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Abstract 

 

Reactive oxygen species (ROS) are emerging as regulators of protein redox states which 

influence many physiological processes. Current methods for the detection of protein redox 

states, including mass spectrometry, are expensive and not easily accessible or poorly validated. 

IRdye800CW Maleimide, a highly sensitive maleimide-based infrared dye, has been reported to 

detect the redox state of immunoprecipitated proteins in cardiac muscle using modified western 

blot procedures, but has yet to be validated as a novel tool to detect redox conditions throughout 

the proteome using common and cost-effective assays. In this study we tested the efficacy of 

IRDye800CW Maleimide in detecting protein redox state in cardiac muscle using mini-gel SDS-

PAGE and an in-well approach. Chemical and heat-induced modifications to cardiac tissue redox 

states were accurately detected with the dye in cardiac lysates. These findings were also validated 

against HPLC measures of GSSG content. 
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Chapter 1: Introduction 
 

As Earth’s atmosphere became increasingly oxidizing over millions of years, organisms 

acquired specific biological systems to help deal with this change. This highly conserved 

reduction-oxidation (redox) system has evolved in order to help maintain homeostasis within 

living organisms to protect against the potentially toxic oxidizing atmosphere through many 

redox sensitive components in mammals and plants (See table 1). Indeed, it has been established 

that over-exposure to oxidants beyond the protective limits of the cells can lead to protein 

dysfunction and cell death
1–5

. Over the last 20 years, however, research has extended the role of 

redox systems and oxidants to include regulation of many physiological processes. This form of 

regulation is termed ‘redox signaling’ and has been implicated in the regulation of many cellular 

processes including metabolism, transcription, inflammation and cell proliferation
6,7

. 

The ability of redox-sensitive molecules to alternate between the reduced and oxidized state is 

what prompts much of the signaling processes to occur. A molecule is said to be in the reduced 

state when it has gained one or more electrons while an oxidized molecule is one that has lost 

one or more electrons. The key compound in redox biology that is capable of undergoing these 

reversible electron transfers is the thiol which contains a sulfhydryl (-SH) group
2
. Redox 

signaling occurs through the interaction of both reactive oxygen species (ROS) and reactive 

nitrogen species (RNS) with thiols. When exposed to these species thiols undergo a variety of 

structural changes that lead to altered states and conformations which can ultimately trigger a 

series of signaling processes within the cell. In addition to reversible forms of oxidation, ROS 

and RNS are also capable of irreversibly oxidizing a thiol in a permanently oxidized state thereby 

eliminating the redox signaling capability of the thiol
2,8

. This typically occurs when higher order 
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oxidation takes place. Figure 1 shows some of the various oxidized products that form when a 

thiol is exposed to ROS and RNS. 

 

SHThiol

Reduced

Oxidized

S-SG

S-SCys

S-SHCy

SNO

SO-

SO2
-

SO3
-

S-Glutathionylation

S-Cysteinylation

S-Homocysteinylation

S-Nitrosylation

Sulfenic Acid

Sulfinic Acid

Sulfonic Acid

 

Figure 1 (Adapted from Go et al. 2013)
8
. Reduced and Oxidized forms of Thiols. 

When a thiol is exposed to reactive oxygen and nitrogen species, a variety of 

products can form as shown. Most of the oxidative modifications shown are 

reversible while sulfinic and sulfonic acids are irreversible forms of oxidation 

produced in highly oxidizing environments. 

 

ROS and RNS come in many forms which can be categorized as either radical or non-radical 

species. Radical species, such as the hydroxyl radical (OH•), superoxide anion (O2
-
•), nitric oxide 

(NO•) and nitrogen oxides (NO2•/NO3•), contain an unpaired electron and are highly unstable. As 

such, they are typically more reactive and have shorter life spans since they strip away electrons 

from surrounding sources, such as proteins, lipids and nucleic acids, in order to gain stability
9
. In 

doing so, these components undergo oxidation and are capable of  causing further oxidation until 

two radical species join to terminate the cycle. Non-radical species include hydrogen peroxide 

(H2O2) and peroxynitrite (ONOOH) and do not contain any unpaired electrons yet still show high 
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reactivity towards thiols. While non-radical species are generally less reactive than radical 

species, they have a longer life span and are capable of diffusing membranes which may lead to 

oxidative modifications and signaling processes beyond their initial site of production
9
.  

Of the few chemical compounds that contain thiols, cysteine residues have been the most 

extensively studied in terms of redox biology. This amino acid contains a thiol group that is 

highly susceptible to reactions by ROS/RNS
10,2

. Exposure of thiols to these reactive species can 

alter the thiol to a number of possible oxidized by-products shown above thereby leading to a 

change in protein structure and function. Indeed, many cellular processes are sensitive to redox 

signaling including the regulation of transcription factors, inflammatory responses, metabolism, 

and cell proliferation and differentiation
2,7,11

. Thus, determining the full mechanisms behind 

these and other processes necessitates an understanding of the role played by redox signaling and 

doing so requires sensitive methodologies to measure and detect thiol redox states in both cell 

culture and animal models.  
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Chapter 2: Background 

2.A - Redox signaling as a regulator of cellular function 

2A.1 - Sources of Oxidants  

ROS and RNS are highly reactive radical or non-radical molecules produced within 

organisms as a byproduct of many physiological factors and they serve many essential functions.  

There are a number of in vivo sources of ROS and RNS and the list below highlights some of the 

major contributors to their production.  

The NOX family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases are 

a group of enzymes capable of transferring electrons from NADPH to oxygen to produce 

superoxide in multiple cellular compartments including plasma membrane, nuclei, cytosol and in 

the mitochondria (Figure 2)
12,13

. While superoxide is the immediate product of NOX enzymes, 

H2O2 can be formed from the spontaneous or enzymatic dismutation of superoxide
14

. The 

balanced production of ROS by the NOX family is important for the regulation of a number of 

cellular signaling processes such as gene expression, cell differentiation, defense and 

posttranslational protein modifications
7,14

. An overproduction of ROS from this source has been 

associated with cardiovascular disease and impairments in gene transcription
12

. 

Xanthine oxidase (XO) is a cytosolic enzyme responsible for the breakdown of purines in 

humans and is a known source of both hydrogen peroxide and superoxide generation within the 

cell with the former being the major product
15

. While low levels of XO-generated ROS play a 

role in antimicrobial defense, increased levels have been associated with tissue damage and 

gout
16,17

. 

Nitric oxide synthase (NOS) plays a regulatory role in vascular homeostasis through the 

coupling of molecular oxygen with L-arginine to produce nitric oxide (NO)
18

. When L-arginine 

levels drop, the enzymatic activity of NOS becomes ‘uncoupled’ such that NOS activity shifts 
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towards superoxide production
18

. There are various NOS isoforms that are located in a number of 

different types of cells and tissues, however they all display similar enzymatic activities with the 

potential to generate ROS and RNS which can lead to cell damage
18

.   

The electron transport chain (ETC) of the mitochondria is another major source of ROS 

within cells. Electron carriers derived from Kreb’s cycle (NADPH, FADH2) that are normally 

transferred down the ETC during oxidative phosphorylation can prematurely ‘slip’ off of the 

ETC and bind to free O2 to produce superoxide which can be converted to H2O2
19,20

. While this 

list of in vivo sources of ROS and RNS is not exhaustive, it highlights the widespread production 

and use of these species within cells (Figure 2) in order to maintain homeostasis through ‘redox 

signaling’ and in conditions of oxidative stress. 

Apart from the physiological sources, ROS and RNS can also be produced by factors 

beyond the organism itself. These external sources include radiation, ozone, environmental 

toxins and behaviours such as smoking
4
. It is thought that these factors can not only be a source 

of ROS but that they can catalyze the formation of ROS and RNS within tissue leading to health 

risks
21

. 
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Figure 2. Common Cellular sources of ROS and RNS. NADPH oxidase (NOX) 

isoforms are located in the nuclei, cytosol and on cell membranes and are capable of 

producing various forms of ROS and RNS. Nitric oxide (NO) can be combined with 

superoxide (O2
-•
) to produce the peroxynitrite anion (ONOO

-
) which can become 

protonated to form the non-radical form. Similarly, xanthine oxidase (XO) is a source 

of both O2
-•
 and hydrogen peroxide. Electrons slipping from ETC complexes in the 

mitochondria produce superoxide radicals which can be converted to hydrogen 

peroxide through the enzyme superoxide dismutase (SOD). Hydrogen peroxide is a 

more stable form of oxidant and is capable of crossing membranes while superoxide 

is relatively unstable and localized. 

 

2A.2 – Redox Signaling 

ROS and RNS play a dual role in physiological processes and the fate of cells. On one 

hand there is evidence to suggest a role in signaling responses to maintain homeostasis and the 

integrity of the cell
10,22,23

. For example, moderate levels of ROS act as secondary messengers for 

cell proliferation, cytosolic calcium concentrations, protein phosphorylation and activation of 
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various transcription factors
24,25

. On the other hand when ROS and RNS levels go beyond 

normal, ‘oxidative stress’ can occur leading to impairments in cellular function and apoptosis
2
. 

These elevated levels of ROS/RNS could then signal adaptations or, if excessive, lead to cellular 

damage. Thus, alterations in the redox status of cellular components can be thought of as a 

continuum where small changes could be managed and necessary to maintain normal function 

while exceeding the healthy threshold can lead to adaptation or impairments.  

ROS and RNS have been investigated as mediators of many cellular and physiological processes 

through reduction and oxidation of protein residues, specifically cysteines
10

. The thiol groups on 

cysteines have an average pKa value of approximately 8.5 which makes them less likely to react 

with ROS and RNS
26

. However, this value drops substantially in the presence of other protein 

domains and in the conditions of the surrounding microenvironment. In this case, cysteine thiols 

typically have a pKa value of 4 or less depending on the environment and they exist in the 

thiolate anion form (S
-
) at plasma pH (7.1)

11
. This renders the cysteine more reactive with ROS 

and RNS compared to the thiol (SH) form
27

. The resulting perturbations in the redox state of 

cysteine thiols can alter the shape, structure and, ultimately, the function of proteins, lipids and 

nucleic acids
20

 and can lead to a sequence of physiological events through redox signaling 

pathways. Table 1 shows some of the redox sensitive proteins that have been investigated. 

 

Table 1. List of Redox-sensitive Proteins Identified in Various Studies
28–33

.  

Function Protein 

DNA repair Ku80 

 MCM6 

 80kDa MCM3-associated protein 
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Metabolism Acyl-CoA dehydrogenase 

 Alcohol dehydrogenase 1 and 2B4 

 Aldose 1-epimerase 

 Amino acid transporter E16 

 C1-tetrahydrofolate synthase 

 Carnitine acetyltransferase 

 Catechol-O-methyltransferase 

 Complex III of mitochondrial electron 

transport chain 

 Enolase 1 and 2 

 GAPDH 

 Glucosidase alpha 

 Iron-sulfur protein assembly 1 homologue 

 Malate dehydrogenase 

 Mitochondrial creatine kinase 

 Neutral amino acid transporter B 

 Phosphoglycerate kinase 

 PTP1B 

 Pyruvate dehydrogenase, E3 binding protein 

 Pyruvate dehydrogenase kinase, isoenzyme 

2 

 Voltage dependent anion channel 1 

Antioxidant System 2-Cys peroxiredoxin 
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 Ascorbate peroxidase 

 manganese superoxide dismutase 

 thioredoxin-dependent preoxidase 1 

Nuclear Transport Importin 9 

 Karyopherin Beta 1 

 Ran 

 20S proteasome alpha subunits A1, B1, G1 

and E 

Protein Homeostasis Calnexin 

 Calreticulin 

 ER-Golgi intermidiate compartment protein1 

 Hs7p75 (TRAP1) 

 Hsp90-alpha 

 Tripeptidyl Peptidase II 

 Ubiquitin-activating enzyme E1 

Protein Synthesis Gln-tRNA synthetase 

 hnRNP U protein 

 Met-tRNA synthetase 

 Ribosomal protein S3 and S6 

 Thr-tRNA synthetase 

 U2 small nuclear RNA auxiliary factor 1 

Transcription and Translation Elongation factor 1-alpha 

 Elongation factor 1B alpha-subunit 2 
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 Translation elongation factor Ts 

 Nrf2 

 Yap1p 

Post-translational Control/Modification Calretriculin 1 

 Chaperonin-60 alpha 

 Cytosolic Cyclophilin 

 Phosphoprotein phosphatase 

 Protein disulfide isomerase-like protein 

Cytoskeleton Actin 7 

 Tubulin alpha-6 chain 

 Tubulin beta-2 

Redox Homeostasis Glutathione transferase Mu 3 

 Peroxiredoxin I 

Signaling Aspartyl β-hydroxylase 

 Cardiotrophin-like cytokine factor 1 

 IQGAP1 

 G protein, β polypeptide 2 

 Pl-3-kinase, catalytic subunit 

 Protein phosphatase PP1, catalytic subunit 

 SH2 domain-containing adapter protein F 

Vesicle transport Rab1a 

 Rab10 

 Rab33b 
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As previously stated, an important requirement for redox signaling is the ability of a thiol 

to alternate between reduced and oxidized states. The reversibility of redox status provides a 

mechanism by which proteins and enzymes can activate or deactivate their activity. For instance, 

it has been established that protein-tyrosine phosphatases contain active site cysteines that can 

become oxidized thereby inactivating the enzyme and preventing dephosphorylation of targets
34

. 

Similarly, certain metabolic enzymes, including GAPDH, have been shown to be regulated by 

changes in redox status of their active site cysteines
35

. In considering that many caspases, 

kinases, phosphatases and proteases contain active site cysteines
2
, redox signaling may play a 

potential role in being a significant regulator of many cellular processes via reversible oxidation 

through changes shown in Figure 1.  

Disulfide bonds are known to cause signaling by changing protein structure and protein 

folding. Cysteines are a critical part of secondary, tertiary and quaternary protein structure due to 

their ability to form disulfide bonds between other cysteines
2
. Changing the protein or enzyme 

structure through changes in cysteine thiol redox state can ultimately lead to altered function and 

provide yet another means for redox signaling to occur.  

When considering the large number of redox sensitive proteins and the various signaling 

cascades that may occur in response to varying levels of oxidation, researchers who are interested 

in determining the effects of ROS and RNS on cellular function may benefit from methods that 

allow accurate determination of whole cell redox states which can then be used in concert with 

protein-specific measures of redox status. Section B will cover some of the common methods 

used to detect changes in redox state. 
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2A.3 - Major Redox Buffering Mechanisms 

Under normal healthy conditions the rate of ROS/RNS production is balanced by their 

removal with the help of a number of enzymatic and non-enzymatic antioxidant systems. 

Examples of enzymatic antioxidants include superoxide dismutase (SOD) which catalyzes the 

breakdown of the superoxide radical into hydrogen peroxide and catalase which converts 

hydrogen peroxide into water. While there are a number of non-enzymatic redox buffering 

mechanisms, such as vitamins C and E, the major one is reduced glutathione (GSH). GSH is the 

most abundant redox buffer in cells and is present in millimolar concentrations
25

. If a protein 

thiol undergoes reversible oxidation, GSH is able to donate its electrons via glutaredoxin (Grx) to 

oxidized proteins in order to return them to the reduced state
36

. In doing so, GSH itself becomes 

oxidized to form a thyl radical (GS•) which can react with other GS• molecules to form oxidized 

glutathione (GSSG)
25

. GSSG can then be reduced back to GSH by the glutathione reductase 

(GR) enzyme which depends on NADPH as the source of electrons
25

.  

Thioredoxin (Trx) also acts as a redox buffering mechanism in both a direct and indirect fashion. 

Trx can directly reduce oxidized proteins by transferring its electrons and also acts to indirectly 

convert H2O2 to water through peroxiredoxin (Prx)
36

. For both redox buffering pathways (Grx 

and Trx), NADPH is the master reducing system derived from the pentose phosphate pathway of 

glucose metabolism. This reducing agent provides the electrons necessary for the majority of 

antioxidant defenses within cells
36

. Figure 3 represents this defense system. When the production 

of ROS/RNS exceeds the antioxidant capacity of the cell, oxidative/nitrosative stress can occur 

leading to cell death and disease. 
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ROS/
RNS

 

Figure 3. Major Enzymatic Antioxidant System within Cells. NADPH provides 

the reducing power to most of the antioxidant pathways in cells. Oxidized glutathione 

(GSSG) accepts an electron from NADPH to become reduced (GSH) with the help of 

glutathione reductase (GR). GSH can either donate its electron to glutathione 

peroxidase (Gpx) which converts H2O2 to water or it can donate the electron to 

glutaredoxin (Grx) which then donates the electron to an oxidized protein, thereby 

reducing it. Thioredoxin (Trx) can also accept electrons from NADPH to directly 

reduce proteins or by indirectly converting H2O2 to water through peroxiredoxin 

(Prx) (adapted from Ng et al)
37

. 

 

It is through this antioxidant system that cysteines are regulated as part of redox signaling. 

Ultimately, these redox recycling mechanisms dictate the redox state of a given protein and 

indeed the entire redox proteome which is often referred to as ‘cellular redox state’.  

 

2A.4 - Cellular Redox State: Relationship to Cellular Functions 

Physiological signaling processes often involve more than a single regulatory site. 

Therefore, when attempting to understand these processes, it becomes useful to consider overall 
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changes as well. Similarly when considering redox signaling pathways, it is important to 

investigate global changes in redox states in response to stressors since 1) it may be useful to 

determine large-scale changes in redox states after a stress has been introduced to a particular site 

and 2) small changes in redox states can trigger a cascade of signaling events that alter the redox 

states of multiple sites within the cell. 

Instances where a researcher may find it helpful to measure cellular redox states may 

include normal daily fluxes in redox states in response to mild stressors. For example, in a study 

by Anderson et al. it was found that rodents on a 3-day high-fat diet had significantly elevated 

levels of mitochondrial H2O2 emission. In addition, they found that the GSH/GSSG ratio, an 

indirect measure of whole cell oxidation, was significantly lower in high-fat fed mice indicating a 

more oxidized state
38

. Therefore, acute challenges can alter whole-cell redox states and 

measuring this parameter would provide insight to these changes. 

Research benefiting from the determination of whole cell redox states can also be 

extended to pathophysiological conditions. Changes in global redox status of cells have been 

implicated in a variety of chronic diseases. Oxidative and nitrosative stress caused by 

overproduction of ROS and RNS has been studied due to their role in aging
39,40

, muscular 

dystrophies
41–44

, metabolic disorders
45–48

, neurodegenerative disorders
3,49

 and cancer
20,50–52

. A 

common characteristic shared by these diseases is an increased rate of overall ROS/RNS 

production with a concomitant decrease in antioxidant defense systems resulting in a cycle of 

increasing oxidative damage and decreased cell function which  ultimately leads to DNA and 

protein damage on a whole-cell level. For example, several studies have found associations with 

oxidative stress and neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease, in 

which oxidative damage to proteins, lipids and DNA was significantly higher in neuronal cells 

compared to controls
3,53–64

. When considering the high reactivity of ROS/RNS with lipids, 
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proteins and nucleic acids, it should come as no surprise that the accumulation of these factors 

can cause damage that may lead to altered cell-signaling and impaired function which could 

ultimately lead to illness. Assessment of oxidative damage in diseases like those mentioned 

above was based on methods targeting specific markers of oxidative stress (carbonylation for 

protein oxidation, 4-Hydroxynonenal for lipid oxidation and 8-hydroxy-2’deoxyguanosine for 

DNA oxidation) rather than a whole-cell approach to determine overall cellular redox state. To 

gain a better understanding on the relationship between oxidative states and disease, it may be 

necessary to consider methods that measure total changes in cellular redox state as opposed to a 

single marker of oxidation. 

 

2B - Current Methods for Determining Protein Redox State 

2B.1 - Mass Spectrometry 

Given the critical importance of ROS/RNS in cell signaling and health, several methods 

have been developed to accurately detect the type and extent of redox modifications on 

biological samples. Mass spectrometry (MS) is one of the most commonly used techniques in 

metabolic research and has been growing in popularity over the years
65,66

. As such, it has been 

used in a variety of studies as a method to determine redox modifications with high specificity
67–

69
. A typical MS procedure works by first ionizing a sample, forming fragments of charged 

particles. These particles are then detected based on their mass-to-charge ratio which is then 

correlated to known masses to determine the chemical composition in the original sample. As an 

analytical tool, MS offers a number of distinct advantages including high specificity, providing 

information on molecular weight and isotopic abundance of chemical species, and the ability to 

be combined with a number of other separation techniques (i.e. chromatography). While this 
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method is appealing due to its sensitivity and accuracy, typical mass spectrometers can cost 

upwards of hundreds of thousands of dollars and require a high degree of technical training for 

its implementations. Hence its use is not accessible for many laboratories and is limited to many 

researchers due to the high levels of training requirements. 

2B.2 - GSH:GSSG Ratio 

The ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) is often used as a 

marker of total protein oxidation within a sample. When proteins are reversibly oxidized (e.g. 

disulfide bond formation, other), they can be returned back to the reduced state by GSH, which 

donates an electron to the oxidized protein to cause reduction
36

. As mentioned above, GSH 

transfers its electron to reduce an oxidized protein thiol and becomes converted to GS• which is 

capable of forming a disulfide bond with a second GS•.  This oxidized complex, referred to as 

GSSG, is incapable of further protein reduction.  A low GSH:GSSG is therefore used as a marker 

for global cellular protein oxidation
70

 and can be determined both colorimetrically, as described 

below, or by high performance liquid chromatography (HPLC)
71

. While a common assumption 

with this method is that a change in GSH:GSSG ratio will reflect a change in whole-cell redox 

state,  it may be that the assumption does not apply to the entire redox proteome. Direct measures 

of cellular and protein redox states could reveal surprising heterogeneity across the proteome. 

Furthermore, the sensitivity of the of 5,5’-dithio-bis-(2-nitrobenzoic acid (DTNB)-linked 

colorimetric kit for detecting GSSG has been questioned in our own lab and others (data not 

shown) whilst the more sensitive HPLC is often not accessible to many laboratories.  
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2B.3 - Thiol Assay Kits  

Along with the thiol and oxidation-specific probes mentioned above, various colorimetric 

and absorbance-based kits are commercially available for researchers interested in measuring 

thiol content in a sample. These assays typically incorporate a compound that leads to a colour 

change when reacted with thiols and allows the investigator to determine the thiol concentration 

through a standard curve. A commonly used assay involves the use DTNB which produces a 

yellow solution in the presence of thiols thereby allowing researchers to quantify total thiol 

content in a sample. While simple to use, this method lacks specificity between free thiols and 

thiol groups on cysteines and would have limited use to investigations that need to discriminate 

between the two. Many similar colorimetric kits are available that work under the same principle 

however this method is limited by its sensitivity and specificity when compared to the 

fluorometric approaches mentioned above. As such, a method that addresses these issues while 

offering simple, reliable and easy to use protocols would be of benefit to many investigators. 

2B.4 - Oxidation-Specific Probes 

When proteins become oxidized they can undergo a variety of modifications resulting in a 

number of different oxidized compounds, such as glutathionylation, carbonylation, nitrosylation 

or sulfur-based acids, to name a few
72

. Specific probes for each modification are becoming 

available
73,74

 and are useful for determining the role of a particular modification in redox 

signaling. For example, Oxyblot kits are commonly used to measure protein carbonylation using 

western blotting approaches. This assay is based on the reaction of carbonylated proteins with 

2,4-dinitrophenylhydrazine (DNPH). While relatively easy to use, these assays have a number of 

disadvantages. Mainly, they have been criticized for their inability to yield reproducible results 

which may stem from the degradation of their proprietary components
75

. Furthermore, these 
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methods do not confirm whole-cell redox state in terms of total thiol oxidation of all forms and 

limit the researcher by measuring only one form of oxidation.  

As an alternative to oxidation product-specific probes, a number of probes specific for 

reduced thiols with wide spectral ranges and sensitivities have been developed to measure protein 

redox states. Iodoacetamide and maleimide based probes are commonly used in redox studies as 

they irreversibly react with reduced thiols at their specified pH ranges. Iodoacetamide dyes, such 

as boron-dipyrromethene (BODIPY) fluorophores and eosin-5-iodoacetamide, and maleimide 

dyes such as Cyanine5 (Cy5) and Alexa Fluor 647 C2 maleimide, have been used for their 

specificity towards thiol groups and their ability to be incorporated with gel electrophoresis. 

However, specificity of these dyes towards thiols tends to decline when they are used above a 

certain concentration
76

 and it has even been reported that iodoacetemide-based dyes react with 

methionine, tyrosine and histidine which can confound results aimed at measuring reduced 

thiols
77

. Another disadvantage of these probes is that their emission spectra tend to lie in the 

visible range. It has been argued that detection in this region, especially near lower wavelengths, 

leads to low signal-to-noise ratio when compared to images obtained in the near-infrared (NIRF) 

range
78

. Therefore, while these probes are commonly used, many precautionary steps must be 

taken to ensure proper detection of thiols with minimal noise. In many cases, these probes should 

also be validated against proven methods (HPLC, MS) for thiol detection since there is currently 

very little data available on these newly available dyes. 

 

2B.5 - Thiol Redox State Detection with DIGE 

We have mentioned a number of tools that are currently available to researchers who are 

interested in measuring the redox state of cells and proteins. An important consideration to make 
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when discussing measurement of thiol redox states is whether we want to measure the reduced 

state or the oxidized state of proteins or cells. While probes are available for the detection of 

either form of modification, it may be more efficient for a researcher to choose one. In their study 

of measuring vicinal dithiols within mitochondria, Murphy et al. have proposed that measuring 

oxidation is more sensitive using the Redox difference in gel electrophoresis (DIGE) method
79

. 

In brief, this procedure incubates samples with N-ethymaleimide (NEM) to irreversibly block 

reduced thiols in their reduced state. The entire sample is then incubated with the reducing agent 

dithiothreitol (DTT) to reversibly reduce any remaining oxidized thiols and the sample is then 

incubated with a fluorescent maleimide-based dye specific to reduced thiols (Cy5)
79

 prior to 

detection. This method essentially measures samples that were originally in the oxidized state. 

The major limitation to this DIGE method is that it relies on reversible oxidation of thiols and 

does not account for many irreversible forms of oxidation that may occur. Furthermore, while it 

is claimed that this method is more sensitive than measuring reduced states of thiols, the report 

fails to make a comparison to the latter in order to validate this. Currently, it is still unclear 

whether measurement of reduction or oxidation will yield more sensitive results. While oxidation 

can lead to many products, reduction of thiols has the potential of being more simple and 

sensitive for determining shifts in protein redox state.  

 

2C - Barriers to simplified detection of cellular redox state in tissue lysate 

As noted above, while a variety of approaches are being developed or are in use to detect 

oxidation-specific products on protein thiols, there are many cases where thiol redox state is 

required regardless of the oxidation product.  Thus, in order to determine whether a protein is 

oxidized in any form, or reduced, it is clear that direct detection of thiol redox state would be 
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superior to indirect methods (e.g. GSH/GSSG).  The availability of several maleimide-based 

fluorophores for labeling reduced cysteines has made it possible to detect protein redox state with 

gel electrophoresis.  As discussed above, in-gel detection offers a considerable advantage over 

mass spectrometry given the widespread availability and low cost of electrophoresis 

infrastructure and expertise. However, the sensitivities of the fluorophores themselves have not 

consistently been reported
79

 which makes it challenging to select an ideal probe for protein 

labeling based on the available literature, and not all validations have comprehensively validated 

the dyes with both oxidation and reduction challenges in vitro and in vivo
26,79–81

.  Furthermore, 

anecdotal feedback from many investigators (unpublished) indicates that the assays are difficult 

to establish or signals are too weak to detect in mixed protein lysates.  This may be related to the 

use of poorly binding or insensitive probes.  For example, many of these probes often require 

saturating concentrations of probe that may result in poor protein yields given labeled proteins 

tend to precipitate
80

.  Furthermore, unpublished findings from our lab has noted the considerable 

variability of results that can be attributed to various experimental assay parameters such as 

diverse effects of detergents, which has also been reported by one group with certain 

fluorophores
80

, poor fluorescent signals in protein-rich lysates and generally weak signals in dyes 

fluorescing in the visual wavelength.  There is a clear need to resolving multiple experimental 

parameters in order to provide a simplified and sensitive method for direct-detection of protein 

redox state that can be easily and affordably adopted by laboratories with common gel 

electrophoreses infrastructure.  
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Chapter 3: Purpose 

The purpose of this thesis was to resolve a series of technical limitations to direct 

detection of cysteine redox state of proteins from muscle tissue lysates using common mini-gel 

electrophoresis infrastructure. We employed a recently developed infrared fluorescent-tagged 

maleimide (IRDye 800CW Maleimide, Licor) given infrared fluorescence is known to provide 

less background and greater sensitivity than visual wavelength fluorescence.  This thesis also 

aimed to resolve a number of experimental barriers that our lab has identified (unpublished) to 

prohibit detection of thiol redox state using gel electrophoresis.  A simplified protocol is then 

provided which addresses how thiol labeling with IRDye 800CW Maleimide is affected by a 

common cell lysate detergent, the presence of endogenous low molecular weight compounds and 

the effect of pH on common reducing controls.  We also determined whether oxidation/reduction 

challenges create homogeneous or heterogeneous responses throughout the redox proteome 

between 25-100kDa in comparison to a single ‘whole-cell’ assessment using in-well detection.  

Finally, the in-gel approach of detecting thiol reduction was compared to the reverse DIGE 

method of quantifying thiol oxidation in order to determine which method is more sensitive at 

capturing changes in redox state in response to oxidation/reduction challenges.  These results 

were also compared to the more common but indirect assessments of protein oxidation 

(GSH/GSSG and carbonylation). 
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Chapter 4: Methods 

Sample preparation and treatment 

Sprague Dawley heart was harvested, rinsed with 0.9% saline and immediately frozen in 

liquid nitrogen. Frozen tissue was chipped in liquid nitrogen and homogenized in a plastic 

microcentrifuge tube with a tapered Teflon pestle in ice cold Tris Buffer (144.5mM Tris, 

1.44mM MgCl2, pH 7.1) containing protease inhibitor cocktails and phosphatase inhibitors 

(Sigma, St. Louis, MO, cat #: P0044, P5726). Supernatants were obtained by centrifugation at 

13,500 rpm for 10 minutes at 4⁰C and separated into 130µl aliquots. Each aliquot was spun twice 

consecutively through a Zeba desalting column (Pierce, Rockford, IL, cat # 89882) with a 

filtration size of 7kDa. Protein concentration was determined using the bicinchoninic acid (BCA) 

assay kit (Pierce, Rockford, IL, cat # 23227) and each sample was diluted to equal protein 

concentration and volume. This was followed by incubation with either 5mM dithiothreitol 

(DTT) (Bioshop, Burlington, ON, DTT002.5) 1mM tris (2-caroxyethyl) phosphine) (TCEP; 

Pierce, Rockford, IL, 20490) as thiol reduction controls or 5mM H2O2 (Sigma, St. Louis, MO, 

323381) containing 0.5% sodium iodide (NaI) (Sigma, St. Louis, MO, 217307) as oxidation 

controls for 5 minutes at room temperature on a rotating nutator. From this point on, all samples 

were protected from light as much as possible to prevent the breakdown of any light-sensitive 

reagents such as IRDye800CW-Maleimide, TCEP, DTT, H2O2 and NaI. Some samples that were 

treated with 5mM H2O2 + NaI were subsequently treated with TCEP to see reversible effects of 

reduction on pre-oxidized samples. These ‘rescue’ conditions were treated with the same 5mM of 

H2O2+NaI, desalted through Zeba columns to filter small molecules below 7kDa to remove 

excess reagents and then treated with 1mM TCEP before continuing with the next steps. 
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After incubation, all samples were desalted twice using Zeba columns which retain anything at or 

below 7kDa to remove excess reagents. The protein concentration of each sample was then 

determined using another BCA protein assay. For experiments using reducing agents such as 

DTT and TCEP, a reducing agent-compatible BCA kit was used (Pierce, Rockford, IL, 

cat#23252). Once protein content was determined, samples were diluted to equal volumes and 

protein concentrations. IRDye800CW-Maleimide was then added at a ratio of 400µM for every 

200µg of protein. Samples were incubated with dye overnight at 4°C on a rotating nutator. The 

following day samples were desalted a final time to remove excess dye prior to preparation for 

western blotting. 

 

Western Blotting and in-well assays 

Another BCA protein assay was conducted to prepare equal proteins for western blotting 

samples. For all western blots, 2µg of protein was loaded per lane on polyacrylamide running 

gels of 10% and subjected to SDS-PAGE at 160 volts for 75 minutes until the blue front from the 

laemelli’s reagent ran off the bottom of the gel. Gels were detected at emission wavelengths of at 

800nm and 700nm fluorescent wavelengths for the dye and protein standard (Bio-Rad, 

Mississauga, ON, 161-10374) respectively using the Odyssey infrared imaging system (Licor 

Biosciences, Lincoln, NE, Model # 9120). All gels were scanned at an intensity unit of 5 for both 

800 and 700nm channels 

Similarly for the in-well assays using 96-well plates, 2µg of each sample was loaded into 

a well and topped up to a final volume of 200µl per well with double distilled water (ddH2O). 

The well was then scanned on the Odyssey imaging system using a lower intensity unit of 2 to 

eliminate background and plate reflection. In order to determine any background interactions 

between IRDye800CW-Maleimide and other reagents (TCEP, H2O2+NaI), separate wells were 
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loaded with either ddH2O, 1mM TCEP or 5mM H2O2+NaI with100nM IRDye800CW-

Maleimide and brought to a final volume of 200µl. 

 

Heat treatment 

Given that heat is a known to alter the redox state of cellular proteins
25,82–84

, we used this 

model to trigger altered redox states in our samples. Frozen cardiac muscle was placed in 

solution containing (mM): NaCl, 145; KCl, 3; CaCl2, 2.5; MgCl2, 1 and Hepes, 10 with a final 

pH of 7.4. This buffer was pre-heated to either 40⁰C or 49⁰C in a dry bath incubator prior to 

addition of frozen tissue while controls remained at room temperature. Following 45 minutes 

incubation at their respective temperatures, control and heated samples were removed, quickly 

blotted dry and placed in Tris buffer containing protease and phosphatase inhibitors for 

homogenizing following the steps outlined previously.  

 

Redox-DIGE 

Heated samples subjected to our optimized and direct redox protocol were compared to a 

modified redox method by Murphy et al.
79

. In this difference in gel electrophoresis (DIGE) 

method, heated samples were incubated with 50mM N-ethylmaleimide (NEM) (Sigma, St. Louis, 

MO, E3876) followed by two consecutive washes through Zeba columns to remove excess NEM. 

Samples were then reduced with 2mM TCEP and desalted again to remove excess TCEP. Protein 

concentration was then determined and samples were diluted to equal volumes and protein 

concentrations followed by an overnight incubation with IRDye800CW-Maleimide at 4°C. 

Western blotting procedures outlined above were then conducted the next day. 
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GSH and GSSG measurements using HPLC 

Tissue was homogenized in Tris buffer containing (mM): 50Tris, 20 boric acid, 2 L-

serine, 20 acivicin and 5 NEM at a pH of 8. To deproteinate our samples, trichloroacetic acid was 

added to homogenate for GSH, and perchloric acid was used for GSSG. Deproteinated samples 

were vortexed vigorously and centrifuged at 14,000RPMfor 5 minutes at 4°C. Supernatants was 

collected and sampled through a High-Pressure Liquid Chromatography (HPLC) system 

(Agilent, Santa Clara, CA, 1100 Series)equipped with a 4.6 x 150mm, 5-micron column 

(ZORBAX Eclipse XDB-C18, Agilent, Santa Clara, CA). GSH measurements were taken using 

ultraviolet emissions picked up by the variable wavelength detector. The mobile phase for GSH 

was 0.25% glacial acetic acid in HPLC-grade water, flow rate of 1.25ml/min (pH 3.1). For GSSG 

analysis, 200µl of supernatant was added to 1ml of 0.5M NaOH followed by a15 minute light-

protected incubation with75µl 0.1% o-Pthaldialdehyde (OPA), a fluorescent probe. Mobile phase 

for GSSG separation was sodium phosphate dibasic. Eluted GSSG was directed to a high 

resolution fluorometer (QuantaMaster 40, HORIBA Scientific, Edison, New Jersey) in a high 

pressure flow-through cuvette (Firefly Sci, Brooklyn, NY, 8830). GSSG mobile phase consisted 

of sodium phosphate dibasic, flow rate of 0.5ml/min. Using GSH and GSSG standard curves, 

both GSH and GSSG were expressed as µmol/g protein.  

 

Carbonylation 

All procedures for derivitization of protein carbonyls with 2,4-dinitrophenylhydrazine 

(DNPH) were conducted using the Oxy blot kit (S7150, Millipore, Etobicoke, ON). Briefly, 

carbonyl products  react with DNPH to form 2,-4-dinitrophenylhydrazone (DNP-hydrazone) 

which is subsequently measured using chemiluminescence. 15μg of protein was loaded from 

heated (40°C or 49°C) and control heart muscles from Sprague Dawley rats. Proteins were 
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denatured with 12% SDS followed by derivatization (DNPH solution or control) for 20min with 

gentle agitation at room temperature. The derivatization reaction was stopped with the addition 

of neutralization solution and samples were reduced with 2-mercaptoethanol (5%v/v). Proteins 

were separated on a 12% polyacrylamide gel and transferred onto a polyvinylidene fluoride 

(PVDF) membrane. Membranes were blocked in odyssey blocking buffer for 1 hour prior to 

overnight incubation with primary antibody (1:150, Rabbit Anti-DNP). On the following day 

membranes were washed with TBST and incubated with goat anti-rabbit IgG 680 (Licor, 926-

68071) for 1 hour and imaged (Odyssey, Licor Bioscience). 

 

Data Analysis and statistics 

Densitometry of fluorescence was quantified for all western blots and microwell plate 

analyses using the Licor Odyssey software version 2.0.13. Lanes were selected between 25-

100kDa while specific bands at 60kDa, 44kDa and 25kDa were individually assessed to 

determine their influence on whole-lane fluorescence. For in-well images, the entire well was 

selected for quantification of fluorescence densitometry values. Gel data comparing control, 

oxidized (5mM H2O2+NaI) and rescued (sequential 5mM H2O2+NaI oxidation with 1mM TCEP 

reduction) conditions was analyzed using a Friedman’s non-parametric test. Plate data comparing 

the same conditions passed the Kolmogorov-Smirnov test for normality and was analyzed using a 

one-way ANOVA with repeated measures. The Student Newman-Keuls post hoc test was used to 

identify which means were significantly different from each other. Results are expressed as mean 

±SEM. Significance for all stats was established at P<0.05. All data comparing only 2 groups 

were analyzed using a paired two-tailed t-test. 
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Chapter 5: Results 

 Prior to obtaining the results outlined in this section, a number of important optimization 

steps had to be performed in order to determine the appropriate conditions for the IRDye800CW 

Maleimide to accurately detect reduced thiols. Most of these steps are outlined in the appendix 

while some are shown in this section.  

 

Effects of Desalting Samples Prior to Dye Treatment 

Filtering homogenates through a desalting column prior to incubating with IRDye800CW 

Maleimide resulted in an increased signal in these desalted (D) conditions compared to no 

desalting (ND). This observation was found to occur in gel for both CHAPS buffer (ND: 1.93 ± 

0.21 a.u, D: 35.63 ± 2.44 a.u, p<0.05) and Tris buffer (ND: 1.28 ± 0.39 a.u, D: 33.34 ± 4.39 a.u, 

p<0.05, Figure 4a). Similar results were observed using an in-well approach in CHAPS (ND: 

1.43 ± 0.18 a.u, D: 12.66 ± 0.51 a.u, p<0.05) and Tris (ND: 2.56 ± 0.39 a.u, D: 11.89 ± 1.79 a.u, 

p<0.05, Figure 4c). Desalting also led to a decrease in GSH content (2.92 ± 0.07 µmol/g, p<0.05) 

compared to non-desalted controls (3.35 ± 0.09 µmol/g, p<0.05, Figure 5). After determining that 

desalting prior to dye incubations greatly enhances our fluorescent signal, we proceeded to 

incorporate this important step in our remaining experiments for all treatment conditions that 

would be subjected to IRDye800CW Maleimide incubations. 
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Figure 4. Effects of desalting homogenates prior to dye treatment in gel (a and 

b) and in plate (c and d). Desalted samples (D) showed much greater fluorescence 

compared to non-desalted (ND) samples in both CHAPS (pH 7.5) and Tris (pH 7.1). 

Results represented as mean ± SEM. N=4-6. * indicates significant difference from 

ND, p<0.05. 
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Figure 5. Effects of desalting on GSH content. The desalted condition (D) led to a 

significant decrease in GSH content of homogenates when compared to the non-

desalted (ND) condition. Results represent mean ± SEM. N=6. * indicates 

significantly different from ND, p<0.05. 

 

Quenching Effects of Reagents on IRDye800CW Maleimide 

 In order to determine the interactions between oxidizing (H2O2+NaI) and reducing 

(TCEP) agents with IRDye800CW Maleimide, we performed a test to determine whether 

quenching of fluorescence occurred in the presence of these reagents. There was a significant 

decrease in fluorescence between H2O2+NaI and TCEP in dye compared to the dye alone 

(IRDye: 282.4 ± 40.54 a.u, IRDye +OX: 228.06 ± 38.76 a.u, p<0.05, IRDye + RED: 224.18 ± 

40.8 a.u, p<0.05, Figure 6) 
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Figure 6. Quenching effects of reagents on IRDye800CW Maleimide.  The use of 

5mM H2O2+NaI (OX) or 1mM TCEP (RED) in conjunction with IRDye had a small 

but significant effect on fluorescence compared to IRDye alone. Results represent 

mean ± SEM. N=7. * indicates significantly difference from IRDye 

 

Effects of Oxidizing and Reducing Agents on IRDye800CW Maleimide Fluorescence 

 After treating separate homogenates with oxidizing (H2O2+NaI) and reducing (TCEP) 

agents, in-gel fluorescence was measured to determine if the dye accurately detects the respective 

changes in redox states brought about by these reagents. When considering absolute fluorescence 

values, oxidized samples were significantly lower than controls while reduced samples were not 
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significantly different from controls (Control: 1.64x10
6
 ± 0.67x10

6
 a.u, Oxidized: 0.027x10

6
 ± 

0.01x10
6
 a.u, p<0.05, Reduced: 1.11x10

6
 ± 0.49x10

6
 a.u, Figure 7). 
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Figure 7. Effects of reducing and oxidizing samples on IRDye800CW Maleimide 

in-gel. Only oxidized samples were significantly different than controls while 

reduced samples showed a trending yet insignificant decrease. Results represented as 

mean ± SEM. * indicates significant difference from control, p<0.05.  N=6. 
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Rescuing Effects of oxidized samples with TCEP 

 We proceeded to test the ‘rescuing’ effects TCEP would have on samples that had been 

pre-treated with H2O2+NaI in order to determine its efficacy as a reducing agent. Using 

IRDye800CW Maleimide in an in-gel approach showed that the oxidized group was significantly 

lower than control fluorescence while the rescue condition showed no difference (Control: 

107.48 ± 4.71 a.u, Oxidized: 3.29 ± 1.21 a.u, p<0.05, Rescued: 100.82 ± 20.77 a.u, Figure 8a). 

With the in-gel approach, a significant decrease in fluorescence was observed in the reduced 

conditions when normalized to control (Reduced: 0.77 ± 0.03 a.u, p<0.05, Figure 8b inset) 

however this difference was abolished when comparing absolute fluorescent values (Reduced: 

70.18 ± 11.51 a.u, Figure 8b). Using the plate approach, oxidized samples were significantly 

lower than control and rescued conditions (Control: 6.27 ± 1.14 a.u, Oxidized: 0.098 ± 0.024 a.u, 

Rescued: 6.68 ± 1.02 a.u, Figure 9a). When compared to control, reduced samples showed 

significantly greater fluorescence when (Reduced: 7.54 ± 1.28 a.u, P<0.05, Figure 9b).  

We also determined the GSH and GSSG content as well as the ratio of GSH/GSSG to 

determine the repeatability of results obtained through in-gel and plate approaches. We found no 

significant difference in GSH content between control, oxidized and rescued conditions (Control: 

30.55 ± 2.33 µmol/g, Oxidized: 31.39 ± 2.91 µmol/g, Rescued: 31.61 ± 1.71 µmol/g, Figure 10-

a1). Similarly, no differences were found between control and reduced conditions in GSH 

content (Reduced: 30.71 ± 1.67 µmol/g, Figure 10-a2). GSSG content showed no difference 

between control, rescued and reduced conditions, however the GSSG content of oxidized 

samples was elevated (Control: 1.1 ± 0.095 µmol/g, Oxidized: 1.55 ± 0.18 µmol/g, Rescued: 1.22 

± 0.11 µmol/g, Reduced: 1.07 ± 0.09 µmol/g, Figure 10-b1 and b2). The ratio of GSH/GSSG 
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showed no differences between groups (Control: 27.48 ± 3.4 µmol/g, Oxidized: 21.36 ± 2.69, 

Rescued: 26.64 ± 1.73, Reduced: 28.1 ± 2.11, Figure 10-c1 and c2). 
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Figure 8. Rescue effects of TCEP on pre-oxidized samples using in-gel approach.  

In the rescue condition, samples were first oxidized with H2O2+NaI and then treated 

with TCEP. This returned fluorescence of oxidized samples back to control and 

reduced levels (a) with the same statistical findings relative to control (graph not 
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shown). No significance was found between control and reduced samples (b) 

however when considering fluorescence relative to control, reduced samples showed 

a significant decrease (b. inset) Results represented as mean ± SEM. N=4-6. * 

indicates significantly different from Control, p<0.05. 
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Figure 9. Rescue effects of TCEP on pre-oxidized samples using in-well 

approach.  In the rescue condition, samples were first oxidized with H2O2+NaI and 

then treated with TCEP. This returned fluorescence of oxidized samples back to 

control (a) The reduced condition showed greater fluorescence compared to (b). 

Results represented as mean ± SEM. N=6. * indicates significantly different from 

Control, p<0.05. 
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Figure 10. Effects of reducing and oxidizing agents on GSH, GSSG and 

GSH/GSSG. No difference was observed in GSH content (a), GSSG (b) or 

GSH/GSSG (c) however there is a trending increase in GSSG for oxidized samples 

(b1) and a trending decrease in their GSH/GSSG ratio (c1). Results represented as 

mean ± SEM. N=5-6. 
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Heat-induced changes in redox states 

49⁰C Treatment 

 With respect to the direct detection of reduced thiols using our optimized protocol with 

IRDye800CW Maleimide, exposure of tissue samples to 49°C temperatures led to a significant 

decrease in fluorescence in the 25-100kDa range using the in-gel approach relative to control 

(49⁰C: 0.315 ± 0.07 a.u, p<0.05, Figure 11e inset) with similar findings using absolute 

fluorescence (Control: 50.15 ± 7.21 a.u, 49°C: 16.67 ± 4.44 a.u, p<0.05, Figure 11e). No 

difference was found after 49⁰C treatment for the 25kDa, 44kDa and  60kDa bands (25kDa 

Control: 0.67 ± 0.12 a.u, 25kDa 49⁰C: 0.91 ± 0.35 a.u, 44kDa Control: 4.29 ± 0.4 a.u, 44kDa 

49⁰C: 4.73 ± 1.49 a.u, 60kDa Control: 0.6 ± 0.07 a.u, 60kDa 49⁰C: 1.02 ± 0.24 a.u, Figure 11b, 

11c and 11d, respectively). 

Using the plate approach for 49⁰C treated samples, we found that heated samples had 

significantly lower fluorescence compared to controls (Control: 2.56 ± 0.38 a.u, 49⁰C: 0.58 ± 

0.22 a.u, p<0.05, Figure 12). 

The GSH content of 49°C treated samples did not differ from control (Control 18.41 ± 

4.07 µmol/g, 49°C: 18.71 ± 2.51 µmol/g, Figure 13a). GSSG content was significantly greater in 

the heat treated group (Control: 1.31± 1.68 µmol/g, 49°C: 2.15 ± 0.17 µmol/g, p<0.05, Figure 

13b) while the ratio of GSH/GSSG showed a significant decrease after heating at 49°C (Control: 

13.39 ± 1.68, 49°C: 8.35 ± 0.63, p<0.05, Figure 13c).  
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Figure 11. Effects of 49°C heat treatment on fluorescence using in-gel approach.  

Using the direct redox method, 49⁰C significantly decreased fluorescence between 

25-100kDa for both absolute (e) and relative (e. inset) values. This difference was 

removed when bands at 25kDa, 44kDa and 60kDa (b, c and d, respectively) were 

considered. Signals from these bands in the heated condition trended higher than 

controls. DIGE results showed no difference after heating with absolute fluorescence 
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densitometry (e) however there was a significant decrease after heating relative to 

control fluorescence (e. inset). All other panels showed similar statistics with 

absolute and normalized values (data not shown). Results represented as mean ± 

SEM. * indicates significantly different from control, p<0.05. N=5-6. 

 

 

Figure 12. Effects of 49°C heat treatment on fluorescence using in-well plate 

assay. Samples exposed to 49°C temperatures showed a decrease in fluorescence 

compared to control. Results represented as mean ± SEM. * indicates significantly 

different from control, p<0.05. N=5. 
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Figure 13. Effects of 49°C heat treatment on GSH, GSSG and GSH/GSSG ratio. 
Samples exposed to 49°C temperatures showed no significant change in GSH content 

(a) while GSSG content significantly increased (b) and GSH/GSSG ratio 

significantly decreased (c). Results represented as mean ± SEM. * indicates 

significantly different from control, p<0.05. N=4-5. 
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40⁰C Treatment 

 In contrast to 49°C incubations, 40°C incubations showed no significant difference in 

fluorescence with the in-gel assay using our direct method (Control: 37.21 ± 0.89 a.u, 40°C: 

31.23 ± 11.52 a.u, Figure 14e) with the same statistical findings when normalized to control 

(Figure 14e inset). Similarly, no difference was found for the 25kDa, 44kDa and 60kDa bands 

(25kDa Control: 1.81 ± 0.29 a.u, 25kDa 40⁰C: 2.19 ± 0.64 a.u, 44kDa Control: 3.96 ± 0.3 a.u, 

44kDa 40⁰C: 4.13 ± 1.22 a.u, 60kDa Control: 0.71 ± 0.04 a.u, 60kDa 40⁰C: 0.77 ± 0.15 a.u, 

insets of Figure 14b, 14c and 14d, respectively). 

 While the DIGE results from 25-100kDa showed no significance when considering 

absolute values (Control: 11.23 ± 4.18 a.u, 40°C: 1.41 ± 0.48 a.u, Figure 14e), there was a 

significant decrease in fluorescence using this method when considering values normalized to 

control (40⁰C: 0.17 ± 0.05 a.u, p<0.05, Figure 11e inset). Differences were also found after 40⁰C 

treatment for the 25kDa, 44kDa and  60kDa bands (25kDa Control: 0.62 ± 0.22 a.u, 25kDa 40⁰C: 

0.05 ± 0.01 a.u, 44kDa Control: 1.7 ± 0.44 a.u, 44kDa 40⁰C: 0.19 ± 0.05 a.u, 60kDa Control: 

0.42 ± 0.11 a.u, 60kDa 40⁰C: 0.09 ± 0.02 a.u, Figure 14b, 14c and 14d, respectively). 

The in-well approach showed no difference compared to control after heating to 40⁰C 

(Control: 2.13 ± 0.32 a.u, 40°C: 1.92 ± 0.22 a.u, Figure 15).  

These conditions also brought about a significant decrease in GSH content (Control: 

16.32 ± 0.41 µmol/g, 40°C: 10.15 ± 1.25 µmol/g, p<0.05, Figure 16a). GSSG showed no 

significant change (Control: 0.66 ± 0.02 µmol/g, 40°C: 0.74 ± 0.04 µmol/g, Figure 16b) while 
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the GSH/GSSG ratio showed a significant decrease (Control: 24.86 ± 0.38, 40°C: 13.53 ± 1.09, 

p<0.05, Figure 16c).  
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Figure 14. Effects of 40°C heat treatment on fluorescence using in-gel assay. 

Representative image (a). Using the direct redox method, samples exposed to 40°C 

temperatures showed no significant change in fluorescence when measuring 25kDa 

(b), 44kDa (c), 60kDa (d) bands or lane measurements from 25-100kDa (e). The 

same was found for DIGE results for the individual bands. Our DIGE results at the 
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25-100kDa range showed no significance after heat treatment when considering 

absolute fluorescence densitometry (e) however a significantly lower signal was 

found when normalized to control (e. inset). All other panels showed the same 

statistical findings with absolute and normalized data (data not shown). Results 

represented as mean ± SEM. * indicates significantly different from control, p<0.05. 

N=5-6.Results represented as mean ± SEM. * indicates significantly different from 

control, p<0.05. N=4-6. 

 

Control 40C
0

1

2

3

F
lu

o
re

s
c
e
n

c
e
 (

a
.u

)

Control 40°C

Effects of 40C Treatment on IRDye800CW

Maleimide Fluorescence in Plate

 

Figure 15. Effects of 40°C heat treatment on fluorescence in-well plate assay. 

Samples exposed to 40°C temperatures showed no significant change in fluorescence 

when measured in gel. Results represented as mean ± SEM. N=6. 
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Figure 16. Effects of 40°C heat treatment on GSH, GSSG and GSH/GSSG ratio. 
Samples exposed to 40°C temperatures showed a significant decrease in GSH content 

(a) while GSSG content remained unchanged (b). The GSH/GSSG ratio significantly 

decreased (c). Results represented as mean ± SEM. * indicates significantly different 

from control, p<0.05. N=5-6. 
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Effects of 40⁰C and 49⁰C Treatments on Carbonylation 

 There was no significant change in protein carbonyl products after 40°C (Control: 31.92 

± 3.26 a.u, 40°C: 36.21 ± 3.83 a.u, Figure 17a).  

On the other hand, the 49⁰C treated group showed a significant increase in carbonylation 

(Control: 33.1 ± 4.13 a.u, 49°C: 93.87 ± 10.23 a.u, p<0.05, Figure 17b).   
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Figure 17. Effects of 40°C and 49°C treatment on protein carbonylation. Heat 

treatment at 40⁰C did not show a change in protein carbonylation compared to 

control (a). 49°C treatment significantly increased the level of carbonylation (b). 

Results represented as mean ± SEM. * indicates significantly different from control, 

p<0.05. N=4-6. 
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Chapter 6: Discussion 

Our aim in this study was to determine whether IRDye800CW Maleimide can accurately 

detect reduced thiols in cardiac tissue lysates and whole cells using simplified methodologies 

such as SDS-PAGE and in-well plate assays. In order to do this we first had to establish the 

appropriate conditions required for the use of IRDye800CW Maleimide. These optimizations are 

listed in section 6H below. We employed a number of treatments to alter the redox state of 

lysates in order to confirm the dye’s efficacy at accurately detecting reduced thiols through 

multiple avenues.  

 

6A - Desalting leads to increased fluorescent signal with IRDye800CW Maleimide 

Early into our optimization for this assay we noticed that desalting samples through Zeba 

desalting columns prior to the addition of any reagents led to a large increase in IRDye800CW 

Maleimide’s fluorescence using in-gel and in-well plate assays in both CHAPS and TRIS buffer 

(Figure 4). We continued our experiments using TRIS since a number of experiments comparing 

CHAPS and TRIS showed the latter to be more consistent throughout our dye experiments (data 

not shown).  We suspected that endogenous GSH in tissue could be interfering with our dye’s 

ability to bind to protein thiols due to the abundance of GSH in cells (mM range)
85

. Furthermore, 

we suspected that the Zeba columns, which remove substances below 7000Da were effectively 

removing endogenous GSH (307Da) thereby allowing more of the dye to bind to the remaining 

protein thiols leading to an increase in fluorescence. To test this hypothesis we measured GSH 

content in both non-desalted (ND) and desalted (D) samples. As shown in figure 5, desalting led 

to a small yet significant drop in GSH content in cardiac tissue lysates. Admittedly, we expected 

a much larger drop in GSH content after desalting yet our current results suggest that GSH is a 
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partial contributor to the dye interference we observed and that other factors, such as free 

cysteine and coenzyme A, may be interfering with dye binding prior to desalting due to the 

presence of thiols in these molecules.  

 

6B - Oxidizing and reducing agents may interfere with IRDye800CW Maleimide 

 Next we determined whether our chosen reagents for oxidation (H2O2+NaI) and reduction 

(TCEP) would have an interaction with IRDye800CW Maleimide and our results indicate that 

the dye’s fluorescence dropped in the presence of these reagents (Figure 6). It is important to 

note that the quenching experiment was done in-well and did not undergo the same steps as 

homogenates. Mainly, when homogenates have been treated with their respective reagents, they 

undergo a desalting step in order to remove excess H2O2+NaI and TCEP, while in the quenching 

experiment dye was added directly to solutions containing their respective reagents. Thus, while 

the quenching data suggests a decrease in fluorescence in the presence of the reagents, we would 

expect even less of an interaction after desalting as is done with homogenates. However, we have 

not yet eliminated the possibility that residual reagents may be left over after desalting which 

could be interfering at some level with our dye.  

 

6C - Effects of Reducing and Oxidizing samples on IRDye800CW Maleimide fluorescence 

 Our first method for manipulating the redox state of our lysates involved the use of 

H2O2+NaI as our oxidizing agent and TCEP as our reducing agent. As seen in Figure 7, the 

oxidized group had a much lower signal than control. For our reduced group we expected to find 

a greater signal than control. Interestingly, however, our reduced condition in gel also 

significantly lowered fluorescence when normalized to control while absolute values showed a 
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trending, albeit non-significant decrease. While this finding may partly be due to dye quenching 

caused by residual TCEP left after desalting, we questioned whether TCEP was an effective 

reducing agent. At the same time, we wondered whether the physiological state of most 

proteomic cysteines exist in the reduced state, thereby preventing our signal to increase above 

control levels. In order to guide our understanding towards these questions we needed to develop 

a way to test the efficacy of TCEP as a reducing agent.  

 

6D - TCEP returns fluorescence of Oxidized samples to Control Levels 

By incorporating a ‘rescue’ condition in which we subsequently oxidized and reduced the 

sample, we would be able to better determine the reducing power of TCEP. Our in-gel data 

shows that following oxidation, TCEP was able to return fluorescence back to control levels 

(Figure 8a) even while the reduced condition continued to show a drop in signal when 

normalized to control (Figure 8b, inset) although no significant decrease was found when 

considering absolute fluorescence (Figure 8b). Our plate data shows similar results with the 

oxidized and rescue groups (Figure 9a) but what is important to note with this set of data is that 

the reduced condition shows a significant increase in signal compared to control (Figure 9b) 

while the in-gel data shows a trending decrease after reduction (Figure 8b). Similarly, the rescue 

condition in plate also trends towards an increase in signal while the in-gel rescue condition is 

slightly lower than control. We have not yet determined the exact cause of this discrepancy 

between gel and plate in the TCEP treated samples. One possible cause is that the in-gel method 

separates proteins based on molecular weight and has an upper limit of 250kDa based on western 

protocol. Furthermore, our in-gel analysis covers the range of 25-100kDa. While this allows us to 

discriminate between proteins and their redox states within that range, it removes information 



49 
 

beyond these upper and lower limits. It is possible that the plate data incorporates more redox 

sensitive proteins (even with the same amount of total protein as the gels) leading to a greater 

signal compared to the in-gel fluorescence. 

What is interesting to notice as well with our TCEP experiments is that not all bands 

showed greater fluorescence compared to control. The fluorescence of the 37kDa band, for 

example, decreases in TCEP-treated samples compared to control. It is not yet clear why this 

occurs however it may suggest that not all proteins share the same ability to be reduced. It is 

possible that certain proteins that exist in a reduced state are close to the reductive limit of the 

protein such that any further reduction will lead to ‘reductive stress’. Indeed, it has been shown 

that cardiac mitochondria increase the rate of ROS production in states of reductive stress
86

 and 

certain proteins may therefore be more susceptible to oxidation by ROS produced in this fashion. 

In order to confirm the validity of our findings using the IRDye800CW Maleimide using 

both the in-gel and plate approach, we determined the level of GSH, GSSG and the ratio of 

GSH/GSSG (Figure 10). Control and reduced groups all showed similar GSH content (Figure 10, 

a2) with similar findings in GSSG content (Figure 10, b2) and the GSH:GSSG ratio (Figure 10, 

c2). The increase in GSSG content for the oxidized group suggests a higher level of oxidation 

occurred with this treatment while the other conditions showed no difference in GSSG content 

(Figure 10, b1). All conditions showed no differences in GSH content (Figure 10, a1) and the 

GSH:GSSG ratio (Figure 10, c1). The observations made with GSSG content in these samples 

present a case where the dye could be more predictive of GSSG content rather than GSH content. 

They also indicate that the IRDye800CW Maleimide closely follows the GSSG and GSH/GSSG 

ratio patterns measured with HPLC suggesting that it may be used as a strong predictor of 

cellular redox state. 
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6E - 49⁰C heat treatment lowers IRDye800CW Maleimide fluorescence  

 To follow up with our chemically-induced changes to redox state of lysates, we moved 

forward by manipulating redox states using heat since this is known to increase markers of 

oxidative stress such as thiobarbituric acid reactive substances (TBARS)
84

 and DNA 

degredation
87

. It has previously been shown that 42⁰C temperatures in rat tissue showed a time-

dependent increase in ROS production
88

. Furthermore, rats with core temperatures of 42⁰C 

showed an increase in markers of oxidative stress which subsided after a given amount of 

recovery time
87

. Given these findings, we were interested using heat as one of our models for 

altering cellular redox states and we chose 49⁰C to ensure sufficient oxidation in cells, potentially 

leading to irreversible oxidative modifications such as carbonylation. As expected, we saw a 

significant decrease in fluorescence after heat-exposure, suggesting that proteins have been 

oxidized and that the dye was accurately able to capture these differences in-gel at the 25-

100kDa range using our direct method (Figure 11e) and using the in-well approach (Figure 12).  

 While we noticed a drop in overall fluorescence after heating, specific bands of the 

proteome were also assessed to determine their influence on the overall 25-100kDa fluorescence. 

Our attention shifted to the bands located at 25kDa (Figure 11b), 44kDa (Figure 11c) and 60kDa 

(Figure 11d) since these regions showed a trending increase in fluorescence after 49⁰C heat 

treatment. The reasons for these observations have yet to be determined however we speculate 

that spatial separation and localization of specific redox sensitive proteins may play a role. 

Indeed, it has been found that different cysteine residues are localized such that they possess a 

range of pKa values leading to a range of reactivity with oxidizing and reducing environments
2
. 

This notion of compartmentalization also provides a means of specificity for cysteines to react 

with ROS/RNS since there is no direct receptor for the molecules. 
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We were interested in comparing our method to a previously published approach used by 

Requejo et al.
79

 in which samples were first treated with N-ethylmaleimide (NEM) to irreversibly 

block all reduced thiols. This leaves all reversibly oxidized proteins untouched until a reducing 

compound is added (such as TCEP). The newly reduced thiols are then labeled with a maleimide-

based dye similar to IRDye800CW and the measured fluorescence densitometry represents 

proteins that were initially in the oxidized state. It has been suggested that this ‘difference in gel 

electrophoresis’ (DIGE) method of indirectly measuring oxidized proteins is more sensitive than 

measuring reduced thiols
79

. However, a limitation to this DIGE method is that it can only provide 

information on reversible thiol modifications whereas the present method would in theory reflect 

all forms of oxidation. While this may be an important consideration for particular research 

questions, it does not allow researchers to investigate questions regarding total redox states. In 

order to confirm which method would provide more sensitivity with respect to proteomic redox 

states we compared our direct method with the DIGE method for our heat experiments. In doing 

so, we expected to see a drop in signal after heating using the direct method, while the DIGE 

method would show the opposite with heat treatment increasing fluorescence. As seen from the 

results in panel e of Figure 11, the DIGE method did not work in our hands since fluorescence of 

the 25-100kDa range dropped after oxidation with 49⁰C. We suspected that this may be caused 

by irreversible oxidation caused by the high temperature. To test this possibility, we proceeded to 

compare the two methods using 40⁰C heat (discussed below) which is considered to be high 

enough to cause oxidation but low enough to it reversible
87

. 

As a tool for validating IRDye800CW Maleimide we again measured GSH and GSSG 

content to see if a relationship existed between fluorescence and cellular redox state after 49⁰C 

incubations. While this heat treatment did not change GSH content (Figure 13a), GSSG content 
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showed a significant increase (Figure 13b) with a concomitant decrease in the GSH/GSSG ratio 

(Figure 13c). This increase in GSSG may be attributed to an increase in glutathionylated proteins 

as a result of high heat which is known to create an oxidative environment
89

. Nevertheless, this 

data suggests that the dye may be used to determine GSSG content in homogenates. 

 

6F - 40⁰C heat treatment has no significant effect on IRDye800CW Maleimide fluorescence 

 By lowering the temperature of our oxidized group to 40⁰C, we expected to find smaller 

differences between control and heated samples using our direct method since this temperature 

leads to less oxidative stress compared to 49⁰C87
. Indeed, our 25-100kDa in-gel (Figure 14e) and 

the plate assay (Figure 15) showed no significant difference between control and heated samples 

suggesting that oxidation was minimal and that IRDye800CW Maleimide fluorescence 

corresponds to the level of reduced proteins. In line with our 49⁰C results, the three specified 

bands at 25, 44 and 60kDa showed a trending increase in fluorescence after heating. As discussed 

above, one possibility for this might be spatially-determined specificity and 

compartmentalization. 

 We dropped the temperature of our heated group to 40⁰C in-part to determine whether 

our failed attempts at the DIGE method had to do with irreversible oxidation caused by 49⁰C 

heat. Figure 14 DIGE results show that this issue was not resolved with this change since the 

oxidized samples continued to show decreased fluorescence compared to control as we expect to 

see the opposite with this method. It is still unclear why the DIGE method has failed in our hands 

however one consideration is the dyes used for the experiments. We have optimized our direct 

protocol for use with the IRDye800CW Maleimide and have validated this dye through a number 
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of methods presented in this paper however Requejo et al. used a Cy3 and Cy5 fluorophores in 

their DIGE methods
79

.  

 GSH content (Figure 16a) and GSH/GSSG ratios (Figure 16c) showed a significant drop 

after 40⁰C treatment while GSSG content showed a trending yet insignificant increase (Figure 

16b). Once again this closely follows the data observed with direct in-gel whole-lane 

fluorescence (Figure 14e) and plate fluorescence (Figure 15) for the 40⁰C treatment presenting 

yet another case where IRDye800CW Maleimide fluorescence is related to GSSG content. 

 

6G - 49⁰C heat significantly increases protein carbonylation while 40⁰C does not 

 In order to address whether our selected temperatures were causing reversible or 

irreversible oxidation, we included an experiment to look at carbonylation of proteins since this 

is a form of irreversible protein oxidation. As expected we found that there was a significant 

increase in carbonylated proteins with 49⁰C (Figure 17b) while 40⁰C heat led to no change 

relative to control (Figure 17a). IRDye800CW Maleimide fluorescence is very closely related to 

protein carbonylation such that wherever a significant increase in carbonyl products occurs 

(49⁰C, Figure 17b) there is a significant decrease in dye fluorescence in-gel (Figure 11e) and in 

plate (Figure 12). The same relationship holds true in the 40⁰C group where no significance was 

observed in carbonylation (Figure 17a), in-gel fluorescence (Figure 14e) and in plate (Figure 15). 
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Chapter 7: Conclusions and Future Directions 

7A - Conclusions 

 This study was aimed at validating the IRDye800CW Maleimide as a useful tool for 

accurately detecting the redox state of lysates. While there are currently highly sensitive methods 

available, such as mass spectrometry and HPLC, access to these instruments may be limited to 

some researchers due to their high cost and technical expertise. Given these accessibility barriers, 

these labs may not have the resources or the training required to use these instruments but instead 

possess laboratory infrastructure for western blotting or microplate assays. As such, it is 

important for researchers to have an affordable and reliable option to directly detect protein 

redox states using a method that can be incorporated into commonly used assays such as SDS-

PAGE and in-well assays. Here, we have taken multiple approaches to test whether the changes 

observed in the dye’s fluorescence match results of redox state measured through GSH and 

GSSG content as well as protein carbonylation. We can conclude, based on the evidence 

presented in this study, that the IRDye800CW Maleimide does accurately represent the redox 

state in homogenates. Our target audience is the researchers who are interested in analyzing 

redox states of samples but whose primary focus is not redox bioenergetics. This method offers a 

simplified and affordable approach for such labs to accurately detect the redox state of proteins in 

samples. While the IRDye800CW Maleimide does not provide information regarding the specific 

form of oxidative modification that has occurred, this limitation presents one of its greatest 

strengths in that it accurately captures all forms of oxidation and reduction in a given sample 

providing researchers with a wealth of information related to redox states. 
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7B – Future Directions 

 The data we have presented thus far all involves a form of in vitro modification of redox 

states, whether through treating homogenates with different reagents or via exposure to heat. 

Since many researchers are interested in looking at in-vivo models, we would be interested in 

testing IRDye800CW Maleimide under such conditions that can bring about change in cellular 

redox states. One potential avenue of doing this is by looking at tissue that has gone through an 

acute bout of exercise or dietary influences since these are known to increase oxidation
98

. Certain 

disease conditions, such as muscular dystrophy, Alzheimer’s and Parkinson’s,  have also shown 

to have elevated levels of ROS and oxidative stress
99–101

. 

 We have demonstrated that desalting homogenates prior to labeling with the dye greatly 

enhances our signal. While we show that endogenous glutathione plays a role in this finding, it 

does not appear to be the only factor. It would be useful to determine the levels of other thiol-

containing compounds, such as free cysteines and coenzyme A, after desalting. Furthermore, it 

would be useful to determine whether or not the desalting columns are completely removing our 

reagents since we have shown that there is a quenching effect between the dye and the reagents. 

The hypothesis that not all reagents are being removed by desalting would be consistent with our 

findings in Figure 8 where our TCEP-treated samples show lower fluorescence than control. If 

this is the case then our current findings with IRDye800CW Maleimide in both oxidized and 

reduced samples could be an underestimation of what is really occurring. Therefore it is 

important for us to determine the levels of H2O2+NaI and TCEP after desalting. 

 Finally, to compare the sensitivities of the direct detection of thiols versus the indirect 

DIGE method, we must resolve our results with the DIGE method. A potential avenue to 

consider is the use of dyes. Our direct method incorporates the IRDye800CW Maleimide and this 

is the dye we used when attempting the DIGE method. However Requejo et al used the Cy3 and 
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Cy5. Although all of these dyes have similar properties (i.e. being maleimides) they may still 

contain differences that require consideration when used in homogenates. Future studies 

comparing these two methods may need to consider these differences. 
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Appendix A – Optimization Process for IRDye800CW Maleimide 

 Prior to beginning our experiments with IRDye800CW Maleimide, we intended to mimic 

the protocol presented by Sloan et al. in which they used PBS (pH 7.5) with 5mM DTT as their 

reducing agent and 5mM H2O2 as their oxidizing agent
72,90

. We did this in order to determine 

whether we would obtain similar results before proceeding with other forms of validation. In our 

attempts at this method, we were unable to repeat the findings obtained from these two studies. 

As previously shown in our results, one of the key steps that had to be incorporated to our assay 

was desalting samples prior to dye labeling (Figure 4 and 5). Once this first problem was 

addressed, we were able to continue our troubleshooting process. 

 

A1. Assay Buffer 

Following previous protocols
90,91

 our initial redox assays were done in PBS, however as 

described below in our optimizing procedures, we switched from DTT to TCEP as our reducing 

agent, which required a buffer change as well since TCEP is considered to be less stable in 

phosphate buffers at neutral pH
92

. We attempted the assay in both CHAPS and Tris buffers due 

to their low cost and ease of preparation and we found that both buffers yielded similar results, 

although fluorescence seemed to be greater and more consistent in Tris for all conditions 

compared to CHAPS (data not shown). 

 

A2. Incubation Conditions 

As seen in Supplemental Figure 1 in Appendix B, we obtained results that were opposite 

from what we expected such that the DTT samples were less fluorescent than control and H2O2 

samples were more fluorescent than control. We speculated that the reasons why DTT and H2O2-
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treated samples did not match previously reported findings might have to do with our incubation 

parameters. We had started by incubating samples for 1 hour on a rocker at room temperature 

however this did not resolve our issues (data not shown). We speculated that the reaction 

between thiols and our reagents was not occurring fast enough therefore we decided to incubate 

for 1 hour at 37⁰C in an attempt to speed up the reaction of thiol groups with DTT and H2O2 but 

this did not improve our signal. Once we decreased the incubation period to 30 minutes at room 

temperature we began to notice improvements in our H2O2-treated samples which showed less 

fluorescence than previous experiments. In accordance with these findings, it has been suggested 

that hydrogen peroxide is an unstable compound that is both temperature and light sensitive
93

. 

Given our findings with incubation time and temperature, it may be possible that 1 hour exposure 

of H2O2 to room temperature or higher is enough to degrade the compound and prevent effective 

oxidation of thiols in homogenate. Although these incubation parameters improved our H2O2 

signals compared to previous experiments, results using these incubation times still showed 

greater fluorescence with H2O2 relative to controls (data not shown). Therefore, we looked to 

other solutions for troubleshooting our protocol before determining our ideal incubation 

parameters. 

 

A3. DTT and H2O2 

In order to address our low DTT signal and high H2O2 signal we questioned whether 

these compounds were effective enough to cause changes in thiol groups in homogenates. DTT is 

a commonly used reducing agent but it has been suggested that DTT may actually be a poor 

reducing agent due to its low reactivity at neutral pH
94

 which is near the effective pH range of the 

IRdye800CW-Maleimide (6.5-7.5). Because of its pKa value, the thiolate anions of DTT are 
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protonated and therefore unreactive at neutral pH, with only 1% of its thiols reportedly being 

reactive
94

. Consistent with this finding, our initial results with DTT demonstrate that at a pH of 

7.5, DTT incubations were not effective at increasing fluorescent intensity as compared to 

untreated samples (Supplemental Figure 1, Appendix B). Given the reports and our findings on 

DTT, we began implementing tris (2-carboxyethyl) phosphine (TCEP) as a reducing agent. 

TCEP is another commonly used reducing agent which has been reported to show stability across 

a wide pH of 1.5-8.5
95,96

. After incorporating TCEP into our samples we found IRDye800CW-

Maleimide’s absolute fluorescence values showed no difference while normalized values showed 

a significant decrease in fluorescence (Figure 7). Given our observations with the effective 

rescue condition of TCEP (Figure 8), we proceeded with this reducing agent for the remainder of 

our optimization. 

 We suspected that H2O2 was not working because it lacked sufficient stability to react 

with thiols in the 30 minutes we allowed it to incubate in our samples. As such, we decided to 

add sodium iodide to our H2O2 solution since this is known to be a catalyst in the reaction 

between H2O2 and thiols
97

. By incorporating sodium iodide we found that fluorescence dropped 

well below that of controls and the results from our quenching suggest that this was largely a 

result of protein thiol oxidation as opposed to fluorescence interference (Figure 6). The 

mechanism of this catalytic reaction with sodium iodide still remains unclear however it appears 

that iodide may mediate electron transfer between thiols and H2O2
97

.  
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Appendix B: Supplemental figures 

 

Supplemental Figure 1.  Representative image of redox western on mouse cardiac 

lysate in phosphate buffer (pH 7.5) with samples incubated with 5mM DTT and 

5mMH2O2.  100nM IRDye per sample. 
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Appendix C: Buffers 

Tris buffer 

Chemical Final Concentration (mM) 

Tris 144.5 

MgCl2 1.44 

*pH to 7.1 at 4⁰C 

Chaps buffer 

Chemical Final Concentration 

NaCl 120mM 

NaF 50mM 

HEPES 40mM 

B-glycerophosphate 10mM 

NaHP2O7•H2O pyrophosphate 10mM 

CHAPS 0.30% 

*pH to 7.5 

Heat treatment buffer 

Chemical Final Concentration (mM) 

NaCl 145 

Hepes 10 

KCl 3 

CaCl2 2.5 

*pH to 7.4 
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Tris BSAN buffer (for HPLC measures) 

Chemical Final Concentration (mM) 

Tris 50 

Boric Acid 20 

Acivicin 20 

NEM 5 

L-Serine 2 

 

Appendix D: Homogenization protocol 

1. Place muscle in metal dish filled with liquid nitrogen 

2. Using pre chilled spatula chip piece of muscle of desired size 

3. Using pre chilled forceps quickly place muscle on scale to get rough weight (do not wait 

for steady weight). While weighing, place forceps back in liquid nitrogen to remain cool 

4. After getting weight, place muscle back in liquid nitrogen storage dewer until all samples 

have been weighed 

5. Using the following dilution protocol place muscle in desired volume of homogenization 

buffer that contains: 

1:100 Phosphatase Inhibitors 2 and 3 

1:200 Protease Inhibitors 

6. Dilutions:  300uL CHAPS buffer/30-40mg of muscle 

7. Fill 50mL beaker with ice and place eppendorf with muscle securely in ice 

8. Homogenize using tapered pestle for 2x30 seconds 

9. Centrifuge at 13,500g for 10 minutes at 4C 
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Appendix E: Final protocol for treatment with TCEP and H2O2 

1. Weigh 40 mg of cardiac muscle 

2. Put the tissue in 1.5 ml tube and 0.3 ml ice cold Tris buffer containing protease inhibitors 

3. Mince tissue with fine scissors and homogenize on ice for 2 x 30s. Repeat for another 30s 

if necessary. 

4. Spin down for 10 min at 13,500 rpm 

5. Collect supernatants and run each sample through 2 successive desalting Zeba columns to 

remove endogenous glutathione (and other dye-interfering factors) 

6. Determine protein concentration using BCA assay 

7. Dilute samples to 4.167mg/ml in 200µl total volume 

8. Add 1mM TCEP and 5mM H2O2+NaI to their respective samples 

9. Incubate all samples together on a rocking platform for 5 minutes at room temperature 

10. Run each sample again through 2 successive desalting Zeba columns to remove excess 

reagents 

11. Determine protein concentration using reducing-agent compatible BCA assay 

12. Dilute samples to 1mg/ml and label with 400nM IRDye800CW Maleimide 

13. Incubate overnight 

14. Next day remove excess dye by spinning through 2 successive desalting Zeba columns 

15. Determine protein concentration and proceed with western blotting protocol 

Appendix F: BCA protein assay 

 

1. Create protein standards by diluting BSA in homogenization buffer 

2. Standards (BSA): 

0 mg/mL (buffer) 
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0.0625 mg/mL 

0.125 mg/mL 

0.25 mg/mL 

0.50 mg/mL 

0.75mg/mL 

1.00 mg/mL 

3. Dilute 5µl  of each sample in 45µl of homogenization buffer 

4. Using a 96-well plate load 10µl in triplicates each standard and each sample 

5. Add 190µl of working reagent (50:1 Solution A:SolutionB) into each well of sample 

6. Heat in over for 30 minutes at 37C 

 

Reducing agent compatible (RAC) BCA assay 

1. Prepare a sample (without protein) containing reducing agent at the same concentration as 

experimental samples 

2. Repeat steps 1-3 above for all samples 

3. Using a 96-well plate load 9µl of each standard and sample in triplicates 

4. Add 4µl of Compatibility Reagent (reconstitution buffer + compatibility reagent) to each 

sample in each well 

5. Incubate plate for 15 minutes at 37⁰C 

6. Add 260µl of working reagent to each well and incubate for 30 minutes at 37⁰C 
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Appendix G: Western blotting protocol 

Gel preparation 

 

1. In 50mL falcon tubes make running gel and stacking gel (1 column makes 2 gels) *DO 

NOT ADD TEMED UNTIL READY TO LOAD 

2. Take 1 short plate and one spacer plate and clean both sides of glass with methanol and 

kimwipe 

3. Place clean short plate on top of spacer place and place both in mounting apparatus, 

ensuring the edge of the plates are lined up against the bench top 

4. Place plates in apparatus on foam piece in gel stand 

5. Place 3 transfer pipettes and falcon tube with methanol close to gel stand 

6. Add TEMED to running gel and invert falcon tube 1-2 times 

 Stacking Running 

5% 6% 8% 10% 12% 

dH2O 6.8 ml 11.4 10.6 ml 9.4 ml 8 ml 6.7 ml 

1.5M Tris-Base, pH 8.8 *** 5 ml 5 ml 5 ml 5 ml 5 ml 

1M Tris-HCl, pH 6.8 1.25 ml *** *** *** *** *** 

30 % Acrylamide 1.70 ml 3.4 ml 4 ml 5.3 ml 6.7 ml 8 ml 

10 % SDS 100 μl 200 μl 200 μl 200 μl 200 μl 200 μl 

       

10 % APS 100 μl 200 μl 200 μl 200 μl 200 μl 200 μl 

Temed 20 μl 20 μl 20 μl 20 μl 20 μl 20 μl 
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7. Using transfer pipette, fill space between glass plates with running gel until solution 

reaches the top of the green doors 

8. Using new transfer pipette add methanol to top of plate to create an even line along the 

top of the gel removing any bubbles 

9. Let sit until remaining running gel has set in the flacon tube 

10. Once gel has hardened, invert gel to remove any excess methanol 

11. Add TEMED to stacking gel and mix 

12. Using transfer pipette, add stacking gel to top of glass plates, use methanol transfer 

pipette to remove any bubbles 

13. Add comb to top of gel and allow to set 

14. Prepare diluted samples by combining sample, water and Laemmeli’s buffer + 2-

mercaptoehtanol (100 μl 2-mer: 900 μl Lam) 

15. Spin down samples for 5 seconds 

16. Make 1X running buffer in 1000mL graduated cylinder 

17. Remove combs from gels and place gels in gasket 

18. Place gasket with gels in tank and add 1X running buffer until it fills the top of gasket and 

tank 

19. Load wells with desired concentration of samples 

20. Run for desired time (40-75 minutes) at 160mV (or desired voltage) and protect from 

light 

21. When run is complete, carefully remove gel, rinse with TBST to remove small bubbles 

from surface 

22. Detect using LiCOR Infrared Imager 

 


