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Abstract

In this dissertation, we delve into the exploration of robust and risk-sensitive strategies for

financial decision-making within hidden regimes, focusing on the effective portfolio manage-

ment of financial market risks under uncertain market conditions. The study is structured

around three pivotal topics, that is, Risk-sensitive Policies for Portfolio Management, Robust

Optimal Life Insurance Purchase and Investment-consumption with Regime-switching Alpha-

ambiguity Maxmin Utility, and Robust and Risk-sensitive Markov Decision Process with

Hidden Regime Rules. In Risk-sensitive policies for Portfolio Management, we propose two

novel Reinforcement Learning (RL) models. Tailored specifically for portfolio management,

these models align with investors’ risk preference, ensuring the strategies balance between risk

and return. In Robust Optimal Life Insurance Purchase and Investment-consumption with

Regime-switching Alpha-ambiguity Maxmin Utility, we introduce a pre-commitment strategy

that robustly navigates insurance purchasing and investment-consumption decisions. This

strategy adeptly accounts for model ambiguity and individual ambiguity aversion within

a regime-switching market context. In Robust and Risk-sensitive Markov Decision Pro-

cess with Hidden Regime Rules, we integrate hidden regimes into Markov Decision Process

(MDP) framework, enhancing its capacity to address both market regime shifts and market

fluctuations. In addition, we adopt a risk-sensitive objective and construct a risk envelope to

portray the worst-case scenario from RL perspective. Overall, this research strives to provide

investors with the tools and insights for optimal balance between reward and risk, effective

risk management and informed investment choices. The strategies are designed to guide

investors in the face of market uncertainties and risk, further underscoring the criticality of

robust and risk-sensitive financial decision-making.
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1 Introduction

Sequential decision-making is a cornerstone in many aspects of financial management

and economics. This process of sequential decision-making involves making a series of deci-

sions over a period of time, where each decision can influence subsequent choices and ulti-

mately the final outcome. One of the earliest and most profound applications of sequential

decision-making models is in the field of financial management, more specifically, in port-

folio management. Portfolio management is an intricate process of choosing and managing

an investment policy that minimizes risk and maximizes return on investments. It involves

the continuous process of decision-making regarding investment in different assets, balancing

the portfolio, and considering the time and uncertainty factors to meet the specific invest-

ment objectives. Therefore, the very nature of portfolio management aligns well with the

principles of sequential decision-making. Despite its criticality, sequential decision-making

is fraught with challenges. The inherent uncertainties of future outcomes are a major con-

cern. Decision-makers must evaluate not only the immediate repercussions of their actions

but also anticipate a myriad of potential future scenarios that could be influenced by their

choices. The dynamic interplay between immediate decisions and unpredictable future out-

comes makes sequential decision-making a captivating and intricate area of study in financial

management and economics.

Sequential decision-making models found their initial applications in portfolio manage-

ment with the advent of the Modern Portfolio Theory (MPT) introduced by Markowitz

(1952). MPT proposes that an investment’s risk and return characteristics should not be

viewed alone, but should be evaluated by how the investment affects the overall portfolio’s

risk and return. With advancements in technology and the development of sophisticated al-

gorithms, the application of sequential decision-making in portfolio management has become
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more robust and powerful. The employment of Reinforcement Learning (RL) in solving port-

folio management problems came into light around 1998 when pioneers Moody, Wu, Liao,

and Saffell (1998) and Moody and Saffell (2001) are among the first to introduce a recur-

rent RL algorithm for portfolio optimization problems and develop asset allocation systems,

laying the groundwork for future development in portfolio management problems. Following

their lead, Almahdi and Yang (2017) extend the recurrent reinforcement learning approach

using an adjusted objective function and seek an optimal weight portfolio strategy under the

expected maximum drawdown risk measure. In subsequent years, scholars such as Jiang and

Liang (2017) and Xiong, Liu, Zhong, Yang, and Walid (2018) present innovative applica-

tions of RL technique to tackle the portfolio management problems, focusing specifically on

optimal trading positions in the stock and cryptocurrency markets, respectively.

On the other head, the advent of stochastic control in portfolio management opened up

an alternative methodology. Stochastic control is a mathematical approach dealing with

the optimization of systems that evolve over time under the influence of random distur-

bances. The stochastic control methodology’s intrinsic ability to handle uncertainties and

its flexibility in addressing complex systems have rendered it a promising tool in financial

portfolio management. Building on these foundational ideas, stochastic control has been

used to model and manage dynamic investment strategies, cater to various risk preferences,

account for transaction costs, and manage portfolios under various constraints. By providing

a systematic and dynamic approach to decision-making, stochastic control allows investors

to adjust their strategies based on the current state of the market and anticipated future

changes. Merton (1969) is among the first apply the stochastic optimal control theory to de-

velop an elegant solution to the consumption-investment portfolio problem. Richard (1975)

extends the models of Merton (1969) by integrating a life insurance purchase decision to the

investment-consumption portfolio management problem. This model was tailored for a fixed

planning horizon but considered uncertain lifetimes and continuous lifetime income streams.

Further refining the use of stochastic control in managing uncertainties, Maenhout (2004)

and Elliott and Siu (2009) introduces the concept of robust portfolio rules to handle model

uncertainties in the investment world via stochastic control. These robust approaches con-

sider model misspecification in sequential decision-making models, fostering resilience in the

2



face of uncertainties about the statistical properties of asset returns. These robust method,

underpinned by stochastic control, heralds a more adaptive era for portfolio management

problem in face of model uncertainties.

Moreover, it’s crucial to note that long-term investment strategies are substantially shaped

by macroeconomic conditions and business cycles, elements collectively termed as hidden

regimes of the market. In addressing these influential factors, Markovian regime-switching

models have surfaced as a potent solution. By allowing model parameters to transition

between different states over time, these models provide a more realistic representation of

financial markets compared to conventional models with fixed parameters. The genesis of

these regime-switching models can be traced back to Hamilton (1989), who first develops the

model for the stock return time series, called the regime-switching model, which highlights

the exceptional capacity of these regimes to capture the complex dynamics of financial mar-

kets. Since then, numerous applications of these models have been developed, enhancing the

sophistication and financial decision-making by accounting for hidden regimes, and demon-

strating that regime-switching models could portray financial markets more accurately than

conventional models with deterministic coefficients. Furthering this work, Zariphopoulou

(1992) applies the regime-switching model to the investment-consumption problem, in which

a financial market consists of a deterministic risk-free asset and a risky asset, depending

only on a continuous-time Markov chain. Lee and Shim (2015) apply the Markovian regime-

switching model to optimal consumption, investment, and life insurance purchase rules for a

wage earner with mortality risk in a continuous time-horizon, and apply the Markov chain ap-

proximation method to solve the Hamilton-Jacobi-Bellman (HJB) equation arising from the

optimization problem. This thread of research on regime-switching models brings an addi-

tional layer of sophistication to financial decision-making, particularly in terms of accounting

for hidden regimes. Their ability to switch between different states over time allows these

models to capture the impact of structural changes and varying macroeconomic conditions,

thereby enhancing the robustness and risk-sensitivity of financial decision-making.

One of the key challenges of portfolio management problems in sequential decision-making

models is the existence of hidden regimes. These hidden regimes, often unseen factors or un-

known states, can significantly impact the outcomes of our decisions. They might include

3



underlying shifts in market trends, state transitions, or technological disruptions that are not

immediately apparent. Understanding and accounting for these hidden regimes is of utmost

importance, as they can profoundly affect the overall performance and success of the strategies

we implement. However, integrating hidden regimes in sequential decision-making models is

not a straightforward task. It requires not just the ability to detect these regimes, but also

to make robust decisions based on the information gleaned from hidden regimes. Markov

Decision Processes (MDPs) are widely used framework to model the sequential decision-

making problems. Robust MDPs, an extension of MDPs, are designed to handle parameter

uncertainties, which are situation some parameters cannot be estimated with precision. The

objective of robust MDPs is to seek a policy that maximizes the minimum expected total

reward for all possible parameter values, taking into account that the parameter values can

fluctuate within an uncertainty set. This ensures robustness against uncertainty and varia-

tions in the system. The robust solutions provide a performance guarantee for all uncertain

MDP models, thereby offering robustness to model mismatch. Building on this conceptual

framework, Iyengar (2005); Nilim and El Ghaoui (2005) formulate robust control of robust

MDPs that model an uncertainty set of transition probabilities and derive an optimal policy

that performs well under worst-case scenarios using robust dynamic programming. Their

contribution informs subsequent research by Wiesemann, Kuhn, and Rustem (2013), who

propose a robust MDPs formulation to address the issue of uncertainty in MDPs, where the

transition probabilities are unknown or uncertain. They construct a confidence region for

the unknown parameters with a specified probability and determine a policy that maximizes

the worst-case performance over this region.

Risk-sensitive decisions are another critical aspect of sequential decision-making that are

those that explicitly consider and balance the trade-off between the expected outcome and

the associated risks. Compared to standard MDPs, risk-sensitive MDPs take into account

risk preferences by introducing a risk measure into the objective function, such as variance or

Conditional Value-at-Risk (CVaR). This approach allows us to capture the trade-off between

the expected return and risk. The goal in a risk-sensitive MDP is to optimize a risk-sensitive

objective, such as maximizing the expected return subject to a constraint on the risk. Stella,

Lin, and Yan (1998) introduce the risk-sensitive MDPs model, where the objective is to find
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a policy that maximizes the probability that the cumulative cost is within some user-defined

cost threshold. They propose a Value Iteration (VI) algorithm to solve the problem. How-

ever, their algorithm faces scalability issues, limiting its applicability to large-scale problems.

Furthermore, Hou, Yeoh, and Varakantham (2014) revisit the risk-sensitive MDPs model and

propose a novel approach to solving the problem, called Topological Value Iteration. The

new algorithm is more efficient and faster than the original VI algorithm, addressing some

scalability concerns. Chow, Tamar, Mannor, and Pavone (2015) consider risk-sensitive MDPs

with a CVaR objective, referred to as CVaR MDPs. They provide a new optimization algo-

rithm for CVaR MDPs, which minimize a risk-sensitive CVaR of the total cost in the CVaR

MDPs leverages the state augmentation procedure and propose an approximate algorithm

with convergence analysis. Lastly, Tamar, Chow, Ghavamzadeh, and Mannor (2016) propose

a novel risk-sensitive objective function for RL that considers the consequences of different

decisions in a coherent manner. They propose a sampling-based algorithm for estimating the

gradient of coherent risk.

In this dissertation, we delve deeply into robust and risk-sensitive approaches to finan-

cial decision-making in the realm of portfolio management. Our aim is to construct robust

and risk-sensitive policies from the perspectives of reinforcement learning (RL) and stochas-

tic control. We unravel how hidden regimes can influence financial decisions, and explore

strategies that navigate these invisible frontiers effectively and robustly. By integrating hid-

den regimes into MDPs, we endeavor to provide a comprehensive framework that empowers

decision-makers to take into account the hidden regimes of the financial market and make

more informed decisions in the face of uncertainty. Through this research, we aim to make

significant contributions to this expanding body of knowledge, with a particular emphasis on

integrating RL and stochastic control with hidden regimes for financial decision-making. We

aspire to provide a more nuanced understanding of financial markets, aiding both academia

and industry in navigating the complex dynamics of financial decision-making.

The upcoming chapters will delve into the theories and methodologies that underpin our

approach, providing support through experimental evidence. In Chapter 2, we design risk-

sensitive portfolio management strategies based on the principles of Reinforcement Learning

(RL). We introduce two novel approaches for controlling investment risk in portfolio manage-
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ment. By leveraging RL techniques, we aim to construct policies that are sensitive to risk,

thereby protecting investors from substantial losses. The effectiveness of our approaches is

further validated through empirical experiments on real-world data. In Chapter 3, we ex-

amine a scenario where an investor is endowed with initial wealth and also receives income

continuously over a random lifetime, and she can dynamically purchase life insurance and

invest savings in the financial market. This market consists of a risk-free asset and a risky

asset, with market coefficients modulated by a continuous-time Markov chain. The states

of this chain represent the various regimes of the financial market. In this context, we seek

solutions for robust optimal life insurance and investment-consumption strategies under the

framework of regime-switching. In Chapter 4, we explore the integration of hidden regimes

into the Markov Decision Process (MDP). We propose a novel approach to address the robust

and risk-sensitive MDP problem with hidden regimes from both RL and Stochastic Control

(Dynamic Programming) perspectives. We use the current state and the financial market’s

hidden regimes to model uncertainty over transition probabilities, thereby constructing ro-

bust and risk-sensitive policies.

In traversing this intricate landscape, we aim to illuminate ways to better manage risk

and make decisions robust against unseen and unknown factors. It is our hope that this

contributes to the broader discourse on financial decision-making in our modern era, providing

tangible strategies to navigate the complex financial markets.
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2 Risk-sensitive Policies for Portfolio Management

In this chapter, building upon our findings as published in M. Wang and Ku (2022),

we delve deeper into the realm of risk-sensitive policies for portfolio management. We aim

to unpack the intricacies of these policies, exploring the performance of RL algorithms in

portfolio management problem.

2.1 Introduction

Portfolio management is a decision-making process that allocates investment funds to gain

maximum profit and relatively lower risk based on individuals’ goals, risk preferences, and

investment horizons. The foundation of modern portfolio theory can be traced back to the

pioneering work of Markowitz (1952), in which his Mean-Variance analysis is a representative

methodology in the framework of return-risk trade-off analysis. The original Mean-Variance

theory is developed in a mathematical skeleton that constructs a portfolio that maximizes the

expected return for a given degree of risk. The disadvantage of the original mean-variance

model is that when a portfolio has high return and volatility, investors might give up the

strategy of high returns to remain at low risk. Moreover, there is much noise and uncertainty

in the financial market, which leads to inaccurate values of the mean and variance.

Over the last few decades, many studies investigate the application of RL algorithms to

financial market trading, and try to predict the price movements or trends by using historical

market data. The benefit of RL learning technology in portfolio optimization problems is that

the algorithm can observe and learn from the market history completely without assuming any

prior knowledge of the financial markets or making any models. The advantage of RL learning

technology in portfolio optimization is that the algorithm can thoroughly learn and extract

useful information from market history, without any advanced knowledge and experience in
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financial markets, and without making any assumptions about the models. The application of

RL in portfolio management problems starts from 1998, Moody et al. (1998) and Moody and

Saffell (2001) first propose a recurrent RL algorithm for portfolio optimization problem and

construct assets allocation systems. Both of these studies aim to maximize the differential

Sharpe ratio, that is, to maximize risk-adjusted returns by considering transaction costs.

The disadvantage of using the differential Sharp ratios is that it penalizes returns exceeding

a certain value and takes more weight on recent returns. In addition, the differential Sharpe

ratio cannot distinguish the potential growth trend of the portfolio. In another attempt

by Almahdi and Yang (2017), they extend the recurrent reinforcement learning approach

using an adjusted objective function and seek an optimal weight portfolio strategy under

the expected maximum drawdown risk measure. However, these existing models have fixed

the number of shares for trading. In reality, when the buying or selling signal occurs in the

market, it is necessary to determine how many shares to buy or sell. Trading a fixed number

of stocks in each transaction does not reflect the real market situation and affects the total

profits. With the development of deep RL, deep RL has demonstrated the capability to learn

complex policies from many types of environments.

Deep Q-network (DQN) is one of the most popular methods in deep RL. As the approxi-

mation of the Q-value function, the neural network can be applied to approximate the reward

by taking actions and pursuing policies from a given state. Bertoluzzo and Corazza (2012),

Chen and Gao (2019), and Park, Sim, and Choi (2020) apply DQN to portfolio management

problems and make remarkable achievements. The advantage of DQN is that it does not re-

quire the labelled data that suffer from the constraints and bias of data. It can automatically

adapt to the changes in the underlying data distribution, thereby it is a suitable method for

the dynamic of the financial market. However, their actions are limited to the discrete action

space while the actions are continuous in portfolio management problems. To overcome this

issue, DDPG is proposed by Google DeepMind (Lillicrap et al., 2015), a type of actor-critic

based DRL algorithm that supports the continuous action space encountered in portfolio

optimization problems. Jiang and Liang (2017) and Xiong et al. (2018) present innovative

approaches based on DDPG to solve the trading problem of the optimal trading position at

each transaction in stock market and cryptocurrency market. The experimental results of
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their evaluation take into consideration transaction costs and prove the effectiveness of the

algorithms in portfolio management. The advantage of DDPG is that it can deal with the

problem of high-dimensional continuous action space well, and its purpose is to learn a policy

function directly, instead of approaching the Q-value function.

Hierarchical Learning (HRL) is a promising method that expands the traditional rein-

forcement learning methods by decomposing the elaborate and intricate problems into sub-

problems and effectively solving each sub-problem. The HRL method has some advantages,

such as it is easier to be trained, and solving each sub-problem individually will improve its

reusability, which will accelerate the learning process. HRL has been devoted to learning

these difficult tasks for a long time, the multi-layer strategies are trained to make decisions

and control at a higher level of temporal and behavior abstraction. (Barto & Mahadevan,

2003; Dayan, 2002; Dietterich, 1998; Nachum, Gu, Lee, & Levine, 2018). In general, by hav-

ing a hierarchy of policies, only the lower-level policies execute actions to the environment,

and the higher-level policies are trained to distribute the sub-tasks to the lower-level policies.

Although the applications of deep RL algorithms in the financial market are well studied,

most of the previous works only consider maximizing the total profit, and surprisingly, they

ignore the impact of possible disasters.

Managing risk in dynamic decision-making is an important topic because it can fully iden-

tify and deal with potential risks. A well-known approach is to consider risk while measuring

the performance of a trading strategy. The risk is a quantity related to the variance (or stan-

dard deviation) of the rate of return, and it is also referred to as volatility. The Sharp ratio

is one of the most popular indicators that consider the profits generated by trading strate-

gies and the risk associated with trading strategies. There are existing works that proposed

risk-sensitive portfolio optimization algorithms. Among them, Schlosser (2020) proposes

risk-sensitive trading strategies based on intraday trading, it allows to control the moments

of the reward distribution. Then, the author uses dynamic programming techniques to ex-

press recursively the higher moments of reward distribution and obtain the optimal solutions.

Y. Gao, Lui, and Hernandez-Leal (2021) present the Risk-Averse Averaged Q-Learning and

Variance Reduced Risk-Averse Q-Learning by combining the risk-averse functions and vari-

ance reduction techniques. Then, they augment the framework to a multi-agent scenario and
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propose Risk-Averse Multi-Agent Q-Learning (RAM-Q) for trading markets that augment

multi-agent with robustness. Harnpadungkij, Chaisangmongkon, and Phunchongharn (2019)

propose a risk-sensitive algorithm by applying distributional reinforcement learning, called

C21-SR, which models cumulative returns using a 21-bin discrete distribution and selects the

actions according to the Sharpe ratio to control investment risk and maximize profits.

In this chapter, we aim to construct policies with risk awareness to protect the investor

under the worst-case scenarios. Inspired by Dietterich (1998); Nachum et al. (2018), we

propose a novel RL algorithm, called Hierarchical DDPG, which combines the classical DDPG

algorithm and the Hierarchical structure for portfolio management problems. The original

higher-level policy of HRL performs at an abstraction layer and distributes sub-tasks to the

lower-level policy, which correspond directly to the target that the lower-level policy attempts

to reach. In our proposed Hierarchical DDPG, the higher-level policy adjusts the lower-level

policy’s actions to reduce the portfolio risk and operates in the environment. We employ

parametric Conditional Value-at-Risk (CVaR) as a metric that measures the portfolio risk.

HRL is extended by adding the portfolio risk indicator, so that the agent can implement

different trading strategies for different scenarios. More precisely, the lower-level policy of

Hierarchical DDPG can be interpreted as a worker, aiming to maximize the total profit of

the portfolio when the portfolio risk is lower than the CVaR constraints. The higher-level

policy of Hierarchical DDPG can be interpreted as a manager, whose purpose is to reduce

the portfolio risk immediately based on the worker ’s action when portfolio risk exceeds the

investor’s tolerance. On the other hand, most of the existing RL algorithms cannot learn

risk-sensitive policies because they only consider maximizing the average and do not penalize

the effects of rare occurrences of catastrophic events. Motivated by Barth-Maron et al.

(2018); Tang, Zhang, and Salakhutdinov (2020), we propose the distributional DDPG model

for portfolio management problems with the purpose of seeking a risk-sensitive policy that

can map the same state to different actions according to risk preference. We construct the

α-percentile expectation as our measure, which represents the expected return under the

distribution of the α-percentile at the bottom of future return. The risk-sensitive policies

can be obtained by maximizing the α-percentile expectation based on different values of risk

parameter α. When α is small, the agent focuses on maximizing the performance of the
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worst-case scenario.

The main goal of this chapter is to construct a risk-sensitive policy to protect investors

who may suffer a huge loss due to a financial crisis or rare disaster events. In pursuing this

goal, we have made the following contributions. First, we design the Hierarchical DDPG

algorithm to learn the solution of the portfolio management problem. When the portfolio

risk is below the CVaR constraints, the Hierarchical DDPG agent aims to maximize the

total profit. But when the portfolio risk exceeds the CVaR constraints, the priority of the

Hierarchical DDPG agent is to reduce the portfolio risk immediately, instead of maximizing

the total profit. Second, we propose the distributional DDPG method for solving the portfolio

optimization problem based on uncertainty of the future returns. According to the investor’s

risk preference, the distributional DDPG algorithm can learn a risk-averse policy that yields

different actions depending on risk parameters, which is more robust than the other RL

algorithms.

The proposed approaches are then validated by a real-world dataset from the U.S. stock

market1. It is well known that the U.S. stock market crashed during the Coronavirus pan-

demic in 2020, which was one of the most dramatic stock market crashes in history. The

circuit breaker mechanism was triggered three times in a month, S&P500 plunged 1019 points,

an equivalent of roughly 29%. This provides a good example for verifying our algorithms.

The three different comprehensive performance metrics are employed to assess the portfolio

performance from different perspectives. Our experimental results show that Hierarchical

DDPG is superior in portfolio management to the classical DDPG method because it can

significantly reduce or avoid a loss caused by the occurrences of catastrophic events. Also,

the results demonstrate that the distributional DDPG agent can provide a risk-averse pol-

icy depending on the risk parameter, and the α-percentile expectation is well-suited as the

criterion of the distributional DDPG, which provides a good distributional critic that can

be learned. Via the experimental study, we verify that two proposed algorithms provide

promising results, and our approaches are an effective way to protect the investor who may

suffer a huge loss due to a financial crisis or rare disaster events.

This chapter is organized as follows. Section 2.2 briefly reviews the related work in the area

1Real data is collected from Yahoo Finance.
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of portfolio management using RL. Section 2.3 formulates the portfolio allocation problem.

Section 2.4 introduces the classical DDPG algorithm. Section 2.5 introduces our proposed

novel models. The core innovation of this chapter, Hierarchical DDPG and Distributional

DDPG for the portfolio management problem is presented in this section. Section 2.6 displays

the experiment results for classical DDPG, Hierarchical DDPG, and Distributional DDPG;

and analyzes the obtained results. The final conclusion is presented in section 2.7.

2.2 Related Work

In recent decades, portfolio optimization problems in financial trading have attracted

much attention. As a primary approach in the field of Artificial Intelligence (AI)2, deep RL

is one of the most popular portfolio management methods in the financial market due to its

outstanding performance compared to expert traders. Deep RL has originally been used in

applications of video games (Mnih et al., 2015) and chess games (Silver et al., 2018). Ormoneit

and Glynn (2002) propose a kernel-based RL method to conquer the issue of instability in

RL. Their method aims at learning within the framework of average-cost and applying this

method to portfolio management problems. Nevmyvaka, Feng, and Kearns (2006) propose a

novel RL algorithm for optimizing transaction execution in the modern financial market by

using NASDAQ market high-frequency data sets. Most traders in the real world are dealing

with large-scale diversified investment portfolios, but due to time constraints, they are always

neglected to deal with individual stock and millisecond data, which makes it necessary to use

automatic trading agents. Their experiment results of real-world data on three NASDAQ

stocks demonstrate that RL can indeed result in significant improvements.

Deep RL that combines deep learning and RL algorithms can divide into three groups:

policy gradient, value-based, and actor-critic. Policy gradient algorithms learn directly the

stochastic policy function that maps a state to the probability of each action in action space.

Value-based algorithms approximate the Q-value function that represents the expected ac-

cumulated rewards by given a state on taking an action and pursuing a policy. The observed

2In its 12th annual Global Alternative Fund and Investor Survey, November 2018, Ernst & Young (EY)
reports that more than 40% of hedge fund managers admit that they refer to AI to develop strategies to
enhance performance for making greater profits in their investment process.
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information is analyzed through the neural network and output Q-values of each action, then

the value-based algorithms rely on the reward function to influence the output of neural

networks by backpropagation. The Temporal difference (TD) learning method plays a key

role in the actor-critic algorithm that combines the value-based method and the policy-based

method. The policy-based network plays as an actor who outputs an action, while the value-

based network acts as a critic that appraises the action estimated by the actor-network and

generates the TD errors to update the actor and critic network.

DQN is one of the value-based deep learning methods, which updates the Q-value through

a neural network instead of updating the Q-table to maximize the cumulative rewards. In

the absence of a deterministic strategy, the algorithm will select the action that provides the

highest Q-value, and then the Q-value will be updated continuously until it converges to the

best action. Bertoluzzo and Corazza (2012) apply DQN to portfolio management problems.

The action space is defined as buying, selling or hold. To compare the performance of DQN

and Kernel-based RL algorithm, real-world data from three Italian stocks are used to test

and validate the performance. The experiment results show the DQN algorithm performs

better than the Kernel-based RL algorithm. Chen and Gao (2019) combine the DQN and

Deep Recurrent Q-network for portfolio optimization problems and construct a daily stock

trading system that can automatically decide to make transactions on each trading day. The

Standard & Poor’s 500 Index ETF is used to evaluate their trading system, and its daily

prices are defined as the state of reinforcement learning in the trading environment. Jeong

and Kim (2019) propose an automated system that can predict the number of shares of

each transaction by adding a DNN regressor to DQN. In addition, they adopt a transfer

learning technique to pre-train neural networks when financial data is insufficiently large.

The experiment results reveal that the total profit is significantly increased by forecasting

the number of shares. Pendharkar and Cusatis (2018) design an on-policy SARSA and off-

policy Q-learning for the purpose of asset allocation, train the RL agent with discrete action

space, which can maximize the return of portfolio or differential Sharp ratio, and compare it

with other RL methods in financial markets. Z. Gao, Gao, Hu, Jiang, and Su (2020) propose

a novel DQN framework, which is expressly designed for managing a multi-asset portfolio

and allows DQN agents to optimize their trading strategies by interacting with the real
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financial market. Park et al. (2020) derive a novel portfolio trading strategy for multi-asset

management in the practical action space and devise a transformation function that maps

the infeasible action to similar feasible actions.

Deep Deterministic Policy Gradient (DDPG), proposed by Lillicrap et al. (2015), is one

of the actor-critic algorithms that support continuous action space. Compared to DQN,

the merit of DDPG is that it can handle high-dimensional continuous action problems well,

and it directly outputs the optimal action instead of the Q-value. Jiang and Liang (2017)

implement the DDPG algorithm that adopts a convolutional neural network (CNN) to solve

the asset allocation problem in the cryptocurrency market. They optimize the investment

portfolio by weighting all stocks, and make it suitable for continuous-time actions to solve

the discrete action space problem. A back-test experiment is applied in the cryptocurrency

market, and their experimental results achieve positive results compared to another three RL

portfolio management algorithms. Liang, Chen, Zhu, Jiang, and Li (2018) extend DDPG by

using a deep residual network and propose an adversarial training method that improves the

performance of deep RL. It has been tested on the Chinese stock market that illustrates this

approach can significantly improve the training efficiency, average daily earnings and Sharp

ratio. Xiong et al. (2018) explore the potential of training DDPG agents to obtain the optimal

trading strategy in the stock market. They construct a portfolio that consists of 30 stocks,

and the trading environment has been created by adopting the daily prices of each stock.

Compared to the traditional minimum-variance method, the DDPG algorithm has gained

higher benefits, which proves the effectiveness of the algorithm. Wu and Li (2020) construct

Gate Deterministic Policy Gradient (GDPG) by adding the Gate Recurrent Unit into DDPG

to extract financial features from the time-series stock market data. The performance of their

proposed GDGP method is verified by comparing the experimental results, which shows that

the GDPG method gains a higher return than the traditional DRL, it can spawn a more

stable performance even in the turbulent financial market.

Despite a tremendous amount of research and high-quality results in the area of portfolio

management by RL, there is very little literature that takes into account the portfolio risk,

especially under the worst-case scenarios, in constructing trading strategies. Every financial

product has its own risk and reward characteristics. The ultimate goal of investors is to
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choose the best portfolio with the highest return, and keep the portfolio risk below a certain

degree. Thus, it is significant and important for the RL agent to construct a risk-sensitive

or risk-averse policy for the investors who may suffer a huge loss caused by rare events.

2.3 Portfolio Allocation Problem

Portfolio optimization requires continuous reallocation of an investment fund into different

assets. Our trading agent does this allocation periodically. The trading environment is

formulated as follows. For the convenience of readers, we provide Table 2.1 that includes all

symbols.

2.3.1 Problem formulation

The individual asset consists of the opening, highest, lowest, closing prices, and volume

for each trading period. We denote the closing price vci,t of the i-th asset in the t-th trading

period. Similarly, vhi,t, v
l
i,t, v

o
i,t denote the highest, lowest, and opening prices of the i-th asset

in the t-th period, respectively. Denote by vvi,t the volume of the i-th asset in the t-th period.

For the t-th trading period, the prices and volume of each individual asset can be expressed

as

vi,t =
[
voi,t, v

h
i,t, v

l
i,t, v

c
i,t, v

v
i,t

]
, (2.1)

and the information the agent can observe on the i-th stock at timestep t is written as

Vi,t =


voi,t, vhi,t, vli,t, vci,t, vvi,t

voi,t−1, vhi,t−1, vli,t−1, vci,t−1, vvi,t−1

...
. . . . . . . . .

...

voi,t−m+1, vhi,t−m+1, vli,t−m+1, vci,t−m+1, vvi,t−m+1

 , (2.2)

where m is the window size.

For continuous markets, the relative price change in the t-th trading period is defined as the

element wise division of vci,t by v
c
i,t−1:

yt =
vct
vct−1

=
[
1,

vc1,t
vc1,t−1

,
vc2,t
vc2,t−1

, . . . ,
vcn,t
vcn,t−1

]T
, (2.3)
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Table 2.1: Notations for the trading system

Symbols Explanations for the notation

vci,t closing price of the i-th asset in the t-th trading period

vhi,t highest price of the i-th asset in the t-th trading period

vli,t lowest price of the i-th asset in the t-th trading period

voi,t opening price of the i-th asset in the t-th trading period

vvi,t volume of the i-th asset in the t-th trading period

vi,t prices and volume of the i-th asset in the t-th trading period

wt portfolio weight at the beginning of the period t+ 1

w′
t portfolio weight at the end of the period t before the execution action

pt portfolio value at the beginning of the period t+ 1

p′t portfolio value at the end of the period t before the execution action

yt relative price change in the t-th trading period

rt rate of return at the end of the t-th trading period

µ̂t expected value of the return at the end of the t-th period

µt mean value of portfolio return at the end of the t-th period

Σ̂t variance-covariance matrix of return at the end of the t-th period

Vt variance of portfolio return at the end of the t-th period

c commission rate for buying and selling

Ct trading cost rate for the t-th trading period

n number of risky assets

m window size
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where n is the number of stocks in the portfolio. Note that the first element of yt represents

the relative price of cash, therefore, it is always 1. We can use this relative price change

vector to calculate the portfolio value in a period. The portfolio weight vector is defined as

wt = [w0,t, w1,t, w2,t, . . . , wn,t], (2.4)

where wi,t is the fraction of investment on stock i at the beginning of period t + 1 with the

initial portfolio weight vector w0 = [1, 0, 0, ..., 0], and
n∑
i=0

wi,t = 1 with each wi,t ≥ 0. Note

that the initial value of the weight vector w0 indicates that all the investment capital is in the

riskless asset at the beginning. Assuming pt−1 is the portfolio value at the beginning of period

t, ignoring transaction costs, the portfolio value at the end of period t can be calculated as

pt = pt−1yt · wt−1, (2.5)

where wt−1 is the portfolio weight vector at the beginning of period t and its i-th element

wi,t−1 is the proportion of stock i in the portfolio after capital reallocation.

The rate of return at the end of period t can be calculated as

rt =
pt
pt−1

− 1 = yt · wt−1 − 1, (2.6)

and the corresponding logarithmic rate of return is given by

log(rt) = log(
pt
pt−1

− 1) = log(yt · wt−1 − 1). (2.7)

The mean value and variance of portfolio return can be formulated as

µt = wt · µ̂t, (2.8)

Vt = wTt Σ̂twt, (2.9)

where µ̂t and Σ̂t are the mean value and the variance-covariance matrix of return for each

asset. Note that the µ̂t and Σ̂t are estimated every step based on the observation and window

size. If there is no transaction cost, the final portfolio value will evolve as follows

pT = p0

T∏
i=1

(1 + ri) = p0

T∏
t=1

yt · wt−1, (2.10)

where p0 is the initial investment amount.
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2.3.2 Transaction costs

In the real world, buying or selling assets incurs a transaction cost, usually in the form of

commission fee. Assuming a constant commission rate, we can recalculate the final portfolio

value. At the beginning of period t, the portfolio’s action vector is wt−1. Due to the price

changes of assets in the market, the portfolio weight vector transforms to w′
t at the end of

period t:

w′
t =

yt ⊙ wt−1

yt · wt−1

, (2.11)

where ⊙ is element-wise multiplication. The mission of the agent is to reallocate portfolio

weights from w′
t to wt by buying or selling relevant assets. Paying all commission fees, this

reallocation action shrinks the portfolio value. If we set a constant commission rate c ∈ [0, 1)

for buying and selling, then the trading cost rate of each period Ct can be approximated as

(Hegde, Kumar, & Singh, 2018; Jiang & Liang, 2017):

Ct = c
n∑
i=1

∣∣∣w′
i,t − wi,t

∣∣∣, (2.12)

where Ct ∈ [0, 1). Assuming all buying and selling trades are executed at the end of day, the

portfolio value (2.5) at the end of day t evolves

pt = (1− Ct)p′t, (2.13)

where p′t represents the portfolio value at the end of period t before execution, that is,

p′t = pt−1yt · wt−1.

Therefore, the rate of return (2.6) can be rewritten as:

rt =
pt
pt−1

− 1 = (1− Ct)yt · wt−1 − 1. (2.14)

Hence, the final portfolio value can be expressed as

pT = p0

T∏
t=1

(1− Ct)yt · wt−1. (2.15)

Figure 2.1 demonstrates the dynamic relationships among portfolio values and weight vectors

on the time axis.
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Figure 2.1: The structure of our trading system.

2.3.3 Assumption and restrictions

To simulate real-world market trades, we make several assumptions to formulate the prob-

lem. First of all, the actions are only executed at the end of the period. Second, we assume

that the opening price is equal to the closing price of the previous day. After-sales market

transactions are not allowed. Third, short selling is not allowed in our trading environment.

Finally, we also assume the market is sufficiently liquid such that any transactions can be

executed immediately with minimal market impact.

2.4 The Classical DDPG Algorithm

Portfolio management is a financial decision-making task, which aims at boosting the total

profits or returns and lowering the risk via asset allocation. The asset allocation process can

be constantly changed; therefore, we employ an off-policy agent using a DRL algorithm that

maps the high dimensional state space to a high dimensional continuous action space. DDPG

is an actor-critic based deep RL algorithm proposed in Lillicrap et al. (2015). It uses a neural

network as a Q-function approximator and proposes a replay buffer to improve convergence to

the optimal policy, because the proposed replay buffer resolves the problem that the learned

action function is relatively unstable.

The classical DDPG algorithm has been developed by a Markov decision process, which

consists of a state space S, action space A, an initial state distribution p(s0), transition

dynamics p(st+1|st, at), and reward function r(st, at). The DDPG algorithm includes four
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neural networks: the actor network, the critic network and their respective target networks.

In the initial stage, we randomly initialize each network and reset the replay buffer, and the

DDPG agent aims to learn from interaction with the environment. At the beginning of the

training process, the current state, next state, action and the immediate reward from the

environment are stored in a replay buffer, then DDPG assembles a mini-batch from the replay

buffer and feeds it to both the actor, critic, and their target networks. Based on the sample

mini-batched from replay buffer, the target actor network produces a target action according

to the next state; the target Q-value is generated by the target critic network associated with

the next states and target action. The target Q-values of the current actions and states are

calculated from the immediate rewards and the discounted Q-values for the next states via

the Bellman equation. The critic network is updated by minimizing the TD-error, calculated

as the difference between target Q-value and actual Q-value; the actor network is trained

by adopting the policy gradient for the critic network. Finally, the target network weights

are updated using a soft updates strategy from actor and critic networks. A soft update

strategy includes smoothly mixing the regular network weights with target network weights.

The structure of classical DDPG is shown in Figure 2.2.

For the portfolio allocation problem, at each trading time t, we assume the DDPG agent

only observes the market information of OHLCV data. With such an assumption, the obser-

vation st can be expressed as:

st =
[
V1,t, V2,t, ..., Vn,t

]
, (2.16)

where Vi,t is defined by (2.2). We take the portfolio weight vector as an action, so action

vector at is equal to weight vector wt−1, where wt−1 denotes the portfolio weight vector at

the beginning of period t. The DDPG agent aims to maximize the total profit, which is

equivalent to maximizing the logarithmic return. Therefore, the reward function r(st, at)

taking into account the transaction cost is defined as

r(st, at) = log
pt
pt−1

= log((1− Ct)yt · wt−1). (2.17)

Thus, we have the immediate reward at each timestep that avoids the sparsity of the reward

problem. At each timestep t, the agent takes an action at based on the current observation

st, and receives a reward r(st, at). The total discounted future rewards until timestep T is
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Figure 2.2: The structure of classical DDPG
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given by

Rt =
T∑
i=t

γi−tr(si, ai), (2.18)

where the discount factor γ ∈ [0, 1]. The objective of reinforcement learning is to learn a

policy by maximizing the expected discounted future rewards given the current state

J = E
[
Rt

∣∣∣st]. (2.19)

By the Bellman equation, it allows us to compute the Q-value by recursion:

Qµ(st, at) = E
[
r(st, at) + γQµ(st+1, µ(st+1))

]
. (2.20)

The parametrized actor function µ(s|θµ) specifies the current policy by deterministically

mapping states to a specific action µ : S → A. The critic network Q(s, a) is updated by

minimizing a squared TD-error below:

L =
1

N

∑
i

[
yi −Q(si, ai|θQ)

]2
, (2.21)

where yi = r(si, ai) + γQ′(si+1, µ
′(si+1|θµ

′
)|θQ′

) and N is the number of transitions mini-

batched from replay buffer.

Note that yi is calculated by a separate target network which is softly updated, Q′(·) and µ′(·)

represent the target critic and actor network with the parameter θQ
′
and θµ

′
, respectively.

The actor is updated by the following gradient of J with respect to the parameter θµ based

on the policy gradient theory from Silver et al. (2014)

∇θµJ = E
[
∇θµQ(s, a

∣∣θQ)∣∣∣
s=st,a=µ(st|θQ)

]
= E

[
∇aQ(s, a

∣∣θQ)∣∣
s=st,a=µ(st)

∇θµµ(s|θµ)
∣∣
s=st

]
.

(2.22)

2.5 Proposed approaches

2.5.1 The Distributional DDPG Model

Although most deep RL aims to optimize the decision-making rule in terms of the expected

future discounted rewards, the agent sometimes for some specific purpose aims to seek a

big win on rare occasions or avoid a rare likelihood of suffering a huge loss. To reduce
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the effects of rare bad events, the distributional RL is proposed by Dearden, Friedman,

and Russell (1998) and Engel, Mannor, and Meir (2005), which aims to adopt a Gaussian

distribution to approximate the distribution of future returns and model the uncertainty

under this approximate distribution. Distributional RL has the benefit of considering the

risks that may exist when future returns are stochastic since the observable stat state can not

capture the intrinsic randomness of the environment. In addition, if there is a high variance

or heavy tail in return distribution, the strategy of maximizing average return may lead

to over-estimation of the expected future reward. Motivated by Tang et al. (2020), Barth-

Maron et al. (2018), and Bellemare, Dabney, and Munos (2017), we apply the distributional

RL algorithm to the portfolio management problem, namely Distributional DDPG, which

constructs a risk-sensitive policy to reduce the effects of disaster events or potential losses.

Figure 2.3: Distributional RL

The standard Markov decision process (MDP) consists of a tuple (S,A,R,P , γ), where S

and A present the continuous state and action space respectively, R : S×A → R denotes the

reward function, γ denotes the discount factor, and P is the transition probability density

of moving the current state into the next state. Suppose that R is a random variable for

future return, P (R|s, a) is the probability distribution of future returns, which is given the

current state s and action a. The α-percentile expectation3 that represents the expected

return under the bottom α-percentile of the distribution over returns is employed as the

criterion of distributional RL. The objective function can be formulated as:

Jα = E[R
∣∣R ≤ percentile(α), s], (2.23)

3We note that some literature call this CVaR, but we do not use it here to avoid confusion.
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where α ∈ [0, 1] is a risk parameter. When α → 0, the strategy will concentrate on doing

well in the worst case, while when α → 1, the strategy aims to perform well in the average

performance. We combine the distributional RL with classical DDPG so that the critic learns

to model the distribution over the expected total discounted reward. Our proposed method

combines the distributional RL and DDPG, which enables critics to simulate the distribution

of total discount rewards. As long as a good distribution can be learned by critics, then the

actor network is updated by backpropagating the gradient back through the critic network.

Distributional DDPG includes an actor-critic network structure of the DDPG algorithm,

and contains a distribution of future return Z(s, a) that is a mapping from state-action pairs

to distributions over returns. The distributional Bellman equation points out the distribution

of Z(s, a) is evaluated by three associated random variables: the reward r, the next state-

action (s′, a′), and its return Z(s′, a′). The nature of distributional return Z(s, a) is described

by a following recursive equation:

Z(s, a)
D
= r(s, a) + γZ(s′, a′), (2.24)

where U
D
= V indicates that the random variable U has the same distribution pattern as V .

In here, Z(s, a) represents the inherent stochasticity of the interaction between the agent and

the environment. Then, the transition operator P µ is defined as:

P µZ(s, a)
D
= Z(s′, a′), s′ ∼ P (·|s, a), a′ ∼ µ(·|s), (2.25)

and the distributional Bellman operator T µ is given by

T µZ(s, a) D
= r(s, a) + γP µZ(s, a). (2.26)

This implies that the two sides of a distributional equation relate to the distribution of two

independent random variables, and it can be used to train the distributional reinforcement

learning in many areas of research. Similar to the expected Bellman operator, the distri-

butional Bellman operator can be proved to converge to the true return distribution. The

convergence theory of the distributional Bellman operator has been proven by a contraction

lemma, which needs to evaluate the distance between two return distributions (Rowland,

Bellemare, Dabney, Munos, & Teh, 2018).
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The Wasserstein metric is the main tool to measure the distance between cumulative

distribution functions, proposed by Bickel and Freedman (1981). Different from the Kullback-

Leibler (KL) divergence, the Wasserstein metric is a true probability that takes into account

the probability of distances between various outcome events, which leads to the Wasserstein

metric being well-suited for the field that exists an underlying similarity. For p <∞, the p-th

Wasserstein distance between two probability distributions FU and FV is defined as (Olkin

& Pukelsheim, 1982):

Wp(U, V ) =
(∫ 1

0

∣∣∣F−1
U (s)− F−1

V (s)
∣∣∣pds)1/p, (2.27)

where F−1 is the inverse cumulative distribution function (CDF). Assuming that U ∼

N (µ1, C1) and V ∼ N (µ2, C2), the 2-Wasserstein distance simplifies to:

W2(U, V ) = |µ1 − µ2|2 + C1 + C2 − 2(C1C2)
1
2 . (2.28)

As in Tang et al. (2020), we model Z(s, a) as a Gaussian distribution, which provides

a closed-form of the α-percentile expectation4. The output of the critic network can be

expressed as the estimated mean and variance of future returns Z(s, a) with weights θQ:

fcritic(s, a, α|θQ)→ {Q̂(s, a, α), V̂(s, a, α)}, (2.29)

where fcritic(s, a, α|θQ) denotes the critic network with input state s, action a, and risk

parameter α. We adopt Convolutional Neural Network (CNN) for the critic network. Three

hidden convolution layers with Relu activation function are added following the input layer.

Then, we modify the output layer that predicts the estimated value of mean and variance of

the future returns. The Softplus activation function is applied to predict the variance of the

future returns, which keeps the variance always positive. The convergence proofs5 for the

critic network are given in Appendix A.1.

With the benefit of the critic’s structure, the estimated Q̂(s, a, α) and V̂(s, a, α) are ap-

plied to calculate the α-percentile expectation in closed-form. Let Γµ(s, a, α) denotes the

4Without this assumption, it requires choosing another algorithm to approximate the sample Bellman
updates and minimize the Wasserstein metric in each step, which is computationally too expensive.

5We note that the 2-Wasserstein distance W2 cannot be directly used to bound the variance difference.
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α-percentile expectation when the state s and executing action a, following policy µ here-

after, the closed-form of α-percentile expectation is formulated as:

Γµ(s, a, α) = E[R|R ≤ percentile(α), s, a] = Q̂(s, a, α)− φ(α)

Φ(α)

√
V̂(s, a, α), (2.30)

where φ(·) = 1√
2π
e−

x2

2 is the standard normal p.d.f., and Φ(·) is its CDF.

Therefore, the objective function (2.23) can be rewritten as:

Jα = E[R|R ≤ percentile(α), s] =

∫
S

ρµ(s)

∫
A

µθa(a|s, α)Γµ(s, a, α)dads, (2.31)

where ρµ denotes the stationary distribution over the state space given the policy µ.

Then, the actor is updated by the following deterministic gradient, which adopts the chain

rule to the α-percentile expected return with respect to the actor parameters (Silver et al.,

2014):

∇θaJα = E
[
∇θaµ(a|s, α)Q̂(s, a, α)−

φ(α)

Φ(α)
∇a

√
V̂(s, a, α)∇θaµ(a|s, α)

]
. (2.32)

Note that the objective function Jα is dependent on the risk levels (αs). In the training

process, we uniformly sample α ∼ Uniform(0, 1) at the beginning of the episode and fix α

for the whole episode. During the testing period, the policy µ can yield different actions

in given the same state s, conditioned on the setting of α. Intuitively, a small value of α

leads to conservative behavior while a larger value of α leads to more aggressive behavior

(see Algorithm 1). The structure of Distributional DDPG is displayed in Figure 2.4.

2.5.2 The Hierarchical DDPG Model

In this subsection, we propose a novel algorithm, called Hierarchical DDPG, which adds

the Hierarchical structure to the DDPG algorithm. Original Hierarchical RL refers to the

concept of decomposing RL problem into sub-problems (sub-tasks). Solving each sub-task

will be more vigorous and efficient than solving the whole problem. The investor’s goal is

to select the best portfolio with the highest total profit and lowest portfolio risk for his/her

investment. However, when there is a chance of gains and losses, most investors would prefer

to avoid losses. Our Hierarchical DDPG algorithm utilizes the structure of Hierarchical RL
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Algorithm 1 Distributional DDPG

1: procedure Training
2: Randomly initialize critic and actor network of agent with weights θQ and θµ.
3: Initialize target actor network and critic network with weights θQ

′ ← θQ, θµ
′ ← θµ.

4: Initialize replay buffer B
5: for episode = 1,M do
6: Initialize an OU random process N for action exploration
7: Receive initial observation state s1
8: Sample α ∼ Uniform(0, 1)
9: for t = 1, T do

10: Sample action at = µ(st, α|θµ) +N
11: Observe reward rt, next state st+1 from environment
12: Store transition {st, at, rt, st+1, α} into B
13: Sample a random mini-batch of N transitions from B
14: Using target network to approximate T µZ(s, a) distribution by calculating the

mean and variance from the critic network.
15: Update critic network θQ by minimizingWasserstein distance in equation (2.28)
16: Update actor network θµ by using sample deterministic policy in equation

(2.32)
17: Update the target network by soft-update
18: θQ

′ ← τθQ + (1− τ)θQ′

19: θµ
′ ← τθµ + (1− τ)θµ′

20: end for
21: end for
22: end procedure
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Figure 2.4: The structure of Distributional DDPG

in which the two-level mechanism allows the agent to avoid the potential loss, and balance

the portfolio profit and risk for different scenarios.

The Hierarchical DDPG framework develops from classical DDPG and Hierarchical RL,

which consists of lower-level and higher-level policy. The lower-level policy is an actor-critic

based structure, and it is interpreted as a worker that selects primitive actions at every

time step by maximizing the logarithmic rate of return when the portfolio risk is lower

than a certain level. The higher-level policy is also an actor-critic based structure, and it

is interpreted as a manager that selects the action according to the observation state and

the action generated from the lower-level policy by minimizing the portfolio risk when the

portfolio risk exceeds the tolerance of investors. In other words, the manager makes an

adjustment to reduce the portfolio risk based on the worker ’s action when the portfolio risk

exceeds a certain level of risk. The critics of the manager and worker are used to evaluate

their works. More specifically, by exploiting the market information from the environment,

the worker observes the state from the environment, and produces the action gt to maximize
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the total profit. Then, we employ an indicator to check whether the portfolio risk exceeds

the investor’s tolerance. If the investor can afford the potential loss, then the action gt will

be executed and received the rewards from the environment. If not, the manager will adjust

the worker ’s trading strategy and yield the action at based on the observation state and the

worker ’s action gt to reduce the portfolio risk. At the final stage, the manager will execute

the action at in the environment. The main idea of Hierarchical DDPG is displayed in Figure

2.5.

Figure 2.5: The main idea of Hierarchical DDPG

Now, we introduce the indicator to measure the portfolio risk. Conditional Value-at-Risk

(CVaR) is often used as a measure of risk and is also referred to as expected excess loss or

expected shortfall. CVaR is a coherent risk measure and more attractive compared to Value-

at-Risk (VaR) because it takes into account the contribution from the very rare but very

large losses. Rockafellar, Uryasev, et al. (2000) employ CVaR as the risk measure and mini-

mize CVaR to compute an optimal investment portfolio. Krokhmal, Palmquist, and Uryasev

(2002) propose a new approach for optimizing CVaR in portfolio optimization problems.
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They extend the Rockafellar et al. (2000) approach by maximizing expected returns under

CVaR constraints. CVaR constraints are used to limit the percentiles of the loss distribution

and sculpt the loss distribution according to the decision makers’ preferences. Linear Pro-

gramming (LP) approach is one of the standard approaches for solving CVaR optimization

problems. A piecewise linear function can approximate the typical continuously differen-

tiable CVaR function by adopting the Monte Carlo simulation. In this chapter, we apply the

parametric CVaR approach under the Gaussian distribution to measure the portfolio risk.

Parametric CVaRα can be formulated as a closed-form:

CVaRα(at) = Vt
φ(Φ−1(α))

α
− µt, (2.33)

where µt and Vt are the mean and variance of the portfolio return defined in (2.8), and φ(·)

is the standard normal p.d.f., Φ(·) is the standard normal CDF, so Φ−1(α) is the standard

normal quantile. When the portfolio risk is below the CVaR risk constraints (CVaRα ≤ C),

the lower-level policy aims to seek an aggressive trading strategy by maximizing the total

profit (logarithm rate of return). On the other hand, when it exceeds the CVaR constraints

(CVaRα > C), the main goal is to reduce the portfolio risk instead of maximizing the total

profit. The higher-level policy makes an adjustment of trading strategy and aims to seek a

conservative trading strategy to reduce the risk by maximizing the expected future discount

reward of the higher-level policy. The structure of Hierarchical DDPG is shown in Figure

2.6.

Next we introduce the reward of the lower-level policy and higher-lever policy. The reward

of the lower-level policy is the same as in the classical DDPG algorithm (see (2.17)), and the

reward function for higher-level policy is defined as

r′(st, gt, at) = CVaRα(gt)− CVaRα(at). (2.34)

This implies the main goal of higher-level policy is to reduce the portfolio risk immediately

compared with the lower-level’s action. Then, the objective function for higher-level policy

is given by

J (H) = E[R′
t|st], (2.35)

where R′
t =

∑T
i=t γ

i−tr′(si, gi, ai).
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Figure 2.6: The structure of Hierarchical DDPG
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Define the Q(H) function for higher-level network as:

Q(H)(st, gt, at) = E[R′
t|st, gt, at], (2.36)

where gt is the action from the lower-level policy, and at is the action from the higher-level

policy.

Applying the Bellman equation to (2.36), we have

Q(H)(st, gt, at) = r(st, gt, at) + γQ(H)(st+1, µ1(st+1), µ2(st+1, µ1(st+1))), (2.37)

where µ1(·) is the policy from the lower-level, and µ2(·, ·) is the policy from the higher-level.

To update the higher-level policy network, the policy gradient with respect to the parameter

θµ2 is given by

∇θµ2J
(H) = Est

[
∇θµ2Q

(H)(s, g, a|θH)
∣∣∣
s=st,g=µ1(st),a=µ2(st,µ1(st)|θµ2 )

]
= Est

[
∇aQ

(H)(s, g, a|θH)
∣∣∣
s=st,g=µ1(st),a=µ2(st,µ1(st)|θµ2 )

∇θµ2µ2(s, g|θµ2)
∣∣∣
s=st,g=µ1(st)

]
.

(2.38)

This is derived in the same way as (2.22). The Hierarchical DDPG algorithm is given below

(see Algorithm 2).

2.6 Experiment Results

2.6.1 Data

We conduct various experiments to verify our proposed approaches by using four different

index ETFs: “SPY”, “VGK”, “GXC”, and “EWG”. SPY is the S&P 500 index ETF, which

measures the stock performance of 500 large companies in the U.S. Market. VGK is the

index ETF for the European All Cap developed by FTSE, which tracks the performance of

major markets in Europe. GXC is one of the most comprehensive China equity funds avail-

able to U.S. investors, which is dominated by holding large-cap stocks and delivers greater

diversification from a security perspective. Lastly, EWG aims to provide concentrated ex-

posure to large and midcap segments of the German equity market, meaning it covers the

top 85% of the German companies by market cap. It primarily consists of stocks traded on

32



Algorithm 2 Hierarchical DDPG

1: procedure Training
2: Randomly initialize the critic and the actor networks of agent with weights θQ and θµ1 .
3: Randomly initialize the higher-level actor and critic networks with weights θH and θµ2 .
4: Initialize target networks and critic networks with weights θQ

′ ← θQ and θµ
′
1 ← θµ1 .

5: Initialize replay buffer B1 and B2.
6: for episode = 1,M do
7: Initialize an OU random process N for action exploration
8: Receive initial observation state s1
9: for t = 1, T do
10: Sample action gt = µ1(st|θµ) +N
11: Check the portfolio’s risk level
12: if CVaR ≤ C then
13: Observe reward rt, next state st+1 from environment
14: Store transition {st, gt, rt, st+1} into B1
15: Sample a random mini-batch of N1 transitions from B1
16: Set yi = r(si, gi) + γQ′(si+1, µ

′
1(si+1|θµ

′
1)) for all i ∈ N1

17: Update θQ by minimizing loss L(θQ) = 1
N

∑
i(yi −Q(si, gi|θQ))2

18: Update the actor policy θµ1 using the sampled policy gradient:

1

N1

∑
i

∇gQ(s, g|θQ)|s=si,g=µ1(si)∇θµ1µ1(s|θµ1)|s=si . (2.39)

19: Update the target network by soft-update
20: θQ

′ ← τθQ + (1− τ)θQ
′
.

21: θµ
′
1 ← τθµ1 + (1− τ)θµ

′
1 .

22: end if
23: if CVaR > C then
24: at = µ2(st, gt, at)
25: Store transition {st, gt, at, rt, st+1} into B2
26: Sample a random mini-batch of N2 transitions from B2
27: Set y

(H)
j = r(sj , gj , aj) + γQ(H)(sj+1, µ1(sj+1), µ2(sj+1, µ1(sj+1))) for all j ∈ N2

28: Update θH by minimizing loss L(θH) = 1
N2

∑
j(y

(H)
j −Q(H)(sj , gj , aj |θH))2

29: Update the higher-level policy θµ2 using the sampled policy gradient:

1

N2

∑
j

∇aQ(H)(s, g, a|θH)
∣∣∣
s=sj ,g=µ1(sj),a=µ2(sj ,µ1(sj))

∇θµ2µ2(s, g|θµ2)
∣∣∣
s=sj ,g=µ1(sj)

. (2.40)

30: end if
31: end for
32: end for
33: end procedure

33



the Frankfurt Stock Exchange. The data set, obtained from Yahoo Finance, consists of daily

prices and volume data over a 10-year period from 2010-01-01 to 2020-07-30. The training

set and testing set are distributed according to the ratio of 8: 2.For the purpose of training

and testing, two independent trading environments are designed. In addition, short selling

is not allowed and a commission rate of 0.25% will be deducted for each transaction for all

experiments.

Data Preprocessing

The absolute prices and volumes of the assets, i.e., opening, highest, lowest, closing prices,

and volume in the problem are not sensitive to the agent for making any trading decisions,

but the changes in prices and volumes are important to the agent. Therefore, the input prices

and volumes to the network need to be normalized. To be specific, we divide the opening,

closing, highest, lowest prices by the closing price on the last day of the period, and divide

the volumes by the volume on the last day of the period. For example, the input state with

window size m and number of assets n is given by

st =
[
V ′
1,t, V

′
2,t, ..., V

′
n,t

]
, (2.41)

where V ′
i,t is the information of the i-th stock at time t after normalization, given by

V ′
i,t =



voi,t
vci,t
,

vhi,t
vci,t
,

vli,t
vci,t
, 1, 1

voi,t−1

vci,t
,

vhi,t−1

vci,t
,

vli,t−1

vci,t
,

vci,t−1

vci,t
,

vvi,t−1

vvi,t
...

. . . . . . . . .
...

voi,t−m+1

vci,t
,

vhi,t−m+1

vci,t
,

vli,t−m+1

vci,t
,

vcm,t−m+1

vci,t
,

vvi,t−m+1

vvi,t

 . (2.42)

2.6.2 Evaluation metrics

Portfolio optimization problems involve determining the best asset allocation for an in-

vestment fund in accordance with specific objectives, such as maximizing portfolio return and

minimizing portfolio risk. Assessing the performance of a trading strategy objectively and

rationally can be a challenging and difficult task. An outperforming trading strategy is not

only expected to generate a higher profit but also alleviate the portfolio risk associated with
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Table 2.2: Data Description

ETFs Description

SPY SPY is one of the most popular and oldest ETFs designed to track the

Standard & Poor’s 500 index. It holds a portfolio of 500 securities, which

are selected by the S&P Committee to represent large-cap companies in

the United States. At present, the top 3 sectors in which SPY holds

shares are technology, finance and health care, and the top 5 stocks in

the portfolio include Microsoft, Apple, Amazon, Facebook and Berkshire

Hathaway.

VGK VGK tracks all capitalization and market capitalization weighted indices

of developed European securities. It is a subset of the FTSE global stock

index series, covering about 98% of the global market, and diversified

enough to invest across various industries.

GXC GXC tracks the S&P China BMI, which is a rules-based index that mea-

sures the performance of global equity markets. It includes major share

classes like A, B, H, red chips, P chips, and foreign listings. The fund

typically invests almost all (but at least 80%) of its total assets in the

securities comprising the index.

EWG EWG tracks a market-cap-weighted index of large and midcap German

companies. It aims to provide concentrated exposure to large- and midcap

segments of the German equity market, meaning it covers the top 85% of

the German companies by market cap. It primarily consists of stocks

traded on the Frankfurt Stock Exchange.

35



the trading activity. In this subsection, three evaluation metrics are introduced to assess the

portfolio performance, that is, Accumulated return, Sharpe ratio, and Maximum drawdown.

Accumulated return

The Accumulated return is one of the popular evaluation metrics used to assess the portfolio

profit. The higher Accumulated return implies the portfolio yields a higher profit. Consider a

portfolio having the arithmetic return Rt at time t, the accumulated return can be calculated

as

Accumulated return =
t∏
i=1

(1 +Ri). (2.43)

This is the standard metric used to compare performance and relates the wealth at time t,

Wt, with the initial wealth, W0, as Wt = W0 × Accumulated Return. In this chapter, all

trading experiments adopt initial wealth W0 = 1.

Sharpe ratio

The Sharp ratio is a performance metric that is widely and frequently used in the fields of

finance and portfolio management because it takes into account both the profit and risk of

the portfolio. This indicator is developed by Nobel laureate William F. Sharpe, and expresses

as the excess return per unit of risk that is evaluated as the standard deviation of return.

The Sharp ratio can be written as follows:

Sharpe ratio =
E(Rt)−Rf

σ(Rt)
, (2.44)

where Rf is a risk-free return, E(Rt) and σ(Rt) represent the expectation and standard

deviation of returns, respectively.

Maximum drawdown

Maximum drawdown (MDD) is another metric to assess the potential loss that seeks the

maximum change from the highest to the lowest. It is dedicated to capital preservation that

is the main anxiety for most rational investors. For example, when MDD is quite small, it

implies a minor loss from investment, and when an investment has never been lost, the MDD

would be zero. On the other hand, the worst possible maximum drawdown would be −100%,

meaning the investment is completely worthless. The maximum drawdown can be calculated

as follows:

Max drawdown = max
Rt −Rt+1

Rt

, (2.45)
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where Rt and Rt+1 represent the rate of return in period t and t+ 1, respectively.

2.6.3 The Results

This subsection presents the experimental results of our proposed methods and evaluates

the effectiveness of our approaches. We obtain the opening, highest, lowest, closing prices,

and volume of four ETFs. These four ETFs have different patterns, the movement of the

closing prices and their details are described in Figure 2.7. These prices are expressed in the

U.S. dollar. As shown in Figure 2.7, GXC shows the most gradual increase in these ETFs;

SPY shows an upward trend but has been more volatile; EWG and VGK do not show a

particular movement.

Figure 2.7: The closing prices of each ETF.

2.6.3.1 The experimental results for DDPG

The DDPG agent is trained on the training environment and tested on the testing environ-

ment separately. The window size of the trading system is ten trading days, which indicates

that the DDPG agent can observe the prices and trading volumes in the past ten days. The

training process is carried for 500 iterations, and each iteration consists of 128 steps until
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the actor and critic networks get convergence to the optimal. To avoid convergence to local

optimum policies, the weights of actor and critic are saved for the best performance. The

actor and critic network adopts CNN with three hidden layers, and each convolution layer

is a fully-connected layer with activation function of ReLu. The weights of actor and critic

networks are randomly initialized at the beginning of each episode. The Softmax outputs of

the actor network generate the actual corresponding portfolio weights.

Figure 2.8: The portfolio value of DDPG under window size of ten-day during the training

period.

Figure 2.8 and Figure 2.9 show the performance of DDPG with the ten-day window size

for the training and testing period, respectively. As shown in Figure 2.8, the portfolio value

has surprisingly increased by 138.84% during the training period; it achieves outstanding

performance compared to the market value. Here, the market value presents a portfolio that

consists of equally-weighted investment assets. The maximum drawdown and Sharpe ratio

of the DDPG portfolio are 8.66% and 80.48%, respectively. In addition, Figure 2.9 shows

that the portfolio of DDPG has given a 10.05% accumulated rate of return on investment

at the end of the testing period, and their maximum drawdown and Sharpe ratio indices are

13.58% and 36.47%, respectively. These evidences indicate that the trading strategy of the
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Figure 2.9: The portfolio value of DDPG under window size of ten-day during the testing

period.

DDPG agent has a higher potential risk and suffers a massive loss when the financial market

crashes.

In addition, we test the effect of window size on the portfolio performance. The different

window sizes (5, 10, 20, 25) are applied to our experiment, the experimental results during

the testing period are displayed in Table 2.3. While using window sizes of 20 and 25, the

accumulated return increases to 12.93% and 14.74%, improved by 2.43% and 4.24% compared

to the case of ten-day window size, respectively. Furthermore, the Sharpe ratio rises to 38.44%

and 39.94% at the end of the testing period compared to the case of ten-day window size.

These imply that the DDPG agent can construct a better portfolio when she observes more

trading prices and volumes. One possible explanation is that the DDPG agent can predicate

more accurate trends or movements based on more information she observed. The portfolio

performances with different window sizes for the training and testing period are presented in

Appendix A.2.
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2.6.3.2 The experimental results for Distributional DDPG

Figure 2.10 shows the price movements of the portfolio with different risk parameters α

during the testing period with the ten-day window size. Although the accumulated portfolio

value has not increased much, the maximum drawdown has significantly decreased. When

α = 5%, the agent only takes into consideration the worst-case, the agent is willing to choose

cash instead of investing funds in other risky assets. As α increases, the agent is not willing

to consider the extreme cases, and aims to allocate more investment funds into these risky

assets. Therefore, we can see from Figure 2.10 that the accumulated return increases to

4.22% and 10.32% when risk parameter α are 15% and 30%, respectively. Also, it reveals

that the maximum drawdown of the distributional DDPG portfolio decreases as the risk

parameter α decreases. This illustrates that the investor may suffer a larger potential loss

during the financial crisis when the investor is willing to tolerate more risk. Furthermore, the

Sharpe ratio increases as the α increases, which indicates that the earning per unit risk of this

portfolio increases when the agent is willing to take more risk. These points demonstrate that

Distributional DDPG can construct a more robust trading policy according to the investor’s

risk preference.

In addition, we test the effect of window size on the portfolio performance, and the

experimental results of the portfolio performance with different window sizes and αs are

shown in Table 2.3. No matter what the value of windows size is, the optimal trading

strategies are very conservative when the agent only considers the worst-case scenarios. When

the window size is large, the agent observes more information for decision-making. Thus, she

can learn more accurate trends or price movements because the noise and uncertainty of the

market can be significantly reduced. For instance, when the window size is 25, the agent is

willing to allocate more investment funds into risky assets instead of only holding cash even

for the extreme case of risk parameter α = 5%. Therefore, the accumulated return under

window size of twenty-five-day is higher than in other window sizes when the risk parameter

α is 5%.

Overall, these experimental results provide strong evidence to demonstrate that the dis-

tributional DDPG method is an effective and efficient way to avoid a huge potential loss.
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However, we find it hard to balance the total profit and portfolio risk. If the agent only

considers the worst-case scenario, the portfolio will lose the potential gains; on the other

hand, if the agent is willing to take more risk, the agent has to face large possible losses.

Figure 2.10: The portfolio value of Distributional DDPG with different risk parameters α

under window size of ten-day.

2.6.3.3 The experimental results for Hierarchical DDPG

Figure 2.11 shows the Hierarchical DDPG portfolio with different CVaR constraints un-

der the window size of ten-day. We obtain that the maximum drawdown has decreased in

all cases, e.g., when the CVaR constraint is 5%, the maximum drawdown is 10.05%, reduced

by 3.54% compared to classical DDPG. We observe that the accumulated rate of return and

Sharpe ratio of Hierarchical DDPG have improved by 4.57% and 32.91%, respectively. Also,

the case of the CVaR constraint C = 13% provides the most significant maximum drawdown

of 12.95%, and the case of C = 8% provides the highest Sharpe ratio of 76.83%. These shreds

of evidence illustrate that the Hierarchical DDPG model is superior to DDPG to avoid losses

in the recession market. Table 2.3 shows the experimental results of Hierarchical DDPG
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Figure 2.11: The portfolio value of Hierarchical DDPG with different constraints C under

window size of ten-day.

with different CVaR constraints and window sizes. Compared to classical DDPG, it reveals

that the Hierarchical DDPG algorithm performs better than the classical DDPG method in

perspective of the maximum drawdown in most cases except the cases that window size is

20 or 25, and constraint C is 8%. The accumulated return and Sharpe ratio of Hierarchical

DDPG are higher than those of classical DDPG in many cases. For example, when the win-

dow size is 5, the accumulated rates of return with different constraints (5%, 8%, 13%) have

improved by 1.77%, 6.2%, and 1.77%, respectively. These experimental results demonstrate

that our proposed Hierarchical DDPG provide stable results with different window sizes and

constraints. Overall, the Hierarchical DDPG agent can achieve higher rate of return and

higher Sharpe ratio compared to classical DDPG, and moreover, control the short-term risk

within a reasonable range.

In Figure 2.12, we compare the performance of classical DDPG and the proposed ap-

proaches during the testing period. For the window size of ten-day, we display the case

of CVaR constraint C = 5% as an example to present the performance of Hierarchical

DDPG, and the case of risk parameter α = 30% as an example to present the performance
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of Distributional DDPG. As shown in Figure 2.12, we can see that these three approaches

outperform the market value. Hierarchical DDPG provides the highest accumulated return

and the lowest maximum drawdown compared to classical DDPG and Distributional DDPG.

Specifically, the maximum drawdown drops from 13.59% to 10.05%, and the accumulated

return rises from 10.5% to 15.07%. It illustrates that Hierarchical DDPG is an effective ap-

proach to avoid a huge loss caused by the financial crisis. Obviously, Distributional DDPG

has a lower maximum drawdown and a higher accumulated return compared to the classical

DDPG method. On the other hand, Figure 2.13 shows the portfolio risk of our approaches.

In this chapter, we apply parametric CVaR as a risk measure for evaluating portfolio risk. It

shows that the portfolio risk of Hierarchical DDPG keeps lower than the CVaR constraint,

and Distributional DDPG has a lower portfolio risk than classical DDPG.

Figure 2.12: The performance comparison of Hierarchical DDPG, Distributional DDPG, and

classical DDPG under window size of ten-day. Among them, Hierarchical DDPG represents

the case of CVaR constraint C = 5%, Distributional DDPG represents the case of risk

parameter α = 30%.

In summary, the results demonstrate that Hierarchical DDPG and Distributional DDPG

perform better than the classical DDPG algorithm for the rare occurrences of catastrophic
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events, and they provide the capability to protect the investor who may suffer a massive loss

in the recession market. Furthermore, Hierarchical DDPG appears to be a better approach

to balance the portfolio risk and portfolio profit compared to Distributional DDPG, which

provides a higher return and a lower portfolio risk or maximum drawdown.

Figure 2.13: The portfolio risk comparison of Hierarchical DDPG, Distributional DDPG, and

classical DDPG under window size of ten-day. Among them, Hierarchical DDPG represents

the case of CVaR constraint C = 5%, Distributional DDPG represents the case of risk

parameter α = 30%.

2.6.3.4 Model validation with additional dataset

In this subsection, we validate our approaches by applying four different stocks from

the U.S. stock market, that is, “AMZN”, “CCL”, “CVX”, and “LUV”. AMZN represents

Amazon.com Inc, one of the world’s largest e-commerce companies headquartered in Seattle,

which focuses on cloud computing, digital streaming, and artificial intelligence. CCL stands

for Carnival Corporation, the world’s leading leisure travel company that offers extraordinary

vacations to travellers around the world. CVX stands for Chevron Corporation, one of
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Table 2.3: Experimental Results

DDPG Distributional DDPG Hierarchical DDPG

Window size AR MDD SR α AR MDD SR C AR MDD SR

5 11.10% 13.59% 38.45% 5% 0.00% 0.00% 0.00% 5% 12.88% 10.30% 35.68%

15% 2.41% 9.88% 17.71% 8% 17.31% 11.70% 51.24%

30% 11.18% 13.59% 33.76% 13% 12.88% 11.70% 38.98%

50% 12.70% 13.59% 36.52%

10 10.50% 13.58% 36.47% 5% 0.00% 0.00% 0.00% 5% 15.07% 10.05% 69.38%

15% 4.22% 6.88% 21.10% 8% 17.30% 11.68% 76.83%

30% 10.32% 9.68% 34.05% 13% 16.00% 12.95% 58.14%

50% 11.67% 13.59% 34.61%

20 12.93% 13.59% 38.44% 5% 0.00% 0.00% 0.00% 5% 21.18% 10.30% 66.14%

15% 8.37% 9.95% 28.58% 8% 2.70% 14.23% 15.24%

30% 13.96% 13.59% 38.55% 13% 4.70% 13.28% 21.88%

50% 13.96% 13.59% 38.55%

25 14.74% 13.59% 39.94% 5% 8.37% 9.95% 28.58% 5% 8.60% 12.46% 32.37%

15% 13.77% 13.59% 38.23% 8% -0.31% 14.23% 9.30%

30% 13.77% 13.59% 38.26% 13% 13.72% 13.59% 38.14%

50% 13.77% 13.59% 38.26%

1 AR represents the accumulated return.
2 MDD represents the maximum drawdown.
3 SR represents the Sharpe ratio.
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Figure 2.14: The price movements of each stock and portfolio values of Hierarchical DDPG

with window size of ten-day and CVaR constraint C = 5%.

the world’s largest energy companies, which operates in integrated energy, chemicals, and

petroleum operations in more than 180 countries worldwide. LUV typically refers to as

Southwest Airlines Co., the world’s largest low-cost airline offering cheaper air transportation

in the United States. The data is collected from Yahoo Finance, consists of daily prices and

volumes from 2010-01-01 to 2020-07-30, the same as the period of the ETF indexes. Then,

the data is split into training and testing sets in the ratio of 8:2. The data preprocessing is

implemented similarly as in Section 2.6.

As shown in Table 2.4, we obtain that the maximum drawdown of Distributional DDPG

has significantly decreased for different window sizes compared to classical DDPG. We observe

that the accumulated return and Sharpe ratio of Distributional DDPG tend to increase

as α increases. Table 2.4 illustrates that Hierarchical DDPG outperforms classical DDPG

in perspective of the maximum drawdown. Also, the Hierarchical DDPG algorithm can

achieve a higher accumulated return and Sharpe ratio in many cases. For example, when

the window size is 20 or 25, we can observe that the maximum drawdown of Hierarchical

DDPG for both cases has significantly decreased and the Sharpe ratio has increased in most
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cases in comparison with the classical DDPG method. We note that it is crucial to choose

the appropriate window size and risk tolerance parameters for the superior performance of

Hierarchical DDPG.

Table 2.4: Experimental Results for Additional Dataset

DDPG Distributional DDPG Hierarchical DDPG

Window size AR MDD SR α AR MDD SR C AR MDD SR

5 7.15% 13.99% 26.44% 5% 0.00% 0.00% 0.00% 5% 12.99% 9.05% 41.39%

15% 1.26% 7.81% 5.15% 8% 19.13% 9.05% 54.63%

30% 6.19% 11.60% 24.86% 13% 21.88% 8.83% 59.45%

50% 8.69% 12.97% 29.35%

10 15.29% 15.73% 39.37% 5% 0.00% 0.00% 0.00% 5% 30.71% 8.26% 76.01%

15% 1.19% 1.12% 25.05% 8% 12.13% 11.97% 38.44%

30% 9.46% 13.62% 30.44% 13% 28.16% 14.16% 63.48%

50% 27.18% 14.25% 56.97%

20 16.90% 19.41% 30.17% 5% 0.00% 0.00% 0.00% 5% 27.27% 12.83% 66.68%

15% 1.83% 8.66% 9.83% 8% 14.64% 12.97% 40.87%

30% 21.85% 14.14% 49.62% 13% 20.11% 14.46% 48.82%

50% 16.18% 16.34% 41.12%

25 22.38% 16.34% 36.32% 5% 1.44% 0.41% 53.94% 5% 4.12% 10.69% 20.79%

15% 5.61% 13.25% 23.58% 8% 35.33% 14.52% 66.98%

30% 27.35% 14.16% 60.19% 13% 14.35% 16.13% 38.42%

50% 37.53% 14.94% 63.38%

1 AR represents the accumulated return.
2 MDD represents the maximum drawdown.
3 SR represents the Sharpe ratio.

2.7 Conclusion

Portfolio management has always been a crucial topic in the financial field, which allocates

investments in a group of assets to gain the maximum return of investors. It is a challenging

task to construct a trading policy in the financial market because it requires professional

knowledge in several fields, such as quantitative finance and risk management. The Deep RL

algorithms can provide a more effective way to construct trading policies. Although Deep RL

has achieved remarkable performance in portfolio management problems, most of the existing

methods have not considered the worst-case scenarios in constructing trading policy. In this
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chapter, we propose two novel approaches, Hierarchical DDPG and Distributional DDPG to

address this issue.

To validate the applicability of the proposed learning analytics methods, a back-test is

carried out on the real-world stocks from the U.S. financial market. Our study illustrates the

superior performance of Hierarchical DDPG. It is impressive that the Hierarchical DDPG

agent can not only maximize the portfolio profit but also keep the portfolio risk below a

certain level of risk, which produces a portfolio with higher return and lower risk. Also, the

experiment results reveal that Distributional DDPG produces risk-sensitive policies to reduce

the effects of disaster events depending on the risk parameter. When the risk parameter α

is small, the agent optimizes the performance for the worst-case scenario, which provides a

conservative trading strategy. In contrast, when the risk parameter α is large, the agent is

more willing to select an aggressive trading strategy. We can conclude that our Hierarchical

DDPG and Distributional DDPG models outperform the classical DDPG method in the

sense that they provide risk-sensitive strategies that protect investors who may suffer a huge

loss caused by rare disaster events. Our proposed approaches provide effective methods to

learn a risk-sensitive solution for the portfolio optimization problem.

The limitation of this work is that the distributional DDPG method is developed based

on the assumption of the returns distribution that leads to a closed-form of calculation for the

objective function. In addition, it is important to select the appropriate window size and risk

tolerance parameters as needed for superior performance of the proposed models. For future

research, we may involve textual data such as news or tweets, to improve the performance of

DDPG, Hierarchical DDPG, and Distributional DDPG.
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3 Robust optimal life insurance purchase and

investment-consumption with regime-switching

alpha-ambiguity maxmin utility

In this chapter, we delve into the intricate dynamics of life insurance intertwined with

investment-consumption, a topic that has garnered significant attention in both actuarial

science and financial economics. Through a rigorous exploration of models, theories, and

practices, we aim to shed light on the multi-faceted influences of regime-switching and am-

biguity aversion on these critical financial decisions.

3.1 Introduction

The optimal life insurance and investment-consumption problem is an important research

topic in actuarial science and financial economics. Yarri (1965) establishes the life-cycle

modelling framework and finds that without a bequest motive a rational investor should

immediately convert all her savings into a life annuity, that is, she should fully annuitize the

wealth, and consume all instantaneous annuity payments at every instant. The continuous-

time version of consumption and investment problems is pioneered by Merton (1969), in

which the stochastic optimal control theory is applied to develop an elegant solution to

the problem. Richard (1975) extends the models of Merton (1969) and Yarri (1965) by

introducing a life insurance purchase decision to the investment-consumption problem over

a fixed planning horizon, but with an uncertain lifetime and a continuous lifetime income

stream. An important finding in Richard (1975) is that the expected lifetime income has

a positive effect on the demand for life insurance. Pliska and Ye (2007) study the optimal

life insurance purchase and consumption/investment for a wage earner with a random and

49



unbounded lifetime with a given retirement time.

Traditionally, it is assumed that the dynamics of the asset price are governed by the

geometric Brownian motion (GBM) model. However, the GBM model is unable to capture

the long-term nature of the life-cycle model, whose horizon is as long as several decades.

Over such a long horizon, the asset price is also affected by macroeconomic conditions and

business cycles. Markovian regime-switching models stand out as a class of ideal candidates

that can capture the macroeconomic regimes affecting the market environment, and allow

the values of model parameters to change from one state to another over time. Therefore,

regime-switching models provide a closer representation of reality compared to traditional

models. The history of regime-switching models can be traced back to Hamilton (1989),

who first develops the model for the stock return time series and demonstrates that regime-

switching models could present the financial market more accurately than traditional models

with deterministic coefficients. In addition, the regime-switching models can also provide a

more efficient way to describe the effects of structural changes in different macroeconomic

conditions. Zariphopoulou (1992) applies the regime-switching model to the investment-

consumption problem, in which a financial market consists of a deterministic risk-free asset

and a risky asset, depending only on a continuous-time Markov chain. Lee and Shim (2015)

apply the Markovian regime-switching model to optimal consumption, investment, and life

insurance purchase rules for a wage earner with mortality risk in a continuous time horizon,

and apply the Markov chain approximation method to solve the Hamilton-Jacobi-Bellman

(HJB) equation arising from the optimization problem.

Although the life insurance purchase problem has been studied extensively, little research

has considered the effects of model uncertainty on dynamic life insurance decisions. Model

uncertainty plays an essential role in the effectiveness of decision-making in insurance, fi-

nance, and other areas. In many circumstances, the individual is uncertain about a reference

model, which may not accurately reflect the real situation. Therefore, any particular proba-

bility measure used to develop the model may be subject to a considerable degree of model

misspecification. Model misspecification is usually caused by a lack of information regarding

the probability measure, which is referred to as ambiguity. Research on model ambiguity

is pioneered by Hansen and Sargent (2001), who consider the problem of asset pricing for
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discrete time with model misspecification and propose the max-min expected utility theory

to investigate model uncertainty. Anderson, Hansen, and Sargent (2003) extend the model

in Hansen and Sargent (2001) to a continuous-time framework, by taking into account a set

of alternative measures and quantifying the distance between the reference model and the

alternative model via a relative entropy penalty term in the stochastic optimization proce-

dure. Maenhout (2004) investigates the optimal investment-consumption selection problem

with model uncertainty and obtains closed-form solutions by considering the homothetic ro-

bustness term in the dynamic investment and consumption problem. Elliott and Siu (2009)

consider the robust optimal portfolio selection problem in a continuous-time Markov regime-

switching market when an individual faces model uncertainty, and assume all the coefficients

of the financial market are modulated by a two-state Markov chain, whose states are inter-

preted as the different states of an economy.

Most of the models proposed in the literature rely on the assumption that the individual

admits the extremely ambiguity-averse attitude and aims to seek a robust optimal portfolio

in the worst-case scenario. In a simplified setting, the robust optimal utility function is given

by

inf
Q∈Q

EQ
[∫ T

0

(
U(c(t)) + ψQ(t)

)
dt

]
, (3.1)

where U is the utility function, Q is a set of probability measures, c(t) is the intertemporal

consumption at time t, ψQ(t) is a function that penalizes the deviation of Q from the reference

measure P, and EQ is an expectation under Q measure. However, the robust utility model

(3.1) is restrictive in that it only admits the extremely ambiguity-averse attitude; that is, it

only considers the worst-case scenario. There are few behavioral experiments that support

such an extreme pessimistic ambiguity attitude on the part of decision-makers. Heath and

Tversky (1991) and Ghirardato, Maccheroni, and Marinacci (2004) conduct a series of experi-

ments showing that people’s reactions can be less ambiguity-averse or even ambiguity-seeking

when they feel knowledgeable and experienced in some contexts. One can refer to Füllbrunn,

Rau, and Weitzel (2014) and Dimmock, Kouwenberg, Mitchell, and Peijnenburg (2016) for

further evidence. In light of complex attitudes towards ambiguity, Klibanoff, Marinacci, and

Mukerji (2005, 2009) propose a more general utility form, namely the alpha-maxmin ex-

pected utility. This expected utility form allows the individual to have not only an aversion
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attitude towards ambiguity but also a positive attitude towards ambiguity, i.e., ambiguity

loving attitude.

As shown in human behavior experiments (Bier & Connell, 1994; Einhorn & Hogarth,

1985; Pulford, 2009), an optimistic individual has a low preference for ambiguity aversion;

in contrast, a pessimistic individual has a higher preference for ambiguity aversion. On the

other hand, the investor’s sentiment changes over time. During an economic boom, the indi-

vidual is more optimistic; on the contrary, in an economic recession, the individual is more

pessimistic. Inspired by the above experimental evidence, in this chapter we assume that

the individual has different levels of ambiguity aversion in different regimes, and we develop

a novel utility function to capture the individual’s regime-dependent ambiguity aversion.

The utility function is integrated well with the alpha-maxmin expected utility (i.e., α-MEU)

framework. Hence, throughout this chapter, this utility function is called a regime-switching

alpha-ambiguity utility, which is a weighted sum of expected utility in the worst-case scenario

and in the best-case scenario. The weights in regime-switching alpha-ambiguity utility are

stochastic and depend on the regimes, which are modeled by a continuous-time Markov chain.

The regime-switching alpha-ambiguity utility function allows the level of ambiguity aversion

α(t) to change from one state to another. The main challenge of α-MEU framework is that

the criterion is a linear aggregation of the expected utility under two distinct probability

measures, which may cause dynamic inconsistency in decision-making. The precommitted

strategy (Pirvu & Zhang, 2014; Zhou & Li, 2000) is one way to deal with dynamic inconsis-

tency in optimal control problems in the literature. It is interpreted as “optimal from the

point of view of time zero”, and rational individuals follow the optimal strategy chosen at

an initial time in the future. That is, the optimal strategy is derived under the assumption

that the individuals precommit themselves not to deviate from the strategy chosen at the

initial time and that is time-inconsistent. However, in many situations, time-consistency of

strategy is a basic requirement for rational decision-makers, or today’s preference may be

different from tomorrow’s preference. Beissner, Lin, and Riedel (2020) derive a dynamically

consistent extension of the α-maxmin model for continuous time, and the time-consistent

strategy retains the α-maxmin structure and allows distinction between ambiguity and am-

biguity attitude. In this chapter, we consider the optimization problem when the objective
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function changes over the time horizon and derive a corresponding optimal precommitted

strategy under the proposed regime-switching alpha-ambiguity utility framework.

Under the regime-switching alpha-ambiguity utility framework we consider that the in-

vestor can dynamically purchase life insurance and allocate their wealth between the risky

asset and the risk-free asset. She also receives an income at rate ι(t) continuously, which is

terminated upon death or retirement, whichever happens first. We assume a simple finan-

cial market with regime-dependent market coefficients, which are modulated by an N -state

continuous-time observable Markov chain. The life insurance has an instantaneous term:

the higher the insurance premium rate the investor would like to pay, the more benefit her

beneficiary will receive upon premature death. The investor aims to find robust optimal

life insurance purchase and investment-consumption rules by maximizing the discounted ver-

sion of the regime-switching alpha-ambiguity expected utility of intertemporal consumption,

terminal wealth, and bequest if she dies before retirement.

The contribution of this chapter is threefold. First and foremost, the proposed regime-

switching alpha-ambiguity utility integrates the regime-switching model with the alpha-

maxmin utility framework seamlessly. That is, regime-switching models use a continuous-

time Markov chain with finite-state space to represent the uncertainty of long-term macroeco-

nomic factors, while the regime-switching alpha-maxmin expected utility inherits the idea of

regime-switching models and allows individuals to have different attitudes towards ambiguity

in different macroeconomic conditions. The robust optimal life insurance and investment-

consumption strategies are solved under this new framework. Although model ambiguity has

been well studied, the effect of an individual’s ambiguity aversion on life insurance has been

ignored. Thus, our second contribution is to pioneer a study on the effects of an individual’s

ambiguity aversion on the robust optimal life insurance decision. Moreover, most literature

does not differentiate between ambiguity and ambiguity aversion. To differentiate between

model ambiguity and the ambiguity aversion attitude, we borrow the scheme of ambiguity

aversion and ambiguity settings from B. Li, Li, and Xiong (2016), in which mean-variance

reinsurance-investment strategies are studied. Then, we derive the HJB equations by the

stochastic dynamic programming principle, and the optimization problem is reduced to solv-

ing a system of HJB equations with new ingredients around model uncertainty and varying
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attitudes toward uncertainty. Thirdly, we provide a novel verification theorem, which takes

into account the best-case measure and the worst-case measure simultaneously and is tailor-

made for the regime-switching alpha maxmin expected utility framework. This chapter also

contains a number of numeric contributions. First, we find that ambiguity aversion has nega-

tive effects on optimal life insurance and consumption. A higher ambiguity aversion attitude

makes the investor more concerned about the worst-case scenario, therefore prompting a

more conservative strategy. Also, we find that the rational investor is more concerned about

the model’s uncertainty in the bear market, which is consistent with financial intuition. Sec-

ond, our results highlight that the investor’s expenditure on life insurance and consumption

is higher in a bull market than it is in a bear market; and the effect of regime-switching

on optimal life insurance and investment-consumption rules is strong when the investor is

young, while the effect is negligible when it is close to her retirement age. On the other hand,

we find that ambiguity aversion plays a pivotal role in utility loss if model uncertainty is

absent. If the investor only has an extremely ambiguity-averse attitude, ignoring ambiguity

may lead to drastic utility loss.

The remainder of this chapter is organized as follows. Section 3.2 introduces the market

model dynamics and formulates the robust optimal life insurance and investment-consumption

selection problem. Section 3.3 presents the Hamilton-Jacobi-Bellman (HJB) equation and

verifies the existence and uniqueness of the solution to the HJB equation. Section 3.4 pro-

vides numerical examples and sensitivity analysis of robust optimal strategies and utility loss.

Section 3.5 concludes this chapter. Technical proofs are provided in the appendices.

3.2 The Model Dynamics

In this section, we introduce a financial market and an insurance market that are available

to the investor. The investment opportunities consist of one risky asset (i.e., stock) and one

risk-free asset (i.e., bank account). Suppose that these two assets can be traded continuously

in a finite-time horizon T := [0, T ], where T < ∞. Market coefficients switch between N

regimes, which are modulated by a finite-state Markov chain. We start by introducing the

financial market, followed by the insurance market and the investor’s mortality and wealth
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processes. Finally, we formulate the investor’s robust optimal selection problem under the

regime-switching alpha maxmin utility model.

3.2.1 The Financial Market

Let (Ω,F ,P) be a probability space, where P is a real-world probability measure. Let

B := {B(t)|t ∈ T } be a one-dimensional standard Brownian motion, and X := {X (t)|t ∈ T }

be an observable continuous-time, stationary, finite-state Markov chain on (Ω,F ,P). The

state of the Markov chain X (t) corresponds to the state of an economy at time t. We identify

the state space of the chain by the canonical state space, that is, E := {e1, e2, . . . , eN}, where

ei ∈ RN denotes the i-th unit vector, of which the i-th component is one and the others

are zero, for each i = 1, 2, . . . , N . Throughout this chapter, we suppose that the Brownian

motion B and the Markov chain X are stochastically independent. To specify the statistical

properties of the Markov chain X , we define a transition matrix Q := [qij]N×N , where qij is

the instantaneous transition rate of the Markov chain from state j to state i. Note that for

each i, j = 1, 2, . . . , N , qij > 0, for i ̸= j and
N∑
j=1

qij = 0, so qii < 0. Let FX := {FX (t)|t ∈ T }

be the right-continuous, P-complete filtration generated by the Markov chain X . According

to Elliott, Aggoun, and Moore (1995), we decompose the chain X using the following semi-

martingale dynamics:

X (t) = X (0) +
∫ t

0

QX (s)ds+M(t), t ∈ T .

Here, M := {M(t)|t ∈ T } is an RN -valued, (FX ,P)-martingale.

In what follows, we introduce the model dynamics of the primitive assets. Let r be the

risk-free interest rate, which is assumed to be a positive constant. The price process of the

risk-free asset P (t) is governed by

dP (t) = rP (t)dt, P (0) = 1.

Let µ(t) and σ(t) be the expected return rate and the volatility of the risky asset price

at time t. We assume that they are modulated by the Markov chain X as follows:

µ(t) := ⟨µ,X (t)⟩ and σ(t) := ⟨σ,X (t)⟩,
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where µ := (µ1, µ2, . . . , µN)
′ ∈ RN with µi > r and σ := (σ1, σ2, . . . , σN)

′ ∈ RN with σi > 0;

µi and σi are the expected return rate and volatility of the risky asset when the economy

is in the i-th state, respectively, for each i = 1, 2, ..., N . The risky asset price process S(t)

follows a Markov-modulated Geometric Brownian Motion (GBM) model:

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dB(t), S(0) = S0 > 0.

Now, we are ready to describe the information structure. Let FB := {FB(t)|t ∈ T } be the

right-continuous, P-complete filtration generated by the Brownian motion, F := {F(t)|t ∈ T }

be the enlarged filtration generated by the Brownian motion and the chain, and F(t) :=

FX (t) ∨ FB(t) be the enlarged σ-field of FX (t) and FB(t).

3.2.2 The Life Insurance Market

We assume that the investor is alive at time t = 0 and has a remaining lifetime τ , which

is a nonnegative random variable defined on the probability space (Ω,F ,P). Suppose that

the random variable τ has probability density function f(t), distribution function F (t), and

survival function F̄ (t) such that

F (t) = P (τ < t) =

∫ t

0

f(u)du and F̄ (t) = P (τ ≥ t) = 1− F (t).

The hazard function λ(t) represents the instantaneous death rate for the investor at current

age y who has survived to time t, and it is defined by

λ(t) := lim
∆t→0

P (t ≤ τ < t+∆t|τ ≥ t)

∆t
.

Here, λ(t) is assumed to be a given deterministic Borel measureable function such that∫∞
0
λ(t)dt =∞.

Let f(s, t) and F̄ (s, t) denote the conditional probability density for death and the condi-

tional probability of being alive, respectively, at time s, conditional upon being alive at time

t ≤ s. As shown in Lee and Shim (2015); Pliska and Ye (2007), we have

f(s, t) = λ(s)e−
∫ s
t λ(v)dv and F̄ (s, t) = e−

∫ s
t λ(v)dv.

In the life insurance market, the investor purchases life insurance to protect her family in

case of premature death. We assume that the life insurance is offered continuously, and the
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investor chooses a life insurance contract by paying premiums at the rate p(t) to the insurance

company. In compensation, if the investor dies at time t < T , then the insurance company

pays an insurance benefit at the amount of p(t)/η(t), where insurance premium-payout ratio

η(t) is a continuous and deterministic function determined by the insurance company. The

contract will be terminated if the investor dies before time T or achieves retirement at time

T . Therefore, the investor’s total bequest to her beneficiary in the event of death at t < T is

given by

Z(t) = W (t) +
p(t)

η(t)
,

where W (t) denotes the investor’s financial wealth at time t.

3.2.3 The Wealth Process

Suppose that the investor is endowed with the initial wealthW0 and will receive an income

rate ι(t) till min{T, τ}. In other words, the income will be terminated by the investor’s death

or retirement at time T , whichever happens first. Furthermore, we assume the function ι(t)

is a Borel measurable function satisfying the integrability condition∫ T

0

ι(s)ds <∞.

We denote by W := {W (t)|t ∈ T } the investor’s wealth process. Let π(t) be the pro-

portion of the wealth invested in the risky asset, and c(t) be the amount of the wealth for

consumption. In this chapter, we assume that the short-selling is allowed in the market, that

is, π can take negative values, and there are no transaction costs and taxes. Therefore, with

a triplet of investment, consumption and insurance strategies (π(t), c(t), p(t)), the investor’s

wealth process W (t) is governed by the following stochastic differential equation:

dW (t) =
{[
µ(t)− r

]
π(t)W (t) + rW (t)− c(t)− p(t) + ι(t)

}
dt+ π(t)σ(t)W (t)dB(t) (3.2)

with initial wealth W (0) = W0 > 0 and initial state X (0) = ei ∈ E.

3.2.4 Regime-switching alpha-ambiguity maxmin utility

In this subsection, we first introduce a novel regime-switching alpha-ambiguity maxmin

expected utility, which describes the individual’s attitude towards risk and ambiguity. We
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then formulate the robust optimal life insurance and investment-consumption selection rules

for the investor, who aims at maximizing the regime-switching alpha-ambiguity expected

discounted utility of her intertemporal consumption, bequest if she dies before retirement

time T , and terminal wealth. We assume that the investor’s preference is measured by the

Constant Relative Risk Aversion (CRRA) utility function as follows:

U(v) =
v1−γ

1− γ
, v > 0,

where γ is the risk aversion parameter such that γ > 0 and γ ̸= 1.

As pointed out by Anderson et al. (2003), the individual accepts the reference model as

useful, but suspects it is misspecified. Therefore, the individual seeks a pool of alternative

models and considers the penalty that may occur if the alternative models deviate too far

away from the reference model. Inspired by Maenhout (2004), we employ a relative entropy to

measure the “distance” between the reference model and the alternative models. Indeed, the

relative entropy is also considered as a risk measurement in Siu (2011) under regime-switching

models. Let θ := {θ(t)|t ∈ T } and ϕij := {ϕij(t)|t ∈ T } be predictable processes in R and

R+, respectively. To simplify the following presentation, we define a set ϕ := {ϕij|i, j =

1, 2, . . . , N, i ̸= j} ⊂ (R+)ℓ, where ℓ := N×N−N . Thus, an alternative probability measure

Q is defined by the Radon–Nikodym derivative as below:

dQ
dP

∣∣∣∣
FT

= Λ(T ) := ΛBM(T )× ΛMC(T ), (3.3)

where

ΛBM(T ) := exp

{∫ T

0

θ(t)dB(t)− 1

2

∫ T

0

(θ(t))2dt

}
, (3.4)

and

ΛMC(T ) := exp

{ N∑
i,j=1,i ̸=j

∫ T

0

log ϕij(t)dMij(t)

+
N∑

i,j=1,i ̸=j

∫ T

0

[
ϕij(t) log ϕij(t)− ϕij(t) + 1

]
qij1{X (t−)=ei}dt

}
.

(3.5)

Here, Mij(t) :=
∫ t
0
⟨X (s−), ei⟩⟨dM(s), ej⟩ is an (FX ,P)-martingale, for each i, j = 1, 2, ..., N ,

and i ̸= j.
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In the above Radon–Nikodym derivative, the first equation (3.4) changes the dynamics

of the stock price by adjusting the expected stock return, and the second equation (3.5)

changes the probability law of the Markov chain. Precisely, under the alternative measure

Q, it follows from Girsanov’s theorem that

BQ(t) := B(t)−
∫ t

0

θ(s)ds,

is a standard Brownian motion; the intensity of the Markov chain is given by:

qϕij(t) := ϕij(t)qij, where i ̸= j, and qϕii(t) := −
N∑

j=1,j ̸=i

ϕij(t)qij.

Under the Q measure, we define a new transition matrix Qϕ(t) := [qϕij(t)]N×N . Thus, the

semi-martingale decomposition of chain X has the following representation under the Q

measure:

X (t) = X (0) +
∫ t

0

Qϕ(s)X (s)ds+Mϕ(t), t ∈ [0, T ].

Here, Mϕ(t) is an RN -valued, (FX ,Q)-martingale. Denote by

Mϕ
ij(t) :=

∫ t

0

⟨X (s−), ei⟩⟨dMϕ(s), ej⟩,

an (FX ,Q)-martingale, for each i, j = 1, 2, ..., N , and i ̸= j.

Therefore, under the Q measure, the risky asset price is governed by:

dSQ(t) = S(t)
{
[µ(t) + σ(t)θ(t)]dt+ σ(t)dBQ(t)

}
,

and the wealth process evolves:

dWQ(t) =
{[
µ(t)− r

]
π(t)W (t) + rW (t)− c(t)− p(t) + ι(t)

}
dt+ θ(t)π(t)σ(t)W (t)dt

+ π(t)σ(t)W (t)dBQ(t).
(3.6)

The relative entropy is defined as the Q-expectation of the log Radon-Nikodym derivative.

Then, it follows from equation (3.3) that the relative entropy over the interval [0, T ] is given
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by:

D(Q,P) := EQ[ log Λ(T )]
= EQ

[∫ T

0

θ(t)dB(t)− 1

2

∫ T

0

(θ(t))2dt+
N∑

i,j=1,i ̸=j

∫ T

0

log ϕij(t)dMij(t)

+
N∑

i,j=1,i ̸=j

∫ T

0

[
log ϕij(t)− ϕij(t) + 1

]
qij1{X (t−)=ei}dt

]

= EQ

[
1

2

∫ T

0

(θ(t))2dt+
N∑

i,j=1,i ̸=j

∫ T

0

[
ϕij(t) log ϕij(t)− ϕij(t) + 1

]
qij1{X (t−)=ei}dt

]
.

Here, EQ is an expectation under the Q measure.

Thus, we define the “penalty” generator between the alternative and reference models by

the normalized relative entropy:

ψ(t) =
θ(t)2

2Ψ(t,W, ei)
+

N∑
i,j=1,i ̸=j

qij

[
ϕij(t) log ϕij(t)− ϕij(t) + 1

]
Ψ(t,W, ei)

, (3.7)

where Ψ(t,W, ei) reflects the preference levels of robustness. Denoting by β(t) the level of

robustness at time t, we assume that the β(t) is modulated by the Markov chain as follows:

β(t) := ⟨β,X (t)⟩,

where β := (β1, β2, . . . , βN)
′ ∈ RN with βi > 0.

Throughout this chapter, we adopt the parametric form suggested by Maenhout (2004):

Ψ(t,W, ei) =
β(t)

(1− γ)V (t,W, ei)
, β(t) > 0. (3.8)

This parametric form (3.8) is economically meaningful and facilitates analytical tractabil-

ity. Intuitively, when selecting adverse drift distortions θ(t) and adverse transition rate dis-

tortions ϕij(t) in equation (3.7), and moving away from the reference model, the incurred

entropy penalties are weighted by 1
Ψ(t,W,ei)

. Therefore, if the investor has less faith in the

reference model, then she will be eager to make more robust decisions.

Now, we are ready to introduce the set of admissible strategies, which is defined as follows.

Definition 3.2.1 A triplet {(π(t), c(t), p(t))|t ∈ T } is called an admissible investment-

consumption-insurance strategy if
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(i) π, c, and p are progressively measurable processes in R, R+, and R, respectively;

(ii) π, c, and p are almost surely integrable in the sense such that

∫ T

0

(|π(t)|2 + |c(t)|+ |p(t)|)dt <∞, P− a.s.;

(iii) the stochastic differential equation (3.2) associated with (π, c, p) has a unique strong

solution {W (t)|t ∈ T }.

The space of all admissible strategies is denoted by A.

The set of {(θ(t), ϕ(t))|t ∈ T ]} is called an admissible set of distortion processes such that

(i) θ(t) and ϕij(t) are predictable processes in R and R+, respectively, for each t ∈ T ;

(ii) EQ
[
exp

{
1
2

∫ T
0
(θ(t))2dt +

N∑
i,j=1,i ̸=j

∫ T
0

[
ϕij(t) log ϕij(t) − ϕij(t) + 1

]
qij1{X (t−)=ei}dt

}]
<

∞.

The space of all admissible sets is denoted by Θ.

As discussed in the introduction, in the classical literature on robust decision-making,

the individual is assumed to have an extremely ambiguity-averse attitude and aims to seek

a robust investment in the worst-case scenario. However, Heath and Tversky (1991) and

Klibanoff et al. (2005, 2009) provide a theoretical background, demystifying that individuals

may be less ambiguity-averse or even ambiguity-seeking when they feel knowledgeable, ex-

perienced, or competent in the relevant context. Inspired by this observation, we consider a

general case in which the wage earner has different attitudes towards ambiguity in different

regimes.

Denote the subjective discount rate at time t by δ(t), which is determined by the Markov

chain as follows:

δ(t) := ⟨δ,X (t)⟩,

where δ := (δ1, δ2, . . . , δN)
′ ∈ RN with δi > 0. Modeling the investor’s time preference by the

Markov-modulated discount rate reflects that their time preference is affected by economic

factors.
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Let α(t) denote the level of ambiguity aversion at time t, which is modulated by the

Markov chain as follows:

α(t) := ⟨α,X (t)⟩,

where

α := (α1, α2, . . . , αN)
′ ∈ RN .

Inspired by B. Li et al. (2016), we propose a new utility form, namely the regime-switching

alpha-ambiguity expected utility, given by

inf
Q∈Q

EQ
t,w,i

[ ∫ T

t

α(s)e−
∫ s
t δ(v)dv

(
U
(
c(s)

)
+ ψQ(s)

)
ds

]
+ sup

Q∈Q
EQ
t,w,i

[ ∫ T

t

α̂(s)e−
∫ s
t δ(v)dv

(
U
(
c(s)

)
− ψQ(s)

)
ds

]
,

where α̂(s) := 1 − α(s), and the first (resp. second) expectation corresponds to the indi-

vidual’s ambiguity-averse (resp. ambiguity-seeking) attitude. Here, Q is a set of probability

measures. Throughout this chapter, we denote EQ
t,w,i[·] = EQ[·|W (t) = w,X (t) = ei], the

conditional expectation under Q given W (t) = w and X (t) = ei. In particular, α(t) = 1, 1
2
, 0

corresponds to an extremely ambiguity-averse, ambiguity-neutral, and extremely ambiguity-

seeking attitude.

Throughout this chapter, we impose the following restriction on the range of α(t):

1

2
≤ α(t) ≤ 1.

The above assumption is mainly due to the following two reasons. First, according to human

behavior experiments (Ghirardato et al., 2004; Heath & Tversky, 1991; Maccheroni, Mari-

nacci, & Rustichini, 2006; Maccheroni et al., 2006), most people not only have an ambiguity-

seeking attitude in the best-case scenario, they also have an ambiguity-averse attitude in the

best-case scenario. Second, many psychological experiments and theories, e.g., Tversky and

Kahneman (1991) and Kahneman, Knetsch, and Thaler (1991) show that most people are

more concerned about the worst-case scenario than the best-case scenario because people

tend to avoid losses when they face the same amount of gains and losses.

One of the key features of regime-switching alpha-ambiguity expected utility is that it

allows different levels of ambiguity aversion in different scenarios and states corresponding
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to different macroeconomic circumstances, specified by α(t), and different levels of model

ambiguity in different states, specified by β(t). The advantage of this utility is that not

only market coefficients but also the ambiguity aversion coefficients can switch from one

state to another. Moreover, this novel utility takes into account the worst-case scenario

and the best-case scenario simultaneously. When the economy is booming, the individual

is optimistic about the future and cares more about the best-case scenario of economic

prosperity. Hence, the optimal solution for the best-case scenario corresponds to a maximal

expected utility, which leads to a “max-max” optimization problem. In contrast, when the

economy is shrinking, the individual is pessimistic about the future and is more concerned

about the worst-case scenario of economic recession. Thus, the optimal strategy for the

worst-case scenario corresponds to a minimal expected utility, which leads to the “max-

min” of expected utility. In general, the individual is more (resp. less) ambiguity-averse

in economic recession (resp. economic prosperity). For example, in a two-state case (i.e.,

N = 2) with a bear market in state e1 and a bull market in state e2, respectively. Then the

investor has a stronger ambiguity-averse attitude in the bear market than in the bull market.

That is,

α1 ≥ α2 and α̂1 ≤ α̂2.

Motivated by the seminal work of Pliska and Ye (2007), we formulate the robust optimal life

insurance purchase and investment-consumption problem as:

sup
(π,c,p)∈A

{
inf

(θ,ϕ)∈Θ
EQ
t,w,i

[ ∫ T∧τ

t

e−
∫ s
t δ(v)dv

(
α(s)U

(
c(s)

)
+ ψ(s)

)
ds

+ α(τ)e−
∫ τ
t δ(v)dvξ(τ)U

(
Z(τ)

)
1{τ≤T} + α(T )e−

∫ T
t δ(v)dvζ(T )U

(
W (T )

)
1{τ>T}

]
+ sup

(θ,Φ)∈Θ
EQ
t,w,i

[ ∫ T∧τ

t

α̂(t)e−
∫ s
t δ(v)dv

(
U
(
c(s)

)
− ψ(s)

)
ds

+ α̂(τ)e−
∫ τ
t δ(v)dvξ(τ)U

(
Z(τ)

)
1{τ≤T} + α̂(T )e−

∫ T
t δ(v)dvζ(T )U

(
W (T )

)
1{τ>T}

]}
,

(3.9)

where T ∧ τ = min[T, τ ]. Here ξ(t) and ζ(t) denote the weights of utility of bequest and

terminal wealth at time t, which are modulated by the Markov chain as follows:

ξ(t) := ⟨ξ,X (t)⟩ and ζ(t) := ⟨ζ,X (t)⟩,
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where ξ := (ξ1, ξ2, . . . , ξN)
′ ∈ RN and ζ := (ζ1, ζ2, . . . , ζN)

′ ∈ RN .

The next step is to transform problem (3.9) with the random planning horizon to an

equivalent problem with a fixed planning horizon. Since τ is independent of the filtration F ,

(3.9) is equivalent to:

V (t, w, ei) = sup
(π,c,p)∈A

{
inf

(θ,ϕ)∈Θ
EQ
t,w,i

[ ∫ T

t

α(s)e−
∫ s
t δ(v)dv

[
F̄ (s, t)U

(
c(s)

)
+ F̄ (s, t)ψ(s)

+ f(s, t)ξ(s)U
(
Z(s)

)]
ds+ α(T )e−

∫ T
t δ(v)dvF̄ (T, t)ζ(T )U

(
W (T )

)]
+ sup

(θ,ϕ)∈Θ
EQ
t,w,i

[ ∫ T

t

α̂(s)e−
∫ s
t δ(v)dv

[
F̄ (s, t)U

(
c(s)

)
− F̄ (s, t)ψ(s)

+ f(s, t)ξ(s)U
(
Z(s)

)]
ds+ α̂(T )e−

∫ T
t δ(v)dvF̄ (T, t)ζ(T )U

(
W (T )

)]}
,

(3.10)

where V (t, w, ei) is the value function of the problem.

Let us remark that the robust optimal life insurance and investment-consumption deci-

sions can be obtained by maximizing the weighted sum of regime-switching alpha-ambiguity

expected discounted utility of consumption, bequest if the investor dies before retirement,

and terminal wealth. Specifically, the “infimum” part can be interpreted as the expected

discounted utility of consumption, bequest, and terminal wealth in the worst-case scenario;

the “supremum” part represents those in the best-case scenario.

3.3 Main Results

In this section, by the Hamilton-Jacobi-Bellman (HJB) equation approach, we derive the

optimal solution for the robust optimal life insurance purchase and investment-consumption

problem (3.10).

For that purpose, we define the differential generator L(π,c,p;θ,Φ) on V (t, w, ei) ∈ C1,2(T ×

R), for each ei ∈ E, as follows:

L(π,c,p;θ,ϕ)V (t, w, ei) :=Vt +
1

2
π2σ2

iw
2Vww +

[
(µi − r)πw + rw − c− p+ ι(t) + θπσiw

]
Vw

− δiV − λ(t)V + ⟨Qϕei,V(t, w)⟩,

(3.11)
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where V(t, w) :=
(
V (t, w, e1), V (t, w, e2), · · · , V (t, w, eN)

)′
is an N -dimensional vector, Vt,

Vw, and Vww represent partial derivatives ∂V
∂t
, ∂V
∂w

, and ∂2V
∂w2 , respectively. Here C1,2(T × R)

denotes a class of functions that are continuously differentiable with respect to t and twice

continuously differentiable with respect to w on R.

According to the dynamic programming principle, we can solve the following regime-

switching HJB equation to find the solution to problem (3.10):

sup
(π,c,p)∈A

{
inf

(θ,ϕ)∈Θ

{
αi

[
L(π,c,p;θ,ϕ)V (t, w, ei) + U(c) + ψ(t, w, ei) + λ(t)ξiU

(
w +

p

η(t)

)]}

+ sup
(θ,ϕ)∈Θ

{
α̂i

[
L(π,c,p;θ,ϕ)V (t, w, ei) + U(c)− ψ(t, w, ei) + λ(t)ξiU

(
w +

p

η(t)

)]}}
= 0

(3.12)

with boundary condition V (T,w, ei) = ζiU(w) for each ei ∈ E and i = 1, 2, . . . , N .

3.3.1 Robust Optimal Solutions

In this subsection, by solving the HJB equation (3.12), we derive candidate optimal strate-

gies to the robust investment-consumption-insurance problem (3.10) in semi-closed form.

Theorem 3.3.1 For the robust optimal life insurance purchase and investment-consumption

problem (3.10), when X (t) = ei, the value function is given by

V (t, w, ei) = f(t, ei)
[w + g(t)]1−γ

1− γ
. (3.13)

the candidate robust optimal strategy u∗(t) := (π∗(t), c∗(t), p∗(t)) is given by
π∗(t) = µi−r

σ2
i

w+g(t)

w
[
γ−(α̂i−αi)βi

] ,
c∗(t) = f− 1

γ (t, ei)
[
w + g(t)

]
,

p∗(t) = [ξiλ(t)]
1
γ f− 1

γ (t, ei)
[
w + g(t)

]
η1−

1
γ (t)− wη(t),

(3.14)

the candidate worst-case measure is determined by θ∗(t) = −µi−r
σi

βi
γ−(α̂i−αi)βi

,

ϕ∗
ij(t) = exp

{
βi
1−γ

[
1− f(t,ej)

f(t,ei)

]}
,

(3.15)
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and the candidate best-case measure is determined by θ
∗
(t) = µi−r

σi

βi
γ−(α̂i−αi)βi

,

ϕ∗
ij(t) = exp

{
− βi

1−γ

[
1− f(t,ej)

f(t,ei)

]}
,

(3.16)

where f(t, ei) and g(t) satisfy the following equations:

0 =
df(t, ei)

dt
+
[
1 + [ξiλ(t)]

1
γ η1−

1
γ (t)

]
γf 1− 1

γ (t, ei) +
1− γ
βi

[
αi

N∑
j=1,j ̸=i

qij

(
ϕ∗
ij(t) log ϕ

∗
ij(t)− ϕ∗

ij(t) + 1
)

− α̂i
N∑

j=1,j ̸=i

qij

(
ϕ∗
ij(t) log ϕ

∗
ij(t)− ϕ∗

ij(t) + 1
)]
f(t, ei) +

N∑
j=1

qijf(t, ej)
[
αiϕ

∗
ij(t) + α̂iϕ∗

ij(t)
]

− bi(t)f(t, ei),

(3.17)

and

g(t) =

∫ T

t

ι(s) exp

(
−
∫ s

t

r + η(v)dv

)
ds, (3.18)

with

bi(t) := δi + λ(t) +
1

2

(µi − r)2

σ2
i

1− γ
[α̂i − αi]βi − γ

− r(1− γ)− η(t)(1− γ),

and terminal conditions f(T, ei) = ζi and g(T ) = 0.

Proof. See Appendix B.1.

Remark 3.3.1 The function g(t) can be considered as the human capital, that is, the ac-

tuarial present value of the wage earner’s future income from time t to T , while w + g(t)

is the total wealth of the wage earner at time t, consisting of the current wealth and future

income. According to equation (3.14), the optimal investment portfolio rule π(t) also depends

on the financial market regime, which is proportional to the Metron ratio µ(t)−r
σ2(t)

, and is re-

vised by total wealth w+ g(t) and ambiguity aversion α(t). The optimal consumption c(t) in

(3.14) can be thought as a proportion of the total wealth, and is weighted by the function of

f− 1
γ (t, ei). The optimal life insurance p(t) in (3.14) can be considered as a proportion of the

total wealth, and is adjusted by the function of f− 1
γ (t, ei), mortality rate λ(t), and insurance

premium-payout ratio η. Moreover, Z∗(t) = p∗(t)
η(t)

+ w is the optimal amount of legacy in the

event of death at time t, which is proportional to the wage earner’s total wealth w + g(t).
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Remark 3.3.2 Note that the equation (3.17) is a system of N-coupled, non-linear ODEs.

In general, it is difficult to find a closed-form solution to this equation. Inspired by Theorem

3.1 in Shen and Siu (2013), we prove the existence and uniqueness of a solution f(t, ei) to

(3.17). The following theorem summarizes the existence and uniqueness result.

Theorem 3.3.2 The non-linear ODE system (3.17) has a unique solution f(t, ei) for each

ei ∈ E that is bounded and strictly positive over time t, for any t ∈ T .

Proof. See Appendix B.2.

3.3.2 Verification

Having solved the HJB equation (3.12), we are in a position to verify that the obtained

candidates are true optimal strategies of the problem (3.10). The following theorem gives

us the conditions under which the solution of the HJB equation is indeed the value function

and the candidates are the optimal strategies.

Theorem 3.3.3 For the robust optimal life insurance and investment-consumption problem

(3.10), suppose that the function V (t, w, ei) is a classical solution to the HJB equation (3.12)

such that the following conditions are satisfied:

1.
{
V (t,W (t),X (t))

∣∣t ∈ [0, T ]
}
is uniformly integrable under both the worst-case and best-

case scenarios;

2.
{ ∫ s

t
U(c(u)) + ψ(u) + λ(u)U(Z(u))du

∣∣s ∈ [t, T ]
}
is uniformly integrable under the worst-

case scenario;

3.
{ ∫ s

t
U(c(u))−ψ(u)+λ(u)U(Z(u))du

∣∣s ∈ [t, T ]
}
is uniformly integrable under the best-case

scenario;

4.
{ ∫ s

t
Vw(u,W (u),X (u))π(u)σ(u)W (u)dBQ(u)

∣∣s ∈ [t, T ]
}
is a local martingale under the

worst-case and best-case scenarios.

Then, the optimal strategy u∗(t) = (π∗(t), c∗(t), p∗(t)) ∈ A is given by (3.14), and the worst-

case and the best-case measures are given by (3.16) and (3.15), respectively.

Proof. See Appendix B.3.
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Theorem 3.3.4 For the robust optimal control problem (3.10), u∗(t) = (π∗(t), c∗(t), p∗(t)) ∈

A given by (3.14) is the robust optimal strategy, and (θ∗(t), ϕ∗
ij(t)) and (θ

∗
(t), ϕ∗

ij(t)) given

by (3.16) and (3.15) are the worst-case measure and the best-case measure, respectively.

Proof. See Appendix B.4.

The verification theorem confirms that the value function of the optimal control problem

corresponds to a unique solution of the HJB equation system, leading to the corresponding

optimal investment, consumption, and life insurance purchase strategies that can be expressed

in (3.14).

3.3.3 Utility Loss

When the wage earner follows a non-robust optimal life insurance purchase and consumption-

investment strategy, utility loss will occur. We consider that the wage earner does not adopt

the robust optimal strategy u∗(t) = (π∗(t), c∗(t), p∗(t)) given in Theorem 3.3.1, but adopts

a sub-optimal strategy ũ∗(t) = (π̃∗(t), c̃∗(t), p̃∗(t)) instead as if model uncertainty is absent.

Suppose that the wage earner ignores model uncertainty. Then the wealth process under the

probability measure P is described by equation (3.2).

Denote the value function by

Ṽ (t, w, ei) = sup
(π̃,c̃,p̃)∈A

E

{∫ T

t

e−
∫ s
t δ(v)dv

[
F̄ (s, t)U(c(s)) + f(s, t)ξ(s)U(Z(s))

]
ds

+ e−
∫ T
t δ(v)dvF̄ (T, t)ζ(T )U(W (T ))

}
.

The corresponding HJB equation is given by

Ṽt − λ(t)Ṽ (t, w, ei) + sup
(π̃,c̃,p̃)∈A

{
1

2
π̃2σ2

iw
2Ṽww + (µi − r)π̃wṼw +

[
rw − c̃− p̃+ ι(t)

]
Ṽw

− δṼ + U(c̃) + λ(t)ξiU(z) +
〈
Qei, Ṽ(t, w)

〉}
= 0,

(3.19)

where Ṽ(t, w) :=
(
Ṽ (t, w, e1), Ṽ (t, w, e2), · · · , Ṽ (t, w, eN)

)′
, and Ṽt, Ṽw, and Ṽww denote par-

tial derivatives ∂Ṽ
∂t
, ∂Ṽ
∂w

, and ∂2Ṽ
∂w2 , respectively.
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Theorem 3.3.5 If the wage earner ignores the model uncertainty, when X (t) = ei, the so-

lution of the HJB equation (3.19) is given by

Ṽ (t, w, ei) = k̃(t, ei)
[w + g̃(t)]1−γ

1− γ
, γ > 0 and γ ̸= 1,

the suboptimal investment-consumption and life insurance strategy is given by
π̃∗(t) = µi−r

σ2
i

w+g̃(t)
wγ

,

c̃∗(t) = k̃−
1
γ (t, ei)[w + g̃(t)],

p̃∗(t) = ξ
1
γ

i λ
1
γ (t)k̃−

1
γ (t, ei)η

1− 1
γ (t)[w + g̃(t)]− wη(t),

(3.20)

where k̃(t, ei) and g̃(t) satisfy the following equations:

dk̃(t, ei)

dt
+
[
1 + ξ

1
γ

i λ
1
γ (t)η1−

1
γ (t)

]
γk̃1−

1
γ (t, ei) +

N∑
j=1

qij k̃(t, ej) = ai(t)k̃(t, ei),

where

ai(t) := δi + λ(t) +
1

2

(µi − r)2

σ2
i

1− γ
γ
− r(1− γ)− η(t)(1− γ),

and g̃(t) = g(t).

Proof. This proof is similar to that of Theorem 3.3.1, and hence we omit it here.

The wage earner following a suboptimal strategy will incur a utility loss. Under the subop-

timal investment-consumption and life insurance purchase rule, the value function associated

with ũ∗(t) = (π̃∗(t), c̃∗(t), p̃∗(t)) is defined by

V̌ (t, w, ei) = inf
(θ,ϕ)∈Θ

EQ
t,w,i

{∫ T

t

α(t)e−
∫ s
t δ(v)dv

[
F̄ (s, t)U(c(s)) + F̄ (s, t)ψ(s) + f(s, t)ξ(s)U(Z(s))

]
ds

+ α(T )e−
∫ T
t δ(v)dvF̄ (T, t)ζ(T )U(W (T ))

}
+ sup

(θ,ϕ)∈Θ
EQ
t,w,i

{∫ T

t

α̂(t)e−
∫ s
t δ(v)dv

[
F̄ (s, t)U(c(s))− F̄ (s, t)ψ(s) + f(s, t)ξ(s)U(Z(s))

]
ds

+ α̂(T )e−
∫ T
t δ(v)dvF̄ (T, t)ζ(T )U(W (T ))

}
,

and the corresponding HJB equation becomes

inf
(θ,ϕ)∈Θ

{
αi

[
L(π̃∗,c̃∗,p̃∗;θ,ϕ)V̌ (t, w, ei) + U(c̃∗) + ψ(t) + λ(t)ξiU

(
w +

p̃∗

η(t)

)]}

+ sup
(θ,ϕ)∈Θ

{
α̂i

[
L(π̃∗,c̃∗,p̃∗;θ,ϕ)V̌ (t, w, ei) + U(c̃∗)− ψ(t) + λ(t)ξiU

(
w +

p̃∗

η(t)

)]}
= 0,

(3.21)
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where

L(π̃∗,c̃∗,p̃∗;θ,ϕ)V̌ (t, w, ei) :=V̌t +

[
(µi − r)π̃∗w + rw − c̃∗ − p̃∗ + ι(t) + θπ̃∗σiw

]
V̌w

+
1

2
π̃∗2σ2

iw
2V̌ww − δiV̌ − λ(t)V̌ + ⟨Qϕei, V̌(t, w)⟩,

(3.22)

where V̌(t, w) := (V̌ (t, w, e1), V̌ (t, w, e2), . . . , V̌ (t, w, eN)).

The value function V̌ is given by

V̌ (t, w, ei) = k(t, ei)
[w + g(t)]1−γ

1− γ
, γ > 0 and γ ̸= 1.

Denote by (θ⋄, ϕ⋄
ij) and (θ

⋄
, ϕ⋄

ij) the worst-case and best-case distortion processes, respec-

tively. By the first-order condition with respect to θ and ϕij, we get


θ⋄(t) = −ui−r

σi

βi
γ
,

ϕ⋄
ij(t) = exp

{
βi
1−γ

[
1− k(t,ej)

k(t,ei)

]}
,

(3.23)

and 
θ
⋄
(t) = ui−r

σi

βi
γ
,

ϕ⋄
ij(t) = exp

{
− βi

1−γ

[
1− k(t,ej)

k(t,ei)

]}
.

(3.24)

Substituting (3.20), (3.23), and (3.24) into the HJB equation (3.21), we get

dk(t, ei)

dt
+
[
1 + ξ

1
γ

i λ
1
γ (t)η1−

1
γ (t)

]
γk1−

1
γ (t, ei) +

1− γ
βi

{
αi

N∑
j=1,j ̸=i

qij

(
ϕ⋄
ij(t) log ϕ

⋄
ij(t)− ϕ⋄

ij(t) + 1
)

− α̂i
N∑

j=1,j ̸=i

qij

(
ϕ⋄
ij(t) log ϕ

⋄
ij(t)− ϕ⋄

ij(t) + 1
)}

k(t, ei) +
N∑
j=1

qijk(t, ej)
[
αiϕ

⋄
ij(t) + α̂iϕ⋄

ij(t)
]

− ci(t)k(t, ei) = 0,

where

ci(t) := δi + λ(t) +
1

2

(µi − r)2

σ2
i

1− γ
γ

[
1− βi(α̂i − αi)

γ

]
− r(1− γ)− η(t)(1− γ),

and g(t) is given by (3.18).

Motivated by P. Wang and Li (2018), D. Li, Zeng, and Yang (2018), and Branger, Larsen,

and Munk (2013), we define the utility loss for ignoring model uncertainty as follows:

UL(t, ei) = 1− V (t, w, ei)

V̌ (t, w, ei)
= 1− f(t, ei)

k(t, ei)
.
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As we explained earlier in this chapter, the individual is suspicious about the reference

model, therefore she aims to find an alternative model that decreases the risk associated with

model misspecification. However, if the individual ignores model uncertainty, she believes

fully in the reference model, and therefore takes on a rational strategy. The utility loss

reflects the importance of considering model ambiguity. If the individual ignores the model

ambiguity, she will suffer a utility loss.

3.4 Numerical Analysis

In this section, we analyze the impacts of model parameters on the robust optimal life

insurance purchase and consumption and also investigate the effect of the model uncertainty

on utility loss. Throughout we consider a wage earner who starts working at age 25 and

retires 35 years later, and whose initial wage at age 25 is $40, 000, growing at a rate of 3%

per year.

In our numeric examples, we consider two states Markov chain X , that is, State 1 and

State 2, representing a bear market and bull market, respectively. The rate matrix of the

Markov chain is given by −0.5 0.5

0.5 −0.5

 .

Suppose that the configurations of the parameter values are listed in Table 3.1. Since State

1 and State 2 represent the bear market and bull market, respectively, the expected return

µ(t, e2) in the bull market is higher than the expected return µ(t, e1) in the bear market.

Furthermore, the risky shares are more volatile in State 1 than in State 2.

The hazard rate λ(t) and the premium-insurance ratio η(t) are defined as follows:

1. Hazard rate (Gompertz hazard function) λ(t): λ(t) = 0.001 + e−9.5+0.1×t;

2. Premium-insurance ratio η(t): η(t) = 0.001 + e−9.5+0.1×t.

Remark 3.4.1 Note that the parameters λ(t) and η(t) have a very small value in the real-

world data. The life insurance company set up the premium-insurance ratio η(t), which is

greater than the hazard rate λ(t) in order to make a profit. That is because the expected profit
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Table 3.1: Value of Parameters

µ(t, ·) σ(t, ·) δ(t, ·) α(t, ·) β(t, ·) ξ(t, ·) ζ(t, ·)

State 1 0.09 0.19 0.03 0.9 14 1 1.5

State 2 0.15 0.13 0.03 0.6 14 1.7 3

W r γ T

10000 0.03 4 35

rate of the life insurance is p(t)η(t)−λ(t)
η(t)

. Thus, life insurance makes a profit when η(t) > λ(t).

In fact, life insurance is fair due to the expected profit rate being zero. Therefore, we set up

η(t) = λ(t) for our numerical experiments.

3.4.1 Effects of Model Parameters on Robust Optimal Strategies

In this subsection, we focus on the impacts of model parameters including risk aversion,

interest rate, discount rate, mortality rate, and ambiguity aversion on the robust optimal life

insurance purchase and consumption strategies.

Figure 3.1 shows the sensitivity of the robust optimal life insurance purchase and con-

sumption on the risk aversion parameter γ. It can be seen from Figure 3.1 that γ has a

positive effect on the wage earner’s life insurance purchase and consumption. As γ increases,

the wage earner becomes more risk-averse. The more risk-averse individual is prone to invest

less in the stock market, and reallocate their wealth to life insurance and consumption when

they are young. The reasonable explanation is that the wage earner has a lower mortality

risk when they are young; compared to the welfare of risk-free assets and terminal wealth,

life insurance and consumption create more of a sense of well-being for the wage earner. In

addition, the wage-earner has a higher mortality rate when they are old. The wage earner is

willing to purchase more life insurance to cover the mortality risk and consume less to save

wealth to gain a sense of well-being from terminal wealth because the terminal wealth has

more weight than the total legacy. Thus, risk-aversion has little impact on life insurance and

consumption when the wage earner ages.
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(a) (b)

(c) (d)

Figure 3.1: Sensitivity plots on robust optimal life insurance purchase and consumption in

response to change in risk aversion γ.
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(a) (b)

Figure 3.2: Sensitivity plots on robust optimal life insurance purchase in response to change

in interest rate r.

Figure 3.2 reveals the sensitivity of the robust optimal life insurance purchase and con-

sumption on the interest rate r. From this figure, we obtain that life insurance and con-

sumption decrease with respect to interest rate r. With the increases of r, the risk-free asset

is more attractive to the wage earner, who is inclined to shift more wealth to the risk-free

asset. As a result, the wage earner reduces consumption and purchases less life insurance.

Figure 3.3 discloses the sensitivity of the optimal life insurance and consumption on

discount rate δ1 and δ2, respectively. As shown in subfigures 3.3(a) and 3.3(b), the utility

discount rate δ1 has a positive effect on the life insurance purchase and consumption for

the wage earner in both the bull market and the bear market, respectively. As δ1 increases,

the wage earner has a higher time preference. The higher the time preference, the higher

the discount placed on costs payable in the future. That is, the individual with a high

time preference is focused substantially on their well-being in the present and the immediate

future; in contrast, the individual with a low time preference places more emphasis on their

well-being in the distant future. Thus, the wage earner with a higher discount factor tends

to allocate more wealth to life insurance and consumption to improve their well-being in

the present. For the same reason, subfigures 3.3(c) and 3.3(d) disclose that δ2 also has

positive effects on life insurance and consumption in both the bull market and the bear
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(a) (b)

(c) (d)

Figure 3.3: Sensitivity plots on robust optimal life insurance purchase and consumption in

response to change in utility discount factor δ1 and δ2.
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market. In addition, subfigures 3.3(a) and 3.3(b) highlight that the optimal life insurance

p∗(·, e1) and consumption c∗(·, e1) in the bear market are more sensitive to the change in

discounted rate δ1 in the bear market. Subfigures 3.3(c) and 3.3(d) present that optimal

life insurance p∗(·, e2) and consumption c∗(·, e2) in the bull market are more sensitive to the

change in discounted rate in the bull market δ2. One possible explanation for this is that the

regime states (macroeconomic conditions) dominate the main effect of the discounted rate on

optimal life insurance and consumption. That is, in a bear market, δ1 has more of an effect on

optimal life insurance p∗(·, e1) and consumption c∗(·, e1) compared to δ2; in contrast, under

a bull market, δ2 has more of an effect on optimal life insurance p∗(·, e2) and consumption

c∗(·, e2) compared to δ1.

(a) (b)

Figure 3.4: Sensitivity plots on robust optimal life insurance purchase and consumption in

response to change in hazard rate λ.

Figure 3.4 displays the sensitivity of the robust optimal life insurance purchase and con-

sumption on hazard rate λ(t). To simplify the explanation, we first introduce the multiplier

R of λ(t), the hazard rate λ
′
(t) = λ(t)× R. When R = 1, the hazard rate is at the original

setting; when R > 1, the hazard rate is higher than the original. Therefore, with the higher

multiplier R, the wage earner has a higher mortality risk. To protect their family, the wage

earner is inclined to purchase more life insurance to cover the higher mortality risk. In addi-

tion, from Figure 3.4(b), we obtain that the mortality rate has positive effects on the optimal
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consumption. One possible explanation is that the wage earner is inclined to reduce their

savings for the future and consume more to gain a sense of well-being in the present due to

bad health conditions.

(a) (b)

(c) (d)

Figure 3.5: Sensitivity plots on robust optimal life insurance purchase and consumption in

response to change in Loading factor L.

In Figure 3.5, we vary the loading factor of η(t), which is defined as L = η(t)
λ(t)

, from 1 to

5. The larger the loading factor, the smaller the legacy the wage earner will receive when

they die. To protect their family, the wage earner will have to pay a greater premium for

the same amount of legacy. That is, the higher loading factor makes the life insurance policy
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more expensive for the wage earner. When the wage earner is young, they are willing to

pay more premium at the beginning if the insurance premium is slightly more expensive;

however, if it is too expensive to maintain the insurance policy, they may give up the life

insurance protection. Moreover, when the wage earner is near retirement age, they will have

a higher mortality rate and will be willing to pay a higher premium even when the insurance

is more expensive. In addition, Figure 3.5 illustrates the effects of loading factor on the

optimal consumption. As life insurance is more expensive, the wage earner has to reduce the

consumption to make up the expenditure of life insurance coverage.

Figure 3.6 shows the impacts of the ambiguity-aversion parameters α1 and α2 on robust

optimal life insurance and consumption in the bull market and bear market, respectively.

We can see that the ambiguity aversion’s parameters α1 and α2 have negative effects on

optimal life insurance and consumption for both markets. The analysis on robust optimal

life insurance behavior is rather complicated since it depends on other macroeconomic factors.

In subfigures 3.6(a) and 3.6(c), with higher levels of ambiguity aversion, the wage earner cares

more about the worst-case scenario. That is, the wage earner is more pessimistic about the

future and is inclined to seek a more conservative strategy. Thus, they are also inclined

to save more for the future in the bear market by reducing life insurance purchase and

consumption to alleviate stock market and insurance risk. As shown in 3.6(b) and 3.6(d),

optimal life insurance and consumption in the bull market decrease with respect to α1 and

α2 for the same reason. Surprisingly, we notice that optimal life insurance and consumption

under the bear and bull markets are more sensitive to the change in α2 rather than α1. One

possible explanation for this finding is that the rational wage earner pays more attention to

the model uncertainty in the bear market. That is, the rational wage earner suspects more

about the reference model and aims to seek a more robust model in the bear market. Thus,

we can conclude that optimal life insurance purchase and consumption are more sensitive to

the change in δ2 compared to the change of δ1.

Overall, our numeric results illustrate the sensitivity of optimal life insurance and con-

sumption to various parameters. In addition, as shown in Figure 3.1-3.5, optimal life in-

surance and consumption are higher (resp. lower) when the wage earner expects regime-

switching in a bull market (resp. a bear market). Since the wage earner is optimistic about
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(a) (b)

(c) (d)

Figure 3.6: Sensitivity plots on robust optimal life insurance purchase and consumption in

response to change in ambiguity aversion α1 and α2.
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the future under the bull market, they are more inclined to undertake risk when the regime-

switching market is in the bull market. Thus, they are tempted to allocate more wealth to

life insurance and consumption in the bull market. Moreover, our results also highlight that

the effect of regime-switching on robust optimal life insurance and consumption is strong

when the wage earner is young, while the effect is negligible when the wage earner is near the

retirement time T . The reasonable explanation is that the probability of regime-switching

from one state to another state decreases when the wage earner is nearly at retirement age.

3.4.2 Effects of Model Parameters on Utility Loss

In this subsection, we illustrate the utility loss for the wage earner who ignores the model

uncertainty by numerical experiment and analyzes the impacts of model parameters on utility

loss.

(a) (b)

Figure 3.7: Effects of ambiguity aversion α1 and α2 on the utility loss.

Figure 3.7 depicts the effects of ambiguity aversion α1 and α2 on utility loss. We find

that the utility loss increases with respect to ambiguity aversion α1 and α2, respectively.

The more ambiguity-averse the wage earner is, the more suspicion about the reference model

the wage earner has. Therefore, they are motivated to seek a more conservative portfolio

strategy to alleviate uncertainty. Indeed, when the wage earner is more uncertain about
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the reference model, ignoring the model uncertainty may suffer a greater utility loss. In

addition, comparing the two subfigures 3.7(a) and 3.7(b), the utility loss in the bear market

UL(·, e1) is more sensitive to α1, while that of bull market UL(·, e2) is more sensitive to

α2. When the wage earner is more concerned about the worst case in the bear market, they

suspect more about the reference model, which leads to more model uncertainty. Therefore,

if uncertainty is ignored, ambiguity aversion in the bear market α1 will lead to a higher utility

loss. For the same reason, utility loss in the bull market is more sensitive to α2 than α1.

In summary, it is necessary to consider ambiguity aversion in the optimal life insurance and

investment-consumption problem.

(a) (b)

Figure 3.8: Effects of interest r and loading factor L on utility loss.

Figure 3.8 illustrates the effects of the loading factor L and the interest rate r on the

utility loss. It shows that the utility loss decreases with respect to the loading factor L and

the interest rate r. As r increases, the risk-free asset is more attractive to the wage earner.

Thus, the wage earner is inclined to allocate more wealth in the risk-free asset, and reduce

investment in the stock market, which leads to a reduction of the uncertainty in the stock

market. If the uncertainty of the model is ignored, it will lead to a smaller utility loss. For

the same reason, with the higher loading factor L, life insurance becomes more expensive

for the wage earner. The wage earner allocates more wealth to cover expenditure for life

insurance. Hence, they have less uncertainty due to lower stock investment. That is, there
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is lead to less utility loss if the wage earner ignores the model uncertainty.

Generally speaking, these figures show that if the uncertainty of the model is ignored, the

utility loss will occur. We obtain that ambiguity aversion plays a pivotal role in utility loss.

If we assume that the wage earner only holds the extremely ambiguity-averse attitude in the

worst-case scenario, accepting the suboptimal strategy may lead to higher utility loss.

3.5 Conclusion

In this chapter, we study the robust optimal life insurance and investment-consumption

problem for the wage earner who is endowed with initial wealth and receives income over

a random lifetime. Taking into account the worst-case scenario and the best-case scenario,

our proposed regime-switching alpha-ambiguity expected discounted utility form allows the

wage earner to have different levels of ambiguity aversion in different economic states. By

solving the HJB equations, we obtain a robust strategy to the problem under regime-switching

alpha-ambiguity utility. From the numerical experiment and theoretical analyses, it shows

that ambiguity aversion has negative effects on optimal life insurance and consumption in

both a bear market and a bull market. Compared with the bull market, the rational wage

earner is more concerned about uncertainty in the bear market. In addition, considering

ambiguity aversion will lead to less utility loss.

We explore the derivation of a pre-committed strategy for the robust optimal life insur-

ance and investment-consumption problem. Such a strategy underscores a proactive and

resolute commitment to a pre-defined course of action, undeterred by any subsequent shifts

in the environment. While we’ve focused on the pre-committed approach in this work, we

acknowledge the importance of time-consistent strategies and reserve an in-depth exploration

of this topic for future research.
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4 Robust and Risk-sensitive Markov Decision Process

with Hidden Regimes

In this chapter, we explore the complexities of decision-making with hidden regimes,

focusing on the financial markets. By incorporating hidden regimes into Markov Decision

Processes (MDPs) and leveraging Reinforcement Learning (RL), we aim to offer a robust

framework that enhances portfolio performance and risk management in unpredictable mar-

ket conditions.

4.1 Introduction

Sequential decision-making is a fundamental problem in many real-world applications

where decision-makers are tasked with making a sequence of decisions over time to achieve a

specific goal. Such problems are widespread across various fields, including finance, health-

care, robotics, and control engineering. For instance, in finance, portfolio managers need to

make a sequence of investment decisions to maximize returns while minimizing risk. Markov

Decision Process (MDP) is a widely used framework to model the sequential decision-making

problems. However, due to the complex and dynamic nature of financial markets, the tran-

sition probabilities between states in the MDP framework are often unknown and uncertain,

making it challenging to develop accurate models for informed decision-making. This necessi-

tates the development of effective and robust sequential decision-making models for portfolio

management problems.

To tackle this issue, researchers have developed various approaches to improve the ro-

bustness of sequential decision-making models. One widely adopted approach is robust dy-

namic programming (DP), which is a mathematical framework for solving sequential decision-
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making problems by recursively splitting the problem into smaller subproblems. This ap-

proach allows the decision-maker to efficiently compute a beneficial overall strategy based on

the information state. However, the computational effort required to compute the optimal

policy for a robust DP approach can be overwhelming in portfolio management problems

due to the large number of states involved. This obstacle has been addressed by Bertsekas

and Tsitsiklis (1996); De Farias and Van Roy (2003), who provide the efficient approxima-

tion algorithms to compute the optimal solutions. Iyengar (2005); Nilim and El Ghaoui

(2005) formulate robust control problems for robust MDPs that model an uncertainty set of

transition probabilities and derive an optimal policy that performs well under worst-case sce-

narios using robust dynamic programming. Their contribution informs subsequent research

by Wiesemann et al. (2013), who propose a robust Markov decision process formulation to

address the issue of uncertainty in MDPs, where the transition probabilities are unknown or

uncertain. They construct a confidence region for the unknown parameters with a specified

probability and determine a policy that maximizes the worst-case performance over this re-

gion. In a further development, Goyal and Grand-Clement (2023) present a new approach

for solving robust MDPs that go beyond the traditional rectangular models. They propose

a novel algorithm for solving these extended robust MDP models, called “A factor matrix

uncertain model”. This algorithm considers a factor model for probability transitions, where

the transition probability is a linear function of a factor matrix that is uncertain and belongs

to a factor matrix uncertainty set. The algorithm provides a fairly general model of uncer-

tainty in probability transitions, allowing the decision-maker to capture dependence between

probability transitions across different states, and it is significantly less conservative than

prior approaches.

A major drawback of previous work on robust MDPs is that they all focused on the plan-

ning problem with no effort to learn the uncertainty. Since it is often difficult to accurately

quantify the uncertainty in practice, the solutions to the robust MDP can be conservative if

a too large uncertainty set is utilized. Recent advancements in deep Reinforcement Learning

(RL) have expanded the robust MDP framework to tackle large-scale problems with high-

dimensional state and action spaces. This development has achieved great success in resolving

diverse decision-making problems in finance. However, real-world applications often feature
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environments characterized by uncertainty and risk, which can lead to the poor performance

or failure of RL algorithms. To address this challenge, RL with risk-sensitive objective has

emerged as a critical research area, aiming to develop algorithms that can effectively handle

uncertainties and risks in complex environments. Building on this line of research, Tamar,

Di Castro, and Mannor (2012) propose a framework for local policy gradient style algorithms

in RL for variance-related risk criteria. Their novel RL algorithm involve risk criteria by opti-

mizing both the expected cost and the variance of the cost. The practical applicability of this

approach in a portfolio management problem further underscores its significance. Furthering

this exploration of risk-sensitive objective, Tamar, Glassner, and Mannor (2015) implement

RL with risk measure CVaR to capture the expected loss beyond a certain threshold, and

propose a novel approach for computing the gradient of CVaR in the form of a conditional

expectation using a sampling-based optimization method. Chow et al. (2015) employ a risk-

sensitive CVaR as objective function to replace a standard risk-neutral expectation, and show

that a CVaR objective can capture the risk sensitivity. Lastly, Tamar et al. (2016) propose

a novel risk-sensitive objective function for RL that considers the consequences of different

decisions in a coherent manner. They propose a sampling-based algorithm for estimating the

gradient of coherent risk. This approach is further validated through various simulation sce-

narios, including portfolio management and control engineering applications, thereby offering

a promising direction for enhancing the efficacy of RL in uncertain environments.

Financial markets are characterized by hidden regimes that must be inferred from ob-

servable variables. Failing to consider these regimes can result in suboptimal investment de-

cisions, increased risk exposure, and financial losses. Robust and Risk-sensitive MDPs that

incorporate hidden regimes have become powerful tools for addressing these challenges (Levy,

Vazquez-Abad, & Costa, 2006; A. Zhang, Sodhani, Khetarpal, & Pineau, 2020; Y. Zhang &

Desilva, 2014). These approaches involve finding a policy that maximizes the worst-case

performance over all possible transition probabilities, which is governed by hidden regimes.

Through the incorporation of transition probability uncertainties and the formulation of the

problem as risk-sensitive MDPs, decision-makers can create policies that are robust to mar-

ket condition changes, thereby enhancing portfolio performance and risk management. In

this study, we initially develop a dynamic programming (DP) framework for both finite and
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infinite horizon robust MDPs with hidden regime rules. Inspired by the work of Tamar

et al. (2016), we adopt a risk-sensitive reinforcement learning (RL) objective by using a

risk envelope as the uncertainty set of transition probabilities, which is associated with hid-

den regimes. This approach allows decision-makers to take into account uncertainty in the

transition probabilities and constructive policies that are robust to changes in the market

conditions. Utilizing the risk envelope as the uncertainty set enables the RL algorithm to

hedge effectively against uncertainty and the risk of making suboptimal decisions, leading to

improved performance in practice.

This study provides three key contributions in the realm of sequential decision-making

under uncertainty in systems with hidden regime rules: first, we introduce an innovative

framework that seamlessly integrates hidden regime rules into both finite and infinite horizon

robust Dynamic Programming (DP). This integration permits the incorporation of uncertain-

ties associated with these regimes into the decision-making process, enabling the formulation

of robust strategies. By selecting a particular uncertainty, we can obtain a statistically precise

representation of uncertainty and solve the robust problem through classical recursion. This

unique approach demonstrates practical efficiency and applicability in addressing challenges

related to uncertainty in complex systems. Second, we demonstrate that when the set of

conditional measures of transition probabilities associated with hidden regime rules, satisfies

the rectangularity property, most of the key findings in DP theory, such as the Bellman

recursion, the optimality of deterministic Markov policies, and the contraction property of

the value iteration operator, can be applied to natural robust scenarios. In addition, from

RL perspective, we adopt a risk-sensitive objective and construct a risk envelope over transi-

tion probabilities to represent the worst-case scenario. To address the risk-sensitive objective

with uncertainty, we propose a novel approach to the robust and risk-sensitive MDP by

treating the risk envelope of transition probabilities as an uncertainty set and maximizing

the worst-case performance over the expectation. By integrating hidden regimes, we improve

our capacity to identify potential market risks related to our decisions, and develop robust

strategies that adapt to changing market conditions. The effectiveness of our approach is

confirmed through empirical results.

The chapter is organized as follows. Section 4.2 briefly reviews the related works of robust
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MDP and risk-sensitive MDP. Section 4.3 formulates the robust MDPs with hidden regime

rules. Section 4.4 introduces the risk-sensitive RL with risks envelope. Section 4.5 implement

our proposed algorithm. Section 4.6 shows the experiment results for real-world data and

simulated data. The final conclusion is presented in section 4.7.

4.2 Relative Work

The MDP, pioneered by Puterman (1994), is a mathematical framework used to model and

solve sequential decision-making problems in dynamic environments. In the MDP framework,

decision-making usually entails minimizing a performance objective that is risk-neutral in

nature. However, this approach does not consider the cost’s variability (fluctuations around

the average) or the impact of modeling errors, which can substantially influence the overall

performance. Risk-sensitive MDPs provide a solution to the issue of cost variability by

replacing the risk-neutral expectation with a risk-measure of the total discounted cost, that

is, variance, Value-at-Risk (VaR), or Conditional-VaR (CVaR). Meanwhile, robust MDPs

(Iyengar, 2005; Nilim & El Ghaoui, 2005) tackle the issue of sensitivity to modeling errors

by optimizing decisions based on a set of plausible MDP parameters. Robust MDPs provide

decision-makers with a policy that is robust and performs reasonably well across a range of

possible parameter values under the worst-case scenario.

4.2.1 Risk-sensitive MDPs

Research on risk-sensitive MDPs have been conducted for many years, with initial stud-

ies concentrating on exponential utility and mean-variance. Comparing robust MDPs, risk-

sensitive MDPs operate under the assumption that parameters are known exactly. The

objective of a risk-sensitive MDP is to minimize the value of a risk measure, such as Value-

at-Risk, Conditional Value-at-Risk (CVaR). Stella et al. (1998) introduce the risk-sensitive

MDP model, where the objective is to find a policy that maximizes the probability that the

cumulative cost is within some user-defined cost threshold. They propose a Value Iteration

(VI) algorithm to solve the problem. However, their algorithm faces scalability issues, limit-

ing its applicability to large-scale problems. Based on previous work, Hou et al. (2014) revisit
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the risk-sensitive MDP model and propose a novel approach to solving the problem, called

Topological Value Iteration. The new algorithm is more efficient and faster than the original

VI algorithm, addressing some scalability concerns. In a different context, Rockafellar et al.

(2000) explore the risk-sensitive objective CVaR for portfolio management problems. They

propose an algorithm for minimizing the CVaR, which they demonstrate to be a more robust

measure of risk that accounts for extreme losses in the tail of the loss distribution. This

approach provides a framework for using CVaR as an alternative risk measure that better

captures tail-risk events. This is particularly beneficial in scenarios where decisions need to

be made under uncertainty and the potential cost of extremely negative outcomes needs to be

minimized. Further extending the field, Borkar and Jain (2014) develop a novel framework for

modeling risk-constrained MDPs that measure risk through CVaR. The objective is to find

a policy that optimizes a performance criterion while adhering to the given risk constraints.

This approach has been proven to asymptotically converge to an optimal risk-constrained

policy. The authors also propose a numerical method for solving the resulting optimization

problem, which involves a combination of value iteration and linear programming. Building

on these advancements, Chow et al. (2015) consider risk-sensitive MDPs with a CVaR ob-

jective, referred to as CVaR MDPs. They provide a new optimization algorithm for CVaR

MDP, which minimize a risk-sensitive CVaR of the total cost in the CVaR MDP leverages

the state augmentation procedure and propose an approximate algorithm with convergence

analysis. Furthermore, Chow, Ghavamzadeh, Janson, and Pavone (2017) present efficient

reinforcement learning algorithms for risk-constrained MDPs that integrates percentile risk

criteria into the standard MDP framework, where risk is represented via a chance constraint

or a constraint on the CVaR of the cumulative cost. They provide a policy gradient and

actor-critic algorithm for solving the problem, and demonstrate the effectiveness through

real-world applications. Recently, Du, Wang, and Huang (2022) propose a new algorithm,

called Ïterated CVaR and the Worst Path ẗhat takes into account the trade-off between the

expected reward and the risk of taking suboptimal actions. This algorithm employs CVaR

as a risk measure and iteratively updates the policy by maximizing a lower bound of the

expected CVaR along the worst path. The authors provide theoretical guarantees for the

convergence of the algorithm and demonstrate its effectiveness through experiments on a
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variety of risk-sensitive MDPs. Furthering this line of research, Rigter, Duckworth, Lacerda,

and Hawes (2022) show that the existence of multiple policies that can achieve the optimal

CVaR, and this realization motivates for authors to propose a lexicographic approach that

minimizes the expected cost while ensuring the CVaR of the total cost remains optimal.

4.2.2 Robust MDPs

The concept of robustness has been extensively studied in optimization and optimal con-

trol (Ben-Tal, El Ghaoui, & Nemirovski, 2009; Hansen & Sargent, 2008). Robust MDPs are

designed to handle parameter uncertainties, which are situation some parameters cannot be

estimated accurately. The objective of robust MDP seeks to find a policy that maximizes the

minimum expected total reward for all possible parameter values, considering the fact that

the parameter values can fluctuate within an uncertainty set, ensuring robustness against

uncertainty and variations in the system. The solution to the robust MDP problem provides

a performance guarantee for all uncertain MDP models, thereby offering robustness to model

mismatch. Building on this foundation, Lim, Xu, and Mannor (2013) propose a novel algo-

rithm that incorporates robust optimization techniques into the RL framework, allowing for

more effective decision-making in situations where there is uncertainty in the parameters of

the transition probabilities of the MDP. This literature also provides a theoretical analysis of

the proposed algorithm and demonstrates its effectiveness through experimental results on

benchmark problems. Yu and Xu (2015) investigate the problem of parameter uncertainty

and how it can be addressed within the robust MDP framework. They propose a distri-

butionally robust counterpart formulation that allows for a more robust decision-making

process in MDP, especially when the probability distribution of the uncertain parameters

is not precisely known. The authors also present theoretical results for the distribution-

ally robust counterpart formulation, including the existence of an optimal policy and the

convergence of value iteration algorithms. The authors further demonstrate the effective-

ness of their approach through numerical experiments on various MDP problems. Taking

a different approach, Lim and Autef (2019) propose a kernel-based reinforcement learning

approach to solve robust MDP. They aim to address the challenges posed by uncertainties

in the transition probabilities. Specifically, they applied a kernel-based method to estimate
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the transition probabilities and incorporated a robust optimization technique to minimize

the expected costs under the worst-case scenario, taking into account the uncertainties in the

transition probabilities. In a similar vein, Abdullah et al. (2019) propose a novel approach to

address robustness issues in MDP, that is, a Wasserstein distance-based robust optimization

framework that can effectively handle parameter uncertainty and minimize the worst-case

cost. Specifically, the proposed algorithm utilizes a Wasserstein metric to quantify the dis-

tance between the nominal and uncertain distributions of transition probabilities in MDP.

Building on these advancements, Y. Wang and Zou (2021, 2022) propose an online learning

algorithm and policy gradient method that incorporates model uncertainty in robust MDP.

This method is designed to minimize the cost function under the worst-case scenario while

considering the possibility of inaccurate parameter estimates. The authors demonstrate that

their method outperforms existing methods in terms of both performance and robustness on

various benchmark problems.

In summary, risk-sensitive MDP and robust MDP are distinct approaches for decision-

making in uncertain environments. They vary in terms of their objectives, uncertainty mod-

eling techniques, and optimal solutions. Risk-sensitive MDP aims to minimize risk while

balancing expected rewards, using risk measures such as variance or CVaR. The objective is

to find a policy that achieves a good balance between expected rewards and risk. On the other

hand, robust MDP aims to ensure robust performance in uncertain environments by finding

a policy that performs well across a range of possible models or scenarios. Both approaches

address decision-marking under uncertainty but emphasize different aspects: Risk-sensitive

MDP focuses on the trade-off between expected reward and risk, while robust MDP focuses

on maintaining robust performance in uncertain environments.

4.3 Robust MDP with Hidden Regime Rules

The introduction of hidden regime rules in a Markov Decision Process (MDP) framework

creates a unique and challenging problem. The underlying premise of this approach is to

account for the inherent uncertainties in the transition probabilities, which are contingent on

the current state and the financial market’s hidden regime. However, solving such a robust
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MDP can be quite complex due to the need to effectively handle these uncertainties and

still generate optimal strategies. Dynamic programming serves as an effective and efficient

approach to addressing this complexity. It aids in determining the optimal action at each

stage based on the current state and hidden regime, enhancing the policy’s robustness in

response to market dynamics. In this section, we will discuss the robust DP framework for

solving the robust MDP with hidden regime rules. For the convenience of readers, we provide

Table 4.1 that includes all symbols in this section.

Table 4.1: Notations for the Robust MDP with Hidden Regime Rules

Symbols Explanations for the Notation

St,At,It,Ht the space of state, action, hidden regime, and history at time t

st, at, it, ht state, action, hidden regime, and history at time t

ϖt, νt history-dependent hidden regime rule and decision rule at time t

T ϖ the set of all conditional measure consistent with a Markov

hidden regime rule

ϕ, ψ the sequence of hidden regime rules and decision rules

T ϕ the set of all conditional measure consistent with the regime change ϕ

ψϕ the sequence of regime-changing dependent policies

V ψϕ
(·) the value function of regime-changing dependent policies

V ∗
t (·) the optimal value function at time t

ϖ the set of all history dependent policies with regime changes

ϖn the set of all history dependent randomized policies with regime changes

for epoch t ≥ n

Dn the set of all history dependent decision rules that incorporate with the

hidden regime rule ϖn at epoch n

ϖD the set of all history-dependent deterministic policies with regime changes

ϖMD the set of all regime-changing dependent Markov deterministic policies

Dϖ the subset of all Markov deterministic decision rules that incorporate

the stationary hidden regime rule ϖ

LDϖ the robust Bellman operator of decision rules that are dependent on the

stationary hidden regime rule ϖ

PE the entropy uncertainty set over transition probabilities
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4.3.1 Finite Horizon Robust DP

In a finite-time horizon t ∈ T = {0, 1, ..., N − 1} for some N ≥ 1, decision epochs refer

to discrete points where decisions are made. We consider an MDP with a finite state space

St and a finite action space At for all t ∈ T . At each timestep t ∈ T , the system is assumed

to occupy a finite state st ∈ St, where St is assumed to be discrete or finite state space.

Let Ht denote the set of all histories ht, where the history ht contains the historical states

up to time t (ht = (s0, s1, ..., st)). For any discrete set B, we denote by M (B) the set of

probability measure on B. The hidden regime it represents different underlying states of

the market which aren’t directly observable but have a substantial influence on observable

market behaviors. Examples of such regimes include bull markets, bear markets, and stable

markets. We denote by It the hidden regime space representing a set of all possible specific

hidden regimes it that the underlying system can be in at time t. We define ϖt as history-

dependent hidden regime rules at time t, where ϖt : Ht →M (It) represents the probability

distribution over the finite hidden regimes space It based on the history of states up to

time t. Decision makers can choose actions either randomly or deterministically based on

the hidden regime rules and current state. A random action corresponds to a state st ∈ St

and a hidden regime rule ϖt ∈ M (It), which corresponds to an element qst,ϖt ∈ M (At).

In this context, an action a ∈ At is selected with probability qst,ϖt(a). At each timestep

t ∈ T , a state st ∈ St and hidden regime rule ϖt ∈ M (It) consist a set of conditional

measures Pt(st, ϖt) ⊆M (St+1) with the interpretation that under the hidden regime rules

ϖt, then the next state st+1 is derived from the conditional measure pst,ϖt ∈ Pt(st, ϖt).

These conditional measures play a crucial role as they encapsulate the uncertainty in the

transition probability of the Markov Decision Processes (MDPs). This uncertainty arises

from the underlying state transitions and regime change governed by environment change.

The set of all conditional measures consistent with a history dependent hidden regime

rule ϖt is given by

T ϖt =
{
p : Ht →M (St+1) : ∀h ∈Ht, s ∈ St+1, ph(s) = pst,ϖt(h)(s),

pst,ϖt(h) ∈Pt(st, ϖt(h))
}
.

(4.1)

A hidden regime rule ϖt is called Markovian if it is a function of the current state st alone.
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The set of all conditional measure consistent with a Markov hidden regime rule ϖt(st) is

given by

T ϖt =
{
p : St →M (St+1) : ∀s ∈ St, ps ∈Pt(s,ϖt(s))

}
,

i.e., for every state s ∈ St, the next state can be determined by any p ∈Pt(s,ϖt(s)).

A decision rule νt is a procedure for choosing actions at a specified decision epoch t ∈ T

dependent on the history of the states, which is a mapping νt : Ht → M (At). A decision

rule νt is called deterministic if probability measures that assign all the probability mass to

a single action a ∈ At, and Markovian if it only depends on the current state st instead of

the entire history up to time t. Let’s consider a policy ψ as a sequence of decision rules

denoted by ψ =
(
νt; t ∈ T

)
, where each νt represents the decision rule at time t. In a

similar vein, a regime change ϕ is defined as a sequence of hidden regime rules denoted by

ϕ =
(
ϖt; t ∈ T

)
. Given a hidden regime rule ϖt at time t, we can define a hidden regime

rule dependent decision rule as νt(·|ϖt). This decision rule takes into account the hidden

regime rule ϖt to determine the optimal action to be taken. To incorporate the regime

changes, we introduce the concept of the regime-changing dependent policy, denoted as ψϕ.

This policy utilizes decision rules derived from underlying hidden regime rules, represented

as ψϕ =
(
νt(·|ϖt), t ∈ T

)
. In other words, the decision rules in ψϕ are applied at each

decision epoch based on the respective hidden regime rules. A regime change ϕ induces a

collection of measures in the history space HN due to the uncertainty of the conditional

measures. Consequently, we assume that the set T ϕ of measures consistent with ϕ possesses

the following structure.

Assumption 4.3.1 The set T ϕ of measures consistent with the regime change ϕ is given by

T ϕ =
{
p : ∀hN ∈HN , p(hN) =

∏
t∈T

pht(st+1), pht ∈ T ϖt , t ∈ T
}

= T ϖ0 ×T ϖ1 ×T ϖ2 ...×T ϖN−1 .

The decision maker receives a reward rt(st, at, st+1) when the action at ∈ At is chosen in

state st ∈ St at the decision epoch t, and the state at the next epoch is st+1 ∈ St+1. Since

st+1 is ambiguous, we allow the reward at time t to depend on st+1 as well. Without loss

of generality, we can assume that the reward is certain. The reward function rN(s) at the

epoch N is only a function of the state s ∈ SN .
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The reward V ψϕ

0 (s) is generated by a regime-changing dependent policy starting from the

initial state s0 = s, which is defined as follows.

V ψϕ

0 (s) = inf
p∈T ϕ

Ep
[N−1∑
t=0

rt(st, νt(ht|ϖt), st+1) + rN(sN)
]
, (4.2)

where Ep denotes the expectation with respect to the fixed measure p ∈ T ϕ. Equation

(4.2) defines the value function of regime-changing policy ψϕ to be the minimum expected

rewards, considering all measures that are consistent with the regime change ϕ. This approach

is commonly known as the robust approach in the conventional optimization literature (Ben-

Tal & Nemirovski, 1998). It ensures that the policy performs well under various possible

scenarios and provides a strong foundation for decision-making. Let Π denotes the set of all

history dependent policies with regime changes. Then, the goal of robust DP aims to seek

the optimal robust value function

V ∗
0 (s) = sup

ψϕ∈Π

{
inf
p∈T ϕ

Ep
[N−1∑
t=0

rt(st, νt(ht|ϖt), st+1) + rN(sN)
]}

. (4.3)

For understanding the implications of the rectangularity assumption the objective (4.3) has

to be interpreted in an adversarial setting: The decision maker chooses a regime-changing

dependent policy ψϕ; an adversary observes the policy ψϕ and selects a probability measure

p ∈ T ϕ that minimizes the reward. In this framework, rectangularity serves as an inde-

pendence assumption, implying that the selection of a particular distribution p̄ ∈P(st, ϖt)

at time t does not impose any constraints on the future choices of the adversary. This

leads to a separability that is crucial for establishing the robust counterpart of the Bellman

recursive function. It is worth noting that the rectangularity assumption may not always

be appropriate because the shape of the state space may not be rectangular. However, in

certain situations, by considering the time-inhomogeneity, we can adopt the rectangularity

assumption to simplify the problem.

The optimistic value V̄ ψϕ

0 (s) of a policy ψϕ starting from the initial state s0 = s is defined

as

V̄ ψϕ

0 (s) = sup
p∈T ϕ

Ep
[N−1∑
t=0

rt(st, νt(ht|ϖt), st+1) + rN(sN)
]
.
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Analogous to the robust value function V ∗
0 , the optimistic value function V̄ ∗

0 is defined as

V̄ ∗
0 = sup

ψϕ∈Π

{
V̄ ψϕ

0 (s)
}
= sup

ψϕ∈Π

{
sup
p∈T ϕ

Ep
[N−1∑
t=0

rt(st, νt(ht|ϖt), st+1) + rN(sN)
]}
.

The regime-changing dependent value function, denoted as V ψϕ

n (hn), is obtained by using

a regime-changing dependent policy ψϕ over epochs n, n + 1, ..., N − 1, starting from the

history hn. It is defined as:

V ψϕ

n (hn) = inf
p∈T ϕ

n

Ep
[N−1∑
t=n

rt(st, νt(ht|ϖt), st+1) + rN(sN)
]
. (4.4)

The set of conditional measures T ϕ
n consistent with the regime change ϕ and the history hn

is given by:

T ϕ
n =

{
pn : Hn →

N−1∏
t=n

M (St+1) : ∀hn ∈Hn, phn(sn+1, ...., sN) =
N−1∏
t=n

pht(st+1), pht ∈ T ϖt
t=n,...,N−1

}
= T ϖn ×T ϖn+1 × ...×T ϖN−1 = T ϖn ×T ϕ

n+1,

(4.5)

where T ϖn is the set of conditional measures for policy ϖn and T ϕ
n+1 is the set of conditional

measures consistent with the regime change ϕ from epochs n+ 1 to N .

The optimal value function V ∗
n (hn) is defined as the supremum of the value function

V ψϕ

n (hn) over all policies ψ
ϕ starting from the history hn at epoch n. Now, let V ∗

n (hn) be the

optimal value function, it can be derived as follows:

V ∗
n (hn) = sup

ψϕ∈Πn

{
inf
p∈T ϕ

n

Ep
[N−1∑
t=n

rt(st, νt(ht|ϖt), st+1) + rN(sN)
]}

, (4.6)

where ϖn represents the set of all history-dependent randomized policies with regime changes

for epoch t ≥ n. The following theorem establishes the robust counterpart of the robust

Bellman recursive function.

Theorem 4.3.2 The set of value functions {V ∗
n : n = 0, 1, 2, ..., N} satisfies the following

robust Bellman equation:

V ∗
N(hN) = rN(sN),

V ∗
n (hn) = sup

a∈A

{
inf

p∈P(sn,ϖn(hn))
Ep
[
rn(sn, a, s

′) + V ∗
n+1(hn, s

′)
]}
, n = 0, 1, 2, . . . , N − 1.

(4.7)
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Proof. By equation (4.5) and (4.6), we can derive the following

V ∗
n (hn) = sup

ψϕ∈Πn

{
inf

p=(p̄,P )∈T ϖn×T ϕ
n+1

Ep
[N−1∑
t=n

rt(st, νt(ht|ϖt), st+1) + rN(sN)
]}

. (4.8)

Since the conditional measures P does not affect the first term rn(sn, νt(hn|ϖn), sn+1), we

have

V ∗
n (hn) = sup

ψϕ∈ϖn

{
inf
p∈T ϕ

n

Ep
[N−1∑
t=n

rt(st, νt(ht|ϖt), st+1) + rN(sN)
]}

= sup
ψϕ∈Πn

{
inf

(p̄,P )∈T ϖn×T ϕ
n+1

Ep̄
[
rn(sn, νn(hn|ϖn), st+1) + EP

[ N−1∑
t=n+1

rt(st, νt(ht|ϖt), st+1) + rN(sN)

]]}

= sup
ψϕ∈Πn

{
inf

p̄∈T ϖn
Ep̄
[
rn(sn, νn(hn|ϖn), sn+1) + inf

P∈T ϕ
n+1

EP
[ N−1∑
t=n+1

rt(st, νt(ht|ϖt), st+1) + rN(sN)

]]}

= sup
ψϕ∈Πn

{
inf

p∈T ϖn
Ep
[
r(sn, νn(hn|ϖn), sn+1) + V ψϕ

n+1(hn, sn+1)
]}

,

(4.9)

where the last equality follows from the definition of V ψϕ

n+1(hn+1).

Therefore, equation (4.9) implies that

V ∗(hn) ≤ sup
ψϕ∈ϖn

{
inf

p∈T ϖn
Ep
[
rn(sn, νn(hn|ϖn), sn+1) + V ∗

n+1(hn, sn+1)
]}

= sup
νn(hn|ϖn)∈Dn

{
inf

p∈T ϖn
Ep
[
rn(sn, νn(hn|ϖn), sn+1) + V ∗

n+1(hn, sn+1)
]}
,

(4.10)

where Dn is the set of all history-dependent decision rules that incorporate the hidden regime

rule ϖn at epoch n.

Since V ∗
n+1(hn+1) = sup

ψϕ∈Πn+1

{V ϖ
n+1(hn+1)}, it follows that for all, ϵ > 0 there exists a

policy ψϵn+1 ∈ Πn+1 such that V
ψϵ
n+1

n+1 (hn+1) ≥ V ∗
n+1(hn+1) − ϵ, for all hn+1 ∈ Hn+1. For all

νn(hn|ϖn) ∈ Dn, (νn(hn|ϖn), ψ
ϵ
n+1) ∈ Πn. Therefore,

V ∗(hn) = sup
ψϕ∈Πn

{
inf

p∈T ϖn
Ep
[
rn(sn, νn(hn|ϖn), sn+1) + V ψϕ

n+1(hn, sn+1)
]}

≥ sup
νn(hn|ϖn)∈Dn

{
inf

p∈T ϖn
Ep
[
rn(sn, νn(hn|ϖn), sn+1) + V

ϖϵ
n+1

n+1 (hn, sn+1)
]}

≥ sup
νn(hn|ϖn)∈Dn

{
inf

p∈T ϖn
Ep
[
rn(sn, νn(hn|ϖn), sn+1) + V ∗

n+1(hn, sn+1)
]}
− ϵ.

(4.11)
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Since ϵ > 0 is arbitrary, by combining (4.10) and (4.11), we have

V ∗(hn) = sup
νn(hn|ϖn)∈Dn

{
inf

p∈T ϖn
Ep
[
rn(sn, νn(hn|ϖn), sn+1) + V ∗

n+1(hn, sn+1)
]}
. (4.12)

By definition of (4.1), we have

V ∗
n (hn) = sup

a∈A
inf

psn,ϖn(hn)∈P(sn,ϖn(hn))

{ ∑
s′∈Sn+1

psn,ϖn(hn)(s
′)[rn(sn, a, s

′) + V ∗
n+1(hn, s

′)]

}

= sup
a∈A

{
inf

psn,ϖn(hn)∈P(sn,ϖn(hn))

[ ∑
s′∈Sn+1

p(s′)[rn(sn, a, s
′) + V ∗

n+1(hn, s
′)]
]}

= sup
a∈A

{
inf

p∈P(sn,ϖn(hn))

[ ∑
s′∈Sn+1

p(s′)[rn(sn, a, s
′) + V ∗

n+1(hn, s
′)]
]}

= sup
a∈A

{
inf

p∈P(sn,ϖn(hn))
Ep
[
rn(sn, a, s

′) + V ∗
n+1(hn, s

′)
]}
.

(4.13)

This completes the proof.

The following corollary demonstrates that the decision maker can achieve the same robust

reward by considering only deterministic policies, without the need for considering random-

ized policies.

Corollary 4.3.1 Let ΠD be the set of all history-dependent deterministic policies with regime

changes. Then, ΠD is adequate for characterizing the value functions Vn in the sense that

for all n = 0, ..., N − 1.

V ∗
n (hn) = sup

ψϕ∈ϖD

{
V ψϕ

n (hn)
}
. (4.14)

Proof. From Theorem 4.7, we can drive the following:

V ∗
n (hn) = sup

a∈A

{
inf

p∈P(sn,ϖn(hn))
Ep
[
rn(sn, a, s

′) + V ∗
n+1(hn, s

′)
]}

= sup
ψϕ∈ΠD

{
inf

p∈P(sn,ϖn(hn))
Ep
[
rn(sn, νn(hn|ϖn), s

′)

+ inf
P̄∈T ϕ

n+1

EP̄
[ N−1∑
t=n+1

rt(st, νt(ht|ϖt), s
′) + rN(sN)

]}
= sup

ψϕ∈ΠD

{
inf
p∈T ϕ

n

Ep
[N−1∑
t=n

rt(st, νt(ht|ϖt), st+1) + rN(sN)
]}

= sup
ψϕ∈ΠD

{
V ψϕ

n (hn)
}
.

97



This completes the proof.

Next, we establish that the decision maker can limit themselves to deterministic Markov

policies, which are policies that the decision rule at any given epoch is solely based on the

current state sn and not on the history hn.

Theorem 4.3.3 (Markov Optimality) For all n = 0, 1, ..., N , the robust value function

V ∗
n (hn) is a function of the current state sn alone and V ∗

n (sn) = supψϕ∈ΠMD

{
V ψϕ

n (sn)
}
, where

Πt is Markov hidden regime rules, and ϖMD is the set of all regime-changing dependent deter-

ministic Markov policies. Therefore, the robust Bellman equation can be derived as follows:

V ∗
N(sN) = rN(sN),

V ∗
n (sn) = sup

a∈A

{
inf

p∈P(sn,ϖn(sn))
Ep
[
rn(sn, a, s

′) + V ∗
n+1(s

′)
]}
,∀n ∈ T. (4.15)

Proof. The result is established by induction on the epoch t for all t > n. For t = N ,

the value function V ∗
N(hN) = rN(sN) and it is a function of only the current state. Starting

with the Bellman equation (4.7), we have

V ∗(hn) = sup
a∈A

{
inf

p∈P(sn,ϖn(hn))
Ep
[
rn(sn, a, s

′) + V ∗
n+1(hn, s

′)
]}
. (4.16)

Since ϖn(·) is Markovian function dependent only on current state, therefore, the equation

(4.16) can be rewritten as follows

V ∗
n (hn) = sup

a∈A

{
inf

p∈P(sn,ϖn(sn))
Ep
[
rn(sn, a, s

′) + V ∗
n+1(hn, s

′)
]}
. (4.17)

Since the right-hand side of equation (4.17) is solely dependent on hn through sn, we can

further simplify it to:

V ∗
n (sn) = sup

a∈A

{
inf

p∈P(sn,ϖn(sn))
Ep
[
rn(sn, a, s

′) + V ∗
n+1(s

′)
]}
. (4.18)

This completes the proof.

The recursive relation of equation (4.18) is the foundation for conventional robust DP

problem. This relation establishes that the optimal value function V ∗
n (s) can be obtained by

maximizing the inner expression over all possible actions a ∈ A , and taking the infimum
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over the conditional measure p ∈ P(sn, ϖn(sn)) for next epoch. Suppose the action set A

is finite. Then the optimal decision rule ν∗n at epoch n is given by

ν∗n(s) = argmax
a∈A

{
inf

p∈P(sn,ϖn(sn))
Ep
[
rn(sn, a, s

′) + Vn+1(s
′)
]}
.

Hence, efficient computation of the value function V ∗
n requires the ability to solve the inner

optimization problem efficiently. It is worth noting that the Theorem 4.3.3 implies the

following result for the optimistic value function V̄ ∗
n .

Theorem 4.3.4 For n = 0, ..., N , the optimistic value function V̄ ∗
n (hn) is a function of the

current state sn alone, and it can be derived as follows:

V̄ ∗
n (sn) = sup

ψϕ∈ΠMD

{
V̄ ψϕ

n (sn)
}
, n ∈ T,

where ϖMD is the set of all regime-changing deterministic Markov policies. Therefore,

V̄ ∗
n (sn) = sup

a∈A

{
sup

p∈P(sn,ϖn(sn))

Ep
[
rn(sn, a, s

′) + V̄ ∗
n+1(s

′)
]}
,∀n ∈ T.

4.3.2 Infinite Horizon Robust DP

In this section, we address an infinite horizon robust DP with regime-changing dependent

policy. The settings for the infinite horizon case is similar to the finite case, where the

system contains the state s ∈ S . The state space S is assumed to be finite and discrete,

the decision maker is allowed to choose an action a ∈ A from a finite or discrete action set.

The main difference is that time t belongs to the set of t ∈ T = [0, 1, ...]. We assume that

the reward function r(st, at, st+1), depends on the current state st, the chosen action at, and

next state st+1. Furthermore, it is also bounded such that sups∈S ,a∈A {r(s, a, s′)} = R <∞.

The value function V ψϕ
(s) represents the expected cumulative discounted reward under a

regime-changing dependent policy ψϕ when the initial state s0 = s, and it is defined as

follows:

V ψϕ

(s) = inf
p∈T ϕ

Ep
[ ∞∑
t=0

γtr(st, νt(ht|ϖt), st+1)
]
,

where T ϕ =
∏

t∈T T ϖt , and γ ∈ (0, 1) is a discount factor. It is clear that all regime-

changing dependent policies ψϕ, sups∈S {V ψϕ
(s)} ≤ R/(1 − γ). The optimal value function
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in state s is given by

V ∗(s) = sup
ψϕ∈Π
{V ψϕ

(s)} = sup
ψϕ∈Π

{
inf
p∈T ϕ

Ep
[ ∞∑
t=0

γtr(st, νt(ht|ϖt), st+1)
]}
,

where Π is the set of all regime-changing dependent policies that take into account the entire

history of states. It can be derived similarly as in previous subsection that if we restrict

the decision maker to deterministic Markov policies and assume that the regime change ϕ is

a Markov function of the current state, then the optimal value function V ∗(s) remains the

same without losing the performance. In other words, the decision maker can achieve the

same performance by restricting the policy to deterministic Markov policies, which can be

expressed as follows:

V ∗(s) = sup
ψϕ∈ΠMD

{
V ψϕ

(s)
}
.

Let V denote the set of all bounded real-valued functions on the discrete set on S . The

L∞ norm on V is denoted as ||V ||, given by

||V || = max
s∈S
|V (s)|.

Therefore, (V, || · ||) is a Banach space. Let Dϖ be any subset of all Markov deterministic

decision rules that is dependent on the stationary and Markov hidden regime rule ϖ. Then,

we define the robust Bellman operator LDϖ on V as follows:

For all V ∈ V,

LDϖV (s) = sup
ν(s|ϖ)∈Dϖ

{
inf

p∈P(s,ϖ(s))
Ep
[
r(s, ν(s|ϖ), s′) + γV (s′)

]}
,∀s, s′ ∈ S .

Theorem 4.3.5 (Bellman Equation). The operator LDϖ satisfies the following properties:

1. The operator LDϖ is a contraction mapping on V; in particular for all U, V ∈ V,

||LU −L V || ≤ γ||U − V ||.

2. The operator equation LDϖV = V has a unique solution. Moreover,

V (s) = sup
ν(s|ϖ)∈Dϖ

inf
p∈T ϕ

Ep
[ ∞∑
t=0

γtr(st, νt(st|ϖt), st+1)
]
.
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Proof. Let U, V ∈ V. Fix s ∈ S and assume that LU(s) ≥ L V (s). Fix ϵ > 0, and

choose ν(·|ϖ) ∈ Dϖ such that for all s ∈ S ,

inf
p∈P(s,ϖ(s))

Ep[r(s, ν(s|ϖ), s′) + γU(s′)] ≥ LDϖU(s)− ϵ.

Choose a conditional probability measure ps ∈P(s,ϖ(s)), s ∈ S such that

Eps [r(s, ν(s|ϖ), s′) + γV (s′)] ≤ inf
p∈P(s,ϖ(s))

Ep[r(s, ν(s|ϖ), s′) + γV (s′)] + ϵ.

Then

0 ≤ LU(s)−L V (s)

≤
(

inf
p∈P(s,ϖ(s))

Ep[r(s, ν(s|ϖ), s′) + γU(s′)] + ϵ
)
−
(

inf
p∈P(s,ϖ(s))

Ep[r(s, ν(s|ϖ), s′) + γV (s′)]
)

≤
(
Eps [r(s, ν(s|ϖ), s′) + γU(s′)] + ϵ

)
−
(
Eps [r(s, ν(s|ϖ), s′) + γV (s′)]− ϵ

)
≤ γEps [U − V ] + 2ϵ

≤ γ||U − V ||+ 2ϵ.

Repeating the argument for the case LU(s) ≤ L V (s) implies that

|LU(s)−L V (s)| ≤ γ||U − V ||+ 2ϵ.

Since LDϖ is a contraction operator on a Banach space, the Banach fixed point theorem

implies that the operator equation LDϖV = V has a unique solution for V ∈ V. Fix the

hidden regime rules ϖ such that νt(·|ϖ) ∈ D , for all t ≥ 0. Then, for all n ≥ 0,

V (s) = LDϖV (s) ≥ inf
p∈T ϕ

Ep
[ n∑
t=0

r(st, νt(st|ϖ), st+1) + γn+1V (sn+1)
]

= inf
p∈T ϕ

Ep
[ ∞∑
t=0

r(st, νt(st|ϖ), st+1) + γn+1V (sn+1)−
∞∑

t=n+1

r(st, νt(st|ϖ), st+1)
]

≥ V ψϕ

(s)− γn+1||V || − γn+1R
1− γ

,

(4.19)

where ||V || = maxs∈S ||V (s)||. Since n is arbitrary, it follows that V (s) ≥ sup
νt(s|ϖ)∈Dϖ

{
V ψϕ

(s)
}
.

Fix ϵ > 0 and hidden regime rule ϖ, choosing a hidden regime dependent deterministic

decision rule ν(s|ϖ) ∈ Dϖ such that for all s ∈ S ,

V (s) = LDϖV (s) ≤ inf
p∈P(s,ϖ(s))

Ep
[
r(s, ν(s|ϖ), s′) + γV (s′)

]
+ ϵ. (4.20)
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Then, we have

V (s) ≤ V ψϕ

(s) + γn||V ||+ ϵ

1− γ
, ∀n ≥ 0.

Since ϵ and n are arbitrary, it follows equation (4.19) and (4.3.2) that

V (s) = sup
ν(s|ϖ)∈Dϖ

{
V ϖϕ

(s)
}
.

This completes the proof.

Corollary 4.3.2 The properties of the operator LDϖ implies the following:

1. Let ν(·|ϖ) be any deterministic Markov decision rules incorporated with a hidden regime

rule. Then, the value function V ψϕ
of the stationary regime-changing dependent policy(

ν(·|ϖ)
)
is the unique solution of the Bellman operator equation

V (s) = inf
p∈P(s,ϖ(s))

Ep
[
r(s, ν(s|ϖ), s′) + γV (s′)

]
, s ∈ S ,

where ϖ represents a stationary and Markov hidden regime rule.

2. The value function V ∗ is the unique solution of the operator equation

V (s) = sup
a∈A

inf
p∈P(s,ϖ(s))

Ep
[
r(s, a, s′) + γV (s′)

]
, s ∈ S .

Moreover, for all ϵ > 0, there exists an ϵ-optimal stationary policy; i.e., there exists ψϵ =

(νϵ, νϵ, ...) such that V ϖϵ ≥ V ∗ − ϵ.

Proof. The results follow Corollary 3.1 in Iyengar (2005) by setting Dϖ = {ν(·|ϖ)} and

Dϖ =
∏

s∈S A (s), respectively. This completes the proof.

Next, we will show an example of Entropy model that model the uncertainty over the

transition probability. Then, we address the inner problem with uncertainty on the transition

probability by showing that the inner problem is equivalent to the dual problem, and the

dual problem can be approximated by Bisection Algorithm.
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4.3.3 An Example: Entropy Uncertainty Set

Prior subsections have been committed to the expansion of robust dynamic programming

(DP) results that incorporate hidden regime rules. Now, our attention is pivoted to tackling

the inner problem represented by:

inf
p∈P(s,ϖ(s))

Ep[V ]

in which the challenge is to address the uncertainty inherent in transition probabilities.

In this subsection, we present an entropy model that captures the inherent uncertainty in

transition probabilities. The transition probabilities in an MDP represent the likelihood of

transitioning from one state to another. However, in many real-world scenarios, these tran-

sition probabilities may not be precisely known. The entropy model provides a probabilistic

framework that considers a set of possible transition probability distributions to account for

this uncertainty. The set of distributions is characterized by a constraint on the Kullback-

Leibler (KL) divergence between a reference distribution and the uncertain distribution. The

reference distribution, denoted as q, represents our prior knowledge or belief about the tran-

sition probabilities, while the uncertain distribution, denoted as p, represents the true but

unknown distribution. The KL divergence measures the difference between two probability

distributions.

The objective of the entropy uncertainty is to find a distribution ps,ϖ(s) associated with

hidden regime rule ϖ within the set P(s,ϖ(s)) that satisfies the constraint:

D(ps,ϖ(s)||qs,ϖ(s)) ≤ β,

where D(ps,ϖ(s)||qs,ϖ(s)) is the KL divergence between hidden regime dependent distribu-

tions ps,ϖ(s) and qs,ϖ(s), and β is a fixed value representing an upper bound on the allowed

divergence. Note that qs,ϖ(s) is the reference distribution, which can be estimated from em-

pirical data or expert knowledge. The condition β > 0, along with qs,ϖ(s) > 0, ensures that

the set P(s,ϖ(s)) has a nonempty interior. The Kullback-Leibler (KL) divergence can be

formulated as:

D(ps,ϖ(s)||qs,ϖ(s)) =
∑
s∈S

ps,ϖ(s) log
ps,ϖ(s)

qs,ϖ(s)

.
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Solving the MDP problem with the entropy model involves finding a policy that maximizes

the expected total reward while considering the set of distributions P(s,ϖ(s)) and the

constraint on the KL divergence. The entropy uncertainty set PE over transition probabilities

can be described as follows:

PE =
{
ps,ϖ(s) ∈P(s,ϖ(s)) : D(ps,ϖ(s)||qs,ϖ(s)) ≤ β

}
.

To summarize, the entropy uncertainty set is a probabilistic approach that captures the

uncertainty in transition probabilities by considering a set of distributions constrained by

the KL divergence. The goal is to identify a policy that performs well under this uncertainty

and provides robustness in the face of unknown or varying transition probabilities. This

approach allows decision-makers to account for the variability in the system and find policies

that perform well in uncertain environments.

4.3.3.1 The Dual Problem

Suppose a state s ∈ S and n = |S | is finite, then the Lagrangian Q : Rn×Rn×R×R→ R

associated with the inner problem can be written as

Q(V, ξ, ν, λ) = pTV − ξp+ ν(1− pT1) + λ
[∑
s∈S

ps,ϖ(s) log
ps,ϖ(s)

qs,ϖ(s)

− β
]
,

where ξ, ν, λ are the Lagrange multipliers. The optimal p∗s,ϖ(s) = arg infp Q(V, ξ, ν, λ) is

readily be obtained by solving ∂Q/∂p = 0, which results in

p∗s,ϖ(s) = qs,ϖ(s) exp
{ν − V (s) + ξ(s)

λ
− 1
}
.

Plugging the value of p∗s,ϖ(s) back the equation for Q(V, ξ, ν, λ). By standard duality argu-

ment, the inner problem is equivalent to its dual:

max
λ>0,ν

ν − βλ− λ
∑
s∈S

qs,ϖ(s) exp
(ν − V (s)

λ
− 1
)
.

Setting the derivative with respect to ν to zero, we obtain the optimality condition∑
s∈S

qs,ϖ(s) exp
(ν − V (s)

λ
− 1
)
= 1
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from which we derive

ν = λ− λ log
(∑
s∈S

qs,ϖ(s) exp{−
V (s)

λ
}
)
.

The optimal distribution is

p∗s,ϖ(s) =
qs,ϖ(s) exp{−V (s)/λ}∑

s∈S

qs,ϖ(s) exp{−V (s)/λ}
.

We reduce the inner problem to a one-dimensional optimization problems

max
λ>0

σ(λ),

where σ is the concave function

σ(λ) = −λ log
(∑
s∈S

qs,ϖ(s) exp{−
V (s)

λ
}
)
− βλ.

4.3.3.2 The Bisection Algorithm

The concave function σ has the following properties :

1 ∀λ ≥ 0, Vmin − βλ ≤ σ(λ) ≤ qTV − βλ, where Vmin = min
s∈S

V (s).

2 σ(λ) = Vmin−(β+logQ(V ))λ+o(λ), where Q(V ) =
∑

s:V (s)=Vmin
qs,ϖ(s) = P (V = Vmin)

Hence, σ(0) = Vmin and σ′(0) = −β − logQ(V ).

In addition, at infinity the expansion of σ is

σ(λ) = qTV − βλ+ o(1).

If V (s) = Vmin for every s ∈ S , the result holds, with Q(V ) = Q(Vmin1) = 1. Assume

that there exists s ∈ S such that V (s) ≥ Vmin. We have

σ(λ) = −λ log
(
e−

Vmin
λ

∑
s∈S

qs,ϖ(s) exp
(Vmin − V (s)

λ

))
− βλ

= Vmin − βλ− λ log
( ∑
s:V (s)=Vmin

qs,ϖ(s) +
∑

s:V (s)≥Vmin

qs,ϖ(s) exp
(Vmin − V (s)

λ

))
= Vmin − βλ− λ log

(
Q(V ) +O(e−t/λ)

)
= Vmin − (β + logQ(V ))λ−O(λe−t/λ),
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where t = Vs − Vmin > 0 and Vs is the smallest V (s) > Vmin, ∀s ∈ S .

The expansion of σ at infinity provides

σ(λ) = −βλ− λ log
(∑
s∈S

qs,ϖ(s)(1−
V (s)

λ
+ o(λ))

)
= qTV − βλ− o(1).

The bisection algorithm can be started with the lower bound λ− = 0. An upper bound

can be computed by finding a solution to the equations σ(0) = qTV − βλ, which yields the

initial upper bound λ+ = (qTV − Vmin)/β. By concavity, a maximizer exists in the interval

[0, λ+].

Algorithm 3 Bisection Algorithm

1 Set λ+ = (qTV − Vmin)/β and λ− = 0. Let δ > 0 be a small convergence parameter.

2 while λ+ − λ− > δ(1 + λ− + λ−), repeat

a) set λ = (λ+ + λ−)/2.

b) compute the gradient of σ at λ.

c) if σ′(λ) < 0, set λ+ = λ; otherwise, λ− = λ.

d) go to 2 a).

Nilim and El Ghaoui (2005) and Iyengar (2005) have shown that the robust DP prob-

lem can be solved by robust finite and infinite horizon DP algorithm and Robust Policy

Iteration Algorithm (RPIA) via Bisection algorithm, respectively. Furthermore, Kaufman

and Schaefer (2013) propose a robust modified policy iteration algorithm to solve the robust

DP problem, which successively approximates the optimal value function and updates the

decision rules at each iteration. However, it should be noted that these algorithms may

have limitations when applied to real-world problems. For instance, the finite horizon DP

algorithm assumes prior knowledge of the terminal value function, which may not be avail-

able in practical scenarios. Similarly, the infinite horizon DP algorithm assumes a stationary

decision rule, which may not be feasible or practical in real-world applications. Therefore,

when applying these algorithms to real-world problems, modifications and adaptations are

often necessary to overcome these limitations and make them applicable to specific problem

contexts. Additionally, it is important to consider that the robust dynamic programming al-

gorithms can be computationally expensive when state space is large. The calculation of the
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optimal value function at each step often leads to overly conservative solutions, which may

not be suitable for real-time applications with strict time constraints. In the next section, we

will propose a novel approach to address this issue from Reinforcement Learning perspective

that strikes a balance between computational efficiency and robustness, allowing for more

practical and real-time applicability.

4.4 Risk-sensitive RL with Risk Envelope

Reinforcement Learning (RL) has achieved remarkable success in solving diverse decision-

making problems in finance. However, real-world applications often involve environments

characterized by uncertainty and risk, which can lead to suboptimal performance or failure

of RL algorithms. To tackle this challenge, the field of robust RL with a risk-sensitive

objective has emerged as a crucial research area. Its primary aim is to develop algorithms

that can effectively handle uncertainties and risks in complex environments.

In this section, we introduce a novel approach from a reinforcement learning (RL) perspec-

tive that incorporates a coherent risk measure. Our proposed approach revolves around the

concept of a risk envelope, which represents the uncertainty set of transition probabilities.

By utilizing the risk envelope, we can effectively pursue robust solutions for risk-sensitive

objective functions in the presence of uncertainty surrounding the transition probabilities.

4.4.1 Coherent Risk Measure

Consider a probability space (Ω,F , Pθ), where Ω is the set of outcomes, F is a σ-algebra

over Ω, and Pθ ∈ B, where B := {ξ :
∫
ω∈Ω ξ(ω) = 1, ξ ≥ 0}, is a probability measure over F

parameter θ ∈ RK . Here, K represents the dimension of the policy parameter θ. Denoted

by Z the space of random variables Z : Ω→ (−∞,∞) over the probability space (Ω,F , Pθ).

A risk measure is a function ρ : Z → R that maps an uncertain outcome to the real line

e.g., the expectation E[Z] or the Conditional Value-at-Risk (CVaR). A risk measure is called

coherent, if its satisfies the following conditions for all Z,W ∈ Z:

1. Convexity : ∀λ ∈ [0, 1], ρ(λZ + (1− λ)W ) ≤ λρ(Z) + (1− λ)ρ(W );
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2. Monotonicity : if Z ≤ W , then ρ(Z) ≤ ρ(W );

3. Translation invariance: ∀a ∈ R, ρ(Z + a) = ρ(Z) + a;

4. Positive homogeneity : if λ ≥ 0, then ρ(λZ) = λρ(Z).

These conditions intuitively ensures the rationality of risk assessments for a single period.

Item 1 ensures that the risk associated with an investment can be reduced through diversifica-

tion. By spreading investments across multiple assets, the overall risk can be mitigated. Item

2 states that an asset with a higher cost in all possible scenarios is inherently riskier. This

reflects the intuitive notion that investments with higher potential losses are riskier. Item

3 refers to as cash invariance, implies the deterministic portion of an investment portfolio

does not contribute to its risk. This highlights that holding cash, which has no uncertainty,

does not introduce additional risk. Item 4 suggests that doubling the position in an asset

also doubles its risk. This relationship emphasizes the proportional nature of risk in in-

vestments. These conditions together provide a framework for evaluating risk and making

informed investment decisions.

In general, the random variable Z is considered as the cost. In RL setting, the coherent

risk measure ρ(Z) is referred to as the risk-adjusted value if a random variable Z is interpreted

as the future discount reward. This is true if and only if there exists a convex bounded and

closed set U ∈ B such that

ρ(Z) = min
ξ:ξPθ∈U(Pθ)

Eξ[Z]. (4.21)

It illustrates that any risk-adjusted value is an expectation w.r.t. a worst-case density func-

tion ξPθ, i.e., a reweighting of Pθ by ξ, chosen adversarially from a suitable set of test density

function U(Pθ), referred to as risk envelope. In addition, a risk-adjusted value is uniquely

represented by its risk envelope (Tamar et al., 2016). In this study, we assume that the risk

envelope U(Pθ) is given in a canonical convex programming formulation and satisfies the

following conditions.

Assumption 4.4.1 For any given policy parameter θ ∈ RK, the risk envelope U of a coherent
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risk measure can be written as

U(Pθ) =
{
ξPθ : ge(ξ, Pθ) = 0,∀e ∈ E , fι(ξ, Pθ) ≤ 0,∀ι ∈ I,

∑
ω∈Ω

ξ(ω)Pθ(ω) = 1, ξ(ω) ≥ 0
}
,

(4.22)

where each constraint ge(ξ, Pθ) is an affine function in ξ, each constraint fι(ξ, Pθ) is a convex

function in ξ, and there exists a strictly feasible point ξ̄. E and I here denote the finite sets

of equality and inequality constraints, respectively. In addition, fι(ξ, p) and ge(ξ, p) are twice

differentiable in p, and there exists M > 0 such that

max

{
max
ι∈I

∣∣∣∣∣dfι(ξ, p)dp(ω)

∣∣∣∣∣,max
e∈E

∣∣∣∣∣dge(ξ, p)dp(ω)

∣∣∣∣∣
}
≤M,∀ω ∈ Ω.

From the above assumption, it implies that the risk envelope U(Pθ) is known in an explicit

form. Note that in the case of a finite probability space, ρ is a coherent risk measure if and

only if U(Pθ) is a convex and compact set.

4.4.2 Dynamic Risk Measures

Dynamic risk measures are tools utilized in finance and economics to evaluate risk over

a sequence of time points. Unlike static risk measures which consider risk at a single time

point, dynamic risk measures account for the time-varying nature of risk, especially pertinent

in investment decisions and risk management scenarios. In static risk measures, we might

consider the risk of an investment at a specific point in time. However, in reality, investments

often span over periods of time and the risk associated with them may vary over this duration.

In addition, dynamic risk measures introduce the concept of time-consistent. This implies

that if a strategy is deemed risk-optimal at the onset of a period, it should remain considered

as such at any subsequent point within this period. This property is crucial for ensuring the

stability and reliability of investment strategies.

Markov coherent risk measures are a specialized form of dynamic risk measures. It is de-

signed to assess risk in situations where the stochastic processes involved exhibit the Markov

property. The Markov property suggests that the future state of a process depends only on its

current state and not on its past states. This is a key feature in many economic and financial
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systems, making Markov coherent risk measures especially relevant for these applications.

In general, Markov coherent risk measures provide a time-consistent, dynamic evaluation of

risk. In RL settings, the Markov coherent risk measure ρT (M) for a T -period horizon is

defined as follows:

ρT (M) = r(s0, a0) + γρ

(
r(s1, a1) + ...+ γρ

(
r(sT−1, aT−1) + γρ(r(sT ))

))
,

where {s0, a0, i0, ...., sT−1, aT−1, iT−1, sT} is a trajectory drawn from an MDP M, γ is the

discount factor, and ρ is a static coherent risk measure that satisfies Assumption 4.4.1.

Each static coherent risk measure ρ at state s ∈ S is induced by the transition probability

P (s′|s) =
∑

i∈I P (s′|s, i)ϖϑ(i|s).

4.4.3 RL with Risk Envelope

We consider an MDP M with a hidden regime rules ϖ parametrized by ϑ, a policy

of action ν parameterized by θ, and a transition probability P , Z may correspond to the

cumulative discounted future rewards

Z =
∞∑
t=0

γtr(st, at),

where r(st, at) is a bonded and deterministic reward function, and γ is the discount factor.

The actual action is chosen by a stochastic policy that depends on hidden regime it and

current state st, that is, νθ(at|st, it). The hidden regime is estimated based on stochastic

hidden regime rules, that is, it = ϖϑ(i|st). We also assume that the transition probability in

MDPM depends on the current state and hidden regime mechanisms such as P (st+1|st, it).

Now, let T →∞, Markov coherent dynamic risk measure can be defined as follows:

ρ∞(M) = lim
T→∞

ρT (M) = r(s0, a0) + γρ

(
r(s1, a1) + γρ

(
r(s2, a2) + ...

))
,

where ρ is a risk-adjusted value that can be uniquely represented by its risk envelope (4.21).

The objective function of the risk-sensitive RL problems can be formulated as

max
θ
Jθ(s0) = max

θ
ρ∞(M).
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Inspired by Ruszczyński (2010), we define the value function for a fixed s = s0 as follows:

V (s) = ρ∞(M) = r(s0, a0) + γρ
(
r(s1, a1) + γρ(s2, a2) + ...

)
. (4.23)

Let B(S ) denotes the space of real-valued bounded functions on state space S . The

risk-sensitive Bellman operator Tθ,ϑ[V ] : B(S )→ B(S ) is defined as

Tθ,ϑV (s) = min
ξ∈U(s,Pθ,ϑ(·,·|s))

E(â,ŝ)∼ξPθ,ϑ(·,·|s)

[
r(s, â) + γV (ŝ)

∣∣s], (4.24)

where ŝ ∈ S and â ∈ A are random variables such that (â, ŝ) ∼ Pθ,ϑ(â, ŝ|s) =
∑

i∈I ϖϑ(i|s)

νθ(â|s, i)P (ŝ|s, i), and i ∈ I denotes the estimated hidden regime in the system.

Proposition 4.4.1 The risk-sensitive Bellman operator is a γ-contraction w.r.t ∞-norm.

Proof. Fix s ∈ S and i ∈ I , we assume that Tθ,ϑY (s) ≥ Tθ,ϑZ(s). Choose some ϵ ≥ 0 and

ξPθ,ϑ(·, ·|s) ∈ U(s, Pθ,ϑ(·. · |s)) such that

E(â,ŝ)∼ξPθ,ϑ(·,·|s)

[
r(s, â) + γZ(ŝ)

∣∣s] ≤ min
ξ∈U(s,Pθ,ϑ(·,·|s))

E(â,ŝ)∼ξPθ,ϑ(·,·|s)

[
r(s, â) + γZ(ŝ)

∣∣s]+ ϵ

By definition, we have

min
ξ∈U(s,Pθ,ϑ(·,·|s))

E(â,ŝ)∼ξPθ,ϑ(·,·|s)

[
r(s, â) + γY (ŝ)

∣∣s] ≤ E(â,ŝ)∼ξPθ,ϑ(·,·|s)

[
r(s, â) + γY (ŝ)

∣∣s].
Then, we have

0 ≤ Tθ,ϑY (s)− Tθ,ϑZ(s) ≤ EξPθ,ϑ(·,·|s)

[
r(s, â) + γY (ŝ)

∣∣s]−(EξPθ,ϑ(·,·|s)

[
r(s, â) + γZ(ŝ)

∣∣s]− ϵ)
≤ γ

∣∣∣∣∣∣Y (s)− Z(s)
∣∣∣∣∣∣
∞

where P̂θ,ϑ(·, ·|s) is the transition matrix. Conversely, if Tθ,ϑY (s) ≤ Tθ,ϑZ(s), following the

same procedure, we can obtain

0 ≤ Tθ,ϑZ(s)− Tθ,ϑY (s) ≤ γ
∣∣∣∣∣∣Y (ŝ)− Z(ŝ)

∣∣∣∣∣∣
∞
.

Thus, we can conclude that ∣∣∣∣∣∣Tθ,ϑY − Tθ,ϑZ∣∣∣∣∣∣
∞
≤ γ

∣∣∣∣∣∣Y − Z∣∣∣∣∣∣
∞
.
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This establishes the risk-sensitive bellman operator is a γ-contraction w.r.t. ∞-norm. This

completes the proof.

Proposition 4.4.1 demonstrate that the risk-sensitive bellman equation is a γ-contraction

operator on a Banach space. Therefore, by the Banach fixed point theorem, the operator

equation Tθ,ϑV = V has a unique fixed point. According to Theorem 4 in Ruszczyński (2010),

the fixed point is equal to the value function defined in (4.23), i.e. V (s) = ρ∞(M). This value

function assigns to each state a particular value that encodes the long-term risk of the system

staring from that state. However, when the state space S is large, exact enumeration of the

Bellman equation is intractable due to calculating V (s) for every state s ∈ S is prohibitively

computationally expensive, and a lower dimensional approximation of V is sought (Tamar,

Mannor, & Xu, 2014).

4.4.4 Gradient of Value Function

According to the Assumption 4.4.1, ρ(Z) is a risk-adjusted value that can be calculated

by equation (4.21). The Lagrangian function of (4.21), denoted by Lθ,ϑ(ξ, λP , λE , λI), can be

written as

Lθ,ϑ(ξ, λP , λE , λI) =
∑
ω∈Ω

ξ(ω)Pθ,ϑ(ω)Z(ω) + λP
(∑
ω∈Ω

ξ(ω)Pθ,ϑ(ω)− 1
)

+
∑
e∈E

λE(e)ge(ξ, Pθ,ϑ) +
∑
ι∈I

λI(ι)fι(ξ, Pθ,ϑ).

It also illustrates that Lθ,ϑ(ξ, λP , λE , λI) is concave in ξ and convex in (λP , λE , λI). Thus, it

implies that the strong duality holds, that is,

Jθ,ϑ(Z) = max
λP ,λE ,λI≥0

min
ξ≥0
Lθ,ϑ(ξ, λP , λE , λI) = min

ξ≥0
max

λP ,λE ,λI≥0
Lθ,ϑ(ξ, λP , λE , λI).

Assumption 4.4.1 also depicts that the Lθ,ϑ(ξ, λP , λE , λI) is Lipschitz and an absolutely

continuous function in θ, and there exists a non-empty set of saddle points S. Thus,

∇θLθ,ϑ(ξ, λP , λE , λI) is continuous and bounded. For every selection of saddle points

(ξ∗, λ∗,P , λ∗,E , λ∗,I) ∈ S, using the envelope theorem from Milgrom and Segal (2002) for

saddle-point problems, we have

∇θmin
ξ≥0

max
λP ,λE ,λI≥0

Lθ,ϑ(ξ, λP , λE , λI) = ∇θLθ,ϑ(ξ, λP , λE , λI)
∣∣∣
ξ∗,λ∗,P ,λ∗,E ,λ∗,I

.
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Let (ξ∗, λ∗,P , λ∗,E , λ∗,I) be the saddle point for the state s ∈ S . In many common coherent

risk measures such as CVaR and semi-deviation, they provide closed-form formulas for ξ∗

and KKT multipliers (λ∗,P , λ∗,E , λ∗,I). Before analyzing the gradient of value function, we

have the following standard assumption.

Assumption 4.4.2 The likelihood ratio ∇θ log νθ(a|s, i) is well-defined and bounded for all

s ∈ S , a ∈ A and i ∈ I .

As previously discussed, the Bellman operator Tθ,ϑV = V has a unique fixed point, and

the fixed point corresponds exactly to value function defined in (4.23). Consequently, we can

employ the risk-sensitive Bellman equation

V (s) = min
ξ∈U(s,Pθ,ϑ(·,·|s))

E(â,ŝ)∼ξPθ,ϑ(·,·|s)

[
r(s, â) + γV(ŝ)

∣∣∣s].
to derive the gradient of value function ∇θV(s).

Theorem 4.4.3 Under Assumptions 4.4.1 and 4.4.2, the gradient of value function w.r.t θ

can be deduced as follows.

∇θV(s) = Eξ∗Pθ,ϑ(·,·|s)

[ ∞∑
t=0

γt∇θ log νθ(at|st, it)h(st, at, it)
∣∣∣s0 = s

]
, (4.25)

where Eξ∗Pθ,ϑ
[·] denotes the expectation under worst-case scenario w.r.t. trajectories generated

by a MDP with hidden regime rule i ∼ ϖϑ(·|s), action probability a ∼ νθ(·|s, i), and transition

probability P (·|s, i)ξ∗(i, ·). The stage-wise function h is given by

h(s, a, i) =r(s, a) +
∑
s′∈S

P (s′|s, i)ξ∗(i, s′)
[
γV (s′) + λ∗,P +

∑
ι∈I

λ∗,I(ι)
dfι(ξ

∗, Pθ,ϑ)

dp(a, s′)

+
∑
e∈E

λ∗,E(e)
dge(ξ

∗, Pθ,ϑ)

dp(a, s′)

]
.

Proof. Similar to the proof of Theorem V.4 in Tamar et al. (2016), by the strong duality

result, we have

min
ξ∈U(s,Pθ,ϑ(·,·|s))

E(â,ŝ)∼ξPθ,ϑ(·,·|s)

[
r(s, â) + γV(ŝ)

∣∣s] = min
ξ≥0

max
λP ,λE ,λI≥0

Lθ,ϑ(ξ, λP , λE , λI).
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Therefore, the gradient formula can be written as

∇θV(s) = ∇θ min
ξ∈U(s,Pθ,ϑ(·,·|s))

E(â,ŝ)∼ξPθ,ϑ(·,·|s)

[
r(s, â) + γV(ŝ)

∣∣∣s]
=

∑
i∈I ,a∈A ,s′∈S

ϖϑ(i|s)νθ(a|s, i)
{
P (s′|s, i)ξ∗(i, s′)∇θγV (s′) +∇θ log νθ(a|s, i)h(s, a, i)

}
,

where

h(s, a, i) =r(s, a) +
∑
s′∈S

P (s′|s, i)ξ∗(i, s′)
[
γV (s′) + λ∗,P +

∑
ι∈I

λ∗,I(ι)
dfι(ξ

∗, Pθ,ϑ)

dp(a, s′)

+
∑
e∈E

λ∗,E(e)
dge(ξ

∗, Pθ,ϑ)

dp(a, s′)

]
.

By defining ĥ(s, a, i) = ∇θ log νθ(a|s, i)h(s, a, i) and unfolding the recursion, the above ex-

pression implies

∇θV (s0) =
∑

a0∈A,i0∈I

ĥ(s0, a0, i0) + γ
∑
s1∈S

P (s1|s0, i0)ξ(i0, s1)
[ ∑
a1∈A,i1∈I

h(s1, i1, a1)

+ γ
∑
s2∈S

P (s2|s1, i1)ξ(i1, s2)∇θV(s2)
]

Now since ∇θV(s) is continuously differentiable with bounded derivatives, when t → ∞,

one obtains γt∇θV → 0 for any s ∈ S . Therefore, by bounded convergence theorem,

limt→∞ ρ(γt∇θV(s)) = 0, which implies the above expression can be estimated as

∇θV (s) = Eξ∗Pθ,ϑ(·,·|s)

[ ∞∑
t=0

γt∇θ log νθ(at|st, it)h(st, at, it)
∣∣s0 = s

]
.

This completes the proof.

It is worth noting that the policy gradient of the Markov-coherent dynamic risk measure

ρ∞(M), i.e. ∇ρ∞(M) is equivalent to the risk-neutral value function of policy θ in a MDP

with a stage-wise function ∇θ log νθ(a|s, i)hθ(s, a, i) that is both well-defined and bounded.

The MDP also has an action probability νθ(·|s, i) and a transition probability P (·|s, ·)ξ(i, ·).

Therefore, if the saddle points are known and the state space is not excessively large, we can

calculate the gradient by using a policy evaluation algorithm. However, when the state space

is too large, the exact computation of ∇Vθ by policy evaluation becomes impractical.
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4.5 Implementation

Handling the calculation of the gradient for the coherent risk measure becomes challenging

when the sample space is large. In such cases, the most popular approach is to use a natural

Monte-Carlo (MC) estimation algorithm. The MC estimation algorithm involves generating

a set of sample paths by running the MDP under the current policy. The gradient is then

estimated using a sample average of the instantaneous gradients along the generated sample

paths. In this section, we present a novel reinforcement learning (RL) algorithm aimed at

constructing a risk-sensitive policy under the worst-case scenario.

We are examining a portfolio management problem in which the agent is mandated to

choose a portfolio allocation strategy that maximizes the expected alpha-percentile of the

future discounted return. In this problem, we adopt a hidden-regime dependent MDP to

formulate this problem, which is described in section 4.3. In particular, we hypothesize that

the transition probability in MDP is contingent on the current state and the hidden regime

of the financial market, represented as P (st+1|st, it). The future discounted return is defined

as the discounted sum of the rewards, that is, R =
∞∑
t=0

γtr(st, at), where r(st, at) is the reward

at time t and γ ∈ (0, 1) is the discount factor. We adopt the expected alpha-percentile as

the risk-sensitive objective with confidence level α ∈ (0, 1], which is defined as follows:

Jα(R) = E[R|R ≤ percentile(α)].

The decreasing nature of Jα with respect to α is a well-established fact. This can be inter-

preted as the worst-case expected value of R given the α-portion of the left tail distribution.

Furthermore, it is important to note the expected alpha-percentile objective function satis-

fies the necessary conditions for a coherent risk measure. This property is supported by the

alternative dual representation of a coherent risk measure, as stated by Artzner, Delbaen,

Eber, and Heath (1999):

Jα(R) = min
ξ:ξPθ,ϑ∈U(Pθ,ϑ)

EξPθ,ϑ

[
R
]
, (4.26)

where EξPθ,ϑ
[R] denotes the ξ-weighted expectation of R, and the risk envelope U is defined

as:

U(Pθ,ϑ) =
{
ξPθ,ϑ : ξ(i, s

′) ∈ [0, α−1],
∑
s′,i

ξ(i, s′)Pθ,ϑ(s
′|s, i) = 1

}
. (4.27)
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In this context, ξ is selected from the risk envelope to adjust the worst-case probability

density, reflecting the worst-case scenario that can arise under a perturbed distribution ξPθ,ϑ.

Our goal is to maximize the performance in the worst case scenarios, which can be achieved

by solving the following optimization problem

max
θ

min
ξ∈U(Pθ,ϑ)

EξPθ,ϑ

[
R
]
. (4.28)

The cornerstone of our algorithm involves transforming the continuous state of stock clos-

ing prices into a finite state space. This transformation is facilitated through Equal-Frequency

Discretization, a technique that segregates the continuous price values into a distinct num-

ber of states, each containing a roughly equal range of observed prices. Consider a series of

historical closing prices symbolized as {vc0, vc1, vc2, ..., vcm}. We initiate the process by calculat-

ing relative price change, that is, taking a ratio of the current closing price to the previous

closing price, e.g., yt = vct/v
c
t−1 for t = 1, 2, 3, ...,m. Next, we sort the relative price changes

in ascending order, denoted as {y(1), y(2), ..., y(m)}. We then divide the sorted price changes

into N equal-sized intervals, denoted as {I1, I2, ..., IN}. Assuming each state encompasses w

price changes, the price change at each time is accordingly assigned to the interval to which

it belongs. For example, if we treat a state as a sequence of price changes spanning five days,

every price change within this 5-day duration is allocated to its corresponding interval. As a

result, we acquire a finite state space containing 5N unique states. Through Equal-Frequency

Discretization, we are successful in transforming the continuous stream of stock closing prices

into a finite collection of discrete states. This conversion greatly facilitates the subsequent

analytical steps while also enabling a more sophisticated decision-making process.

The starting point of our algorithm is to estimate the empirical transition probabilities

using the equation: P (s′|s) =
∑

iϖϑ(i|s)P̂ (s′|s, i). Here, P̂ (s′|s, i) represents the estimated

probability of transitioning from state s to next state s′ given the hidden regime i, andϖϑ(i|s)

is a network that predicts the hidden regime based on the current state st. Specifically,

ϖϑ(i|s) outputs the probability of the hidden regimes it in state st. The empirical transition

probability P̂ (s′|s, i) is estimated by the following equation:

P̂ (s′|s, i) = N(s, i, s′)

N(s, i)
,
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where N(s, i, s′) is the number of times the states has transitioned from state s to state s′

under the hidden regime i, and N(s, i) is the total occurrence of state s under the hidden

regime i.

In the process of training our hidden regime rule, denoted as ϖϑ, we incorporate the use

of a Hidden Markov Model (HMM). This model serves a crucial role in furnishing a label

that assists in training our network. The HMM is an excellent fit for our scenario due to

its proficient handling of situations involving hidden or latent variables. This distinctive

capability makes the HMM a robust instrument for labeling our states, which subsequently

feeds into the training of our network ϖϑ. Once the HMM is trained, it generates a sequence

of hidden states or labels corresponding to each observed state. These labels are then used to

train our network ϖϑ, effectively enabling the network to learn and emulate the underlying

regime rules encoded by the HMM. Through this procedure, the network ϖϑ becomes adept

at identifying the hidden regimes and making corresponding decisions based on the identified

regime, thereby enhancing the overall performance of our proposed framework.

To tackle the inner problem, we need to find the optimal value function V (s′) for all pos-

sible states s′ in finite state space. This value function approximates the expected cumulative

rewards starting from state s′ and following the current policy. To mitigate uncertainty in

transition matrix rows, we assume uncertainty set U for all the rows in the transition matrix

and apply the robust Bellman recursion equation to decipher the inner problem. The robust

Bellman recursion equation is articulated as:

V (s) = min
ξ∈U(Pθ,ϑ)

EξPθ,ϑ

[
rt + γV (s′)

]
,

where the value function V (s) is defined as

V (s) = E[R|R ≤ percentile(α), s].

In this context, ξ represents a specific set of transition probabilities encapsulated within

the uncertainty set U , and EξPθ,ϑ
denotes the expectation associated with the distribution

defined by ξPθ,ϑ. We take the minimum over all candidate value functions to ensure that the

value function is robust to the uncertainty in the transition matrix. The uncertainty set has

been defined in (4.26) and (4.27). At each timestep, the inner problem is solved by using
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the CVXPY optimization model in python with the MOSEK solver. Within our proposed

framework, the target value yt is computed as:

yt = inf
ξ∈U(Pθ,ϑ)

EξPθ,ϑ

[
rt + γV (s′)

]
, (4.29)

where ξ can be solved by the MOSEK solver at each timestep, and the value function V (s′) can

be acquired by utilizing the Critic network with the equation V (s′) =
∑

a,iϖϑ(i|s′)νθ(a|s′, i)Q(s′, a).

The Critic network Q(s, a) is refined by minimizing the loss function:

L =
1

N

N∑
t=1

(yt −Q(st, at))2.

Subsequently, the actor network νθ can be updated using Theorem 4.4.3. The completed

robust actor-critic with hidden regime rules algorithm is outlined in 4.

To commence the process, parameters θ and ω of the Actor and Critic networks are

initialized. Each episode commences with initializing the state s and the replay buffer D.

Subsequently, the execution phase then launches with the transformation of the current state

into a finite state, represented by st. The hidden regime it is estimated by using the hidden

regime rules ϖϑ. A vital step is the estimation of the empirical transition matrix P̂ (s′|s, i),

which is computed using the pretrained hidden regime rulesϖϑ. An action at is sampled based

on the current state st and hidden regime it, then executes it. The estimated hidden regime it

leads to the generation of a new state st+1 and an associated reward rt from environment. All

these elements, i.e., the state, action, and reward, are stored in the experience replay buffer

D. The following stage entails extracting a sequence of N transitions from the replay buffer.

For each transition (st, at, rt), a target value yt is computed. This calculation is facilitated

by solving an inner problem using a designated equation for the target value. Pivotal to the

learning process are the updates to the Critic and the Actor. The Critic is fine-tuned by

minimizing the loss function L, which encapsulates the variance between the target value yt

and the value derived from the Critic network Qω(st, at). The Actor, contrarily, is refreshed

using the policy gradient outlined in Theorem 4.4.3. The algorithm cyclically processes these

steps until the end of the episode. As the algorithm advances, the Critic and Actor networks

incrementally evolve, yielding increasingly optimal solutions within the given environment.

This constant refinement is a testament to the prowess of reinforcement learning, where
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learning from experiences fuels enhanced decision-making. The workflow of the proposed

algorithm is illustrated in Figure 4.1.

Figure 4.1: Workflow of the proposed algorithm

4.6 The Experiment Results

In this section, we verify the effectiveness of our proposed method by using real-world

data and simulated data. Our findings underscore the critical role of the hidden regime

in the financial market. By accounting for this, market fluctuations can be more precisely

discerned, thereby facilitating more robust decision-making. Furthermore, we demonstrate

our approach can improve policy robustness, enabling it to be effectively adjusted to various

market environments.
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Algorithm 4 Actor-Critic Model with hidden regime rules

Require: Environment, Actor network νθ, Critic networkQω, pretrained hidden regime rules

ϖϑ, and discount factor γ.

1: Initialize parameters θ and ω of Actor and Critic networks

2: for each episode do

3: Initialize state s

4: Initialize replay buffer D

5: Convert continuous state to finite state space

6: Estimated empirical transition matrix P̂ (st+1|st) =
∑

it
ϖϑ(it|st)P̂ (st+1|st, it)

7: while episode not over do

8: Sample an action at ∼
∑

it
ϖϑ(it|st)νθ(at|st, it) based on current state st, execute

at, and get new state st+1 and reward rt

9: Store (st, at, rt) in experience replay buffer D.

10: Sample a sequence of N transitions (s1:N , a1:N , r1:N) from replay buffer.

11: Compute the target value yt for each transition (st, at, rt) by solving the inner

problem using equation (4.29).

12: Update the critic by minimizing the loss: L = 1
N

∑
t(yt −Qω(st, at))

2.

13: Update the actor by using the policy gradient in theorem 4.4.3:

∇θJ = − 1

N

N∑
t=1

γt∇θ log νθ(at|st, it)h(st, at, it), (4.30)

where h(st, at, it) = r(st, at) +
∑

s′∈S P (s′|st, it)ξ∗(it, s′)
[
γV (s′) + λ∗,P

]
.

14: end while

15: end for
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4.6.1 Data

Real-world Data

We utilized real-world data in the form of Apple Inc. stock prices from the U.S. mar-

ket, sourced from Yahoo Finance. This dataset spans a decade and encompasses opening,

highest, lowest, and closing prices (OHLC). Given Apple’s standing as one of the world’s

most lucrative and influential companies, its stock prices, which can significantly influence

the overall stock market, are closely monitored by investors and analysts. Hence, this dataset

is frequently employed in financial research and analysis. By analyzing this dataset, we can

gain deeper insights into the role of covert regimes in decision-making.

Simulated Data

In addition to real-world data, we used simulated data to explore the variation in stock

prices under differing levels of volatility. We produced a decade’s worth of data, including the

opening, highest, lowest, and closing prices. A Geometric Brownian Motion (GBM) model

was deployed to simulate the stock prices. Due to its capacity to reflect the unpredictability

and volatility of stock prices, the GBM model is commonly applied in financial modeling.

In our simulation, we modified the parameters of the GBM model to generate stock prices

exhibiting varying degrees of volatility. Specifically, we generated two sets of simulated data

with annual volatilities of 1.5% and 15%, representing low and high volatility scenarios,

respectively. These simulated datasets were then employed to validate our analytical models

and assess their performance under diverse market conditions.

4.6.2 Problem Formulation

For this experiment, we consider the individual asset that consists of the opening, highest,

lowest, and closing prices at each time. The closing price is particularly critical in the stock

market. As the final price at which a stock is traded during regular trading hours, it’s widely

utilized in calculating various stock market indicators such as the price-to-earnings ratio and

the dividend yield. Given its extensive application in stock market analysis, we’ve selected
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the closing price to represent asset prices in our study.

State

For the t-th trading period, the agent observes the history of the closing prices from

vct−(m+1) to vct , that is {vct−(m+1), v
c
t−m, ..., v

c
t}, and m represents the window size. In each

trading period, these observations need to be transformed into a finite state, st ∈ S . In this

context, S denotes the finite state space. To characterize the state st at the t-th trading

period, we use the ratio of the current closing price to the previous closing price. This

is expressed as { vct−m

vc
t−(m+1)

, ...,
vct
vct−1
}. To discretize these continuous variables, we employ the

Equal-Frequency Discretization method, which we described in section 4.5. This method

divides the range of a continuous variable into N intervals, each containing an equal number

of observations. The boundaries of these intervals are dictated by the quantiles of the variable

in question, while the user determines the number of intervals, N . At each time t, the finite

state st is a vector of length m and each element of the vector is the least upper bound of

the corresponding interval. In our experiment, we set both N and m to 5.

Action and Reward

At this juncture, the agent can select action at from the finite action space, denoted as A.

To simplify the computation, we define the finite action space as A = {0, 0.5, 1}, symbolizing

actions of holding all cash, maintaining half of the assets and half cash, and holding all assets,

respectively. Upon selecting an action at, the agent receives a reward rt. We assume pt is

the portfolio value at time t. Therefore, the reward function rt can be defined as follows: In

this experiment, the reward function rt accounts for the transaction cost and is defined as

follows:

rt = log
pt
pt−1

= log((1− Ct)
vct
vct−1

· at−1),

where Ct is the transaction cost in t-th trading period, and at−1 is portfolio allocation at

beginning of the t-th trading period. The transaction cost Ct is defined as follows:

Ct = c
∣∣∣at − at−1

∣∣∣,
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where c is the transaction cost rate. For a more comprehensive understanding of the problem

settings, please refer to M. Wang and Ku (2022).

4.6.3 The Results

Our approach was assessed through a series of experiments which explored models as-

suming no hidden regimes, as well as two and three hidden regimes in the financial market.

For the real-world data, a Hidden Markov Model (HMM) was utilized to discern the hidden

regimes in the financial market. Subsequently, a neural network was used to estimate the

probability of these hidden regimes based on a series of closing prices. To identify the regimes

in the financial market, we used an equivalent period of historical S&P 500 SPY ETF OHLC

data, recognized broadly as an indicator of the United States’ overall economic health and

investor confidence in the stock market. Applying the HMM model to this dataset allowed

us to evaluate the hidden regimes in the market and use the resultant labels as ground

truth for training our neural network classifier. For each simulated dataset, we leveraged

a sequence of closing prices from the GBM model to evaluate the hidden regimes in the

financial market. This enabled us to assess the robustness and effectiveness of our approach

under different levels of market volatility. By appraising our approach on both simulated and

real-world datasets, we can assess its effectiveness in accurately predicting hidden regimes

and making more informed investment decisions based on anticipated market trends. Due

to computational constraints, in our experiment, we limited our consideration to an action

space consisting of only three actions: holding all, holding half, and not holding any. This

restriction allowed us to focus on the core components of our approach while managing com-

putational resources effectively. Despite this limitation, our experiments demonstrate that

our approach is adaptable and can be used with different action spaces, providing flexibility

for different investment strategies.

4.6.3.1 The Experimental Results for Real-world Data

Figure 4.2 illustrates the worst-case performance (α = 0.05) of real-world data Apple

Inc. with 5-day window size. In examining the real-world dataset (AAPL), we recommend
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exploring models with different numbers of hidden regimes and evaluating their performance

under the worst-case scenarios. As shown in Figure 4.2, we have found that no single model

consistently outperforms the others. In the early period, the model with two hidden regimes

demonstrated superior performance in the worst-case scenario. However, in the later period,

the model with three hidden regimes outshined the rest under the worst-case scenario. Ad-

ditionally, we observed that the model with three hidden regimes yielded the highest Sharpe

ratio, while the model without hidden regimes produced the second-highest Sharpe ratio. In

general, models that integrate hidden regimes can significantly enhance the performance of

robustness, and also can be efficient to formulate for the worst-case scenario. Nevertheless,

the optimal number of hidden regimes may fluctuate based on the dataset and the problem at

hand. For more details on the performance for real-world data Apple, please refer to Figures

C.1- C.3 in the Appendix.

Figure 4.2: The performance of AAPL with different hidden regimes
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4.6.3.2 The Experimental Results for Simulated Data

We generate two datasets using the Geometric Bowinan Motion (GBM) model, which

have the same expected value but exhibit different volatility. The first dataset is referred

to as BCKCXA, the second as BCKCX. BCKCXA has an annual volatility of 1.5%, while

BCKCX has a volatility of 15%. Assuming that the financial market possesses two or three

hidden regimes, we are able to detect these hidden regimes by applying the HMM model.

The closing prices along with hidden regimes of BCKCXA and BCKCX are portrayed in

Figures C.4-C.9 in the Appendix C.

Figure 4.3 and Figure 4.4 show the performance of the worst-case (α = 5%) for BCKCXA

and BCKCX respectively, each with a 5-day window size. Figure 4.3 demonstrates that in

a dataset with lower volatility, the model with three hidden regimes outperforms both the

model with two hidden regimes and the model without any hidden regime. Furthermore,

the model with two hidden regimes also performs better than the model without any hidden

regime. Figure 4.4 demonstrates that, in a dataset with high volatility, the model with three

hidden regimes outperforms both the model with two hidden regimes and the model without

any hidden regime. Moreover, the model with two hidden regimes also outperforms the model

without any hidden regime.

Table 4.2 presents outlines the performance of different models that are tested. The

models are compared on the basis of their rate of return, maximum drawdown(MDD), and

Sharpe ratio. Three underlying funds, AAPL, BCKCX, and BCKCXA, are evaluated under

three conditions: with two hidden regimes, with three hidden regimes, and without hidden

regimes. For AAPL, the model with three hidden regimes outclasses the other models in terms

of rate of return and Sharpe ratio. Similarly, for BCKCX, the model incorporating three

hidden regimes surpasses its counterparts in respect to the rate of return and Sharpe ratio.

Concerning BCKCXA, the model equipped with three hidden regimes outperforms the other

models in terms of rate of return, MDD, and Sharpe ratio. Comparatively, these outcomes

emphasize that the integration of hidden regimes can significantly augment the robustness

of a model, concurrently enhancing its performance even in the worst-case scenario.

These findings underscore that incorporating the hidden regimes of the financial market
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can significantly enhance a model’s ability to capture complex patterns in the worst-case

scenario. By integrating financial market information, the model’s robustness can be en-

hanced. However, it is essential to note that the optimal number of hidden regimes may

vary depending on the specific dataset and problem. Incorporating an excessive number of

hidden regimes may cause overfitting, while employing too few may result in a model that

oversimplifies, failing to capture significant patterns within the data. Therefore, it is crucial

to carefully evaluate the performance of different model architectures and choose the one that

best fits the specific task. In this study, we faced computational limitations that prevented

us from exploring models with more than three hidden regimes. As such, we only conducted

experiments on the models with two and three hidden regimes. Despite computational limi-

tations, comparing the performance of models with two and three hidden regimes effectively

illustrates the benefits of integrating market hidden regimes. This integration enhances the

model’s robustness and performance, particularly under worst-case scenarios.

Figure 4.3: The performance of BCKCXA with different hidden regimes
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Figure 4.4: The performance of BCKCX with different hidden regimes

Table 4.2: Model Comparison

Fund Rate of Return MDD Sharp Ratio

AAPL (2hr1) 1532.31% -12.28% 1.1106

AAPL (3hr2) 1660.16% -12.28% 1.1454

AAPL (whr3) 1629.36% -12.28% 1.138

BCKCX (2hr1) 6569.09% -24.03% 0.7647

BCKCX (3hr2) 11187.10% -13.08% 1.0363

BCKCX (whr3) 1795.12% -18.95% 0.6614

BCKCXA (2hr1) 256.99% -2.64% 1.4619

BCKCXA (3hr2) 512.75% -2.44% 2.1063

BCKCXA (whr3) 32.18% -2.52% 0.4133

1 2hr: two hidden regimes

2 3hr: three hidden regimes

3 whr: without hidden regime
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4.7 Conclusion

This study has explored the application of sequential decision models to portfolio man-

agement problems, an area characteristically filled with uncertainties owing to the capricious

nature of financial markets and macroeconomics. Given the limited information available

about immediate rewards and resulting future states for each decision, the accuracy of tran-

sition probabilities estimated from financial data cannot always be guaranteed, which may

lead to significant deterioration in policy performance in practical scenarios.

In response to these challenges, we proposed an innovative approach that integrates hidden

regime rules into a Markov Decision Process (MDP) framework for finite and infinite horizon

problems with a finite state and action space. This integration empowers decision-makers

to take into account the hidden regimes of the financial market and make more informed

decisions in the face of uncertainty. One of the distinguishing features of this setting is

its ability to model the uncertainty over transition probabilities, contingent on the current

state and the hidden regime of the financial market, further enhancing the robustness and

adaptability of our approach.

In this research, we construct a robust dynamic programming framework that incorpo-

rates hidden regimes, applicable to both finite and infinite horizon problems. This was ap-

proached in two different ways. From the perspective of stochastic control, we demonstrate

that fundamental results within dynamic programming (DP) theory are naturally derived

when the rectangularity assumption is satisfied. On the other hand, from the standpoint

of reinforcement learning, we propose an innovative algorithm. This algorithm takes into

account a coherent risk measure along with the risk envelope of transition probabilities that

include hidden regimes. The primary aim of this algorithm is to address the portfolio man-

agement problem. This dual perspective approach provides a comprehensive understanding

of the dynamics and allows us to tackle the problem from multiple angles. It not only shows

the robustness of the dynamic programming framework when incorporating hidden regimes,

but also illustrates the adaptability and effectiveness of reinforcement learning algorithms in

managing portfolio risk in uncertain environments. This study signifies an important step

towards more robust and efficient decision-making models in the face of financial market
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uncertainties.

However, our work is far from complete. Future work could extend to a continuous (large-

scale) state and action space. This would allow our models and algorithms to maintain

their robustness and efficiency in larger scale and more complex systems, providing a more

comprehensive solution to tackle uncertainties in financial markets. More specifically, the

method to maintain and expand the robustness of our dynamic programming framework in

large-scale state and action spaces, and how to improve and extend our reinforcement learning

algorithms to manage and adapt to risks in various financial environments more effectively can

be explored. We look forward to pushing our research to a new level through these extensions

and improvements, playing a more significant role in future financial decision-making.
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5 Conclusions and Future Work

In this dissertation, we have delved into the complexities of sequential decision-making in

the realm of financial management, with a particular focus on portfolio management. We have

explored the challenges posed by hidden regimes and the uncertainties inherent in financial

markets, and proposed robust and risk-sensitive strategies to navigate these complexities.

We have presented two novel risk-sensitive portfolio management strategies in Chapter

2, utilizing reinforcement learning techniques to construct risk-sensitive policies that pro-

tect investors from significant losses. Our empirical experiments on real-world data have

demonstrated the effectiveness of these approaches.

Chapter 3 discussed a dynamic scenario of purchasing life insurance and investing in a

fluctuating financial market. We suggested robust optimal strategies for life insurance and

investment-consumption under regime-switching alpha-ambiguity utility framework, offering

a sophisticated approach to wealth and income management over an unpredictable lifetime.

Chapter 4 integrated hidden regimes into the Markov Decision Process, addressing the

robust and risk-sensitive MDP problem from both reinforcement learning and stochastic

control perspectives. We modeled uncertainty over transition probabilities using the current

state and the financial market’s hidden regimes, constructing robust and risk-sensitive policies

from two different ways.

Through this research, we have made significant contributions to the expanding body of

knowledge on financial decision-making, particularly in integrating Markov decision process

with hidden regimes. We posit that our work contributes significantly to the contemporary

discourse on financial decision-making by providing actionable strategies for navigating the

intricate dynamics of financial markets. Future studies will continue to refine our under-

standing of these complex mechanisms and explore additional ways to enhance robustness
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in uncertain environments. This includes the development of more sophisticated models for

continuous state and action space, the examination of larger datasets to validate our findings,

and the application of advanced algorithms to better capture the underlying dynamics of the

financial markets. In a world characterized by growing financial complexities and uncertain-

ties, we believe that the evolution of robust decision-making frameworks is critical. Hence,

our research agenda will remain focused on exploring and creating novel methodologies that

offer improved risk management while maintaining robustness against the capricious nature

of financial markets. We look forward to shedding more light on how to better manage risk

and make decisions that are robust in the face of uncertainty and ambiguity.
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A Appendix

A.1 Convergence Property of Our Distributional DDPG Model

Let us make use of the probability space (Ω,F , P ) and view value distributions as random

vectors with finite moments in RS×A as usual in the distributional RL model. Consider the

process Zk+1 := T µZk starting with some Z0. The distributional Bellman operator T µ

is a contraction mapping whose unique fixed point is the random return Zµ using the 2-

Wasserstein distance. Then, the sequence {Zk} converges to Zµ in distribution. However,

this does not necessarily mean pointwise convergence of the sequence {Zk} to Zµ. Bellemare

et al. (2017) mention that all moments also converge, in particular E[Zk] converges, but one

cannot directly use the Wasserstein metric to get the variance convergence.

Let Qk and Vk be the mean and variance of Zk. Then we have the following convergence

results for the proposed distributional DDPG model.

Lemma A.1.1 For the sequences of mean and variance of Zk, the following inequalities hold

for k = 1, 2, ...

||Qk+1 −Qk||∞ ≤ γ||Qk −Qk−1||∞,

||Vk+1 − Vk||∞ ≤ γ2||Vk − Vk−1||∞,

where γ is the discount factor.
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Proof. Since Qk+1 = E[Zk+1] = E[T µZk], we have

||Qk+1 −Qk||∞ = ||E[T µZk]− E[T µZk−1]||∞

= sup
s,a

γ|E[P µZk(s, a)]− E[P µZk−1(s, a)]|

= sup
s,a

γ|E[Zk(s′, a′)]− E[Zk−1(s
′, a′)]| (s′ ∼ p(·|s, a), a′ ∼ µ(·|s))

≤ sup
s′,a′

γ|E[Zk(s′, a′)]− E[Zk−1(s
′, a′)]|

= γ||E[Zk]− E[Zk−1]||∞ = γ||Qk −Qk−1||∞.

Also, since r(s, a) and P µZk(s, a) are independent, we get

||Vk+1 − Vk||∞ = ||Var(T µZk)− Var(T µZk−1)||∞

= sup
s,a

γ2|Var(P µZk(s, a))− Var(P µZk−1(s, a))|

≤ sup
s′,a′

γ2|Var(Zk(s′, a′))− Var(Zk−1(s
′, a′))|

= γ2||Var(Zk)− Var(Zk−1)||∞ = γ2||Vk − Vk−1||∞.

This completes the proof.

Lemma A.1.2 With the discount factor γ < 1, {Qk} and {Vk} are Cauchy sequences in

L∞.

Proof. We need to show that for every positive ϵ > 0, there is a positive integer N such that

for every m,n > N , ||Vm−Vn||∞ < ϵ. Without loss of generality, we assume ||V1−V0||∞ ≤ 1.

By Lemma A.1.1, we have

||V2 − V1||∞ ≤ γ2, ||V3 − V2||∞ ≤ γ4, · · · , ||Vk+1 − Vk||∞ ≤ γ2k.
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Also, for m > n,

||Vm − Vn||∞ ≤ ||Vm − Vm−1||∞ + · · ·+ ||Vn+1 − Vn||∞

≤ γ2(m−1) + · · ·+ γ2n =
(1− γ2(m−n))

1− γ2
γ2n

≤ (
1

1− γ2
)γ2n.

Therefore, we can find a large N such that γ2N < ϵ(1 − γ2) for every given ϵ > 0. The

result for sequence {Qk} can be obtained by following essentially the same steps. The proof

is completed.

Theorem A.1.1 The sequences of {Qk} and {Vk} converge pointwise to their limits in the

critic network for policy evaluation.

Proof. By combining the fact that every Cauchy sequence converges in L∞ to the limit

and Lemma A.1.2, we conclude that the limits of {Qk} and {Vk} exist and the sequences

converge in L∞. This implies that the convergence takes place for all sample transitions by

repeated applications of the distributional Bellman operator T µ. This completes the proof.
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A.2 Experimental Results and Parameters Settings

Figure A.1: The portfolio values of classical DDPG with different window sizes during the

training period
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Figure A.2: The portfolio values of classical DDPG with different window sizes during the

testing period
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Figure A.3: The price movements of each stock and portfolio values of Hierarchical DDPG

with window size of ten-day and CVaR constraint C = 5%.

Table A.1: Hyperparameters of our proposed model

Parameter DDPG Distributional DDPG Hierarchical DDPG

batch size 64 32 64
steps 128 128 128
episode 3000 5000 5000
trading period 1 day 1 day 1 day
learning rate of actor 10−5 10−5 10−5

learning rate of critic 10−4 10−4 10−4

regularization rate 0.001 0.001 0.001
discount rate 0.99 0.99 0.99
memory size 106 106 106

number of layer of actor 5 4 5
number of layer of critic 4 5 4
activition funntion of actor Relu Relu Relu
activition function of critic Relu Relu, Softplus Relu
training set portion 0.8 0.8 0.8
test set portion 0.2 0.2 0.2
commision rate 0.25% 0.25% 0.25%

See Figures A.1-A.3 and Table A.1.
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B Appendix

B.1 Proof of Theorem 3.3.1

Proof. Denote by (θ∗, ϕ∗
ij) and (θ

∗
, ϕ∗

ij) the candidate distortion processes corresponding

to the worst-case measure and candidate best-case measure, which are determined by the

inner infimum and supremum parts in the HJB equation (3.12), respectively. By using the

first-order condition to equation (3.12) with respect to θ and ϕij for the worst-case scenario

and the best-case scenario, we obtain the following equations:

π2σ2
iw

2Vw +
θσiπw

Ψ(t, w, ei)
= 0, (B.1)

π2σ2
iw

2Vw −
θσiπw

Ψ(t, w, ei)
= 0,

qij log(ϕij)

Ψ(t, w, ei)
+ qij

[
V (t, w, ej)− V (t, w, ei)

]
= 0,

qij log(ϕij)

Ψ(t, w, ei)
− qij

[
V (t, w, ej)− V (t, w, ei)

]
= 0. (B.2)

Plugging (3.13) and solving (B.1) and (B.2) lead to


θ∗(t) = −µi−r

σi

βi
γ−[α̂i−α]βi ,

ϕ∗
ij(t) = exp

{
βi
1−γ

[
1− f(t,ej)

f(t,ei)

]}
,

138



and 
θ
∗
(t) = µi−r

σi

βi
γ−[α̂i−α]βi ,

ϕ∗
ij(t) = exp

{
− βi

1−γ

[
1− f(t,ej)

f(t,ei)

]}
.

Similarly, the robust optimal strategy can be also determined by applying the first-order

condition, and is given by
π∗(t) = µi−r

σ2
i

−Vw
w[Vww+[α̂i−αi]ΨV 2

w]
,

c∗(t) = V
− 1

γ
w ,

p∗(t) = [ξiλ(t)]
1
γ V

− 1
γ

w η1−
1
γ (t)− wη(t).

(B.3)

Substituting the value function (3.13) into (B.3), we obtain the robust optimal strategy as

follows:



π∗(t) = µi−r
σ2
i

w+g(t)

w
[
γ−[α̂i−αi]βi

] ,
c∗(t) = f− 1

γ (t, ei)[w + g(t)],

p∗(t) = [ξiλ(t)]
1
γ f− 1

γ (t, ei)η
1− 1

γ (t)[w + g(t)]− wη(t).

By substituting the established expressions of θ∗(t), θ
∗
(t), ϕ∗

ij(t), ϕ
∗
ij(t), π

∗(t), c∗(t), and

p∗(t) back to the HJB equation (3.12), we obtain that f(t, ei) satisfies the ODE system (3.17),

for each ei ∈ E and g(t) is given by (3.18). This completes the proof.

B.2 Proof of Theorem 3.3.2

Proof. To prove that the ODE system (3.17) admits a unique solution f(t, ei), we first

show that the solution f(t, ei), if exists, is bounded and strictly positive.
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Rearranging (3.17) gives

df(t, ei)

dt
+
[
1 + ξ

1
γ

i λ
1
γ (t)η1−

1
γ (t)

]
γf 1− 1

γ (t, ei) +
1− γ
βi

[
αi

N∑
j=1,j ̸=i

qij

(
ϕ∗
ij(t) log ϕ

∗
ij(t)− ϕ∗

ij(t) + 1
)

− α̂i
N∑

j=1,j ̸=i

qij

(
ϕ∗
ij(t) log ϕ

∗
ij(t)− ϕ∗

ij(t) + 1
)]
f(t, ei) +

N∑
j=1,j ̸=i

qijf(t, ej)
[
αiϕ

∗
ij(t) + α̂iϕ∗

ij(t)
]

+ qiif(t, ei)
[
αiϕ

∗
ii(t) + α̂iϕ∗

ii(t)
]
− bi(t)f(t, ei) = 0.

(B.4)

Define the function H
(
t, ϕ∗

ij(t), ϕ
∗
ij(t)

)
as follows:

H
(
t, ϕ∗

ij(t), ϕ
∗
ij(t)

)
:=− bi(t) +

1− γ
βi

{
αi

N∑
j=1,j ̸=i

qij

(
ϕ∗
ij(t) log ϕ

∗
ij(t)− ϕ∗

ij(t) + 1
)

− α̂i
N∑

j=1,j ̸=i

qij

(
ϕ∗
ij(t) log ϕ

∗
ij(t)− ϕ∗

ij(t) + 1
)}

+ qii

[
αiϕ

∗
ii(t) + α̂iϕ∗

ii(t)
]
.

Equation (B.4) can be rewritten as:

df(t, ei)

dt
+
[
1 + ξ

1
γ

i λ
1
γ (t)η1−

1
γ (t)

]
γf 1− 1

γ (t, ei)+
N∑

j=1,j ̸=i

qijf(t, ej)
[
αiϕ

∗
ij(t) + α̂iϕ∗

ij(t)
]

+H
(
t, ϕ∗

ij(t), ϕ
∗
ij(t)

)
f(t, ei) = 0,

(B.5)

which immediately leads to the following representation:

f(t, ei) = e
∫ T
t H
(
u,ϕ∗ij(u),ϕ

∗
ij(u)
)
du

+

∫ T

t

e
∫ s
t H
(
u,ϕ∗ij(u),ϕ

∗
ij(u)
)
du

{[
1 + ξ

1
γ

i λ
1
γ (s)η1−

1
γ (s)

]
γf 1− 1

γ (s, ei)

+
N∑

j=1,j ̸=i

qijf(s, ej)
[
αiϕ

∗
ij(s) + α̂iϕ∗

ij(s)
]}

ds.

(B.6)

Define ti0:= sup{t ∈ [0, T ]|f(t, ei) ≤ 0}, for all i = 1, 2, . . . , N , and t0 := t10 ∨ t20 ∨ · · · ∨ tN0 .

As we know sup ∅ = −∞, then the range of t0 is {−∞} ∪ [0, T ]. From f(T, ei) = ζi > 0,

and the definition of t0, we have that f(v, ei) > 0, for each v ∈ (t0, T ] and i = 1, 2, . . . , N .
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Furthermore since qij > 0, for j ̸= i, γ > 0, ϕ∗
ij(t) ≥ 0 and ϕ∗

ij(t) ≥ 0 for any t ∈ [0, T ],

respectively, we have

[
1 + ξ

1
γ

i λ
1
γ (s)η1−

1
γ (s)

]
γf 1− 1

γ (s, ei) +
N∑

j=1,j ̸=i

qijf(s, ej)
[
αiϕ

∗
ij(s) + α̂iϕ∗

ij(s)
]
> 0, (B.7)

for any s ∈ (t0, T ].

On the other hand, from the expressions of ϕ∗
ij(t) and ϕ

∗
ij(t) in Theorem 3.3.1, we have

that for any t ∈ (t0, T ],
0 ≤ ϕ∗

ij(t) ≤ e
βi

1−γ , for 0 < γ < 1,

0 ≤ ϕ∗
ij(t) ≤ e

− βi
1−γ

f(t,ej)

f(t,ei) , for γ > 1,

and 
0 ≤ ϕ∗

ij(t) ≤ e
βi

1−γ

f(t,ej)

f(t,ei) , for 0 < γ < 1,

0 ≤ ϕ∗
ij(t) ≤ e−

βi
1−γ , for γ > 1.

Thus, we can see that ϕ∗
ij(t) and ϕ∗

ij(t) are bounded if we can show the function f(t, ei) is

bounded from above for any t ∈ (t0, T ] and i = 1, 2, ..., N , which will verified momentarily.

Moreover, it is obvious that ϕ∗
ij(t) log ϕ

∗
ij(t) → 0 when ϕ∗

ij(t) → 0. Then, combining the

boundedness of market coefficients and the above properties of ϕ∗
ij(t) and ϕ

∗
ij(t) guarantees

that the continuous function H
(
t, ϕ∗

ij(t), ϕ
∗
ij(t)

)
is bounded, for any t ∈ (t0, T ]. Therefore,

there must exist a lower boundH such thatH
(
t, ϕ∗

ij(t), ϕ
∗
ij(t)

)
≥ H > −∞, for any t ∈ (t0, T ].

Setting t = t0 on both sides of equation (B.6) yields that

0 ≥ f(t0, ei) = e
∫ T
t0

H(u,ϕ∗ij(u),ϕ
∗
ij(u))du +

∫ T

t0

e
∫ s
t0

H(u,ϕ∗ij(u),ϕ
∗
ij(u))du

{[
1 + ξ

1
γ

i λ
1
γ (s)η1−

1
γ (s)

]
γf 1− 1

γ (s, ei)

+
N∑

j=1,j ̸=i

qijf(s, ej)
[
αiϕ

∗
ij(s) + α̂iϕ∗

ij(s)
]}

ds > 0.

This is a contradiction. Therefore, f(t, ei) is positive, for any t ∈ [0, T ] and i = 1, 2, ..., N .
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Next, we show f(t, ei) is strictly positive and bounded. We first find a lower bound f > 0

such that f(t, ei) ≥ f . Since[
1 + ξ

1
γ

i λ
1
γ (t)η1−

1
γ (t)

]
γf 1− 1

γ (t, ei) +
N∑

j=1,j ̸=i

qijf(t, ej)
[
αiϕ

∗
ij(t) + α̂iϕ∗

ij(t)
]
> 0,

we have

f(t, ei) = e
∫ T
t H
(
u,ϕ∗ij(u),ϕ

∗
ij(u)
)
du

+

∫ T

t

e
∫ s
t H
(
u,ϕ∗ij(u),ϕ

∗
ij(u)
)
du

{[
1 + ξ

1
γ

i λ
1
γ (s)η1−

1
γ (s)

]
γf 1− 1

γ (s, ei)

+
N∑

j=1,j ̸=i

qijf(s, ej)
[
αiϕ

∗
ij(s) + α̂iϕ∗

ij(s)
]}

ds > e
∫ T
t H
(
u,ϕ∗ij(u),ϕ

∗
ij(u)
)
du
.

As derived previously, ϕ∗
ij(t), ϕ

∗
ij(t), and H

(
t, ϕ∗

ij(t), ϕ
∗
ij(t)

)
are always bounded for any t ∈

[0, T ]. Therefore, we can find a positive constant f such that f(t, ei) ≥ f , that is, f(t, ei) is

strictly positive.

Now, we are in a position to show f(t, ei) is bounded from above. To that end, we derive

f(t, ei) = e
∫ T
t H
(
u,ϕ∗ij(u),ϕ

∗
ij(u)
)
du

+

∫ T

t

e
∫ s
t H
(
u,ϕ∗ij(u),ϕ

∗
ij(u)
)
du

{[
1 + ξ

1
γ

i λ
1
γ (s)η1−

1
γ (s)

]
γf 1− 1

γ (s, ei)

+
N∑

j=1,j ̸=i

qijf(s, ej)
[
α(s)ϕ∗

ij(s) + α̂(s)ϕ∗
ij(s)

]}
ds

≤ e
∫ T
t H
(
u,ϕ∗ij(u),ϕ

∗
ij(u)
)
du

+

∫ T

t

e
∫ s
t H
(
u,ϕ∗ij(u),ϕ

∗
ij(u)
)
du

{
C
[
1 + ξ

1
γ

i λ
1
γ (s)η1−

1
γ (s)

]
γf(s, ei)

+
N∑

j=1,j ̸=i

qijf(s, ej)
[
α(s)ϕ∗

ij(s) + α̂(s)ϕ∗
ij(s)

]}
ds

≤ C

{
1 +

N∑
j=1

∫ T

t

f(s, ej)ds

}
,

(B.8)

where C is a positive constant, depending on the lower bound f , and varies from line to line.

Thus, summing up (B.8) from i = 1 to i = N and denoting fS(t) :=
∑N

i=1 f(t, ei), we

have

fS(t) ≤ C ·N
{
1 +

∫ T

t

fS(s)ds

}
.
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An application of Grönwall’s inequality yields an upper bound f on fS(t), that is, fS(t) ≤

f for each t ∈ T . Since f(t, ei) > 0 for each ei ∈ E, f(t, ei) is also bounded for each ei ∈ E

and t ∈ T . Indeed,

f(t, ei) = fS(t)−
N∑

j=1,j ̸=i

fS(t, ej) ≤ f.

Combining the above derivation, we can conclude that there exists two positive constants

f and f such that f(t, ei) ∈ [f, f ] and t ∈ T . It suffices to consider the existence and

uniqueness of a solution f(t, ei) within the established lower bound and upper bound.

For that purpose, we consider the Banach space C([0, T ]; [f, f ]) and rewrite equation

(3.17) as

df(t, ei)

dt
= Γ(t, f),

where

Γ(t, f) :=−
[
1 + ξ

1
γ

i λ
1
γ (t)η1−

1
γ (t)

]
γf 1− 1

γ (t, ei)−H
(
t, ϕ∗

ij(t), ϕ
∗
ij(t)

)
f(t, ei)

−
N∑

j=1,j ̸=i

qijf(t, ej)
[
αiϕ

∗
ij(t) + α̂iϕ∗

ij(t)
]
.

Taking the first-order derivatives of Γ(t, f) with respect to f , we get:

∂

∂f
Γ(t, f) =− 1− γ

βi

{
αi

[ N∑
j=1,j ̸=i

qij

(
ϕ∗
ij(t) log ϕ

∗
ij(t)− ϕ∗

ij(t) + 1
)
+

N∑
j=1,j ̸=i

qij log ϕ
∗
ij(t)

∂ϕ∗
ij(t)

∂f

]}

+
1− γ
βi

{
α̂i

[ N∑
j=1,j ̸=i

qij

(
ϕ∗
ij(t) log ϕ

∗
ij(t)− ϕ∗

ij(t) + 1
)
+

N∑
j=1,j ̸=i

qij log ϕ∗
ij(t)

∂ϕ∗
ij(t)

∂f

]}

−
{(

αi
∂ϕ∗

ij(t)

∂f
+ α̂i

∂ϕ∗
ij(t)

∂f

) N∑
j=1,j ̸=i

qijf(t, ej) + qii

[
αiϕ

∗
ii(t) + α̂iϕ∗

ii(t)
]}

+ bi(t)

+
[
1 + ξ

1
γ

i λ
1
γ (t)η1−

1
γ (t)

]
(1− γ)f− 1

γ (t, ei),

where

∂ϕ∗
ij(t)

∂f
= ϕ∗

ij(t)×
βi

(1− γ)
f(t, ej)

f 2(t, ei)
and

∂ϕ∗
ij(t)

∂f
= −ϕ∗

ij(t)×
βi

(1− γ)
f(t, ej)

f 2(t, ei)
.
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From the above equations, we obtain that the function Γ(t, f) is differentiable and continuous

with respect to f . Since the market coefficients, ϕ∗
ij(t), ϕ

∗
ij(t), and f(t, ei) are bounded, the

partial derivative ∂
∂f
Γ(t, f) is also bounded. Thus, Γ(t, f) satisfies the Lipschitz condition

over [f, f ] for t ∈ T . Applying the mean-value theorem for any f1, f2 ∈ [f, f ] , we obtain

that there exists a constant L such that

|Γ(t, f1)− Γ(t, f2)| ≤ L|f1 − f2|.

Using the Banach fixed point theorem, we have that (B.5) admits a unique solution on

C([0, T ]; [f, f ]). This completes the proof.

B.3 Proof of Theorem 3.3.3

Proof. We define the cost function C(s, t; π, c, p; θ, ϕ) as

C(s, t; π, c, p; θ, ϕ) := e−
∫ s
t δ(v)dvF̄ (s, t)V (s,W (s),X (s))

+

{∫ s

t

F̄ (u, t)α(u)e−
∫ u
t δ(v)dv

[
U(c(u)) + ψ(u) + λ(u)ξ(u)U(Z(u))

]
du

}
+

{∫ s

t

F̄ (u, t)α̂(u)e−
∫ u
t δ(v)dv

[
U(c(u))− ψ(u) + λ(u)ξ(u)U(Z(u))

]
du

}
,

where V (t, w, ei) satisfies the HJB equation (3.12). Applying Itô’s formula to C(s, t; π, c, p; θ, ϕ)

with respect to s, we derive that

dC(s, t; π, c, p; θ, ϕ) =e−
∫ s
t δ(v)dvF̄ (s, t)

[
M(π,c,p;θ,ϕ)

1 (s, t) +M(π,c,p;θ,ϕ)
2 (s, t)

]
ds

+ e−
∫ s
t δ(v)dvF̄ (s, t)dL (s),

where

M(π,c,p;θ,ϕ)
1 (s, t) := α(s)

[
L(π,c,p;θ,ϕ)V (s,W (s),X (s)) + U(c(s)) + ψ(s) + λ(s)ξ(s)U(Z(s))

]
,
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M(π,c,p;θ,ϕ)
2 (s, t) := α̂(s)

[
L(π,c,p;θ,ϕ)V (s,W (s),X (s)) + U(c(s))− ψ(s) + λ(s)ξ(s)U(Z(s))

]
,

and {L (s)|s ∈ T } is a local martingale (due to the regularity condition 2) satisfying

dL (s) =Vw(s,W (s),X (s))π(s)σ(s)W (s)dBQ(s) +
N∑
j=1

[
V (s,W (s), ej)

− V (s,W (s),X (s−))
]
dK Q

j (s).

Here, for each j = 1, 2, · · · , N , the process K Q
j is a compensated counting process for the

number of jumps of the chain α from all other states into state ej, and with a Q-compensator

associated with Qϕ that is the transition matrix of the chain α under Q.

Therefore, there exists a localizing sequence {kn|n = 1, 2, ...} such that the local martin-

gale {L (s)|s ∈ T } becomes a true martingale. Taking s = T , integrating from t to T ∧ kn,

and conditioning both sides of the above equation on Ft under Q defined by

dQ
dP

∣∣∣∣
FT

=exp

{∫ T

0

θ(t)dB(t)− 1

2

∫ T

0

(θ(t))2dt

}
× exp

{ N∑
i,j=1,i ̸=j

∫ T

0

log ϕij(t)dMij(t)

+
N∑

i,j=1,i ̸=j

∫ T

0

[
ϕij(t) log ϕij(t)− ϕij(t) + 1

]
qij1{X (t−)=ei}dt

}
,

where

θ(t) := α(t)θ(t) + α̂(t)θ(t) (B.9)

and

ϕij(t) := α(t)ϕ
ij
(t) + α̂(t)ϕij(t), (B.10)

we have

EQ
t,w,i

[
C(s ∧ kn, t; π, c, p; θ, ϕ)

]
=V (t, w, ei) + EQ

t,w,i

[ ∫ s∧kn

t

e−
∫ u
t δ(v)dvF̄ (u, t)[M(π,c,p;θ,ϕ)

1 (u, t)

+M(π,c,p;θ,ϕ)
2 (u, t)]du

]
.
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Note that if α(u) = 1 and α̂(u) = 0, thenM(π,c,p;θ,ϕ)

2 (u) = 0; otherwise, if α(u) = 0 and

α̂(u) = 1, thenM(π,c,p;θ,ϕ)
1 (u) = 0. According to Theorem 3.3.1, the functionM(π,c,p;θ,ϕ)

1 (u)

andM(π,c,p;θ,ϕ)
2 (s) may achieve the maximal or minimal value at zero depending on the value

of α(s). The following assertions hold: if α(u) = 1, then

(i) M(π,c,p;θ∗,ϕ∗)

1 (s) ≤ 0, for any (π, c, p) ∈ A, when (θ∗, ϕ∗) is given by (3.16);

(ii) M(π∗,c∗,p∗;θ∗,ϕ∗)

1 (s) = 0, when (π∗, c∗, p∗) and (θ∗, ϕ∗) are given by (3.14) and (3.16),

respectively.

If α̂(s) = 1, then

(i’) M(π,c,p;θ
∗
,ϕ

∗
)

2 (s) ≤ 0, for any (π, c, p) ∈ A, when (θ
∗
, ϕ

∗
) is given by (3.15);

(ii’) M(π∗,c∗,p∗;θ
∗
,ϕ

∗
)

2 (s) = 0, when (π∗, c∗, p∗) and (θ
∗
, ϕ

∗
) is given by (3.14) and (3.15),

respectively.

It follows from Assertions (i) and (i’), respectively, that for any (π, c, p) ∈ A,

EQ
t,w,i

[
C(T ∧ kn, t; π, c, p; θ∗, ϕ∗)

]
= V (t, w, ei) + EQ

t,w,i

[ ∫ T∧kn

t

e−
∫ u
t δ(v)dvF̄ (u, t)[M(π,c,p;θ∗,ϕ∗)

1 (u, t)

+M(π,c,p;θ
∗
,ϕ

∗
)

2 (u, t)]du

]
≤ V (t, w, ei),

Since V (·, ·,X (·)) is uniformly integrable (Regularity Condition 1), and {U(c(t))+ψ(t)+

λ(u)U(Z(t))|t ∈ [0, T ]} and {U(c(t))−ψ(t)+λ(u)U(Z(t))|t ∈ [0, T ]} are also uniformly inte-

grable (Regularity Conditions 2 and 3), applying Lebesgue’s dominated convergence theorem

to the conditional expectation on the left-hand side, we get:

EQ
t,w,i

[
C(T, t; π, c, p; θ∗, ϕ∗)

]
= lim

n→∞
EQ
t,w,i

[
C(T ∧ kn, t; π, c, p; θ∗, ϕ∗)

]
≤ V (t, w, ei).
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Therefore, we get:

inf
(θ,ϕ)∈Θ

EQ
t,w,i

[ ∫ T

t

α(u)e−
∫ u
t δ(v)dv

[
F̄ (u, t)U(c(u)) + F̄ (u, t)ψ(u) + f(u, t)ξ(u)U(Z(u))

]
du

+ α(T )e−
∫ T
t δ(v)dvF̄ (T, t)U(W (T ))

]
+ sup

(θ,ϕ)∈Θ
EQ
t,w,i

[ ∫ T

t

α̂(u)e−
∫ u
t δ(v)dv

[
F̄ (u, t)U(c(u))

− F̄ (u, t)ψ(u) + f(u, t)ξ(u)U(Z(u))
]
du+ α̂(T )e−

∫ T
t δ(v)dvF̄ (T, t)U(W (T ))

]
≤ V (t, w, ei).

Taking supremum with respect to u = (π, c, p) ∈ A, we have

sup
(π,c,p)∈A

{
inf

(θ,ϕ)∈Θ
EQ
t,w,i

[ ∫ T

t

α(u)e−
∫ u
t δ(v)dv

[
F̄ (u, t)U(c(u)) + F̄ (u, t)ψ(u)

+ f(u, t)ξ(u)U(Z(u))
]
du+ α(T )e−

∫ T
t δ(v)dvF̄ (T, t)U(W (T ))

]
+ sup

(θ,ϕ)∈Θ
EQ
t,w,i

[ ∫ T

t

α̂(u)e−
∫ u
t δ(v)dv

[
F̄ (u, t)U(c(u))− F̄ (u, t)ψ(u)

+ f(u, t)ξ(u)U(Z(u))
]
du+ α̂(T )e−

∫ T
t δ(v)dvF̄ (T, t)U(W (T ))

]}
≤ V (t, w, ei).

(B.11)

Similarly, we can derive from Assertions (i) and (i’) and Assertions (ii) and (ii’) that

sup
(π,c,p)∈A

{
inf

(θ,ϕ)∈Θ
EQ
t,w,i

[ ∫ T

t

α(u)e−
∫ u
t δ(v)dv

[
F̄ (u, t)U(c(u)) + F̄ (u, t)ψ(u)

+ f(u, t)ξ(u)U(Z(u))
]
du+ α(T )e−

∫ T
t δ(v)dvF̄ (T, t)U(W (T ))

]
+ sup

(θ,ϕ)∈Θ
EQ
t,w,i

[ ∫ T

t

α̂(u)e−
∫ u
t δ(v)dv

[
F̄ (u, t)U(c(u))− F̄ (u, t)ψ(u)

+ f(u, t)ξ(u)U(Z(u))
]
du+ α̂(T )e−

∫ T
t δ(v)dvF̄ (T, t)U(W (T ))

]}
= V (t, w, ei).

(B.12)

Therefore, combining (B.11) and (B.12), we can conclude that (π∗, c∗, p∗) is the opti-

mal strategy, (θ∗, ϕ∗) and (θ
∗
, ϕ∗) are the worst-case measure and the best-case measure,

respectively. This completes the proof.
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B.4 Technical Proof for Theorem 3.3.4

Proof. For Condition 1, we only verify that {V (t,W (t),X (t))|t ∈ [0, T ]} is uniformly

integrable under the worst-case scenario, and omit the verification of the uniform integrability

of {V (t,W (t),X (t))|t ∈ [0, T ]} under the best-case scenario, since it can be proved similarly.

Under the worst-case scenario, substitute (3.14) and (3.15) into (3.6). Then, we have

d(W (t) + g(t))

W (t) + g(t)
=

{
[µ(t)− r]2

σ2(t)[γ − (1− 2α(t))β(t)]
+ [r + η(t)]− [1 + λ

1
γ (t)]f− 1

γ (t,X (t))

− [µ(t)− r]2β(t)
σ2(t)[γ − (1− 2α(t))β(t)]2

}
dt+

µ(t)− r
σ(t)[γ − (1− 2α(t))β(t)]

dBQ(t).

(B.13)

It is obvious that (B.13) has a unique solution:

W (t) + g(t) =(w0 + g(0)) exp

{∫ t

0

A2(s)B(s) + (r + η(s))− (1 + λ
1
γ (s))f− 1

γ (s,X (s))

− A2(s)B2(s)β(s)− 1

2
A2(s)B2(s)ds+

∫ t

0

A(s)B(s)dBQ(s)

}
,

(B.14)

where

A(t) =
µ(t)− r
σ(t)

and B(t) =
1

γ − [1− 2α(t)]β(t)
.

Insert (B.14) into the candidate value function (3.13). By the boundedness of f(t, ei), g(t),

and other model parameters, we obtain the following for any m ≥ 1:

EQ
[∣∣∣V (t,W (t),X (t))

∣∣∣m] = EQ
[
fm(t, ei)

(W (t) + g(t))m(1−γ)

(1− γ)m

]
≤ K · EQ

[
em(1−γ)

∫ t
0 A(s)B(s)dBQ(s)

]
= K · EQ

[
e

1
2
m2(1−γ)2

∫ t
0 A

2(s)B2(s)ds︸ ︷︷ ︸
bounded

× e−
1
2
m2(1−γ)2

∫ t
0 A

2(s)B2(s)ds+m(1−γ)
∫ t
0 A(s)B(s)dBQ(s)︸ ︷︷ ︸

martingale

]
<∞,

(B.15)
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where K is a positive constant. The above inequalities in equation (B.15) hold, because f(s),

A(s), and B(s) are bounded on [0, T ].

Therefore, choosing m > 1 and taking surpremum of the above equality gives

sup
t∈[0,T ]

EQ
[∣∣∣V (t,W (t),X (t))

∣∣∣m] <∞.
This immediately implies that {V (t,W (t),X (t))|t ∈ [0, T ]} is uniformly integrable under the

worst-case scenario. That is, Condition 1 holds.

For Condition 2, we first show under the worst-case scenario

I(t) := EQ
t,w,i

[
exp

(
1

2

∫ T

0

θ∗(t)2dt+
N∑

i,j=1,i ̸=j

∫ T

0

[ϕ∗
ij(t) log ϕ

∗
ij(t)− ϕ∗

ij(t) + 1]qijdt

)]

= EQ
t,w,i

[
exp

(
1

2

∫ T

0

[µ(t)− r]2β2(t)

σ2(t)[γ − (1− 2α(t))β(t)]2
dt

)]
× EQ

t,w,i

[
exp

( N∑
i,j=1,i ̸=j

∫ T

0

qij

[
e
− β(t)

1−γ

(
1−

f(t,ej)

f(t,ei)

)[
− β(t)

1− γ

(
1− f(t, ej)

f(t, ei)

)]

− e
− β(t)

1−γ

(
1−

f(t,ej)

f(t,ei)

)
+ 1

]
dt

)]
(B.16)

is finite since f(t, ei) is bounded on [0, T ]. Thus, we have I(T ) <∞.

Next, to verify that the {U(c(t)) + ψ(t) + λ(t)U(Z(t))|t ∈ [0, T ]} is uniformly integrable

under the worst-case scenario, we need to show that {U(c(t))|t ∈ [0, T ]}, {ψ(t)|t ∈ [0, T ]}, and

{λ(t)U(Z(t))|t ∈ [0, T ]} are uniformly integrable, respectively. First verifying that {ψ(t)|t ∈

[0, T ]} is uniformly integrable under the worst-case scenario, we show

sup
t∈[0,T ]

EQ[|ψ(t)|2] <∞.
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Insert (π∗, c∗, p∗) and (θ∗(t), ϕ∗
ij(t)) into (3.7). Since (B.16) is finite, we have

sup
t∈[0,T ]

EQ[|ψ(t)|2]
= sup

t∈[0,T ]
EQ
[∣∣∣V (t,W (t),X (t))

∣∣∣2∣∣∣1− γ
β

θ∗(t)2 +
1− γ
β

N∑
i,j=1,j ̸=i

qij

(
ϕ∗
ij(t) log ϕ

∗
ij(t)− ϕ∗

ij(t) + 1
)∣∣∣2]

≤ sup
t∈[0,T ]

EQ
[∣∣∣V (t,W (t),X (t))

∣∣∣4] 1
2

× sup
t∈[0,T ]

EQ
[∣∣∣∣1− γβ θ∗(t)2 +

1− γ
β

N∑
i,j=1,j ̸=i

qij

(
ϕ∗
ij(t) log ϕ

∗
ij(t)− ϕ∗

ij(t) + 1
)∣∣∣∣4] 1

2

<∞.

Next, we verify {U(c(t))|t ∈ [0, T ]} is uniformly integrable under the worst-case scenario.

Substituting (3.14) and (3.16) into sup
t∈[0,T ]

EQ
[
|U(c(t))|2

]
, we have

sup
t∈[0,T ]

EQ[|U(c(t))|2] = sup
t∈[0,T ]

EQ
[∣∣∣[f− 1

γ (t,X (t))(W (t) + g(t))
]1−γ

1− γ

∣∣∣2]
= sup

t∈[0,T ]
EQ
[∣∣∣V (t,W (t),X (t))f− 1

γ (t,X (t))
∣∣∣2]

≤ K · sup
t∈[0,T ]

EQ
[∣∣∣V (t,W (t),X (t))

∣∣∣2] <∞,
since the value function V (t,W (t),X (t)) is uniformly integrable and f(t,X (t)) is bounded

on [0, T ].

Finally, we show that {λ(t)U(Z(t))|t ∈ [0, T ]} is uniformly integrable under the worst-case

scenario. Following the same procedure, inserting (3.14) and (3.16) into sup
t∈[0,T ]

EQ
[
|λ(t)U(Z(t))|2

]
,

we can find

sup
t∈[0,T ]

EQ[|λ(t)U(Z(t))|2] = sup
t∈[0,T ]

EQ
[∣∣∣λ(t)[λ 1

γ (t)f− 1
γ (t,X (t))[W (t) + g(t)]η−

1
γ (t)

]1−γ
1− γ

∣∣∣2]
= sup

t∈[0,T ]
EQ
[∣∣∣λ 1

γ (t)f− 1
γ (t,X (t))η1−

1
γ (t)V (t,W (t),X (t))

∣∣∣2]
≤ K · sup

t∈[0,T ]
EQ
[∣∣∣V (t,W (t),X (t))

∣∣∣2] <∞,
since λ(t) and η(t) are deterministic and bounded on [0, T ]. That is, Condition 2 is true.
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Condition 3, that is, {U(c(t))− ψ(t) + λ(t)U(Z(t))|t ∈ [0, T ]} is uniformly integrable for

the best-case scenario, and can be shown similarly, thus it is omitted here.

To show Condition 4, denote by

L(s) :=
∫ s

t

Vw(u,W (u),X (u))π(u)σ(u)W (u)dBQ(u).

To prove L is a local martingale, we only need to show that

EQ
[ ∫ T

t

V 2
w(s,W (s),X (s))π2(s)σ(s)2W (s)2ds

]
<∞. (B.17)

From (3.13), we have

V 2
w(u,W (u),X (u)) = f 2(u,X (u))(W (u) + g(u))−2γ. (B.18)

Insert W (t) + g(t) and equation (B.18) under the worst-case scenario into (B.17), we have

EQ
[ ∫ T

t

V 2
w(s,W (s),X (s))π2(s)σ(s)2W (s)2ds

]
= EQ

[ ∫ T

t

V 2(s,W (s),X (s))A(s)2B2(s)ds
]
<∞.

Since V (s,W (s),X (s)) is uniformly integrable and A(s), B(s) are bounded on [0, T ],

the above derivations guarantee that L is an (F,Q) local martingale. Similar to the above

procedure to prove the martingale of L under the worst-case scenario, we can show the L is

an (F,Q) local martingale under the best-case scenario. Thus, Condition 4 holds.

So far, Conditions 1-4 have been verified. Therefore, we can conclude that V (t, w, ei)

defined by (3.13) is indeed the corresponding value function of this problem. This completes

the proof.
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C Appendix

Figure C.1: The closing price of AAPL

Figure C.2: Two hidden regimes of AAPL
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Figure C.3: Three hidden regimes of AAPL

Figure C.4: The closing price of BCKCXA
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Figure C.5: Two hidden regimes of BCKCXA

Figure C.6: Three hidden regimes of BCKCXA
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Figure C.7: The closing price of BCKCX

Figure C.8: Two hidden regimes of BCKCX

155



Figure C.9: Three hidden regimes of BCKCX
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