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Abstract

We have conducted a quantum-mechanical analysis within the independent elec-

tron model to investigate electron removal processes in the proton-methane collision

system in the 20 keV to a few MeV energy range. Similar to a previous work, we

have used a spectral representation of the molecular Hamiltonian and a single-centre

expansion of the initially populated molecular orbitals. The two-centre basis gen-

erator method is then used to solve the time-dependent single-particle Schrödinger

equations. We have also used the “independent atom model” in which we have

treated the collision system with a molecular target as a combination of collision

systems with atomic targets. We have also shown that Bragg’s additivity rule is

derived from the independent atom model.

The results for net capture and ionization cross sections, obtained by the molec-

ular method as well as Bragg’s additivity rule, are compared with available ex-

perimental studies. We observe good agreement at high energies for both models.

At intermediate and lower energies the situation seems to be less clear. For the

molecular method the ionization results are improved when we estimate excitation

particularly at intermediate energies. Overall, our molecular method outperforms

Bragg’s additivity rule for both capture and ionization.
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Chapter 1

Introduction

Collisions of ions with hydrocarbon molecular targets have been a subject of inter-

est in both experimental and theoretical physics. The molecule considered in this

work is methane, CH4, which is the simplest hydrocarbon molecule. A large num-

ber of applications in various fields such as astrophysical and atmospheric sciences

has made methane an important molecule to study. One such example is Titan (a

satellite of Saturn). Titan’s atmosphere is largely composed of N2 and hydrocarbon

molecules, mainly CH4. The CH4 molecules make up about 3% of Titan’s atmo-

sphere and are continuously dissociated by UV photons, electrons and cosmic rays

[1]. Therefore, studying the dissociation processes of CH4 is important in order to

understand Titan’s atmosphere.

To be able to study the dissociation processes it is essential to understand the

simple electron removal processes which precede them. The electron removal and

fragmentation processes of hydrocarbon molecules in collisions with different pro-

jectiles (i.e., ions, electrons and photons) have been extensively investigated. For

example, in [2] the collisions of protons with CH4 in the impact energy range of 5-45
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keV has been studied experimentally, while in [3, 4, 5, 6] the same collision system

has been studied at higher energies (e.g. up to 12 MeV in [4]). However, in [7],

in addition to proton projectiles, the collision of anti-protons with CH4 has been

investigated in the impact energy range of 60-5000 keV. Collisions of hydrocarbon

targets with electron projectiles have also been studied [8, 9]. In these studies both

dissociative and non-dissociative processes have been investigated although the main

emphasis has been on dissociative processes. Despite a wide range of experimental

studies, however, theoretical studies are scarce and challenging due to the difficulties

that arise from the presence of many electrons as well as the multi-centre nature of

the CH4 target.

We have investigated the electron removal processes in p-CH4 collisions by means

of calculating the net ionization and capture cross sections. Net ionization cross

sections have been reported in previous experiments [6, 10, 11, 12, 13, 14]. In a more

recent paper [15] those cross sections have been combined to yield “recommended

data”. Similarly for capture, a number of experiments are available [10, 11, 12, 16,

17, 18, 19, 20] at different impact energies. However, theoretical studies are very

limited for this collision system. One theoretical study is presented in [21] where q-

fold ionization cross sections in energetic p-CH4 collisions have been calculated with

the continuum distorted wave-eikonal initial state (CDW-EIS) method [22] which is

a perturbative approach.

In this work, we present a non-perturbative quantum mechanical analysis of the

mentioned collision system in the impact energy range of 20−5000 keV. The report

is organized in the following way. In chapter (2) we discuss the relevant theoretical

concepts. In chapter (3) we present an overview of the properties of the collision

system and discuss how the molecular two centre-basis generator method (TC-BGM)
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within the independent electron model (IEM) can be used to investigate this problem.

In chapter (4) an alternative approach namely the independent atom model (IAM) is

explained. Furthermore, in chapter (5) we present our results and compare different

models with each other and available experimental results. Chapter (6) contains a

summary of our methods and main observations.
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Chapter 2

The Methane molecule

This chapter mainly deals with the introduction of the wavefunctions for the CH4

molecule. However, before discussing CH4 we give a brief overview of the basic

concepts of molecular physics.

2.1 Polyatomic molecules

The molecular Hamiltonian is (in atomic units where ℏ = e = me = 4πϵ0 = 1):

Ĥ = −1

2

∑
α

1

mα
∇2

α − 1

2

∑
i

∇2
i +

∑
α

∑
β>α

QαQβ

rαβ
−

∑
α

∑
i

Qα

riα
+

∑
i

∑
j>i

1

rij
(2.1)

where α and β are used to label the nuclei while i and j are used for the electrons.

In the above Hamiltonian the spin-orbit as well as the relativistic interactions are

neglected. The first term in (2.1) corresponds to the non-relativistic kinetic ener-

gies of the nuclei and, similarly, the second term corresponds to the kinetic energies

of the electrons. The third term represents the Coulomb interactions between the

nuclei where the internuclear distances are denoted by rαβ . The fourth term gives
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the Coulomb attraction between the electrons and the nuclei with riα being the

distance between nucleus α and electron i. The last term represents the electron-

electron interactions with rij being the interelectron distances. Solving the sta-

tionary Schrödinger equation for the Hamiltonian (2.1) is not a feasible task which

makes it necessary to use approximations. An approximation which is widely used

in molecular physics and chemistry is called the Born-Oppenheimer (BO) approxi-

mation. The BO approximation is explained in detail in [23, 24, 25, 26]. In the next

section we present a brief summary.

2.1.1 Born-Oppenheimer approximation

Due to the term
∑

α

∑
i
Qα

riα
the Hamiltonian (2.1) cannot be separated into an

electronic and a nuclear part. However, according to the BO approximation such

a separation is approximately correct. It is based on the fact that the nuclei are

much more massive than the electrons and thus the electrons move much faster

than the nuclei. Thus, the molecular wavefunction, ψ(r⃗, R⃗), (r⃗ and R⃗ represent the

electronic and nuclear coordinates respectively) can be expressed as the product of

two functions:

ψ(r⃗, R⃗) = ψN (R⃗)ψel(r⃗, R⃗) (2.2)

where ψN (R⃗) is the nuclear wavefunction which depends on the nuclear coordinates

while the electronic wavefunction ψel(r⃗, R⃗) depends directly on the electronic co-

ordinates and parametrically on the nuclear coordinates. In this notation, spin is

suppressed.

Following this separation of the nuclear and electronic motions, one can define
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the electronic Hamiltonian as:

Ĥel = −1

2

∑
i

∇2
i +

∑
α

∑
β>α

QαQβ

rαβ
−

∑
α

∑
i

Qα

riα
+

∑
j

∑
i>j

1

rij
. (2.3)

From the Hamiltonian (2.3) it is evident that ψel (which is the solution for the

Schrödinger equation for Hamiltonian (2.3) by definition) only depends on the nu-

clear coordinates through the electrostatic interactions between the nuclei and the

electrons as well as the nuclear-nuclear interactions. Thus, it is assumed that the

electrons move in an electrostatic field that is generated by the presence of the nuclei.

The task is therefore reduced to solving the Schrödinger equation:

Ĥelψel(r⃗, R⃗) = Eel(R⃗)ψel(r⃗, R⃗). (2.4)

Furthermore, one can omit the term
∑

α

∑
β>α

QαQβ

rαβ
from the Hamiltonian (2.3)

since it only depends on the nuclear coordinates, and thus is a constant with respect

to the electronic coordinates. It can, then, be simply added to the electronic energy

at any point.

Therefore, within this approximation, one chooses a nuclear configuration, {R⃗}

and then solves the electronic Schrödinger equation (2.4) to obtain the energy and

the electronic wavefunction ψel. By performing the calculations for a set of nuclear

configurations it is possible to obtain a configuration which minimizes the energy.

In principle, one can also solve a nuclear Schrödinger equation to obtain the nuclear

wavefunction ψN (R⃗) which characterizes vibrational and rotational motion, but for

processes such as fast collisions the nuclear motion is unimportant. However, for

processes in which the nuclear kinetic energy is comparable to the electrons’ kinetic

energies the BO approximation is not valid and one has to take other approaches
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(e.g. non-adiabatic [24, 27, 28, 29]).

Since the Hamiltonian (2.3) is a many-electron Hamiltonian it is not possible to

solve the Schrödinger equation (2.4) exactly and thus one has to use approximations.

One of these is the Hartree-Fock (HF) method [23, 30, 31, 32]. A brief introduction

to this method is presented in the next section.

2.1.2 Hartree-Fock Method

In the HF method one approximates the wavefunctions and the energies of many-

body systems. The full many-electron Schrödinger equation is replaced by a set

of single-electron orbital equations. The many-electron wavefunction is approxi-

mated by a Slater determinant, i.e., one chooses an antisymmetrized product of

spin-orbitals to accommodate the Pauli principle:

ψel =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(1) φ2(1) . . . φN (1)

φ1(2) φ2(2) . . . φN (2)

...
...

. . .
...

φ1(N) φ2(N) . . . φN (N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.5)

Here we have used a short-hand notation φi(j) to express the spin-orbital for the

jth electron. The spin-orbitals φi are the products of spatial (ϕi) and spin functions

(σi):

φi = ϕiσi. (2.6)

The ground-state energy is then found by the variational theorem which states:

Eel = ⟨ψel|Ĥel|ψel⟩ ≥ Etrue. (2.7)
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The wavefunction that minimizes the energy Eel is, then, the best wavefunction

within this approach.

The Hamiltonian (2.3) can be written as the sum of one-electron operators hi

and two-electron operators vi,j :

Ĥel =
∑
i

ĥi +
∑
j>i

v̂ij (2.8)

where

ĥi = −1

2
∇2

i −
∑
α

Qα

riα
(2.9)

and

v̂ij =
1

rij
(2.10)

Accordingly, equation (2.7) can be written as:

Eel =

N∑
i=1

⟨ψel|ĥi|ψel⟩+
N∑
i=1

∑
j>1

⟨ψel|v̂ij |ψel⟩ (2.11)

from which one can derive the following equation:

Eel =

N∑
i

⟨ϕi(1)|ĥ1|ϕi(1)⟩+
N∑
i=1

∑
j>1

(vcoulij − vxij) (2.12)

where

vcoulij = ⟨ϕi(1)ϕj(2)|
1

r12
|ϕi(1)ϕj(2)⟩ (2.13)

is called the Coulomb integral and

vxij = ⟨ϕi(1)ϕj(2)|
1

r12
|ϕj(1)ϕi(2)⟩ (2.14)
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is called the exchange integral.

One finds that the spatial orbitals ϕi that minimize the variational integral (2.12)

satisfy the HF equation:

F̂ (1)ϕi(1) = ϵiϕi(1) (2.15)

where F̂ is the HF operator:

F̂ (1) = −1

2
∇2

1 −
∑
α

Qα

r1α
+

N∑
j=1

(v̂coulj (1)− v̂xj (1)). (2.16)

v̂coulj and v̂xj are the Coulomb and exchange operators respectively, and they are

given by:

v̂coulj (1)ϕi(1) = ϕi(1)

∫
|ϕj(2)|2

1

r12
dv2 (2.17)

and

v̂xj (1)ϕi(1) = ϕj(1)

∫
ϕ∗j (2)ϕi(2)

1

r12
dv2 (2.18)

where the integrals are over all space and spin. Furthermore, ϵi is:

ϵi = ⟨ϕi(1)|ĥ1|ϕi(1)⟩+
N∑
j=1

(vcoulij − vxij). (2.19)

The potential terms in equation (2.16) have the following interpretation: 1) the

attraction due to the nuclei (the second term), 2) the average electrostatic repulsion

due to all of the electrons, i.e., it is assumed that each electron moves in a charge

cloud caused by all of the electrons (v̂coulj ). Thus, it is assumed that each electron

interacts with itself. 3) This self interaction is corrected by the exchange potential

v̂xj for which there is no classical analog and which arises due to the fact that the

wavefunctions are chosen to be antisymmetric with respect to electron exchange.
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However, the HF method can never yield the exact energy. The reason is that

the wavefunction is approximated by a single Slater determinant. The deviation of

the HF energy from the true energy is called the correlation energy.

As mentioned previously, the Pauli principle is satisfied in the HF method which

means two electrons with the same spin cannot be found at the same place. However,

electrons with opposite spin can get too close to each other since their motions are

independent of each other. Hence, in this method, electrons with the same spin

are correlated and electrons with different spins are not. For this reason, in studies

in which the correlation energy is significant the HF method is not an appropriate

approach, but improvements can be made by using other methods. One example of

an alternative method is density functional theory (DFT) [23, 33] which, in principle,

accounts for both exchange and correlation effects. However, in practice, one has to

use approximations as well.

Normally, the HF wavefunctions are expanded in terms of a basis and are written

as linear combinations of these basis functions. Usually for the molecular HF cal-

culations, the basis functions are atomic functions and thus the molecular orbitals

(MOs) are written as linear combinations of atomic orbitals (LCAOs). For example

the MOs |ϕi⟩ can be expanded in terms of the basis {|χj⟩} as follows:

|ϕi⟩ =
∑
j

Cji |χj⟩ . (2.20)

The coefficients Cji are obtained by the variational method and thus the ones that

minimize the energy are chosen. In principle, expansion (2.20) does not involve any

approximation, but in practice, the accuracy of the MOs depends on the size of the

basis i.e., the larger the basis the more accurate the MOs. However, if the basis is

chosen carefully, even a small number of orbitals can yield a good approximation
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to the MOs which can save a significant amount of calculation time. In the next

section we explain the HF treatment of the CH4 molecule.

2.2 Hartree-Fock treatment of methane

Pitzer [34] has carried out the expansion (2.20) for CH4 MOs with the AOs being

the carbon 1s, 2s, 2p orbitals and a hydrogen 1s for each one of the hydrogen atoms.

He has used a minimal basis set i.e., one Slater type orbital (STO) is used for each

one of the AOs in each atom. Therefore, in expansion (2.20) the ϕi orbitals are the

MOs and the {|χj⟩} basis consists of one STO for each hydrogen and five STOs

for the carbon atom. One can also include more STOs for each AO (i.e., use an

extended basis set) to improve the accuracy.

STOs have the following form:

χnlm(r, θ, ϕ) = Nrn−1e−ZrY m
l (θ, ϕ) (2.21)

where N is a normalization constant, n, l and m are the quantum numbers and Z

is a parameter called orbital exponent. Y m
l is a complex spherical harmonic and

this form is useful for atomic calculations or diatomic molecules. Complex spherical

harmonics are given in appendix (A). However, for the case of polyatomic molecules

the real form of the STOs is preferred [23]:

χ′
nlm(r, θ, ϕ) = Nrn−1e−ZrY ′

l,m(θ, ϕ). (2.22)

Thus, we need the spherical harmonics in real form. The real spherical harmonics,

Y ′
l,m, are explained in appendix (A).

Accordingly, STOs in the real form are used for the carbon 2p orbitals. Thus, the

11



Figure 2.1: The coordinate system used by Pitzer in [23]. The carbon atom is at
the origin.

2p AOs on the carbon atom are taken to be 2px, 2py and 2pz rather than 2p0 and the

complex-valued 2p±1. They are shown in appendix (A) by equations (A.12),(A.13)

and (A.14).

Figure 2.1 shows the coordinate system used in [34] to represent the CH4 molecule.

The carbon atom is at the origin and the coordinates of the four hydrogen atoms

are: H1 = (x, y, z), H2 = (x,−y,−z),H3 = (−x, y,−z) and H4 = (−x,−y, z) where

the magnitudes of x, y and z are equal and the edge of the cube is 2x = 2y = 2z.

The CH4 MOs are denoted as 1a1, 2a1, 1t2x, 1t2y and 1t2z. This notation refers to

the symmetry properties of the MOs. For our purposes, these can be considered as

labels. 1a1 is the innermost orbital while the 1t2(x,y,z) orbitals are the degenerate

valence orbitals.

The carbon orbitals 1s, 2s, 2px, 2py and 2pz have the same symmetry behaviour

as the MOs. However, the 1s hydrogen orbitals do not transform according to

any of the CH4 molecular symmetry species. For this reason, one has to construct

symmetry functions that are consistent with the symmetries of the carbon orbitals.

This can be achieved by taking appropriate linear combinations of the 1s hydrogen

12



orbitals as shown in [23]:

χ1 = H11s+H21s+H31s+H41s (2.23)

χ2 = H11s+H21s−H31s−H41s (2.24)

χ3 = H11s−H21s+H31s−H41s (2.25)

χ4 = H11s−H21s−H31s+H41s. (2.26)

Accordingly, the STOs that Pitzer used for his CH4 calculations are: χ1, χ2, χ3,

χ4, C1s, C2s, C2px, C2py, C2pz. Pitzer’s results are shown in detail in [34] for

three C-H internuclear distances; 2.00 a.u., 2.05 a.u. and 2.1 a.u. The obtained

total energies are −40.12568, −40.12822 and −40.12698 hartrees respectively. The

energies deduced from experimental studies are −40.526 in [34] and −40.515 hartree

in [35]. Thus, the equilibrium C-H distance for which the energy is minimized is

taken to be 2.05 a.u. which agrees well with the experimental value of [36]. For the

MOs Pitzer found:

1a1 = −0.00468(χ1) + 0.9947(C1s) + 0.02561(C2s) (2.27)

2a1 = 0.18648(χ1)− 0.21584(C1s) + 0.60369(C2s) (2.28)

1t2x = 0.31779(χ2) + 0.55387(C2px) (2.29)

1t2y = 0.31779(χ3) + 0.55387(C2py) (2.30)

1t2z = 0.31779(χ4) + 0.55387(C2pz). (2.31)

The obtained orbital exponents of H1s, C1s, C2s and C2p are 1.17 a.u., 5.68 a.u.,

1.76 a.u. and 1.76 a.u. respectively. The 1a1 orbital and the carbon 1s AO are
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essentially the same. The 2a1 orbital has a positive contribution from carbon 2s as

well as the four hydrogen atoms and a negative contribution from carbon 1s which

is weaker than the 2s contribution. Therefore, there is a charge buildup between

the carbon atom and each one of the hydrogen atoms. For 1t2x there is a significant

contribution from carbon 2px which means there is charge buildup about both the

positive and negative sides of the x-axis. The charge buildup gets weaker as we

approach x = 0 at which point it vanishes. There is also a charge buildup about

H1 and H2 (c.f. equation 2.29). Similarly, for 1t2y and 1t2z orbitals there is charge

buildup about the y and the z axes respectively.

Other studies have been conducted on CH4 by using various methods. Improve-

ments to Pitzer’s calculations have been made by using extended basis sets. Woznick

[37] has performed similar calculations with an extended STO basis and obtained

−40.181 for the energy for bond length of 2.0665. Similarly, for the same value of

the bond length Krauss [38] has obtained −40.1668 by using an extended Gaussian

type orbitals basis. Different non-variational methods have also been used [35, 39]

which take electron correlation into account and yield lower energies than Pitzer’s

energy.

The above expansions are our starting point for the dynamic calculations. The

STO basis is of multi-centre and non-orthogonal nature and, as will be explained in

the next chapter, we redo the expansion in an orthonormal, single-centre basis.
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Chapter 3

Molecular Two-Centre Basis

Generator Method (TC-BGM)

3.1 Formulation of the collision dynamics

We are considering collisions between protons and CH4 molecules in the impact

energy range from 20 keV to 5 MeV in which the collisions are sufficiently fast

compared with the molecular time scale. Therefore, the molecular rotations and

vibrations can be safely neglected. Furthermore, it is assumed that the collision

plane is the x-z plane and the projectile follows a classical straight-line trajectory

along the z-axis which is characterized by the impact parameter b⃗ (the perpendicular

distance from the projectile to the z-axis) as well as its velocity v which is constant.

Due to the presence of electron-electron interactions the full many-electron time

dependent Schrödinger equation (TDSE) cannot be solved directly. Hence, we ad-

dress this problem by using the independent electron model (IEM) in which the
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TDSE is approximated by a set of single-electron equations:

i∂t |ψΓ
αβγ(t)⟩ = [ĤT

αβγ + V P (t)] |ψΓ
αβγ(t)⟩ (3.1)

|ψΓ
αβγ(ti)⟩ = |Γαβγ⟩ (3.2)

|Γαβγ⟩ are the initially occupied molecular orbitals (MOs) whose time evolution is

studied. α, β and γ are the Euler angles and they specify the molecular orientation

with respect to the ion beam axis. We consider the coordinate system shown in figure

(2.1) to be the original coordinate system corresponding to the (0, 0, 0) molecular

orientation. Other molecular orientations are obtained by rotating this coordinate

system by the appropriate Euler angles. ĤT
αβγ is the target Hamiltonian and is given

by:

ĤT
αβγ = −1

2
∇2 + V T

αβγ (3.3)

where V T
αβγ is an effective target potential on the HF level. V P (t) is the potential

that arises from the interaction between the active electron and the projectile.

The solutions of the TDSE (3.1) can be expanded:

|ψΓ
αβγ(t)⟩ =

∑
i

aΓi,αβγ |χi(t)⟩. (3.4)

The basis {|χi(t)⟩} can, in general, be a time-dependent, non-orthogonal and a multi-

centre basis. If we substitute expansion (3.4) into equation (3.1), a set of coupled

channel equations for the expansion coefficients is obtained:

i
∑
j=1

ȧΓj,αβγ(t) ⟨χk(t)|χj(t)⟩ =
∑
j=1

aΓj,αβγ(t) ⟨χk(t)|ĤT
αβγ + V P (t)− i∂t|χj(t)⟩ . (3.5)
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The main difficulty of equation (3.5) is the calculation of the multi-centre integrals

i.e. the integrals of type ⟨χk(t)|V T
αβγ |χj(t)⟩. Therefore, one has to find alternative

methods to avoid the explicit calculation of these integrals.

Our approach is based on two ideas: 1) using the spectral representation for the

molecular target Hamiltonian

ĤT
αβγ =

∑
Λ

ϵΛ |Λαβγ⟩ ⟨Λαβγ | (3.6)

where the MOs |Λ⟩ are the molecular target states and ϵΛ are the corresponding

energy eigenvalues, 2) expanding the MOs in an orthonormal, single-centre basis.

The single-centre expansion can only be an accurate approximation for molecules

with compact geometries. Since these MOs are orientation dependent, the molec-

ular geometry has to be considered in this expansion. Furthermore, as mentioned

previously these orbitals provide the initial conditions for the TDSE solutions. As

a result, this calculation is essentially separated into two parts: 1) the molecular

geometry problem which deals with calculating the initial conditions for different

molecular orientations with respect to the ion beam axis, and 2) the collision dy-

namics in which the results are propagated in time. In the next section the methods

for the expansion of the MOs are presented.

3.2 Initial orbitals

Our starting point is the expansion given by Pitzer that was explained in the previous

chapter:

|Λ̃⟩ =
∑
S

CΛ
S |S⟩ (3.7)
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where the calculations have been carried out for the coordinate system in figure

(2.1) (our (0,0,0) orientation). The problem with expansion (3.7) is that it leads to

complicated multi-centred integrals since the STOs are centred on different atoms.

Furthermore, STOs are not orthogonal. For our purposes, a single-centred basis that

represents the initially populated MOs is preferable. Hence, we project equation

(3.7) onto such a basis:

|Λ⟩ ≡ P̂ |Λ̃⟩ =
∑
nlm

⟨φnlm|Λ̃⟩ |φnlm⟩ . (3.8)

The |φnlm⟩ orbitals are the eigenstates of the atomic carbon problem and are centred

on the carbon atom. They are obtained from the optimized potential method (OPM)

of DFT which is often considered to be equivalent to HF (i.e., exchange is treated

exactly, but correlation effects are neglected [33, 40]).

From (3.8) we have:

|Λ⟩ =
∑
nlm

dΛnlm |φnlm⟩ (3.9)

where:

dΛnlm = ⟨φnlm|Λ⟩ =
∑
S

CΛ
S ⟨φnlm|S⟩ . (3.10)

To calculate the expansion coefficients dΛnlm one has to compute the overlap integrals

between the OPM orbitals and the STOs (|φnlm⟩ and |S⟩). Recall that the OPM

orbitals are centred on the carbon atom whereas the STOs are centred on both

the carbon atom and the hydrogen atoms. Hence, these overlap integrals involve

calculating one-centre and two-centre integrals. The method for calculating the

two-centre integrals is shown in appendix (B).

Expansion (3.9) has been done for the initial molecular orientation. However, we
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have to consider other orientations. To obtain the coefficients for a new orientation

a rotated basis has to be introduced:

|φ̃nlm⟩ = R̂(α, β, γ) |φnlm⟩ (3.11)

where R̂ is a rotation operator. The MOs can be expanded into the new basis:

|Λ⟩ =
∑
nlm

DΛ
nlm(α, β, γ) |φ̃nlm⟩ (3.12)

where

DΛ
nlm(0, 0, 0) = dΛnlm. (3.13)

We are interested in orientations in which the system remains unchanged under

a reflection about the y-axis. Such a symmetry corresponds to orientations in which

two of the hydrogen atoms are in the collision plane (x-z) with the other two being

the mirror images with respect to this plane. Four orientations provide this sym-

metry behaviour and they are (α,β,γ) = (0,−90,−45), (0,0,−45), (45,90,180) and

(−45,−90,0). The expansion coefficients for (0,−90,−45) are shown in the appendix

(C) for illustration. Also the molecular orientations in the collision plane are shown

in appendix (D). The MOs will either have an even symmetry with respect to this

reflection or an odd symmetry. The even orbitals are the gerade, g, orbitals and the

odd ones are the ungerade, u, orbitals (c.f. appendix (A)). This means that the

g MOs are expanded in terms of the atomic OPM states with the same symmetry

behaviour and the u orbitals likewise. The g MOs are { 1a1, 2a1, 1t2x and 1t2z }
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and 1t2y is the only u MO. Expansion (3.12) can then be expressed as:

|Λαβγ⟩ =
∑
nlm

DΛ
g,nlm(α, β, γ) |φ̃g,nlm⟩+

∑
nlm

DΛ
u,nlm(α, β, γ) |φ̃u,nlm⟩ (3.14)

where the following holds for any given orientation:

D1a1
u,nlm = D2a1

u,nlm = D1t2x
u,nlm = D1t2z

u,nlm = D
1t2y
g,nlm = 0. (3.15)

The non-zero expansion coefficients are:

DΛ
g,nlm =

∑
M

dΛg,nlM ⟨φg,nlm|R̂(−γ,−β,−α)|φg,nlM ⟩ (3.16)

+
∑
M

dΛu,nlM ⟨φg,nlm|R̂(−γ,−β,−α)|φu,nlM ⟩ (3.17)

and

DΛ
u,nlm =

∑
M

dΛu,nlM ⟨φu,nlm|R̂(−γ,−β,−α)|φu,nlM ⟩ (3.18)

+
∑
M

dΛg,nlM ⟨φu,nlm|R̂(−γ,−β,−α)|φg,nlM ⟩ (3.19)

respectively. ⟨φ(g/u),nlm|R̂(−γ,−β,−α)|φ(g/u),nlM ⟩ can be written in terms of Wigner

matrices, dlm,±M . Finally, the MOs (3.14) are orthonormalized.

Expansion (3.12), thus, provides an expansion of the initial MOs in a single-

centre and orthonormal basis. The MOs are then propagated in time as shown in

the next section.
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3.3 Collision dynamics

As mentioned in the previous sections, the aim is to avoid the multi-centre integrals

of type ⟨χk(t)|ĤT
αβγ |χj(t)⟩. For that reason, we introduced the spectral representa-

tion of the target Hamiltonian and obtained an expansion for the MOs in terms of

a single-centre, orthonormal basis. Using these ingredients we obtain the following:

⟨χk(t)|ĤT
αβγ |χj(t)⟩ =

∑
Λ

∑
s,s′

ϵΛ ⟨χk(t)|s⟩DΛ
s (α, β, γ)D

Λ
s′(α, β, γ) ⟨s′|χj(t)⟩ (3.20)

where we have introduced the following short-hand notation:

|φnlm⟩ = |s⟩ (3.21)

in which s is a multi-index.

Thus, we turn the multi-centre integrals into simpler overlap matrix elements by

substituting equation (3.20) into the coupled channel equations (3.5). If we use the

|s⟩ states as the initial conditions and solve the set of coupled channel equations we

obtain:

|ψs
αβγ(t)⟩ =

∑
j

asj,αβγ(t) |χj(t)⟩ . (3.22)

These orbitals can then be combined to reconstruct the molecular solutions,

|ψΓ
αβγ(t)⟩ =

∑
s

DΓ
s,αβγ |ψs

αβγ(t)⟩ =
∑
sj

DΓ
s,αβγa

s
j,αβγ(t) |χj(t)⟩ (3.23)

where the sum over s runs over all of the atomic target states (T ) that are used to

represent the MOs according to equation (3.9). In principle, this approach can give

exact solutions within the IEM. However, in practice, all the mentioned expansions
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are finite and hence, the solutions are not exact. Three expansions were used: 1)

The spectral representation of the molecular Hamiltonian (3.6) where, in principle,

an infinite number of bound and continuum states have to be included for an exact

treatment. However, we have included only five occupied MOs (1a1, 2a1, 1t2x, 1t2y

and 1t2z). 2) The expansion of the MOs into the OPM carbon orbitals. 3) The

propagation (3.22). For the latter, we have constructed the basis by using the two-

centre basis generator method (TC-BGM) which is a two-centre extension of the

BGM [41].The core idea of this approach is to achieve basis set convergence without

having to construct a very large basis. A hierarchy of states is generated from a

finite set of bound target-centred states by applying a regularized potential centred

on the projectile to them recursively. The generated pseudostates represent the

continuum and have overlap with bound projectile states. Although the original

version of the BGM has shown success in a number of applications, it suffers from

the fact that the projectile states are not included in the basis explicitly and thus its

applicability to electron capture processes is limited. The TC-BGM basis, however,

includes projectile states as well as some target states and the pseudostates. The

TC-BGM is explained in more detail in [42]. In this work, the basis includes the

target atomic states of the KLM shells and hydrogen eigenstates of the KLMN

shells for the projectile as well as 41 pseudostates to represent the continuum.

The solutions of the TDSE are used to calculate various observables namely

electron capture and ionization cross sections. This is explained in the next section.

3.4 Electron removal probabilities

The first step to calculate the electron removal cross sections is to obtain the single

particle amplitudes for state-to-state transitions at the final time tf . The amplitudes
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are obtained by considering the overlap integrals of the propagated orbitals with the

final states. The final states include the bound projectile and target states. For the

transition to projectile states the amplitude is:

AP
if (tf ) = ⟨p|ψΓ

αβγ(tf )⟩ =
T∑
s

DΓ
s,αβγa

s
p,αβγ(tf ) (3.24)

where the |p⟩ states are the projectile states. Electron capture probabilities can

be found from the projectile amplitude (3.24). We are interested in the total (net)

capture and ionization probabilities. For net probabilities one has to consider the

contributions from all of the electrons. For the net capture probability we simply

consider the electrons in all the projectile states:

Pcap =
N∑
i=1

P∑
f

|AP
if |2 (3.25)

where f represents the final projectile states.

Similarly to find the net ionization probability we, first, find the target transition

amplitudes:

AT
if (tf ) = ⟨Λαβγ |ψΓ

αβγ(tf )⟩ =
T∑
s,t

DΛ
t,αβγD

Γ
s,αβγa

s
t,αβγ(tf ) (3.26)

where for the final states the bound molecular target orbitals have been considered.

Equation (3.26) calculates the transition amplitude to the molecular ground state

only and no excited state is considered. Alternatively, one can consider the following

for the target transition amplitude:

AT
if (tf ) =

T∑
s

DΓ
s,αβγa

s
t,αβγ(tf ). (3.27)
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Equation (3.27) considers all of the KLM shell atomic target states regardless of

whether or not they contribute to the MO ground state.

Due to the unitarity of the problem the electrons that are neither found in the

projectile nor in the target are considered to be ionized. Therefore, the net ionization

probability is given by:

Pion = N − Pcap −
N∑
i=1

T∑
f

|AT
if |2 (3.28)

where in this case f represents the final target states. If equation (3.26) is used to

compute the target amplitude then the sum,
∑T

f |AT
if |2, goes over the five molecular

target states considered. Therefore, the electrons that are neither bound to the

molecular target ground state nor the projectile are considered ionized i.e., target

excitation is completely neglected. On the other hand, if equation (3.27) is used, the

sum goes over all the atomic target states. This implies that as long as the electrons

are in any of the atomic target states they are considered bound to the target. Hence,

in this approach, excitation is approximated. As a result, ionization will be weaker

due to excitation. This approximation, although being crude, provides an estimate

of how significant excitation might be.

3.5 Electron removal cross sections

The net electron removal probabilities of equations (3.25) and (3.28) are used to find

the corresponding net cross sections. These cross sections, similar to the probabili-

ties, depend on the orientation. For a given orientation the cross section is obtained

in the following manner:

σαβγ =

∫
Pαβγ (⃗b)d⃗b. (3.29)
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Experimentally, however, molecules have random orientations i.e., the molecular

orientation is not controlled in a typical experiment. Our goal is, therefore, to find

cross sections that are orientation averaged in order to be able to compare our results

with experimental studies.

If the probabilities were completely independent of orientation (similar to an

ion-atom collision), equation (3.29) would become:

σ =

∫
P (b)d⃗b = 2π

∫ ∞

0
bP (b)db (3.30)

However, in general, this is not true in the case of molecular targets. Depending on

the sensitivity of the system to the molecular orientations the following might serve

as an accurate approximation:

Pavg(b) =
1

N
(Pα1β1γ1 + Pα2β2γ2 + ...+ PαNβNγN ) (3.31)

σavg =

∫
Pavg(b)d⃗b = 2π

∫ ∞

0
bPavg(b)db. (3.32)

According to this approximation one considers only a few orientations, averages the

probabilities and then finds an orientation averaged cross section. One needs to

compare the net probabilities for the individual orientations first, to check whether

or not this approximation is valid. If different orientations yield very different results

this would be a crude (or even a wrong) approximation.

Figures (3.1) and (3.2) show the net ionization and capture probabilities as

functions of impact parameter at three impact energies; 20 keV, 50 keV and 500 keV

for the four orientations that were considered. It is evident that the system shows a

lack of sensitivity toward the molecular orientation particularly at higher energies.
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-45,-90,0
45,90,180
0,0,-45
0,-90,-45

(a) 20 keV

-45,-90,0
45,90,180
0,0,-45
0,-90,-45

(b) 50 keV

-45,-90,0
45,90,180
0,0,-45
0,-90,-45

(c) 500 keV

Figure 3.1: Net ionization probability as a function of impact parameter at impact
energies: 20 keV, 50 keV and 500 keV. The considered orientations are: (α, β, γ) =
(0,−45,−90),(0, 0,−45),(45, 90, 180) and (−45,−90, 0).

For capture more orientation dependency is observed at low impact parameters

for 20 and 50 keV compared to ionization, but at 500 keV there is barely any

difference between the four orientations for either capture or ionization. The overall

behaviour of the electron removal probabilities suggests that they don’t depend on

the molecular orientation strongly and hence, equation (3.32) should provide an

accurate approximation. Therefore, we have used equations (3.31) (where N = 4)

and (3.32) to calculate the orientation-averaged cross sections.

Strictly speaking, the results shown in figures (3.1) and (3.2) cannot be con-

clusive about the low orientation dependency, although they are good indicators.

In our molecular calculations, due to symmetry reasons, we were limited to the

four mentioned orientations whereas in reality there is an infinite number of them.

One might, however unlikely, find other orientations that yield significantly different

probabilities. In that case, our calculated average cross section would be inaccurate

and we would have to consider more orientations. For that reason, we have further

investigated the sufficiency of these four orientations by using the “independent
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(a) 20 keV

-45,-90,0
45,90,180
0,0,-45
0,-90,-45

(b) 50 keV

-45,-90,0
45,90,180
0,0,-45
0,-90,-45

(c) 500 keV

Figure 3.2: Net capture probability as a function of impact parameter at impact
energies: 20 keV, 50 keV and 500 keV. The considered orientations are: (α, β, γ) =
(0,−45,−90),(0, 0,−45),(45, 90, 180) and (−45,−90, 0).

atom model” in which the molecule is treated as a collection of individual atoms.

Each atom is studied separately and the corresponding atomic results are combined

to yield the molecular results. This model is discussed in the next chapter.
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Chapter 4

Independent Atom Model

4.1 Bragg’s additivity rule

In addition to the molecular calculations (c.f. chapter (3)) we have used the in-

dependent atom model (IAM) to investigate the collision system. In the IAM an

ion-molecule collision system is treated as the combination of ion and the individual

atom collisions. Thus, the individual atomic net probabilities are combined to yield

the net cross sections:

σαβγ =

∫
Pαβγ (⃗b)d⃗b (4.1)

=
∑
i

∫
Pi(⃗bi)d⃗b (4.2)

where, as before, b⃗ represents the impact parameter vector with respect to the

molecular centre (i.e., the carbon atom). Each atom has its own effective impact

parameter, b⃗i, which directly depends on the molecular orientation.

b⃗i = b⃗i(⃗b, αβγ). (4.3)
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In the next section, the method to obtain the individual effective impact parameters

is explained.

The relative position in the azimuthal (x-y) plane of each hydrogen atom with

respect to the molecular centre is given by:

x⃗i = b⃗− b⃗i (4.4)

and therefore, the two impact parameter vectors are related to each other linearly.

Thus:

d⃗b = d⃗bi. (4.5)

We can, then, use equation (4.5) to rewrite equation (4.2) in the following way:

∑
i

∫
Pi(⃗bi)d⃗b =

∑
i

∫
Pi(⃗bi)d⃗bi =

∑
i

∫
Pi(⃗b)d⃗b. (4.6)

Since each ion-atom collision is orientation independent we can write equation (4.1)

as:

σαβγ = 2π
∑
i

∫ ∞

0
bPi(b)db (4.7)

=
∑
i

σi. (4.8)

Hence, the net cross sections are orientation-independent. Equation (4.8) is Bragg’s

additivity rule which states that the net cross section for electron removal processes

for a given molecule is the sum of the atomic ones. For example, in the case of CH4,
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the molecular net cross section (for either capture or ionization) would be:

σCH4 = σc + 4σH . (4.9)

Bragg’s additivity rule has been tested previously for various collisions at differ-

ent impact energies [43, 44, 45, 46, 47, 48, 49]. It has been observed in [43] that

at low energies it has significant shortcomings for electron capture and its validity

should be doubted. The argument is that at low energies the molecular structure

becomes important and should be taken into account which is not the case with

the simple additivity rule. At higher energies, however, the rule seems to be more

applicable although the success is varied.

However, the electron removal probabilities are not independent of molecular

orientation. Within the IAM we study the orientation-dependent probabilities. This

allows one to extend Bragg’s rule to study more detailed cross sections namely

charge-state correlated cross sections. For a k-fold capture and an l-fold ionization

the charge-state correlated probabilities are given by:

Pkl(⃗b, αβγ) =
∑

k1,..,k5

∑
l1,..,l5

PC
k1l1 (⃗b1)P

H1
k2l2

(⃗b2)P
H2
k3l3

(⃗b3)P
H3
k4l4

(⃗b4)P
H4
k5l5

(⃗b5) (4.10)

where,

k = k1 + k2 + k3 + k4 + k5 (4.11)

l = l1 + l2 + l3 + l4 + l5. (4.12)

Each individual probability in equation (4.10) is obtained by using the multinomial

statistics [50].
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Correspondingly, the k-fold capture and l-fold ionization cross section is:

σαβγkl =

∫
Pkl(⃗b, αβγ)d⃗b (4.13)

=
∑

k1,..,k5

∑
l1,..,l5

∫
PC
k1l1 (⃗b1)P

H1
k2l2

(⃗b2)P
H2
k3l3

(⃗b3)P
H3
k4l4

(⃗b4)P
H4
k5l5

(⃗b5)d⃗b. (4.14)

Equation (4.14) cannot be separated into the contributions from each individual

atom. Thus, unlike net cross sections, charge-state correlated cross sections depend

on molecular orientation. An advantage of the IAM over our molecular method is

that within this framework we are not restricted to a specific symmetry. One can

consider any arbitrary molecular orientation, whereas in the molecular method only

orientations that respect a certain symmetry can be considered (c.f. chapter (3)).

Therefore, to study the charge-state correlated events the IAM provides a more

flexible framework. Furthermore, the IAM can be applied to any molecular system

while our molecular method relies on the compact geometry of the CH4 molecule.

In this work, however, we have only considered net electron removal cross sec-

tions. We have also used the IAM to further investigate the validity of restricting

our study to the four orientations that we have considered. This will be explained

in the subsequent sections.

4.2 Independent Atom Model: Procedure

In the last chapter, it was shown (figures (3.1) and (3.2)) that the four orientations

considered in the molecular method were sufficient to yield orientation-averaged

cross sections. The IAM can also be used to confirm this.

In the IAM there are five independent ion-atom collisions to be considered: one

proton-C collision as well as four proton-H collisions. For net cross sections the IAM
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is reduced to Bragg’s additivity rule. To perform Bragg’s calculations we define a

set of impact parameters with respect to the molecular centre, use those impact

parameters for all of the atoms and use equations (4.7 and 4.8) to obtain the net

cross sections. However, our goal is to study the orientation-dependent probabilities.

We average the probabilities of the four molecular orientations:

Pavg(b) =
1

4
(P (⃗b, α1β1γ1) + ...+ P (⃗b, α4β4γ4)) (4.15)

and if the system is independent of molecular orientation then:

σavg = 2π

∫ ∞

0
bPavg(b)db. (4.16)

It would be sufficient to consider the four molecular orientations if the following

holds:

σavg ≃ σBragg (4.17)

since it states that the average cross section of these orientations is approximately the

same as the orientation-independent total net cross section and hence, considering

more orientations would be unnecessary.

To perform IAM calculations one needs to specify a set of impact parameters

with respect to the molecular centre and then find the effective impact parameters

for each hydrogen atom. As shown in equation (4.3) the effective atomic impact

parameters depend directly on the impact parameter with respect to the carbon

atom as well as the Euler angles. Hence, the first task is to find the effective impact

parameters.

As an example we consider one of the molecular orientations : α = 45, β = 90

and γ = 180.
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Figure 4.1: The molecular orientation for α = 45, β = 90 and γ = 180 with respect
to the original orientation of [34]. Shown is the projection in the azimuthal plane
(x-y).

The coordinate system which corresponds to this orientation can be seen in the

top right figure in appendix (D). The projectile is in the x-z plane and moves along

the z direction. H1 and H4 are in the x-z plane while H2 and H3 are mirror images

with respect to this plane i.e. they are located in the x-y plane. By projecting the

molecule on the azimuthal plane (Figure (4.1)) one can infer the effective individual

impact parameters as explained below:

To represent the effective atomic impact parameters, each atom is identified by

a subscript (i.e. bHi where i = 1..4). It is evident from figure (4.1) that the effective

impact parameters for H1 and H4 are identical. The same also holds for H2 and

H3. In each case, in order to determine the effective atomic impact parameters, we

first have to find the hydrogen atom positions with respect to the centre, r⃗Hi . The

method to do so and the obtained position vectors are shown in appendix (E.1).

The effective impact parameters for H1 and H4 are obtained by subtracting the
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x-component of r⃗H1 (or r⃗H4) from b. Hence:

bH1 = bH4 = |b− d√
3
| (4.18)

and similarly for H2 and H3:

bH2 = bH3 = b′ =

√
(b+

d√
3
)2 + (

√
2

3
d)2. (4.19)

In a similar manner, the effective impact parameters corresponding to the other

orientations are obtained and the results are shown in appendix (E.2).

Thus, the method for a given orientation is as follows: We choose a set of

impact parameters with respect to the carbon atom. The effective impact parameter

with respect to each one of the hydrogen atoms is then found as explained above.

The probabilities at each impact parameter are then calculated and the ones that

correspond to each other are added. For example, for the above orientation, when

b = 0.2, bH1 = bH4 = 0.984 and bH2 = bH3 = 2.171. The individual capture or

ionization probabilities at those impact parameters are then added and weighted by

the carbon atom impact parameter, b. This procedure is done for the entire set of

impact parameters to obtain the molecular orientation-dependent probabilities.

Furthermore, for proton-C collision, our basis set includes the carbon KLMN

shell states for the target, hydrogen-likeKLMN shell states for the projectile as well

as pseudostates to represent the continuum. For p-H collisions the basis includes

hydrogen-like KLMN shell states on the projectile and the target in addition to

the pseudostates.

Figures (4.2) and (4.3) show the net ionization and capture probabilities as func-

tions of impact parameter for E = 20, 50 and 500 keV. Although some differences are
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45,90,180
(0,-90,-45),(0,0,-45)
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(a) 20 keV

45,90,180
(0,-90,-45),(0,0,-45)
-45,-90,0

(b) 50 keV

45,90,180
(0,-90,-45),(0,0,-45)
-45,-90,0

(c) 500 keV

Figure 4.2: Net ionization probability for p-CH4 collisions calculated within the IAM
as a function of impact parameters at impact energies: 20 keV, 50 keV and 500 keV.
The considered orientations are: (α, β, γ) = (0,−45,−90),(0, 0,−45),(45, 90, 180)
and (−45,−90, 0)

observed at low impact parameters, in particular for capture at 50 keV, at larger

impact parameters the system becomes almost perfectly orientation independent.

Thus, the overall structures imply that approximation (4.17) is fairly accurate.

Figures (4.4) and (4.5) compare the averages of the four molecular orientations

with the results obtained by Bragg’s additivity rule for capture and ionization re-

spectively. There is practically a perfect agreement between the orientation-averaged

cross sections and Bragg’s cross sections which indicates that approximations (4.15)

and (4.16) are valid and fairly accurate to yield properly averaged cross sections.
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45,90,180
(0,-90,-45),(0,0,-45)
-45,-90,0

(a) 20 keV

45,90,180
(0,-90,-45),(0,0,-45)
-45,-90,0

(b) 50 keV

45,90,180
(0,-90,-45),(0,0,-45)
-45,-90,0

(c) 500 keV

Figure 4.3: Net capture probability for p-CH4 collisions calculated within the IAM
as a function of impact parameters at impact energies: 20 keV, 50 keV and 500 keV.
The considered orientations are: (α, β, γ) = (0,−45,−90),(0, 0,−45),(45, 90, 180)
and (−45,−90, 0)
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Average
Bragg’s additivity

Figure 4.4: Comparison between the average of the capture cross sections of all four
orientations and the cross sections obtained by Bragg’s additivity rule
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Figure 4.5: Comparison between the average of the ionization cross sections of all
four orientations and the cross sections obtained by Bragg’s additivity rule
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Chapter 5

Results

We have used the molecular model (chapter (3)) and Bragg’s additivity rule (chap-

ter (4)) to calculate the net ionization and capture cross sections. As mentioned

previously, the obtained cross sections are orientation-averaged and hence, can be

compared with cross sections from experimental studies. The results are discussed

in the subsequent sections.

5.1 Ionization

5.1.1 Molecular TC-BGM

Figure (5.1) shows the net ionization cross section (averaged over four orientations)

as a function of the impact energy. The same figure on a logarithmic scale (figure

(5.2)) is provided to show more detail of the behaviour of the system at large energies.

The cross sections are compared with the recommended experimental data from [15].

The solid line shows the net cross sections where excitation is neglected (c.f. equa-

tion (3.26)) whereas the dashed line shows the cross sections that take excitation
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Molecular (No excitation)
Molecular (Excitation)
Molecular (Excitation, N shell)
Bragg
CDW-EIS-MO

Figure 5.1: Net ionization cross section as a function of impact energy for p-CH4

collisions. The solid line shows the results obtained from analysis (3.26) The dashed
line shows the results obtained from using equation (3.27). For the cross sections
shown by the dash-dotted line equation (3.27) has been used and target states of
the N shell are also included in the TC-BGM basis. The dotted line shows the
cross section obtained by Bragg’s additivity rule. The long dashed lines are the
CDW-EIS cross sections from [21]. The experimental data (•) are the recommended
cross sections from [15] where the experimental data from [6, 11, 12, 13] with their
corresponding uncertainties have been combined.
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Figure 5.2: Same as figure (5.1) except that the cross section is shown on a logarith-
mic scale.
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into account (equation (3.27)). For these calculations, our basis includes the target

states of KLM shells. Both sets of cross sections agree fairly well at high impact

energies as evident from figure (5.2). When excitation is neglected the ionization

cross sections are above the experimental data points at all energies. However, when

excitation is considered, at high energies, the cross sections are below the experi-

mental data points and cross these at E < 300 keV. For E < 300 keV the situation

is similar to the analysis without excitation i.e., ionization is clearly over-estimated

particularly at low energies. The position of the peak is also in disagreement with

the experimental results. According to the molecular model the maximum cross

section occurs at E ≃ 30 keV while the experiment shows a maximum at E ≃ 50

keV. It is interesting that when excitation is considered the results are somewhat

improved and the cross sections at lower energies are reduced.

We have further investigated the excitation contribution by including more

atomic target states in the basis. We include the N shell atomic target states

in the TC-BGM basis, but we don’t use these to represent the initially populated

MOs. Therefore, they make no contribution to the molecular ground state, but at

the final time it is possible for the electrons to be bound to those states. Further-

more, the set of TC-BGM pseudostates changes since the regularized potential is

applied to more target states (c.f. chapter (3)). This analysis allows more room for

excitation. One can see that the results improve considerably at large and interme-

diate energies. However, at E < 100 keV the cross sections start deviating from

the experimental ones. The curve does not show a maximum and the cross section

continues to increase as we move to lower energies.

One common feature for all these models is the poor behaviour at low impact

energies. One reason could be the lack of convergence of the TC-BGM basis set at
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low energies. Another reason may be the approximation involved in the spectral

representation of the molecular Hamiltonian (equation (3.6)). We have included

only five MOs (that represent the molecular ground state) in the sum which can

be insufficient particularly at low impact energies. Some numerical issues may also

contribute to this problem at low energies particularly for a larger basis set. However,

figures (5.1) and (5.2) provide a strong indication of the significance of the excitation

channel.

Also shown in figures (5.1) and (5.2) are the results obtained by Bragg’s rule

and also the results from the CDW-EIS approach. They will be addressed in the

subsequent sections.

5.1.2 Bragg’s rule

The net ionization cross section was also calculated by using Bragg’s additivity rule.

The corresponding net results as a function of impact energy are shown in figure (5.3)

by the dotted curve. While the agreement with the experimental results is good at

high energies, at E ≤ 200 keV the cross sections are over-estimated. Also shown are

the individual components of CH4. The hydrogen cross sections are weighted by four

to show the contributions of all of the hydrogen atoms. In the low to intermediate

energy range ionization is dominated by the hydrogen atoms. At energies above 1

MeV, however, the carbon and the hydrogen cross sections merge and give similar

contributions.

To investigate Bragg’ additivity rule more thoroughly, we have tested it for the

simpler p-H2 collision system as shown in figure (5.4). We also show the p-H cross

section in figure (5.5). For H2, a similar trend as for CH4 can be observed, i.e., at

intermediate energies the cross section is well above the experimental data from [6].
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Bragg
4H
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Figure 5.3: Net ionization cross section as a function of impact energy. Shown on
the left: semi-logarithmic and on the right: logarithmic scales. The cross sections
are obtained by Bragg’s additivity rule. Also shown are the individual components
i.e., the contributions from the four hydrogen atoms (the dashed line) as well as
the contribution from the carbon atom (the solid line). The experimental data (•)
are the recommended cross sections from [15] where the experimental data from
[6, 10, 11, 12, 13, 14] with their corresponding uncertainties have been combined.
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The impact energy where the maximum occurs agrees well with the experimental

results while the maximum cross section value exceeds the one from the experimental

study. This is consistent with what we observe for CH4. Similarly, for p-H collision,

ionization at intermediate and lower energies is overestimated when compared to

the results from [51]. However, it shows a better agreement with the older results

from [52]. As evident from all these three cases (p-H, p-H2 and p-CH4 collisions)

as the number of the hydrogen atoms increases the deviation becomes larger. Thus,

figures (5.3, 5.4 and 5.5) suggest that the CH4 cross sections are overestimated

mainly because of the contributions from the hydrogen atoms.

5.1.3 Comparisons

Also shown in figures (5.1) and (5.2), by the long dashed lines, are the cross sections

obtained in [21] by using the CDW-EIS method. CDW-EIS is a first order distorted

wave approximation which is intended to describe ionization at intermediate and

high impact energies. In this model, the initial and final states are distorted by

being multiplied by a factor [53]. The target bound wavefunction are multiplied by

an Eikonal phase factor which accounts for the presence of the projectile field. For

ionization, the target continuum wavefunction is multiplied by a Coulomb factor

which considers the active electron to be in the projectile continuum simultaneously.

These distorted waves satisfy the asymptotic conditions of the Coulomb potential.

CDW-EIS has proven to be successful for ion-atom collisions at intermediate and

high impact energies [54]. In [21] an extension of this method to molecular targets

has been discussed. Similar to our molecular model, the MOs are expanded in single-

centred orbitals. The calculations are done in the IEM framework where the single

particle equations are solved by the CDW-EIS method. Furthermore, an effective
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Bragg

Figure 5.4: Net ionization cross section as a function of impact energy for p-H2

collisions. The theoretical results (solid line) are obtained by Bragg’s additivity
rule. The experimental data (•) are from [6]
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TC-BGM

Figure 5.5: Ionization cross section as a function of impact energy for p-H collisions.
The experimental data (•) are from [51] and (▲) are from [52]
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bond length has been used which is the product of the equilibrium bond length and

a parameter, a. The equilibrium distance that is used in that study is 2.106 a.u. (as

opposed to 2.05 in our study) with the parameters being a = 1.0 and a = 0.7. It has

been shown in the paper that a = 0.7 yields better agreement with the experimental

results.

At high impact energies all models show good agreement with the experimental

results particularly the CDW-EIS calculations as well as our molecular model when

excitation is considered and the target N shell is included. At intermediate energies,

however, the situation is less clear and the models behave differently. The experi-

mental results for 100 ≤ E ≤ 5000 keV are best predicted by the molecular method

with a larger basis when excitation is considered. CDW-EIS also agrees fairly well

with the experimental data points for this energy range although the cross sections

are slightly above the experimental points. However, at E ≤ 100 keV it behaves

poorly which shows the limitations of this model at lower energies.

Furthermore, in Bragg’s rule all of the atoms are equally weighted. This is not

the case in the molecular method since the AOs are centred on the carbon atom

and hence, the contribution from the hydrogen atoms might be underestimated. The

differences between these treatments can lead to the observed disagreement between

the two models at lower energies.

5.2 Capture

5.2.1 Molecular TC-BGM

We have considered capture for energies up to 200 keV. For higher impact energies

capture is so small that numerically, the TC-BGM calculations become unreliable.
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Figures (5.6) and (5.7) show the net capture cross section that was obtained by the

molecular TC-BGM calculations. We have included the target KLM shell states

in the basis. The calculations with a larger basis as for ionization was unnecessary

since the capture cross section is practically unaffected by the change in basis. Hence,

we used a smaller basis set as they make calculations less challenging numerically.

Also shown are the experimental results from [6, 16, 52]. Overall, the agreement

is satisfactory, although the experimental data are somewhat overestimated by our

calculations. At E ≥ 100 keV the situation is better and the calculated cross sections

are consistent with the experimental data.

5.2.2 Bragg’s rule

Figure (5.8) shows the net capture cross section obtained by Bragg’s rule as a func-

tion of the impact energy. Also shown are the contributions from the individual

atoms. The experimental results are well predicted by Bragg’s additivity rule at en-

ergies higher than 50 keV. However, at E ≤ 50 keV the model clearly overestimates

capture. Similar to ionization, the four hydrogen atoms dominate the cross section

at low energies and as can be seen from the figure, the calculated 4H cross sections,

alone, have higher values than the measured CH4 cross sections. This can also be

seen from the analysis of H2 as shown in figure (5.9). The calculated net capture

cross section for H2 is considerably higher than the experimental data points at low

energies. The reason is that e.g. for CH4 according to Bragg’s rule, we have to

consider four p-H collisions in which electron capture becomes resonant toward low

impact energies whereas there is no such resonance for p-CH4. However, Bragg’s

additivity rule fails to take that into account. Therefore, in order to use Bragg’s

additivity rule in this energy regime one has to make corrections. One suggested
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Figure 5.6: Net capture cross section as a function of impact energy for p-CH4

collisions. The solid line shows the cross section obtained from the molecular TC-
BGM. The dotted curve shows the cross section obtained from Bragg’s additivity
rule. The dashed curve represents the SCAR result. The experimental data shown
by (•), (□) and (▲) are from [6], [52] and [16], respectively.

50



. .
.

.
.

.

Molecular
Bragg
SCAR

Figure 5.7: Same as figure (5.6) except that the cross section is shown on a logarith-
mic scale.
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model to correct Bragg’s additivity is the screening corrected additivity rule, SCAR

[55]. It has been argued in [55] that at low energies individual atoms cannot be

considered as independent scatterers and there are multiple scatterings within a

molecule. To that end, a screening coefficient has been introduced and multiplied

to each atomic cross section to account for the overlaps between the atoms.

σSCAR =
∑
i

siσi (5.1)

with 0 ≤ si ≤ 1. This model was originally suggested for electron-molecule scatter-

ing. However, we use it for the electron capture channel for this collision system

(i.e., an ion-impact collision) although its applicability is not obvious. It it interest-

ing to see (figures(5.6) and (5.7)) that the results obtained with using the screening

coefficients given in [55] are significantly improved compared to the standard Bragg

results.

At energies higher than 50 keV Bragg’s additivity rule predicts the experimental

results better than the molecular model while at low energies the molecular model is

more consistent with the experiments. However, the best results are obtained when

the SCAR treatment is applied to Bragg’s rule.

52



.
.

. . . .

Bragg
H4

C . .
.

.
.

.

Bragg
H4

C

Figure 5.8: Net capture cross section as a function of impact energy for p-CH4

collisions. The cross section is obtained by Bragg’s additivity rule. Also shown
are the individual components i.e. the contributions from the hydrogen atoms (the
dashed line) as well as the contribution from the carbon atom (the solid line). The
experimental data shown by (•), (□) and (▲) are from [6], [52] and [16] respectively.
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Figure 5.9: Net capture cross section as function of impact energy for p-H2 collisions.
The cross sections are obtained by Bragg’s additivity rule. The experimental data
shown by (•) are from [6].
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Chapter 6

Conclusions

We have presented a quantum mechanical analysis of the electron removal processes

in proton-methane collisions in an impact energy range from 20 keV to 5 MeV. The

projectile is assumed to move on a classical straight-line trajectory. The indepen-

dent electron model was used to approximate the full many-electron time-dependent

Schrödinger equation and the single-electron Schrödinger equations were solved by

the two-centre basis generator method.

We investigated the electron removal processes by means of calculating the net

ionization and capture cross sections. Two methods were used to study the collision

system. One was the molecular TC-BGM model and the second model was the

independent atom model in which we performed five individual ion-atom collision

calculations by using the TC-BGM.

The molecular approach is based on two ideas: Using the spectral representa-

tion for the target Hamiltonian and an expansion of the MOs into an orthogonal,

single centred basis set. The MOs were expanded into orbitals that are centred on

the carbon atom. This approximation was based on the compact geometry of the
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methane molecule.

For the net capture probability we considered the electrons that populate the

projectile’s bound states at the final time. For net ionization the electrons that

were neither in the molecular ground state MOs nor in the projectile’s bound states

at the final time were considered to be ionized. Alternatively, we considered the

electrons to be bound to the target as long as they were in any of the atomic target

states (not necessarily contributing to the molecular ground state). This allowed us

to estimate the excitation processes.

A drawback of this model is that we were restricted to four molecular orien-

tations only. To obtain the orientation-averaged cross section we showed that to

a good approximation the system is independent of the molecular orientation and

therefore, the four orientations were sufficient to yield properly averaged cross sec-

tions. The cross sections were calculated by averaging the net probabilities for the

four orientations.

The insensitivity of the collision system to the molecular orientation was further

tested and verified by using the independent atom model to study the orientation-

dependent probabilities. We showed that the orientation-averaged cross sections

were approximately the same as Bragg’s cross sections, i.e., considering the average

probabilities to be orientation-independent was a valid approximation. Finally, we

used Bragg’s additivity rule to obtain the net ionization and capture cross sections.

For ionization both models predict the experimental results fairly well. At in-

termediate energies, however, Bragg’s additivity rule overestimates ionization. Sim-

ilarly, the molecular TC-BGM model predicts even higher net ionization cross sec-

tions when no excitation is considered. However, when excitation is considered, the

results are improved. To allow more room for excitation, we added the N shell
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target atomic states to the TC-BGM basis. Using this analysis, we obtain an al-

most perfect agreement for the energy range of 100 ≤ E ≤ 5000 keV. However,

the behaviour at low energies is unphysical since no maximum occurs. Despite the

issues at low energies, these results strongly indicate the importance of excitation

processes in this collision system and when considered, the results for ionization are

significantly improved.

We also compared our results to the perturbative continuum distorted wave-

eikonal initial state calculations in [21]. Similar to other models, the CDW-EIS

calculations predict the experimental ionization cross section well at high energies

and the overall agreement is good for energies higher than 100 keV, but the method

has limitations at lower energies.

For capture the situation is similar to ionization at high energies i.e., both the

molecular model and Bragg’s rule are fairly consistent with the experimental data.

Bragg’s calculations show a very good agreement at high energies but at intermediate

and low energies the cross section is highly overestimated. The molecular model,

however, predicts the overall behaviour of the cross section although the values are

overestimated. A significant improvement to Bragg’s calculations at low energies is

achieved by using the screening corrected additivity rule. A more detailed study of

the SCAR treatment will be the subject of future studies.

In conclusion, the molecular model agrees well with experimental results for both

ionization and capture except at low energies. Although in principle this method

was exact within the independent electron model, a number of approximations were

made. In the spectral representation of the Hamiltonian for instance, we only used

the bound target states that contribute to the molecular ground state while in

principle an infinite number of states (both bound and unbound states) have to
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be considered. Also the TC-BGM basis was not a complete basis in practice and

increasing the basis size imposes major numerical difficulties. Furthermore, we ap-

proximated excitation in a crude way since there exist no molecular excited states

in our analysis. Overall, it can be argued that the results are good at energies of

around 100 keV and higher particularly for ionization when excitation is considered.

Similarly, Bragg’s rule is applicable particularly at high energies. However, both of

these models have limitations at low energies.

The goal of this project was to calculate the net ionization and capture cross sec-

tions. However, in the longer run, the study of fragmentation processes is of interest.

For fragmentation processes one has to deal with more detailed cross sections i.e.

charge-state correlated cross sections. However, the independent atom model can

be used since it deals with the orientation dependent probabilities. An advantage

of this model is that it is not restricted to any specific molecular orientation which

makes it a more flexible model to study the charge-state correlated states. As a

result, it can be extended to study other hydrocarbons in the future.
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Appendix A

Spherical Harmonics

The complex spherical harmonics are given by [56]:

Y m
l (θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cosθ)eimϕ (A.1)

Y −m
l = (−1)m(Y m

l )∗ (A.2)

Y 0
l =

√
2l + 1

4π
Pl(cosθ) (A.3)

where Pl(x) is the Legendre polynomial of order l and the Pm
l (x) are the associated

Legendre functions. The first few normalized spherical harmonics with the corre-

sponding associated Legendre functions are shown in [56]. The carbon 2p STOs can

be written in terms of the complex spherical harmonics in the following way:

2p0 = χ2,1,0(r, θ, ϕ) = Nre−ZrY 0
1 (A.4)

2p1 = χ2,1,1(r, θ, ϕ) = Nre−ZrY 1
1 (A.5)

2p−1 = χ2,1,−1(r, θ, ϕ) = Nre−ZrY −1
1 (A.6)
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where N is the normalization constant.

Alternatively, the 2p orbitals can be stated in terms of the real spherical har-

monics. The real spherical harmonics are explained in detail in [57]. For m = 0:

Y ′
l,0 = Y 0

l (A.7)

However, form ̸= 0 we define the gerade, g, and ungerade,u, orbitals as the following:

Y ′
l,mg

=

√
2l + 1

2π

(l −m)!

(l +m)!
Pm
l (cosθ)cos(mϕ) (A.8)

Y ′
l,mu

=

√
2l + 1

2π

(l −m)!

(l +m)!
P−m
l (cosθ)sin(−mϕ) (A.9)

The real spherical harmonics withm ̸= 0 can also be written in terms of the complex

spherical harmonics:

Y ′(θ, ϕ)l,mg =
1√
2
[Y m

l (θ, ϕ) + (−1)mY −m
l (θ, ϕ)] (A.10)

Y ′(θ, ϕ)l,mu =
i√
2
[(−1)mY m

l (θ, ϕ)− Y −m
l (θ, ϕ)] (A.11)

Consequently, the 2p orbitals, in terms of the real spherical harmonics, obtain

the following form:

2pz = χ210(r, θ, ϕ) = Nre−ZrY ′
1,0 (A.12)

2px = χ211g(r, θ, ϕ) = Nre−ZrY ′
1,1g (A.13)

2py = χ211u(r, θ, ϕ) = Nre−ZrY ′
1,1u (A.14)

It is important to note that these definitions are not unique. For example, the defi-
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nitions of 2px and 2py can be switched. However, we are using (A.12),(A.13),(A.14)

for 2pz, 2px and 2py respectively.
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Appendix B

Two-centre integrals

In this section we describe a method to calculate integrals of type ⟨φnlm|S⟩ for the

cases where the |S⟩ STOs are centred on the hydrogen atoms. In those cases we have

to deal with two-centre integrals. The method is based on rotating the coordinate

system such that the hydrogen atom under consideration is on the same axis as

the carbon atom. Once the rotation is done we perform the two-centre integral in

elliptical coordinates. Here we show the technique to rotate the coordinate system:

⟨φ(g/u),nlm|H1s⟩ = ⟨φ(g/u),nlm|H100⟩ (B.1)

= ⟨φ(g/u),nlm|R̂−1R̂|H100⟩ (B.2)

= ⟨φ̃(g/u),nlm|R̂|H100⟩ (B.3)

=
∑
M

⟨φ̃(g/u),nlm|R̂|φ̃(g/u),nlM ⟩ ⟨φ̃(g/u),nlM |H100⟩ (B.4)

= ⟨φ̃(g/u),nlm|R̂|φ̃g,nl0⟩ ⟨φ̃g,nl0|H100⟩ (B.5)

The ⟨φ̃nlm|R̂|φ̃nlM ⟩ can be written in terms of the Wigner matrices [58].
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Appendix C

Expansion Coefficients

The following table shows an example of the expansion coefficients (c.f. equations

3.16 and 3.18) for (α, β, γ) = (0,−90,−45). It is evident from the table that each

MO is strongly dominated by one AO. The 1a1 MO is strongly dominated by carbon

1s. 2a1 is dominated by carbon 2s. The 1t2(x,y,z) MOs are dominated by carbon

2px, 2py and 2pz respectively.
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Table C.1: The D coefficients for each orthonormalized MO. They are obtained after
the rotation of the initial coordinate system.

1a1 2a1 1t2x 1t2y 1t2z

D100g 0.99999765 0.00206985 0.00000000 0.00000000 0.00000000

D200g 0.00214205 -0.99604329 0.00000000 0.00000000 0.00000000

D210g 0.00000000 0.00000000 -0.99546146 0.00000000 0.00000000

D211g 0.00000000 0.00000000 0.00000000 0.00000000 -0.99546146

D211u 0.00000000 0.00000000 0.00000000 -0.99546146 0.00000000

D300 0.00032914 0.08884528 0.00000000 0.00000000 0.00000000

D310g 0.00000000 0.00000000 -0.00852965 0.00000000 0.00000000

D311g 0.00000000 0.00000000 0.00000000 0.00000000 -0.00852965

D311u 0.00000000 0.00000000 0.00000000 -0.00852965 0.00000000

D320g 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

D321g 0.00000000 0.00000000 0.00000000 0.00000000 -0.09478250

D321u 0.00000000 0.00000000 0.00000000 0.09478250 0.00000000

D322g 0.00000000 0.00000000 -0.09478253 0.00000000 0.00000000

D322u 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

64



Appendix D

Molecular Orientations

The four molecular orientations that we considered ((α,β,γ) = (0,−90,−45), (0,0,−45),

(45,90,180) and (−45,−90,0)) are shown below in the collision plane:

z 

H4 H1 

H3 H2 

C 

b 

x 

z 

H1 
H4 

H2 H3 

C 

b 

x 
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H4 

H2 

H3 

C 

b 

Figure D.2: The four molecular orientations that were considered: Top left) (-45,
-90,0), Top right) (45,90,180), Bottom left) (0,0,-45), Bottom right) (0,-90,-45)
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Appendix E

Independent Atom Model

E.1 Calculation of Position Vectors

To obtain the position vectors, we first have to obtain Euler’s rotation matrix (using

the z-y-z convention):

D = DγDβDα (E.1)

where:

Dγ =


cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 (E.2)

Dβ =


cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ

 (E.3)
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Dα =


cosα sinα 0

− sinα cosα 0

0 0 1

 (E.4)

Thus, for α = 45, β = 90 and γ = 180:

D =


0 0 1

0.707 −0.707 0

0.707 0.707 0

 (E.5)

The position vectors are then obtained by using D to rotate the initial coordinate

system. The obtained position vectors are:

r⃗H1 =
d√
3


1

0
√
2

 (E.6)

r⃗H2 =
d√
3


−1
√
2

0

 (E.7)

r⃗H3 =
d√
3


−1

−
√
2

0

 (E.8)

r⃗H4 =
d√
3


1

0

−
√
2

 (E.9)
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for the internuclear distance, d = 2.05 a.u. (c.f. chapter 2).

E.2 Effective Impact Parameters

The molecular orientation corresponding to (α,β,γ)=(45,90,180) is shown and dis-

cussed in chapter (4) (c.f. figure (4.1)). The rest of the orientations with the

corresponding equations for the effective impact parameters are shown below:

Figure E.1: The molecular orientation for α = 0, β = −90 and γ = −45 with respect
to the original orientation of [34]. Shown is the projection in the azimuthal plane
(x-y). The effective hydrogen impact parameters are:

bH1 = bH2 =
√
b2 + 2

3d
2

bH3 = b+
√

2
3d

bH4 = |b−
√

2
3d|
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Figure E.2: The molecular orientation for α = 0, β = 0 and γ = −45 with respect
to the original orientation of [34]. Shown is the projection in the azimuthal plane
(x-y). The effective hydrogen impact parameters are:

bH1 = bH4 =
√
b2 + 2

3d
2

bH3 = b+
√

2
3d

bH2 = |b−
√

2
3d|

70



Figure E.3: The molecular orientation for α = −45, β = −90 and γ = 0 with respect
to the original orientation of [34]. Shown is the projection in the azimuthal plane
(x-y). The effective hydrogen impact parameters are:

bH1 = bH4 =
√

(b− d√
3
)2 + 2

3d
2

bH2 = bH3 = b+ d√
3
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[55] F. Blanco and G. Garćıa. Phys. Lett. A, 317:458, 2003.

[56] Richard L. Liboff. Introductionary Quantum Mechanics. Pearson Education

Canada, 1992.

[57] D. Pinchon and P.E. Hoggan. J. Phys. A: Math. Theor., 40:1597, 2007.

[58] W.J. Thompson. Angular Momentum. Wiley, 2008.

76


