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Abstract 

 

This doctoral research develops and validates experimentally a vision-based 

control scheme for the autonomous capture of a non-cooperative target by 

robotic manipulators for active space debris removal and on-orbit servicing. It 

is focused on the final capture stage by robotic manipulators after the orbital 

rendezvous and proximity maneuver being completed. Two challenges have 

been identified and investigated in this stage: the dynamic estimation of the 

non-cooperative target and the autonomous visual servo robotic control. First, 

an integrated algorithm of photogrammetry and extended Kalman filter is 

proposed for the dynamic estimation of the non-cooperative target because it 

is unknown in advance. To improve the stability and precision of the algorithm, 

the extended Kalman filter is enhanced by dynamically correcting the 

distribution of the process noise of the filter. Second, the concept of incremental 

kinematic control is proposed to avoid the multiple solutions in solving the 

inverse kinematics of robotic manipulators. The proposed target motion 

estimation and visual servo control algorithms are validated experimentally 

by a custom built visual servo manipulator-target system. Electronic hardware 
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for the robotic manipulator and computer software for the visual servo are 

custom designed and developed. The experimental results demonstrate the 

effectiveness and advantages of the proposed vision-based robotic control for 

the autonomous capture of a non-cooperative target. Furthermore, a 

preliminary study is conducted for future extension of the robotic control with 

consideration of flexible joints. 
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Chapter 1 INTRODUCTION AND JUSTIFICATION 

 

Summary: In this chapter, we survey the application of space robotic 

manipulators, justify the research activities, define the research objectives, 

and outline the method of approach. At the end, we outline the layout of this 

dissertation and provide a full list of publications out of the doctoral study. 

 

1.1 Backgrounds 

The first manmade satellite, Sputnik 1, was launched into space by the former 

Soviet Union in 1957 and marked the beginning of the epochal space age. 

Following this significant footstep and along with the fast development of space 

exploration over the past few decades, there have been more and more 

satellites launched into space for navigation, communication, surveillance and 

remote sensing. There are around 6,600 satellites that have been launched into 

earth orbits and nearly a half are still in space [1]. In fact, the total number of 

operational satellites is only 1,381 (till 12/31/2015) [2], which means that 

roughly two thirds of the satellites in space are ‘dead’ and can be labeled as 

space debris. Including the space debris generated by the in-orbit explosions, 
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collisions and other fragmentation events, the total number of the routinely 

tracked large1 space debris by the United States Space Surveillance Network 

is around 23,000 in low Earth orbit (LEO) and geostationary Earth orbit (GEO) 

[3]. The continuously growing population of space debris in orbits poses severe 

threats to the safety of operational satellites as well as the long-term 

sustainability of space activities.  

Over the past few decades, considerable efforts have been devoted to the 

space debris reduction and removal [4-15]. However, according to [4], no 

instance of debris removal has been successfully performed in space yet. In 

order to remediate the space environment, increasing attention of the 

international scientific community is attracted by disposing the whole or 

remnants of ‘dead’ satellites in space as well as extending the lifespan of 

operational satellites. These operations, including capture, installation, 

maintenance and repair work on an orbital object, are the so-called on-orbit 

servicing (OOS), which is an emerging and promising key technique in the 

future of space exploration. 

To satisfy the capture demands for safety, efficiency and automation, 

robotic manipulators are increasingly adopted in OOS missions to perform 

dexterous operations [4]. Till now, robotic manipulators in space have been 

mainly performed in four fields: International Space Station (ISS), Mars 

                                            
1 Larger than 5-10cm in low Earth orbit and 30cm-1m in geostationary Earth orbit. 
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Exploration Rovers (MER), Orbital Docking System (ODS) and Pure 

Experimental System (PES) [16]. The Mobile Servicing System (MSS, or 

Canadarm2) [17], Japanese Experiment Module Remote Manipulator System 

(JEMRMS) [18] and European Robotic Arm (ERA) [19] are typical examples of 

space robotic manipulators performed on ISS. These robotic manipulators are 

mainly for assembly, maintenance, and payload exchange. The operations can 

be conducted autonomously as well as by astronauts. Robotic manipulators of 

MER, such as those mounted on the landers of Viking 1 and 2 [20], Spirit and 

Opportunity [21], Phoenix [22] and Curiosity [23] are used to dig into the 

ground of Mars, collect soil samples and/or position instruments on a target. 

These operations are performed by pre-programmed scripts when receiving the 

tele-operation commands sent from earth and/or relayed by the Mars Orbiter. 

Cameras mounted on these robotic manipulators are used to monitor the 

movements of the manipulators and take photographs of the surroundings. 

Robotic manipulators of ODS, such as the Shuttle Remote Manipulator System 

(SRMS, or Canadarm) [24] mounted on spacecraft, and the robotic 

manipulators mounted on Orbital Express [25], are used to perform grappling, 

docking, refueling, repairing and/or servicing of another orbiter. ROTEX and 

ETS-VII [26] are PES, operations such as assembling, grasping, docking and 

other orbit-replaceable-unit exchanging operations had been done to 

demonstrate the readiness and principles of ground control under time delay 
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constraints.  

A comparative study of selected space robotic manipulators is shown in 

Table 1.1 [27]. As can be seen in Table 1.1, the most of the robotic manipulators 

either adopt preprogrammed scripts or involve human-in-the-loop control, 

which lay the majority of decision-making and guidance tasks into human 

hands. Due to the facts of the longtime delay in earth-based manual control 

and the higher cost and risk of life loss in sending astronauts into space to 

control the capture process, the development of an autonomous control 

strategy for robotic capture of space objects becomes a research highlight in 

space robotic applications [28-32]. 
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Table 1.1 Comparative study of space robotic manipulators 

Mission Date & Agency Field DOF Vision System Operation Approach Comments 

Landers of 

Viking 1 and 

2 

1975-1982 

NASA 
MER 

120° 

radius 

Two 360° 

cylindrical scan 

cameras 

Pre-programmed and 

Tele-operation (from 

Earth, relayed by the 

Mar Orbiter) 

The arm is with a collector head, temperature 

sensor, and magnet on the end, was used to dig 

into the ground and taking out samples of 

Martian soil. 

Canadarm 
1981-2011 

CSA, NASA 
ODS 6 

One at the elbow 

joint and one at 

the wrist joint. 

astronaut control  

The Canadarm now retired, was a remote-

controlled, payload-handling device used on the 

space shuttle.  

ROTEX 

04/1993-

05/1993 

DLR 

PES 6 

Two stereo 

cameras on the 

end effector, two 

fixed cameras 

Tele-operation (on 

board or from ground) 

or pre-programmed 

Three basic tasks were successfully performed: 

assembling a mechanical truss structure, 

connecting/disconnecting an electrical plug and 

grasping a floating object. 

ETS-VII 

1997-2002 

NASDA 

(JAXA) 

PES 6 

Two hand 

cameras, two 

shoulder cameras. 

Tele-operation (from 

Earth, 5-7 seconds of 

time delay) 

The robotic arm was attached to the chaser 

satellite of ETS-II. 

Canadarm2 
2001-now 

CSA, NASA 
ISS 7 Four TV cameras 

Autonomous 

operation or 

astronaut control 

Canadarm2 is a new generation Canadarm. 

Each end of the arm is equipped with a 

Latching End Effector.  

Spirit 

and 

Opportunity 

2004-now 

NASA 
MER 5 

One microscopic 

imager on the arm. 

Pre-programmed and 

Tele-operation (from 

Earth, relayed by the 

Mar Orbiter) 

The arm carries multiple instruments, and is 

used to position these instruments on a target. 1 

Panoramic Cam, 1 Navigation Cam, 2 B&W 

Hazard Avoidance Cams mounted on the rover. 
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Mission Date & Agency Field DOF Vision System Operation Approach Comments 

Orbital 

Express 

03/2007-

07/2007 

DARPA, MSFC 

ODS 6 

One camera 

mounted at the 

end effector. 

Autonomous (by 

executing pre-

planned scripts) 

Orbital Express is demonstrating the 

technologies required for on-orbit servicing. The 

arm is for grapple, dock, refuel, repair and 

service another satellite. 

JEM Remote 

Manipulator 

System 

2008-now 

JAXA 
ISS 6 

Two cameras 

mounted on the 

main arm. 

Astronaut control 

The Main Arm is used for exchanging EF 

(Exposed Facility) payloads. The SFA handles 

small items. 

Phoenix 

05/2008-

11/2008 

NASA 

MER 4 

One full-color 

camera attached 

above the scoop. 

Pre-programmed and 

Tele-operation (from 

Earth, relayed by the 

Mar Orbiter) 

The arm has the ability to dig down to 0.5 m 

below the surface. 

European 

Robotic Arm 

(ERA) 

2010-now 

(still in 

building) 

ESA 

ISS 7 

Four Camera and 

Lighting Units 

(CLU) 

Autonomous 

operation or 

astronaut control 

ERA can walk around the ISS under its own 

control, hand-over-hand between base points. 

Astronauts can control it from inside or outside 

the Station. 

Curiosity 

(The lander 

of Mars 

Science 

Laboratory) 

08/2012 

(landed) 

NASA 

MER 5 

It has 17 cameras: 

HazCams (8), 

NavCams (4), 

MastCams (2), 

MAHLI (1), 

MARDI(1), 

ChemCam (1). 

Pre-programmed and 

Tele-operation (from 

Earth, relayed by the 

Mar Orbiter) 

One set of moves has never been tried before on 

Mars: pulling pulverized samples from the 

interior of Martian rocks and placing them into 

laboratory instruments inside the rover. 

The arm has two joints at the shoulder, one at 

the elbow and two at the wrist. 
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1.2 Justification of Research 

Robotic manipulators, mechanically consisting of links and joints in sequence, 

are driven by motors at joints to achieve desired position/motion of the end-

effector. Sensors, such as shaft encoders, force/torque gauges, and vision 

systems, are usually equipped in order to detect changes in the workspace and 

adjust the behaviors of the robotic manipulator accordingly [33]. Therefore, the 

robotic control generally concerns two issues: detection of the workspace and 

operation of the robotic manipulator. 

1.2.1 Challenges of autonomous robotic capture 

The task of autonomous capture of non-cooperative targets by robotic 

manipulators is not trivial. Many technical challenges arise and can be 

generally summarized as follows: 

(i) Detection, estimation and modeling of the target. A non-cooperative 

target is defined as a target that the motion of which is not 

controllable and no communication can be performed between the 

target and the robotic manipulator during the capture operation. 

Thus, accurate estimation and tracking of the target motion shall be 

carried out promptly once the non-cooperative targets or space debris 

are detected. 

(ii) Path planning of the end-effector. The path of the end-effector shall 

be well-designed according to the estimated target motion to 
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accomplish a safe capture. In addition, other constraints, such as, 

minimum time, shortest path, capture conditions, just to name a few, 

should be taken into account for a safe and efficient capture process. 

(iii) Tracking control of the robotic manipulator. Since the desired 

position/motion of the end-effector is achieved by joint actuators of 

the robotic manipulator, inverse kinematics related issues such as 

multiple solutions arise. In addition, for the sake of high accuracy 

and high load capacity, stepper motors are considered as  competitive 

candidates of joint actuator due to the movement of precise 

increments, which should also be taken into account by robotic 

control. 

(iv) Real time capability. The robotic capture of non-cooperative targets 

is a real time process. Thus, the first three challenges should be 

addressed in a real time environment and are required to interact 

with each other flawlessly. 

(v) Autonomy. The non-cooperative nature of the target determines the 

timeliness of robotic capture strategies. Thus, for an autonomous 

robotic capture operation, decision making mechanisms should be 

dynamically adapted and updated. 

1.2.2 Limitations of existing treatments 

Robotic capture of non-cooperative targets attract much attention in the fields 
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of robotics and space engineering [34-37]. Most of the existing target 

estimation methods in the literature are based on vision system [38-41] and 

can be generally classified [16] as: geometric methods [42-44], learning-based 

methods [45, 46], offline methods and filtering methods. As a typical example 

of the geometric method, photogrammetry is widely used if a calibrated camera 

is adopted and the geometry of the target features is known in advance [32]. 

Generally, the estimation process by the geometric method begins with an 

initial guess. Then a least squares approach is applied iteratively to estimate 

the pose information only. Furthermore, estimation by the geometric method 

is memoryless and purely based on the current measurement. Thus, it is prone 

to measurement noise and mechanical disturbance. The learning-based 

method is time-consuming and requires a sufficiently large database of the 

target in different poses, which is hard to satisfy especially when the target is 

non-cooperative. As the name implies, the offline method is employed 

afterwards, which is not applicable for real-time control. The filtering method, 

especially based on the Kalman filter (KF), is extensively adopted for 

estimation based on a set of noisy observations over time with the known initial 

conditions. Since the KF was proposed in 1960 [47], it has been adopted widely 

in almost all engineering fields, and has been extended from the original linear 

system to nonlinear systems with different enhancing techniques. A detailed 

survey of KF-based methods for robotic vision was presented in [48]. 
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For nonlinear systems, feedback linearization based control methods are 

gaining popularity in modern system theory. The dynamics and kinematics of 

robotic manipulators are generally nonlinear. The existing robotic control 

methods can be classified as computed-torque-like or non-computed-torque-

like [49]. As the name implies, the computed-torque-like robotic control method, 

such as, impedance control [50-56], is a special application of feedback 

linearization. It considers a predefined close-loop function as control objective 

and torques as control input of joint actuators. The limitation of control input 

arises in the implementation of many existing control methods when involving 

stepper motors, which is controlled by position. Other control methods, such 

as, adaptive control [57-59], robust control [60-64], learning control [65-69], etc., 

are often validated theoretically by simulations with specific assumptions and 

limitations due to complexity, which may be insufficient to guarantee the 

possibility of real time implementations. 

 

1.3 Objectives of Proposed Research 

To address the challenges and limitations, this research is focused on the 

development of robotic control strategy for autonomous capture of non-

cooperative targets with the consideration of feasibility and reliability 

requirements for potential applications in space. Since the kinematic model of 

the target is not available, the estimation of target motion becomes the first 
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challenge encountered. Secondly, robotic control schemes have to be developed 

in order to address the multiple solutions of inverse kinematics. Finally, the 

effectiveness and efficiency of the proposed control strategy have to be 

validated experimentally. Therefore, the objectives of this research are as 

follows: 

(i) Vision-based target estimation ― Development of algorithms for 

accurate estimation of position and motion of non-cooperative targets.  

(ii) Robotic control theory ― Development of innovative control theory 

for the autonomous robotic capture without multiple solutions in the 

inverse kinematics. 

(iii) Validation ― Validation of the effectiveness of the proposed vision-

based target estimation algorithms and robotic control theory. 

These objectives lead to an implementable vision-based robotic control 

scheme for the autonomous capture of a non-cooperative target. 

 

1.4 Methodology of Approach 

The methodology of approach adopted in this research begins with a 

brief literature review of visual servo robotic control. According to the 

identified challenges and limitations of existing approaches, target estimation 

is addressed first by a position-based vision system due to the intuitive 

relationship between the target and robotic manipulator in the Cartesian space. 
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Then the robotic control theory is developed with considerations of safety and 

efficiency to address the limitations, such as, inverse kinematics, lack of 

feedback information, temporal effectiveness of target estimates, control of 

actuators by precise increments, etc. Finally, supporting hardware and 

computer software are developed to upgrade an existing customized 

manipulator-target system in order to validate the feasibility and reliability of 

the proposed approaches experimentally. 

 

1.5 Outline 

The dissertation is manuscript-based because almost all the works are either 

published by the peer-reviewed journals and conference proceedings or 

submitted to the peer-reviewed journals for consideration of publication. It 

includes seven chapters. Following the introduction and justification in 

Chapter 1, a detailed literature review of the visual servo robotic control is 

conducted in Chapter 2. Chapter 3 presents the development of vision-based 

estimation algorithm of non-cooperative targets, while Chapter 4 focuses on 

the development of robotic control strategies. The hardware and software 

development of the testbed for the validation of the proposed visual servo 

control scheme is described in Chapter 5. To address the influence of flexible 

joint on the overall performance of the robotic manipulator discovered in the 

experiments, the modeling and control of flexible joint robotic manipulator is 
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investigated in Chapter 6. Finally, the contributions of this doctoral research 

are summarized and the future research directions are outlined in Chapter 7. 

The full-text of the published and submitted manuscripts have been attached 

at the end of this dissertation. The theories and experimental results of the 

target estimation developed in Chapter 3 have been published in reference 

paper A and B. The concepts and hardware-in-the-loop simulation results of 

the kinematics-based robotic control developed in Chapter 4 have been 

published in reference paper C and D. Then the experimental results of the 

autonomous visual servo robotic capture of non-cooperative target based on the 

experimental systems described in Chapter 5 have been included in the 

submitted manuscripts, reference paper E and F. In all the attached six 

manuscripts, the first author is the main contributor and the second author is 

the corresponding author. 

 

1.6 List of Publications 

The following is a full list of publications associated with this study. 

1.6.1 Published and submitted peer-reviewed journal papers 

1. (Reference Paper A) G. Dong and Z. H. Zhu. “Position-based visual servo 

control of autonomous robotic manipulators”. Acta Astronautica, Vol. 

115, pp. 291-302, 2015.  

doi:10.1016/j.actaastro.2015.05.036 

http://dx.doi.org/10.1016/j.actaastro.2015.05.036


14 

2. (Reference Paper B) G. Dong and Z. H. Zhu. “Autonomous Robotic 

Capture of Non-cooperative Target by Adaptive Extended Kalman Filter 

Based Visual Servo”. Acta Astronautica, Vol. 122, pp. 209-218, 2016.  

doi:10.1016/j.actaastro.2016.02.003 

3. (Reference Paper C) G. Dong and Z. H. Zhu. “Incremental Inverse 

Kinematics based Vision Servo for Autonomous Robotic Capture of Non-

Cooperative Space Debris”. Advances in Space Research, Vol. 57(7), pp. 

1508-1514, 2016.  

doi:10.1016/j.asr.2016.01.011 

4. (Reference Paper D) G. Dong and Z. H. Zhu. “Incremental Visual Servo 

Control of Robotic Manipulator for Autonomous Capture of Non-

cooperative Target”. Advanced Robotics, Vol. 30(22), pp. 1458-1465, 

2016. 

doi:10.1080/01691864.2016.1229633 

5. (Reference Paper E) G. Dong and Z. H. Zhu. "Predictive Visual Servo 

Kinematic Control for Autonomous Robotic Capture of Non-cooperative 

Target". Autonomous Robots, submitted on April 02, 2016. 

6. (Reference Paper F) G. Dong and Z. H. Zhu. “A Kinematics-based 

Incremental Visual Servo for Robotic Capture of Non-cooperative 

Target”. IEEE/ASME Transactions on Mechatronics, submitted on June 

03, revised form submitted on August 05, 2016. 

http://dx.doi.org/10.1016/j.actaastro.2016.02.003
http://dx.doi.org/10.1016/j.asr.2016.01.011
http://dx.doi.org/10.1080/01691864.2016.1229633


15 

1.6.2 International conference papers 

1. Z. H. Zhu and G. Dong. “Visual Servo Robotic Capture of Non-

Cooperative Target in Active Space Debris Removal”. Canadian 

Aeronautics and Space Institute ASTRO 2016, May 2016, Ottawa. 

2. G. Dong and Z. H. Zhu. “Autonomous Robotic Capture of Non-

cooperative Target by Vision-based Kinematic Control”. AIAA SPACE 

2015 Conference and Exposition, Aug. 2015, Pasadena, California.  

doi:10.2514/6.2015-4428 

3. G. Dong and Z. H. Zhu. “Visual-Servo Autonomous Robotic 

Manipulators for Capturing Non-Cooperative Target”, ASME 2014 

International Mechanical Engineering Congress and Exposition, Nov. 

2014, Montreal.  

doi:10.1115/IMECE2014-38574 

4. G. Dong and Z. H. Zhu. “Vision-based Autonomous Control of Space 

Robotic Manipulators”, 65th International Astronautical Congress (IAC), 

Oct. 2014, Toronto. IAC-14,D1,P,11,x23034 

5. G. Dong and Z. H. Zhu. “Vision-based Pose and Motion Estimation of 

Non-cooperative Target for Space Robotic Manipulators”. AIAA SPACE 

2014 Conference and Exposition, Aug. 2014, San Diego.  

doi:10.2514/6.2014-4263 

6. G. Dong and Z. H. Zhu. “Input Shaping-based Impedance Control for 

http://dx.doi.org/10.2514/6.2015-4428
http://dx.doi.org/10.1115/IMECE2014-38574
http://dx.doi.org/10.2514/6.2014-4263


16 

Flexible Joint Robotic Manipulator”. AIAA Guidance, Navigation, and 

Control Conference, Aug. 2013, Boston.  

doi:10.2514/6.2013-4849 

7. G. Dong and Z. H. Zhu. “Modelling and Control of Flexible Joint Robotic 

Manipulator”. AIAA Infotech@Aerospace Conference, Aug. 2013, Boston. 

doi:10.2514/6.2013-4824 

1.6.3 Academic bulletin paper 

1. G. Dong and Z. H. Zhu. “Control of Space Robotic Manipulators with 

Joint Flexibility”. Canadian Society for Mechanical Engineering (CSME) 

Summer Bulletin, pp11-16, 2013.  

Available at: http://www.csme-scgm.ca/sites/all/themes/csme/uploa

ded/CSME_publications/Summer_2013_bulletin.pdf 

  

http://dx.doi.org/10.2514/6.2013-4849
http://dx.doi.org/10.2514/6.2013-4824
http://www.csme-scgm.ca/sites/all/themes/csme/uploaded/CSME_publications/Summer_2013_bulletin.pdf
http://www.csme-scgm.ca/sites/all/themes/csme/uploaded/CSME_publications/Summer_2013_bulletin.pdf


17 

 

 

 

Chapter 2 LITERATURE REVIEW 

 

Summary: In this chapter, we review the literature of visual servo robotic 

control in the two main research areas of this dissertation: vision systems and 

robotic control theory. Based on the literature review, the candidate 

methodology is suggested. 

 

2.1 Vision System 

Sensors are widely adopted to detect the behaviors of targets as well as robotic 

manipulators within the workspace. Due to the fact that space debris is in 

uncontrolled motion, the estimation of such dynamic non-cooperative targets 

becomes one of the major prerequisites in robotic capture. According to the 

types of feedback sensors, robotic control can be classified as vision-based 

control, force control and tactile control [33]. Because of the non-

intrusive/contact nature, vision systems have been extensively adopted in the 

robotic control for detecting, monitoring, and tracking purpose [70]. Therefore, 

vision-based control is adopted in the current research and this review is 

conducted in this field. 
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In early robotic applications, vision is adopted in an open-loop fashion, 

which is known as static look-and-move method [71]. In order to improve the 

accuracy and extend vision-based applications to real time, the visual 

information is fed back in closed-loop robotic control called visual servo in the 

literature [72, 73]. According to the errors adopted in the control, visual servo 

can be categorized as: image-based visual servo (IBVS), position-based visual 

servo (PBVS), and hybrid visual servo.  

In the IBVS, the control error between the desired and observed image 

features in the 2D (two dimensional) image space is fed into the control via an 

image Jacobian. Therefore, the IBVS is independent of the target model. 

However, the IBVS lacks the depth information, considerable efforts have been 

devoted to improve the performance and enhance the robustness in 3D (three 

dimensional) applications [74-77]. 

On the contrary, the PBVS extracts 3D pose and motion of the target 

features from the vision system, and the error between desired and estimated 

pose and motion is fed back to the control. Accordingly, the end-effector can be 

controlled relative to the target naturally. Since the pose and motion are 

estimated based on the vision feedback, the PBVS is prone to camera 

calibration errors, target model accuracy, and image measurement noise. The 

errors caused by uncalibrated cameras are addressed in [78, 79], and the 

suppression of image noise issue is discussed in [80].  
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Finally, the hybrid visual servo, referred as 2½D (two and a half 

dimensional) visual servo in the literature [81], evaluates the control errors 

partially in the 3D workspace and partially in the 2D image plane. Although 

effective, the hybrid visual servo is more complex than either IBVS or PBVS 

for real time implementation.  

The camera in a vision system can be either mounted on the robotic 

manipulator, known as eye-in-hand, or fixed to the workspace, known as eye-

to-hand, alternatively. The eye-in-hand configuration may provide a close and 

detailed scene of the target yet be coupled with the motion of the robotic 

manipulator, while the eye-to-hand configuration monitors the whole 

workspace but fewer details of the target will be detected. In some specific 

circumstances during robotic operations, the view of the target may be blocked 

by the robotic manipulator in the eye-to-hand configuration, and may further 

lead to task failures. In contrast, the coupling effect in the eye-in-hand 

configuration could be easily eliminated if the motion of the robotic 

manipulator is available. In addition, the accuracy and detail of the target will 

keep increasing in the eye-in-hand configuration as the end-effector 

approaches the target. 

 

2.2 Robotic Control 

Once the essential information of the workspace is detected, the operation of 
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the robotic manipulator to fulfill desired tasks can be effectively and efficiently 

carried out under certain control schemes. The development of control schemes 

involves the dynamics and/or kinematics of the robotic manipulator.  

The dynamics, obtained by the Euler-Lagrange approach, define the 

relationship between the force/torque input of the joint actuators and the 

motion output of the robotic manipulator. The kinematics, derived from the 

geometry of the robotic manipulator, define the mapping of states between the 

robotic manipulator in joint space and the end-effector in the Cartesian space. 

Generally, without the consideration of obstacle avoidance, the desired position 

and/or motion of the end-effector in the Cartesian space is regarded as the 

control objective of the robotic manipulator. Therefore, inverse kinematics 

shall be performed in advance to transform the desired position and motion of 

the end-effector in the Cartesian space into the corresponding position and 

motion of the robotic manipulator in the joint space to derive the control input 

(i.e., torques). Although inverse kinematics in the velocity-level and 

acceleration-level can be derived based on the pseudo inverse of the robotic 

Jacobian matrix, the position-level inverse kinematics may have multiple 

solutions due to the periodicity of trigonometric functions and the redundant 

geometric configuration of the robotic manipulator. In order to obtain a unique 

solution, extra constraints have to be introduced. For instance, a constrained 

least squares approach was introduced for the inverse kinematics of redundant 
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space manipulators in order to locally minimize the dynamical coupling of the 

manipulator-spacecraft system [82]. Based on the gradient dynamics method, 

an acceleration-level solution was introduced to solve the inverse kinematics 

in order to avoid the pseudo inverse of the Jacobian and reduce the 

computational cost [83]. To satisfy the robustness demands of kinematics 

based robotic control with the occurrence of singularities, a task priority 

redundancy resolution technique was developed to avoid the inversion of the 

matrix which is close to the singularity point [84]. 

In space applications, the robotic manipulators are generally considered 

as free floating unless their masses are much smaller than the base spacecraft. 

The dynamic coupling between the robotic manipulator and the base spacecraft 

in the free-floating case complicates the dynamics and kinematics analysis of 

the manipulator-spacecraft system. In order to address this difficulty, the 

concept of resolved motion rate control was introduced to establish a control 

method for the manipulator-spacecraft system [85], in which the momentum 

conservation law was introduced to derive the generalized Jacobian matrix. 

The concept of a virtual manipulator was proposed for the modelling of free 

floating manipulators in 1987 [86]. A virtual manipulator is an idealized 

massless kinematic chain whose base is fixed to the mass center of the system 

and whose end is overlapped with the end-effector of the real robotic 

manipulator. Due to the external forces/torques exerting on the system being 
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negligible in the free floating case, the base of a virtual manipulator is a fixed 

point in the inertial space. Therefore, the virtual manipulator can be used for 

simulation analysis of the dynamics and kinematics of a free floating 

manipulator-spacecraft system. Furthermore, the concept of a dynamically 

equivalent manipulator enables the mapping of dynamics and kinematics of a 

free floating manipulator to a conventional fixed base manipulator for 

experimental study on ground [87].  

In addition, both the joint and link flexibilities have also been 

extensively studied in the literature of robotic manipulator control [88, 89]. 

The concept of virtual rigid link was introduced to derive the dynamic model 

of a flexible-link manipulator in [90]. Then, the virtual rigid manipulator was 

introduced for the control of a flexible-link manipulator [91]. Flexible joint 

robotic systems have been studied in the robotics literature for more than 

twenty years. To address the control problem of flexible joint robotic 

manipulators, nonlinear adaptive output feedback control is adopted to control 

the quasi-steady-state robot model in [92]. A regressor-free adaptive controller 

for flexible joint robot has been developed [57, 58, 93]. However, the 

assumption that the joint flexibility should be known is usually not available. 

Other techniques such as nonlinear H  control [94] and the combination of 

neural networks and linear regulators [95] are difficult to implement. Input 

shaping is an open-loop vibration suppressor by creating a command signal 
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that cancels its own vibration [96-101]. It is particularly effective for 

suppressing motion-induced vibration in flexible systems. However, the open-

loop structure of input shaping is prone to environmental disturbances. Closed-

loop input shaping is good at disturbance rejection, but it requires exact 

knowledge of the system to be controlled. Using approximate models may 

reduce the effectiveness of vibration suppression or even destabilize the system. 

 

2.3 Proposed Methodology 

The PBVS is adopted for the robotic control due to the intuitive relationship 

between the target and the robotic manipulator in the 3D Cartesian space. As 

per [48], the extended Kalman filter (EKF) is the most widely adopted 

nonlinear state estimation algorithm in the robotic vision applications. The 

EKF is a first order linearization based filtering method. It may lead to 

particularly poor performance, especially over a long time period, due to the 

linearizing approximation of the process and/or measurement models with 

high nonlinearity. In order to improve the performance when highly nonlinear 

models are involved, adaptive mechanisms, i.e., an adaptive extended Kalman 

Filter (AEKF), should be introduced to the distribution of noises as a 

compensation of the linearization error [40, 102, 103]. Although the process 

and measurement noises are usually assumed to be independent, it is hard to 

distinguish them in the process covariance matrix from the measurement 
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covariance matrix [104]. Thus, the AEKF that attempts to correct both 

covariance matrices may not be robust [105]. It is well known that KF-based 

algorithms require initial conditions 2  and measurements over the time. 

Although the initial conditions do not affect the convergence property of KF-

based algorithms, they do affect the performance of the estimation. For a non-

cooperative target, the initial conditions and the kinematic model of the target 

are unknown in advance. To address this challenge, the current work combines 

the KF based algorithms with other estimation approach, such as 

photogrammetry, for better performance. 

In practice, many robotic manipulators, especially those performed in 

space, adopted stepping motors as the joint actuators for the sake of high load 

capacity and positioning accuracy, where joint position is considered as the 

control input of the robotic manipulator. The load capacity of a robotic 

manipulator is considered sufficient by properly sizing the stepper motors and 

the torque limits are not an issue. Thus, it is relatively intuitive to consider the 

speed limits as the main constraints of the actuators in the current work. With 

this in mind, it is reasonable and acceptable to consider the robotic control from 

the kinematics aspect. 

  

                                            
2 Initial values of the states, distribution of noises, covariance of the models, etc. 
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Chapter 3 VISION-BASED TARGET ESTIMATION 

 

Summary: In this chapter, the pinhole camera model is introduced and the 

vision-based target estimation approaches, such as photogrammetry, EKF and 

AEKF are developed accordingly. The target estimation approaches have been 

validated experimentally and the experimental results have been published in 

reference A and reference B.  

 

3.1 Pinhole Camera Model 

The vision-based estimation is based on the pinhole camera model. For the ease 

of description and without loss of generality, the global frame, denoted by G , 

is fixed in the inertia space. The camera frame, denoted by C , is fixed to the 

image plane center of the camera. The target frame, denoted by T , is fixed to 

the target body. The position and orientation of T  described in C  are 

denoted by  , ,
TC C C

To T

C

T o Too x y zX  and  , ,
TC C C

Tx Ty z

C

TT   Ω , respectively. 

Further assume the non-cooperative target contains   identified feature 

points in the field of view (FOV) of the camera. The positions of the feature 
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points in T  are denoted by  , ,
TT T T

i i

T

ii x y zX , where the subscript 

1,2, ,i  . Based on the above definitions and assumptions, the position of 

-i th  feature point in C , denoted by  , ,
TC C C

i i

C

ii x y zX , can be expressed as 

 ,

C T C

i T C i To X X X   (3.1) 

where 3 3

,T C

R  is the rotation matrix from T  to C  formed by the 

trigonometric functions of elements in C

TΩ . It should be noted that both C

ToX  

and C

TΩ  in Eq. (3.1) are unknown and need to be estimated. 

 
Figure 3.1 Illustration of the pinhole camera projection 

As shown in Figure 3.1, the feature point is projected onto the image 

plane of the pinhole camera. Assume the image measurements of the -i th  

feature point, denoted by  ,
TM M

ii ix zZ , can be obtained by image processing. 

According to the collinearity condition, the pinhole camera projection of the 
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-i th  feature point can be described by [106] 

    , ,
T TM M C C

i i iC i

i

f

y f
x z x z 


  (3.2) 

where f  denotes the focal length of the camera. A generalized form of Eq. (3.2) 

is concisely written as 

  ,C

i i fZ X   (3.3) 

Substituting Eq. (3.1) into Eq. (3.3), we obtain the expression of image 

measurements in 2D, with respect to the corresponding feature points in T , 

in terms of the six degrees of freedom ― the unknown position and orientation 

of T  described in C , such that 

  , ,T C

i T C i To f Z X X   (3.4) 

 

3.2 Photogrammetry 

In order to estimate the unknown position and orientation of T  described in 

C , photogrammetry [32], an iterative least squares based approach, is 

introduced in this section.  

Rearranging Eq. (3.2) and defining functions iF  and iG  for concise 

expression, such that 

 
0

0

M M C

i i i

M

C

i i

C

i

M C

i i i i

x x x

z z z

y f f F

y f f G

  






 
  (3.5) 
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Since  , ,
TC C C

i i

C

ii x y zX  is function of C

ToX  and C

TΩ   as per Eq. (3.1), 

iF  and iG  are functions of elements in C

ToX  and C

TΩ  as well. Linearizing iF  

and iG  by Taylor’s expansion in the vicinity of an arbitrary initial guess of 

unknown variables leads to 
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  (3.6) 

where 0iF  and 0iG  are evaluated at the current image measurements of the 

-i th  feature point and the initial guess of the unknown variables. 

For a concise format, Eq. (3.6) is rewritten as 

      0 2 1 2 6 6 1  
 VV J Δ   (3.7) 

where the subscripts indicate the dimensions of matrices enclosed by square 

brackets and the matrices are defined as 

   0 0 0

00 0 0 0 0

0 0 0

, , , , , , , ,
TT C C C C C C

i i To To To Tx Ty Tz

i i i i i i

C C C C C C

To To To Tx Ty Tz

i i i i

C C C C

To To To Tx

F G d x d y d z d d d

F F F F F F

x y z

G G G G

x y z

  

  



  

               
                          


        
     
        

V

V Δ

J

00 0

i i

C C

Ty Tz

G G

 

 
 
 
 

      
            

. 
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It should be noted that Eq. (3.7) is for the -i th  feature point. If   feature 

points are known, Eq. (3.7) can be easily extended as 

      0 2 1 2 6 6 1   
 VV J Δ   (3.8) 

Generally, for each of the feature points, two equations with six 

unknowns can be obtained. Therefore, a minimum of three feature points, i.e., 

3  , should be available for solving the six unknowns. In order to eliminate 

the ambiguity caused by the periodic solutions of trigonometric functions, four 

feature points, i.e., 4  , are widely adopted in the literature [106, 107]. 

Solving Eq. (3.8) based on the definition of pseudo inverse, we have the 

correction of the unknown variables as 

  
1

0

T T

 V V VΔ J J J V   (3.9) 

The correction obtained by Eq. (3.9) is added to the initial guess of 

unknown variables in order to form a new guess. Then the procedure is 

iteratively performed to correct previous guess until the correction is less than 

a pre-defined tolerance. 

The main shortcoming of the photogrammetry is that it does not 

estimate the motion directly, which is regarded as an important information 

for robotic control in a dynamic environment. Furthermore, because of purely 

relying on the current measurements, the photogrammetry is memoryless to 

the historical measurements and thus prone to the image noise. In addition, 

due to iteration, the computational cost of photogrammetry varies, which is not 
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desirable in real time control systems. To address these challenges, the 

estimation algorithm of photogrammetry is combined with the filtering 

methods described as follows. 

 

3.3 EKF Estimation 

The EKF requires a priori knowledge of state variables, the process model and 

measurement model for the target estimation. For simplicity, we assume the 

unknown variables to be estimated are the position and orientation of the T  

described in C  as well as their first order derivatives. 

Define the state variable as 

  , , , , , , , , , , ,C C C C C C C C C C C C

To To To To To To Tx Tx Ty Ty Tz Tz

T

x x y y z z      S   (3.10) 

By neglecting the third and higher order time derivatives and 

considering the second order time derivatives as process noise, a linear process 

model is adopted, which can be written as 

 1k k  S AS Bω   (3.11) 

where the subscripts k  and 1k   indicate the current and next sampling steps, 

A  and B  are the coefficient matrices formed by functions of sampling time, ω 

is the process noise obeying the normal distribution with constant mean q  and 

covariance Q , such that 

    , , ,, ,, , ~C C C C C C

To To To Tx Ty z

T

Tx y z   ω ω q Q   (3.12) 



31 

From Eq. (3.4), the measurement model is defined as 

      ,, ,T C

k k k T C i To f   Z S μ S X X   (3.13) 

where μ  stands for the measurement noise of the camera and is assumed to 

obey the normal distribution with zero mean and constant covariance matrix, 

i.e.,  ~ ,μ 0 R . 

Based on the process model defined in Eq. (3.11), the state variable S  

and its covariance matrix P in the next step can be predicted by 

 
1| |k k k k  S AS Bq   (3.14) 

 1| |

T T

k k k k  P AP A BQB   (3.15) 

where the subscript    denotes the variables estimated at step   with 

respect to step  . 

The Kalman gain is then given by 

  
-1

1| 1|

T T

g k k k k k k k  K P H H P H R   (3.16) 

where  
1|k k

k


 
S S

H S S   denotes the Jacobian of the measurement model. 

Once the current measurement kZ  is obtained, the predictions made by 

Eq. (3.14) and Eq. (3.15) are updated, such that 

   1| 1 1| 1|k k k k g k k k     S S K Z S   (3.17) 

 
1| 1 1| 1|k k k k g k k k    P P K H P   (3.18) 

By iterating the predict-update procedure defined by Eq. (3.14) – Eq. 
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(3.18), the state variable is estimated for each measurement obtained. Since 

the initial conditions are not available, the EKF algorithm is initialized by the 

photogrammetry in order to accelerate the convergence rate.  

 

3.4 AEKF Estimation 

The AEKF compensates the linearization error of EKF by introducing an 

adaptive mechanism to estimate and update distribution parameters of the 

noises. Since the measurement noise of the camera can be determined in 

advance experimentally, only the distribution of process noise is adapted. 

Accordingly, the process model and noise distribution is modified slightly based 

on Eq. (3.11), such that 

  1 , ~ ,k k k k k k  S AS Bω ω q Q   (3.19) 

Once initialized, following similar predict-update procedure defined by 

Eq. (3.14) – Eq. (3.18) yields 

  

  

1| |

1| |

-1

1| 1|

1| 1 1| 1|

1| 1 1| 1|

k k k k k

T T

k k k k k

T T

g k k k k k k k

k k k k g k k k

k k k k g k k k





 

   

   

  


 


 


  


 

S AS Bq

P AP A BQ B

K P H H P H R

S S K Z S

P P K H P

  (3.20) 

In order to estimate and update the distribution of process noise for the 

next iteration, an intuitive approximation of the mean is defined as [102] 
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    
1

1 1| 1 |
ˆ T T

j j j j j



   q B B B S AS   (3.21) 

By further assuming that the process noise is independent and 

uniformly distributed over N  sampling steps, the unbiased estimate of the 

mean and corresponding covariance matrix can be calculated by 

  1
1

1 1
ˆ ˆ ˆ 

k

k j k k k N
j k NN N

 
  

   q q q q q   (3.22) 
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1 11 ˆ ˆ ˆ ˆ
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k k k k k N k k N k

k k T

k k N k k N k N k

NN
N N

 



  

     
 

         
 

q q q q q q q q

Q Q
q q q q Λ Λ

  (3.23) 

where      
1 1

| 1| 1

T T T T

k k k k k

 

  Λ B B B AP A P B B B . 

The adapted distribution of the process noise in Eq. (3.22) and Eq. (3.23)

is then adopted for the next iteration in Eq. (3.20). 

 

3.5 Coordinate System Transformation 

It should be noted that the estimated position and velocity of the target, C

ToX  

and C

ToX , are in C . Define TX  and 
TX  as the position and velocity of the 

target in G , such that 

 ,

C G

T C G To Co X X X   (3.24) 

where G

CoX  denotes the position of C  described in G , and 
,C G

 denotes the 

rotational matrix from C  to G .  
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Since the configuration of the camera is known, G

CoX  and 
,C G

 should 

be easily obtained based on the configuration of the robotic system. It is worth 

pointing out that for the eye-in-hand configuration, G

CoX  and 
,C G

 are formed 

by functions of joint configuration, while for the eye-to-hand configuration, 

both G

CoX  and 
,C G

 are constant. By defining 

 ,

1

G

C G Co
 

  
 

X

O
  (3.25) 

Equation (3.24) can be rewritten in a homogeneous format, such as 

 
1 1

C
T To

  
   

   

X X
  (3.26) 

Taking the first order time derivative on both sides of Eq. (3.26) yields 

the velocity of the target in G  as 

 
0 0 1

C C

T To To
     

      
     

X X X
  (3.27) 

Hereto, the target motion estimates in both C  and G  are obtained. 
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Chapter 4 KINEMATICS-BASED ROBOTIC CONTROL 

 

Summary: In this chapter, the forward kinematics and inverse kinematics are 

introduced first. Then two kinematics-based robotic control approaches, 

interception-point-aimed and target-aimed, are developed. The effectiveness of 

the proposed robotic control approaches have been validated by hardware-in-

the-loop simulations with eye-to-hand configuration. The theories and 

simulation results have been published in reference C and reference D. 

 

4.1 Robotic Kinematics 

Without consideration of the applied forces, robotic kinematics studies the 

movement of robotic manipulators analytically based on the geometry of the 

mechanical configuration [108]. Unless otherwise stated, the motion of the end-

effector is considered in G  by default. 

Analyzing the motion of the end-effector in terms of joint configuration 

of the robotic manipulator is called forward kinematics. A common approach 

for the derivation of forward kinematics is the Denavit-Hartenberg (DH) 

method [109]. In the DH convention, as shown in Figure 4.1, coordinate frames 
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are attached to each of the joints according to the following principles: 

(i) The z-axis is in the direction of the joint axis. 

(ii) The x-axis is perpendicular to z-axis of previous frame. 

(iii) The x-axis intersects z-axis of previous frame. 

(iv) The y-axis follows the right-handed convention. 

 
Figure 4.1 DH convention 

Table 4.1 DH parameters 

Parameters Definitions 

d   Offset distance along 1iz   from 1ix   to ix  

   Rotation angle about 1iz   from 1ix   to ix  

a   Offset distance along ix  from 1iz   to iz  

   Rotation angle about ix  from 1iz   to iz  

 

By defining four parameters in Table 4.1, known as DH parameters 
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[110], each homogeneous transformation of the current frame with respect to 

the previous frame can be represented as a product of four basic rotational and 

translational transformations, such that 

 
1, , , , ,i i i ii i z z d x a x     (4.1) 

 ,

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

i

i i

i i

z 

 

 

 
 
 
 
 
 

  (4.2) 

 ,

1 0 0 0

0 1 0 0

0 0 1

0 0 0 1

iz d

id

 
 
 
 
 
 

  (4.3) 

 ,

1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

i

i

x a

a 
 
 
 
 
 

  (4.4) 

 ,

1 0 0 0

0 cos sin 0

0 sin cos 0

0 0 0 1

i

i i

x

i i



 

 

 
 
 
 
 
 

  (4.5) 

Thus, 

 1,

cos sin cos sin sin cos

sin cos cos cos sin sin

0 sin cos

0 0 0 1

i i i i i i i

i i i i i i i

i i

i i i

a

a

d

     

     

 

 
 
 
 
 
 

  (4.6) 

According to the DH-based homogeneous transformation, the position of 
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the end-effector can be easily obtained by a sequence of transformations in 

terms of the geometric parameters i.e., link lengths, mechanical configuration, 

etc., as well as trigonometric functions of the joint variables. For a concise 

expression, the position-level forward kinematics is written as 

  E X f Θ   (4.7) 

where 
nΘ R  denotes the joint variable vector of robotic manipulator, m

E X R  

denotes the position of the end-effector in G . 

Taking the first order time derivative of Eq. (4.7) leads to  

 
E rX J Θ   (4.8) 

where m n

r

J R  stands for the Jacobian matrix of the robotic manipulator that 

is defined by the partial differential of Eq. (4.7), such as, r   J f Θ . 

In contrast, the inverse kinematics is to solve for the configuration of 

robotic manipulator according to the motion of end-effector. Due to the 

periodicity of trigonometric functions and the redundant geometric 

configuration of the robotic manipulator, multiple solutions are frequently 

encountered in the inverse of Eq. (4.7). In order to obtain a unique solution, 

extra constraints are usually required. Then based on the definition of pseudo 

inverse and null space theory, the solution of the velocity-level inverse 

kinematics is written as 

  † †

r E r rΘ= J X + I -J J ξ   (4.9) 
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where †

rJ  denotes the pseudo inverse of the Jacobian matrix, I  denotes the 

identity matrix and ξ  is an arbitrary vector that projected onto the null space 

of the Jacobian. For selected ξ , additional kinematic objectives can be achieved. 

Since the Jacobian matrix is usually assumed as full row rank in 

robotics, the calculation of the pseudo inverse can be simplified by the right 

inverse as 

  
1† T T

r r r r



J J J J   (4.10) 

By substituting Eq. (4.10) into Eq. (4.9) and neglecting the null space 

solution leads to 

  
1T T

r r r E



Θ= J J J X   (4.11) 

 

4.2 Interception-Point-Driven Approach 

Assume the configuration of the robotic manipulator can be detected by the 

optical shaft encoders mounted in joints, and the target motion is detected and 

estimated by the vision system. Thus, configuration of the robotic manipulator 

and target motion are adopted as feedback information. Since stepper motors 

have great potential in space robotic systems due to the high load capacity and 

high positioning accuracy, incremental joint angles are considered as control 

input and joint velocity limits are regarded as the main constraints. We further 

assume the target is always reachable by the robotic manipulator and the 
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speed of the end-effector is always greater than the speed of the target in order 

to ensure the superior maneuverability of the robotic manipulator over the 

target. 

An interception-point-driven (IPD) robotic control approach is develop 

as follows. Consider a successful capture process, the interception point can be 

approximately estimated as 

 
C T Tt X X X   (4.12) 

where CX  denotes certain interception point, t  denotes the elapsed time of the 

capture process. It should be noted that the both CX  and t  are unknown and 

need to be determined. 

Meanwhile, the end-effector has to reach the same interception point 

after the same time period, such that 

 
C E Et X X X   (4.13) 

Since TX  and 
TX  are the estimated position and velocity of the target 

in G  obtained in section 3.5, and EX  can be obtained by forward kinematics 

in Eq. (4.7), the velocity of the end-effector can be determined based on Eq. 

(4.12) and Eq. (4.13) as 

  1
E T T Et

t
  X X X X   (4.14) 

Substituting Eq. (4.14) into Eq. (4.11) yields 
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  †1
r T T Et

t
 Θ= J X X X   (4.15) 

Let ,  ,  ,  i ij Tj Tjp x x  and 
Ejx  denote the elements of †,  ,  ,  r T TΘ J X X  and EX , 

respectively, Eq. (4.15) can be decomposed into n  equations, such as 

  
1

1
, 1,2, , .

m

i ij Tj Tj Ej
j

p x tx x i n
t




      (4.16) 

The joint velocity limits of each actuators can be easily determined by 

the physical limits and the transmission mechanisms, defined as 

  max max1 max2 max, , ,
T

n  Θ   (4.17) 

By assuming that the joint velocity has the same limit in both forward 

and reverse revolute directions, each of the right-hand sides of Eq. (4.16) is 

bounded by the closed interval max max,i i    , such that 

  max max
1

1
, 1,2, , .

m

i ij Tj Tj Ej i
j

p x tx x i n
t

 


        (4.18) 

The inequalities in Eq. (4.18) are solved for t  with the consideration of 

0t  . Then intersect each of the solution intervals, denoted by 1 2, , , nt t t , and 

take the lower bound of the intersection as the solution for t , such as 

  1 2min nt t t t   (4.19) 

Once t  is determined, evaluating Eq. (4.15) yields the joint velocity of 

the end-effector. The control input for the robotic manipulator in the next 

sampling step is obtained by the product of the joint velocity and the sampling 



42 

time. 

After the end-effector moves one step towards the predicted interception 

point, the procedure is repeated until the capture requirements achieved. It is 

worth pointing out that as the end-effector approaches the dynamically 

predicted interception point, the prediction error induced by the approximation 

of uniform motion in Eq. (4.12) and Eq. (4.13) will be diminished eventually.  

 

4.3 Target-Driven Approach 

An alternative target-driven (TD) robotic control approach is developed under 

the same assumptions for the same problem defined in section 4.2. 

According to the estimated position and velocity of the target in G , 

denoted by TX  and 
TX , respectively, obtained in section 3.5, if the sampling 

time st  is sufficient small, the position of the target in the next time instant 

can be estimated by 

 
T T T st  X X X   (4.20) 

In order to track the target promptly, the instantaneous velocity of the 

end-effector can be set to align with the vector defined by T E X X . 

Normalizing the vector yields 

 T E
ET

T E











X X
n

X X
  (4.21) 

Define a scalar factor 0  , such that the instantaneous velocity of the 
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end-effector can be expressed as 

 
E ET X n   (4.22) 

Substituting Eq. (4.22) into Eq. (4.11) leads to 

 †

r ET Θ= J n   (4.23) 

Let ,  i ijp  and 
ET jn   be the elements of †,  rΘ J  and ET n , respectively. 

Then Eq. (4.23) can be decomposed into n  equations, such that 

 
1

, 1,2, , .
m

i ij ET j
j

p n i n  



    (4.24) 

Applying the joint velocity limits defined in Eq. (4.17) to each of the 

right-hand sides in Eq. (4.24) leads to 

 max max
1

, 1,2, , .
m

i ij ET j i
j

p n i n  



      (4.25) 

The inequalities in Eq. (4.25) are solved for   with the consideration of 

0  . Then intersect each of the solution intervals, denoted by 1 2, , , n   , and 

take the upper bound of the intersection as the solution for  , such as 

  1 2max n      (4.26) 

Once   is determined, evaluating Eq. (4.23) yields the joint velocity of 

the end-effector. The control input for the robotic manipulator in the next 

sampling step is obtained by the product of the joint velocity and sampling time, 

the same as in the interception-point-driven approach. 

After the end-effector moves one step towards the target, the procedure 
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is repeated until the capture requirements are achieved. It is worth pointing 

out that since the instantaneous velocity of the end-effector is always pointing 

to the target in the next time instant, the possibility of losing track of the target 

by the vision system is greatly reduced. 

 

4.4 Stability Analysis 

Define the tracking error of the robotic capture as 

 T E E X X   (4.27) 

 
T E E X X   (4.28) 

Further define the Lyapunov function as 

 
1

2

TV E E  (4.29) 

Then taking the first order time derivative of Eq. (4.29) leads to 

 
TV E E   (4.30) 

4.4.1 Stability of the IPD approach 

From Eq. (4.12) and Eq. (4.13) we have 

 
E E T Tt t  X X X X   (4.31) 

Rearranging Eq. (4.31) and plugging in Eq. (4.27) and Eq. (4.28) yield 

 
1

t
E E   (4.32) 

Substituting Eq. (4.32) into Eq. (4.30) leads to 
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1

0T

t
 V E E   (4.33) 

Because t  is the elapsed time of the capture process and is always 

positive, the IPD approach is asymptotically stable. 

4.4.2 Stability of the TD approach 

The geometry of the TD approach is shown in Figure 4.2. The angle between 

the vector direction of T E E X X  and the vector direction of 
TX  is defined as 

 , and the angle between the vector direction of T E E X X  and the vector 

direction of T E X X  is defined as  .  

 
Figure 4.2 Geometry of the TD approah 

It should be noted that   is an exterior angle of a triangle and   is an 

interior angle of the triangle. Thus, with the consideration that the sampling 

time st  is sufficiently small, the following relationships are true 
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 0 2     (4.34) 

 0      (4.35) 

     (4.36) 

According to the monotonically decreasing property of cosine functions 

in the interval  0,  we obtain 

 cos cos    (4.37) 

 cos 0    (4.38) 

From Eq. (4.21) and Eq. (4.22) we have 

  E T E

T E






 


X X X
X X

  (4.39) 

Substituting Eq. (4.39) into Eq. (4.28) yields 

  T T E

T E






  


E X X X
X X

  (4.40) 

Further substituting Eq. (4.40) into Eq. (4.30) leads to 

  T T T

T T E

T E






   


V E E E X E X X
X X

  (4.41) 

According to the definition of dot product, we have 

 cosT

T T E X E X   (4.42) 

   cosT

T E T E    E X X E X X   (4.43) 

Substituting Eq. (4.42) and Eq. (4.43) into Eq. (4.41) yields 

 cos cosT    V E X E   (4.44) 
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Note that the term cosT X  is the modulus of the speed projection of 

the target along the vector T E E X X , and the term cos   is the modulus of 

the speed projection of the end-effector along the same vector, respectively.  

The assumption that the speed of the end-effector is always greater than 

the speed of the target can be interpreted as 

 T X   (4.45) 

From Eq. (4.37), Eq. (4.38) and Eq. (4.45) we obtain 

 cos cos cosT T    X X   (4.46) 

Thus, 

 cos cos 0T     V E X E   (4.47) 

Therefore, the TD approach is asymptotically stable. 
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Chapter 5 EXPERIMENTAL SYSTEM 

 

Summary: In order to validate the proposed estimation algorithms of the non-

cooperative target experimentally as well as the kinematics-based incremental 

control approaches, experimental systems of the non-cooperative target and 

robotic manipulator are custom designed and built. The supporting hardware 

and chip software of the robotic manipulator, as well as the computer software 

of the target-manipulator system for the experimental validation are designed 

and developed from sketches. The experimental validations of the proposed 

visual servo robotic control strategies have been performed on the customized 

target-manipulator system with eye-in-hand configuration. Theories and 

experimental results have been included in reference E and reference F. 

 

5.1 Non-cooperative Target System 

The target system had been designed and built by [107]. As shown in Figure 

5.1, the target is anchored on the ceiling at the top left corner and driven by 

the stepper motor fixed at the top right corner. By independently operating the 

target system, a non-cooperative target is generated for experimental 
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validation. The stepper motor is driven by the Little Step-U controller, a 

product from TLA Microsystems Ltd. A USB to serial adapter cable is then 

adopted for the connection interface conversion.  

 
Figure 5.1 Non-cooperative target system 

 

5.2 Robotic Manipulator System 

The customized robotic manipulator is a Pieper configuration [111] with an 

eye-in-hand camera mounted closely to the end-effector. The mechanical 

design, machining and assembly had been accomplished by [107]. As shown in 

Figure 5.2, the robotic manipulator consists of three main revolute joints 

driven by stepper motors and a dexterous end-effector driven by servo motors. 

The main joints, namely torso, shoulder and elbow, are denoted by 1 , 2  and 

3 , respectively.  
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As a mechatronic system, electronic hardware plays an important role 

in the robotic manipulator. Electronic devices, such as the self-developed shaft 

encoder readers, stepper motor drivers, servo motor driver, etc., require 

communication with desktop computer. Since each of the devices may have 

different connection interfaces, they are all converted to the standard USB 

interface for a concise hardware network. 

 
Figure 5.2 Customized robotic manipulator 

5.2.1 Shaft encoder reading circuit 

In order to measure the joint configuration of the robotic manipulator in real 

time, three optical shaft encoders are mounted in the main joints. The adopted 

encoder is the E8P-400-250-D-H-M-B as shown in Figure 5.3, a product from 
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US Digital. The resolution is 0.9 , or 400 cycles per revolution (CPR), and the 

output are two TTL signals, A and B, with 90  phase difference. Viewed from 

the cover side of the encoder, A leads B indicates a clockwise (CW) rotation 

while B leads A indicates a counterclockwise (CCW) rotation. 

 
Figure 5.3 E8P Shaft encoder, a product from US Digital 

 
Figure 5.4 Definition of the rotation direction of the encoder 

In order to obtain the rotation angle from the encoder, an intuitive way 

is to record the number of pulses of the output signals by an up/down counter. 

As a result, the up/down counting flag and the counting clock have to be 

determined in advance. For ease of description, the counter is set to count up 

on a CW rotation, and count down on a CCW rotation. The schematic circuit 

adopts an edge-triggered D flip-flop to obtain the up/down flag, As illustrated 

in Figure 5.5, where D  stands for data input, CLK  stands for the clock input, 
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U D  stands for the up/down counting direction, Q  is the output, and Q  is the 

inverse of Q . In order to increase the timing margin, the output signals of the 

encoder are treated by an AND gate and an OR gate beforehand.  

 
Figure 5.5 Schematic diagram of D flip-flop and Up/Down counter 

Table 5.1 Truth table of a typical edge-triggered D flip-flop 

D  CLK  Q  Q  

0 Trigger edge 0 1 

1 Trigger edge 1 0 

X 0 No change No change 

X 1 No change No change 

 

 
Figure 5.6 Ideal timing diagram of the counting circuit 
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According to the Schematic diagram of the counting circuit and the truth 

table of a typical edge-triggered D flip-flop, as shown in Table 5.1, the ideal 

timing diagram of the counting circuit is illustrated in Figure 5.6. We can see 

the circuit works perfect on the given output signals. However, because the 

resolution of the stepper motor (considering gear boxes) may be higher than 

the encoder, the circuit may be problematic, the timing diagram is shown in 

Figure 5.7. As can be seen that the error accumulates when rotation direction 

switches at every incomplete steps of the encoder. 

 
Figure 5.7 Problematic timing diagram of the counting circuit 

In order to eliminate the problem and feedback the information to the 

desktop computer, a shaft encoder reading circuit is self-developed based on 

the microcontroller (ATMEGA324PA-PU). Figure 5.8 shows the block diagram 

of a dual-channel shaft encoder reader. The microcontroller is programmed 

under Atmel Studio 6.0, where the pin change interrupt (PCINT) of the 

microcontroller is used to detect both the rising and falling edges for the sake 
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of doubling the CPR.  

 
Figure 5.8 Diagram of the shaft encoder reading circuit 

 
Figure 5.9 Workflow of the chip software for shaft encoder reader 

The workflow of the chip software for shaft encoder reader is as shown 

in Figure 5.9. The rising and falling edges of A and B are detected by PCINT 
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of the microcontroller. Once an edge change detected, the electrical level of 

another output signal is checked to determine the counting direction and count 

on edge changes at the same time. The timing diagram of the microcontroller-

based encoder reading circuit is shown in Figure 5.10. By counting on both 

rising and falling edges, the CPR is doubled virtually by the chip software. 

 
Figure 5.10 Timing diagram of double data rate 

 
Figure 5.11 Physical test result of the encoder reader 

The encoder reading circuit is physically tested on a flexible joint robotic 
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manipulator to be described in Chapter 6. By commanding the motor to rotate 

certain angles, the encoder records the angle of the link caused by the flexible 

joint. The test result is shown in Figure 5.11. 

According to Figure 5.8, the connection interface of the encoder reader 

is RS232. Since three shaft encoders are mounted on the joints of the robotic 

manipulator, a USB to four channel RS232 communication module, as shown 

in Figure 5.12, is selected for the interface conversion. 

 
Figure 5.12 USB-COM232-PLUS4, a product from FTDI 

5.2.2 Stepper motor drivers 

The three stepper motors in the main joints are separately driven by Ocean 

Controls KT-5196 bipolar stepper motor controllers. A microcontroller 

(ATMEGA324PA-PU) based circuit with a RS232 interface is self-developed for 

bridging the connection. The chip is programmed in order to perform the 

incremental angular position control. A diagram of the chip software can be 

seen in Figure 5.13. The circuits of the encoder readers and the connection 
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bridge for stepper motor controllers are built as shown in Figure 5.14. 

 
Figure 5.13 Diagram of the chip software for connection bridge 

 
Figure 5.14 Circuits of encoder readers and connection bridge 



58 

5.2.3 Servo motor driver 

As shown in Figure 5.15(a), the servo motors of the end-effector are driven by 

a 32-channel servo motor controller SSC-32, a product from Lynxmotion, Inc 

[112], with a DB9 RS232 connection port. The interface is directly converted 

by a single channel USB to serial adapter shown in Figure 5.15(b). 

 
(a) SSC-32 servo motor controller  (b) USB to serial adapter 

Figure 5.15 Servo motor dirver  

5.2.4 Hardware connection and communication 

Except the adopted camera, QuickCam Orbit AF (model number: V-UCC22), a 

product from Logitech, which comes with corded USB, hereto all the electronic 

devices are converted into USB connection interface. A USB hub, DUB-H7, a 

product from D-link, is then adopted for bridging the devices with the desktop 

computer. A complete hardware connection network of the target-manipulator 

system is as shown in Figure 5.16.  
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Figure 5.16 Hardware network of the target-manipulator system 

From Figure 5.16 we can see, except the camera, the communication 

between all other devices and the computer is asynchronous half duplex in 

accordance with the RS232 protocol. We preset the data format as 8 bits data, 

non-parity and one stop bit for all the devices. The baud rates of the devices 
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are listed in Table 5.2. 

Table 5.2 Settings of baud rate 

Devices Baud Rate (bps) 

Connection bridge for stepper motor driver 9600 

Servo motor driver (SSC-32) 115200 

Target motor driver (Little Step-U) 2400 

Encoder readers 9600 

 

5.3 Computer Software Design 

In order to provide a user-friendly interface, the windows-based computer 

software is developed under the Microsoft Visual Studio 2012 based on the 

Microsoft Foundation Classes (MFC).  

5.3.1 User interface 

The user interface of the computer software, as shown in Figure 5.17, mainly 

consists of three subareas, Vision, Output and Control. As can be seen, the 

subarea of Vision is assigned for displaying the image acquired by the eye-in-

hand camera, as well as providing interactive functions, such as, selecting the 

region of interest (ROI) of the image by mouse dragging, confirming the 

selection of ROI by single hit of the space key, displaying the ROI in red 

rectangle, displaying corners within the ROI, displaying system time, and 



61 

other useful information during the experiments. Then the subarea of Output 

is used to display debug information and prompt messages of hardware status, 

workflow steps, and so on. Finally the subarea of Control conducts the main 

operations of the target-manipulator system. The functions include but are not 

limited to serial port mapping, hardware initialization, experimental settings, 

program run/stop, joint angles measured by shaft encoder readers, status of 

the end-effector, reset and debug operations of each motors, software 

termination, etc. 

 
Figure 5.17 User interface of the computer software 
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5.3.2 Workflows 

A block diagram of the computer software is shown in Figure 5.18. Once the 

software starts to run, the user interface window is created simultaneously. 

The serial port should be manually mapped to the corresponding electronic 

devices then. By a single click on the Initialization button, the USB and serial 

devices will be initialized and enabled accordingly. If failure occurs on the 

enabling of any devices, the serial ports mapping and connections of hardware 

devices should be checked until all the devices are successfully activated. 

Intuitively, each of the serial ports also has a status indicator. The colors of the 

indicator, dark green, green and red, indicate the serial port is disabled, 

enabled and failure, respectively. Then manual control of the target-

manipulator system, such as commanding each of the motors and resetting the 

system, as well as experimental settings, such as camera configuration and 

control method selection, will be enabled if the devices are open successfully in 

initialization. Meanwhile, an interrupt service routine (ISR) for receiving data 

from serial ports of encoder readers, and a new thread for the visual servo 

robotic control are created as well. By clicking the Run/Stop button, the global 

flags will be set to enable/disable the visual servo robotic control. The computer 

software can be terminated at any time for safe operation of the mechatronic 

system by a single click on the Quit button.  
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Figure 5.18 Block diagram of the computer software 

To introduce the key part in details, the workflow of the visual servo 

robotic control thread is concisely shown in Figure 5.19. After the thread being 

created, the target tracker is a looped function used to detect the corners within 

ROI, track the target motion and output image coordinates of the feature 

centers for target estimation. By applying the target estimation algorithm and 

the robotic control approach, if enabled, the incremental joint position is 

generated for the robotic manipulator. Considering the transmission 

mechanism and the resolution of stepper motors, the incremental joint position 

is converted to a number of steps and rotational directions. The commands are 
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then executed via writing to the serial port. It should be noted that if the 

estimation or control is not enabled, or the ROI is not selected yet, the thread 

will only loop on displaying the image for visual observation at the moment of 

experimental setting and/or manual control of the target-manipulator system 

being performed. 

 
Figure 5.19 Workflow of the visual servo robotic control thread 
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Chapter 6 FLEXIBLE JOINT ROBOTIC MANIPULATOR 

 

Summary: In this chapter, the modeling and control of a single rigid-link 

flexible joint robotic manipulator is investigated. To validate the proposed 

control method, hardware and software of a flexible-joint testbed is self-

developed. The experimental results and discussion are presented accordingly. 

 

6.1 Flexible Joint Robotic Modeling 

In order to adapt the misalignment of shafts, a flexible shaft coupling is 

adopted in the first joint of the robotic manipulator described in the previous 

chapter. Therefore, the flexible joint robotic control is investigated here for 

future extension of the robotic control.  

Because the joint position is considered as the control input of robotic 

manipulator throughout this research, the single rigid link flexible joint robotic 

manipulator with consideration of damping and friction can be expressed by 

  
q

Jq Dq K q M
q

       (6.1) 

where J  denotes the inertia of the link, K  denotes the stiffness of the flexible 
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joint, D  stands for the damping factor, M  stands for the friction factor, q  and 

  denote rotational angle of the link and motor with respect to the base, 

respectively. Notes that K , D  and M  are unknown and should be determined, 

except J  that can be calculated according to the shape and mass distribution 

of the link. Assume the joint flexibility is induced by two identical springs 

mounted symmetrically, as illustrated in Figure 6.1. 

 
Figure 6.1 Geometry of the flexible joint robotic manipulator 

Based on the geometry, the joint stiffness in terms of the angle difference 

defined by q    is obtained by 
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  (6.2) 

where 0, , ,l c h   are parameters of the spring installation, 0s  denotes the 

original length of the spring and sk  denotes the stiffness of the spring. 
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Figure 6.2 Profile of the nonlinear joint stiffness 

The profile of the nonlinear joint stiffness versus   is shown in Figure 

6.2. Since D  and M  are related to the physical configuration, they are 

determined after the testbed is physically built by tuning the parameters in 

simulation to match the experimental results. 

 

6.2 Flexible Joint Robotic Control 

If the natural frequency   and damping ratio   of the flexible joint caused 

vibrations are known, then the percentage residual vibration of input shaping 

can be described by 

      
2 2

, , ,ntV e C S         (6.3) 
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    2

1

, sin 1i

n
t

i i
i

S Ae t   


    (6.5) 

where iA  and it  denote the amplitude and the applied time of a sequence of 

control input impulses.  

According to Figure 6.2, because the joint stiffness is nonlinear and 

varies to  , the  of the induced vibration will also be a variable. For 

simplicity, we take the average value of maximum and minimum, denoted by 

0 , into account to determine the iA  and it  for a predefined  ,V   . A two-

hump EI shaper is obtained as per [97] 
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Therefore, the two-hump EI shaper, denoted by P , is given by 

 
1 2 3 4
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P
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 
  
 

  (6.9) 

In order to address the shortcoming of open-loop input shaping, an 

impedance controller in joint space is developed without the consideration of 

external force. Define the objective impedance function as  
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       0d d dm q q b q q k q q        (6.10) 

where , ,m b k  are control parameters, and dq  denotes the desired link angle 

after the treatment of input shaping. 

Solving for q  from Eq. (6.10) and substituting into Eq. (6.1) lead to 

    
1

d d d

b k q
q J q q q q q Dq M

K m m q


  
         

  
  (6.11) 

Equation (6.11) defines the control input of motor angle. The block 

diagram of the flexible joint robotic control is shown in Figure 6.3. The desired 

link angle is treated by the input shaper first, then a closed-loop impedance 

controller is adopted to generate the joint position control input for the actuator. 

 
Figure 6.3 Diagram of the flexible joint robotic control 

 

6.3 Experimental setup 

A single rigid-link flexible-joint robotic manipulator is illustrated in Figure 6.4. 

A servo motor is mounted on the base board, and is employed as the driver of 

the rotary base. A bearing is mounted between the rotary base and the link, 

which makes the link only be driven by the two springs. Two shaft encoders 
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are also adopted to record the angular position of motor and the error position 

between link and rotary base. Because the flexible joint is modeled by two 

extension springs, the joint flexibility is subject to the error between link angle 

and motor angle.  

 
Figure 6.4 PorE model of the flexible joint robotic manipulator 

 
Figure 6.5 Testbed of flexible joint robotic manipulator 
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According to the mechanical design shown in Figure 6.4, the flexible 

joint robotic manipulator is then machined and assembled, as shown in Figure 

6.5. The hardware and computer software are also developed. The properties 

of the customized single rigid-link flexible joint robotic manipulator is as listed 

in Table 6.1. 

Table 6.1 Properties of the flexible joint robotic manipulator. 

Properties Values 

Maximum torque of the motor 17 kg./cm. 

Mass of the rotational base 376.5g 

Mass of link 249g 

Length of the link 0.4318 m ~ 0.508m 

Resolution of the encoders 400 CPR 

Baud rate of encoder readers 9600 

Baud rate of motor driver (SSC-32) 115200 

 

6.4 Experimental results 

Experiments are carried out on the testbed. It can be seen from Figure 

6.6 that the flexible joint caused oscillation of the link angle is successfully 

suppressed by the proposed two-part control scheme. The desired angle of the 

link with respect to the base is achieved within one second, which is much 

smaller than the stabilization time of free oscillation. The experimental result 
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demonstrates the effectiveness of the flexible joint robotic control approach. 

 
Figure 6.6 Experimental result of flexible joint robotic control 
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Chapter 7 CONCLUSIONS 

 

Summary: This chapter summarizes the contributions and future research 

directions for the continuation of the current work. 

 

7.1 Summary of Contributions 

This work in this dissertation is focused on the development of vision-based 

robotic manipulator control for autonomous capture of non-cooperative targets. 

The contributions are summarized as follows. 

7.1.1 Vision-based target estimation 

The current work develops an integrated algorithm of EKF and 

photogrammetry for the position and velocity estimation of non-cooperative 

targets based on the pinhole camera model. The computational time of the 

EKF-based approach in each cycle is nearly constant, which is desired in the 

real time control since this time will affect the sampling rate. However, due to 

the first order approximation of the target motion, the EKF-based approach 

may lead to poor performance if the target motion in the camera frame is highly 
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nonlinear. In order to compensate the error in EKF-based approach, an AEKF-

based approach is adopted and tested with an eye-in-hand configuration 

robotic manipulator system, where the estimated motion of the target is 

coupled with the motion of the robotic manipulator and is highly nonlinear 

with respect to the camera. The largest estimation errors of the EKF-based 

approach in the experiment were around 10 centimeters in position and 40 

degrees in rotation, where the target motion was generated manually. As a 

comparison, the AEKF-based approach improves the accuracy to less than 1 

centimeter in position and 1 degree in rotation. 

7.1.2 Robotic control theory 

Two kinematics-based incremental control approaches are proposed for the 

robotic capture, IPD and TD, to avoid the inverse kinematics in position level 

by considering the incremental joint position as control input and angular 

velocity limits as constraints. The IPD approach directly adopts the 

dynamically predicted interception point as the desired position of the end-

effector. It ensures a minimum time capture by moving the end-effector 

towards the target along a shortest path within each time interval. In contrast, 

the TD approach adopts the target position in the next time instant as the 

desired position. It can greatly reduce the possibility of target loss relative to 

the IPD, when the robotic manipulator equipped with eye-in-hand camera. 
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7.1.3 Validation 

The proposed estimation algorithms and robotic control approaches are 

validated by hardware-in-the-loop simulation as well as experiments. A custom 

eye-in-hand configured robotic manipulator is upgraded. Reading circuit of 

shaft encoders are designed and added to measure the joint position. 

Furthermore, the electronic hardware and chip software of the robotic 

manipulator are completely upgraded. A Windows-based computer software 

with user-friendly operation interface is developed and implemented. 

7.1.4 Flexible joint modeling and control 

The modeling and control of flexible joint robotic manipulator is investigated 

for future research of robotic control with joint flexibility. The flexible joint 

caused oscillation of the link angle is successfully suppressed by the proposed 

two-part control scheme. In the experiment, a desired link angle of 20 degrees 

is achieved at around one second, which is much smaller than the stabilization 

time of free oscillation (around four seconds). 

 

7.2 Future Work 

Based on current study, the following research is suggested to continue and 

expand the current work.  

(i) A hybrid eye-in-hand and eye-to-hand configuration is suggested to 

maximize the advantages of each while overcoming the limitations. 
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Accordingly, the target estimation can be performed in switch mode 

or calibration mode for the sake of improvement of accuracy and 

robustness. 

(ii) Free-floating-based robotic manipulator system for space application. 

(iii) Post-capture robotic control for stabilizing the target-manipulator 

system is another important topic in robotic capture.  

(iv) Control schemes that consider the flexible links and/or flexible joints 

to improve the control accuracy and robustness. 

(v) Obstacle avoidance and trajectory planning to ensure a safe 

approach and capture. 
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a b s t r a c t

This paper concerns the position-based visual servo control of autonomous robotic
manipulators in space. It focuses on the development of a real-time vision-based pose
and motion estimation algorithm of a non-cooperative target by photogrammetry and
extended Kalman filter for robotic manipulators to perform autonomous capture. Optical
flow algorithm is adopted to track the target features in order to improve the image
processing efficiency. Then, a close-loop position-based visual servo control strategy is
devised to determine the desired pose of the end-effector at the rendezvous point based
on the estimated pose and motion of the target. The corresponding desired joint angles of
the robotic manipulator in the joint space are derived by the inverse kinematics of the
robotic manipulator. The developed algorithm and position-based visual servo control
strategy are validated experimentally by a custom built robotic manipulator with an eye-
in-hand configuration. The experimental results demonstrate the proposed estimation
algorithm and control scheme are feasible and effective.

& 2015 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Robotic manipulators have been widely used in space
for docking, assembling, repairing and other on-orbit
servicing operations [1–5]. For instance, Mobile Servicing
System (MSS) or Canadarm2 [6], Japanese Experiment
Module Remote Manipulator System (JEMRMS) [7] and
European Robotic Arm (ERA) [8] are typical examples of
robotic manipulators performing assembly, maintenance,
and payloads exchanging tasks on International Space
Station. These operations were conducted either autono-
mously or by human astronauts. Robotic manipulators
mounted on Mars exploration rovers, such as, Viking 1
and 2 [9], Spirits and Opportunity [10], Phoenix [11] and
Curiosity [12], were designed to collect soil samples and/or
place instruments on a target. These tasks were performed

by preprogrammed commands and controlled from the
Earth directly or relayed by the Mars Orbiter. Cameras
were used in these missions to monitor the movements of
the manipulators and take photographs of the surround-
ings. Robotic manipulators of orbital docking systems,
such as the Shuttle Remote Manipulator System [13] and
Orbital Express [14], performed tasks of grappling, dock-
ing, refueling, repairing and/or servicing another space-
craft. Pure experimental systems, such as, ROTEX (Robot
Technology Experiment) and ETS-VII (Engineering Test
Satellite) [15] demonstrated the operations of assembling,
grasping, docking and exchanging orbit replaceable units
by robotic manipulators. Most of these missions employed
human-in-the-loop control. Manual control from the Earth
may result in long time delay, while sending astronauts
into space to perform the tasks suffers higher cost and the
possibility of life loss. To address these challenges, auton-
omous control is required and becomes a research high-
light in the field of robotic technology [16,17].
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Autonomous control of robotic manipulator to track
and grasp a moving target requires the precise knowledge
of the target's pose and motion. Because of the non-
intrusive, non-damaging and non-contact nature, compu-
ter vision is favored exclusively as a sensing system to
obtain the required information [2,16,18–22]. Accordingly,
visual servo control system has been developed to control
the pose of manipulator's end-effector with respect to the
target based on the feedback of vision system. For
instance, the position of a known moving object in the
image plane can be tracked with a single mobile camera
based on past images and past control inputs to the mobile
platform [23]. The autonomous capture of a non-
cooperative target by a robotic manipulator requires not
only to track the motion of target [24,25] but also to
predict the rendezvous point and follow a specific
approaching trajectory by the end-effector based on the
estimated pose and motion of the target [16,19].

The camera configuration in a visual servo robotic
system can be either eye-in-hand or eye-to-hand [26].
The eye-in-hand camera is mounted on the end-effector to
provide a close and precise view of the target while the
eye-to-hand camera is installed beside the robot to moni-
tor the whole workspace with a broad and relative less
accurate scene of the target [27]. Based on the errors
employed in control, the robotic visual servo may be
categorized as: image-based, position-based, and hybrid
visual servo [28,29]. The image-based visual servo (IBVS)
controls robots by the error between the projected desired
and actual positions in the 2D (two dimensional) image
plane via an image Jacobian without reconstruction of the
target. Thus, it is free from target model errors and less
sensitive to camera calibration errors and measurement

noise in images. Considerable efforts [30,31] have been
devoted to track moving targets in 3D (three dimensional)
space with eye-in-hand cameras using IBVS. Extended
Kalman filter was introduced into the IBVS algorithm to
address the navigation errors and actuation delays [32].
The perturbation to eye-in-hand cameras by the flexibility
of robotic manipulator [33] was investigated to enhance
the robustness of IBVS algorithm. However, the IBVS lacks
3D depth information of a target and additional measure is
required to estimate the depth. The position-based visual
servo (PBVS) controls the error between the desired and
actual poses and motion of the end-effector directly in the
3D workspace. The advantage of the PBVS is that the pose
of end-effector can be controlled relative to the target
directly and naturally, while the drawbacks are that the
pose and motion estimation is prone to camera calibration
errors, target model accuracy, and image measurement
noise. These challenges have been successfully addressed
by many researchers to eliminate image errors caused by
an uncalibrated camera [34,35] and suppress the image
noise due to the vibration of camera resulting from flexible
manipulators [36]. Finally, the hybrid visual servo, referred
as 2½D visual servo in the literature, evaluates the control
errors partially in the 3D workspace and partially on the
2D image plane. Although effective, the hybrid system is
generally more complex than either IBVS or PBVS for
implementation. In the current work, we adopted a single,
calibrated and eye-in-hand camera with PBVS to simplify
the system configuration and implementation in autono-
mous capture of non-cooperative targets.

The key issue in the autonomous capture of non-
cooperative targets by PBVS robotic manipulator is the
estimation of target's pose and motion with visual feedback

Nomenclature

A system transformation matrix
B process noise coefficient matrix
E residual error in the measurement
f focal length of the camera
H Jacobian matrix of measurement model
I identity matrix
Jc Jacobian matrix of the pin-hole camera model
Jr Jacobian matrix of the robotic manipulator
P covariance matrix of system state variable
Q covariance matrix of process noise
R covariance matrix of measurement noise
t sample time
X state variable
Z measurement vector
( . )C control vector
( . )d desired vector
( . )t vector of the target
(∙)C coordinates in camera frame
(∙)m image coordinates
(∙)T coordinates in target frame
(∙)To coordinates of target frame origin in

camera frame

d6 variable of robotic gripper
dXp correction term of the photogrammetry
Kg Kalman gain
RTC rotational matrix from target frame to

camera frame
RCT rotational matrix from camera frame to

target frame
Tcg transformation matrix from camera frame to

global frame
Xc position of the grasp point in camera frame
Xg position of the grasp point in global frame
Xp photogrammetry estimated target pose in

camera frame
δ vector of image error
ε pre-set tolerance of photogrammetry
μ measurement noise vector
ω process noise vector
Θ main robotic joint angle vector
ΔT estimated time for capture
θ1,2,3,4,5 angle of torso, shoulder, elbow, wrist roll and

wrist yaw joints
θx,y,z target orientation refer to x, y, z axes of

camera frame
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to reconstruct the target in 3D space. The pose and motion
estimated by the eye-in-hand camera in PBVS are prone to
image jittering, residual vibration and unexpected distur-
bances of camera or the end-effector. Considerable efforts
have been devoted to extract information from visual
images in the past decades [37–40]. Different methodologies
have been developed, such as, analytic or geometric method,
learning-based method, offline method and filtering
method. The geometric method, such as the photogramme-
try, is widely used when the camera is properly calibrated
and the target is known. It extracts six degrees of freedom
information (pose) of the target from 2D images. However,
the geometric method is memoryless and its result is noisy
if the image data is not smooth either due to the jittering of
image processing or the mechanical disturbance of the end-
effector in case of eye-in-hand camera. The learning-based
method requires a sufficient large set of images of target in
different poses, which is usually not available when the
target is non-cooperative. The offline methods are not
suitable for the robotic manipulator to track, approach and
capture the target in real-time. Another potential solution
for the estimation of pose and motion is filtering. Kalman
filter (KF) is a widely used filtering algorithm to estimate
unknown variables based on a set of noisy measurements
observed over time with initial conditions. Since being
proposed in 1960 [41], the KF has been applied widely with
many variations and extensions beyond the original pro-
posed linear system [42]. Although the initial conditions do
not change the convergence property of the KF, they do
affect the performance of the filter, especially when dealing
with the non-cooperative target in real-time where the
initial conditions are unknown.

The focus of this study is to improve the estimation of
pose and motion in real-time PBVS control to address the
challenges of image jittering and disturbances of camera
caused by the flexibility in joints, actuation delays and
rough motion of stepper motor. In our previous PBVS work
[16], the challenges were studied by a dual KF approach
where the first KF was introduced in the image space and
the second KF was used in the 3D space. The first KF not
only reduces the image noise due to jittering to prevent
the errors propagating into photogrammetry algorithm
but also provides substitute image data momentarily to
enhance the tracking robustness in case of an outrage in
the vision system occurs. The second KF was designed to
suppress impact of the residual vibration and unexpected
distribution of the camera and the sudden motion of a
target. Although effective, the approach is computational
cumbersome and increases the actuation delay. To address
the issue, a new methodology was developed in the
current work to integrate the photogrammetry and
extended Kalman filter (EKF) to estimate the target's pose
and motion in real-time for PBVS. Combining with the
inner closed-loop control of robotic manipulator, the visual
estimation of pose and motion of a target as well as the
control errors in 3D space forms an outer closed-loop
control. It is worth pointing out that the effectiveness of
EKF in improving the robustness of visual servo [32,33] has
also been demonstrated in IBVS. For instance, the EKF
introduced in the image space not only improves the
estimation accuracy of target's kinematics state but also

substitutes state estimates when the target is lost locking
[33]. These works showed that the introduction of EKF into
IBVS is effective to prevent the tracking failure in a
dynamic situation due to image noises and actuation
delay. The current approach is validated experimentally
by a custom-built robotic manipulator [16] with an eye-in-
hand camera mounted closely to the end-effector. The
experimental results demonstrate the effectiveness and
robustness of the proposed approach by successfully
tracking, approaching and capturing a non-cooperative
target autonomously.

2. Position-based visual servo of robotic manipulator

2.1. Camera model and photogrammetry

The pose of a target can be described by the Cartesian
coordinates xTo; yTo; zTo

� �T of a target-fixed frame origin
and the Euler angles of that frame θx; θy; θz

� �T regarding to
the camera frame. The rotational matrix from the camera
frame to the target frame, RCT , can be developed by
rotating x-axis of the camera frame by θx first and followed
by rotating y-axis of the camera frame by θy and rotating z-
axis of the camera frame by θz. Accordingly, the rotational
matrix from the target frame to the camera frame can be
expressed as RTC ¼ RCT

T , such that

RTC ¼
CyCz �CySz Sy

CxSz þ SxSyCz CxCz�SxSySz �SxCy

SxSz�CxSyCz SxCzþCxSySz CxCy

2
64

3
75 ð1Þ

Here, Sx ¼ sin θx; Sy ¼ sin θy; Sz ¼ sin θz Cx ¼
cos θx;Cy ¼ cos θy;Cz ¼ cos θz:

Assume the coordinates, xT ; yT ; zT
� �T , of a feature point

on the target are known in the target frame, which implies
the vision system is calibrated in advance. Then, the
homogeneous relationship between the target and camera
frames can be described by

xC
yC
zC
1

8>>><
>>>:

9>>>=
>>>;

¼
RTC

xTo
yTo
zTo

0 0 0 1

2
66664

3
77775

xT
yT
zT
1

8>>><
>>>:

9>>>=
>>>;

ð2Þ

where xC ; yC ; zC
� �T is the coordinates of the same point in

the camera frame.
Consider a pinhole camera model as shown in Fig. 1,

denote rij for elements of RTC . The feature point on the
target is projected onto the image plane by Eq. (3), such as

xm ¼ � f
xC

yC� f
¼ � f

r11xT þr12yT þr13zT þxTo
r21xT þr22yT þr23zT þyTo� f

zm ¼ � f
zC

yC� f
¼ � f

r31xT þr32yT þr33zT þzTo
r21xT þr22yT þr23zT þyTo� f

8>><
>>: ð3Þ

where f stands for the focal length of the camera and
xm; zmf gT denotes the projected image coordinates of the
feature point. For a calibrated camera, the focal length is
known in advance.

Defining η¼ yC� f in Eq. (3) leads to

ηxmþxCf ¼ 0
ηzmþzCf ¼ 0

(
ð4Þ
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Further define the left side of Eq. (4) by F ¼ ηxmþxCf
and G¼ ηzmþzCf , where F and G are functions of the target
pose in the camera frame and the projected image coordi-
nates of the feature point on the target. Linearizing F and G
by the Taylor expansion in the vicinity of
xm; zm; xTo; yTo; zTo; θx; θy; θz

� �T leads to

E2�1þδ2�1 ¼ Jc 2�6dXp 6�1 ð5Þ
where

E2�1 ¼
dxm
dzm

( )
; δ2�1 ¼

1
η

F0
G0

( )
;

dXp 6�1 ¼ dxTo; dyTo; dzTo; dθx;dθy; dθz
� �T

;

Jc 2�6 ¼ �1
η

∂F
∂xTo

� �
0

∂F
∂yTo

� �
0

∂F
∂zTo

� �
0

∂F
∂θx

� �
0

∂F
∂θy

� �
0

∂F
∂θz

� �
0

∂G
∂xTo

� �
0

∂G
∂yTo

� �
0

∂G
∂zTo

� �
0

∂G
∂θx

� �
0

∂G
∂θy

� �
0

∂G
∂θz

� �
0

8><
>:

9>=
>;:

Eq. (5) contains two independent equations for six
unknowns (pose of target). Theoretically, one needs only
three feature points to solve for the six unknowns. How-
ever, this approach may result in four ambiguous poses
[28,29]. To eliminate the ambiguity and increase the
robustness, minimum four feature points are widely
adopted in literature, which leads to eight equations with
six unknowns, such that

E8�1þδ8�1 ¼ Jc 8�6dXp 6�1 ð6Þ

The unknowns are solved by an iterative least square
approach assuming the zero residual error in the measure-
ment, such that

E8�1 ¼ 0; dXp 6�1 ¼ ðJTc 8�6Jc 8�6Þ�1JTc 8�6δ8�1 ð7Þ

By inputting the known image coordinates of feature
points and an initial guess of the target pose, the algorithm
iterates to correct previous guess until the correction is
less than a pre-set tolerance, i.e., ‖dXp‖rε. In practice, it is
common to use the previous target pose as the initial
guess to reduce the iterations. As aforementioned, the
photogrammetry is memoryless and prone to the image

noise, which may result in large fluctuation of estimated
target pose. Thus, the computational time of photogram-
metry may increase if the initial guess, which is the
previous pose as mentioned, is far away from the current
pose. As a result, the sampling time-step of vision system
may be adjusted, which is not desirable when dealing with
real-time pose estimation. Another shortcoming of the
photogrammetry is that it does not estimate the motion of
target directly, which is an important parameter for
trajectory planning of the robotic manipulator to perform
autonomous capture in a dynamic environment. To
address these challenges, an extended Kalman filter
(EKF) with photogrammetry is presented in the following.

2.2. Extended Kalman filter

The Kalman filter is an optimal estimation algorithm for
a linear system with independent white noise of normal
distribution [41,42]. The camera model in Eq. (3) is highly
nonlinear and the extended Kalman filter has been
adopted to estimate the pose and motion of a dynamic
target. Assume the motion of the target is approximately
constant within the sampling interval if the sampling
time-step is sufficiently small. Then, the motion of the
target can be approximated by the first order equation of
motion. Define the system variable vector as

X ¼ xTo; _xTo; yTo; _yTo; zTo; _zTo; θx; _θx; θy; _θy; θz; _θz
� �T

By assuming the system's acceleration vector
ω¼ €xTo; €yTo; €zTo; €θx; €θy; €θz

� �T
as the process noise with a

normal distribution with zero mean and covariance matrix
Q , the system model is expressed as

Xk ¼ AXk�1þBωk�1 ð8Þ

where

A¼ diag A1 A1 A1 A1 A1 A1
� �

; A1 ¼
1 t
0 1

� 	
;

cx
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Fig. 1. Pin-hole camera model.
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B¼ diag B1 B1 B1 B1 B1 B1
� �

; B1 ¼
t2=2
t

( )
:

k is sample time-step and t is the sample time.
The measurement model is developed from the pin-

hole camera model in Eq. (3) for n feature points, such that

Zk ¼ h Xkð Þþμk

Z ¼ xm1; zm1;⋯xmn; zmnf gT ; h Uð Þ ¼ hx1;hz1;⋯hxn;hzn
� �T

ð9Þ
and

hxi Xð Þ ¼ � f
xCi
ηi
; hzi Xð Þ ¼ � f

zCi
ηi

ð10Þ

where μ is the measurement noise that obeys a normal
distribution with zero mean and covariance matrix R.

The EKF requires initial conditions and measurements
observed over time. Since initial conditions of a non-
cooperative target are unknown, an inappropriate initial
guess may lead to poor performance of the EKF. To
improve its performance and accelerate the convergence
rate, we initialize the state variable vector by the photo-
grammetry in the algorithm. Based on the above defini-
tions, a recursive pose and motion estimation algorithm is
derived as shown in Table 1, where H is the Jacobian
matrix formed by the first order partial differential of the

measurement model respect to system variable, Kg is the
Kalman gain at time step k, P is the covariance matrix of
the system state variable, Q and R are the process and
measurement noise covariance matrices.

2.3. Kinematics of robotic manipulator

The autonomous capture will be conducted by a
custom-built six degrees of freedom (6DOF) robotic
manipulator with an eye-in-hand configuration as shown
in Fig. 2. The robotic manipulator consists of three links
and one end-effector with five revolute and one prismatic
joints. The eye-in-hand camera is mounted closely to the
end-effector. The first three revolute joints, namely torso
(θ1), shoulder (θ2) and elbow (θ3), control the position of
the end-effector while the last two revolute joints and one
prismatic joint, namely wrist roll (θ4), wrist yaw (θ5) and
gripper (d6), provide dexterous orientation and griping
function for capture operation. Thus, the translation and
rotation of the end-effector can be considered separately
from the wrist to simplify the controller design.

The kinematics of robotic manipulator provides the
forward relationship from the joint angles to the position
of the end-effector (the wrist center), such that

Xg ¼Kf Θð Þ ð11Þ

where Θ¼ θ1; θ2; θ3f gT .

Table 1
Pose and motion estimation algorithm.

1. Given an initial guess of target pose: Xp ¼ Xp0;
2. Input measurement;
3. Start photogrammetry loop
4. {
5. evaluate pin-hole camera model Jacobian Jc and image error vector δ;
6.

calculate pseudo-inverse of Jacobian: Jc
þ ¼ Jc

T Jc
� ��1

Jc
T ;

7. calculate previous-guess-correction: dXp ¼ Jc
þ δ;

8. if (‖dXp‖otolerance)
9. {break;}
10. else
11. {Xp ¼ XpþdXP;}
12. }
13. Return Xp;
14. Augment to state variable: X0 ¼ Xp ; _Xp

� �
;

15. Initialize EKF: X0 (initial state variable),
P0 (state variable covariance matrix),
Q (process noise covariance matrix),
R (measurement noise covariance matrix);

16. Start EKF loop
17. {
18. estimate next state variable and covariance matrix:

Xkjk�1 ¼ AXk�1jk�1

Pkjk�1 ¼ APk�1jk�1A
T þBQBT

19. evaluate Jacobian of measurement model: Hk ¼ ∂h Xð Þ=∂X



X ¼ Xkjk� 1

20. calculate Kalman gain:

Kg ¼ Pkjk�1H
T
k HkPkjk�1H

T
k þR

� ��1

21. update state variable and covariance matrix:
Xkjk ¼ Xkjk�1þKg Zk�h Xkjk�1

� �� �
Pkjk ¼ Pkjk�1�KgHkPkjk�1

22. record and output: Xkjk , Pkjk;
23. }
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Thus, the velocity of the end-effector can be derived by
taking the time derivative of Eq. (11)

_Xg ¼ Jr _Θ ð12Þ
where Jr is the Jacobian matrix of the robotic manipulator
formed by joint angles.

Eqs. (11) and (12) form the forward kinematics of the
robotic manipulator. The actuators are step motors at joints,
which drive the end-effector to the desired position by
achieving the desired joint angles. Thus, the transformation
of position to joint angles, namely inverse kinematics,
should be derived in advance. It is well known that the
robotic inverse kinematics may have multiple-solutions due
to the periodicity of trigonometric functions. In order to

obtain a unique solution of joint angles based on Eq. (11),
we introduced additional constraints, such as mechanical
configuration and motion limits as per [16] in addition to
the following inverse kinematics

Θ¼ ~K f
�1

Xg ; _Θ¼ Jr
�1 _Xg ð13Þ

2.4. Desired state of the end-effector

The desired state of the end-effector is defined as the
pose and motion of a target in the dynamic PBVS. Since the
pose and motion of a target are estimated relative to the
camera frame, they must be transformed to the global
frame first, such that

Xg ¼ TcgXc ð14Þ

_Xg ¼ _TcgXcþTcg
_Xc ð15Þ

where Tcg is the transformation matrix from the camera
frame to the global frame.

Denote the position and velocity vectors of a target as

Xt
c ¼ xTo; yTo; zTo

� �T
; _X

t
c ¼ _xTo; _yTo; _zTo

� �T ð16Þ

Then, the desired position and velocity of the end-
effector in the global frame are determined by substituting
Eqs. (14) and (15) into Eq. (16)

Xd
g ¼ TcgXt

c ;
_X
d
g ¼ _TcgXt

cþTcg
_X
t
c ð17Þ

Accordingly, the desired joint angles and angular velo-
cities of the first three joints of the robotic manipulator are
determined by substituting Eq. (17) into Eq. (13), such as

θd1 θd2 θd3
n oT

¼ ~K f
�1

Xd
g ; _θ

d
1

_θ
d
2

_θ
d
3

n oT
¼ Jr

�1 _X
d
g

ð18Þ
Fig. 2. The custom-built 6DOF robotic manipulator.

Fig. 3. Flowchart of the pose and motion estimation algorithm.
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The desired joint angles and angular velocities of the
wrist roll and wrist yaw are defined as

θd4 θd5 _θ
d
4

_θ
d
5

n o
¼ θy θz _θy _θz
n o

ð19Þ

They will be determined separately by the capture
strategy defined below.

2.5. Capture strategy

Once the target's pose and position are estimated by
the EKF, the task of autonomous tracking, approaching and
capturing of the target will be performed by an inner
control loop of the robot. For the dynamic capture, the
robotic manipulator should track and approach the inter-
ception point of the moving target instead of its current

position [16], which is approximately estimated as

ΘI ¼Θdþ _Θ
d ΔTþtð Þ ð20Þ

where t is the sample time of the vision system and
ΔT ¼ ‖Xd

g�Xg‖=‖ _Xg‖
� �

¼ ‖TcgXt
c�Kf ‖=‖Jr _Θ‖

� �
is the esti-

mated time for the end-effector to approach the desired
position from its current position at its maximum allowed
velocity. It should be noted that the purpose of time ΔT is
to provide a lead-time for the controller to estimate the
interception point and the accuracy of its estimate is not
critical. This is because ΔT as well as the error in the
estimation of interception point in Eq. (20) will be reduced
as the robot approaches the target.

Thus, the control for joint actuators with respect to
their current positions is obtained as

ΔΘC ¼Θdþ _Θ
d ΔTþtð Þ�Θ ð21Þ

Once the target is within the capture region of the end-
effector, the control input for the wrist roll and yaw angles
is the errors between the orientations of the griper and the
target, which can be simply defined as

ΔθC4;5 ¼Δθd4;5þ _θ
d
4;5t ð22Þ

The control strategy to activate a capture is given in
[16].

3. Experimental setup

3.1. Robotic manipulator system

The proposed pose and motion estimation algorithm
for the non-cooperative target and the PBVS autonomous
capture by the robotic manipulator are validatedFig. 4. Non-cooperative target system.

x1 (pixel) x0 (pixel)

x3 (pixel)x2 (pixel)

z 2
(p

ix
el

)
z 1

(p
ix

el
)

z 0
(p

ix
el

)
z 3

(p
ix

el
)

Fig. 5. The centroid coordinates of feature points of a stationary target on image plane.
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experimentally. A robotic manipulator with five revolute
joints, one prismatic joint and an eye-in-hand camera
mounted closely to the end effector is custom built to
conduct the autonomous PBVS capture operation, as
shown in Fig. 2. The camera used in the experiment was
a Logitech webcam with 640�480 resolution and 2 mm
focal length. The implementation of the pose and motion
estimation and PBVS control has been done by the Micro-
soft Fundamental Class (MFC) in order to obtain a friendly
human machine interface. The flowchart of the implemen-
tation is shown in Fig. 3. Once the camera is activated, a
separate thread is created simultaneously for the camera
to acquire image data and display them on the computer
screen. After the target is locked, the imaging processing
subroutine is activated to track the motion of feature
points and output their pixel coordinates in sequence.

3.2. Non-cooperative target system

A target with a known pattern of four low-optical-noise
features is designed to facilitate a simple optical locking
and tracking. The target system as well as configuration of
feature points is shown in Fig. 4. The target is driven by a
single stepper motor with programmable speed profile in
the tests. By programming the speed profile of the motor
and isolating the target system from the robot system,
several testing scenarios for the non-cooperative target
can be generated.

The task of imaging processing is to track the center
point of four optical features on the target. It is done by the
Open-CV (Open Source Computer Vision) software. By
applying the cvGoodFeaturesToTrack and cvFindCornerSub-
Pix functions of OpenCV library, the target tracking pro-
gram groups the corners of each project feature image to
extract the centroid coordinates and tracks the centers of
each group by cvCalcOpticalFlowPyrLK function. The
extracted coordinates of the center of each feature of a
stationary target are shown in Fig. 5. It can be seen that the
image noises of each feature points are within an area of
0.5�0.5 pixel due to jittering. Thus, the covariance matrix
of the measurement noise in EKF can be determined
accordingly as, R¼ e2I8�8, where e stands for the metric
dimension of half-pixel. The covariance matrix of process
noise, Q ¼ 10�5I6�6, was determined by trial-and-error.

4. Experimental results and discussion

4.1. Static pose estimation by EKF

The target was stationary in the global frame in the
static pose estimation. It was placed roughly 0.5 m away
from the camera. The pose estimates by the EKF, as shown
in Fig. 6, are compared with the results by photogramme-
try. As expected, the results of photogrammetry fluctuate
around the true pose of the target due to the jittering of
pixel coordinates of features. The jitter distribution in the
experiments was observed as 70.5 pixel as shown in
Fig. 5. It resulted in roughly 0.1 mm translational and 0.41
rotational fluctuations in pose estimation as shown in
Fig. 6(a). This is because the photogrammetry does not
consider the measurement noises of images and

propagates the noises down to the pose estimation. In
contrast, the poses estimated by the EKF are much
smoother than the photogrammetry. The EKF suppressed
the spread of the measurement noises by considering the
effects of measurement noises. The motion estimated by
the EKF is stationary compared with the one estimated
based on the numerical derivation of the photogrammetry
data, which is very noisy and unsuitable for robotic
control, see Fig. 6(b). This experiment demonstrates the
necessity of using the EKF in the PBVS of robots.

4.2. Dynamic pose and motion estimation by EKF

The dynamic pose and motion estimation was done by
manually translating and rotating the target along x; y; z
axes, while the target was roughly 0.5 m away from the
camera. The estimated pose and motion of the moving
target are shown in Fig. 7 together with the results from
the photogrammetry. Fig. 7(a) shows that the positions
estimated by the EKF and photogrammetry are in good
agreement. However, the orientations estimated by the
photogrammetry are noisier than the EKF. It is worth
pointing out that the EKF requires the Jacobian matrix of
measurement model, which induces linearization error.
The stronger the nonlinearity, the more error may be
induced. According to Eq. (3), the nonlinearity of y, θx, θz
are relatively stronger than x, z, θy in the measurement
model. Therefore, it can be seen the test results of y, θx, θz
estimated by the EKF agree with the photogrammetry
better than x, z, θy. In the latter case, the estimates by
the EKF show some delay in phase when the target
experienced sudden motion. Fig. 7(b) shows the motion
estimated by the EKF. As a comparison, the motion
obtained by a simple numerical derivation of the photo-
grammetry data is also plotted. It shows clearly that the
EKF results are much smoother than the photogrammetry
and suitable for robotic tracking control.

4.3. Robotic autonomous capture enhanced by EKF

Once the EKF algorithm is validated, the robotic auton-
omous capture strategy is tested using the custom-built
robotic manipulator. The robotic manipulator always starts
at its home position, i.e., torso 01, shoulder 901 and elbow
01. The speed profile of the target motor is a trapezoidal
with a ramp of two seconds in the dynamic capture
testing. The maximum linear velocity of the target was
set to 1.2 cm/s and the direction of the velocity vector
changed in the course. Fig. 8 shows the test results where
the autonomous capture process was divided into three
phases. Phase 1 is the target searching and locking until
the target was locked by the vision system. In phase 2, the
vision system tracked the motion of the target using
optical flow to increase the imaging process efficiency.
The robot started to track and approach the target based
on the estimated information of pose and motion of the
target. The desired and actual joint angles change simul-
taneously as the end-effector approaches the target. This is
because the position of the target with respect to the eye-
in-hand camera varied continuously when the pose error
between the end-effector and the target diminished.
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However, the estimated desired joint angles were
smoother than the actual joint angles due to some residual
vibration in joints. Furthermore, the target motion caused
the estimated desired joint angles to vary ahead of the

actual joint angles as shown in Fig. 8 because the end-
effector was approaching to the interception instead of the
current target position. Finally in phase 3, the manipulator
successfully captured the moving target.

Fig. 6. Static test results: (a) pose estimation and (b) motion estimation.
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Fig. 7. Dynamic test results: (a) pose estimation and (b) motion estimation.
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5. Conclusion

This paper proposed a real-time PBVS control of auton-
omous robotic capture of a non-cooperative target. A
vision-based pose and motion estimation algorithm of a
non-cooperative target was developed by the photogram-
metry and the extended Kalman filter for robotic manip-
ulators to perform the PBVS autonomous capture. This
methodology adopts the photogrammetry to initialize the
EKF to improve its convergence rate when dealing with
the non-cooperative target case. Optical flow algorithm is
employed to track the target in order to increase the
imaging processing speed for real-time pose and motion
estimation of the non-cooperative target. This is beneficial
for reducing the time delaying in joint actuation. A close-
loop PBVS control strategy is devised to determine the
desired pose and position of the end-effector at the
rendezvous point once the pose and motion of the target
are estimated. The proposed approach was validated
experimentally on a custom-built robotic manipulator
with an eye-in-hand configuration. The experimental
results show that the EKF provided a smooth estimation
of pose and motion of the target and enabled successful
captures of a non-cooperative target. The experiments
demonstrated that the effectiveness and robustness of
the proposed EKF enhanced pose and motion estimation
and the PBVS control strategy.
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a b s t r a c t

This paper presents a real-time, vision-based algorithm for the pose and motion esti-
mation of non-cooperative targets and its application in visual servo robotic manipulator
to perform autonomous capture. A hybrid approach of adaptive extended Kalman filter
and photogrammetry is developed for the real-time pose and motion estimation of non-
cooperative targets. Based on the pose and motion estimates, the desired pose and tra-
jectory of end-effector is defined and the corresponding desired joint angles of the robotic
manipulator are derived by inverse kinematics. A close-loop visual servo control scheme is
then developed for the robotic manipulator to track, approach and capture the target.
Validating experiments are designed and performed on a custom-built six degrees of
freedom robotic manipulator with an eye-in-hand configuration. The experimental results
demonstrate the feasibility, effectiveness and robustness of the proposed adaptive
extended Kalman filter enabled pose and motion estimation and visual servo strategy.

& 2016 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Robotic manipulators have achieved great successes in
industrial and space applications to perform tasks that are
dangerous, complex, and even impossible to be conducted
by human beings [1–4]. Specifically, the autonomous
capture of non-cooperative targets by robotic manip-
ulators is one of the research highlights in the robotic field
[5–8]. For instance, the control for on-orbit space manip-
ulators during grasping, docking and post-docking was
studied in [7,8]. Regarding to non-cooperative target, one
of the critical challenges arises from such a task is the
accurate pose and motion estimates of the target [5,9] in
order to define the end-effector's pose and trajectory
[10,11]. Generally, the target is unknown to the robot and
the vision system is extensively used for pose and motion

estimation of the target due to its non-intrusive, non-
damaging and non-contact nature, seen in [2,5,9,12–15].
The configuration of the vision sensing in a visual servo
robotic system can be either eye-in-hand or eye-to-hand
[16]. The eye-in-hand provides a detailed and accurate
scene of the target while the eye-to-hand monitors the
whole workspace with less accuracy [17]. Based on the
error used in the feedback control loop, the visual servo
can be cataloged as position-based, image-based and
hybrid visual servo as per [18,19]. The critical issue to
perform autonomous capture of non-cooperative targets
by visual servo is the precise estimation of pose and
motion of the target in a dynamic environment.

Considerable effort has been devoted to extract infor-
mation from visual images in the past [20–23]. Different
methodologies have been developed, which can be dis-
tinguished generally into four categories: analytic or geo-
metric method, optimization-based method, offline
method and filtering method. The geometric method, such
as the photogrammetry, is widely adopted if the camera is
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calibrated and the geometric features of target are known
in advance. It extracts pose information about six degrees
of freedom (DOF) of the target from two-dimensional (2D)
images. However, the photogrammetry relies heavily on
the accuracy of imaging processing and is prone to the
errors of target feature measurements and camera cali-
bration. Moreover, the geometric method estimates is
solely based on the current measurements to make pre-
dictions for the future, which is a memoryless or Markov
process. Thus, its results may be noisy if the image infor-
mation is not smooth. The optimization-based method
requires a sufficient large set of target images in different
poses, which is not available when the target is non-
cooperative. The offline method is performed afterwards,
which is not applicable for real-time tracking, approaching
and capturing the target. The filtering method is widely
used in pose and motion estimation. Among all filters, the
Kalman filter (KF) is widely used in analyzing and solving
pose estimation problems based on a set of noisy obser-
vations over time. Since KF being proposed in 1960 [24], it
has been adopted in almost every engineering field,
especially in the robotic vision, and has been extended
from the original linear system to nonlinear system with
different enhancing techniques. Ref. [25] provided a
detailed survey of the application of KF and its various
extensions in the field of robotic vision. The survey shows
evidently the extended Kalman filter (EKF) is the most
widely adopted nonlinear state estimation algorithm in
robot vision applications. A good performance of EKF
mainly depends on the good estimation of covariance
matrices of system and measurement models of the filter.
The challenge arises in estimating the covariance matrix of
system model in dealing with the non-cooperative target
where its motion is unknown in advance and unpredict-
able. Furthermore, all KF algorithms require the input of
initial conditions and measurements over the time.
Although the initial conditions do not change the con-
vergence property of the KF, they do affect the perfor-
mance of the filter, such as the convergence speed, and its
results, especially when dealing with the non-cooperative
target where the initial conditions are unknown. There-
fore, the focus of this study will be on the impact of pose
estimation of non-cooperative targets by KF in visual servo
where the relative pose and motion of a non-cooperative
target with respect to the camera frame is used for real-
time control of the robotic manipulator, seen with limited
success in [12,14]. To achieve the objective, a new
approach that combines both the adaptive extended Kal-
man filter and photogrammetry to obtain more robust and
accurate pose and motion estimates of the non-
cooperative target from noisy image data in real-time is
presented. The approach has been validated experimen-
tally using a custom-built robotic manipulator with an
eye-in-hand camera mounted closely to the end-effector.
The experimental results demonstrate the effectiveness
and robustness of the proposed algorithm as well as the
control strategy by successfully tracking, approaching and
capturing a non-cooperative target autonomously in both
static and dynamic scenarios.

2. Camera model

Without loss of generality, the global frame is fixed in
the inertia space, the camera frame is located at the center
of the image plane and the target frame is attached to the
target at the rotating center. The pose of a target can be
described by the target frame with respect to the camera
frame, such that, xTo; yTo; zTo;θx;θy;θz

� �T . Here the
xTo; yTo; zTo

� �T is the origin of the body-fixed target frame
and θx;θy;θz

� �T are the Euler angles of target frame with
respect to the camera frame. The singularity in the frame
transformation caused by the Euler angles is assumed
avoided by imposing physical limits on the joint angles of
manipulator in the operation space. Then, we can easily
obtain the rotational matrix from target frame to the
camera frame, denoted by RTC . Assume the coordinates of
a feature point on the target is known in the target frame
and defined as xT ; yT ; zT

� �T . Further define xC ; yC ; zC
� �T as

the coordinates of the corresponding feature point in the
camera frame. An augmented homogeneous relationship
between the target frame and the camera frame can be
established as

xC
yC
zC
1

8>>><
>>>:

9>>>=
>>>;

¼
RTC

xTo
yTo
zTo

0 0 0 1

2
66664

3
77775

xT
yT
zT
1

8>>><
>>>:

9>>>=
>>>;

ð1Þ

Consider a pin-hole camera model, the feature point on
the target is projected onto the image plane, such that

xm
zm

( )
¼ � f
yC� f

xC
zC

( )
ð2Þ

where f stands for the focal length of the camera, and
xm; zmf gT denotes the projected image coordinates. Here, it
is assumed that the yC-axis of the camera frame is pointing
from the camera towards the target.

Rewrite Eq. (2) in the following form, such that,

xmyC�xmf þxCf ¼ 0
zmyC�zmf þzCf ¼ 0

(
ð3Þ

Eq. (3) indicates that there are two independent
equations for one feature point, which contains six
unknowns (pose information). Theoretically, one needs
only three feature points to solve for the six unknowns. To
eliminate the ambiguity in pose estimation with three
feature points and increase the robustness of algorithm,
minimum four feature points are widely adopted in lit-
erature [26]. Consequently, there will be up to eight
equations with six unknowns, which are solved by an
iterative least square approach with an initial guess.

The photogrammetry is a Markov process, which
means that it is based only on the current measurement
and prone to the measurement noise. Moreover, the
computational cost of photogrammetry may increase or
converge to local minima that are not true solutions, if the
initial guess is far away from the real pose. As a result, the
system sampling time interval may be adjusted/reduced,
which is not desirable when dealing in real-time pose
estimation. Another short come of the photogrammetry is
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that it does not estimate the target motion directly, which
is an important parameter in capturing the target by a
robotic manipulator autonomously in a dynamic environ-
ment. To address these challenges, an adaptive extended
Kalman filter (AEKF) is presented in the follows.

3. Adaptive extended Kalman filter

The Kalman filter is an optimal estimation algorithm for
a linear system with independent white noise of normal
distributions. Define the state vector of target as

X¼ xTo; _xTo; yTo; _yTo; zTo; _zTo;θx;
_θx;θy;

_θy;θz;
_θz

n oT
ð4Þ

where the overhead dot denotes time derivative.
xTo; yTo; zTo

� �T is the origin of the body-fixed target frame
and θx;θy;θz

� �T are the Euler angles of target frame with
respect to the camera frame defined in Section 2.

By assuming the target motion is uniform within a
sample time interval t if it is sufficiently small, then the
higher order motion can be regarded as the process noise.
For simplicity, we define the acceleration vector as the

process noise, such that, ω¼ €xTo; €yTo; €zTo;
€θx;

€θy;
€θz

n oT
. The

system model can be defined as

Xk ¼AXk�1þBωk�1 ð5Þ
Notes that the subscripts k and k�1 indicate the cur-

rent and previous sampling time. The coefficient matrix of
system model A and the coefficient matrix of process noise
B can be written as

A¼ diag a a a a a a
� �

; a¼ 1 t

0 1

� �
;

B¼ diag b b b b b b
� �

; b¼ t2=2
t

( )
: ð6Þ

The measurement model is derived from the pin-hole
camera model as shown in Eq. (2). Define an equation

vector for one feature point, such that,

h Xð Þ ¼ � f
yC� f

xC
zC

( )
ð7Þ

Then, the measurement model can be written as

Zk ¼ h Xkð Þþμk ð8Þ
where Z is the real measurement vector (image coordi-
nates in the camera frame) of four feature points, h Xkð Þ is
the estimated measurement vector based on the camera
model and μ stands for the measurement noise of the
camera, which may be caused by different natural condi-
tions, such as illumination, temperature of the environ-
ment, etc. This kind of noise can be assumed as Gaussian
noise and obeys the normal distribution.

While the covariance matrix of measurement noise R
can be determined in advance based on the residual errors
measured by the photogrammetry algorithm experimen-
tally, challenge arises in determining the covariance
matrix of process noise Q for the non-cooperative target.
This is because the motion of the non-cooperative target is
unknown in advance. The situation is further complicated
when the eye-in-hand camera is used in the vision system,
where the motion of the camera is related to the motion of
the robotic manipulator and thus unknown in advance
neither.

Adaptive extended Kalman filter (AEKF) addresses the
challenge by updating the covariance matrices at each
time step [22,27,28]. Although the process and measure-
ment noises are usually assumed to be independent, it is
hard to distinguish them in the process covariance matrix
from the measurement covariance matrix [29]. Thus, the
AEKF that attempts to correct both covariance matrices
may not be robust [30]. As mentioned before, the statistics
of measurement noise can be determined in advance,
therefore, the adaptivity in AEKF is only applied to the
covariance matrix of process noise in this study to com-
pensate the errors while maintaining the robustness of the
estimation algorithm.

Table 1
Outline of pose and motion estimation algorithm.

1. Estimate the initial target pose Xp;
2. Augment to state variable X0 ¼ Xp ; _Xp

n o
;

3. Initialize AEKF X0;P0 ;q0 ;Q0 ;R;
4. while (AEKF enabled)
5. {
6. estimate next state variable and covariance matrix Xkjk�1 ¼AXk�1jk�1þBqk�1Pkjk�1 ¼ APk�1jk�1A

T þBQ k�1B
T

7. evaluate Jacobian of measurement model Hk ¼ ∂h Xð Þ=∂XjX ¼ Xkjk� 1

8.
calculate Kalman gain Kg ¼ Pkjk�1H

T
k HkPkjk�1H

T
k þR

� 	�1

9. update state variable and covariance matrix Xkjk ¼Xkjk�1þKg Zk�h Xkjk�1

 �
 �

Pkjk ¼ Pkjk�1�KgHkPkjk�1

10. output Xkjk
11.

update process noise q̂k ¼ BTB
� 	�1

BT Xkjk�AXk�1jk�1

 �

qk ¼ qk�1þ 1
N q̂k� q̂k�N


 �
12. update covariance matrix of the process noise

Λk ¼ BTB
� 	�1

BT APk�1jk�1A
T �Pkjk

� 	
B BTB
� 	�1

Q k ¼Q k�1þ 1
N�1

q̂k�qk


 �
q̂k�qk


 �T � q̂k�N�qk


 �
q̂k�N�qk


 �T
þ 1

N q̂k� q̂k�N


 �
q̂k� q̂k�N


 �T þN�1
N Λk�N�Λkð Þ

0
@

1
A

13. }
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Define an intuitive approximation of the process noise
at time j as

q̂j ¼ BTB
� 	�1

BT Xjjj�AXj�1jj�1

 � ð9Þ

Assume the process noises are independent and iden-
tically distributed over N sample time intervals. Then, an
unbiased estimate of process noise at time k can be eval-
uated as [27]

qk ¼
1
N

Xk
j ¼ k�Nþ1

q̂j ð10Þ

Meanwhile, an unbiased estimate of the covariance
matrix of process noise is given by

Q k ¼
1

N�1

Xk
j ¼ k�Nþ1

q̂j�qk

� 	
q̂j�qk

� 	T
�

�N�1
N

ΛjPk�1jk�1ΛT
j �Pkjk

� 	

ð11Þ

Λj ¼ BTB
� 	�1

BT APk�1jk�1A
T �Pkjk

� 	
B BTB
� 	�1

ð12Þ

Eqs. (10)–(12) can be further simplified to reduce
computational effort, such that

qk ¼ qk�1þ
1
N

q̂k� q̂k�N


 � ð13Þ

Q k ¼Q k�1þ
1

N�1

�
q̂k�qk


 �
q̂k�qk


 �T � q̂k�N�qk


 �
q̂k�N�qk


 �T

þ 1
N

q̂k� q̂k�N


 �
q̂k� q̂k�N


 �T þN�1
N

Λk�N�Λk

 �	

ð14Þ
Thus, an unbiased estimate of the process noise dis-

tribution at time k is obtained as a normal distribution
with the mean qk and covariance matrix Q k. The input to
AEKF is the initial conditions and the measurements
observed over the time. Since initial pose and motion of
the non-cooperative target are generally unknown, an
inappropriate initial guess may lead to poor convergence
of the AEKF. In order to improve the performance and
accelerate the convergence of the AEKF, we initialize the
initial states by the photogrammetry. Therefore, a recur-
sive pose and motion estimation algorithm of AEKF can be
designed as shown in Table 1, where H is the Jacobian
matrix formed by the first order partial differential of the
measurement model with respect to system state variable,
Kg is the Kalman gain at time step k, P is the covariance
matrix of system state variable, Q and R are the covariance
matrices of process and measurement noise.

4. Visual servo control strategy

Once the pose and motion estimates of target are
obtained, they are fed into the controller of robotic
manipulator to capture the target autonomously. The
robotic manipulator in the study is a custom designed
robotic manipulator with an eye-in-hand configuration, as
shown in Fig. 1. It consists of three links and one end-
effector with five revolute joints, one prismatic joint and

an eye-in-hand camera mounted closely to the end-
effector. The first three revolute joints, namely torso (θ1),
shoulder (θ2) and elbow (θ3), control the position of the
end-effector while the last two revolute joints and one
prismatic joint, namely wrist roll (θ4), wrist yaw (θ5) and
gripper, provide dexterous orientation and griping func-
tion for capture, see Fig. 1. Thus, the control of the position
and orientation of the end-effector can be separated in the
controller design for simplicity. Furthermore, the global
frame is fixed in space and located at the center of the
second joint, the camera frame is at the center of the
image plane and the target frame is at the rotating center
of the target, as illustrated in Fig. 1.

Define θT ¼ θ1;θ2;θ3
� �T as the first three revolute joint

angles that control the translational motion of the end-
effector, and θR ¼ θ4;θ5

� �T as the last two revolute joint
angles that control the orientation of the end-effector.
Therefore, the kinematics of robotic manipulator, which
refers to the forward relationship between θT and position
of the end-effector regarding to the global frame XG

e , can
be described as

XG
e ¼Kf θT


 � ð15Þ

The velocity of the end-effector is derived by taking the
time derivative of Eq. (15), such that

_X
G
e ¼ J _θT ð16Þ

where J is the Jacobian matrix of the robotic manipulator.
The robotic manipulator is controlled by actuators at

rotational joints to achieve the desired joint angles, based

Fig. 1. Custom-built robotic manipulator with eye-in-hand configuration.

G. Dong, Z.H. Zhu / Acta Astronautica 122 (2016) 209–218212

110



on the desired end-effector position. Thus, the transfor-
mation from the desired position to the desired joint
angles, namely inverse kinematics, should be derived as

θT ¼ ~K
�1
f XG

e

� 	
; _θT ¼ J�1 _X

G
e ð17Þ

Notes that the inverse of Eq. (15) may have multiple
solutions or even kinematic singularity due to the system
redundancy and the periodicity of trigonometric functions.
In order to address this challenge, physical limits or other
extra constraints may have to be considered. In Eq. (17) the
term ~K�1

f XG
e

� 	
stands for the inverse of Eq. (15) with the

consideration of physical constraints to avoid the multiple
solutions problem and the kinematic singularity.

The pose and motion of the target obtained from
Section 3 is relative to the camera frame and should be
transformed into the global frame to facilitate the capture
of the target by the end-effector. Because of the eye-in-
hand configuration of the camera, the transformation
matrix from the camera frame to the global frame can be
easily obtained based on the Denavit-Hartenberg conven-
tion. Thus, the coordinate transformation of the end-
effector from the camera frame to the global frame can
be expressed as,

XG
e ¼ TCGX

C
e ð18Þ

Where TCG denotes the transformation matrix from the
camera frame to the global frame. The corresponding
transformation for velocity can be derived by taking the
time derivative of Eq. (18), such that,

_X
G
e ¼ _TCGX

C
e þTCG

_X
C
e ð19Þ

According to Eqs. (18) and (19), the desired transla-
tional position and velocity of the end-effector are
obtained based on the pose and motion estimates of the

target, such that

XG
ed ¼ TCGX

C
t ; X ̇Ged ¼ T ̇CGXC

t þTCGX ̇Ct ð20Þ

Notes that XC
t ¼ xTo; yTo; zTo

� �T and _X
C
t ¼ _xTo; _yTo; _zTo

� �T .
Substituting Eq. (20) into Eq. (17) leads to the desired joint
angles and angular velocities of the first three joints, such
as

θd
T ¼ ~K

�1

f
TCGX

C
t

� 	
θ ̇dT ¼ J�1 TĊGX

C
t þTCGX ̇Ct

� 	n
ð21Þ

The desired joint angles and angular velocities of the
wrist roll and yaw are obtained as

θd
R ¼ θy;θz

� �T
; _θd

R ¼ _θy;
_θz

n oT
ð22Þ

The control input of the first three joints is the angular
position errors with respect to the desired angles. In order
to capture a dynamic target, the robotic manipulator
should track the target trajectory and approach the inter-
ception point of the target based on the estimated target
motion. The interception time is estimated approximately
based on the position tracking error of the end-effector at
current velocity, such that,

ΔT ¼ ‖XG
ed�XG

e ‖

‖ _XG
e ‖

¼ ‖TCGX
C
t �Kf θT


 �
‖

‖J _θT‖
ð23Þ

As the robot approaches the target, the interception
time will approach to zero. Then, the desired joint angles
of the first three joints at the interception point can be
estimated as

θ
� d

T ¼ θd
T þ ΔTþt


 � _θd
T ð24Þ

where t denotes the sample time, θd
T and _θd

T are obtained
by Eq. (21) as aforementioned.

Fig. 2. Experimental setup of non-cooperative target system.
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The control input of first three joints, which is the
relative angular positions, is finally obtained as

θc
T ¼ θ

� d

T �θT ð25Þ
The control input of wrist roll and yaw are absolute

positions, which can be simply defined as

θc
R ¼ θd

Rþt _θd
R ð26Þ

Once the grasp distance tolerance between the gripper
and the grasp point of the target is achieved, the robotic
manipulator is activated to make a capture [5].

5. Experimental validation

The proposed pose and motion estimation algorithm
for the non-cooperative target and the autonomous cap-
ture strategy of the robotic manipulator are validated
experimentally using a custom-built robotic manipulator
as shown in Fig. 1. In order to obtain a friendly human-
machine interface, the testing software for the pose and
motion estimation was developed based on the Microsoft
Fundamental Class (MFC). Once the camera is activated, a
separate thread is created simultaneously for the camera
to acquire and display image on a computer by the Open
Source Computer Vision (OpenCV) [31]. After the target is
locked, the imaging processing subsystem is activated and
output pixel coordinates of each feature points in
sequence. If the filtering algorithm is also enabled at this
stage, the pixel coordinates will be transformed to metric
ones and regarded as the measurements of filtering
algorithm.

As shown in Fig. 2, the non-cooperative target was
driven by a single stepper motor at the top right corner
with programmable speed profiles independently for

different testing scenarios. It possesses four low-noise
feature points and the pattern of the feature points is
carefully selected so that the error margins of the pitch
and yaw estimates of the target are in the same order if
estimated by the photogrammetry using a single camera.
By applying the cvGoodFeaturesToTrack and cvFindCorner-
SubPix functions of OpenCV library, the target tracking
program groups the corners of each feature point and
track the centers of each group by cvCalcOpticalFlowPyrLK
function.

The test results of image processing of a stationary
target are shown in Fig. 3. It shows that the image noises of
each feature point are within an area of 0.5�0.5 pixel2 in
the image plane. Based on the information, the covariance
matrix of the measurement noise of AEKF can be estimated
as, R¼ e2I8�8, where e¼ 3:125� 10�6m, stands for the
metric dimension of half pixel and I8�8 is the identity
matrix. For the covariance matrix of processing noise, it
cannot be determined in advance. By trial and error, the
initial covariance matrix of processing noise is assumed as
Q ¼ 10�5I6�6. It will be updated in the tracking process
based on the proposed pose and motion estimation algo-
rithm shown in Table 1.

To validate the proposed pose and motion estimation
algorithm, experiments were performed under two sce-
narios: static and dynamic captures. In all cases, the poses
estimated by the photogrammetry are used as the baseline
and compared with the poses estimated by EKF and the
proposed AEKF algorithm. The sample time step in
experiments was around 0.032 s mainly dictated by the
processing time of vision system to acquire and process
one frame of image.

For the static scenario, the target was stationary in the
global frame. The results are shown in Fig. 4. As afore-
mentioned, the photogrammetry did not consider the
measurement noise of image (70.5 pixel), which

Fig. 3. Image processing error margins of four feature points of the stationary target over time. The horizontal planes represent the image plane in pixels.
The vertical axes represent the time in seconds. (a–d) correspond to the feature points (2, 3, 1, 0) in Fig. 2.
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propagated downstream to the pose estimation. This is
evident in Fig. 4, where the poses estimated by the pho-
togrammetry are quite noisy even in this static case. In
contrast, the EKF and proposed AEKF algorithms that
considered the measurement noises successfully sup-
pressed the spread of the measurement noises. The pose
estimates by the EKF and proposed AEKF algorithm are
very close in this static case and are much smoother than
the photogrammetry as expected.

Next, the dynamic pose and motion estimation was
conducted by manually translating and rotating the target
along three axes of the target frame. The test results of
dynamic pose and motion estimation by the EKF and the
proposed AEKF algorithm are shown in Fig. 5 together
with the photogrammetry. The EKF employs the Jacobian
matrix of measurement model, which introduces linear-
ization error. The stronger the nonlinearity, the greater the
error may be. According to the measurement model, the
nonlinearity of yTo;θx;θz are relatively stronger than
xTo; zTo;θy. Referring to the dynamic pose estimation
results in Fig. 5, the estimates ofxTo; zTo;θy by EKF agree
with the results of photogrammetry and the proposed
algorithm much better than the estimates of yTo;θx;θz

when sudden changes of rotation occurred. As expected,
the estimates of the proposed AEKF algorithm match the
photogrammetry much better than the EKF.

Once the pose and motion estimation algorithm is
validated, three capture cases: static, smooth and rough
dynamic captures were conducted. In the experiments, the

robotic manipulator always started from a home position
(the corresponding joint angles are torso 0°, shoulder 90°
and elbow 0°, as shown in Fig. 1).

In the static capture, the target was in an unknown
static state within the workspace and the robotic manip-
ulator attempted to make a capture autonomously. The
desired and actual joint angles are changing simulta-
neously while the end-effector approaching the target, as
shown in Fig. 6. This is because when the robotic manip-
ulator attempts to make a capture, the position of the eye-
in-hand camera is also affected by the robot motion.

In the smooth dynamic capture, the target was pro-
grammed to move within the workspace or capture zone
of the robotic manipulator along a smooth but unknown
trajectory while the robotic manipulator attempted a
capture. In the current experiment, the capture zone in the
target motion plane (xz-plane in the target frame as shown
Fig. 2) was roughly 1.0 m (x-axis) by 0.8 m (z-axis) with the
diagonal around 1.2 m due to the physical limits of our
manipulator. The target was initially at the lower left
corner and traveled diagonally through the capture zone to
the upper right corner, pulled by a single stepper motor at
the upper right corner. To ensure a sufficient capture
window for the system to lock, track and capture the tar-
get, the linear speed of the target in the experiment was
estimated based on the maximum rotating speed of the
stepper motor at the joint of manipulator. Accordingly, the
maximum linear speed of the grasping point on the target
was designed to 1.2 cm/s such that the maximum capture

Fig. 4. Test results of estimation of a stationary target.
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Fig. 5. Test results of estimation of a dynamic target.

Fig. 6. Test results of a static capture.
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window for the robotic manipulator is around 100 s. The
maximum linear velocity of the end–effector is subject to
the configuration of the robotic manipulator as per Eq.
(16). From Fig. 7, it shows that the actual capture time,
from the system starting to move to the gripper capturing
the target, in the experiments was around 25 s. Therefore,
the target speed is reasonably fast for the current experi-
mental setup. As shown in Fig. 7, the target motion caused
the estimated desired joint angles varied ahead of the

actual joint angles since the end-effector was approaching
the interception instead of the current position. Fig. 7
shows the manipulator successfully captured the dynamic
target.

Finally, a rough dynamic capture of the target was
tested, where some perturbations were added to the target
trajectory. As shown in Fig. 8, the desired joint angles
varied dramatically. This is the evidence of accurate esti-
mates of the target obtained by the proposed AEKF

Fig. 7. Test results of a dynamic capture with a smooth trajectory.

Fig. 8. Test results of rough target trajectory dynamic capture.
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approach. After the target was locked, the manipulator
tracked, approached and captured the target autono-
mously based the proposed AEKF algorithm. Due to the
rough motion of the target observed, the desired joint
angle as well as the actual joint angle are both affected
based on the newly proposed control strategy. Therefore,
the capture time was relatively longer than the
smooth case.

In summary, the successful capture results in different
capture scenarios, as shown in Figs. 6–8, demonstrate the
effectiveness of the proposed AEKF algorithm and capture
strategy.

6. Conclusions

This paper proposed a vision-based pose and motion
estimation hybrid algorithm and a visual servo scheme for
robotic manipulators to perform autonomous capture of a
non-cooperative target. The hybrid algorithm is derived
based on the adaptive extended Kalman filter and photo-
grammetry for the real-time state estimation of a non-
cooperative target. Experiments have been designed and
conducted by a custom-built six degrees of freedom
robotic manipulator with an eye-in-hand configuration.
The experiments demonstrate the proposed hybrid algo-
rithm is robust in estimating the pose and motion of the
non-cooperative target. The successful capture of a non-
cooperative target by a visual servo robotic manipulator in
a dynamic environment demonstrate the feasibility and
effectiveness of the proposed estimation algorithm and
the visual servo control strategy.
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Abstract

This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-
cooperative target autonomously. The target’s pose and motion are estimated by a vision system using integrated photogrammetry and
EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted
by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits.
This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm.
The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is
estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation
approach for the target and the incremental control strategy for the robotic manipulator.
� 2016 COSPAR. Published by Elsevier Ltd. All rights reserved.

Keywords: Visual servo; Autonomous capture; Non-cooperative target; Space debris; Active debris removal; Space robotic manipulator

1. Introduction

The increasing population of space debris in low and
geo-stationary Earth orbits severely threats the safety of
orbiting satellites and the long-term sustainability of space
activities (Jankovic et al., 2015). To address the threat on a
global base, the Inter-Agency Space Debris Coordination
Committee (IADC) has suggested that certain remediation
measures must be taken to stabilize the increasing trend of
space debris population, for instance, by active debris
removal (ADR) of a few large space debris per year from
some crowded altitudes and inclinations of orbits (Liou,
2011). Numerous debris removal technologies have been
proposed and investigated, such as the robotic debris
removal (Jankovic et al., 2015), hybrid propulsion module

(DeLuca et al., 2013), harpoon technology (Dudziak et al.,
2015), and concepts considering end-of-mission self-deorbit
by electrodynamic tethers (Zhong and Zhu, 2013), etc. Due
to the similarity between the robotic on-orbit servicing
(OOS) and ADR missions, the concept of autonomous
ADR missions using space robotic manipulators is appeal-
ing in terms of technology readiness level. Although
numerous human-in-the-loop OOS missions involving
robotic captures of spacecraft were successfully performed
(Yoshida, 2009), a fully autonomous robotic capture in
space, especially considering non-cooperative objects is still
an open subject facing enormous technical challenges
(Flores-Abad et al., 2014). Recently, a preliminary concept
design of guidance, navigation and control architecture to
enable a safe and fuel-efficient capture of a non-cooperative
target had been proposed (Jankovic et al., 2015), where the
attention was focused on the close range autonomous ren-
dezvous and proximity maneuver. In this paper, we focus
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on the autonomous capture of a non-cooperative target by
a robotic manipulator after the orbit maneuver being
completed.

One of the most challenging tasks in the autonomous
capture of a non-cooperative target is the identification
of target’s kinematic state. Considering the non-
cooperative nature, the non-intrusive vision based filtering
methods have been extensively adopted in the pose estima-
tion of target (Aghili, 2012; Chen, 2012; Gasbarri et al.,
2014; Janabi-Sharifi and Marey, 2010; Sabatini et al.,
2013). Once the position and velocity of a target are
obtained, an effective controller is required to control a
robotic manipulator to capture the target autonomously.
Ideally, the interception point between trajectories of the
target and the end-effector in capture scenarios should be
used as the desired position of the end-effector in control
(Liu et al., 2015). However, due to the non-cooperative nat-
ure, the trajectory of target is unknown in advance and the
determination of the interception point becomes a chal-
lenging task. The task is further complicated by the fact
that the velocity of the end-effector is related to the config-
uration (joint angles) of robotic manipulator, which is
time-variant and nonlinear. Thus, the interception point
is also subject to the variation of interception time. In order
to address this challenge, a kinematics based incremental
control strategy for the robotic manipulator is proposed
and examined in this work. Since the capture process of a
space debris is relatively slow, it is more intuitive to regard
the joint position (joint angles) as control input to gain
higher control reliability instead of velocity or acceleration.
The paper is organized as follows. Followed by this brief
introduction, Section 2 is dedicated to the vision based
kinematic state estimation of a non-cooperative target by
an integrated photogrammetry and extended Kalman filter
approach. A kinematics based incremental controller for
the robotic manipulator is then presented in Section 3. Sec-
tion 4 is dedicated to the validation by hardware-in-the-
loop simulation and discussion. Finally, Section 5 con-
cludes the paper.

2. Vision based kinematic identification of non-cooperative

target

Consider a robotic manipulator system shown in Fig. 1.
Assume a global frame is attached to the fixed part of the
robotic manipulator, a camera frame is fixed to the center
of image plane, and a target frame to the center of rotation
of the target, respectively. The transformation between the
global and the camera frame can be easily obtained accord-
ing to the system configuration. The pose of a target can be
described with respect to (w.r.t.) the camera frame, such as,

fxTo; yTo; zTo; hx; hy ; hzgT , where fxTo; yTo; zTogT is the origin of

the target frame in the camera frame and fhx; hy ; hzgT are
the Euler angles of the target frame w.r.t. the camera
frame.

Accordingly, an augmented homogeneous transforma-
tion between the target and the camera frame can be writ-
ten as

xC
yC
zC
1

8>>><
>>>:

9>>>=
>>>;

¼

xTo
RTC yTo

zTo
0 0 0 1

2
6664

3
7775

xT
yT
zT
1

8>>><
>>>:

9>>>=
>>>;

ð1Þ

where RTC denotes the rotational matrix from the target to
the camera frame formed by the composition of trigono-

metric functions of Euler angles, fxT ; yT ; zTgT denote the
coordinates of a feature point on the target in the target

frame and fxC; yC; zCgT denote the corresponding coordi-
nates of the same feature point in the camera frame.

Consider a pinhole camera with a focal length f. By
assuming the y-axis of the camera frame pointing toward
the target, the feature point is projected onto the image
plane by

xm
zm

� �
¼ � f

yC � f

xC
zC

� �
ð2Þ

where fxm; zmgT denotes the measurable image coordinates.
Substituting Eq. (1) into (2) yields two independent

equations for one feature point, which contains six

unknowns: fxTo; yTo; zTo; hx; hy ; hzgT . Theoretically, one
needs at least three feature points to solve for the six
unknowns. However, four feature points are widely
adopted in literature to avoid the ambiguity and increase
the robustness of algorithm (Dong and Zhu, 2015). Conse-
quently, there will be eight equations with six unknowns,
which can be solved by an iterative least square approach
with an initial guess. The pose estimation of a non-
cooperative target by the photogrammetry is a Markov
process based on the current measurement, which is prone
to the measurement noise. Moreover, the computational
time of photogrammetry may vary widely due to the initial
guess used in the algorithm at each time instant. As a
result, the system sampling time interval may be affected,
which is undesirable for real-time control. Another issue
of the photogrammetry is that it does not solve for motion
directly, which is an important control parameter in cap-
turing the target by a robotic manipulator autonomously
in a dynamic scenario. To address these challenges, an inte-
grated photogrammetry and extended Kalman filter (EKF)
is presented as follows.

Define the system variable vector as

X ¼ fxTo; _xTo; yTo; _yTo; zTo; _zTo; hx; _hx; hy ; _hy ; hz; _hzg
T

Assume the target motion can be approximated as a lin-
ear motion within each sampling time interval ts if it is suf-
ficiently small. Thus, the system model of the target can be
expressed as

Xk ¼ AXk�1 þ Bxk�1 ð3Þ
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where the subscripts k and k � 1 denotes the current and

previous states respectively, x ¼ f€xTo; €yTo;€zTo; €hx; €hy ; €hzgT is
the acceleration vector that is considered as the process
noise subject to the normal distribution with zero mean
and covariance matrix Q, and the coefficient matrices A
and B are defined as

A ¼ diag½A A A A A A �; A ¼ 1 ts
0 1

� �
ð4Þ

B ¼ diag½B B B B B B �; B ¼ t2s=2

ts

� �
ð5Þ

Based on the pinhole camera from Eq. (2), the measure-
ment model is defined as,

Zk ¼ hðXkÞ þ lk ð6Þ

where hðXÞ ¼ � f
yC�f

xC
zC

� �
is an equation vector for one

feature point, l stands for the measurement noise that
obeys the normal distribution with zero mean and covari-
ance matrix R, and Z is the real measurement vector of fea-
ture points.

Once the system and measurement models are derived,
the EKF is applied to estimate the kinematic state of the
target, such that,

Xkjk�1 ¼ AXk�1jk�1

Pkjk�1 ¼ APk�1jk�1A
T þ BQBT

Kg ¼ Pkjk�1H
T ½HPkjk�1H

T þ R��1

Xkjk ¼ Xkjk�1 þ Kg½Zk � hðXkjk�1Þ�
Pkjk ¼ Pkjk�1 � KgHPkjk�1

8>>>>>><
>>>>>>:

ð7Þ

where H is the Jacobian matrix of the measurement model,
P is the covariance matrix of the system variable, and Kg is
the Kalman gain.

As well known, the input of EKF includes initial condi-
tions known in advance and measurements observed over
time. Since initial conditions of a non-cooperative target
are unknown, inappropriate initial guess may lead to poor
performance of the EKF. Therefore, we initialized the
EKF by the photogrammetry in order to improve the per-
formance as well as accelerate the convergence rate of the
EKF.

3. Kinematics based incremental control strategy

The forward kinematics of a robotic manipulator
defines the position and velocity of the end-effector in terms
of the corresponding joint variables, such that

XE ¼ fðHÞ ð8Þ
_XE ¼ J _H ð9Þ
where XE 2 Rm is the position of the end-effector in the
Cartesian space, H 2 Rn is the generalized joint variable
vector in the joint space, the overhead dot denotes the time
derivative and J is the Jacobian matrix of the robotic
manipulator defined by J ¼ @f=@H.

In order to perform the capture task, one has to deter-
mine the joint angles by the inverse kinematics of robotic
manipulator based on the information of the end-effector.
The inverse of Eq. (8) may have multiple solutions due to
system redundancy and periodicity of trigonometric func-
tions. In order to obtain unique solution, physical limits
or other extra constraints may have to be imposed. Gener-
ally, the complete inverse of Eq. (9) is composed by two
parts, the particular solution and the null space solution.
The particular solution can be obtained based on the

pseudo inverse of the Jacobian matrix, denoted by Jy.
Although the pseudo-inverse of the Jacobian matrix can
be calculated by using the singular value decomposition,
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Fig. 1. Illustration of different coordinate systems.
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the computational load is relatively heavy. In many robotic
applications, the Jacobian matrix is assumed to have full
row rank, and the pseudo-inverse is replaced by the right

inverse, such that, Jy ¼ JT ðJJT Þ�1
. Thus the complete solu-

tion for the inverse of Eq. (9) is written as

_H ¼ J y _XE þ ðI� JyJÞn ð10Þ
where I denotes the identity matrix and n is an arbitrary
vector that projected onto the null space of the Jacobian.
Therefore, by careful selection of this vector, additional
kinematic objectives can be achieved if the kinematic
redundancy exists.

Once the position and velocity of the target w.r.t. the
camera frame is obtained in Section 2, we may easily trans-
form them to the global frame by the homogeneous trans-
formation, such that

XT

1

� �
¼ T

CXT

1

� �
ð11Þ

_XT

1

 !
¼ T

C _XT

1

 !
þ _T

CXT

1

� �
ð12Þ

where XT ; _XT and CXT ;
C _XT stand for the target position

and velocity w.r.t. the global and camera frame respec-
tively, T denotes the Denavit–Hartenberg transformation
matrix from the camera frame to the global frame
(Denavit and Hartenberg, 1955), which can be easily
obtained according to the geometric configuration of the
system.

In the eye-to-hand configuration, the camera is station-
ary in the global frame. Therefore, the transformation
matrix between the two camera and global frames will be
time-invariant and the time derivative of the transforma-

tion matrix is zero matrix, such that, _T ¼ 0 in Eq. (12).
Once the position and velocity of the target in the global

frame is obtained, the position of the target in the next
moment can be estimated by

XT 0 ¼ XT þ _XT ts ð13Þ
In order to make a capture, the most straightforward

way for the end-effector to approach the target is directly
towards it if the velocity of the target is relatively small
compare to the robotic manipulator. Accordingly, the
instantaneous velocity of the end-effector in the Cartesian
space should be along with the vector defined by XT 0 � XE.

Denote the unit vector of XT 0 � XE as

nET 0 ¼ XT 0 � XE

kXT 0 � XEk ð14Þ

Define the scale factor of the instantaneous velocity as
k > 0, so that the instantaneous velocity of the end-
effector can be written as

_XE ¼ knET 0 ð15Þ
For the sake of simplicity, assume n ¼ 0 in Eq. (10).

Then, substituting Eq. (15) into Eq. (10) leads to

_H ¼ kJynET 0 ð16Þ
Let _hi; pij and nET 0j be the elements of _H; Jy and nET 0 ,

respectively. Then, Eq. (16) can be replaced by n scalar
equations, such that

_hi ¼ k
Xm
j¼1

pijnET 0j; i ¼ 1; 2; � � � ; n: ð17Þ

Due to the physical limit of the joint actuators and the
transmission mechanisms, the motion of the robotic
manipulator is subject to the joint velocity limit, denoted

by _Hmax ¼ ð _hmax 1; _hmax 2; � � � ; _hmax nÞT . Assume the joint
velocity has the same limit in both positive and negative
directions, then the right side of equations in Eq. (17) is

bounded by the closed interval ½� _hmax i; _hmax i�, respectively,
such that

� _hmax i 6 k
Xm
j¼1

pijnET 0j 6 _hmax i; i ¼ 1; 2; � � � ; n: ð18Þ

Solving inequalities in Eq. (18) for k yields n sets of scale
factor ki. Then, the maximum scale factor of the instanta-
neous velocity can be found by taking the intersection of
each solution, such as, kmax ¼ max½k1 \ k2 \ � � � \ kn�. By
substituting kmax into Eq. (16), we obtain the equivalent
instantaneous joint velocity of the robotic manipulator,

denoted by _Ht. Accordingly, the incremental joint angle
control input for the robotic manipulator in the next
moment, which will drive the end-effector directly towards
the target, can be defined as,

DH ¼ _Htts ð19Þ
The control input of the robotic manipulator could be

Hþ DH if the control is achieved by absolute joint angles.
After the end-effector moving towards the target by an
increment DXE ¼ JDH, the procedure defined in Eqs.
(13)–(19) is repeated for the next sampling time. A capture
will be done once the position error between the end-
effector and the target is within a pre-defined tolerance,
denoted by e 2 Rm, such that,

jXE � XT j < e ð20Þ

4. Validation by hardware-in-the-loop simulation

The proposed kinematics based incremental control
strategy is validated by hardware-in-the-loop simulation.
The robotic manipulator is assumed to consist of three
rigid links and three revolute joints. The visual control is
done by an eye-to-hand configuration. The link length
and the joint velocity limits of the manipulator are given
in Table 1, based on our previous work (Dong and Zhu,
2015).

The joint angles are measured from their home positions
h1 ¼ 0�; h2 ¼ 90�; h3 ¼ 0�, as illustrated in Fig. 1. The glo-
bal frame is located to the center of the second joint and
fixed in the inertia space, and the camera frame is attached
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to the center of camera’s image plane, which coincides with
the home position of the end-effector for simplicity.
Accordingly, the Jacobian matrix of the robotic manipula-
tor can be easily obtained. In order to simplify the calcula-
tion and reduce the computational cost in our case, the
kinematic singularity of the robotic manipulator is physi-
cally avoided by limiting its workspace. Then, the
pseudo-inverse of the Jacobian, which will be full rank,

can be calculated simply by Jy ¼ J�1.
The non-cooperative target is independently moving

along a trajectory within the 3D workspace of the robotic
manipulator. Its motion and trajectory are unknown in
advance and must be estimated by the vision system.

Fig. 2 shows the estimated position XT ¼ ðxT ; yT ; zT ÞT and

velocity _XT ¼ ð _xT ; _yT ; _zT ÞT of the target by the eye-to-
hand camera using the integrated approach presented in
Section 2 w.r.t. the global frame. These profiles are input

to the controller to calculate the incremental control input
for the robotic manipulator.

The control input to the robotic manipulator in our case
is the incremental joint angles. As shown clearly in Fig. 3,

the calculated instantaneous joint velocities _h2 and _h3 reach
the physical limits listed in Table 1 in certain periods,
respectively. In general, the calculated instantaneous joint

velocities _Ht are quite smooth because the estimated posi-
tion and velocity of the non-cooperative target in the global
frame are relatively smooth. However, the control inputs
DH in the Fig. 4 show isolated outliers from time to time
although the overall trends are smooth. This is because
the sampling time used in the controller is dictated by the
image processing time, which varies from time to time.
Accordingly, the incremental control input DH obtained
by Eq. (19) is affected by the time-varying sampling time.
If simulated target motion and velocity are used, there will
be no outliers in the incremental control input. This indi-
cates it is important to keep the sampling time constant
in real implementation of visual servo control algorithm
of robotic manipulator.

The simulation results of an autonomous capture by the
robotic manipulator are shown in Fig. 4. The solid lines
and circles denote the trajectories of the target and the
end-effector respectively. The robotic manipulator is at
the home position initially. By defining

e ¼ ð10�3; 10�3; 10�3ÞT meters in Eq. (20), a capture is made

Table 1
Physical properties of the robotic manipulator.

Parameter Value

l0 0.1778 m
l1 0.454025 m
l2 0.4445 m
_hmax1 10.304 rad/s
_hmax2 0.412 rad/s
_hmax3 0.412 rad/s

Fig. 2. Estimated position and velocity of the non-cooperative target in global frame.

1512 G. Dong, Z.H. Zhu /Advances in Space Research 57 (2016) 1508–1514

122



Fig. 3. Instantaneous joint velocity and incremental control input of the robotic manipulator.

Fig. 4. Position of the target and the end-effector.
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at about 2.3 s once the capture criteria is achieved. The
position profiles of the end-effector in Fig. 4 are smooth
and approximately monotonic, although there are some
outliers in the incremental control input. This is generally
preferred in the operation of robotic manipulators. The
simulation results shown in Figs. 3 and 4 demonstrate the
proposed kinematics based incremental control strategy is
effective and efficient.

5. Conclusions

This paper proposed a new vision-based incremental
kinematic control strategy for a robotic manipulator to
perform autonomous capture of a non-cooperative target.
The target’s pose and motion are estimated visually by
an integrated photogrammetry and EKF approach. Based
on the input of target’s pose and motion, the forward kine-
matics of robot manipulator is inversed in an incremental
form where the robotic manipulator moves by increments
from its current configuration. By adopting this approach,
the multiple-solution problem of the inverse kinematics has
been avoided. Since the velocity of the end-effector in
Cartesian space in the current approach is always pointing
to the target in the next moment, the possibility of losing
track of the target by the vision system is greatly reduced.
The proposed approach is validated by a hardware-in-the-
loop simulation, where the pose and motion of the non-
cooperative target is estimated by a real vision system.
The simulation results of capture demonstrated proposed
kinematics based incremental control strategy is effective
and efficient.
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ABSTRACT
This paper develops a new autonomous incremental visual servo control law for the robotic 
manipulator to capture a non-cooperative target, where the control input is the incremental joint 
angle to avoid the multiple solutions in the existing inverse kinematics. The position and motion of 
the non-cooperative target are estimated by an eye-to-hand vision system in real time by integrated 
photogrammetry and extended Kalman filter. The estimated position and motion of the target 
are fed into the newly developed position-based visual servo control law to drive the manipulator 
incrementally towards the dynamically predicted interception point between trajectories of the end 
effector and the target. To validate the proposed approach, a hardware-in-the-loop simulation has 
been conducted where the position and motion of the target is estimated by a real eye-to-hand 
camera and fed into the simulation of the robotic manipulator. The simulation results show the 
proposed incremental visual servo control law is stable and able to avoid the multiple solutions in 
the total inverse kinematics.

1. Introduction

Robotic manipulators have been widely used to assist 
humans to perform tasks in atrocious or even inaccessible 
environments.[1–3] Among the numerous applications, 
capture of non-cooperative targets is considered as one of 
the most challenging functions of robotic  manipulators. 
Many manipulators adopted pre-programmed scripts to 
ensure high reliability, while other applications involve 
human-in-the-loop control to pass the majority of  
decision-making and guidance tasks into human hands. 
Due to the uncertainty of non-cooperative targets, 
 autonomy is required in the robotic capture where human 
interference is limited and/or ineffective.[4–8]

In order to achieve the autonomy in a robotic capture, the 
pose and motion of target should be identified  precisely in 
real time. Because the kinematic state of a non- cooperative 
target is unknown to the manipulator, vision systems are 
extensively employed to estimate the pose and motion of 
target due to their non-contact and non-intrusive nature.
[6–13] Considerable efforts have been devoted to estimate 
the pose and motion of target from vision images in the 
field of visual servo of autonomous robotic manipulators. 
Generally, the vision systems used in visual servo  consists 
of two categories in the literature: eye-in-hand and 

eye-to-hand.[14,15] The camera is mounted on the end 
effector in the eye-in-hand configuration while detached 
from the manipulator in the eye-to-hand configuration. 
Compared to the eye-in-hand configuration, the eye-  
to-hand camera monitors the whole workspace to 
ensure the target can always be detected and simplifies 
the coordinate transformation from the camera frame 
to the global frame. Once the pose and motion of target 
are estimated, the challenge arises in the development of 
a real-time control strategy for the robotic  manipulator 
to perform autonomous capture. The manipulator has 
to follow an approaching trajectory defined by the time- 
varying desired position and/or velocity of the end effector 
to track, approach and capture the target. If the desired state 
of the end effector in the Cartesian space is determined, the 
corresponding state in the joint space can be derived by 
inverse  kinematics. Unfortunately, the inverse kinematics 
may result in multiple solutions due to the periodicity of 
trigonometric functions or even becomes singular for a 
given position of the end effector.[16–18] To address the 
challenge, most existing works focused on the velocity-
level and acceleration-level control.[19–21]

In the visual servo control, the desired position of the 
end effector is carefully designed based on the feedback 
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target complicates the design of visual servo control law 
of the manipulator. In order to prove the viability of the 
proposed incremental control, the robotic manipulator 
considered in this note is assumed on a fixed base to 
decouple the effect caused by the free floating base. The 
newly proposed incremental control will be integrated 
with the free floating manipulators in the future.

2. Position-level kinematic control strategy

Assume the position and motion of a rigid-body target is 
estimated by an eye-to-hand vision system in the camera 
frame. Then, the position of the target in the global frame 
is obtained by

 

where 𝐗T denotes the position vector of the target in the 
global frame, C𝐗T denotes the position vector estimated 
in the camera frame, G𝐗Co denotes the position vector 
of the camera frame origin in the global frame and 𝐑G

C 
denotes the rotation matrix from the camera frame to the 
global frame.

Equation (1) can be rewritten by the homogeneous 
transform, such as

 

where 𝐎 denotes a row vector of zeroes and 𝐓 is the trans-
formation matrix from the camera frame to the global 
frame.

Taking the first order time derivative on both sides of 
Equation (2) yields the velocity of the target in the global 
frame

 

where the overhead dot denotes the time derivative.
For the eye-to-hand configuration, the camera frame is 

stationary and fixed in the global frame. Thus, the trans-
formation matrix from the camera frame to the global 
frame is time-invariant and is time-derivative 𝐓̇ should 
be zero matrix in Equation (3).

Once the target motion is estimated with respect to 
the camera frame, the target motion with respect to the 
global frame is obtained by applying Equations (2) and 
(3). Therefore, unless otherwise stated, the target motion 
mentioned in the following is referred to the global frame.

The robotic manipulators generally consist of a set of 
rigid link and joint combinations as well as an end effector. 
The links and joints mainly contribute to the position of 

(1)𝐗T = 𝐑G
C
C𝐗T + G𝐗Co

(2)

{
𝐗T

1

}
= 𝐓

{
C𝐗T

1

}
and,𝐓 =

[
𝐑G

C
G𝐗Co

𝐎 1

]

(3)

{
𝐗̇T

0

}
= 𝐓

{
C𝐗̇T

0

}
+ 𝐓̇

{
C𝐗T

1

}

of vision system at each sampling instant, and the robotic 
manipulator is controlled to move incrementally by joint 
actuators relative to the current angular position. Thus, 
one could control the motion of robotic manipulators by 
an increment from its current state to avoid the  problem of 
multiple solutions in the inverse kinematics. Furthermore, 
if the current state of a dynamic target is used as the 
desired state of the end effector in the visual servo  control, 
the end effector will require a large velocity at the last 
few steps, which may exceed the angular velocity limits 
of the  actuators. To address the constraints, a  constrained 
optimal control approach was introduced in [22]. In this 
paper, an intuitive approach is adopted by assuming 
the projected interception point between trajectories of 
the target and the end effector as the desired position of 
the end effector in the visual servo control. This is because 
the trajectory of the non-cooperative target is unknown 
to the manipulator in advance and time-varying as the 
target is moving during the tracking and capture period.

To address the challenges efficiently, we proposed a 
framework of incremental visual servo control strategy at 
the level of angular joint positions to perform autonomous 
robotic capture of a non-cooperative target for potential 
applications in space. Different from our previous work 
[23] where the target position in the next time instant is 
used as the desired position of the end effector, the current 
approach assumes the dynamically predicted interception 
points of trajectories of the end effector and the target as 
the desired position. The unknown trajectory of a non- 
cooperative target is estimated in real time by an integrated 
photogrammetry and extended Kalman filter approach 
developed in our previous work.[7] Furthermore, con-
sidering the fact that the motion of space robotic manip-
ulators is relatively slow and many of them use stepper 
motors as actuators, a kinematic approach is adopted in 
the current study where the joint angle increments are 
used as the control input, instead of joint torques, to con-
trol the stepper motors directly. When the end effector is 
far from the predicted interception point, the end effec-
tor will move directly towards the predicted interception 
point at the maximum velocity of joint actuators. Once 
they are close enough, the end effector will approach the 
moving target with similar velocity because the visual 
system tracks the motion of the target in real time. The 
newly proposed concept is validated by a hardware-in-
the-loop simulation where a real vision system is used to 
estimate the position and motion of the target. The esti-
mates are then fed into the simulation where the motion 
of a robotic manipulator is simulated to demonstrate the 
effectiveness of our control law. It should be noted that the 
robotic manipulators in space are working on free floating 
bases, where the coupling effect among the manipulator, 
the free floating base spacecraft and the non-cooperative 
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the end effector, while the end effector provides dexterous 
orientation and gripping functions to interact with the 
environment. The forward kinematics maps the motion 
of the manipulator in the joint space to the motion of the 
end effector in the Cartesian space, such that,

 

 

where 𝐗E ∈ 𝐑m is the position of the end effector in the 
Cartesian space, 𝚯 ∈ 𝐑n is the generalized joint variable 
vector, and 𝐉 is the Jacobian matrix defined by 𝐉 = 𝜕𝐟∕𝜕𝚯.

For the given velocity of the end effector in the Cartesian 
space, the corresponding velocity of the robotic manip-
ulator in the joint space can be derived by the inverse 
kinematics, such that

 

where 𝐉† denotes the pseudo inverse of the Jacobian 
matrix, 𝐈 is the identity matrix, 𝛏 is an arbitrary vector 
that is projected onto the null space of the Jacobian, such 
that additional kinematic objectives can be achieved by 
the selection of the vector if the kinematic redundancy 
exists.

The inverse kinematics in Equation (6) describes the 
motion of the robotic manipulator in the joint space by 
the motion of the end effector in the Cartesian space. The 
pseudo inverse of the Jacobian matrix could be calculated 
using the geometric approach, such that

 

As well known, multiple solutions may exist in the  
position-level inverse kinematics even if the Jacobian is 
full row rank. To address the challenge, a new incremental 
kinematic approach is developed as follows.

Assume the target is always within the workspace of 
the robotic manipulator and the field of view of camera. 
The capture control strategy is defined that the capture 
should be made at the interception point 𝐗C after time 
t measured from the current instant, which is estimated 
approximately in the global frame as

 

where 𝐗T and 𝐗̇T are the current instant position and 
velocity of the target.

In the same time period t, the end effector is required 
to reach the same interception point 𝐗C to capture the 
target along the shortest path, such that,

 

(4)𝐗E = 𝐟 (𝚯)

(5)𝐗̇E = 𝐉𝚯̇

(6)𝚯̇ = 𝐉
†
𝐗̇E+

(
𝐈 − 𝐉†𝐉

)
𝛏

(7)𝐉† = 𝐉T(𝐉𝐉T)−1

(8)𝐗C = 𝐗T + 𝐗̇T t

(9)𝐗C = 𝐗E + 𝐗̇Et

where 𝐗E and 𝐗̇E are the current position and the velocity 
of the end effector.

It should be noted that both the interception point 𝐗C 
and time t in Equations (8) and (9) are unknown and must 
be estimated because the target is moving.

Solving Equations (8) and (9) for the required velocity 
of the end effector 𝐗̇E yields

 

It should be noted from Equation (10) that the velocity 
of the end effector will approach the velocity of the target 
by the proposed control as it is getting close to the target.

Substituting Equation (10) into Equation (6) leads to
 

where 𝛏 = 𝟎 in Equation (6) is assumed for simplicity.
Let 𝜃̇i, pij, xTj, ẋTj and xEj denote the elements of 

𝚯̇, 𝐉†, 𝐗T , 𝐗̇T and 𝐗E, respectively. Then, Equation (11) 
is decomposed into n equations, such that

 

The joint velocity limit, denoted by 
𝚯̇max =

(
𝜃̇max1, 𝜃̇max2,⋯ , 𝜃̇maxn

)T, can be easily 
determined by the physical limit of the joint actuators 
and the transmission mechanisms. By assuming that the 
joint velocity has the same limit in both revolute directions 
(forward and reverse), we have the right-hand sides of 
equations in Equation (12) bounded by 

[
−𝜃̇maxi, 𝜃̇maxi

]
, 

respectively, such that,
 

Solving inequalities in Equation (13) with the consider-
ation of t > 0 and intersecting of each solution of t yields 
the minimum interception time tmin. By substituting the 
minimum interception time into Equation (11), we obtain 
the joint velocity of the robotic manipulator, which will 
drive the end effector directly towards the interception 
point. Accordingly, the incremental joint angle control 
input within one sample time step ts can be defined 
approximately as,

 

In the position-based visual servo control, the feedback 
position and velocity tracking errors are defined as [12,13],

 

(10)𝐗̇E =
𝐗T − 𝐗E

t
+ 𝐗̇T

(11)𝚯̇ = 𝐉†
{

𝐗T − 𝐗E

t
+ 𝐗̇T

}

(12)𝜃̇i =

m∑
j=1

pij

(xTj − xEj

t
+ ẋTj

)
, i = 1, 2,… , n.

(13)

−𝜃̇
max i ≤

m∑
j=1

pij

(xTj − xEj

t
+ ẋTj

)
≤ 𝜃̇

max i, i = 1, 2,⋯ , n.

(14)Δ𝚯 = 𝚯̇ts

(15)𝐄 = 𝐗T − 𝐗E
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3. Hardware-in-the-loop simulation results and 

discussion

The proposed incremental visual servo control law is 
examined by a hardware-in-the-loop simulation, where a 
three-link robotic manipulator was simulated and an eye-
to-hand camera fed the simulation with the target position 
and velocity. As shown in Figure 2, the global frame is 
fixed in the inertial space with the Z-axis aligned with the 
axis of the first link (l0). The XY-plane of the global frame is 
offset by l0 from the fixed base. Initially, the second (l1) and 
third (l2) links are within the YZ-plane. The home position 
of the robotic manipulator in the global frame is set to 
θ1 = 0 , θ2 = 90  and θ3 = 0 . The link length and joint veloc-
ity limits of the manipulator are listed in Table 2. Finally, 
the update rate in the hardware-in-the-loop simulation 
is assumed the same as the camera measurement process 
time, which is running at a rate of approximately 30 Hz.

 

Substituting Equations (15) and (16) into Equations (8) 
and (9) yields

 

Since the time t is always positive, the tracking error is 
guaranteed to converge to zero and the proposed control 
law is stable.

After the end effector moves one step towards the 
interception point, the procedure defined by Equations 
(8)–(14) is repeated for the next step until the capture 
requirement is achieved. As the end effector approaches 
the target, the error between the dynamically predicted 
and real interception points will be diminished. At the 
same time, the velocity of the end effector approaches to 
the velocity of the target. It is worth pointing out that the 
predicted interception point may change if the target is 
not stationary. As a result, the resulting trajectory of the 
end effector towards the target by the above approach is 
not necessary straight although the incremental joint con-
trol input is estimated based on a straight-line approach. 
Figure 1 illustrates a typical autonomous capture process 
by the proposed control strategy. After the first prediction 
of the interception point, the end effector moves by an 
increment Δ𝐗E = 𝐉Δ𝚯 towards the interception point by 
one step. The kinematic state of the target is then updated 
by the vision system before the second prediction is per-
formed. A capture will be made once the estimated min-
imum interception time tmin is smaller than the sample 
time ts of control system. The iterative algorithm of the 
incremental control process is summarized in Table 1.

(16)𝐄̇ = 𝐗̇T − 𝐗̇E

(17)𝐄̇ = −t−1𝐄

Figure 1. An illustration of the autonomous capture process.

Table 1. The iterative algorithm of the incremental position-level 

control strategy.

1. while (true)
2. {
3. Obtain joint variables of the robotic manipulator 𝚯;
4.  Evaluate transformation matrix 𝐓, Jacobian matrix 𝐉 and position 

of the end effector 𝐗
E
 at 𝚯;

5. Calculate 𝐓̇ and 𝐉†;
6. Obtain estimates of target’s position and velocity 𝐗

T
, 𝐗̇

T
 [7];

7. Apply the velocity limit 𝚯̇max to obtain t
min

 by Equation (13);
8. Evaluate Equation (11) at t

min
 to obtain 𝚯̇;

9. if (t
min

 < ts)
10. Capture and break;
11. Else
12.  Calculate the position-level relative control input Δ𝚯 = 𝚯̇ts and 

apply to the robot;
13. }
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The non-cooperative target in the experiment is moved 
independently in the 3D workspace of the robotic manipu-
lator by a stepping motor at the estimated speed of 6 cm/s. 
Initially, the target is placed around 35 cm away from the 
end effector. Figure 3 shows the position and velocity of 
the target with respect to the camera frame measured by 
the vision system, denoted by C𝐗T =

(CxT ,
CyT ,

CzT
)T and 

C𝐗̇T =
(CẋT ,

CẏT ,
CżT

)T, respectively. They are transferred 
to the global frame by Equations (2) and (3) and fed into 
the simulation.

In the simulation, the robotic manipulator is at the 
home position initially. The target is set to move roughly 
0.65  s ahead of the end effector. Figure 4 shows the 
time histories of the measured positions of the target 
𝐗T =

(
xT , yT , zT

)T, the simulated position of the end 
effector 𝐗E =

(
xE , yE , zE

)T and the predicted intercep-
tion point 𝐗C =

(
xC , yC , zC

)T in the global frame. The 
corresponding tracking error 𝐄 is shown in Figure 5. The 
position of the predicted interception point, as shown in 
Figure 4, varied rapidly at the early stage. This is evident 
that the proposed control law works effectively and effi-
ciently to predict the interception point. As the end effec-
tor approaches the target over time, the prediction will 

be more and more accurate. It is noted that the control 
error in Figure 5 approaches zero asymptotically, which 

(19)𝐗E =
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By defining ci = cos
(
𝜃i
)
 and si = sin

(
𝜃i
)
, the Jacobian 

matrix of the robotic manipulator becomes
 

The position of the end effector is then derived by the 
forward kinematics
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Figure 2.  Schematic of the hardware-in-the-loop validating 

system.

Table 2. Physical properties of the robotic manipulator.

Parameter Value
l
0
, m 0.1778

l
1
, m 0.4540

l
2
, m 0.4445

𝜃̇max1, rad/s 10.304

𝜃̇max2, rad/s 0.412

𝜃̇max3, rad/s 0.412

Figure 3.  Measured position (a) and velocity (b) of the non-

cooperative target in the camera frame.

Figure 4. Position history of the target, the end effector and the 

predicted interception point.
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indicates the end effector is approaching the target effec-
tively. Since the control law is designed based on the 
piecewise uniform linear motion of the target within each 
sample interval, the decrease in Figure 7 for a non-linear 
target motion, as shown in Figure 3, also indicates the 
proposed approach is tolerant to modelling errors.

The control input of the robotic manipulator in the 
current case is the relative or incremental joint angles that 
are calculated from the joint velocities. The time histo-
ries of the joint velocities and corresponding incremental 
control input for joint angles are depicted in Figure 8. It 
shows that the joint velocities 𝜃̇

2
 and 𝜃̇

3
 reach the velocity 

limits during the approaching process, see Figure 8(a), 
which indicates the newly proposed controller effectively 
enforces the constraints of joint velocity limit. It is worthy 
to note that there are outliers in the incremental control 
input periodically as shown in Figure 8(b). This is due to 

indicates the visual servo control law is stable. A capture 
was made at about 3.1 s once the end effector is close 
enough to the target. The corresponding joint angles of 
the robotic manipulator during the autonomous capture 
process are shown in Figure 6. The motion profiles of the 
end effector in Figure 4, the tracking error in Figure 5 and 
the variations of the joint variables in Figure 6 are quite 
smooth, which are generally preferred in the operation 
of robot.

Next, the estimated minimum interception time in the 
tracking process is kept updated and is shown in Figure 7. 
The estimated time increase at the beginning is due to 
the target moves first while the end effector remained at 
the home position for roughly 0.65 s. Once the control of the 
robotic manipulator is activated, the estimated minimum 
interception time is reduced asymptotically at a roughly 
constant rate as the end effector approached the target. 
The decrease in minimum interception time in Figure 7 

Figure 5. Time history of the tracking error.

Figure 6. Joint angles of the robotic manipulator.

Figure 7.  Time history of the estimated minimum interception 

time.

Figure 8. (a) Calculated joint velocity and (b) Incremental control 

input of the robotic manipulator.
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joint space to capture a non-cooperative target autono-
mously. The main contribution is to avoid the multiple 
solutions in the inverse kinematics by solving the incre-
ments of joint position from the current position based 
on visual feedback. Furthermore, the interception point, 
predicted dynamically by the feedback of current position 
and the target position, is used as the desired position of 
the end effector. The newly proposed control law is val-
idated by a hardware-in-the-loop simulation, where the 
kinematic state of the non-cooperative target is measured 
by an eye-to-hand vision system and the motion of the 
robotic manipulator is simulated. The simulation results 
show the end effector moves effectively towards the pre-
dicted interception point by the incremental angular con-
trol input at joints.
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the irregular sampling rate of camera as shown in Figure 9.  
In the real-time implementation, these outliers can be 
easily filtered out.

Figure 10 illustrates the 3D autonomous capture pro-
cess at every 10 sample points conducted by the pro-
posed control strategy defined in Table 1. The simulation 
results demonstrated the effectiveness and efficiency of 
the proposed incremental visual servo control strategy 
at position-level.

4. Conclusion

This work proposed an incremental visual servo control 
law for the robotic manipulator at the position-level in 

Figure 9. Irregular sampling times of a digital camera with 30 Hz 

sampling rate.

Figure 10. Schematic of the autonomous capture trajectory in 3D 

space.
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Visual Servo Kinematic Control for Autonomous 

Robotic Capture of Non-cooperative Target3 
 

Gangqi Dong and Z. H. Zhu 

 

Abstract 

This paper presents a visual servo incremental kinematic control scheme for 

the robotic manipulator with the eye-in-hand configuration to perform 

autonomous capture of a non-cooperative target. An integrated algorithm of 

the photogrammetry and adaptive extended Kalman filter is proposed to 

improve the efficiency and accuracy of the target motion estimation in real time. 

Based on the vision feedback, the end-effector moves directly towards the 

estimated position of the target at the next time instant incrementally, which 

effectively avoid the kinematic singularity and multiple solutions of inverse 

kinematics in the joint space. Validating experiments are performed on a 

custom built robotic manipulator with an eye-in-hand configuration. The 

experimental results demonstrate the effectiveness and robustness of the 

proposed control scheme. 

 

Keywords Kinematic control • Visual servo • Autonomous capture • Robotic 
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manipulator • Non-cooperative target • Eye-in-hand 

 

1 Introduction 

Robotic manipulators have been extensively employed in space missions to 

perform tasks that are dangerous, complex, and even impossible to be 

conducted by human beings, seen in Yoshida (2009), Bac et al. (2014) and 

Smith et al. (2015). For instance, missions like on-orbit-servicing and active 

debris removal require capturing non-cooperative targets by robotics with high 

accuracy and autonomy (Hsiao et al., 2011; Ignakov et al., 2012; Larouche and 

Zhu, 2014). The recent study by Flores-Abad et al. (2014) shows that 

autonomous robotic capture, especially when involving the non-cooperative 

targets, is still very challenging, although numerous enabling techniques have 

been proposed and several on-orbit-servicing missions were successfully 

performed with the participation of human beings. Furthermore, a preliminary 

concept design of guidance, navigation and control architecture had been 

proposed by Jankovic et al. (2015) for a safe and fuel-efficient robotic capture 

of a non-cooperative target in active debris removal missions, in which the 

capture process was divided into three phases: the far range rendezvous, the 

close range rendezvous and the final capture. In this paper, we focus on the 

visual servo control in the final autonomous capture of a non-cooperative target 

by a robotic manipulator. 

Two challenges arise sequentially in the autonomous capture of a non-

cooperative target by a robotic manipulator. First, the robotic manipulator has 

to promptly know where the target is, which means the position and motion of 

the target has to be estimated in real time. Because of the non-contact nature, 

vision systems are extensively adopted in robotic control for monitoring, 

detecting and tracking purpose, seen in Ghadiok et al. (2012). Considerable 
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efforts have been devoted to the development of vision-based position and 

motion estimation methods. Generally, existing methods can be divided into 

four categories, such as geometric, learning-based optimization, offline and 

filtering-based methods. Geometric methods are prone to image noises since 

they are based on the current measurement only. Learning-based optimization 

methods require sufficient knowledge of the target in advance, which is not 

available if the target is non-cooperative. The offline methods perform 

estimation afterwards and is not suitable for real-time applications. Therefore, 

filtering-based estimation methods, especially the Kalman filter based 

methods, are generally favored in the literature as they do not require priori 

knowledge of the targets, seen in Janabi-Sharifi and Marey (2010); Aghili 

(2012); Chen (2012); Sabatini et al. (2013) and Dong and Zhu (2015, 2016). 

Depending on the camera configuration, the vision systems are classified into 

two types: the eye-in-hand and the eye-to-hand. As the name implies, the 

camera is mounted on the robotic manipulator in the eye-in-hand configuration 

while detached from the manipulator and fixed in workspace in the eye-to-

hand configuration. Consequently, the eye-to-hand camera monitors the whole 

workspace to provide global yet less accurate estimates of target’s position and 

motion in a global frame. In contrast, the eye-in-hand camera is usually 

mounted close to the end-effector and provides a close and more accurate scene 

of the target in a local/camera frame. The accuracy of the estimates of position 

and motion increases as the end-effector approaches the target. Accordingly, 

the eye-in-hand configuration is adopted in the current study. To avoid the loss 

of target tracking caused by the moving target and the motion/oscillation of the 

eye-in-hand camera, an integrated estimation algorithm of photogrammetry 

and adaptive extended Kalman filter (AEKF) is proposed to estimate the 

position and motion of the non-cooperative target in real time. 

Once the position and motion of the target are available to the robotic 
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manipulator, the second challenge is how to determine the trajectory of the 

robotic manipulator in order to make a capture autonomously. In space 

applications, the robotic manipulators are generally driven by stepping motors 

at the joints slowly with angular position as control input. It is reasonable and 

acceptable to design the control strategy of space robotic manipulators in the 

current study based on the kinematic approach. Ideally, the desired position of 

the end-effector should be the interception point between trajectories of the 

target and the end-effector. However, the determination of the interception 

point is challenging in case of non-cooperative targets where the target 

trajectory is unknown in advance. In order to address this challenge, a new 

target-aiming kinematic control strategy is proposed in this work with vision 

input and the dynamic update of the trajectory of the robotic manipulator at 

each sampling instant. The incremental nature of the approach effectively 

avoids the multiple solutions in the inverse kinematics of robotic manipulators. 

The approach is approved robust in tracking the motion of the non-cooperative 

target and stable in approaching the target. It is worth noting that the current 

approach is derived based on a fixed-base manipulator to prove the concept of 

the current approach. Additional efforts will be required to apply the current 

work to free floating manipulators in space by replacing the Jacobian matrix 

in the current kinematic approach with a generalized Jacobian matrix 

(Umetani and Yoshida, 1989), or mapping the kinematics of a free floating 

manipulator to a fixed-base manipulator (Vafa and Dubowsky, 1987; Liang, et 

al, 1998). The newly proposed approach is applied to a robotic manipulator 

with an eye-in-hand configuration and validated experimentally using a 

custom built robotic manipulator. The experimental results successfully 

demonstrated the effectiveness and robustness of the proposed motion 

algorithm of non-cooperative targets as well as the target-aiming kinematic 

control strategy for the autonomous robotic capture.  
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2 Vision-Based Target Motion Estimation 

Consider a non-cooperative target and a vision-based robot system in space. 

Without loss of generality, assume the global frame, denoted by , is fixed in 

the inertia space; the camera frame, denoted by , is attached to the center of 

the image plane of camera and the target frame, denoted by , is fixed to the 

target body, respectively. Further assume the position of a feature point on the 

target is known with respect to (w.r.t.)  and is denoted by  , ,
T

T T Tx y z  in the 

target frame. Then, the position of this feature point w.r.t. , denoted by 

 , ,
T

C C Cx y z  in the camera frame, can be derived by an augmented 

homogeneous transformation from  to , such that 

 

1 10 0 0 1

ToC T

TC ToC T

ToC T

xx x

yy y

zz z

    
    

       
    
        

R
  (1) 

where  , ,
T

To To Tox y z  denotes the origin position of  w.r.t.  in the target 

frame and TCR  stands for the transformation or rotational matrix from  to 

. The transformation matrix is formed by the trigonometric functions of the 

Euler angles between axes of  and , denoted by  , ,
T

x y z   . 

According to Eq. (1),  , ,
T

C C Cx y z can be expressed as the functions of 

 , ,
T

To To Tox y z  and  , ,
T

x y z   . Note that  , ,
T

To To Tox y z  and  , ,
T

x y z    are the 

unknown position and orientation of  w.r.t.  and will be determined by 

the photogrammetry as follows. Let a feature point on the target is projected 

onto the image plane by a pinhole camera, such that 
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x xf

z zy f

   
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   
  (2) 

where f  is the focal length of the camera and  ,z
T

m mx  is the projected 

coordinates of the feature point on the image plane and can be obtained from 

the image processing. Here, the y -axis of  is assumed to be perpendicular 

with the image plane and pointing to the target. 

Rearranging Eq. (2) yields two independent equations with six 

unknowns for one feature point, 

 
0

0

m C m C

m C m C

x y x f x f

z y z f z f

  

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  (3) 

Theoretically, a minimum of three distinguished feature points are 

required to solve for six unknowns but ambiguous solutions may occur due to 

the periodic solutions of trigonometric functions. To avoid the ambiguity, at 

least four feature points are usually adopted to increase the robustness of 

solution (Larouche and Zhu, 2014). The resulting equations are highly 

nonlinear and are generally solved iteratively by the least square approach 

with an initial guess. Noting this process is solely based on the current 

measurement, the memoryless characteristics of the photogrammetry leads to 

the solution sensitive to the measurement noises. Furthermore, the 

computational cost may subject to the errors between initial guess and the real 

solution because the initial guess is made arbitrarily, leading to the large 

variation of the system sampling time. The latter is not desirable in real-time 

applications. In addition, similar to the limitation of other geometric approach, 

the photogrammetry does not solve for the target motion directly. In order to 

address these challenges, an integrated algorithm of photogrammetry and 

AEKF is employed to estimate the kinematic states of the target timely. 

The state variable vector of a target is defined based on its kinematic 

variables, such as, 
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  , , , , , , , , , , ,
T

To To To To To To x x y y z zx x y y z z      X   (4) 

The overhead dot denotes the time derivatives of the corresponding 

variables. By assuming the target moving at a constant speed within a 

sufficient small sampling time interval st  and the acceleration vector, denoted 

by  , , , , ,
T

To To To x y zx y z   ω , as the process noise for simplicity, the system 

model is defined as 

 1 1k k k  X AX Bω   (5) 

The subscripts k  and 1k   in Eq. (5) indicate the current and previous 

sampling time steps. The matrices A  and B  can be written as 

  
1
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0 1

stdiag
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In order to apply the Kalman filtering method, the process noise ω is 

assumed to obey the Gaussian distribution with normal mean vector q  and 

covariance matrix Q , such that 

  ~ ,ω q Q   (8) 

Because the pose of the target are detected by the camera, based on the 

pinhole camera model described by Eq. (2), the measurement model is defined 

as 

  k k k Z h X μ   (9) 

where Z  is the position vector of the feature points in image plane, μ  stands 

for the measurement noise of the camera, and  h X  is defined by 

   C

CC

xf

zy f

 
   

  
h X   (10) 

Note that the measurement noise of the camera depends on operation 
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conditions, such as illumination, environmental temperature, jittering of 

pixels, etc. It is reasonable to assume that the measurement noise obeys the 

zero mean Gaussian distribution with covariance matrix R , such that, 

  ~ ,μ 0 R   (11) 

Generally, the process and measurement noises are time-varying and it 

is desirable to adaptively update them for high accuracy. However, it is difficult 

to distinguish them from each other in reality. As a result, adaptively updating 

the distributions of both process and measurement noises may not be robust 

according to Song and Han (2008). Considering the fact that the measurement 

noises are characteristics of the measurement system and are independent on 

the target, it is reasonable to assume the process and measurement noises are 

independent. Thus, the covariance matrix of the measurement noises R  can 

be determined experimentally in advance, while only q  and Q  are adaptively 

updated for the process noises in the current work. 

However, challenge arises for the determination of q  and Q  due to the 

non-cooperative nature of the target as well as the eye-in-hand configuration 

of the vision system where the camera is affected by the motion of the end-

effector. For given initial conditions, the state variable vector X  and its 

corresponding covariance matrix P  in the next step can be predicted by 

following the typical process of Kalman filtering algorithm, such that, 

 
| 1 1| 1 1k k k k k    X AX Bq   (12) 

 | 1 1| 1 1

T T

k k k k k    P AP A BQ B   (13) 

Then, the Kalman gain is derived by 

  
-1

| 1 | 1

T T

g k k k k k k k  K P H H P H R   (14) 

where H denotes the Jacobian matrix of the measurement model, which is 

defined by 
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Once the measurement vector Z  is obtained from the image processing, 

the state variable vector and its corresponding covariance matrix in the next 

step are updated by 

   | | 1 | 1k k k k g k k k   X X K Z h X   (16) 

 
| | 1 | 1k k k k g k k k  P P K H P   (17) 

In order to adaptively update the normal mean and covariance matrix 

of the process noise, an intuitive approximation of q  at the j th step is defined 

in accordance with Myers and Tapley (1976), such as, 

    
1

| 1| 1
ˆ T T

j j j j j



  q B B B X AX   (18) 

Accordingly, the unbiased estimates of q  and Q  at the time k  can be 

evaluated under the assumption that the process noises are independent and 

uniformly distributed over N  time steps, such that, 
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1| 1 |

T T T T

j k k k k

 
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The unbiased estimates of q  and Qat the time k  as described by Eqs. 

(19), (20) and (21) are the adaptive distribution updates of the process noises. 

Since the initial state variables of the non-cooperative target is unknown, a 

poor initial guess would lead to a long convergence time of the AEKF, which is 

not desired in real-time application. Thus, we adopted the estimation results 

of photogrammetry to initialize the AEKF to accelerate the convergence of the 
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AEKF. Eqs. (12) - (21) are iteratively performed and the estimate of the state 

variable vector is obtained by Eq. (16) during each iteration. 

It should be noted that the estimated position and motion of the target 

are w.r.t. . For a concise description, let ,C C

T TX X  and ,T TX X  denote the 

estimated position and motion of the target w.r.t.  and , respectively. 

According to the geometric configuration of the camera, the transformation 

from  to  can be easily accomplished by the homogeneous transformation 

matrix, denoted by T , such that 
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Based on the above discussion, the estimates of target’s position and 

motion w.r.t.  are obtained by the integrated photogrammetry and AEKF 

algorithm. 

 

3 Target-Aiming Kinematic Control 

The kinematics of a robotic manipulator defines the kinematic relationship 

between the end-effector in Cartesian space and the robotic manipulator in 

joint space. For given joint angle vector and angular velocity vector of the 

actuators, denoted by Θ  and Θ  respectively, the position and velocity of the 

end-effector w.r.t. , denoted by EX  and 
EX  respectively, can be easily 

obtained by the so called forward kinematics, such as, 

  E X f Θ   (24) 

 
E X JΘ   (25) 



145 

where nΘ R , m

E X R  and J  represents the Jacobian matrix of the robotic 

manipulator and is derived by the partial derivative of the right hand side of 

Eq. (24) w.r.t. Θ , such as,  J f Θ. 

In contrast, for the given position and velocity of the end-effector w.r.t. 

, the inverse kinematics is required to solve for the corresponding joint angle 

and angular velocity of the manipulator. It is well known that the inverse of 

Eq. (24) may induce multiple solutions or kinematic singularity due to the 

periodicity of trigonometric functions and the redundant geometric 

configuration of the robotic manipulator. Generally, extra constraints, such as 

the physical limits, are imposed to avoid the kinematic singularity and obtain 

unique solution of the joint angle vector, as presented in Vahrenkamp and 

Asfour (2015). By neglecting the null space solution, the inverse of Eq. (25) can 

be written as 

 †

EΘ= J X   (26) 

where †J  denotes the pseudo inverse of the Jacobian matrix J .  

It is usually assumed that the Jacobian matrix J  is full row rank in the 

literature of robotics. Thus, the pseudo inverse may be simplified to the right 

inverse, such that, 

  
1† T T 

J J JJ   (27) 

Based on its current position and velocity, the future position of the 

target w.r.t. , denoted by T X , can be predicted as 

 
T T T st  X X X   (28) 

In order to guide the end-effector moving directly towards the predicted 

target position in the next moment, the instantaneous velocity of the end-

effector in the Cartesian space should have the same direction with the vector 

defined by T E X X , such that, 
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E ET X n   (29) 

where   is the positive scale factor of the instantaneous velocity of the end-

effector and ET n  denotes the unit vector of T E X X , such that 

 T E
ET

T E











X X
n

X X
  (30) 

Accordingly, the position of the end-effector would be updated by 

 
E E E st  X X X   (31) 

The requirement of T E X X  at the capture yields  

  1

T E s T Et   X X X X   (32) 

Thus, the proposed visual servo control law is stable because the time ts 

is always positive. 

Note that   is unknown and should be determined. Substituting Eq. (29) 

into Eq. (26) leads to 

 †

ET Θ= J n   (33) 

Define ,  i ijp  and 
ET jn   as the elements of †,  Θ J  and ET n , respectively. 

Then, Eq. (33) can be decomposed into n  scalar equations, such that, 

 
1

, 1,2, , .
m

i ij ET j
j

p n i n  



    (34) 

Assume the angular velocities of joint actuators in both forward and 

reversal directions are limited by  max max1 max2 max, , ,
T

n  Θ . Applying the box 

constraint 
max max,i i i      to the right hand side of Eq. (34) yields 

 max max
1

, 1,2, , .
m

i ij ET j i
j

p n i n  



      (35) 

Solving the inequalities in Eq. (35) independently for   yields n  sets of 

possible solutions, each denoted by i . The intersection of n sets of i  defines 

the desired scale factor of the instantaneous velocity of the end-effector, 
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  1 2maxd n      (36) 

Substituting Eq. (36) into Eq. (33) yields the equivalent instantaneous 

angular velocity vector of the joint actuators, denoted by Θ , such as 

 †

d ET  Θ = J n   (37) 

Accordingly, the incremental angular position control input of the joint 

actuators in the next time step, which drives the end-effector towards the 

target directly, is obtained as 

 
st Θ Θ   (38) 

By applying the control input vector in Eq. (38) to the joint actuators, 

the end-effector moves towards the target by an increment at each time 

interval in the Cartesian space. The procedure defined by Eq. (22) - (38) is 

iteratively performed until the position error between the end-effector and the 

target is within a pre-defined tolerance and the capture action will be taken at 

the end of the procedure. 

 

4 Experimental Validation 

The proposed integrated motion estimation algorithm and incremental 

kinematic control strategy are validated experimentally on an independent 

target system and a custom built robotic manipulator with an eye-in-hand 

configuration. As shown in Fig. 1, the independent target system is driven by 

a single stepper motor fixed at the top right corner and anchored on the ceiling 

at the top left corner. By operating the target system independently, a non-

cooperative target is generated for the robotic manipulator. Four carefully 

designed low-noise feature shapes are adopted here. By detecting and grouping 

the corners of each feature shape, the centers of feature shapes are calculated 

and tracked for the kinematic state estimation of the non-cooperative target. 
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Fig. 1 Experimental setup of the non-cooperative target system. 

 

Fig. 2 Custom-built robotic manipulator with eye-in-hand configuration. 

The experimental setup of the custom built robotic manipulator with an 

eye-in-hand configuration is shown in Fig. 2. The motion of the end-effector is 

controlled by three revolute joints, namely torso, shoulder and elbow, which 

are denoted by 1 , 2  and 3 , respectively. It should be noted that the degrees 

of freedom 4  and 5  are designated for grasping the target and are not used 

in the current control law. Shaft encoders were employed to measure joint 
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angles in real time. Home position of the robotic manipulator is set to 

1 2 30 ,  90 ,  0     . The link length between the shoulder and elbow joints 

is 0.4540 m and the link length between the elbow and the end-effector is 

0.4445 m, as shown in Fig. 2. In order to further simplify Eq. (27), physical 

constraints are introduced to avoid the kinematic singularity of the robotic 

manipulator. Accordingly, the pseudo inverse of the Jacobian can be calculated 

by the normal inverse. 

 

Fig. 3 Autonomous robotic capture process of the non-cooperative target. 
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The experimental results are shown in Figs. 3 - 7. Fig. 3 shows an 

autonomous robotic capture process of a non-cooperative target. Initially, the 

robotic manipulator was at the home position. The red rectangle indicates the 

region of interest for the image processing at the beginning. After the target is 

locked, the optical flow function of the OpenCV library takes over the tracking 

task of the four features on the target. The target was activated 50 sampling 

time steps (roughly two seconds) ahead of the robotic manipulator in order to 

become a dynamic non-cooperative target. The capture was deemed to 

successfully achieve when the distance between the end-effector and the target 

was reduced within the predefined tolerance. 

 

Fig. 4 Estimation results of the target motion w.r.t. . 

To analyze the capture process in detail, Fig. 4 illustrates the estimates 

of target’s motion by the eye-in-hand camera w.r.t. . During the experiment, 

the target motor was independently programmed to move the target within the 

workspace of the robotic manipulator. As mentioned above, the robotic 

manipulator was activated 50 sampling time steps after the activation of the 

target. This is reflected in Fig. 4 where the estimated target motion is quite 

smooth because the camera was stationary. Once the robotic manipulator was 



151 

activated, the eye-in-hand camera was no longer stationary and the estimates 

of the target’s motion were coupled with the motion of the robotic manipulator 

and become oscillation. This is much obviously shown in the velocity estimates. 

 

Fig. 5 Time history of incremental control input of joint actuators. 

 

Fig. 6 Time history of joint angles measured by the shaft encoders. 

Once the target motion is estimated, according to Eqs. (22) - (38), the 

incremental control inputs for the joint actuators are obtained as shown in Fig. 

5. Joint angles of the robotic manipulator are measured by the shaft encoders 



152 

directly and fed back to the controller in real time, as shown in Fig. 6. As can 

be seen, the robotic manipulator behaves almost uniformly in joint space, 

except the torso angle 1 , which is affected by the flexible coupling between the 

torso actuator and the first link. This kind of mechanical design is to ease the 

alignment requirement of rotational axes. Nevertheless, it shows the control 

strategy is robust to handle the disturbance not considered in the control law. 

Fig. 7 describes the time histories of the positions of the end-effector and 

the target. Since the position of the end-effector is w.r.t. , in order to compare 

the position of the end-effector with the target, the target position is 

transformed to  by Eq. (22), represented by G

Tox , G

Toy  and G

Toz  in the 

legends. It can be seen that, after the robotic manipulator was activated, the 

end-effector approached and captured the target autonomously at around 12 

seconds successfully. The experimental results demonstrate the effectiveness 

and robustness of the estimation algorithm for the non-cooperative target as 

well as the kinematics based control strategy for autonomous robotic capture. 

 

Fig. 7 Time histories of positions of the end-effector and the target, w.r.t. . 
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5 Conclusion 

This paper presents a novel incremental kinematic control strategy for the 

visual servo robotic manipulator with eye-in-hand configuration to perform 

autonomous capture of a non-cooperative target. A vision based estimation 

algorithm that integrates the photogrammetry and AEKF is developed for the 

kinematic state estimation of the non-cooperative target. Initialized by the 

photogrammetry and enhanced by solely adaptive process noise distribution of 

the Kalman filtering method, the motion of a non-cooperative target by an eye-

in-hand camera is successfully tracked and accurately estimated. In order to 

avoid the multiple solutions problem of the inverse kinematics in robotics, 

incremental joint control input is generated by the kinematics based control. 

Since the end-effector is always aiming to the target position in the next 

moment, the possibility of losing target tracking by the eye-in-hand camera is 

reduced substantially. Validating experiments have been performed by a 

custom robotic manipulator. The test results of a successful capture 

demonstrate the effectiveness and robustness of the estimation algorithm as 

well as the visual servo incremental kinematic control strategy. 
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Kinematics-based Incremental Visual Servo for 

Robotic Capture of Non-cooperative Target4 
 

Gangqi Dong and Z. H. Zhu 

 

Abstract 

This paper presents a kinematics-based incremental visual servo control 

scheme for robotic manipulators with eye-in-hand configuration to capture 

non-cooperative targets autonomously. The vision system is adopted to 

estimate the three dimensional position and motion of the target in real time 

by an integrated algorithm of photogrammetry and adaptive extended Kalman 

filter. The unknown intercept point of trajectories of the target and the end-

effector is predicted and updated dynamically based on the target estimates, 

and is served as the desired position of the end-effector. An incremental control 

law is developed for the robotic manipulator to avoid the multiple solutions of 

the inverse kinematics. The proposed control scheme is validated 

experimentally by a custom built robotic manipulator with an eye-in-hand 

configuration. The experimental results demonstrate the proposed control 

scheme is effective and reliable. 

                                            
4 Submitted to IEEE/ASME Transactions on Mechatronics on June 03, revised form submitted 

on August 05, 2016. 
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Index Terms—Robotic manipulator, non-cooperative target, autonomous 

capture, visual servo, incremental kinematic control 

 

1 Introduction 

Robotic manipulators have been extensively adopted in numerous fields to 

satisfy the growing demands of dexterity, efficiency, and automation [1-4]. 

Among them, autonomous capture of a target attracts increasing attention in 

robotics [5-9], especially in space applications when the target is non-

cooperative [10-12]. Several on-orbit-servicing missions were successfully 

performed with human participation, while the fully autonomous robotic 

capture of non-cooperative targets is still facing many challenges [11, 13], such 

as, the target estimation and the robotic control.  

The target motion estimation is essential to control the robotic 

manipulator in order to achieve desired position/motion of the end-effector. 

Due to the non-contact and non-invasive nature, vision system is generally 

favored in robotic control for target estimation [14-17] and the corresponding 

control approach is known as visual servo [18, 19]. The vision system used for 

target detecting and tracking purpose can be either mounted on a robotic 

manipulator, known as eye-in-hand, or fixed to the workspace, known as eye-

to-hand. The eye-in-hand configuration may provide a near and detailed scene 

of the target. The visual information is coupled with the motion of the robotic 

manipulator and the effect of the latter could be decoupled with the feedback 

of the state of the robotic manipulator. The accuracy and details of the target 

increase as the end-effector approaches the target. Alternatively, the eye-to-

hand configuration monitors the whole workspace and provide a global but less 

accurate scene of the target. In some specific circumstances during the robotic 
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operations, the view of target may be blocked by the robotic manipulator in the 

eye-to-hand configuration, leading to the tracking failure. Therefore, the eye-

in-hand configuration is adopted in the current study to ensure the high control 

accuracy in the capture phase. In the visual servo control, it is imperative to 

keep the target in the camera’s field of view, especially for eye-in-hand 

configuration when the end-effector is in the vicinity of target. Common 

approaches in the literature are adoption either wide angle cameras or 

motorized cameras with orientation control. However, the control of camera 

orientation will in generally couple with the control of end-effector and 

complicated the control law design. The current work is focused on the 

development of kinematics-based incremental visual servo for robotic capture. 

Therefore, a camera with large field of view is adopted in the current study to 

simplify the development and validation of the proposed visual servo control 

scheme. 

Many vision-based methods for target estimation were developed, such 

as the geometric method, learning-based optimization method, offline 

estimation method and filtering-based method. Based on requirements for real 

time autonomous capture, an integrated algorithm of photogrammetry and 

adaptive extended Kalman filter (AEKF) [17] is employed for real time 

estimation of position and velocity of a non-cooperative target in the current 

work.  

Once the pose and motion of the target are estimated, a control strategy 

is employed to capture the dynamic target. In our previous works, the 

estimated current target position [17] or the estimated target position in the 

next time instant [12] was assumed as the desired position in the proposed 

control law. It was found that the end-effector may not be able to capture the 

target in both cases if the end-effector lags behind the target initially. To 

address this issue, the current work assume the intercept point of trajectories 
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of the target and the end-effector as the desired position in the control law. In 

addition, the velocity of the end-effector at interception shall be aligned with 

the target’s velocity as much as possible to avoid hard contact at capture. 

However, the determination of the intercept point is challenging since the 

target trajectory is unknown in advance due to the non-cooperative nature. 

This challenge is further complicated by the fact that the time-variant 

nonlinear motion of the end-effector will induce variation of tracking time and 

affect the determination of the intercept point. Furthermore, for any given 

position of the end-effector in the Cartesian space, the inverse kinematics of 

the robotic manipulator must be performed to obtain the corresponding 

angular position in the joint space. Difficulty arises in the inverse kinematics 

where multiple solutions occurs due to the periodicity of trigonometric 

functions and the redundant geometric configuration of the robotic 

manipulator. In our previous work [17], the issue of multiple solutions of direct 

inverse kinematics was avoided by considering work space constraints, which 

is problem specific. In the current work, a kinematics-based incremental 

control strategy is proposed to avoid the multiple solutions in a generic way. 

The proposed approach is validated experimentally using a dynamic 

non-cooperative target and a custom built robotic manipulator with eye-in-

hand configuration. The experimental results demonstrated the effectiveness 

and reliability of the proposed control strategy for autonomous capture of a 

non-cooperative target in real time. 

 

2 Vision-based Target Estimation 

Consider a robotic manipulator with the eye-in-hand configuration working in 

an inertia space together with a non-cooperative target. A global frame is fixed 

in the inertia space and is denoted by G . The target frame is attached to the 
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target body and is denoted by T . The camera frame, denoted by C , is placed 

in the image plane of the camera with the origin at the center of the image 

plane. The coordinates of the origin of T  in C  are defined as 

 , ,
TC C C C

To To To Tox y zX . Furthermore, it is assumed that the non-cooperative 

target contains   known feature points in T  denoted by T

iX , where the 

subscript 1,2,i  . Based on the above definitions and assumptions, the 

coordinates of feature points of that target in C  can be expressed as 

  C C C T C

i T T i To X Ω X X  (1) 

where  C

T   stands for the rotational transform matrix from T  to C  and is 

formed by trigonometric functions of  Eulerian angles  , ,
TC C C C

T Tx Ty Tz  Ω  

between these two reference frames. It should be noted that C

ToX  and C

TΩ  are 

the position and orientation of T  with respect to C  and are both unknown 

for a non-cooperative target. 

For a pinhole camera, the feature points are projected onto the image 

plane of the camera by the collinearity condition 

  ,C

i i fZ X   (2) 

where f  is the focal length of the camera and 2

i Z R  is the corresponding two 

dimensional image coordinates of each feature points in meters, which can be 

obtained by performing image processing. 

Consequently, the relationship between the measurements iZ  and the 

unknown pose (position and orientation) of the non-cooperative target is 

established by (1) and (2). For each of the feature points, two equations with 

six unknowns are obtained. Therefore, at least three feature points ( 3  ) 

should be available to solve six unknowns. In order to eliminate the ambiguity 

caused by the periodic solutions of trigonometric functions, four feature points 
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( 4  ) are usually adopted and the unknowns are solved by the iterative least 

square approach based photogrammetry [8]. Noting that the photogrammetry 

does not solve for the motion of the target and are prone to the measurement 

noise due to its memoryless nature. The measurement noise in the image 

processing may be amplified by the photogrammetry and propagate into the 

visual servo control algorithm. To overcome this limitation, an AEKF 

algorithm [17] is developed to estimate the motion of the non-cooperative 

target in real time. 

Define the state variable of the target with respect to C  as 

  , , , , , , , , , , ,
T

C C C C C C C C C C C C

To To To To To To Tx Tx Ty Ty Tz Tzx x y y z z      X   (3) 

The target motion is approximated by the first order linear motion if the 

sampling time is sufficient small. Thus, the process model can be written as 

 1k k k  X AX Bω   (4) 

where the subscripts k  and 1k   indicate the current and next sampling time 

steps, ω  is the process noise formed by the acceleration vector as 

 , , , , ,
T

C C C C C C

To To To Tx Ty Tzx y z   ω , 12 12A R  and 12 6B R  are the coefficient 

matrices with the elements formed by functions of sampling time st , such as  

 

,

2 1,2

,

1 for 1,2, ,12

for 1,2, ,6

for all the other elements0

i i

i i s

i j

A i

A t i

A



  


 




  (5) 

 

2

2 1,

2 ,

,

2 for 1,2, ,6

for 1,2, ,6

for all the other elements0

i i s

i i s

i j

B t i

B t i

B


  


 




  (6) 

The process noise is assumed to obey the normal distribution with the mean q  

and covariance Q , such that 

  ~ ,ω q Q   (7) 
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Based on (1) and (2), the measurement model is defined as  

  k k k Z X μ   (8) 

     ,C C T C

k T T i To f X Ω X X   (9) 

where μ  stands for the measurement noise of the camera and is assumed to 

obey the normal distribution with zero mean and constant covariance matrix, 

i.e.  ~ ,μ 0 R .  

The camera model in (8) and (9) is highly nonlinear and the direct 

application of common extended Kalman filters may lead to poor estimates due 

to the high nonlinearity of the measurement model and unsuitable 

approximation of the noise distribution. To deal with this issue, AEKF was 

proposed to improve the performance of common extended Kalman filters by 

adapting the distribution of the noises. In the current case, although the 

covariance matrix of the measurement noise R  can be determined 

experimentally in advance, the mean and covariance matrix of the process 

noise, q  and Q , are time-variant and have to be updated. The estimation 

process with adaptive process noise is concisely described as follows. 

Based on the process model in (4), the state variable X  and its 

covariance matrix P in the next step can be predicted by 

 1| |k k k k k  X AX Bq   (10) 

 1| |

T T

k k k k k  P AP A BQ B   (11) 

where the subscript    denotes the variables estimated at step   with 

respect to step  , kq  and kQ  denote the mean and covariance matrix of the 

process noise at step k , respectively. 

The Kalman gain is given by 

  
-1

1| 1|

T T

g k k k k k k k  K P H H P H R   (12) 
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where H denotes the Jacobian of the measurement model and is defined by 

  
1|k k

k


 
X X

H X X   (13) 

Following the classic procedure of Kalman filtering, the estimates in (10) 

and (11) are updated once the measurement is obtained for the current step, 

such that 

   1| 1 1| 1|k k k k g k k k     X X K Z X   (14) 

 1| 1 1| 1|k k k k g k k k    P P K H P   (15) 

In order to adaptive the distribution of process noise, an intuitive 

approximation of q  at step j  is defined by [20] 

    
1

1| 1 |
ˆ T T

j j j j j



  q B B B X AX   (16) 

Further assume the process noise is independent and uniformly 

distributed over N  sampling time steps, then the unbiased estimate of q  at 

step k  can be defined by 

  1
1

1 1
ˆ ˆ ˆ 

k

k j k k k N
j k NN N

 
  

   q q q q q   (17) 

Accordingly, the covariance matrix of the process noise is given by  
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NN
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 



  

     
 

         
 

q q q q q q q q

Q Q
q q q q Λ Λ

  (18) 

      
1 1

| 1| 1

T T T T

k k k k k

 

  Λ B B B AP A P B B B   (19) 

The AEKF iteration defined by (10)-(19) is initialized by the result of 

photogrammetry in order to accelerate the iterating convergence.  

It should be noted that the obtained target estimates are in C . Because 

the vision system is configured as eye-in-hand, the estimated position and 

velocity should be transformed from C  to G . Denoted the transformation 

matrix by 4 4T R , which is obtained by the Denavit-Hartenberg 
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transformation [109], such that  

    ,1 ,1
TT C

T ToX T X   (20) 

where TX  denotes the estimated position of the target expressed in G . Notes 

that the elements of T  are formed by the trigonometric functions of joint 

angles and the length of links of the robotic manipulator. 

Taking the time derivative of (20) yields 

      ,0 ,0 ,1
T T TC C

T To To X T X T X   (21) 

where TX  denotes the estimated velocity of the target expressed in G . 

The elements of T  are functions of trigonometric functions of joint 

angles, joint velocities and the length of links of the robotic manipulator. We 

assume the joint angles can be measured by shaft encoders and the 

corresponding joint velocities can be obtained by a standard Kalman filter. 

Hereto the estimated position and velocity of the non-cooperative target are 

obtained in both C  and G . 

 

3 Incremental Visual Servo Control 

Generally, robotic manipulators are a sequence of joints and links with a 

dexterous end-effector attached to terminus of the kinematic chain. The joints 

and links mainly contribute to place the end-effector to a desired position and 

the dexterous end-effector can be utilized to align with the orientation of 

grasping point on a target in most robotic capture scenarios. Thus, the control 

for the alignment of gripper with the target’s grasping feature can be decoupled 

from the position control of the end-effector, as presented in this work. 

For a given angular position and velocity of the robotic manipulator, the 

position and velocity of the end-effector in G  can be obtained by the forward 
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kinematics as 

  E X f Θ   (22) 

 E X JΘ   (23) 

where nΘ R  and nΘ R  denote the angular position and velocity of the joints 

of robotic manipulator, m

E X R  and m

E X R  denote the position and velocity 

of the end-effector, and m nJ R  is the Jacobian matrix of the robotic 

manipulator that is defined by  J f Θ. 

Based on the definition of pseudo inverse of a matrix, the inverse 

kinematics corresponding to (23) can be written as, if the null space solution is 

neglected, 

 †

EΘ= J X   (24) 

where †J  denotes the pseudo inverse of J  and can be calculated by 

 
1† T T 

J J JJ  with the assumption that J  is non-singular. 

However, the inverse kinematics corresponding to (22) is complicated by 

multiple solutions due to the periodicity of trigonometric functions and the 

redundant geometric configuration of the robotic manipulator. In order to 

avoid the difficulties, an incremental visual servo control strategy for the 

robotic manipulator to intercept the non-cooperative target is developed as 

follows. 

Assume the target is always within the workspace of the robotic 

manipulator and will be captured at the interception point CX  after tracking 

time t , which can be estimated by the first order approximation 

 C T Tt X X X   (25) 

In order to intercept with the target, the end-effector is required to reach 

the same interception point within the same time period. Thus, the trajectory 

for the end-effector can be roughly designed as  
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 C E Et X X X   (26) 

Because EX  can be obtained in accordance with (22) and TX  and TX  

can be obtained by the estimation algorithm in section II, the desired velocity 

of the end-effector is determined based on (25) and (26), such that 

  1
E T T Et

t
  X X X X   (27) 

Substituting (27) into (23) yields 

  †1
T T Et

t
  Θ J X X X   (28) 

Applying the constraint of angular velocity to (28) yields 

  min max
1

1 m

i ij Tj Tj Ej i
j

p x tx x
t

 


      (29) 

where the subscripts 1,2, ,i n . ,  ,  ,  ,i ij Tj Tjp x x  and Ejx  are the elements of 

†,  ,  ,  ,T TΘ J X X  and EX , respectively. 

Since 0t  , the inequalities in (29) yields n  solution intervals of 

tracking time, which are denoted by 1 2, , , nt t t , respectively. Then, the 

predicted intercept time is determined as the lowest bound of the intersect of 

the solution intervals, such that 

  1 2min nt t t t   (30) 

Substituting the determined t  into (28) yields the expected angular 

velocity of the robotic manipulator. Finally, the control input for the robotic 

manipulator in the next sampling step is obtained as the increment of angles 

in one sampling step, such as  

  †s
T T E

t
t

t
   Θ J X X X   (31) 

It is worth pointing out that the issue of multiple solutions associated 

with the total inverse kinematics is avoided by the incremental inverse 
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kinematics in (31) if the time step st  is small. 

Furthermore, it can be seen from (27) that the velocity of the end-

effector approaches to the velocity of the target as the relative distance 

between them diminishes, such that,   0T E X X . This implies there will be 

no hard contact at capture because the velocity of the end-effector will align 

with the target. 

After the end-effector moves one step towards the target, the prediction 

of the intercept point and the tracking time will be updated again with the new 

estimates of target state. As a result, the predicted intercept point and the 

tracking time are dynamically updated by the control loop until the end-

effector intercept the target. 

To prove the stability of the proposed visual servo, define the tracking 

error of the robotic capture as 

 T E E X X   (32) 

 T E E X X   (33) 

Equaling (25) and (26) yields 

 
1

t
E E  (34) 

Now define the Lyapunov function as 

 
1

2

TV E E  (35) 

The time derivative of (35) is 

 TV E E   (36) 

Substituting (34) into (36) leads to 

 
1

0T

t
 V E E   (37) 

Equation (37) indicates the proposed visual servo control law is 

asymptotically stable because the tracking time t  is always positive. Thus, the 
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position of the end-effector EX  is guaranteed to converge to the position of the 

target by the proposed visual servo control scheme even though the initial 

prediction of intercept point is rough. 

Once the end-effector reaches the desired position, the alignment of the 

gripper with the grasping feature of the target is independently controlled 

based on the estimated orientation of the target in C . 

 

4 Experimental Results 

The proposed incremental visual servo control scheme is validated 

experimentally by a custom built robotic manipulator with an eye-in-hand 

configuration. The target independently driven by a single stepper motor 

independent to the robot controller so that it can be treated as non-cooperative. 

As shown in Fig. 1, the target is suspended in the air by a wire. One end of 

wire was anchored on the ceiling at the top left corner, while the other end was 

attached to the stepper motor fixed at the top right corner. In order to improve 

the accuracy of image processing, four low noise and identical feature shapes 

were carefully designed [8]. The distances between centroids of any two feature 

shapes are greater than the size of the feature shape by two times. The corners 

of all feature shapes were detected by OpenCV functions and grouped into four 

groups according to the distance between any two corners. Then the centers of 

each feature shape were calculated. They were numbered based on the distance 

from the intersection point of diagonal lines of the quadrangle that is formed 

by the centers of feature shapes, from the smallest to the largest. Once 

numbered, the centers of feature shapes were fed to the target estimation 

algorithm. Before the testing, the target was activated first so that a dynamic 

non-cooperative target was generated. Furthermore, extra jittering was 



170 

intentionally added on the target trajectory to demonstrate the strength of 

algorithms of target estimation and the visual servo control. The jittering was 

generated by driving the stepper motor with sudden starts and stops to induce 

vibrations/swings of the target because the target was hanging by flexible 

wires. After the activation of the target for 50 sampling steps (around 2s), the 

robotic manipulator was activated for the autonomous capture. The tolerance 

for the tracking error is set as (0.01m, 0.01m, 0.01m).  

 

Fig. 1  Setup of the non-cooperative target. 

Figure 2 shows the custom built robotic manipulator with an eye-in-

hand camera mounted closely to the end-effector. The camera was a webcam. 

The pixel size, optical sensor (CCD) size and frame size (resolution) of the 

camera are 5.6x5.6 μm, 6.35 mm (1/4") and 640*480, respectively. The 

distortion is corrected automatically by the driver software from the camera 

manufacturer.  

The main rotational joints of the robotic manipulator are driven by 

stepper motors, namely torso, shoulder, and elbow. They are denoted by 1 , 2 , 

and 3 , respectively. Shaft encoders were mounted at the main joints to 

measure 1 , 2 , and 3  in real time. It should be noted that a flexible coupling 
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is adopted at 1  in order to handle the misalignment of rotational axes between 

the actuator and the first link. The length of links and the joint speed limits of 

the robotic manipulator are listed in TABLE I, where the joint speed limits of 

each joint are assumed symmetric in both positive and negative directions, that 

is, min maxi i  . 

 

Fig. 2  Custom built robotic manipulator with the eye-in-hand configuration. 

TABLE I  Physical Properties of The Robotic Manipulator 

Symbols Descriptions Values 

1,2l  Link length between torso and shoulder 0.1778m 

2,3l  Link length between shoulder and elbow 0.454025m 

3,El  Link length between elbow and end-effector 0.4445m 

max1  Speed limit of torso 10.304 rad/s 

max2  Speed limit of shoulder 0.412 rad/s 

max3  Speed limit of elbow 0.412 rad/s 

 

As shown in Fig. 2, the end-effector includes a gripper with two revolute 



172 

joints and one prismatic joint. They are denoted by 4 , 5  and 6d , respectively. 

All joints are driven by servo motors made by HiTEC. The alignments with the 

grasping feature of the target are fulfilled by the independently controlled end-

effector, such as 4

C C

Ty Ty st     and 5

C C

Tz Tz st    . 

Two cases of experiments have been conducted to validate the proposed 

control scheme. The home position of the robotic manipulator was set to 

1 3 0     and 2 90    in case 1, with the initial position of the end-effector 

roughly 15 cm away from the target. In case 2, the home position of the robotic 

manipulator was set to 1 0   , 2 115    and 3 25    , with the initial position 

of the end-effector roughly 40 cm away from the target. 

A. Case 1 

First, the target position and velocity in C  are estimated by the 

proposed estimation algorithm and compared with the results obtained by the 

photogrammetry. The comparisons are shown in Figure 3. It is noted that the 

estimates by the proposed algorithm are much smoother than that of the 

photogrammetry where the effect of jittering is amplified. In addition, the 

photogrammetry does not estimate the velocity while the proposed algorithm 

estimates both position and velocity at the same time. It can be seen in Fig. 3 

that the target motion is coupled with the motion of the robotic manipulator 

due to the eye-in-hand configuration after the robot started 2s later. Because 

of this kinetic coupling effect, the estimated velocity is pretty noisy. The 

obvious oscillation in the final approaching stage is the evidence of the flexible 

coupling effect at the first joint of the robotic manipulator. 

According to the estimated target motion, the dynamically predicted 

minimum tracking time t is shown in Fig. 4. The noise is mainly caused by the 

jittering motion of the target as well as the time-variant velocity of the end-

effector. The jittering motion of the target causes the variation of the intercept 
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point, and further affects the tracking time. Besides, the Jacobian is mainly 

formed by the products of trigonometric functions of joint angles and length of 

links. It largely depends on the joint angles. Thus, the velocity of the end-

effector varies significantly to the interception point and in turn affects the 

tracking time. Nevertheless, the overall trend of the predicted minimum 

tracking time is reduced asymptotically as the end-effector approaches the 

target. This indicates the proposed control law is effective and stable. 

 

Fig. 3  Estimated target motion in case 1. 

The angular position histories of the robotic manipulator recorded by 

the shaft encoders are shown in Fig. 5. In the first 2s, the robotic manipulator 

was stationary so that the angular positions of the robotic manipulator were 

remained at the home position. Then the robotic manipulator started to track 

the target. The oscillation in 1  is again caused by the flexible coupling at the 
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first joint.  

 

Fig. 4  Predicted minimum tracking time in case 1. 

 

Fig. 5  Time history of angular position of the robotic manipulator in case 1. 

 

Fig. 6  Time history of tracking error in case 1. 



175 

The tracking error between the position of the end-effector and the 

target is shown in Fig. 6. It can be seen that the tracking errors approach zero 

and finally the end-effector intercepts the target at around 14s.  

Intuitively, the robotic capture process is illustrated in Fig. 7. The 

pictures in the left column were taken by an external webcam for observation 

purpose only, and the images in the right column were recorded by the eye-in-

hand camera. In the right column, the rectangles in red indicate the region of 

interest (ROI), which is selected manually before the capture process starts. 

Once the ROI was selected, 20 corners inside the ROI were detected by 

OpenCV functions and marked as green dots. Then the corners were grouped 

in four groups according to the distance between each of these two corners. The 

centers of each group, marked as red dots in the images, were calculated in 

order to apply the OpenCV optical flow function to track the target motion. The 

two advantages of tracking the centers are the higher image processing 

accuracy and the lower computational cost than tracking all the corners. It 

should be noted that once the capture process start, only the red dots will be 

tracked for the target estimation. This is the reason that the red rectangle of 

the ROI and the green dots are remained at the original position in the images 

of the eye-in-hand camera. The four feature centers form a quadrangle. The 

intersect point of the diagonal lines are calculated and marked as a blue dot in 

the images of Fig. 7. Then the four feature centers were numbered according 

to the distance between the intersect point and each of the feature centers, 

from the smallest to the largest. The order of the feature centers is fed to the 

target estimation algorithm together with image coordinates. 

At the beginning, the robotic manipulator was at the home position as 

shown in the left column of the first row in Fig 7. Then, the pictures in the 

second row indicate that the target was activated while the robotic 

manipulator remained at its home position during the first 2s. After 2s, the 
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robotic manipulator started to track and approach the target. The moment at 

around 8s was taken as an example of this stage and shown in the third row. 

Finally, the gripper was closed and secured the gasping feature when the 

tracking error of the end-effector is less than a preset tolerance and the gripper 

is aligned with grasping feature. This is shown in Fig. 7 at 14s in the left 

column of the last row. 

 

Fig. 7  Experimental capture process in case 1. 

B. Case 2 

Furthermore, another case of experiment has been performed with 

different home position initially. Time histories of the angular position of 

robotic manipulator and the tracking error are shown in Fig. 8 and Fig. 9, 

respectively. The performance of the proposed approach is similar to case 1, 
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except it took a longer time to capture (about 34 s), because the initial tracking 

error is large. 

 

Fig. 8  Time history of angular position of the robotic manipulator in case 2. 

 

Fig. 9  Time history of tracking error in case 2. 

The experimental results of both cases demonstrated the effectiveness 

of the proposed estimation algorithm and the kinematics based incremental 

control scheme. 

 

5 Conclusion 

This paper presents a kinematics-based incremental visual servo control 

strategy for the robotic capture of a non-cooperative target autonomously. An 
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integrated algorithm of photogrammetry and adaptive extended Kalman filter 

is adopted to estimate the kinetic state of the non-cooperative target. A 

kinematics-based incremental control strategy is developed for the robotic 

manipulator to perform the autonomous capture. Based on the target 

estimates, the intercept point of the trajectories of the end-effector and the 

target, as well as the tracking time are dynamically predicted. The multiple 

solutions of inverse kinematics are avoided by considering the angular velocity 

limits of the actuators of robotic manipulator and the incremental angular 

position as the control input. Validating experiments were performed on a 

custom built robotic manipulator with the eye-in-hand configuration and a 

non-cooperative target. External jittering was added to the target motion in 

the experiments. The successful capture of the non-cooperative target 

demonstrated the effectiveness of the estimation algorithm and the 

incremental kinematic control strategy. 
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