures across M experiments
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Algorithm 4 The classification procedure using the high-order SBC model using the
web-usage data.

1: Initialize the number of clusters C, the number of folds K, state space S, input
time t, time step τ , order k, and classification labels L

2: Sample Ssize,i sequences from the data set, M times without replacement
3: for i = 1,M do
4: For sequences 1 ≤ m ≤ Ssize,i, of each sample, generate the sequence matrix

based on xm(t
′)

5: Begin K-fold cross-validation process and split K folds
6: for j = 1, K do
7: Let the test set be the Kj fold and form the training set by combining

folds Kl for j ̸= l
8: Cluster the training set using K-means.
9: Generate the representative transition matrices Pk

c for each cluster c

10: Calculate mk
c and B

k,(τ)
c

11: Assign ŷm(θ) and m̃[xm(t
′ | k)] for each sequence m for t′ > k.

12: end for
13: Calculate the F1i, Acci, Pri, and Rei
14: Calculate the MAEi and MAEPSi

15: end for
16: Average the performance measures across M experiments
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B.2 Binary Classification Label Distribution

(a) Credit rating data set (b) Wikispeedia data set

Figure B.1: The classification label distribution for a sequence being absorbed or not:
The distribution in a was formed from the 677, 653, 630, and 569 valid sequences.
The distribution in b was aggregated from M = 10 samples.
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Appendix C

Constrained DDPG Algorithm
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Algorithm 5 Constraint DDPG

1: Initialize the multi-layer network
2: Randomly initialize critic network Q(s, a | θQ) and actor µ(s | θµ) with weights

θQ and θµ

3: Initialize target network Q′ and µ′ with weights θQ
′ ←− θQ, θµ

′ ←− θµ

4: Initialize replay buffer D
5: for episode = 1, Nepisode do
6: Initialize a random process N for action exploration
7: Receive an initial random observation state s1
8: for t = 1, T do
9: Calculate at = µ(st | θµ) +N according to the current policy and explo-

ration noise
10: for α = 1, M do
11: Take partition uα from at and pass to the safety layer to find x̃α

12: Use x̃α to calculate ∆Lα(t) by equation (4.46)
13: Calculate the new network by Lα(t+ 1) = Lα(t) + ∆Lα(t)
14: end for
15: Calculate the reward rt based on equation (4.35) or (4.36) and observe the

new state st+1

16: Store transition (st, at, rt, st+1) in D
17: Sample a random minibatch of Nmini transitions (si, ai, ri, si+1) from D
18: Set yi = ri + γQ′(si+1, µ

′(si+1 | θµ
′
) | θQ′

)
19: Update critic by minimizing the loss:

Lloss =
1

Nmini

∑
i

(yi −Q(si, ai | θQ))2

20: Update the actor policy using the sampled policy gradient:

∇θµJ ≈
1

Nmini

∑
i

∇aQ(s, a | θQ) |s=si,a=µ(si) ∇θµµ(s | θµ)|si

21: Update the target networks:

θQ
′ ←− τθQ + (1− τ)θQ

′

θµ
′ ←− τθµ + (1− τ)θµ

′

22: if R(L(t+ 1), e) ≥ R(L(t), e) or t = T then
23: End the episode
24: end if
25: end for
26: end for
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