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Abstract

A new method to detect different linear structures in a data set, called Linear Grouping Algorithm
(LGA), is proposed. LGA is useful for investigating potential linear patterns in data sets, that is,
subsets that follow different linear relationships. LGA combines ideas from principal components,
clustering methods and resampling algorithms. It can detect several different linear relations at once.
Methods to determine the number of groups in the data are proposed. Diagnostic tools to investigate
the results obtained from LGA are introduced. It is shown how LGA can be extended to detect groups
characterized by lower dimensional hyperplanes as well. Some applications illustrate the usefulness
of LGA in practice.
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1. Introduction and motivation

Clustering, the method used to find groups in a data set, has received enormous attention
in the literature. In fact, clustering is an important tool forunsupervised learningwhere the
data set consists ofnobservations inddimensions andwewant to uncover properties of their
joint distribution. Many clustering methods and algorithms have been proposed in various
fields such as statistics (see e.g.Hartigan, 1975; Kaufman and Rousseeuw, 1990; Banfield
andRaftery, 1993; Scott, 1992; Silverman, 1986;Murtagh, 1983), datamining (Ng andHan,
1994; Zhang et al., 1997; Bradley et al., 1998; Murtagh, 2002), machine learning (Fisher,
1987), and pattern recognition (Duda and Hart, 1973; Fukunaga, 1990). Not all patterns
causing different groups can be recognized by identifying sparse and crowded places. For
example, in allometry studies considered in Section 4, some types of animal species form
one linear relationship between their body weight and brain weight while some other types
have another linear relationship. Standard clustering techniques are not able to find these
linear patterns.
Clustering and linear grouping are often used in the context of unsupervised learning

where there are no specified input and output variables. Indeed, in many situations calling
for clustering or linear grouping it is not likely to have a naturally defined response variable
available. On the other hand, manymethods for linear grouping proposed in the literature—
includingSpäth (1982,1985), DeSarbo and Cron (1988), DeSarbo et al. (1989), Wedel and
Kistemaker (1989), Kamgar-Parsi et al. (1990), Gawrysiak et al. (2000)—assume that an
output variable is available.
To illustrate the problem we use the artificial example inFig. 1. This example consists

of two equally sized groups each generated from a different linear structure. One group
(marked�) follows the modely = 10x + ε while the other group (marked◦) follows
the modely = −x + ε. For both groupsx andε come from a Gaussian distribution with
standard deviations, respectively 5 and 15. The third dimension is a Gaussian variable,
z, with mean zero and standard deviation 10. One method (Späth, 1982) to successfully
separate the groups inFig. 1 is the following. First designate one of the three variables as
response. Split the groups in two sets and find the ordinary least squares regression planes
for each set. Now form two new groups by assigning each point to the closest plane and
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Fig. 1. Two groups detectedwith the algorithmbased on least-squares regressionwhen (a)y is the response variable
and (b)z is the response variable.
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compute two new planes by applying least squares to each group. These steps are iterated
to convergence.
If we apply the method based on least squares outlined above and specifyy as the

response variable, then we obtain the good result inFig. 1a. On the other hand, if we select
zas response, then the method yields the groups inFig. 1b where the linear structures have
been completely lost.
This shows that in general we would have to consider each variable as a possible output

variable. To get around the problem of choosing the output variable, we instead search
directly for different groups aroundd − 1 dimensional hyperplanes. The hyperplane for
each group is simply a translation of the subspace orthogonal to the smallest principal
component of that group. More precisely, the hyperplane is defined by the equationatx =b

wherea is the eigenvector associated with the smallest eigenvalue of the covariance matrix
of the groupandbequals the inner product betweenaand the groupaverage. It iswell known
that this hyperplane (called the orthogonal regression hyperplane) is the closest in mean
orthogonal distanceto the points in the group (see for exampleJohnson andWichern, 1998).
Moreover, this hyperplane is also the maximum likelihood solution for the linear error-in-
variables model (see for exampleFuller, 1987) which can also be formulated as a total
least-squares problem. Our approach makes it unnecessary to specify response variables
but identifies functional relationships and therefore is better suited for the unsupervised
learning setup.Note that although thegroups followdifferent patterns, theymayoverlap (see
Fig. 1). Our technique can detect linear groups even in situations with heavily overlapping
regions. Related methods applicable to two-dimensional problems in this context are given
byMurtagh and Raftery (1984)andPhillips and Rosenfeld (1988).
Banfield and Raftery (1993)proposed a flexible clustering procedure (MCLUST) based

onamixture of normal distributionswith covariancematrices of the sameshapebut different
orientation and sizes (see alsoWoodruff and Reiners, 2004). This method is capable of
identifying some linear groups but the algorithm still searches for clusters of points around a
commoncenter and therefore canmiss some linear patterns. The(x, y)panel inFig. 2reveals
a clear linear grouping. Variablez is random noise. The grouping found by MCLUST—the
top panel inFig. 3—does not reflect the linear structures in the data. The groups were
obtained using the Splus implementation of MCLUST with method= S∗ and shape equal
to c(1,0.01,0.01) to favor linear structures. On the other hand the LGA solution—the
bottom panel inFig. 3—reveals well the two linear patterns from which the data were
generated.
In practice the number of different linear groups is often unknown. Therefore, we propose

procedures to determine the number of linear groups and compare them in several simu-
lations. A related problem is to determine the strength of the linear grouping once it has
been found. For solving this problemwe extend the notion of silhouette values (Rousseeuw,
1987) to the linear grouping setting. Alternatively, Bayesian factors can be used to measure
strength of group membership.
LGA is explained in Section 2. We discuss the problem of determining the number of

groups in Section 3. In Section 4, we analyze some applications of LGA while Section 5
introduces the diagnostic procedures to investigate the strength of the structure detected by
LGA. In Section 6, we propose a procedure based on LGA to detect groups concentrated
around lower-dimensional hyperplanes. Section 7 concludes with a discussion.
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Fig. 2. Data set with two groups generated according to different linear structures.

2. Linear grouping algorithm (LGA)

We now present an algorithm capable of detecting different linear structures in a data set.
LGAusesorthogonal regression to identify the linear relationshipsand iterativeoptimization
similar toK-means (Hartigan and Wong, 1979) to converge to a local minimum. Note that
PachecoandValencia (2003)recently proposedseveral alternatives forK-means to solve the
minimum sum-of-squares clustering problem. To increase the performance of the algorithm
the iterative optimization is repeated a large number of times with different random starting
values obtained by resampling. Finally, LGA reports the optimal solution in terms of the
aggregated sum of squares of orthogonal residuals.
Consider a data set of sizen in ddimensions. LGA is described in detail by the following

steps:

1.Scaling of the variables. Each of the variables is divided by its standard deviation such
that they have unit variance.
2.Generation of the starting values. Starting values are generated by randomly selecting

kmutually exclusive subsets ofd points (d-subsets). For each of thesed-subsets we then
compute the orthogonal regression hyperplane through thesed points. This is a simple cal-
culation exploiting thewell-known connection between orthogonal regression and principal
components. By usingd-subsets to compute starting values we obtain intial solutions that
are “closer” to the data which reduces the number of iterations in step 4.
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Fig. 3. Data setwith twogroups generated according to different linear structures.Groups detected by (a)MCLUST
and (b) LGA algorithms fork = 2 groups.

3. Initialization of the groups. For each starting solution ofk hyperplanes we compute
the squared distances of all data points to these hyperplanes. We then assign each point to
the closest hyperplane and recalculate the hyperplanes from this grouping.
4. Iterative refinement. The procedure in step 3 is repeated a small number of times for

each of the starting values. Because the initial starting values are based ond-subsets, a few
iterations (e.g. 10) usually suffices to determine which of the starting values will lead to the
optimal solution (see alsoRousseeuw and Van Driessen, 1999).
5.Resampling. Repeat steps 2–4 a number of times (e.g. 100 times) and select the solution

which has the lowest value of the objective function, given by the aggregated sum of the
squared distances between the data points and their closest hyperplane. This solution can
then even be iterated further (as in step 4) until no improvement is obtained anymore.

The iterative refinement in step4will converge to agoodsolution if the initial randomstart
is alreadyof highquality, that iswheneachof the initial hyperplanes is basedonamajority of
points from one of the groups. For random starts of low quality the iterative refinement will
less frequently lead to a good solution. Hence, it is important to take enough random starts
to have a high enough probability of having at least one start of higher quality. Therefore
we proposed in step 2 to compute random starts fromd-subsets which is more likely to
produce random starts of high quality than entire random selection of initial hyperplanes.
To get some guidance regarding the number of resamples in step 5, we calculate the

minimal number of starting values,m, needed to have 95% probability of obtaining at least
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Table 1
Number of random starts for 95% probability of at least one good subset

d k = 2 k = 3 k = 4

1:1 1:2 1:1:1 1:2:3 1:1:1:1 1:2:3:4

2 7(7) 9(10) 23(24) 42(43) 73(77) 201(206)
3 9(9) 13(13) 34(35) 82(83) 127(135) 580(586)
4 10(10) 17(17) 44(45) 145(145) 187(203) 1462(1431)
5 11(12) 52(51) 53(56) 244(239) 253(280) 3446(3207)

one sample withd points from each group. The probability of getting such a sample is

p =

(
n1
d

)(
n2
d

)
· · ·
(

nk

d

)
(

n

kd

)

and thereforemsatisfies the equation 1− (1− p)m = 0.95. That is

m = log(0.05)

log(1− p)
.

Table 1shows that the value ofm depends on the number of groups, the relative sizes of
the groups, and the dimension of the data, in that order. Fortunately,m does not depend
much on the data size,n. Table 1gives the values ofm for n=300 observations,k =2,3,4
groups andd = 2,3,4 dimensions. We also considered two different situations regarding
the degree of unbalance in the group sizes (e.g. 1:1:1:1 for four groups of equal size and
1:2:3 for three groups in the relation 1 to 2 and to 3). The number in parenthesis corresponds
to the limiting case approximated by takingn = 100,000.
Our current implementation of LGA uses the values ofm corresponding to equal group

sizes as default. A higher number of random starts yields a higher chance of obtaining
the optimal solution but is less time efficient. In our experience, when a strong grouping
structure exists in the data, a moderate number of random starts (say between 10 and 50)
suffices to find it.

3. Determining the number of groups

The numberkof groups is a required input of LGA. In someapplicationsk is suggested by
background information such as gender, location, etc. However, in caseswhen such features
are not available we need tools to determine the number of groups. Moreover, findingkmay
be a primary research interest.
Scatterplots provide visual information regarding the number of groups. As an illustration

we consider a small data set consisting of 31 measurements of the height and mass volume
of trees (Ryan et al., 1976). Fig. 4show the results of LGA for one, two and three groups.
We see that volume increases with height, but the measurements become scattered for taller
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Fig. 4. The height and volume of young and old trees.

trees. Clearly, one group does not suffice for these data and three is too many. On the other
hand, the picture with two groups is visually appealing and has biological interpretation.
Namely, thefirst group (labeled2 in thepicture) corresponds toolder treeswhich tend tohave
larger girth, so their volume increases faster with height. The second group corresponds
to younger, thinner trees. Unfortunately, scatterplots are mainly helpful in low (2 or 3)
dimensions. Even then, for heavily overlapping regions our eyes may fail to distinguish
some linear patterns.
To determine the optimal number of groupswepropose several criteria similar tomethods

that are available for clustering. Recently,Tibshirani et al. (2001)proposed theGAPstatistic
as a very flexible method to estimate the optimal number of clusters in a data set. The GAP
statistic compares the pooled within-cluster sum of squares around the cluster means with
its expectation under a null reference distribution. To detect linear groups, LGA uses the
orthogonal distance between a point and its associated hyperplane to measure how far the
point lies from this hyperplane.Hence, theGAPstatistic can easily be adapted for estimating
the number of linear groups by replacing the pooled within-cluster sum of squares with the
aggregated sum of the squared orthogonal distances. To generate data from the reference
distribution the variables are generated from a uniform distribution over a box aligned with
the principal components. This corresponds with choiceb of Tibshirani et al. (2001, p. 414)
who show that this option gives the best results. In detail, the GAP statistic is given by

GAP(k) = 1

B

B∑
b=1

log(SSRk(b)) − log(SSRk) ,

where SSRk is the aggregated sum of the squared orthogonal distances for the original
data set split intok groups. Similarly, SSRk(b); b = 1, . . . , B is the aggregated sum of
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the squared orthogonal distances for a data set generated from the reference distribution
and split intok groups. FollowingTibshirani et al. (2001)we select the optimal number of
groupsk̂ as follows

k̂ = smallestk such that GAP(k)�GAP(k + 1) − sk+1,

wheresk+1 = sdk+1
√
1+ 1/B with sdk+1 the standard deviation of the SSRk+1(b) values.

An advantage of the GAP statistic is that it is also defined fork = 1 group and hence can
indicate whether the data contains several groups or not.
Alternatively, we consider criteria based on the log-likelihood of the data with a penalty

term for the number of parameters. The penalty term�(m, n) can depend on the sample
sizen and the number of parameters in the modelm. To compute the likelihood, we use the
following model for thej th group(j = 1,2, . . . , k)

xi = �j + Aj �i + �i , i = 1, . . . , nj (1)

with �i ∼ N
(
0, �2j I

)
. HereAj is a d × (d − 1) dimensional orthogonal matrix and

�i is a d − 1 dimensional vector giving the scores ofxi in the d − 1 dimensional hy-
perplanes.�j is the group center estimated by the sample meanx̄j . The matrixAj is

estimated aŝAj = (a1, . . . , ad−1) where theai are the eigenvectors corresponding to the
d − 1 largest eigenvalues of the group covariance matrix. Finally,�̂i = Ât

j

(
xi − x̄j

)
and

�̂2j = (
1/nj

)∑nj

i=1

∥∥∥xi − �̂j − Âj �̂i

∥∥∥2. The corresponding log likelihood is given by

lj

(
x1, . . . , xnj

, �̂j , Âj , �̂i , �̂
2
j

)
= −nj

2
log(2�) − nj

2
− njd

2
log

(
�̂2j
)

.

Now combining thek groups and taking into account that the group sizes are unknown, we
obtain the log likelihood

l (x1, . . . , xn) =
k∑

j=1

nj log
(
nj

)− n log n − n

2
log(2�) − n

2
− d

2

k∑
j=1

nj log
(
�̂2j
)

.

Note that thenumberof parameters in thismodel equalsm=k(d+1)+k(d−1)d/2+n(d−1).
Following Smith and Spiegelhalter (1980)we used the following penalties:�1(m, n) =
m log(n)/2 (BIC),�2(m, n)=m (AIC), �3(m, n)=3m/4 (local Bayes factor),�4(m, n)=
m/2,�5(m, n) = 3m/2,�6(m, n) = 2m and�7(m, n) = m log log(n)/2. For each of these
methods we determine the optimal number of groups by selecting the valuek̂ for which the
penalized likelihood is maximal. Since the penalized likelihoods are defined fork = 1, also
these methods can indicate whether data contain several groups or not.
We conducted a simulation study to compare the GAP statistic and the seven penalty

methods described above. We considered the following designs.

(1) Two-dimensional data of sizen=300 consisting of three separated groups of equal size
in two dimensions.Fig. 5a shows an example data set and the LGA solution fork = 3.

(2) Normal data. The five-dimensional data of sizen = 100 are multivariate normal with
covariance matrix� = diag(5,4,3,2,1), hencek = 1.
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Fig. 5. Example data sets with LGA solution for the correct number of groups for the setup of simulation 1(a),
3(b), 4(c), 5(d), and 6(e).

(3) Two-dimensional data sets generated according to two crossing lines yielding over-
lapping groups of size 100. SeeFig. 5b for an example with the LGA solution for
k = 2.

(4) Two-dimensional data containing two groups of size 100 that overlap at the left but are
more separated at the right side as can been seen fromFig. 5c.
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Table 2
Simulation results to evaluate the performance of several criteria to estimate the optimal number of groups

GAP BIC AIC LBF
�1 �2 �3 �4 �5 �6 �7

Simu 1(k = 3) 98 77 72 71 71 71 76 75
Simu 1 2(2) 12(4) 15(4) 14(4) 14(4) 15(4) 13(4) 13(4)

Simu 2(k = 1) 100 2 0 0 0 0 0 0
Simu 2 — 56(3) 91(4) 93(4) 95(4) 93(4) 61(4) 77(4)

Simu 3(k = 2) 89 0 0 0 0 0 0 0
Simu 3 11(1) 100(1) 95(1) 92(1) 82(1) 93(1) 99(1) 97(1)

Simu 4(k = 2) 39 0 3 2 2 3 1 3
Simu 4 61(1) 92(1) 48(1) 39(1) 44(3) 46(1) 80(1) 68(1)

Simu 5(k = 2) 97 2 6 10 15 10 2 4
Simu 5 3(1) 96(1) 66(1) 45(1) 44(4) 39(1) 96(1) 89(1)

Simu 6(k = 3) 11 0 6 3 3 3 0 1
Simu 6 72(1) 89(1) 38(1) 39(4) 55(4) 39(4) 84(1) 70(1)

The values in the table are the number of times (out of 100) the correct number of groups was selected (top line
for each simulation) or the most frequently selected wrong number of groups (bottom line for each simulation)
by the methods. The numbers between brackets are the most frequent selected wrong number of groups for the
method.

(5) Two-dimensional data of size 50 with two groups, one close above the other, so the
groups are not well separated. SeeFig. 5d for an example of the generated data with
the LGA solution fork = 2.

(6) Two-dimensional data of size 75with three groups closely on top of each other as shown
in Fig. 5e.

Note that for each of the simulation setups LGA applied with the correct number of groups
detects the true groups corresponding to the data generating process as shown by the exam-
ples inFig. 5. This shows the capability of LGA to detect linear structures even when the
different groups are heavily overlapping or not well separated.
The results of our simulation are reported inTable 2. The first row for each simulation

setup gives the number of times the correct number of groups was selected by the method
(out of 100). In the second row for each simulation setup we consider the wrong number of
groups most frequently selected by the method. The wrong number of groups is shown in
brackets and the value in the table is the number of times this wrong number was selected.
From Table 2we clearly see that the GAP statistic outperforms the likelihood based

methods. Moreover, the GAP statistic can be expected to give the correct answer except
in difficult situations with not well separated groups where only subject matter can give
you guidance on the number of groups. The GAP statistic also behaves conservatively, that
is, it never overestimates the number of groups contrary to the other methods that tend to
overestimate the number of groups in some settings.



S. Van Aelst et al. / Computational Statistics & Data Analysis 50 (2006) 1287–1312 1297

4. Applications

In this section,weapply LGA to real problems in allometry and sports. Theseapplications
illustrate how LGA can be used as an exploratory tool in the analysis of real data.

4.1. Allometry data

In allometry studies biologists investigate the relationships between sizes of organs for
different species. It often occurs in nature that if the size of one organ is large, then the size of
other organs is also large because their biological functions are coordinated. For example, a
larger body also requires a larger brain. These relations are driven by the evolution process.
Typically, for certain species, say mammals, there exists a linear association between the
(transformed) sizes,measured inweight or volume, of twoorgans.However, across different
classes of species, the linear associations are not the same because of different living habits,
environment, food sources, etc. Hence, grouping according to different linear patterns is
necessary. In the past, assignments were done manually by biologists according to their
scientific experience (see e.g.Jerison, 1973). This manual work of course is tedious and
requires a lot of time to check each individual species. Here, we apply LGA to two allometry
data sets to investigate whether LGA canmatch the results obtained by manual assignment.
In the first example the relationship between olfactory bulb volume and brain weight is

investigated.Fig. 6shows the scatterplot of log10-olfactory bulb volume against log10-brain
weight for 83 mammal species. (The data are courtesy of Prof. Jerison.) Roughly speaking,
olfactory bulb volume increases with brain weight. However, also the variation of the log-
olfactory bulb volume increases. For example, some species of monkeys have roughly the
samebrainweight as horses, but the latter hasmuch larger olfactory bulb volume.During the
evolution process, different mammal species have developed their smell senses according
to their living environment, food searching and danger identifying needs, etc. Thus, the
observed heteroscedasticity is due to the combination of different types of mammal species.
Based on biological knowledge,Jerison (1973)divided themammals into three groups: one
including insectivores, carnivores and horses, one including prosimians (primitive primates
characterized by nocturnal habits), and one including anthropoids (monkeys, apes, human).
Then he fitted three separate regression lines to these groups, each exhibiting reasonable
homoscedasticity.This suggests that thereare three linearpatternsamong thesespecies.Now
we use LGA to see if it captures the three linear patterns. The result inFig. 6b shows that the
majority of each groupmatches the division based on biological knowledge in the top panel.
FromFig. 6a we see that the three groups are not well separated, so it will be difficult

to detect the correct number of groups by the automatic procedures in the previous section.
Indeed, all methods underestimate the number of groups in this data set and yield two groups
as the optimal number. Hence, without using biological knowledge we would choosek = 2
groups as displayed inFig. 6c. This grouping is very reasonable. With few exceptions,
the first group (labeled 1) includes insectivores, prosemians, carnivores and horses while
the second (labeled 2) includes apes, monkeys, and humans. On the other hand, using
the biological knowledge we would determine three groups. In this case, the grouping is
very close to the manual biological solution with prosimians forming a separate group as
discussed above.
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Fig. 7. Logarithms of brain weight vs. body weight for 282 vertebrate species for (a) two, (b) three, and (c) four
groups. They are all detected by LGA.

The secondallometry example studies the relationship between the brain andbodyweight
for n = 282 vertebrates obtained fromCrile and Quiring (1940). The scatterplots of log10-
brain weight against log10-body weight inFig. 7 resembles that inJerison (1973, p. 43),
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but with more species. The scatterplots inFig. 7show an increasing relation between brain
and body weight. However, a closer look reveals that there may be different linear groups.
Jerison (1973)argued that this data consists of four groups that could as well be merged
into two groups. The two main groups are the higher vertebrates consisting of birds and
mammals (such as bat, crow, baboon, chimpanzee, lion, dolphin, elephant, whale, etc.)
and the lower vertebrates consisting of fish, reptiles and amphibians (like goldfish, eel,
latimeria, alligator, etc.). Withk = 2, LGA gives the result inFig. 7(a). Although there are
a few assignment errors in the top and right region, the majority of each group matches the
biological division.
Both the higher and lower vertebrates have been split further into finer subgroups. The

higher vertebrates can be divided into a subgroup of birds and a subgroup of mammals
(including primates), while the lower vertebrates can be separated into a subgroup of fish
and a subgroup of reptiles. However, from the scatterplot we cannot see these finer patterns
because they highly overlap each other within the higher and lower vertebrates. Thus, based
on graphical representation of the data without scientific knowledge we cannot detect these
finer partitions. Withk = 4, LGA gives the result inFig. 7(c) where as expected, each main
group has been split into two subgroups.With very fewexceptions the four groupsmatch the
existing biological division. This confirms that LGA is capable of revealing linear groups
even if the linear patterns lie close together.
Finally, without biological knowledgewewould need to rely on the automatic procedures

to determine the ‘appropriate’ number of groups. The GAP statistic applied for these data
yieldsk=1. This conservative result is not surprising since the groups are notwell separated.
The likelihood based methods all givek = 3 as the optimal number of groups. This could
be seen as an overestimation of the appropriate number of groups(k = 2), but also this
grouping seems to make biological sense as shown inFig. 6(b): the higher vertebrates are
separated (as inFig. 6(c)) and the lower vertebrates form the third group.

4.2. Hockey data

We now analyze a data set containing information on the performance of players in the
Canadian National Hockey League for the 94–95 competition. For each of the 871 players
we consider four variables measured during the hockey season:

PTS: points scored (this is the total of goals and assists),
P/M: ± average rating,+1(−1) if team (opponent) scored in an even-strength situation,
PIM: total penalty time in minutes,
PP: power play goals.

These variables reflect the strength of both attackers anddefenders.Our goal is to discover
knowledge from this hockey-related data set. Although some patterns might be obvious for
a hockey expert, we will use LGA to identify potential groups among the players without
using any knowledge of each player and his team.
Note that in this case there is no obvious response variable, but LGA does not require

one. Moreover, we don’t know which variables are useful to separate the players in differ-
ent linear groups. Fortunately, LGA is capable of uncovering important grouping variables
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Table 3
Orthogonal regression coefficients of the four variables for the three groups

Group PTS P/M PIM PP

1 −0.156 0.015 0.001 0.988
2 −0.221 0.029 −0.003 0.975
3 0.113 −0.010 0.001 −0.994

as will be discussed further in Section 7. Since there is no previous knowledge about the
number of groups, we apply our procedure to identifyk. The GAP statistic behaves con-
servative and selectsk = 1, meaning that there are no groups. On the other hand, the
likelihood based methods all selectk = 3. However, the latter solution may be overly opti-
mistic, so let us investigate further the LGA solution fork = 3 to see whether this grouping
makes sense.
The coefficients of the three hyperplanes are given inTable 3. We see that for all hy-

perplanes the coefficients of the variables P/M and PIM are very small compared to the
coefficients of PTS and PP. Note that all variables are standardized by LGA so these co-
efficients can be compared directly. Thus, the two variables PTS and PP seem to be more
useful for our purposes. This demonstrates the capability of LGA to identify informative
variables as will be investigated further in Section 7.
Fig. 8 shows the scatterplot of all players divided into three groups. We can see that

there are quite a number of points near the origin, which correspond to the defenders who
are seldom active in attacking. As we move away from the origin, the lines summarizing
the groups become more distinct. The lower group might represent the “team players”
that can score and make assists but seldom play in power play situation. The upper group
might represent the ‘sharp shooters’ who score many goals and often play in power play
situations. Finally, the middle group are second choice shooters for power play situations.
The statements are based on the average performance of the players through the season.
The fact that a player belongs to the upper group does not necessarily mean that he should
always be put on the ice when a power play is immediate. Since hockey is a team sport
we should not draw any naive conclusions from the data such as who should be playing at
what occasion. Any valid conclusion would require a detailed and more careful analysis.
However, LGA does provide a very good starting point for such analysis.

5. Measuring strength of group membership

Wronglyassignedobjectsare inevitablewithanygroupingmethod. In thecaseof different
linear groups, it is especially obvious that assignments aredifficult in the intersection regions
between two (or more) hyperplanes. Consider for example the intersections inFig. 9(a).
Also when two (or more) groups heavily overlap (as inFig. 7(c)) errors will bemade. Points
in these ‘intermediate’ regions will be close tomore than one hyperplane and could be given
double or multiple membership.
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Fig. 8. Plot of PP vs. PTS for the NHL 94-95 competition with the three groups detected by LGA.
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Fig. 9. (a) Slanted� data set and (b) LGA solution fork = 3 groups.

For partitioningmethods in clustering,Rousseeuw (1987)introduced the silhouettewidth
of an object to measure how strongly an object belongs to the cluster it has been assigned to.
We adapt the definition of silhouette width of an object for the case of linear groups. Recall
that each group is characterized by a hyperplane and each object is assigned to the closest
hyperplane. Apart from the assigned group, for each object we can also define its neighbor
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which is the second closest hyperplane. The silhouette width of an object compares the
distance to the assigned group with the distance to its neighbor. Denotes(i, j), the squared
distance between objecti (i = 1,2, . . . , n) and hyperplanej (j = 1,2, . . . , k). Denote the
two smallest values ofs(i, j) by s1(i) ands2(i), respectively. Then the silhouette width for
objecti is defined as

w(i) = 1− s1(i)

s2(i)
, i = 1,2, . . . , n. (2)

Note that 0�w(i)�1 because 0�s1(i)�s2(i). If s1(i)= s2(i) (that is, objecti can equally
well be assigned to its neighbor) thenw(i)=1−1=0, the lower bound. Ifs1(i)/s2(i) → 0
(that is, objecti is much closer to the assigned group than to its neighbor) thenw(i) → 1,
the upper bound. Thus, the silhouette width measures how strongly each object belongs to
its assigned group. The larger the silhouette width of an object, the more confident one can
be about the correctness of its assignment. On the other hand, objects with smaller silhouette
widths are more likely to be assigned incorrectly.
Suppose that LGA splits the data set intokgroups denoted byCj with number of objects

nj (j = 1,2, . . . , k). Then the average silhouette width for Groupj, given by

w̄j =
∑
i∈Cj

w(i)/ni, j = 1,2, . . . , k,

measures the strength of that group, that is, how well this group is separated from the other
groups. A high average width means that a well-defined group has been found while a
low average width means that not much structure has been detected. Finally, the average
silhouette width of all objects

w̄(k) =
n∑

i=1

w(i)/n

measures the strength of the grouping when the number of groups equalsk. A high over-
all average corresponds to a strong structure while a low average corresponds to a weak
structure. Hence, the overall average silhouette widthw̄(k) can be used as a diagnostic to
evaluate whether an LGA solution yields a reasonable structure or not.
As an illustration we compute the silhouette widths for the slanted� synthetic data

set inFig. 9 (generated by random points from three linear models). The silhouette plot
(Rousseeuw, 1987) for k =3 groups inFig. 10(a) shows the silhouette widths for the points
in each of the three groups (going from smallest to largest silhouette value within each
group). Most of the points have a silhouette value above 0.50 meaning that the distance to
their neighbor is at least twice the distance to their group. This strong structure is confirmed
by the group averages which arew̄1 = 0.70, w̄2 = 0.82, andw̄3 = 0.82, showing that the
three groups are well separated. As expected, also the overall averagew̄(3) = 0.78 is high.
Fig. 10(b) shows the three groups and the points with silhouette width less than 0.25 (that
is, the distance to their neighbor is at least 3/4 of the distance to their group). We clearly
see that these points all lie in the intersection regions.
Fig. 11shows the silhouette plot for the tree data withk = 2 groups as inFig. 4(b). The

average group silhouette widths arew̄1=0.78 andw̄2=0.85. The groups are well separated
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Fig. 10. (a) Silhouette plot of the linear grouping withk =3 and (b) plotted objects have silhouette width less than
0.25.
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since no points have silhouette width below 0.25 and all but three points have silhouette
width above 0.5. This plot thus confirms that a strong structure is detected.
For each group, the points with high silhouette width (e.g.�0.50) best represent the

group. Comparing these points among and between groups can often help to find one or
several common features that are on the one hand shared by the points in a group and on
the other hand distinguish this group from the other groups in the data set.
Silhouette values have a nice and easy interpretation in terms of distances from the re-

spective hyperplanes but are computationally expensive for large data sets. As an alternative
the strength of groupmembership can be determined using posterior distributions. For each
observationxi we can determine the Bayes factor based on model (1)

BF(i) = log

(
�̂2f̂2(xi)

�̂1f̂1(xi)

)
,

wheref̂1(xi) is the density ofxi for the group it is assigned to, and̂f2 (xi) is the density of
xi for its neighbor. The neighboring group of an observationxi is determined as the group
for which �̂j f̂j (xi) is maximal among all groups not containingxi . If xi clearly belongs
to its assigned group, then the denominator in the Bayes factor will be much larger than the
numerator yielding a large negative value. On the other hand, ifxi is an intermediate point,
then �̂2 f̂2(xi) ≈ �̂1 f̂1 (xi) such that the Bayes factor is close to 0. Note that the Bayes
factors take the group sizes into account. Similarly as for silhouette widths we can define
the average Bayes factor for each group as

BFj =
∑
i∈Cj

BF(i)/ni, j = 1,2, . . . , k,

which measures the strength of each group. The overall average Bayes factor of all objects
is given by

BF(k) =
n∑

i=1

BF(i)/n

and measures the strength of the grouping when usingk groups.
Fig. 12(a) shows the Bayes factor plot for the slanted� data set. Most points have a

Bayes factor much smaller than log(0.5)=−0.69 indicating that they clearly belong to their
assignedgroup.Thestrongstructure is also confirmedby thegroupaveragesofBF1=−8.35,
BF2 = −16.99, andBF3 = −17.37, and by the overall average ofBF(3) = −14.61. Fig.
12(b) shows the points with Bayes factor larger than log(3/4). Again we clearly see that
these points all lie in the intersection regions showing that large Bayes factors correspond
to intermediate points.

6. Generalized LGA

As suggested by the Associate Editor, one can consider the more general problem of
findingkgroups of points around hyperplanes of dimensions 0� li �d −1 (i=1,2, . . . , k),
with the caseli = 0 corresponding to a group concentrated around a single point.
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Fig. 12. (a) Bayes factor plot of the linear grouping withk = 3 and (b) plotted objects have Bayes factor larger
than log(3/4).

In general ad − j dimensional hyperplane(j �d) is given by the equation

Ax = B,

whereA is an orthogonalj ×d matrix andB is aj-dimensional vector. Therefore we search
for groups with “central hyperplanes” given by

(A1, B1) , . . . , (Ak, Bk) ,

where the dimension may vary from group to group.
We now describe a procedure to find(A1, B1) , . . . , (Ak, Bk) using the basic LGA algo-

rithm as a building block. Our procedure is then illustrated by a synthetic example.

Step1.Finding homogenous groups.

(a) We start by applying LGA (equipped with an appropriate method to select the number
of groups). For each of the detected groups we now have two possibilities. The group
could be a homogeneousd−1 dimensional linear group or it may consist of one ormore
subgroups scattered in thisd − 1 dimensional hyperplane. To determine whether there
is more than one group we apply LGA (again equipped with an appropriate method to
select the number of groups) to the reduced data set obtained by projecting the group
points onto the correspondingd − 1 dimensional hyperplane.

(b) We iteratively repeat theprocedure in (a),withd−1 replacedbyd−j, j=2,3, . . . , d−1,
to each new subgroup detected in the previous step. For example, we would apply LGA
to the points in a new subgroup found in thed − 1 dimensional hyperplane once they
have been projected onto the correspondingd − 2 dimensional hyperplane, and so on.
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Step2. Finding the appropriate dimension of each group. This procedure is applied to
each homogeneous group characterized by ad − j hyperplane from Step 1.

(a) To determine the dimension of each group we reason as follows. If a group is well
characterized by a hyperplane of dimensiond − j , then the spread in the directions of
the hyperplane are considerably larger than that of the residual spread perpendicular to
the hyperplane. On the other hand, if the group can be characterized by a hyperplane of
lower dimension, then there will be directions in the hyperplane in which the spread is
comparable to the spread of the residuals. Spread can be measured by the eigenvalues
of the covariance matrix of the group. Therefore, we wish to test the hypothesis H0:
�d−j+1 = �d−j . The corresponding likelihood ratio test statistic is given by

Ln(d − j) = 2
(
�̂d−j �̂d−(j−1)

)n/2
/(

�̂d−j + �̂d−j+1

)n

. (3)

Under H0, −2 log(Ln (d − j)) is asymptotically distributed as a	22 distribution (see
e.g.Tyler, 1982). If the test rejects H0, then�d−j is substantially larger than�d−j+1 and
we conclude that the current dimensiond − j is appropriate. That is,A = (

a′
d

)
when

j = 1, and

A =




a′
d

a′
d−1
...

a′
d−j+1


 whenj = 2, . . . , d − 1.

In general,ai is the eigenvector associated with�̂i . Otherwise, we reduce the dimension
of the hyperplane by one, by adding one row toA:

A = (a′
d) → A =

(
a′
d

a′
d−1

)
in the casej = 1

and

A =




a′
d

a′
d−1
...

a′
d−j+1


 → A =




a′
d

a′
d−1
...

a′
d−j


 whenj = 2, . . . , d − 1.

(b) We iteratively pursue further possible dimension reductions by applying (3) to�̂d−m and
�̂d−m+1 (m= j +1, . . . , d −1) and continue to add an extra row toA, untilLn(d −m)

becomes significant.

To illustrate this procedure we generated the example data set shown inFig. 13. In the
first step we applied LGA combined with the GAP statistic to the full data set. We obtained
k̂ = 2 as optimal number of groups and the LGA solution consisted of a plane formed
by the top group (marked�) and a plane formed by the two other groups. We projected
both groups onto their respective central hyperplanes and applied LGA (with the GAP
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Fig. 13. Three-dimensional data set with three groups. One group(�) is concentrated around a plane, one group
(+) is concentrated around a line and one group(◦) is concentrated around a point.

statistic again) to the projected data sets. For the top group we foundk̂ = 1 so no further
splits were necessary. For the bottom group we foundk̂ = 2 and LGA split the group into
a subgroup containing the points around the line (marked+) and a subgroup consisting
of the points marked(◦). No further splits were necessary after we found the given three
homogeneous groups. Then we proceeded to the second step and used the likelihood ratio
test to compare eigenvalues. For the top group thep-value was zero, indicating that this
group is indeed a two-dimensional linear group. For the bottom group, thep-value was
0.38 when comparing�2 with �3, indicating that the spread in these two directions is
not significantly different. Therefore, we reduced the dimension of this group by 1. To
determine whether this group is concentrated around a line (dimension 1) or around a point
(dimension 0) we compared�1 with �2 which yielded ap-value of zero, leading to the
conclusion that the bottom group is concentrated around a line. Finally, we compared the
eigenvalues for the middle group. Comparing�2 with �3 gave ap-value equal to 0.164,
so we reduced the dimension by 1. Comparing�1 with �2 gave ap-value of 0.85, so we
again reduced the dimension by 1 and concluded that this group is concentrated around a
single point.

7. Discussion

Clustering focusesonfindinggroups indata that areconcentratedarounddifferent centers.
Weextendclustering to findgroups indata that followdifferent linear relationships.Contrary
to most of the existing literature, LGA aims at detecting functional linear relationships by
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Table 4
Coefficients (in absolute value) of two hyperplanes estimated by LGAwithk=2 in the presence of noise variables

m Constant X1 X2 X3 X4 X5 X6 X7

0 0.18 0.98 0.19
1 0.19 0.98 0.19 0.018
2 0.21 0.98 0.19 0.018 0.018
3 0.32 0.98 0.19 0.025 0.033 0.025
4 0.35 0.97 0.19 0.028 0.039 0.037 0.031
5 0.54 0.95 0.18 0.042 0.043 0.036 0.048 0.051

0 32.69 0.64 0.76
1 32.38 0.64 0.77 0.057
2 32.25 0.63 0.77 0.058 0.053
3 29.95 0.58 0.77 0.083 0.077 0.080
4 26.56 0.51 0.75 0.122 0.096 0.104 0.111
5 25.02 0.49 0.70 0.123 0.114 0.122 0.132 0.124

The top half shows the coefficients for the group concentrated around 5x1 − x2 = 0 while the bottom half shows
the results for the group aroundx1 − x2 = 50.

using orthogonal regression. Hence, LGA has the advantage that a response variable is
not needed. Moreover, we have illustrated that LGA also works well in the presence of
nuisance variables that do not contribute to the linear grouping. The strengths of LGA
makes it a useful tool in statistics and exploratory data analysis for finding interesting
linear patterns.
The Hockey data set in Section 4 illustrates the capability of LGA to reveal linear pat-

terns in the presence of nuisance variables. To further investigate this property of LGA
we performed a small simulation study. We generated two-dimensional data sets of size
100 consisting of two equally sized groups. The first group concentrates around the line
5X1− X2 = 0 while the second group lies around the lineX1− X2 = 50. We generatedX1
according to N(0,100) while the errors come from N(0,25). For each of 100 such data sets
we then added noise variables according to N(0,100). The numberm of noise variables
varies from 0 to 5.Table 4shows the average absolute values of the coefficients (averaged
over the 100 data sets) of the hyperplanes estimated by LGAwithk =2. The top half shows
the results for the groupwith pattern 5X1−X2=0.Note that the corresponding standardized
equation of the line is given by 0.98X1 − 0.20X2 = 0. The bottom half corresponds to the
patternX1 − X2 = 50 whose standardized version is given by 0.71X1 − 0.71X2 = 35.36.
Comparingwith the standardized coefficients above, we see fromTable 4that LGA captures
the linear patterns well in the absence of noise variables. When a few noise variables are
added(m�3), LGA still captures the same patterns and the noise variables are easily iden-
tified by the small values of their coefficients compared to those of the important variables.
When more noise variables(m�4) are added, the behavior of LGA becomes less stable
which indicates that LGA nowmisses the patterns in some of the data sets due to the added
variability in the data.
We conducted a small simulation study to give an indication of the computation time

needed by LGA. For dimensiond = 2,3,5, and 10 and number of groupsk going from
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Table 5
Average computation times (in seconds) needed by LGA

d k

2 3 4

2 0.24 0.96 4.74
3 0.29 1.73 8.81
5 0.42 2.97 19.30
10 0.69 6.87 62.03

2 to 4 we generated 100 data sets with 25 points in each group and measured the average
computation time needed by LGA applied with the true number of groups. The number
of random starts for LGA was chosen according toTable 1which assures that we have a
clean start with 95% probability. The resulting computation times in seconds are shown in
Table 5. These computation times were measured on a 1GHz Pentium using a MATLAB
implementation of the LGA algorithm. Comparing these results withTable 1we see that
larger increases in computation time correspond to increases in the required number of
random starts.
The LGA algorithm proposed in this paper is not directly applicable to large data sets in

high dimensions because similarly toK-means it does not scale well with the dimension.
However, several improvements toK-means for data mining applications have been pro-
posed (Bradley et al., 1998). In future work we will investigate how LGA can be adapted
for data mining applications.
Heteroscedasticity in a data set can be caused by the presence of more than one linear

structure close together. Such linear structures can be identified by LGA. However, het-
eroscedasticity can have several other causes. In such cases, LGA combined with one of the
selection criteria for the number of groups can be overly optimistic. A number of groups
exceeding onemay be selected which leads to identification of spurious groups. If the cause
of heteroscedasticity is not clear, we suggest to apply LGA with the GAP statistic which
has the most conservative behavior and thus is least likely to overestimate the number of
groups.
Another problem is handling outliers. It may occur that some part of the data does not

follow any of the structures. Such data points could then be considered to be outliers for the
method. However, like classical linear regression, orthogonal regression is very sensitive
to outliers. This problem can be solved by using a robust orthogonal regression method
(Zamar, 1989). In future work we will consider several robust proposals for orthogonal
regression combined with robust clustering approaches (see e.g.Hardin and Rocke, 2004)
to determine how the problem can be solved most efficiently.
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