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Abstract

Weakly electric fish use electrolocation - the detection of electric fields - to
sense their environment. The task of electrolocation involves the decoding of
the third dimension — depth — from a two-dimensional electric image. In this‘
work we present three advances in the area of depth-perception. First, we
develop a model for electrolocation based on a single parameter, namely the
width of the electric image. In contrast to previous suggested algorithms,
our algorithm would only require a single narrow tuned topographic map
to accurately estimate distance. This model is used to study the effects
of electromagnetic noise and the presence of stochastic resonance. Second,
considering the problem of depth perception from the perspective of infor-
mation constraints, we ask how much information is necessary for location
disambiguation? That is, what is the minimum amount of information that
fish would need to localize an object? This inverse problem approach gives
us insight into biological electrolocation and provides a guide for future
experimental work. Our final contribution is to provide a mathematical
foundation for two of the most accepted depth perception models currently

in use.
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Introduction

The electric sense, the biological ability to perceive natural electrical st
cinated scientists and non-scientists for decades. Although its functic
mystery, the presence of an electric organ in weakly electric fish had bee
the nineteenth century. Termed pseudoelectric these fish did not prod
fields required for prey capture and predator avoidance as did their st
cousins. The first indication for the true function of these fish’s electr

in the 1950’s. Hans Lissmann found [1] that the fish could discrimin

porous porcelain container with aquarium water and one in which 20%

was distilled water-and that discrimination could not have been possibl

mechanical, or visual clues but must have been the result of electrical ¢

the fish’s organ discharges. Since Lissmann’s instrumental work, a lon

search has been devoted to understanding this new sense modality.

imuli, has fas-
bn remained a
n known since
uce the strong
rongly electric
1C Oorgan came
ate between a
o of the liquid
e by chemical,
onductivity of

g series of re-

‘We now know that weakly electric fish are comprised of two orders of freshwater teleost,

the South American Gymnotiformes and the African Mormyriformes. These fish inhabit

aquatic environments in which visual cues are limited, and have evolved
generate and detect weak electric fields in order to both perceive their env
communicate with conspecifics. In addition to these “active” electric fi
the ability to generate electric fields, we have learned that other aquatic s
sharks, rays and catfish can detect low frequency fields (less than 20 Hz

they lack the electric organ. Termed “passive”, these fish sense natural

from sources other than the electric organs.

the ability to
rironment and
sh, possessing
pecies such as
even though

electric fields




1. INTRODUCTION

All aquatic animals generate weak electric fields as a result of the uneven distribu-

tion of ions between the interior of the animal and its environment [2]. Such biological

sources of electrical potential serve as important cues for predatory fish, and hence
is a great premium in being able to detect such fields. Low frequency electrose
systems, responsible for the detection of such signals, are found in all electrose

fish. In addition to this low frequency sensitive ampullary system, active electr

there
nsory

nsory
¢ fish

possess tuberous electroreceptors. Tuberous receptors are tuned to frequencies within

or near the electric organ discharge frequency of the respective species.

The self-generated electric field produced by the electric organ is perturbed by o

whose electric properties differ from that of the surrounding water. These pert

bjects

urba-

tions are sensed by the tuberous receptors, and constitute an electric image on the

surface of the fish. The electric image is analyzed to extrapolate information abo
particular object. In addition to prey detection, the electric sense is used for se

species recognition, courtship, aggression and appeasement (3, 4].

1.1 Electrogenesis

ut the

x and

Electrogenic fish, defined as those capable of producing electric fields, can be catego-

rized according to the strength of the field they produce. Strongly electric fish have

been known to man for centuries, as the strength of their field makes them painful to

handle. The strong electric field is used as a weapon for both prey capture and predator

avoidance. Recognition of weakly electric fish only occurred in the 20th century

[5], a

delay due to the imperceptibility of their weak discharges. In weakly electric fish, the

generated field is a part of the electrosensory system, utilized for both environmental

perception and communication.

1.1.1 Electric Organ

In both weak and strong categories, specialized cells called electrocytes are confi

gured

in series and in parallel (in accordance to the particular species) to form the electric

organ (EO), a specialized organ for the production of the electric field outside the

Electrocytes are modified muscle cells, and are electrically excitable much like

body.

other




1.1 Electrogenesis

(a) (b)

Figure 1.1: EOD waveforms - (a) Pulse-type EOD waveform from Gymnotus varzea.(b)
Wave-type EOD waveform from Eigenmannia cf. virescens (from [7]).

electrogenic cells such as neurons. The cells are flattened and are innervated by an
electrocyte stalk. The stalk in some cases penetrates the cells to innervate on the op-

posite side.

The EO is usually found in the tail, though it can be located anywhere (for exam-
ple, in the strongly electric rays, the electric organ is located in the head region). The
geometry of the EO, innervation of the cells and non-electrogenic tissue determine the

firing pattern and thus the field shape. Strongly electric fish produce monophasic elec-

tric organ pulse discharge resulting from simultaneous gctivation of the electrocytes.
The electric organ discharge (EOD) generated by weakly electric fish ca‘un be monopha-
sic, diphasic, triphasic or more complex [6]. Such pulses can be separated by either a
long or short intervals. Weakly electric fish can be categorized accordin% to these inter-
pulse intervals. The EOD of pulse-type fish consists of individual pulses followed by
relatively long and often highly variable intervals of silence (figure 1.1a). The duration

of pulses emitted by wave-type fish are as long or longer than the int‘ervals between

them resulting in a quasi-sinusoidal discharge pattern (figure 1.1b). Wave EODs are

usually of constant frequency and amplitude.

1.1.2 Function

Electrocytes function on the same general principle as ordinary nerve and muscle cells.
Potentials result from selective permeability and passive movement of ions down their
concentration gradients. The EOD is controlled by a set of neurons, the command
nucleus, located in the brain stem. Discharges of the command nucleus| trigger a relay

structure that projects to the spinal structures which in turn transform the series of




1. INTRODUCTION

command impulses into a series of stereotyped EODs [8]. Several mechanisms exist for
the control and synchronous activation of the electrocytes. Synchronization is achieved
by equally lengthed nerve fibers running from the command nucleus to different parts
of the EO. This translates to fibers which take meandering paths to nearby parts|of the
EO and more direct paths to more distant parts. A second mechanism involves varying
the conductivity of the fibers. With distant parts of the EO being reached byi more

conductive and nearer parts by less conductive fibers, the time that a signal would take

to reach different parts of the EO can be equalized.

1.1.3 Electric Field

Recent advances have been made in understanding the spatiotemporal pattern of the

EOD field and its interaction with objects in the environment [9]. The field generated

in the exterior of the fish by the EO of weakly electric fish resembles an elongated
dipole [10]. Measured close to the fish’s body, field amplitudes of weakly electri‘c fish
are generally on the order of a few hundred millivolts per centimeter [8]. As we travel
through one cycle of the EOD wave, the head-to-tail potential difference begins with the
head taking a positive potential relative to the tail (figure 1.2). This positive potential
travels down the fish body to the trunk and then the tail, at which point the|head

becomes negative relative to the tail.

1.1.4 Electric Image

Objects whose electrical properties (ohmic resistance and /or capacitive reactance) differ
from that of the surrounding water distort the field produced by the fish. The distm‘rtion,

The
fish’s

3

constitutes an “electric shadow” or electric image (EI) on the surface of the fish.

electric image is an area in which the density of the current lines defining the
electric field has changed. Objects with lower impedance than the surrounding water
attract the field lines and cause more current to flow through them. Higher impedance
values repel field lines and decrease current flow (figure 1.3). Changes in current flow

are sensed by specialized electroreceptor organs.




1.1 Electrogenesis

Figure 1.2: Spatiotemporal EOD pattern - (a)—(d) Electric field generated by EOD
of Apteronotus leptorhynchus at different points along the EOD cycle, depicted by the

black curve (inset). Light blue representing zero; green - yellow - red represent successively
greater positive values; and blue - dark blue - violet representing successively negative
values of the potential and field magnitude. In each figure the top pannel represents a view
from the top down and the bottom pannel a lateral view of the fish, (from [11]).
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() (b)

Figure 1.3: Field distortion by dielectric objects - (a) Distortions of the electric field
caused by objects with differing impedances. Objects with low impedance “attract”|the
electric field lines and result in more current flowing through the electroreceptor organs in
that part of the body located opposite to the object. (b) Objects with higher impedance
than the surrounding water reduce the current flow in the corresponding electroreceptors
as compared with the flow in the absence of the object. (From [12]).

1.2 Electroreception

Soon after the discovery of electrolocation capabilities of weakly electric fish, electrore-

ceptors, the organ responsible for the detection of electric fields was identified [13, 14].
Active electric fish possess two types of electroreéeptors, each designed to extract dif-
ferent signal information. Ampullary receptors are sensitive to low-frequency stimuli,
and act primarily as passive sensors of natural electric fields from sources other than
electric organs. They are present in all electroreceptive fish. In contrast, tuberous
receptors, which are unique to fish possessing an electric organ, respond to the high
frequency components of the EOD (from tens of Hertz to more than one kilohertz),
and are insensitive to DC signals. These receptors have evolved independently in|two

groups of freshwater fish; the Gymnotiformes of South America and the Mormyriformes

of Africa. None of the common ancestors of these two groups is capable of electrogenesis

or electroreception.



1.2 Electroreception

1.2.1 Physiology

Considerable anatomical differences exist between tuberous receptors in different species.
However, all tuberous receptors follow the same basic physiological design. One to tens
of sensory cells are housed within a jelly-filled intra-epidermal chamber. The chamber
is covered by a plug of loosely packed epidermal cells, (figure 1.4). Supporting cells
situated below the sensory cells are thought to be involved with the production of the
jelly which fills the chamber. Only a small part of the basal face of the sensory cells
is anchored to the supporting cells. The apical and basal membranes |are electrically
and chemically isolated from each other by means of tight junctions [15]. The apical
membrane of each sensory cell is covered by a large number of microvilli which are
believed to act as a coupling capacitor [16], allowing AC signals to pass through while

at the same time blocking DC signals.

All sensory cells in an organ are innervated by a single nerve fiber that divides to
form several synaptic connections on the basal membrane of individual sensory cells
[15]. Each fiber innervates from one to tens of closely clustered electroreceptor organs.
The spatial receptive field of afferent fibers is large, contributing to the|blurredness of

electric images.

The apical face of the sensory cells is passive and low resistance while the basal surface
through which current is funneled acts as the voltage sensor and contributes to trans-
duction [17]. Flow of current depolarizes the basal membrane changing the amount of

released neurotransmitter and hence the firing rate of the afferent fiber.

Tuberous electroreceptors are distributed widely over the animal surface with higher
concentration being found in the rostral region. Here the receptors of Gymnotiformes
fish have a density from nine to fifteen organs/mm?, while, over the operculum region,
their density falls to seven to nine receptor organs/mm? [18]. On the trunk, the ab-
solute densities are far lower than on the head, ranging between 0.6 and 3.4 tuberous

electroreceptor organs/ mm?.
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(a) (b)

Figure 1.4: Tuberous electroreceptor organ - (a) Schematic drawings of tuberous

electroreceptors of a Gymnarchus and (b) mormyrid fish. (From [19]).

1.2.2 Function

Tuberous receptors are specialized into subcategories, usually two in each species, dif-

fering in the dynamics of response and hence in their functional roles. Time-coding

tuberous electroreceptors encode the temporal characteristics of the EOD pattern|while

amplitude-coding receptors encode amplitude information. All weakly electric fish irre-

spective of their particular EOD pattern (wave/pulse) possess both types of receptors.

Amplitude Coding

The amplitude of a signal carries information about the size, distance and resistivity of

an object. The afferent fibers of wave type fish fire action potentials in a probabilistic

manner. Signal amplitude is encoded by an increase in the firing rate of the fibers

[20],

(figure 1.5). The afferent fibers of pulse type fish, termed burst-duration coders, fire

bursts of action potential of varying duration to represent the local amplitude of the

EOD [21].

Time Coding

The temporal features of stimuli convey information about the capacitance of objects, as

well as the waveform of the EOD. Time coding is important in behavioral functions

as electrolocation and jamming avoidance response (JAR). The time coding affi

such

erent
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EOD AM

Figure 1.5: AM transduction - Transduction of EOD amplitude modulation (AM) to
electrical impulses. Top panel depicts the modulation of the EOD amplitude by a dielectric
object. Bottom panel shows how this amplitude modulation is encoded by and increase in
the firing rate of the the amplitude coding receptors.

fibers of wave-type fish, termed tonic time coders, fire one action potential for each
cycle of the EOD, thereby maintaining a continuous one-to-one firing pattern with the
EOD. In pulse-type fish, time coding afferents, termed pulse markers, also fire a single
action potential for each EOD cycle. It is interesting to note that both tonic time
coders as well as pulse markers show varying degrees of amplitude-dependent latency

changes and as such entail time-amplitude ambiguity [21, 22, 23].

Frequency Tuning

Time coding tuberous electroreceptors of wave type fish are sharply tuned to the par-
ticular frequency of the fish’s EOD, showing a V-shaped threshold tuning curve [24]
(figure 1.6). In pulse type species, the frequency components of the pulse, rather than
its repetition frequency are important [25]. Using Fourier analysis Bastian has shown
that the EOD pulse is comprised of broad spectra with peaks roughly 'matching the
best frequency of receptor tuning [21, 26].

1.2.3 Processing Pathways

Amplitude information undergoes substantial processing in the electrosensory lateral
line lobe (ELL), an anatomical structure in the hindbrain. The ELL consists of several

different zones that receive input from different types of primary afferent fibers.

In Gymnotiform fish the fibers make synaptic connections with pyramidal cells, which
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P9
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Figure 1.6: Tuberous tuning curves - Tuning curves for tuberous electroreceptors
from a single Figenmannia. Peak-to-peak thresholds were determined by measuring |’che
minimum electric field required to elicit one spike on each stimulus period. The arrow
shows the fish’s EOD frequency prior to the experiment. Filled circles: amplitude-coding

P-type afferent; open circles: time-coding T-afferents (from [24]).
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1.2 Ele

ctroreception

in turn extract features such as increases and decreases in amplitud
Gymnotiform fish can be segmented into three distinct regions; latera
and centrolateral. Amplitude-coding afferent fibers map onto each of
Physiological differences such as the different rates of convergence refle

function [25]. Neurons in each segment are topographically organized t

aY

The ELL of
], centromedial
the zones [27].
ct differences in

o form a spatial

map of the electrosensory periphery [18]. These neurons respond maximally for one

location, with their activity decreasing for locations away from this pre

hence neuronal responses are described by bell-shaped tuning curves.

ferred location;

The width of the tuning curves within each of the ELL segments differ. Neurons in

the lateral map have a large or coarse receptive field and are the most

sensitive of the

three maps, responding to high-frequency amplitude modulations. Centromedial neu-

rons have the smallest and most precise receptive field, and respond t

low-frequency

amplitude modulations. The centrolateral map consists of neurons with intermediate
spatial and temporal characteristics [25]. Estimates of the physiological range of the
tuning curve width are between 0.3 and 0.7 cm depending on the parti

[28).

cular ELL map

It has been shown that different electric image features are best estimated using differ-

ent tuning curve widths. For example wider tuning curves can more accurately estimate
the peak amplitude of the electric image, whereas, to encode image width, narrower
tuning curves would result in higher accuracy [28]. One simple algorithm for calculat-
ing image width is to first normalize the neural responses to the maximal response and

then count the number of neurons that are active above a certain threshold [9)].

Descending control plays an important role in the information processing that takes

place in the ELL. In the ELL of Gymnotiform fish, efferent input is received from the

nucleus of praeemintialis (PE), a midbrain structure. The input follows one of two
pathways. Stellate cells from the PE project directly onto the ventral 1lnolecular layer
of the ELL. Bratton and Bastian [29] suggested that the direct pathway from the PE

to the ELL may enhance the sensitivity of ELL neurons to a local anld novel stimu-

lus. The second pathway consists of multipolar neurons projecting onto‘

lar layer of the

the eminentia

granularis posterior (EGp) which in turn project onto the dorsal molecu

11
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ELL [30]. It has been suggested that this descending input pathway serves as|a gain
control mechanisms [25]. Upon processing of information the ELL in turn projects onto
the torus semicirularis, a structure in the midbrain. The torus semicircularis contains

neurons that respond to amplitude and time (phase) modulations.

1.3 Aim of the Thesis

Electrolocation is the task of actively localizing a target object from sets of electric
images. The rostro-caudal (2D) position of a target object relative to the animal’s
body surface can be determined from the pattern of activity over the 2D array of
electroreceptors. Namely, the peak amplitude of the electric image coincides wiLh the
rostro-caudal location of the object. Evaluation of the lateral distance of the object to
the fish surface is a far more difficult task. The electric image of an object deperllds on
its electrical properties, size, and shape and on its distance from the fish. As sujth, for
an object whose properties are unknown, no single electric image feature is sufficient
for identifying the lateral distance (figure 1.7). Relying on multiple object features
requires the use of multiple ELL maps with differing receptive fields for an acc!:urate
estimation. Several depth perception models have been proposed (see chapter 2). These
models, based on empirical evidence, depend on multiple image parameters. Our first
goal in this work is to provide a mathematical verification of these models (section
2.3). Next, we aim to develop a depth perception model which depends on a single
electric image parameter (chapter 3). Such a mechanism is possible if the temporal
characteristics of the electric image are taken into account. Finally, considering a static
electric image, we would like to explore the minimum amount of information that would

be required for the fish to unambiguously decode the location of an object (chapter 4).

This goal requires a completely different approach to the problem of depth perception.
We need to consider the information available at a single electroreceptor as oplgosed
to the pattern of the generated electric image. Identification of the sensory processing
algorithm used in depth perception would provide physiologists with important iclues

that should facilitate the search for neural correlates of this behavior.

12




1.3 Aim| of the Thesis

Figure 1.7: Size-distance ambiguity - A schematic of the two-dimensional electric
image on the surface of the fish for objects of two different sizes and lateral |distances. Al-

though the widths of the images are different, the peak amplitudes are the same (measured
in grayscale, with white being the largest). Thus, detecting object distance based only on

amplitude leads to ambiguities, (from [28]).

13
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Literature Reveilw

It is without doubt that weakly electric fish use their electric sense to

locate objects

[31]. Much work has been conducted in understanding how these fish perform this

task. Although the rostro-caudal location of an object can be associated directly to

the location of the peak electric image, the measure relating electric image features

to the object distance has not been completely understood. Several depth perception

algorithms have been proposed. These algorithms can be categorized into those which

rely on static electric image features and those which incorporate the temporal aspects

of the electric image. We have termed these algorithms static and spatiotemporal

models, respectively. In this chapter we will begin with a review of

algorithms. We note that of these algorithms those of Rasnow [32] and

past proposed

von der Emde

[31] have become the accepted models within the community. Some questions remain as

to which, if any, the fish actually use for object localization. We provide a

proof that both methods can in fact be used for depth perception.

2.1 Static Models
2.1.1 Rasnow Model

Rasnow and his colleagues have used both direct measurements as well
cal simulations to model the electric image produced by a dielectric sph
Recognizing that each image feature (e.g. peak amplitude, width, pha;

pendent on multiple (unknown) object features (distance, size, impeda
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Distance from head (cm) Distance from head (cm)
(a) (b)

Figure 2.1: Raswnow model - (a) Electric images of conducting spheres in the midplane
of Apteronotus leptorhynchus. Images from a 1 cm sphere at four object distances (inset),
and (b) from four object sizes at the fixed distance of 1.4 cm. Dashed horizontal lines

represent the relative width of the object image, with vertical lines to facilitate comparisons,

(figures provided from {9]).

size-impedance-distance ambiguities, Rasnow proposed the use of multiple imag

e pa-

rameters for decoding the object-fish distance. Rasnow suggested a method by which

|

the fish calculate the relative width of the electric image, that is the width measured

at half peak amplitude. He hypothesize that this measure is solely dependent on the

object distance, and hence can unambiguously reveal depth information. Theoretical

work has shown that this measure is independent of object size, (figure 2.1). However,

von der Emde has pointed out that this measure can only be used to disambiguat
distance of an object whose impedance is already known [12], a fact that clearly

not hold true when the fish is presented with novel objects.

2.1.2 von der Emde Model

In a series of elegant behavioral experiments, von der Emde and his colleagues sh

e the

does

owed

definitively that the weakly electric fish, Gnathonemus petersii, could use their electric

sense for localization [12, 31, 34]. The experiments consisted of partitioning th

tank into two compartments with two gates (gaps) built into the partition wall

16
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poral Models

figure 2.2). Objects were placed beyond each gate at different distances to the gate.

In a forced-choice experiment the fish were trained to swim through the gate beyond

which the object was furthest away.

It was shown that not only could the fish accurately determine the rela

tive distance of

two identical objects, but they could also correctly identify the relative distance when

the objects differed in size and conductivity. Interestingly, von der Emde also found

that when presented with a cube and a sphere of the same radius, the fish misjudged the

distances and perceived the spheres to be further away, even when this was not the case.

Von der Emde proposes the use of a ratio of image features; namely that of maxi-

mal slope to peak amplitude, as a measure of object distance [12, 31,

34]. Empirical

data obtained from Gnathonemus petersii indicate that the caudal image slopes of

different electric images vary unsystematically with object distance, and so it cannot

provide any reliable distance cues. To this end von der Emde suggests

rostral image slopes to determine the slope-to-amplitude ratio.

: Object 1

o
N

GD

Object 2

the fish use the

Figure 2.2: Von der Emde experimental set-up - Schematic of von der Emde’s
experimental tank set-up as seen from above. The thick dotted line marks the position of
the dividing wall, containing the two gates (gaps). The distance between the gate and the

closer object is denoted gate distance (GD). The distance between the two
inter-object distance (OD).

2.2 Spatiotemporal Models

objects is the

The importance of the temporal properties of the electric image in object localization

was first alluded to by Rasnow [32]. Electric fish explore actively by moving their

17
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bodies and tails around objects [35, 36]. It is well documented (37, 38, 39] that tail

bending movements of electric fish are often involved with prey capture. Such probing

movements change the magnitude of the electric image at the object and could provide

further cues to object location.

2.2.1 Sim & Kim

Sim and Kim used mathematical modeling to study the effects of tail bending o

n the

transdermal potential measured at a receptor [40]. They observed that changes in the

lateral distance of an object significantly altered the temporal pattern of transdermal

potential. Interestingly, object size and conductivity had no effect on the pattern

This

led Sim and Kim to conclude that the temporal variation at a fixed electroreceptor

during tail bending could allow localization of a target object.

Noting that fish may not be able to recognize the multitude of possible temporal

patterns, Sim and Kim propose the use of the measure slope ratio to determin
lateral distance of an object. The slope ratio is defined as the ratio of the tem‘

changes in potential when the tail is bent from left to mid-line and from mid-li

the right with the same time interval. It is important to note that since the tem

e the
poral
ne to

poral

pattern depends on the rostrocaudal position of a target object, the slope ratio curve

also changes depending on the object’s rostrocaudal position.

2.2.2 Englemann

Beside frontal approaching, exploratory behavior of weakly electric fish Gnathonemus

include back and forth swimming, termed va-et-vient sampling. Hofmann et al. [41] use

values from a mathematical model to study the electric image at one receptor d

uring

a va-et-vient object inspection. Mapped as a function of time, the modulations of the

electric field at the receptor resemble a bell curve and are termed the temporal electric

images (tEI), (see figure 2.3). Taking a similar approach as von der Emde, Hofmann et

al. calculated the slope-to-amplitude ratio (tSAR) of the tEI. They found for a range

of object size, the tSAR was size-invariant, and thus allowed for distance estimati

18
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3.5 Object-Fish Distance
=C= 22.5 mm
c 3.0 - 20 mm
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Figure 2.3: Temporal electric image - Electric image at a single receptor during
va-et-vient object inspection for different object-fish distances.

2.2.3 Chen

The model developed by Rasnow was based on the assumption that the dielectric object
is placed within a uniform electric field. Chen and colleagues expanded |this viewpoint
by developing a model of the electric field generation comprised of an |array of point
sources and sinks distributed along the midline of the fish [42]. Their| model was in
close agreement with the field measurements taken from several species of gymnotid
fish [10]. Chen and colleagues used their model to estimate the spatiotemporal pattern
of activation during active electrolocation when an object is moved passed a fish. The
authors found that the measure proposed by Rasnow, namely the width at half peak
amplitude was an accurate measure of object distance, and is size invariant with object

distance.

2.2.4 Babineau

Babineau and colleagues used a model of the electric field generated by Apternotus
leptorhynchus to study spatial acuity and small signal extraction [43]., The authors
focus on a measure, electro-acuity, defined as the minimum spatial separation of two

objects, such that two distinct peaks remain in the electric image on the fish’s skin.

It is found that electro-acuity varies at different lateral distances, but is invariant with

object conductivity and size. As such, it could provide a cue for localization. Further,
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the authors found that to a reasonable approximation, electro-acuity is proportional

to the normalized width of the image (width divided by amplitude) due to each

of the

objects. This is compatible with the relative width measure used for depth perception

by Rasnow [32] .

Babineau and colleagues have simulated the va-et-vient scanning motion and

show

that under some conditions this behavior could assist in extracting small prey-like sig-

nals from large background ones. When the constituent objects of a complex

are close enough to each other to result in a blurred (spatially uniform) image, a

spatially localized prey will affect the image by only a few percent. This suggest

scene
small
s that

fish using a static electric image would be unable to extract the prey signal from the

large-background signal. However, during va-et-vient scanning, the blurred background

component of the electric image does not change, whereas that due to the prey

does.

Consequently the prey signal is revealed during the scanning motion by looking at the

transdermal potential at individual location on the fish’s body.

2.3 Mathematical Verification of Rasnow & von der Ei
Models

mde

In this section, we would like to put the algorithms presented by Rasnow [32] and von

der Emde et al. [31], herein referred to as the Rasnow and von der Emde M
respectively, on a solid mathematical footing. First, we show that in contrast t

der Emde’s claim [12], the method proposed by Rasnow can in fact disambigua

odels,

O von

e the

location of a spherical object whose size and electrical properties are unknown. Second,

we provide a mathematical proof that, for localization of a dielectric sphere, the ratio

of maximum slope to peak amplitude is in fact solely dependent on the object distance

as von der Emde et al.’s empirical data suggest. In both cases we find a simple equation

relating the distance of a spherical object to the particular measure in question.

Electric Image

We begin by considering fields perpendicular to the fish surface. Such fields are of

greatest significance, as they appear predominantly in the rostral region of th

[44], where electroreceptors are most dense.

20
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Next, to study the effects of a dielectric sphere on this uniform fiel

Cartesian reference frame such that the origin coincides with the sphe

d, we orient a

re’s center and

the applicate (z-direction) lies parallel with the direction of the unperturbed field.

Over the region of interest, we approximate the fish surface to be plan
object distance is d, the fish surface plane II consists of points having th
Assume the unperturbed field to be uniform with magnitude E, given
EOD measured at the origin, prior to the introduction of the sphere
troduction of a dielectric sphere of radius a at the origin then induces

of
T'a3Ed

(iBZ + y2 + d2)3/2

at (z,y,d) on II, where I' is the electric contrast of the sphere define

00(z,y,d) =

Measurements of this perturbation on the fish surface plane constitu

image of the dielectric sphere.

Rasnow Model

According to Rasnow [32] and Rasnow and Bower [33], it is sufficient

measure the relative width of the electric image for unambiguous distan

Here we show that this measure is in fact sufficient for distance discri

depends solely on the object’s distance.

The perturbation (2.1) is maximized at the point (0,0, d) directly unde

ar. If the fish-
e form (z,y, d).
by that of the
there. The in-

a perturbation

(2.1)

1 in chapter 3.

te the electric

for the fish to
e information.

mination as it

rneath the di-

electric object, and decays in a Gaussian-like manner. The maximum perturbation is

then given by
Ta*E

daz
The potential on a curve C defined on the plane II, by

6(I>ma,:r -

C= {(x,y,z)} 224y =d(Vi-1),2 =d}

is half that of d¢pqe.. It is clear that the curve C defines a circle on the

center (0,0,d) and radius

'r=d\/\3/£i—1,

21
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plane II, with

(2.3)
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which is solely dependent on the sphere’s distance to the plane. Hence, we see that

the distance of an object is linearly related to the radius of the electric image at half

amplitude by

(2.4)

where there is no dependence on the size a, or the electrical contrast I', of the sphere.

von der Emde Model

According to von der Emde et al. [31], von der Emde [12] and Schwarz and von der

Emde [34] the ratio A, of the electric image’s maximum slope to maximum amplitude

provides a measure of an object’s distance. Here we show that this measure is solely

dependent on the object’s distance, and hence can be used to unambiguously lo
an object. Further, we find the mathematical relationship between the object’s dis
d and A.

calize

tance

It is easy to verify that on the horizontal plane II the maximum amplitude of the

perturbation (2.1) is attained at the point (0,0, d), and has value

Ta3E
6¢maz = T

On this same plane, the magnitude of the slope of the surface §®(z,y) is defined

2 2
— T3Edy | — Y
|V6®| = 3Ta Ed1/ R

Using the symmetry of our problem we let 22 4+ y2 = 72 to define the slope funct

3Tl Edr

Again, it can easily be verified that the slope is maximized on the circle 22 + y?

and has value
: 48Ta3E

@ B

Hence, the slope to amplitude ratio A is

Sm

A\ = Sma:c _ 48

6<I>ma:z: d\/5_5 .

22

(2.5)
by
(2.6)

on

2.7)

ISES

(2.8)

(2.9)




.4 Conclusion

Finally, we can see that object distance is linearly related to the invers

by
d=

>0

a8
V5s

2.4 Conclusion

e of the ratio A

(2.10)

All spatiotemporal models of depth preception, with the exception of Sim and Kim [40],

are at least weakly compatible with either Rasnow’s or von der Emde’

s static models.

It remains unclear which, if either, of the two static algorithms the fish actually use

for the task of depth perception. We hope that the work provided

in this chapter

will validate the method proposed by Rasnow [32] as a potential algorithm for depth

perception as well as provide a mathematical complement to von der Emde’s empirical

work.

In the following chapter we propose an alternative model for depth perclzption based on

measurements of a single image parameter. Such a model, based on both|the spatial and

temporal characteristics of the electric image would only require a single narrow tuned

topological map to accurately estimate distance. It further provides an

the probing behavior observed in weakly electric fish.

23
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3

Single Parameter Spatiotem
Model

Depth perception mechanisms suggested thus far are based on multi-p
surements [31, 32, 40, 41], and most take into account only the spatia
electric image, disregarding its temporal characteristic. The EOD of wea
are amongst the most stable known biological oscillators [7], and electro
during distance discrimination [34] suggests that the image’s temporal

play a far more significant role than previously thought.

In this chapter we develop a model for depth perception, based on both
temporal characteristics of the electric image. Our model is based on
of a single image parameter, namely the width of the electric image.
previously suggested algorithms, our model would only require a single
topographic neuronal map to accurately estimate distance.
model provides an explanation of the tail-bending (probing) behavior ¢

sampling observed in weakly electric fish.

We begin with an outline of the model including both analytic as we

More sig

poral

arameter mea-
1 profile of the
kly electric fish
motor behavior

properties may

the spatial and
measurements
In contrast to
narrow tuned
rnificantly, our

and va-et-vient

1 as numerical

results 3.1. We then use this model to study the effects of electromagnetic noise and

assess the presence of stochastic resonance (3.2). Lastly we test our moc

tion of non-spherical dielectrics (3.3).

25
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3. SINGLE PARAMETER SPATIOTEMPORAL MODEL

3.1 Model

Motivation

The motivation behind developing a single parameter model is twofold. The physi-

ological process of extracting distance information from one image parameter

is far

simpler than that required for multiple parameters. Other — multi-parameter based —

algorithms such as those of Rasnow (image width calculated at half peak amplitude)

and von der Emde (ratio of maximum slope to peak amplitude) would require at least

two topographic maps with differing spatial resolution to accurately estimate distance

[28]. Our single parameter based model can function with only a single narrow [tuned

map.

Electric fish explore novel objects differing in conductivity from water by swimming

in a back-and-forth manner (va-et-vient sampling) [35, 45] or bending of the ¢

audal

one- or two-thirds of the body toward the object [46]. It has been hypothesized [9]

that the tail-bending behavior, called “probing”, as well as the va-et-vient sampling

[41] , may allow the fish to disambiguate object features. The electric image is greatly

affected by the location of the electric organ relative to the object. The va-et-vient

sampling and probing behavior changes this position and hence changes the EOD am-

plitude at the object. We show that utilizing measurements of the electric image at

multiple EOD amplitudes allow the fish to disambiguate the distance from other un-

known object properties, and hence explain the probing behavior.

Model Outline

We consider fish with non-ideal electroreceptors. Such receptors are characterized by

a threshold value T. Signals whose amplitude fall below this threshold remain unde-

tected to such non-ideal receptors. In this way, we can regard the surface of the
in the presence of a given object, as being comprised of two distinct regions; detec

and non-detectable. Receptors within the detectable region are able to sense the

fish,
table

> per-

turbation caused by the presence of the object while the object remains invisible to

receptors in the non-detectable region. It is clear that the size of the two region

26
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functions of the EOD amplitude, the object-fish distance as well as jother unknown

object properties (i.e. size, shape and electric contrast). By itself, inf?rmation about

the size of the regions at any one instance in time is insufficient in inferring anything

about the object-fish distance. However, comparison of the regions n‘leasured at two

different EOD amplitudes allows the possibility of disambiguating the distance from
the other object properties.

It is important to note that though we have chosen the receptor sensitivity thresh-
old as the value at which the fish surface is partitioned; our model remains valid for
any other threshold value. As such, if the signal is strong enough that the perturbation
at all receptors is above threshold, a higher threshold value can be chosen with the aid
of neuronal inhibition, such that regions where the perturbation falls|above this new
threshold value form a bounded region on the fish surface. In this way a value can
always be chosen to ensure the size of the “detectable” region is limited to the surface
of the fish.

3.1.1 Assumptions

Our model makes four key assumptions that need to be addressed. |First, we have
based our model on the localization of a dielectric sphere. We will show, this is an
accurate representation of the problem faced by the fish, especially for more distant
objects. Next, we assume that the field in which the object is placed is both uniform
and perpendicular to the surface of the fish. Finally, we presume that [the presence of

the fish itself does not affect the electric image.
Object Geometry

Our model is based on the localization of a dielectric sphere. This assumption has
been made by many authors in the past, [9, 32, 40, 42, 47, 48], and we believe it is an

accurate representation of the problem faced by the fish.

Foremost, the geometry of electric fish’s main prey, the Daphnia Magna is roughly
spherical, see figure 3.1. Second, as the size of non-spherical objects is reduced or its

distance increased the perturbation of the electric field due to the object, and hence
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its electric image, converges to that produced by a spherical object. This property is

reflected in the Laplace equation which links the electric potential to the charge dis-

tribution and is used to model the field perturbation by a dielectric object. In’ figure

3.2 we represent the electric image produced by a sphere 3.2a and a cube 3.2b; Both

objects produce very similar electric image profiles with circular isopotential lines. As

the distance of the cube is decreased the high-valued isopotential lines begin to devi-

ate from their circular nature. However, the isopotential lines at the periphery|of the

electric image still maintain their circular pattern. For an algorithm based on the size

of the electric image, only the weakest detectable isopotential line need be cons

idered.

As such even for near non-spherical objects, we may assume the profile of the electric

image is circular in nature, similar to that which is produced for spherical objects.

Figure 3.1: Daphnia Magna - A female adult daphnia magna.

Field Uniformity

Far from the fish, the EOD induces an electric field resembling an elongated

dipole

[9, 10, 44], (see figure 3.3). The near field (< 1 body length), where electrolocation

occurs [49, 50], is far more complicated [10]. Let us model the elongated field as that

which is produced by an array of point charges [42]. The array of n electric poles is

distributed uniformly along the rostro-caudal axis of the model fish. Starting

t the

head, the first m poles act as current source and the remaining (n — m) as current

sink. The electric potential ® at a point x outside the fish is given by the sum

28
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(b)

Figure 3.2: Electric image comparison - (a) Contours representing the
for a sphere, (b) and a cube.
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Figure 3.3: Fish dipole field - Elongated dipole field generated by a

electric image

n Apteronotus
albifrons, (from [10]).
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individual contributions to the potential from each pole. That is,

Sty
sp-3 B Ly mm_1_
= d7ey |x — x| o, dmeo Ix — x|’

(3.1)

where x; is the Cartesian position of the 7 pole, and q is the charge associated to

each pole. The quantity ¢ has been normalized such that the first m poles have a

charge of g/m and the remaining poles a charge of —g/(n — m), resulting in a total

net charge of zero. The field is well described with a single negative pole at the tail [42].

Let us now derive the perturbation to this field by a dielectric sphere of ra

dius a

and relative permittivity ¢; centered at the origin. We begin by analysing the effect of

the sphere on the field of a single point charge then generalize the idea to the mu

field above. Suppose the sphere-charge-receptor orientation is as in figure 3.4

tipole
The

charge g is set on the z-axis a distance b from the center of the sphere which is located

at the origin, (b > a). The potential in such an arrangement is independent
spherical coordinate ¢, hence, ®(r, 8, ¢) = ®(r,0). The sphere is immersed in a
of relative permittivity e.. ~We begin with Gauss’ Law V - E = p/eqy, which
absence of charge leads to the Laplace equation, V2® = 0. The solution of the L

equation in spherical coordinates is

O(r,0) = Z (Anrn + B"rn%) [Pr(cos ) + Qn(cosb)],
n=0

of the
media
in the

aplace

(3.2)

where A, and By, are constants, yet to be determined, and B, and @), are the Legendre

polynomials of the first and second kind, respectively, [51]. Noting that ®(r,0) < oo

for all values of 8, we can set Q, = 0, as this function diverges for § = 0, 7. Hence, we

look for solutions of the form

oo
®,(r,0) = Z (Anr" + B, 7%) P,(cosf) and
=0
1 - 1
De(r,0) = Z (Cnr" + Dn:,m) P,(cos8),
n=0

(3.3)

where the subscripts ¢ and e represent the potential interior and exterior to the sphere

respectively. Our equations (3.3) need to satisfy the following boundary conditions.

BC.1 ®;(r,0) <ocoasrT—0
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Point
charge
+ B
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e (1.8,0)
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Point.
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Figure 3.4: Point charge-sphere-receptor orientation - Orientation of the point
charge, sphere and receptor in spherical coordinates. The symmetry of the problem is
exploited by orienting the reference frame such that the origin coincides with the center of

the sphere and the applicate E, is directed along the line joining the sphere
point charge. In this frame the potential at a receptor located at (7,0, ¢)
of the azimuthal angle ¢. The point charge is located at (b,0).
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e if polarization of dielectric is uniform, bound charges only appear on the

surface

BC.2 &.(r,0) - L9 _,0asr— oo where ry = vb2 + 72 — 2brcosf

4meg Tq

e at great distances from the sphere, the effect of the sphere is negligible
BC.3 ®i(r,0) = ®(r,0) forr =a

e electric potential must be continuous across boundary

o discontinuity would imply an infinite electric field
BC4 (D,-D;) n=0=0whenr=a

¢ boundary condition for dielectric surfaces

e here D is the displacement field accounting for the effects of free charge

within materials.
e normal component of displacement field is continuous across the boundary
o here o is the free surface charge. We assume no free-charges on the surface
of the sphere.
BC.5 (egeeEe — ¢o6;E;) - n=0=0whenr =a
¢ derived from BC.4, where D = ¢g€E = €p(1+x)E = ¢gE+¢oxE = ¢cE+P,
and ¢p is the vacuum permittivity

e here ¢ is the dielectric constant inside/ouside the sphere, x. = 2 is the

dielectric susceptibility, and P is the electric polarization (or dipole moment
per unit volume)
BC.6 &.(r,6) > c0casr—>band § -0

BC.7T E; = Eg

e assuming electrostatics (i.e. V x E = ()

o tangential component of the electric field is continuous across the boundary
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The above boundary conditions may be used to explicitly find the coeffici

and Dy, of equations (3.3).

®;(r,0) <o asr =0 [BC.1]

= B,=0 Vn
= ®i(r,0) = Y22 (Anr™) Py(cosb)

S S | B
D (r,0) — 4“150 TP reesg BT 7 ® [BC.2]

Suppose we can express the potential outside the sphere as the sum

ents Ay, B, Cn,

of the unper-

turbed potential ®,, - potential in the absence of the sphere - and the perturbation

®,, due to the presence of the sphere.
o, =,+9,

Equation (3.4) must satisfy the following criteria:
CT.1 V%29, =0
e As ®, is the solution to Laplace equation outside the sphere

1
CT-2 2u(r,6) = grgs Jrrrr i eontd

o This is simply the point charge potential measured at a distance

e We note ®, satisfies the Laplace equation (i.e. V2®, = 0)
CT.3 &, must satisfy the Laplace equation (V2®, = 0)

e By CT.1 and CT.2
CT.4 9,(r,0) = 302 (Cnt™ + Dn51) Pa(cos )

e by CT.3

CT.5 ®p(r,0) > 0asr — oo

e As a consequence of BC.2

CT.6 C,=0 Vn
e by CT.4 and CT.5
= ®p(r,0) = 302y (Dnzrr) Pa(cos6)

33
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Hence,
1 q = 1
®.(r,0) = + D,,—— | P,(cos®). 3.5
(3( ) 47r50 \/b2+’l"2 —2b'rcos(9 ”go ( nr,n_H) ﬂ( ) ( )
Now, to write this equation in a more uniform way, consider the function
1
o (3.6)

If we expand this in a power series in x, we obtain a series that converges for n < 1.
Furthermore, as the Legendre polynomials can be defined [52] as the coefficients in

a Taylor series expansion

m Znnp (3.7)

for b > r, we define n = r/b, and

g 3 q
AmegV/b2 + 712 — 2brcosf  4dmegby/1 + (r/b)2 — 2(r/b) cos §

" 4megby/1 + 12 — 2ncos

o0
- _4g n
= 47T€oan=0n P, (cosb). (3.8)
For b < r, we define ¢ = b/r, and
q _ q
4megV/b? + 12 —2brcosf  4megry/(b/r)2 +1 — 2(b/r) cos
B q
47!'607'\/ 1+ &2 —2fcosf
n
4“ - zg P,(cos®). (3.9)
So,
o0 n o0
5000 = Z 571 Pn(cos 6) + Z (Dn=r) Pa(cosf) ifa<r <b
e\T,V) =

Treg Z ;WrP (cos @) + E (D n;m) P,(cosf) ifb<r.

n=0

Upon simplifying we obtain,

(o)
> (7% 55 + Duzilir) Palcos6) ifa<r <b,

QC(T’ 0) = n; 5 1
> (w5 7r + Dater) Pa(cost) ifb <.
n=|

Note that the two equations coincide for the case b = r!
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- Equating the coefficients of the Legendre polynomials, we find for n

;(r,0) = ®(r,0) for r = a. [BC.3]

Of course for the potential measured just outside of the sphere, we need only consider

the case a < r < b. Hence, BC.3 states that

o0 oo g a" 1
Z (Ana™) P,(cos8) = Z (47T60 ) + Dy, an+1> Pp(cosb).
n=0 n=0

__9 1 Dr,
"7 dmeg bntl T g2’
Hence,
o
®i(r,0) = Y (Anr™) Py(cos),
n=0

oo 7 ] D
§ n n
- 5 (47reo pn+1 + a2n+1) 7" Pp(cos 8).
n=»

(e0€eEe — €0€6;E;) - n = 0 = 0 when r = a. [BC.5)

Rearranging the terms and using the definition of electric potential

(c0€eEe — €06, E;) -n = 0,
€Ee-n = €¢E;-n,
€eVP-n = ¢V -n,
© on r=a " on r=a’
. 00, '6<I>i
° or r=a o r=a

(3.10)

=0,1,2,..

(3.11)

(3.12)

Again, for potential measured just outside of the sphere, we need only consider the
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case a < r < b. Hence,

O (S2( ™ b L \p (cosh
€e E“ Z 4reo pnt1 + nT"‘+1 n(COS )

n=0

r=a

. _8_ i q 1 D" np ( 0)
€ or 4meg hntl + a?n+l T inlcos

n=0

n—1

o0
q a 1 B
66,;, (n_47r60 il (n+ UD"W) Pp(cosf) =

. i q 1 Dn 'n—lP 0
€ 0” dmeg b1 T ont1 ) @ n(cos 6).
n=

Equating the coefficients of the Legendre polynomial, we find

2n+1
qg a €e — €
D, =
" n47|'€0 bntl (nei+(n+1)ee) and
g 1 ( (2n + 1)e. >

n= dmep b1 \ ne; + (n+ 1)ee

We substitute these values into our equation for potential, and obtain

© n
q T (2n + 1)e.
&;(r,0) = F, 0 <a,
’l,('r ) 471'50 ~ bn+1 (nEi T+ (n + 1)63 n(COS ) r a
g x o a2n+l € —e;
4meg z (b"‘*I + N (nei+(’n+1)ee)) Pn(COS 0) a<r<
Bo(r,0)={ "=
e\l g X b a2n+l co—e; P 9 b
4meg 2 (r"*‘I + N (nei+(n+1)ce)) n(cos 6) <r.

n=0

r=a

(=]

3.13)

Equations (3.13) fully describe the potential of a point charge in the presence of a

dielectric sphere at all points (7,8, ¢) in space. We identify, by equations (3.4),
(3.9) and CT.2 above, the perturbation 6@, to the electric potential by the sphere

0d(r,0) = 4 i n ar fe — G P, (cos9)
T Ameg brtlpntl \ ne; + (n 4+ 1)e. " '

n=0

(3.8),
to be

(3.14)

Here, as before, P, represent the Legendre polynomials, and § is the polar angle which

extends between the charge-axis (axis extending from the charge to the origin) and the

ray extending from the origin to the reference point point (r, 8), (figure 3.4).
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Writing out the first several terms of equation (3.14),

3
g [ a (-
0%(r,0) = deg (b2r2 (ei + 2€e>> cos?

q o0 a2n+l €e — € A o
+ d7eg Z (n pntirntl (ne,- +(n+ l)ee)) n(cost)

n=2

€ 1 0 5
(e~ 3 a1 cos 40 a’ ,
€; + 2¢, 4meg b2 12 T3

(3.15)

it becomes clear that the perturbation of the point charge field due to the dielectric

sphere is comprised of a dipole perturbation along with higher order

terms become negligible for small (¢ < 1), distant objects.

Generalizing our analysis of the point charge field to an array of point ¢
simple with the aid of the superposition principle. Consider an array

For each charge g;, we orient the reference frame such that the origin

terms. These

harges is made
of N charges.

coincides with

the center of the sphere and the applicate E, is directed along the line joining the

sphere center and g;. The potential perturbation of charge ¢; at a receptor due to the

sphere can then be calculated by the method outlined above. Finally, b
sition principle, we may add up the individual potential perturbations

perturbation of the array;

1 & | g2t € — € N g
69(r,6) = 4meg z% = (nei +(n+ 1)ee> Z b;‘+1 Pr(cos

n= ij=1

y the superpo-

to acquire the

0,)|, (3.16)

where (bj, B;) is the polar coordinate of charge j and 6; = 6 — §;; see figure 3.5. Again,

writing the first several terms of equation (3.16),

N
[ €e—¢€ 3 1 [ cos 0;
0%(r,6) = (ei + 266) @ 4reg Z (b?) r2

j=1

N 1 00 na2n+1( € — € )i qj
dmeo £~ rntl \ ne; + (n + 1e = b;‘“

€ — € 1 & g; \ cosb; ad
=== )43 kA ool
(ei +2ee) * are Z (b?) 2z T (7"3) '

=1

it becomes clear that the perturbation of the array potential is comp

P,(cosb;)

(3.17)

rised of a sum

of dipole potentials and higher order multi-pole perturbations which attenuate with
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Charge Charge 2
@ (o, 3)~(by, ) qz: (x,y2)~ (b, )

Reference Pnt.
@Y=.6)

Figure 3.5: Charge array-sphere-receptor orientation - Orientation of the receptor,
sphere and an array of two charges ¢;. In a reference frame where the sphere center is
located at the origin and the receptor at (r,8), each charge is located at (bj, 5;).

distance from the object more rapidly than the dipole perturbation. The at;tenua—
tion of the higher order terms is exaggerated for small object ¢ < 1, (equation (3.17)).
Hence, we can conclude that the perturbation of a uniform field is a good representation

of the perturbation to the actual field generated by the fish, especially for small objects.
Field Perpendicularity

Current flows between the head and tail ends of the electric organ, periodically| alter-

nating in direction with a frequency that is characteristic of the species [10]. In addition
to firing periodically, different segments of the electric organ fire asynchronously, caus-
ing a propagation of the discharge. This results in different EOD waveforms along the
length of the fish [9, 44]. For various locations along the fish’s body, figure 3.6b depicts
the paths the tips of the electric field vectors trace during one cycle of the EOD.{ Elec-
tric field vectors in the caudal part of the body change both magnitude and dire\‘ction,

whereas those in the rostral part only change magnitude and sign. In addition, the

field vectors in the rostral region are perpendicular to the surface of the fish. Densities
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(b)

Figure 3.6: Vector representation of EOD-cycle - (a) Time domain

NSRREREZZENNYT T
NN\ F PPRGO /7

representation

of the EOD cycle, showing the direction of the electric field vector at a sin%le point in the
mid-plane. Four EOD phases are drawn as vectors, and for subsequent times, just the tip

of the vector is traced. (b) The process is figure (a) is repeated for multiple points in the

mid-plane showing the spatiotemporal nature of the generated field in a region around the
fish. At each point, only the initial EOD phase is drawn as a vector, and for subsequent

times, just the tip of the vector is traced. (From [44], with permission)

of electroreceptor organs on the head are on average approximately five times greater

than those on the trunk of the fish [18]. This suggests the head acts as an electrosensory

fovea, and orientation of fields in this region are far more significant than those in the

trunk. This has lead us to presume that the field is oriented perpendicularly to the fish

surface.

Fish Effect

Our final assumption is that the fish’s body has no effect on the perturbation. That is,

we assume the fish to be electrically invisible. This assumption relies g
the fish skin does not produce a new ambiguity. In other words, the fish
introduce non-linearity into our model, where we may have multiple fi

producing the same perturbation.

As a first approximation, let us take the fish interior to be isopotenti

permittivity similar to that of the surrounding water. This assumption

n the fact that
body does not

eld magnitudes

al with relative

is based on the

hypothesis that the internal cells are made up of mostly water. Examining the effect

of the dielectric fish skin on the perturbation, we find the potential ®
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on the fish surface S to be

2 1 €skin //
- bt ——dS
@(QO) €e + Eskin\y(qO) + 2 (Ee + €skzn) a"q |T¢I - Tqa| ’ (

(see Appendix B for derivation). If we consider the thinness of the skin (0.1 mm

may represent S by a plane (figure 3.7). In this case

1
i_ 1_ :v(_ — ).ﬁ:()_ (
Ong |Tq — Tq,| g — T,
And so,
2
®(go) = m‘l’(%) (

3.18)

), we

3.19)

3.20)

where, ¥(q,) is the potential at the point g, in the absence of the fish surface, €, and

€skin are the relative permittivities of the water and fish skin, respectively. As equation

(3.20) indicates, the potential in the presence of the fish is a scalar multiple o

f the

potential in its absence. That is, the introduction of the fish has not resulted ;in the

introduction of non-linearity into our model and can be disregarded.

Figure 3.7: Fish skin model - A model representation of the dielectric fish skin.

3.1.2 Analytic Model

Consider a linear, homogeneous, isotropic sphere of radius a, centered at x,p;, placed

within a uniform electric field E. The perturbation §®, of the electric potential by the

sphere measured at field point x is given by

Ca®E(Xobj) - (X — Xobj)
IX - xobjl3

00(x) =

I

3.21)

where E(Xob;) is the field vector at the location of the object prior to its placement

there, and I is the electrical contrast, (see Appendix A for derivation). The electric
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contrast is dependent on the temporal nature of the field:
€;i—€
1-\ _ €; +2€e ?
- (Pe_pi)"'iwpeﬂi(fi_fe)
(Pet+2pi)+iwpep; (‘-i+25e) ’

Static Field
Oscillating Field [32]

where p is the resistivity, ¢ the absolute permittivity and w the angular frequency of

the unperturbed field. The subscripts 7 and e identify the variables as b

exterior to the spherical object, respectively.

If we assume that the receptors of the fish are non-ideal with threshold

eing interior or

value T, then

a receptor located at x is able to detect the perturbation caused by an object if

6@(x)| > T-

Equation (3.22) defines a “detectable” region on the fish surface. Rece

within this region can sense the presence of the dielectric sphere. It is cl

(3.22)

ptors that fall

ear from equa-

tion (3.21) and the detectability criteria (3.22) that the size of the detectable region

is contingent on the EOD amplitude, the object-fish distance, as well 3

properties (i.e. size, shape and electric contrast).

By defining the Cartesian reference frame such that the origin coinc
sphere’s center, and such that the applicate vector k (see figure 4.1

is parallel to E, the detectability criteria (3.22) simplifies to

’I‘a3E

where E = ||E||. By rearranging the terms, we can define a detection d

z
(112 + y2 + 22)3/2

2T,

surface within which electroreceptors detect the perturbation caused &k

object;
z

3/2
) -
7

where we have defined 7 = T/T'a3E for convenience.

x2+y2§(

s other object

:ides with the

for definition)

(3.23)

sk on the fish

y a dielectric

(3.24)

At any instance in time, information about the size of the disk is, on its own, in-

sufficient to infer anything about the object-fish distance. This is due t

o the fact that

the value of the weighted threshold 7 is a function of other unknown object properties,

namely, object size, electric contrast, field magnitude at the object and
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sensitivity threshold value. Furthermore, for a fixed disk radius, 7 is a non-injective

function of distance z (figure 3.9).

Object k
\ﬁ% 7 15
L0 J
Y z

R

R\

Figure 3.8: Orientation of Cartesian reference frame - Orientation of the Cartesian
reference frame in relation to the object and electric field. The origin is chosen to coincide
with the location of the center of the object and the applicate E, is set to be parallel with
the unperturbed electric field.

We begin by considering the electric image produced for two different magnitudes of
the electric field. If the two fields are measured within a sufficiently small time in‘terval
then we can expect the object-fish distance to remain unchanged. Denote the generated
field at time t; by E;. The magnitude of the field Ej, attenuates to f(z, E;) at the

location of the object. Hence, at time instance t;, the radius of each detection disk is

2/3
2_ (Z|Fa3f(z,Ej)|> 2
J T ’

7

(3.25)

Comparison of the two electric images allows us to derive a relationship between the
object-fish distance 2, and detection disk radii, r;;
r% + z* r% + 22

F(zE 2R~ f(z, B2 3.26)

The only unknown quantity in equation (3.26) is the fish-object distance z, and|so it

can theoretically be evaluated.

The electric field generated by the electric organ (EO) attenuates with distance. There

42




3.1 Model

fz,970.02 [m}

<[m?

004 0.08 0.12

z[m]

Figure 3.9: Fixed radius ambiguity - For a fixed radius (f)a/ R
(2,7) on the curve satisfies equation (3.24). Hence, knowing the value of the

instance is insufficient to determining the object-fish distance.

2

is evidence to indicate that the electric potential and field do not atte

tance from the fish at a constant rate [44]. Close to the fish, the field

approximately as the inverse of the distance [42]. At large distances,

proaches the inverse of the fourth power of the distance. At distanc

electrolocation the scaling varies between -1 and -3. Regardless of the

ing, the attenuation is in proportion to the fish’s electric field [42]. I

~
gt

radius at one

each 2-tuple

nuate with dis-
1 strength falls
the falloff ap-
es relevant for
particular scal-

n other words,

the function f is a separable function of F and z. That is, f(z, F) = aEf,(z). Con-

sider the general case where the field attenuates with the n—th power

O

‘ f the distance

( f(z,E) = Z—f) Then the fish-object distance is unambiguously defined by

e e
2/3 2/3
EI/ - E2/

Z =

3.1.3 Numerical Implementation

Equation (3.27) analytically relates the object-fish distance to the radi
tric image and the magnitude of the generated EOD. It can be used t
disambiguate the distance of an object from its other unknown propert
plemented, equation (3.27) must be discretized by the fish. That is, as
not present at all locations on the fish surface, the radius of the detectio

estimated numerically.
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Any single electric image parameter is simultaneously influenced by an object s ma-
terial, size and distance to the fish. As such there are three degrees of ambiguity to
consider in distance detection. Further, as the electroreceptors are located at discrete
locations on the surface of the fish, we test the ability of our model (3.27) to correctly
localize a dielectric sphere for varying values of each of object size, distance and dielec-

tric constant, under a discretization process.
Method

We begin by discretizing a horizontal plane II, a distance d = 7 cm away from the center
of a dielectric sphere of size @ = 2 cm and dielectric constant €; = 2.25 (polyethylene),
into sub-squares of some predetermined size (see below). The perturbation to the oth-
erwise uniform electric field by the introduction of the sphere is recorded at the center
of each sub-square on the plane. If such a perturbation is above a threshold T = 10~*
mV/cm, then we consider that sub-square to be within the region of detection! The
dielectric media, within which the sphere is introduced, is assumed to have a dielectric
constant of value ¢, = 80.1 (i.e. that of water at 20°C). The electric image is recorded
for EOD strengths of 0.9 and 0.55 mV/cm, measured at the fish, and is assumed to
attenuate according to
aF
f(z,E)y= e (3.28)

We assume that the sub-squares forming the region of detection form a perfect|disk.
The radius of this disk is calculated by r = /A/w, where A is the sum of the areas of

the “active” sub-squares.

Clearly, the smaller we choose our sub-squares the better an estimate of the electric

image’s radius we attain. We are, however, bounded by the number of receptors that
must be contained within each sub-square. Below we have chosen to discretize l'I| into
sub-squares of width 0.06 cm. For receptor densities ranging from 9-15 per mm? [18],
this would ensure that there would be approximately 3.24-5.4 receptor organs within
each sub-square. Requiring multiple receptors within the same sub-square would ensure
against false activation of a sub-square due to internal receptor noise. Such noise would

arise from the random fluctuations in membrane potential and transmitter releas

SU
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Figure 3.10: Model results - sphere size - (a) Error in estimate of distance for
spheres of varying sizes calculated at a mesh size of 0.06 cm. The non—zer‘o error is due
to the discretization procedure we implement when calculating the detection disk radius,
(see text). (b) Standard deviation of the error in distance estimate as a function of mesh
size. The standard deviation of (a) represents a single point at 0.06 cm on this graph. The
parameter values are: d = 7 cm, T = 107* mV/cm, ¢, = 80.1, ¢; = 2.‘25‘, E(t;) =09

mV/cm and E(t2) = 0.55 mV/cm.

Sphere Size

Figure 3.10a shows the error in our estimate of distance for spheres of varying size. The

error clearly fluctuates about zero, with a mean value of 6.56 x 10~ c¢cm. These results

indicate that the size of the sphere does not influence our model’s estimate of distance.

The non-zero error in our estimate is due to the discretization procedure/we implement

when calculating the detection disk radius. A plot of the standard deviation of the

error as a function of the mesh size (fig.3.10b) clearly demonstrates this!

Sphere Dielectric Constant

Figure 3.11a shows the error in our estimate for spheres of different material (relative

permittivity). Again, as in the case of the different sized spheres, we see fluctuations

about zero, caused by the discretization procedure, (fig. 3.11b). The sma

all value of the

mean (2.74 x 107° cm), and that of the largest deviation (1.188 x 1072 cm at ¢; = 2.4),

indicates that our model’s estimate is not influenced by the objects material.
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Figure 3.11: Model results - sphere relative permittivity - (a) Error in estimate of
distance for spheres varying relative permittivity, calculated at a mesh size of 0.06 cm. The

non-zero error is due to the discretization procedure we implement when calculating

the

detection disk radius, (see text).(b) Standard deviation of the error in distance estimate

as a function of mesh size. The standard deviation of (a) represents a single point at

0.06 cm on this graph. The parameter values are: a =2 cm, d =7 cm, T = 1074 mV/
€. = 80.1, E(t1) = 0.9 mV/cm and E(t3) = 0.55 mV/cm.

cm,

For ideal receptors (those with T = 0 mV/cm), an object is undetectable when its

relative permittivity matches that of the water exactly, that is when ¢; = €¢.. The range

of relative permittivity of non-detectable objects increases greatly for non-ideal 1

ecep-

tors. Figure 3.12a depicts the radius of the electric image of a sphere as a function

of its dielectric constant €;. The sphere has a radius of a = 2 cm and is imm

ersed

in a medium of dielectric constant ¢, = 80.1. We can see that objects with relative

permittivities ranging anywhere in between 36-153 remain undetectable; as the 1

adius

of the electric image is zero for these values of ¢;. Increasing the field strength and

sensitivity reduces this range, see figures 3.12c and 3.12d, respectively.

Another factor affecting the range of materials detectable to the fish is distance. F

igure

3.12b depicts the radius of the electric image of a sphere at d = 5 cm. Here, the relative

permittivity of non-detectable materials range in value from 70-91; an 82% reduction

in the range compared to objects at d = 7 cm. This reliance of material detecta

on distance helps in decluttering the electric image.
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(c) Increased field strength, E = 1.1 mV/cm
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Figure 3.12: Radius of the electric image of a 2 cm sphere as a function of the sphere’s
dielectric constant ¢;. The sphere is placed in a dielectric media of relative permittivity
€. = 80.1. (a) radius for default parameter values: d = 7 cm, T = 1074 mV/cm and

E =09 mV/cm. (b): radius at reduced distance d = 5 cm. (c) radius at increased electric
field strength £ = 1.1 mV/cm. (d) radius for increased sensitivity 7 = 10~% mV/cm
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Figure 3.13: Model results - sphere distance - (a) Error in estimate of distance for
spheres varying distances, calculated at a mesh size of 0.06 cm. The non-zero error is|due
to the discretization procedure we implement when calculating the detection disk radius,
(see text).(b) Standard deviation of the error in distance estimate as a function of mesh
size. The standard deviation of (a) represents a single point at 0.06 cm on this graph. The
parameter values are: a = 2 cm, T = 107¢ mV/cm, €, = 80.1, ¢; = 2.25, E(t;) = 0.9
mV/cm and E(tz) = 0.55 mV/cm.

Sphere Distance

We finally consider our model’s ability to localize objects at varying distances (fig.
3.13a). Once again we observe non-zero error values caused by the discretization pro-
cess (fig. 3.13b). The small mean value of the error (9.458 x 104 mV) confirms our

model’s ability to detect objects at varying distances.

The relatively large error values (0.01-0.04 mV) recorded for near distances (2!5-2.8

cm) are virtually eliminated by reducing the mesh size (results not shown).
We note that for the electric field strengths used (E(t1) = 0.9 mV/cm, E(t2) = 0.55 mV/cm)

the 2 cm sphere is not detected for distances beyond 7.3 ¢cm. To sense more distant

objects greater electric fields or higher sensitivity must be used.
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3.2 Noise

Electric Field Strength

Localization as described by our model requires analysis of the electric image at two

different magnitudes of the EOD. In theory, localization could occur for any two electric
images not produced by electric fields of identical magnitude. In practice however, for

an accurate approximation, the field magnitudes must be chosen to differ by a certain

n the difference
field strengths

degree. Figure 3.14a illustrates the dependence of the absolute error o
in field magnitudes. It is clear that the closer in magnitude the two

E, and E; are, the larger the error in the estimate.

The amount by which the fields need to differ depends on the density of the recep-

Ia\.kin to spatial

resolution; the higher the density, the finer the mesh containing a certain number of

tors, which is much higher in the rostral region. Receptor density is

receptors that can be made. Figure 3.14b depicts the absolute error as a|function of the

difference in field magnitude for mesh sizes 0.04, 0.06 and 0.1 cm. Notice, the larger the

mesh size, the greater the difference the field magnitudes (Ey — E2) mus
the same level of error. For example, if we choose an error upper bound o
with a 0.04 cm mesh size, the difference between E; and E» can be anyw
interval {—0.022,0.0285]. On the other hand for the same error bound,

mesh size, the range of (E) — E2) must increase to be within the interval |

Choosing E; to be the maximum amplitude that can be achieved at t
denser the receptors, the larger the value of E2 that can be chosen. A
conclude that the more dense the receptors, the greater, both the distanc

of materials (e7) that can be sensed.

3.2 Noise

The electrosensory systems of weakly electric fish are well known for t
detect weak electromagnetic signals, on the order of £V /cm in some spe

extreme sensitivity has been attributed to a multitude of receptor organ

such as continuous partial activation of Ca conductance, ribbon synapse

t be to achieve
£ 0.04 cm, then
here within the
using a 0.1 cm
—0.090, 0.142].

he object; the
s such, we can

e and variation

heir ability to
cies [42]. This
characteristics

s, efficiency of

transmitter release and the large convergence of receptor cells to afferent fibers [53].

High sensitivity, however, is only useful if accompanied by mechanisms
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Figure 3.14: Model results - effect of field difference (E; — E;) on error |- (a)

Magnitude of error in the distance estimate (|d — dest|), as a function of difference in

field

magnitudes (E; — E3), generating the two electric images. (b) Same as (a), evaluated for

three different mesh sizes, dS.

The noise in the fish’s electrosensory system is due to internal as well as external

sources. Internal noise such as that arising from random fluctuations in membrane

potential and transmitter release can be canceled out by the convergence of

multi-

ple receptor cells onto an afferent nerve fiber as well as multiple synaptic connections

between an individual cell and the fiber. On the other hand, as environmenta

affects the signal itself, receptor convergence does nothing to filter out this type of

To this effect, we devise an algorithm based on our model (3.27) for the det

noise

noise.

ection

of objects in the presence of external environmental noise. This novel algorithm is

based on repeated recordings of the radius of detection for two amplitudes of the
For each particular EOD amplitude, the variation in the recorded radii is due
noise in the signal. Calculating the sample mean of the recorded radii allows

formulate an equation solely based on the object-fish distance.

EOD.
to the

us to

We begin by assuming that the noise £ is present at the location of the object cen-

ter. That is;
Eopj = f(z, Episn) + €,
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3.2 Noise

where the noise ¢ is taken to come from a zero-mean distribution (one important source

of noise, a daphnia swarm, was found to produce band-limited Gaussian noise [54]).

Under this assumption our detectability disk is defined by all ordered pairs (z,y) sat-

isfying
z|Ta3(f(2, E) +€)|
T

2/3
) >z 4y 4 22

(

On the fish surface, the boundary of this region is characterized by the st

R ( (s £ +6>l)”3 .

(3.29)

ochastic radius

(3.30)

Supposing that the environmental noise £é~N(0,02), where the standard deviation o

determines a measure of the maximum noise levels, the probability denLity function of

R%is
2
1 3TVrZ+22 —1 | T(r? + 22)3/2
fra?) = R PR i i i . (3:31)
oV2r  2z|Tda3| 20 z|Tad|
2
-1 T('r2+22)3/2
+exp 202 [ z|Ta3| +f ’

where we have denoted f(z, F) = f for clarity.
There are two ways by which our model can incorporate external noise. Each in-
volves repeated recordings of the radius of detection for two particular values of EOD

amplitude, E; and E,. For each recording, the EOD has the same mag
E; or E5) and the only variation in the radius is due to the noise in the

denote by Rji the kth recorded radius associated with Ej, that is
(era‘*(f(z, Ej) + &)l

2 _
R% =

T

Our first approach is to use the sample mean of the recorded radii to eval

J

%;RJ?,C.

2/3
) — 22 for j=1,2.

In other words

59 12/3 52 2/3

R2EX® - R2EY
2/3 2/3
El/ - 2/

™

?

where Rjz-

Il
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(3.33)
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We have denoted our estimate of the distance by 2.

The second possible approach is to evaluate - based on our model - a sample esti-

mate for distance z2x, for each recording. A final, more precise, estimate of distance Z,

is then derived by taking the mean of the sample distances. Symbolically,
1

2/3 2/3
R3,E;° - R3, B}
2/3 _ -2/3
EY* - E;

™y

where 2 =

(3.34)

In both cases above, we have assumed that the field is proportional to a separable

function of F and z.

Electric image width is encoded by a neuronal population in the early stages of the

electrosensory pathway. Our first approach requires only repeated recordings of the

electric image profile, before downstream electrosensory networks extract information

about object location. On the other hand, the second approach would require the use

of downstream electrosensory networks for each recording. With no clear advantage

in accuracy or speed, we disregard the second possibility and adopt the first as

“the”

approach used by the fish in extracting distance information in the presence of external

noise.

Our algorithm implicitly requires the object location to remain relatively stati

onary

while repeated recordings are obtained. The high EOD frequency of wave-type fish
(15-1800 Hz; [55]) and increased EOD emission (80 Hz; [34]) of pulse-type fish indicate

that multiple recordings can be made in a very short time interval, within which the

object can be expected to remain relatively stationary.

3.2.1 Numerical Implementation

Investigation of our model’s performance in the presence of external noise £ begins with

the assumption that é~N(0,02). As previously mentioned, the standard deviation o,

provides a measure of the level of maximum noise. Taking the maximum noise to

the same order as the signal itself, (i.e. on the order of 1 mV/cm), we allow o to
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3.2 Noise
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Figure 3.15: Model performance in presence of N(0,0?) noise - (a) Mean radius of

\

400 sampled electric images generated by EOD amplitudes E; = (0.9 + ¢) mV/cm (blue)
and E, = (0.75+ &) mV/cm (black), where é~N(0,02). The noiseless radii f(Lr magnitudes
E, and E, are depicted by the blue and black dashed lines, respectively. The horizontal

axis (o) gives a measure of noise strength. Red horizontal bars represent a 95% confidence
interval. (b) For each o the two radii in figure (a) are used along with equation (3.33) to

generate an estimate Z of the object distance. The two 95% CI in figure (a) are used to

generate a 90% (Bonferroni) confidence interval for the estimate distance,
horizontal bars. Actual object distance was d = 7 cm, (dotted line).

shown as red

large as 1/3 mV /cm, ensuring that 99.7% of the time { € [-1 mV/cm, 1 mV/cm]. One

particular source of external electromagnetic noise, a Daphnia swarm,

produces noise

on the order 10~2 mV /cm, [54], deeming our noise levels more than adequate.

Figure 3.15a displays the detection disk radius in the presence of N(0,

a?) noise. The

means of 400 sampled radii at each of field strengths E; = 0.9 mV/cm (solid blue)

and E; = 0.75 mV /cm (solid black) are displayed along with a 95% confidence interval

(red) for each o value. The dotted blue and black curves designate the corresponding

radii in the absence of electromagnetic noise.

For each value of o, we have used equation (3.33) along with the means of the 400

sampled radii at the two field strengths to calculate an estimate of the

object distance

2, (solid black line in figure 3.15b). The 95% confidence interval range of the two radii

have been used to calculate a 90% (Bonferroni) confidence interval for 2. We can see
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that for all but the strongest noise levels the actual distance is well within the confi-

dence interval of our estimate.

In the absence of noise, using equal parameter values, our estimate of distance is
z = 6.9957 cm. This estimate is one order of magnitude more accurate thtlm the
most accurate estimate in the presence of noise (2 = 6.9792 cm at o = 1/12)! This
result suggests that environmental noise, at any level, has a negative effect on distance

estimation.

o
=

o
8

o
w

025

02

Confidence Interval Width for R1 (blue) and R2 {black)

0.15
0.1 // R(E,)
——RE)
0'03.05 0.1 0.15 02 0.25 03 0.3 04

Standard Deviation of &~N(D.6%) (mV/cm)

Figure 3.16: CI width - Width of the 95% confidence intervals for the two radii| Ry
(blue) and R (black) of figure 3.15a.

Figure 3.16 depicts the width of the 95% confidence intervals of the radii R(E7) (blue)
and R(E,) (black) presented in figure 3.15a. For o € [1/12,0.2833] the confidence
interval of R(E») is consistantly wider than that for R(E;). Intuitively this is Llea.r,
as the noise is a larger percentage of the signal Fs + £ than of Ey + €. For fish to
electrolocate effectively in noisy environments it is advantages to utilize larger EOD

magnitudes. Large values of o cause the noise to mask the EOD signal.

3.2.2 Stochastic Resonance

Stochastic resonance (SR) is a mechanism by which a system embedded in a noisy
environment can enhance its sensitivity to weak time-dependent signals. It has been
suggested [56] that by the theory of stochastic resonance, signal detection can be im-

proved in some fish species.
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3.3 Localization of Cube

To study the role that SR plays in signal detection, we begin by recalling the de-

tectability disk in the presence of noise:

(z|ra3 (f(2, Eo) +¢)|
T

)—22§x2+y2.

(3.35)

In practice it may be reasonable to require the image radius to have some minimum

value. But here, strictly speaking, a signal is detectable if the radius

positive. That is

of the disk is

Tad (f(z, Eo) +
(z' o (/(z Eo) Q') —22>0. (3.36)
T
Upon manipulation, we arrive at a minimum bound required for a signal to be de-
tectable.
Tz
|f(z, Eo) + & > Tad]’ (3.37)

Stochastic resonance occurs if the signal-to-noise ratio of a non-linear system increases

for moderate values of noise intensity. The intensity-response function

of electrorecep-

tors is roughly linear [21, 57], suggesting that a small increase in the intensity of the

input would solicit a small increase in the response of the electrorecept

ence of stochastic resonance is not supported in systems lacking a thres

ors. The pres-

hold response.

However, our depth perception mechanism, based on the threshold dependent region

of detection, and our results above, clearly demonstrate the criteria ne

existence of stochastic resonance.

Our findings indicate that although the addition of external noise aids in
it plays a counterproductive role in the localization of objects. These res
with Russell et al.’s findings in that the addition of noise caused the paddl
spathula to broaden the spatial range for the detection of plankton Dap.
the capture rate of Daphnia did not increase with the addition of nois
controls [56].

3.3 Localization of Cube

Behavioral experiments have shown that weakly electric fish perceive t

a cube to be less than that of a sphere when placed at the same distar
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3. SINGLE PARAMETER SPATIOTEMPORAL MODEL

(12, 31, 34]. In this section we test our depth perception model against these experi-

mental results.

We consider a dielectric cube of side length 2a and dielectric constant ¢;, immersed

in a media (water) of dielectric constant €.. Assuming a uniform electric field prior to

the introduction of the dielectric cube, the perturbation to the potential measured at

the field point P, after the introduction of the cube is described by

€e

—€; 0 1
5B(R) = %= / / *0) g
S

where 7, — 7p, is the directed distance from the field point P to the point g ¢
cube surface, S, (see Appendix B for derivation). As the integral in equation (3
evaluated for q ranging over the entire surface S, it is clear that the potential
point exterior to S is dependent on the surface potential distribution. To this e

also require the expression

2€, € — € // 0 1
o —_ ®(q) — ————ds,.
€c T € (‘IO) + 277(5e + fi) £ @ anq !Fq - qul %

®(q0) =

(3.38)

n the
38) is
it any

nd we

3.39)

which describes the potential at the point gp on the surface of the cube, (see Appendix

B for derivation). Equations (3.38) and (3.39) need to be approximated numeric

Numerical Methodology

ally.

To simplify the algebra we orient our reference frame such that the center of the cube

-

coincides with the origin and the electric field lies parallel with the applicate, k.

face of the cube is partitioned into N? sub-squares, and the symmetries

®(z,y,2) = ®(xz,y,2) = ®(z, £y, 2) = —-®(z,y, —2) = ¥(y, z, 2)

are used to approximate the surface integral in equation (3.39), [58];
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3.3 Localization of Cube

9 1 a?
[0 g e~
S

Z Z @(a, g, 29)

0<yg<a 0<z;<a

> (3.41)
&m¢==1
_C(a - €xqo)
{(@a—€xg0)? + (yg — NYgo)? + (24 — Czqo)2}3/2
+ -C(a - ny%)
{(yq — €xg0)2 + (@ — NYgo)? + (2 Czqo)2}3/2

—'C(a - Czqo)

+ Z Z ®(zq,yq,0)

0<z4<a0<yg<a {(zq — £240)? + (¥g — MYgo)* + (@ — (g

where above we have denoted the Cartesian coordinates of points ¢ and

face by (24, Yq, 24) and (Zgo, Ygo» 24 ) Tespectively. Next, a horizontal plan
the fish’s skin surface, is defined. The surface is discretized in such a

sub-square has area 0.36 mm?

. As such, each sub-square is expected
proximately 3.24-5.4 electroreceptors organs [18]. The potential perturl
sub-square is calculated using equations (3.38) and (3.39). Those potent
plitude fall below the threshold T are discarded. The remaining sub-sq

to form the electric image of the cube, which we assume to be circular.

)2}/

)

| gop on the sur-

e, representing
way that each

to contain ap-

bation for each

ials whose am-
uares combine

Subsequently,

the radius of this electric image is calculated using r = /A/7, where A is the sum of

the areas of the remaining “active” sub-squares. Finally, the obtained ra

equation (3.27) to estimate the distance of the cube.

Figure 3.17 shows the error in the perceived distance of both a spher
cube (blue). In particular, the error associated with the sphere fluctuate
while the error in the perceived distance of the cube is linearly correl

distance of the cube. Using linear regression, the correlation is found to

error = z — 2 = 0.1033z — 0.6552.

dius is used in

e (red) and a
s around zero,
ated with the

follow

(3.42)
|

This analysis indicates that when the center of the cube is around 6.343 cm to the

fish surface, the fish is capable of detecting the cube’s actual location. However, when

the distance deviates from this value, the fish is prone to make a mistake.

|
When

the cube’s distance is larger than 6.343 cm the fish perceives the cube to be closer and
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Figure 3.17: Cube localization error - Error in the percieved distance (z — £) of a

cube (blue) and sphere (red) at different object-fish distances. We have kept all parameter
values the same with ¢; = 2.25, ¢, = 80.1, T = 1074 mV/cm, E; = 0.9 mV/cm and
E; =0.75 mV/cm. The radius of the sphere and the half-width of the cube were set to 2

cm. At 2z = 8 cm the electric image associated to the sphere for field strength E5 has z
radius and so is not included in the diagram.

58

€ro




.4 Conclusion

when it is less than 6.343 cm the cube is perceived to be further than its

actual location.

These results can be used to test the validity of our model. In comparing the dis-

tance of two dielectrics; a cube and sphere of the same size, located the same distance

to the fish, the fish should perceive the cube to be further than the sphere up until a

particular object-fish distance (6.343 ¢m using our parameters). When

the object-fish

distance is increased beyond this value the opposite should be observed, where the

sphere is perceived to be further than the cube.

3.4 Conclusion

Our results show that active electrolocation, based on single parameter
can be achieved if the temporal properties of the electric image are take
Such a mechanism would require only a single, narrowly tuned topogr
map to accurately estimate distance. Our algorithm’s performance i

object is independent of the object’s size, material and distance.

Our model is based on non-ideal electroreceptors. As with any physical
electric fish electroreceptors are not perfect. Non-ideal receptors partiti
face into two distinct regions; detectable and non-detectable. Compar
the detectability region for two different magnitudes of the EOD allows 1
an equation, in which the only unknown is the object-fish distance. It i

that although we have chosen the receptor threshold as the value at

measurements,
n into account.
aphic neuronal

n localizing an

system, weakly
on the fish sur-
ing the size of
1s to formulate
s worth noting
which the fish

surface is partitioned, our model would also work with any other value. As such, we

can always choose the threshold at a level to ensure that the size of th

region is limited to the surface of the fish.

There are three major assumptions that are made by our model. Th

the field is uniforin prior to the introduction of the object. Alhough
where electrolocation takes place, is highly complicated, in the vicinit,

jects, we can assume the field to be uniform. Furthermore, it can be

addition to a dipole moment, a non-uniform field induces higher order n

turbations which attenuate with distance from the object more rapidly t
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perturbation. A second assumption in the model is that the perturbations at the skin

are not affected by the presence of the fish. We have shown that a resistive fish skin

will scale the potential perturbation but will not introduce any nonlinearity into the

system. Depending on the relative permittivity of the skin, this perturbation may need

to be taken into account, however, the mechanism described in this chapter, and the

results shown, remain valid.

Finally, we have assumed that objects to be localized are spherical. Earlier we| noted

that the fish’s main prey, the Daphnia Magna is roughly spherical. Also, the perturba-

tion of the electric field due to small or distant non-spherical objects converges to that

of a spherical object. This property is reflected in the Laplace equation which

links

the electric potential to the charge distribution and is used to model the field pertur-

bation by a dielectric object. Figure 3.2b demonstrates how at far enough dist

tances

the contours of the electric image of a cube resemble those of a sphere. A spherical

representation of distant objects is a good approximation.

Objects, whose relative permittivity is close to that of the surrounding media, remain

invisible to non-ideal receptors, characterizing an invisible permittivity spectrum
range of permittivities that comprise this spectrum depend on the object’s dist

the strength of the electric field and the receptor’s sensitivity threshold. An in

The
ance,

rease

in the object’s distance tends to increase the range of this spectrum, thereby in effect,

de-cluttering the electric image. Increases in both field strength and receptor sensitivity

have the opposite effect; decreasing the spectrum range.

We have chosen to model the field such that it is oriented perpendicular to the fish

surface. Such fields appear predominantly in the rostral region, where receptor
more dense. Our model has shown that receptor density is positively correlated
the distance at which objects can be localized and negatively correlated with the

ible permittivity spectrum. In other words, the more dense the receptors, the gr.

S are
with
nvis-

eater

the distance that can be determined and the more varied the relative permittivity of

material that can be localized.
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/4 Conclusion

We have devised an algorithm, based on repeated recordings of the ele

ctric image ra-

dius, for localization of objects in the presence of environmental electromagnetic noise.

Our algorithm relies primarily on neuronal population codes in the early stages of the

electrosensory pathway. Downstream electrosensory networks are employed only to ex-

tract the final information about the object location. We have shown th

level has a negative effect, and that greater EOD magnitudes facilitate

in noisy environments. Our model provides the threshold dependent phy:
on which stochastic resonance can be employed. Our results are in lin

et al.’s (1999) findings in that the addition of noise can facilitate the de

threshold signals, but does not aid in their localization.

The validity of our spatiotemporal model can be corroborated by our wi
ing the distance of a cube. Our model predicts that a fish presented w
cube and a sphere of equal lateral distance would perceive the cube to be
objects are near and further if the two objects are far. A behavioral exp

with von der Emde’s experiment [31] could be conducted to test these r
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4

Receptor Arrays: An Invers

Problem Approach to Depth

Perception

Past studies of depth perception have focused on extracting location inf

sets of electric image features [9, 12, 31, 32, 33, 34, 40, 41], (chapter 3). I

we take a completely different approach to the problem of depth percept

ering the information that is available at a single receptor. By treatin
as an inverse problem, we show that distance information can complet
within the amplitude of the electric image measured at four or fewer rec

on the fish surface. We present a mechanism, by way of choosing an arrz

e

formation from
n this chapter,
ion by consid-
g the problem
cly be encoded
eptor locations

vy of receptors,

by which this information can be unambiguously extracted. Our choice of array is

independent of the object size, its electric contrast, the EOD’s variation

in time and its

magnitude. We propose that the fish’s probing movements, observed during electrolo-

cation tasks could serve to identify such suitable receptors and/or verify
made from one such array. Qur approach provides a lower bound on t

that is necessary for the fish to unambiguously decode the location of a

the assessment
he information

n object.

Our choice of receptors is one which could unambiguously extract the relevant in-

formation. Given the high electroreceptor density (9-15 organs/mm? on the head and

0.6-3.4 organs/mm? on the trunk [18]) over the fish skin surface, the exi

arrays having similar properties is highly probable. The distribution of e
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4. RECEPTOR ARRAYS: AN INVERSE PROBLEM APPROACH TO

DEPTH PERCEPTION

on the surface of the body provides a spatial array of receptors intrinsically capable of

representing stimulus location [53]. The receptors contact primary afferent fiber,
terminate on neuronal maps in the electrosensory lateral line lobe (ELL). The ne
comprising these maps have preferred locations for which they respond maximally

their activity decreasing for other locations. Hence, the neural responses of the

s that
SUrons
, with
> ELL

maps are described by bell-shaped tuning curves. Amplitude of the electric image is

more accurately encoded by neurons encompassing wider tuning curves [28]. Activity

of each neuron in each of the ELL maps reflects the aggregate response of several elec-

troreceptor organs in a small region on the surface. Partitioning the fish surfac

e into

small regions, the high density of receptors ensures that each region is represented by

neuronal activity within the ELL maps.

We begin this chapter with an overview of the model, defining regions of receptor

ambiguity and array ambiguity. We apply our methodology to analytically extract

distance information for objects placed in fields perpendicular, parallel and generally

oriented to the fish surface. In every case, it is shown that amplitude information from

at most four locations is necessary to localize an object. Next, we study the effects of

electromagnetic noise. It is found that external noise does not mask location informa-

tion, but rather information regarding the size and electric contrast of objects. Lastly,

we consider the case where the receptors are non-ideal.

4.1 Model

Motivation

To date, several depth perception mechanisms have been proposed. Each has fo

used

on extracting location information from sets of electric image features. Whereas earlier

studies have relied on extracting location information from sets of electric image pa-

rameters [9, 12, 31, 32, 33, 34, 40, 41], we have thus far concentrated on a single image

parameter measured at two points in time (chapter 3). Now that we have been|able

to show that localization can be achieved using a single image parameter, we ask

the minimum amount of information required to achieve this task would be.
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4.1 Model

Model Outline

To answer this question we look at the information {(amplitude of EOL

at a single receptor. If we know the perturbation is due to a spherical
unknown size and relative permittivity, where could the object be locat
all such locations we define the receptor’s ambiguity region. As can

receptor’s ambiguity region is large; consisting of an infinite number of

To narrow down the location possibilities, we consider the ambiguity re

perturbation)
dielectric with
ed? Identifying
be imagined, a

points.

gions of multi-

ple receptors. For an array of receptors, the set of locations common t

0 each member

receptor’s ambiguity region constitute the array’s ambiguity region. Expectedly, the

ambiguity region of an array of receptors is far smaller than that of a single receptor.

Further, the actual location of the object is guaranteed to be in the set

it is in the ambiguity region of all receptors.

Our task then is the identification of an array whose ambiguity reg

only one point; the actual object location. Such an array needs to be

the object size and relative permittivity. The minimum number of recep

of any array as

on consists of
ndependent of

tors that form

such an array provide the lower bound on the information that is necessary for object

localization.

4.1.1 Assumptions

Our model makes three key assumptions that need to be addressed.

First, we have

based our model on the localization of a dielectric sphere which we assume is placed

within a uniform electric field. Also, we have assumed that the presence of the fish

itself does not affect the electric image. These assumptions are similar

and justified in chapter 3. We will briefly state some of the key points hi

the reader to chapter 3 for the full rationalization.

Object Geometry

Foremost, the geometry of electric fish’s main prey, the Daphnia Mag

spherical. Second, as the size of a non-spherical object is reduced or it

to those made

ere, but direct

na is roughly

s distance in-

creased the perturbation of the electric field due to the object, and hence its electric
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DEPTH PERCEPTION

image, converges to that produced by a spherical object. This property is reflected in
the Laplace equation, which is used to accurately simulate the electric image of any

dielectric object from a boundary value problem.

Field Uniformity

The perturbation of a uniform field by a dielectric sphere is in the form of a dipole
potential. The actual fish electric organ discharge (EOD) resembles an elongated dipole.
However, a non-uniform field induces higher order multi-pole perturbations as well as
the dipole perturbation. As multi-poles attenuate with distance more rapidly thlm the
dipole perturbation, the non-uniformity of the field is of little significance, especially

for small objects..

Fish Effect

Though the resistivity of the fish skin will change the magnitude of the perturbation,
it does not introduce non-linearity, where we may have multiple field magnitudes pro-
ducing the same perturbation. As such it does not affect our findings in this chapter,

and we may assume the fish has no effect on the field perturbation.

4.1.2 Ambiguity

Consider the case where the electric field, E(-), over the whole domain, is given by that
at the location of the object’s center, Xq, prior to its placement there. The potential
perturbation, 0¥, measured at x due to the introduction of a linear, homogeneous,

isotropic sphere of radius a, is

TalE(x,) - (x — x
00 (x,%,) = (xo) - °),
|x — xo|3
where I is the electrical contrast. The electric contrast is dependent on the temporal

nature of the field:

P Static Field
I'= (pe—pi)tiwpepi(€i—€e) Oscillati Field (32
(pet20.) +iwpepileiF2ec) scillating Field [32]

where p is the resistivity, € the absolute permittivity and w the angular frequency of
the unperturbed field. The subscripts ¢ and e identify the variables as being interior or

exterior to the spherical object, respectively.
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Aside from distance, other unknown object properties appearing in equation (4.1) are

the electric contrast I', object size a, and field magnitude measured

center E(x,). For clarity let us combine these unknown properties u

entity 7. That is, we let 7 = I'a3. Then the perturbation can be repres

E x —
5B(x, X0, 7) = (T;)_ S:I?, xo)

Receptor Ambiguity

A point xA in space is said to be a point of ambiguity for a receptor
if the perturbation of the electric field measured at the receptor, by a
property cr centered at x4 is identical to one having property 7 centere
the multiplication factor ¢ € R. Symbolically, the point x4 is a point ¢

a receptor located at x if
0D (x,Xo0,7) = 6P(x, XA, cT).

By orienting the Cartesian reference frame such that the origin coin
sphere’s center Xo, and such that the applicate vector, E, lies paralle

figure 4.1) the ambiguity criteria (4.3) is simplified to

z zZ—w

@+52+ 2 (@ -+ (y— )2+ (z—w)

where we have let x = (z,y, z) and xa = (u, v, w) be the Cartesian coo:

receptor and point of ambiguity, respectively.

nder the sin,

€11

at the object’s

gle
ted by

(4.2)

r located at x,
sphere having
d at xo, where

f ambiguity of

(4.3)

cides with the
] with E, (see

(4.4)

rdinates of the

Having defined the condition necessary for ambiguity, we would now like to identify all

points which satisfy this condition. That is, we would like to find the a

of a receptor x. Let us denote

mbiguity region

2 (22 + yz +22 3
&C = ( 2 ) ) (4.5)
z
and
R2 = ¥k (z —w)? - (2 —w)? (4.6)
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Object

=L

v
Y
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Figure 4.1: Reference frame setup - Orientation of the Cartesian reference fram

N
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e in

relation to the object and electric field. The origin is chosen to coincide with the center of
the sphere and the applicate is set to align with the unperturbed electric field. Finding the
perturbation of a uniform field caused by a dielectric sphere involves solving the Lap!lace
equation. In this setting the dimension of the Laplace equation is reduced by one degree

when using spherical coordinates.

The domain of ambiguity ©, of receptor x, is defined as the set of all points sati

equation (4.4). Symbolically,
D= {(y,v,w) eR¥: (z-u)l+(@y-v)>=R%, and wE Dy},

where D, is the domain of the z-component of the ambiguity space.

Equation (4.4) imposes certain relations between w and z which depend on the

sfying

4.7)

value

of the multiplication factor ¢, (see table 4.1). Taking these relations into account, we

c>0 ¢<0
z2<0|lw>z w<z
z>0|lw<z w>z

z=0|lw=2 w=2z2

Table 4.1: Relations imposed on w and z due to equation (4.4). Note that strictly speaking
z cannot be zero as this would mean the object-center-fish distance is zero and hence a
portion of the object is imbedded within the fish body. For mathematical completeness|we

ignore this fact.
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define the domain D, of w by:

[z—\'*/n_c,z), if ¢cz>0,
ch = {0}, if z = 0,
(z, 2+ /e, if ¢z<0.

Closer analysis of the domain ® reveals that for any multiplication
and particular value w’ € D, the ambiguity region of a receptor loc

consists of a circle in the w’-plane centered at (z,y) with radius Ry,

The radius Ry is zero on 09y, namely, when w = z,z £ ¥k, and

tinuous arc for other interior values. Hence, for any fixed c € R, the a.

consists of an ovoidal surface which we term the ambiguity surface.

In theory, although the receptor itself is not on the ambiguity surfac

from the receptor to a point on the surface could be made infinitesi

choosing the point appropriately (see figure 4.3a). In principle, howev
from the receptor to any point on the ambiguity surface must be larger

of the sphere associated to that particular surface. Without loss of gene

the larger theoretical surface, as the surface of ambiguity (for, if these la

different receptors fail to co-intersect then so do the smaller actual surfa

factor ¢ € R,
ated at (z,v, 2)

’(see figure 4.2).

follows a con-

mbiguity region

e, the distance
mally small by
er, the distance
than the radius
rality we accept
rger surfaces of

ces, see below).

'

As c is varied, successive ambiguity surfaces envelope one another, (figure 4.3b), com-

bining to form a solid ambiguity region.

Array Ambiguity

Sharing of information from multiple electroreceptors allows fish to ma

inferences about the location of objects.

Given an array of N receptors, a point, x4, in space is said to be a

ke more precise

point of ambi-

guity of the array, if xa is a point of ambiguity of each receptor within the array.

That is, for a given multiplication factor ¢ € R, x4 is a point of inters

ambiguity surfaces. We emphasize that ¢ must be the same for all rec
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DEPTH PERCEPTION

4
/(x,y.uv?c)
Actual Object w; \ s.‘.g-\
Position 7 S beeee .\ 7 >y

Xop; = (0,0,0)

(x,y.w")

x=(xY2)
Receptor

Figure 4.2: Ambiguity region schematic - Ambiguity surface features; fixed multi-
plication factor ¢. For receptor x = (z,y,2) and fixed w’ € D,, the surface consists of a
circle of radius R, . centered at (z,%y) on the w'-plane. Several such circles are shown for
different w € ®,,. Bold red line shows radius of ambiguity R,, . for fixed c and w € D,,,.

g i o s g 100 8.
b e 02 i 843 b

(a) (b)

Figure 4.3: Receptor ambiguous surface - (a) Ambiguity surface of receptor x|=
(0,0,—5) for fixed multiplication factor ¢ = 2. Black filled circle indicates the position
of the receptor. This point is not a point on the surface.(b) Two ambiguity surfaces of
receptor x = (0,0, —5) for multiplication factor ¢ = 2 (black) and ¢ = 3 (blue). As c|is
varied continuously in R* the ambiguity surfaces envelope one another, combining to form
a solid ambiguity region.
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fish requires consistency between receptors.

It is trivial to show that when ¢ = 1 the origin is a point of ambiguity for any re-

ceptor array. This is simply due to the fact that the point (u,v,w)|= (0,0,0) is a

solution of equation (4.4) for ¢ = 1. An array that has a single point, i.e. the origin, in

its ambiguity region is fully capable of disambiguating location information. We aim

to show that for any electric field, such an array can always be found.

4.1.3 Results

We consider electric fields of varying direction, measured at the position

center, prior to its placement there. It is shown that for any multip

of the sphere’s

lication factor

c € R*, (¢ # 1) and electric field E, an array of receptors whose ambiguity regions

do not co-intersect can always be found. The case of ¢ € R~ follows i

dentically and

is not included. Furthermore, we show that for ¢ = 1, the ambiguity surface of all

receptors must include the actual position of the object. The presence

of such arrays

provides a lower bound on the information necessary to localize an object and suggests

a mechanism by which the fish could in theory distinguish the location |of objects.

A 772200 b 4o
NN\ 7 PPRGOY G /A2

Figure 4.4: EOD cycle - Time domain representation of the EOD cycle, showing the
direction of the electric field vector at several points in the mid-plane. At each point, the

initial EOD phase is drawn as a vector, and for subsequent times, just th
vector is traced. (From [44], with permission)

Perpendicular Field

Suppose the electric field E, measured at the sphere’s center, prior to

e tip of each

its placement

there, to be perpendicular to the surface of the fish. Such perpendicular fields are

of most significance, as they appear in the rostral region of the fish (fi

electroreceptor organs are most dense. With the reference frame oriented
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sphere’s center coincides with the origin, and such that the applicate vector, E, lies in

parallel with E, the z-coordinate of all receptors on the skin surface is identical

In total we consider an array of four receptors R;, (j = 1,...,4). The first receptor

R is chosen to be at the point closest to the sphere. Such a receptor can be identified

as one where the amplitude of the perturbation is measured to be greatest. That|is, the

line joining the sphere’s center with R; has direction vector parallel to the fish surface
g

normal (see figure 4.5). The following two receptors R;—23 are chosen such that the

line joining them also passes through R;. In other words, R;, Ro, and Rj3 are collinear.

As the z- and y-directions in our reference frame are chosen arbitrarily, for simplicity,

we may choose the ordinate (y-coordinate) of our reference framce to lie in the

same

direction as the direction vector of the line joining the three receptors. Chosen in this

manner, the receptors have Cartesian coordinates
le = (0, 0, Z) and ij=2‘3 = (O,yj,z).

As all points on the fish surface have the same z-coordinate, without loss of gene

we may assume z < 0. Denoting receptor j’s domain of ambigity by D;, we have

3fc2(z — w)?

" —(z- w)2,

Z)l:{(u,v,w)eR3:u2+v2=z2

and w € (z,z + |z|\/5]} and

EEBE oy,

Dj=23 = {(u,v,w) eR3:u?+ (’yj - ’0)2 = (y; + 22)

/cz 2~+223-‘
andw€ | 2,2+ ‘ (1/]—2)
z
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Noting that,

D1 ﬂ@j=2,3 = {(Uj,’Uj,’u}j) € R3 :

z

=)

v; = %J [1_ (M)Z/B] and w; € (z,z+lz|\/5]},

(4.9)

a point (u,v,w) € D1 N Dy ND3 when (u, v, w) = (ug, v2, w2) = (us, v3, ws). That is, if

either

y2=y3 = Ro =Rz (trivial) or

[c2(z — wj)? z
3—( ) J) =1 B U)2='LU3=Z+I_CI-

We have discarded the solution w; = z — J%l, as (z - J%l) < z and he

(4.10)

nce not in the

domain (z, z + |z|y/c ]. Furthermore, (z + J%l) € (2,2 + |2][y/c] only for values of ¢ > 1.

For the non-trivial case,

Qlﬂgzﬂ®3={(i%vcz—l,O,Z-l-Lz—l)} with ¢ > 1.

Finally, we would like to choose the fourth receptor R4 = (z,y, z) such t
ife>1

Mo, = {® 1
p {0} ifc=1
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Points in ©; N D4 have the form

D1NDy = {(U4,v4,w4) eR3:

=),

N
_
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+ |
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e
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g
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e
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4

z2 + y?

T
+ 2
2

22 (C(z ; w4))2/3 —(z— w4)2] _ [1 B (c(z;zw‘lz)z/g,l
and

wy € (2,2 + |2|v/e] }
(4.13)

For ¢ > 1 the points (i%l\/c?——l_,o,z+ Lzl) € D1 NDy only if z = 0. Tlrat is,

only if the receptor R4 is collinear with the other three receptors. And, for ¢ = 1,
z z .

(:tl-c—l\/c2 —-1,0,z+ Lc-[) = (0,0,0) € D; NDy4. Hence, by choosing R4 anywhere away

from the line joining the three other receptors, we can ensure ND; satisfies criteria

(4.12). In conclusion, an array of four receptors chosen in this manner can fully disam-

biguate the location of a dielectric object.

General Field

We now consider an electric field E whose orientation relative to the surface of the
fish is given in some general direction. We take the same approach as in the case of
perpendicular fields. That is, we find three receptors and their commmon points of
ambiguity, then show that (with the exception of the origin for ¢ = 1) there is at least

one other receptor whose ambiguity region does not contain those points.

Suppose in a reference frame where the applicate is in the direction of the field and

the origin is at the center of the sphere (figure 4.8), the unit normal vector to th‘e fish
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{ Actual Object

7 N / Position

Figure 4.5: Array arrangement in perpendicular. field - Unambiguous array in

perpendicular field. When the field is perpendicular to the fish surface, the‘

ordinate system (X,Y, Z), is chosen such that the origin is at the sphere’s J:enter and the
Z-direction is in the direction of the field. The X- and Y-directions are chosen arbitrarily.

Four receptors having coordinate (0,0, 2), (0,23, ) and (2,7, 2) constitute|an unambigu-

Cartesian co-

ous array; where y» # y3, £ # 0 and z is the distance from the center of the sphere to the
fish surface.
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Ambiguity Suifaces & Their Intercaction
ReB. 341, Re@. 3, 4). o2, 4 .3
Wtdplication Factes ¢ =12

Figure 4.6: Multi-receptor ambiguity surfaces and intersection - Ambiguity

sur-

faces of receptors in perpendicular field and their intersection. Four receptors (small filled

circles) and their corresponding ambiguity surfaces evaluated for multiplication fa
¢ = 1.2. Bold red line indicates intersection of ambiguity surfaces of Ry 34 with
of R;. Large filled circle in center indicates actual position of sphere.

ctor
that

Figure 4.7: Intersection highlight - Highlight of the intersections depicted in figure

4.6. Bold red line indicates intersection of ambiguity surfaces of Ry 34 with that of

;921.

Small filled circles indicate the position of the receptors and large filled circle (arrow) in

|
center the position of the sphere. Areas within each disk are filled to elucidate orientation.
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Figure 4.8: General field set-up - Object-fish orientation in a generally

directed field.

In a reference frame where the applicate is in the direction of the field and the origin is at
the center of the sphere, the unit normal vector to the fish surface is given by 7.

surface has coordinates # = (ng,ny,n;). If p = (pz,py,p.) is any po

surface, then the surface is defined by the equation

INg + Yny + 2n; — (peng + Pyny + panz) = 0.

int on the fish

(4.14)

Let po = (Zo, Yo, 2o) be the point on the fish surface closest to the object. That is, the

surface-perpendicular line passing through the origin intersects the fish surface plane

at p,. Then p, has coordinates

Lo = (pznx + pyny + Pzn_'z)n:c,
Yo = (PzNg + Pyny + pznz)ny and
2o = (pa:nac + pyny + pznz)nz-

We choose the first receptor R; at p,. Then defining the line £ by

L (:l?, Y, Z) = (xo:ymzo) + t(nyy _nz,O),

the second and third receptor can be chosen anywhere on £. Receptors

manner have Cartesian coordinates

R1 = (To0, Y0, 20) and Rj=23 = (To + tjny, Yo — tjNa, 20)
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TO

Notice that the receptors have identical z-coordinates. This condition, thou
necessary, allows us to explicitly define the array’s ambiguity regions. Without
generality we again assume 2, < 0. Then for each receptor defined above, the d

of ambiguity is

D= {(ulavhwl) eR?: (zo — )’ + (yo—v1)> = R,

and w; € (zo, Zo + (1) ] }

Dj=23 = {(“j,vijj) € R®: (2o + tjmy — uj)? + (Yo — tjns — vj)* = Roy ¢
and w; € (z,,,z,,+ (’)]},

U) and Rﬁ,jc are defined as in equations (4.5) and (4.6) for each rec

where k¢

7=12,3.

We begin by considering ©; N ;=2 3. For clarity, we denote

2

A= (2,—w;)* and

o/ (20 — w])z

B= 2

Beginning with the z-component, note that by equation (4.15) since

YoMz — ToNy = (p:tnz: + pyny + pznz)(nzny - nzny) =0,

it must be that

2
2o

3
=5 o @ (32 + 12+ 22+ B2+ ) + 25 (zomy — yona))
(.7 2,3) _ \

. 3
& (a3 + 43 + 22 + B(n% +n2) )

22

\Y
<\/b

JE@ e’ o
22 €
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2 (22 12+ 22)3
Hence if wj € D1 NDj=23, then w; € (zo,zo + \“/ c—@"%"ﬁﬁL ] . Next

z- and y-components, we find

D ﬂ@j=2,3 = (uj,vj,wj) eR3:

uy = tin, 1-B)+ Nz (ToMz + Yoly)

solving for the

2 nZ +n?
> ) i B (@2 +92+22) - Al -3(B-1)?2, (422
v =2y + L2+ n)(B-1) and
Ny 2N,
w; € | 20,20 + {/02 (23 +z?é¢27 +22)°
2

We now turn our attention to the ambiguity region of the array co

three receptors. In other words, ®; N Dy N D3. Using the argument th

nsisting of all

at if the point

(u,v,w) € D1 ND2ND3 then it must be in both D; NP, and D1 ND3. We set uy = ug

and vy = v3 to arrive at,

(n2 + n2)(B — 1)(t3 — t2) = 2ny(uz — u3),
=0.

This equation has two solutions;

to=t3 = Ry=R3 and

z
=1 = w2=w3=z0ﬂ:|—9—|.
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The first solution is trivial and is not considered. Let us assume B = 1. Then

@umbn©3={mmmgeR%

ng (Tong + yo"y) 1 1

= + 2 2 21— =
¢ n2 +nl "\ nZ 2 ot et 2 2
Ny (xonz + yony) 1 1

= +n 2+y2+22{1-

Y nZ + nl y\/ng-!-n% ot ¥t % c?

w:zo:}:E}
c

Notice that the array’s ambiguity points do not depend on the location of Ry and R3 on £.

(4.25)

In other words, the points in the set (4.25) are independent of ¢, and ¢3.

The set D1 N Dy N D3 consists of eight points. We now find the set of all receptor
locations on the fish surface whose ambiguity regions contain at least one of these eight
points. If this set of receptors does not consist of the entire fish surface, then we can
conclude that there are receptors R4 whose ambiguity regions do not contain any of

the points in (4.25), and hence, N;D; satisfies equation (4.12).

For each ambiguity point (u;,vj,w;), (j = i, ...,8) in (4.25), the points (z,y, z)|satis-
fying
(@ —u)?+(@y-v)’ = (@ +y"+72)B-A and

(paniz + Pyny + P2nz) — (TNg + Yny) 4.26)
N, ’

define the set of points on the fish surface whose ambiguity region contains (u;, vj, w;).

Here A and B are defined as in equation (4.19).

We note that equations (4.26) define curves on the fish surface plane (4.14). These
curves do not form a dense subset of the plane. Hence points on the fish plane can
be found which do not belong to these curves. Any such point can be chosen for the

location of our fourth receptor, R4. An example is demonstrated in figure 4.9.
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faul

Sphere Location
i S .
Z

Fish Surface
Plane

&8
&
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»

x © -;l-
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»

(a) (b)

Figure 4.9: Ambiguity curves - general electric field - (a) Ambiguity |curves (blue)
of three collinear receptors (black stars) in a general electric field. The receptors are aligned
on a line of constant height (red). The location of the center of the sphere is represented
by the black circle. Ambiguity curves described by equations (4.26) do not form a dense
subset of the fish plane. Choosing a fourth receptor anywhere on the plane and not on the
ambiguity curves will allow the four receptors to disambiguate the location of the sphere.(b)
Another view of the fish surface plane.
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Parallel Field

Finally, we consider the case where the electric field E at the object’s center, prior to

its placement there, to be parallel to the surface of the fish. Such fields are of

least

significance, as they only appear in the caudal portion of the fish where electroreceptors

are least dense (figure 4.4).

Consider three collinear receptors, R;j, (5 = 1,2,3) aligned in parallel to the

elec-

tric field E. Suppose the line segment joining R; and the origin is perpendicular to

the field, (see figure 4.10). In the defined coordinate system, such receptors have co-

ordinates (z,y,0),(z,y, z2) and (z,y, 23) respectively. For each receptor R;, defined

Fish Surface

A\ 4

Dicelectric
Sphere

Figure 4.10: Parallel field schematic - Three collinear receptors R; 3 3, where one

receptor Ry, is located on the XY -plane. The line segment joining the receptors is parallel

to the electric field, E. Receptors positioned in this manner, where R, and R3 are both
the same side of R;, do not have any common points of ambiguity.

above, the domain of ambiguity is

on

D, = {(ul,vl,wl) eR®:yy #x, 11 #yand w) = 0} (4.27)

Dj=23 = {(Uj,vj’wj) €R®: (z—u)’ +(y—v;)* = R}, and wj € @ch} :

Notice, that the domain of ambiguity of R; is simply the entire horizontal XY -p

lane

excluding the position of the receptor. A point (u, v, w) in space is an ambiguous point

of the array {R;} only if (u,v,w) € ND; Vj.
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Noting,
DiNDj=23 = {(u,v,w) eR*:w=0and (z - u)?+(y—v) =3 +v%) + 212-(02/3 - 1)} ,
it is clear that,

n D; = {(u,v,w)eR®:w=0, and
(x —u)? + (y — v)? = 3 + y?) + 22(c*® — 1)|and
(x—u)? + (y —v)? = 3(x? + y?) + 23(H° - 1)} . (4.28)

Equation (4.28) simply states that any point of ambiguity (u, v, w), if it|exist, must be

located at the intersection of two circles on the XY -plane centered at (z,y).

Clearly, two such circles either overlap completely (Ry,c = Rusc) or not|at all (Ry,c #

Ruy,c). The former is satisfied only if zz = +23. In other words, when either, the recep-
tors coincide (Ry = Rg; trivial), or when they are on opposite sides, an equal distant

apart from R;, as in figure 4.11.

In short an array of at least three collinear electroreceptors aligned in parallel with the
uniform electric field could allow the fish to unambiguously locate a dielectric sphere.
It is required that one receptor be positioned on the XY -plane and not bisect the line

segment connecting the other two receptors (see figure 4.10 or 4.12).

4.2 Noise

We now turn our attention to the effects of electromagnetic noise arising w‘from external
environmental sources. We explore whether an array can be devised to unambiguously
locate a dielectric object in the presence of such noise. We limit our study of the effects

of noise to the most pertinent of cases, that is, to perpendicular fields.

The addition of noise £ to the self-generated electric field can effect both the mag-
nitude and the direction of the field at the object center. To simplify the problem we

only consider noise in the z-component. That is, we suppose that the addition of noise
to the self-generated field results in the field E = (0,0, E, + £] at the object center;

where the Cartesian reference frame has been defined so that the applicate vector lies
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A 4

Figure 4.11: Ambiguous array - parallel field - If the receptor positioned on the XY-
plane bisects the line segment joining the other two receptors, then the ambiguity region
of the array consists of a circle of radius r = 1/c2(z2 + y2) + 2%(c2 — 1) on the XY-plane,
centered at (x,y,0).

\ 4

Figure 4.12: Unambiguous array - parallel field - If the receptor positioned on the
XY -plane does not bisect the line segment joining the other two receptors, then the three
receptors do not share a common ambiguity region. The ambiguity region of the array is
the empty set.
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in parallel with the field and the origin coincides with the object center.

object placed in such a field would result in the perturbation
T(Eo+ &)z

(2 + 92 + z2)3/2’

60¢(x) =

A dielectric

(4.29)

measured at x = (z,y,2). Points of ambiguity are those where a dielectric object of

property cT, placed there, would produce the same perturbation at x. Mathematically,

the set of points (u,v,w) € R® satisfying
T(Eo+&)z cTEy (z — w)
(@ +32+ 27 (@ -w)?+ -2+ (2 - w))?

define the region of ambiguity for the receptor x.

(4.30)

To identify an array of receptors capable of disambiguating object distance, we take a

similar approach as the case in the absence of noise. Let us consider thr(l:e collinear re-

ceptors R;, where the first receptor is chosen at the point closest to the object, namely

(0,0,2). As the z— and y—directions in our reference frame can be chosen arbitrarily,

we set them such that for Rj—23 = (0,¥;,2). The domain of ambiguity ® for each

receptor R, is now defined by

Fe2(z — w)2 -
D = (u,v,w)6R3:u2+v2=z2\3/Ec—(zz—w)—(Z-w)2,
z

and w € CD,(,}C)} and

Ec2(z — w)?
Dj—23 =1 (u,v,w) € R?: v + (y; —v)? = (5 + zz)\sl (—z2)_ _

and w € @82} ,
~ 2
where E = (F’fﬁ?) and

(2,2 + \ Emﬁj)], if cz <0,

[z - \4/ E‘ngj), z), if cz > 0.

DY) =

(4.31)

(4.32)

Equation (4.32) was derived by assuming E, > 0 and || < E, and taking equation

(4.30) into consideration. The term K. in equation (4.32) is that given
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(4.5). It is worth mentioning that when considering the intersection of the ambiguity

domains, CDSC) C 331(32, as ngl) < nﬁj).
For clarity let Y E’%{_W)ﬁ = A. Then for j = 2,3, the set D; ND; is defined by

D ﬂ@,- = {(Uj,vj,UJj) eR®:

2
uj = :i:\/zZA —(z—wy)? - %(1 — AR,

v = %(1 — A) and

c (2,24 |2| Vv Ec?) if ez <0,
wj _ .
[z — 12| VE?,2)  ifcz>0

4.33)

It is easy to see that a point (u,v,w) € D1 N Dy N D3 if and only if

y2=y3 = Rg = R3 (trivial) or

[Ec2(z — w;)2 4.34)
A=3_EL2‘U]]).:1 EEN w2=w3=z+i_
z \/Ec2

Assuming the latter,

1 |2]
1 2 3 { (Izl Fc? z @)} ( )

Now, let R4 be any receptor not collinear with the other three receptors. If the position

of R4 on the fish surface is defined by (z,y, z), then

D1 NDy ={(u,v,w) e R3:

u:%[z(l—A)iy\/mzigﬂ (Z2A—(z—w)2)_(1—A)2J’ (136

= % [yu _A4)+ |a:|\/x2 i (24 (z-w)) - (1 - A)2J and

w=©,(jc)}.

To explore the intersection of all four set ND;, we begin with the applicate component

Ec

w, which according to equation (4.35) is given by w = z =+ % This leads us to the
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4.2 Noise

following two simplifying terms,

Upon substitution into equation (4.36) for u, we find

1 4
uzé-[x(l—A)iy\/ﬂ_l_
1 4 22
== :l: 2——,.—
AEE (Z 7))

1
"'i = -
ylz l\/ 2 +y2 Ecz)

Then by equation (4.35) we must have

1 1 1
o “‘E?”y""\/m (- 7a)

1 Yy
=+ {l2h/1+— ) | —=L—],
. (H Ec2> (\/:1:2+y2)
1=+

Vel

7 (224 - (z—w)?) — (1 - A)?|

(4.37)

(4.38)

(4.39)

This equation can only hold if z = 0 or equivelantly if R4 is collinear with the other

three receptors; the condition we excluded. This analysis shows that even

in the pres-

ence of moderate noise levels (|| < E,), an array of receptors can be found by which

the location of an object can be realized.

In the following theorem we show that the origin is the only point common to all

ambiguity surfaces and that the addition of noise masks the true value of multiplica-

tion factor c.

Theorem:

Suppose the noisy field F + £ is perpendicular to the surface of the fish.
bitrary array of receptors, the only point in space, guaranteed to be in th

region of the array is the origin.

Proof:
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4. RECEPTOR ARRAYS: AN INVERSE PROBLEM APPROACH TO

DEPTH PERCEPTION

For fields perpendicular to the fish surface, receptors can be characterized by t
and y—coordinates. Hence, if (u,v,w) is a point common to all ambiguity su
then it must satisfy equation (4.30), and be independent of both z and y.
2/3
— _ [ cE
Let u = g(z), v=h(z) and K = (Ec_oﬁz) .
Then from equation (4.30),

zZ—w

u=z+ \/K(:c2 + 9% + 22) (——;——)2/3 —(y—v)2 - (2 —w)?,
=z + f(z,y,2),
=9(2)-
That is, £f(z,y, 2) = z — g(z). Now, differentiating with respect to y,

- v -y +yK (52)°
% K@ g2+ ) (2P (- ) (z - wp2

=0.

)

Equation (4.41) implies

e (5]

Again, since v = h(z) it must be that

()] -

zZ—-w

!

2/3
v=0, K( > ) =1 and (z-w)?=—

2
/ z
u=g(z)=z% xz+zz—ﬁ,

2

z

92(2) —2zg(z) = 2 - K3

g9(z) =u =0, (asz only appears on one side of the equation)
2 _ 2

Z-x =0

e il
g
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4.41)

4.42)

(4.43)




4.3 Non-Ide

eal Receptors

Hence, (u,v,w) = (0,0,0) or (0,0,2z). The point (0,0,2z) can be di
located interior to the fish (see figure 4.13). Consequently, for a fixed
factor ¢, the only point common to all ambiguity surfaces is the actual

object. This completes the proof of our theorem above.

Object Position

b ey

scarded as it is
multiplication

position of the

Figure 4.13: Noisy field ambiguous array - Schematic diagram indicating the location

of the two points, (0,0,0) and (0,0,2z), common to all ambiguity surfaces.‘ As indicated
the point (0, 0,22) is located to the interior of the fish and hence can be discarded.

Although the introduction of electromagnetic noise has had no effect

location of the object, it has veiled the value of 7 = ['a3. The requireme

n masking the
nt that K3 =1

incorrectly designates the value of c to 1+ é; Clearly, the larger the noise term &, the

larger the error term, {/E, in the multiplication factor. For a zero-mean distributed

noise, the true value of ¢ can be approximated by taking multiple recordings and cal-

culating the sample mean.

4.3 Non-Ideal Receptors

In this section we consider non-ideal electroreceptors. Such receptors ar

e characterized

by a threshold value 7. Signals whose amplitude fall below this threshold remain

undetected to such non-ideal receptors. Hence, if the difference in perturbation from

two different locations is less than the threshold T, then a receptor

s incapable of

differentiating between two locations as the source of the perturbation. In other words,

if a dielectric sphere is located at xo, then for a fixed multiplication factor ¢, the point
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XA is a point of ambiguity if

|0®(x, X0, T) - 0P(x,xp,cT)| < T. (4.44)
Under certain conditions, which we will expand on shortly, equation (4.44) provides
an upper and lower bound for the ambiguity region of a receptor. Equation |(4.44)
expanded gives:

E, E,(z —
T2 3/2 - = O(Z w) 3/2 ) (445)
@+ +2)7 (- u?+ -0+ (2 - w))
c(z —w
(z —w) 5 <B,

(—u)?+(y —w)? + (z —w)?)

where
z T z T

C@rera? TE P

+ .
(z2+y2 4+ 22)%2  |TE|

It is worth mentioning that irrespective of threshold value T', the actual object location

(0,0,0) falls within the bounded region of equation (4.45) for multiplication

factor

¢ = 1. It is easy to show that when @ > 0 => 8 > 0 and when f < 0 = a < 0.

In such cases, for any fixed ¢, the ambiguity region of the receptor is bounded by two

surfaces:
Rg<(z—u)?+ (y—-v)2< Ry ifa,f>0 or
R, < (:15—14)2+(y—v)2 < Rg, ifa,B<0,
where we have defined,

R, = (ELZ;—QI)))WS —(z- w)z, and

Rg = (C(Z,; w))2/3 - (z—w)?,

and the range of w for which these radii are positve is given in table 4.2.

(4.46)

4.47)

In addition to these bounded ambiguity regions, we may also come across the un-

desirable situation where a < 0 < 8. In such a case, the ambiguity region would be

defined by the unbounded set

(o

oz —w)\?/?
(z—u)2+<y—v>22(%) —(z—w)2}

N2/3
{ (u,v,w) e R3: (x —u)? + (y—v)2 > <M) —(z - w)?, and
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4.3 Non-Ideal Receptors

c>0 c<0
8<0 wRE(z,z—f- ﬁJ wRe[z—\/Z,z)
’wTE(Z,Z-i-\/l%] wre[z— ﬁ’z)
o0 wne[z—\/g,z) wRE(z,z-i-\/g)

wre[z—\/%,z) w,e(z,z+\/1,§1_)

Table 4.2: Domain of w for the upper wg and lower w, bounding surfaces of

region. These upper and lower bounding surfaces are described by equation

Let us explore the condition under which this unfavourable situatio

z > 0 we can see that 8 > 0 for all values of x and y. However,

2492 > (—]—lz 7Eo )2/3

T — 22, Similarly, for z < 0, a < 0 for all z and v,

2/3
if 22 + 9% > (ﬂTT—E"l) — z2. Hence, unbounded ambiguity regions can

2/3
A

However, rearranging the terms we see that this equation is satisfied on

2| TE,|

a:2+y2>( 7

S 27E,
(22 + 12 + 22)372
= 0®(x, X0, T).

That is, only if the perturbation signal is undetectable. Such a case is
may conclude that if a signal is detectable to a non-ideal receptor, then
region of the receptor is bounded. The criteria required for a non-ideal re

to detect the presence of a dielectric object is given by

2/3
A

We numerically explore the effect of non-ideal receptors on the inform

z|TE,|

2 2 <
:1:+y_( T

for localization

the ambiguity

4.46.

For
a < 0 only if

n arises.

but 3 > 0 only

only arise if

(4.48)

ly if

(4.49)

trivial and we
the ambiguity
ceptor (z, Yy, 2)

(4.50)

ation required

Consider a receptor (z,y,z) chosen to satisfy (4.50). Without loss of| generality let
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us suppose ¢ > 0 and «, 8 < 0. Then for each w' € (z, z+ c/|ﬁl], (see table 4.2) the
ambiguity region is an annulus centered at (z,y,w’) on the w’-plane, where the inner

and outer radii are defined by equation (4.47), (see figure 4.14a).

To greatly reduce the numerical complexity involved in calculating the intersection
of multiple circular ambiguity regions, at each level height w’ we bound each annulus

within a square annulus of half-side width

Sa = & and Sg = Rﬂ, (4.51)

V2

centered at (z,y,w’), where s, and sg are the half-side widths of the inner and |outer
bounding squares, respectively (see figure 4.14b). In this way, the intersection of the

multiple circular-annuli are bounded within the intersection of the square-annuli

It is important to note that our simplification results in the introduction of error.
The area of the circular annular bound region is simply given by ‘K(R% — R2), where

as that of the bounding square annulus is 4R§ — 2R2. Hence, at any level height the

- . i 2 2R2
ratio of the area of our bounded estimate to the true area is = + 1r(Tng_gJ‘ Though the
calculation of the intersection of multiple ambiguity regions can be greatly simplified by

the limiting square annulus approximation, we must bear in mind that the computed
|

area of intersection is only an upper bound on the true area of intersection, (see figure

4.15).

Figure 4.16 depicts the volume of ambiguity for five non-ideal receptors, presented
with a dielectric sphere of radius 2 cm at a distancd of 7 cm. The sphere has relative
permittivity 2.25 (polyethylene) and is immersed in a media of relative permittlivity
80.1 (water at 20°C). The magnitude of the electric field at the object center is mea-
sured to be 0.95 mV/cm, and the receptors are assumed to have a sensitivity threshold
of 1074 mV/cm. This volume is calculated by the square-annulus approximation de-
scribed above, and provides an upper bound on the actual volume of intersection.| The
first four receptors (black circles) are chosen at random within a small disk of radius
3 cm. For each point within the disk (4.50), we define the region of ambiguity; and
calculate its intersection with that of the array of four receptors. In other words! our

array of five receptors is comprised of the four fixed receptors (black circles) and a
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(b)

Figure 4.14: Ambiguity region bound - (a) The ambiguity region of receptor (z,y, z)
at some fixed height w’ € Dy, is in the form of an annulus centered at (z, y, w’) with inner
and outer radii defined by equation (4.47). (b) The two squares centered at (z,y,w’) and
of half width sg and s, (given by equation (4.51) ) provide an upper and lower bound to
the region of ambiguity of figure 4.14a.

final receptor defined at each point within the disk (4.50). In this way we can assign
a number, representing the volume of intersection, to each point on the disk (4.50).
The volume of ambiguity is minimum at the point (x,y) = (0, —1.260) with a value of
6.814 x 10° cm®. The addition of receptors to this array will decrease|its volume of
ambiguity and increase its ability to positively localize the object. As this volume is an
upper bound on the true ambiguity volume, we can conclude that non-ideal receptors

may also localize objects using the methodology described in this chapter.

4.4 Conclusion

In the past many studies have focused on extracting location information from sets

of electric image features (e.g. position, amplitude, spread). In this chapter we have
approached the problem of object localization from a different perspective. By treat-
ing the localization problem as an inverse problem, we have been able to find a lower
bound on the amount of information that would be necessary for fish to unambiguously

localize an object.

Our algorithm is based on three major assumptions. The first is that the field is
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O

e

(b)

Figure 4.15: Level height ambiguity region intersection - (a) Intersection of four
ambiguity regions at a particular level height w’ € D,,.. The arrow points to the common
region of intersection.(b) Intersection of square annuli bounding each annulus of figure
4.15a. The arrow again points to the common region of intersection. Note the difference
in size between the two regions of common intersection.

5-Roceptor Anay Ambigulty Volume, c= 15

Figure 4.16: Non-ideal array ambiguity volume - Ambiguity volume of an array
consisting of four fixed receptors (black circles) and a final fifth receptor at each lo‘ca—
tion on the zy-plane, (see text for details). The color bar to the right indicates the vol-
ume in cm®. Parameter values: sphere radius a = 2 cm, sphere distance z = 7 cm, sphere
relative permittivity ¢ = 2.25 (polyethylene), media relative permittivity e, = 80.1 (Vjva-
ter at 20° C), electric field magnitude at sphere E, = 0.95 mV/cm, receptor sensitivity
T = 10~* mV/cm, multiplication factor ¢ = 1.6. The four fixed receptors are located|at

(2.743,-0.190), (—0.088, 2.493), (1.802, 1.402) and (—2.149,1.923)
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uniform prior to the introduction of the object. Although the near field where elec-
trolocation takes place is highly complicated, in the vicinity of very small objects, we
can assume the field to be uniform. Furthermore, it can be shown that in addition
to a dipole moment, a non-uniform field induces higher order multi-pole perturbations
which attenuate with distance from the object more rapidly than the |dipole pertur-
bation. A second assumption in the model is that the perturbations at the skin are
not affected by the presence of the fish. We have shown that a resistive fish skin will
scale the potential perturbation but will not introduce any nonlinearity into the system.
Depending on the relative permittivity of the skin, this perturbation may need to be
taken into account, however, the mechanism described in this chapter and the results

shown remain valid.

As has been noted, the geometry of electric fish’s main prey, the Daphnia Magna
is roughly spherical. Further, as the size of a non-spherical object is reduced or its
distance increased the perturbation of the electric field due to the object, and hence its
electric image, converges to that produced by a spherical object. For example, at far

enough distances the contours of the electric image of a cube are close to perfect cir-

cles; identical to those of a sphere (chapter 3). This property is reflected in the Laplace
equation, which is used to accurately simulate the electric image of any dic\electric object

_from a boundary value problem. A spherical representation of distant objects is a good

approximation.

We have shown that independent of field direction, the lower bound on the information
required to successfully localize an object consist of amplitude information at three or
four locations on the skin surface. We have shown that this information i.s not masked
by the presence of environmental electromagnetic noise. Rather, external noise conceals
the true value of 7 = ['a®. It must be noted that even though our metho% can be used

to determine the distance of an object, it cannot be used to infer any information about

its size and electrical properties.
We have devised a method, with the aid of square annuli to numerically calculate

an upper bound on the volume of ambiguity of non-ideal receptors. Our numerical re-

sults show that non-ideal receptors are also capable of detecting object distances using
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TO

the method described here. Information from more non-ideal receptors may be required

for accurate localization in comparison to ideal (zero-threshold) receptors.

If the fish localize objects by comparing information received from multiple

recep-

tors and treating the problem as an inverse problem as described here, then the fish’s

probing movements, observed during electrolocation tasks [34] could serve to identify

such suitable receptors and or/verify the assessment made from one such array.| A lo-

calization algorithm based on this method is independent of the field magnitude, time

variation and the object’s size and electric contrast.
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Conclusion

Weakly electric fish use electrolocation - the detection of electric fields -

to sense their

environment. The task of electrolocation involves the decoding of the third dimension

— depth — from a two-dimensional electric image. In this thesis we have presented three

important advances in the area of depth-perception. In chapter 2, we have provided a

mathematical foundation for two of the most accepted depth perceptio

n models cur-

rently in use. Chapter 3 outlines a novel model for electrolocation based on a single

parameter. Finally, in chapter 4 we approach the problem of depth pe

rception from

the perspective of information constraints, asking; what is the minimum amount of

information necessary for location disambiguation?

Depth perception models presented by Rasnow [32] and von der Emde [31

the accepted models within the community. Emde’s model is based on €

| have become

mpirical data

and to our knowledge, as of the time of writing this thesis, no mathematical proof of it

exists. Rasnow’s model was discredited by von der Emde [12], maintain

a model would only work if the electrical properties of the target object

ing that such

are previously

known to the fish; an impossibility. In this work we have provided a mathematical proof

of both models showing that von der Emde’s experimentally based model

ically valid. Further, contrary to von der Emde’s claim [12], we have als

Rasnow’s model can also be used to localize objects whose electrical

unknown to the fish.

Depth perception mechanisms suggested thus far are based on multi-pa
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5. CONCLUSION

surements [31, 32, 40, 41] and most take into account only the spatial profile of the
electric image, disregarding its temporal characteristic. Mechanisms based on|multi-
parameter measurements require multiple topographic neuronal maps with different
tuning curves to accurately estimate distance. In contrast a mechanism based on a
single image parameter would only need a single topographic neuronal map, thereby
being intrinsically simpler in its implementation. In this thesis we have developed a
novel mechanism for depth perception based on a single image parameter. Our 'model
takes into account the temporal properties of the electric image and provides an lexpla-
nation of the tail-bending behavior observed in electrolocating fish. Based on non-ideal
electroreceptors, our model’s performance in localizing an object is independent |of the

object’s size, material and distance.

We have shown that objects, whose relative permittivity is close to that of the sur-

rounding media, remain invisible to non-ideal receptors, characterizing an invisible per-

‘epend

on the object’s distance, the strength of the electric field and the receptor’s sensitivity

mittivity spectrum. The range of permittivities which comprise this spectrum d

threshold. An increase in the object’s distance tends to increase the range of this spec-
trum, thereby in effect, de-cluttering the electric image. Increases in both field strength

and receptor sensitivity have the opposite effect; decreasing the spectrum range.

Electroreceptor density varies on the surface of the fish, with higher densities being
found on the head region and lower densities on the trunk and tail regions. We have
found that receptor density is positively correlated with the distance at which objects
can be localized and negatively correlated with the invisible permittivity spectrum.
This indicates that the more dense the receptors, the greater the distance and themore

varied the relative permittivity of material that can be localized.

We have devised an algorithm, based on repeated recordings of the electric image ra-
dius, for localization of objects in the presence of environmental electromagnetic noise.
Our algorithm relies primarily on neuronal population codes in the early stages of the
electrosensory pathway. Downstream electrosensory networks are employed only to ex-
tract the final information about the object location. We have shown that noise at any

level has a negative effect and that greater EOD magnitudes facilitate electrolocation
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in noisy environments. Our model provides the threshold dependent physiological basis

on which stochastic resonance can be employed. Our results are in li

et al.’s [56] findings in that the addition of noise can facilitate the de

threshold signals, but does not aid in their localization.

ne with Russell

tection of sub-

Past studies of depth perception have focused on extracting location information from

sets of electric image features [9, 12, 31, 32, 33, 34, 40, 41]. In chapter 4

a completely different approach to the problem of depth perception by

we have taken

considering the

information that is available at a single receptor. Treating the problem as an inverse

problem, we have shown that distance information can completely be

the amplitude of the electric image measured at at most four receptor 1

fish surface. This provides a lower bound on the amount of information

necessary for fish to unambiguously localize an object. We present a

way of choosing an array of receptors, by which this information can be

encoded within
bcations on the
that would be
mechanism, by

unambiguously

extracted. Our choice of array is independent of the object size, its electric contrast, the
EOD’s variation in time and its magnitude. We have proposed that the fish’s probing
movements, observed during electrolocation tasks could serve to identify such suitable
receptors and/or verify the assessment made from one such array. Qur|approach pro-
vides a lower bound on the information that is necessary for the fish to unambiguously

decode the location of an object.

The choice of the receptor array presented in chapter 4 may at first iglance appear
unnatural. For example, it may appear difficult to justify the presence of a receptor
located at the point closest to the object. However, consider partitionin‘g the fish sur-
face into small sub-squares of some area such that each partition contains one or more
receptors. Then, the choice of receptors, as described in chapter 4 would be analogous
an be thought

of as the aggregate information available to all receptors within the sub-square. Hence

to a choice of sub-squares and the information/signal at each sub-square ¢

identification of a receptor closest to the object would correspond to identification of
the sub-square where the amplitude f the perturbation is measured to be greatest.
Throughout this thesis three major assumptions have been made. The first is that

prior to the introduction of the dielectric object the electric field is spatially uniform.
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Although the near field where electrolocation takes place is highly complicated,|in the

vicinity of very small objects we can assume the field to be uniform. Furthermore

it has

been shown that in addition to a dipole moment, a non-uniform field induces higher

order multi-pole perturbations which attenuate with distance from the object

more

rapidly than the dipole perturbation. A second assumption is that the perturbations

at the skin are not affected by the presence of the fish. We have shown that a resistive

fish skin will scale the potential perturbation but will not introduce any nonlinearity

into the system. Depending on the relative permittivity of the skin, this perturbation

may need to be taken into account, however, the work described in this thesis and the

results shown remain valid.

Finally, we have assumed that objects to be localized are spherical. Foremost, the

geometry of electric fish’s main prey, the Daphnia Magna is roughly spherical. Second,

as the size of a non-spherical object is reduced or its distance increased the perturba-

tion of the electric field due to the object, and hence its electric image, converges to

that produced by a spherical object. This property is reflected in the Laplace equation,

which is used to accurately simulate the electric image of any dielectric object from a

boundary value problem.

Our work in the area of electrolocation has contributed to the field of knowledge in

three distinct ways. We have provided mathematical proofs of electrolocation models

first devised by Rasnow and von der Emde, showing that both models could provide

electrolocation cues to the fish. To our knowledge few studies have investigate

d the

role of the temporal component of the electric image in the electrolocation process. In

this work we have developed a model for distance detection based on both the spa-

tial as well as the temporal characteristics of the electric image. Our spatiotem

poral

model can accurately be processed in the higher brain regions with only a single nar-

rowly tuned topographic neuronal map. Further, our model may explain the pr
movements (tail-bending) and back and forth swimming (va-et-vient sampling) b
jor observed in electrolocating fish, in that these behaviors change the magnitu

the electric field at the object and hence the electric image. Lastly, we have exp

obing
chav-
de of

lored

the minimum amount of information that would be required for the electrolocation
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process. We have looked at the problem of electrolocation from a completely new per-
spective, by considering the information available at individual receptors. We have
presented a mechanism by way of choosing an array of receptors, by which information
about the location of an object can unambiguously be extracted. Prob|ing movements
and va-et-vient sampling behavior observed during electrolocation tasks could serve to

identify such suitable receptors and/or verify the assessment made from one such array.

The validity of the spatiotemporal model presented in chapter 3 can|be verified by
our work in predicting the distance of a cube. Our model predicts that a fish presented
with a dielectric cube and a sphere of equal lateral distance would perceive the cube to
be closer if both objects are near and further if the two objects are farl A behavioral
experiment in line with von der Emde’s experiment [31] could be conducted to test

these results.

Our work in this area has far reaching applications. The greatest potential is in engi-

neering and biomimetic applications for instances where visual information is absent.

Some examples include naval mine detection and robotic electrolocation. A further
interesting application is in the area of bubble detection such as that in hemodialysis

machinery, infusions or two-phase flows [59].
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Appendix A

Potential Perturbation by
Dielectric Sphere

Consider a linear, homogeneous, isotropic sphere of radius a, centered at xq;, placed

within a spatially uniform, temporally oscillating electric field E. The perturbation to
the potential measured at x is described by,

0d(x) = LB (o) (x — Xoty) , where
|x — Xob; [
(pe — pi) + iwpepi(ei — €e)
(Pe + 2pi) + iwpepi(€; + 2€e)
and p is the resistivity, € the absolute permittivity and w the angular frequency of the

|

unperturbed field. The subscripts ¢ and e identify the variables as being interior or

exterior to the spherical object, respectively. This result was briefly described in [32].

Here, we would like to extend this result for the case of static fields.

We begin with Gauss’s Law, V - E = p/e,, which in the absence of charge leads to
the Laplace equation, V&2 = 0.

We define the reference frame such that the origin coincides with the sphere’s center and
the applicate vector lies parallel with E. In spherical coordinates, the potential in such
an arrangement is independent of the azimuthal angle ¢, hence, ®(r,8,¢) = &(r,0).

The solution of the Laplace equation in spherical coordinates is

[e°]

‘I)(T, 0) — Z (An,r'n + Bn,,-n_]:!-l) Pn(cost9), (Al)

n=0
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where A,, and B, are constants, yet to be determined, and P, is the Legendre function

of the first kind. To solve for the constants, we study the potential both at the surface

boundary of the sphere and the exterior media as well as at infinitely far distances to

the sphere.

Boundary Conditions

B.C. 1. ®(r,0) - —E,rcos(f) as r — o0

Proof:
Noting that the field is in the direction of the applicate, we can expect the

per-

turbation due to the dielectric sphere to be negligable far from the sphere. Hence,

far from the sphere,

E = Ek, Cartesian coordinates

= E, (cos(0)é, — sin(0)éy) , spherical coordinates.
Also, by the following relation between the electric field and potential,

E=-V9,

I ?E)_" +l§2"
“ o T ree%)

it must be that,

Z—f = —F, cos(f) = ®O(r,0) = —E,rcos() + f(6),
19% . _
790 = »sin(6) = ®(r,0) = —E,rcos(0) + g(r).
Hence,
&(r,0) = —E,r cos(h).
|

B.C.2. &(r,8) <ccasr—0

Proof:

The only charges in the system are those that produce the external electric

104

field




and those induced on the surface of the sphere due to polarization of the dielec-
tric. Hence, no volume distribution of induced charges exist.
|

B.C.3. (De—D;)-8=0

Proof:

Consider a Gaussian pillbox straddling the boundary between the two different
dielectrics (figure A.1). Denote by D the electric displacement veciJor within each
dielectric media and by ¢ the free charge on the surface boundry. Sl‘Jbscripts 1 and

e represent the measure interior and exterior of the sphere, respectively. Letting

i denote the surface normal, we may use Gauss’ Law over the surface

?4 D -fds=0Q.
Considering the three distinct sides of the pillbox,
D—i . dSbtm + De : dstop + D- dsside = Q
btm top side

If we reduce the height of the pillbox, the contribution of the flux through the
sides become negligable. Hence,
Di : dSbtm + De : dstop = Q
btm top

We now reduce the diamter of the pillbox so that any variation of o and D over
the surface can be ignored and thus can be considered constant at the site of
the pillbox. Since D is constant over the surface S and the area of the top and

bottom surfaces are equal,

-D; - 1S+D.-2S =085,
-D;-n+D.-h=o0.

In the absence of free surface charges, the normal component of D is continuous
accross the boundary,
(D; - D) -21=0.
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—— Sbem

Figure A.1: Gaussian pillbox - Gaussian pillbox straddling the boundary between [two

different dielectrics.
B.C. 4. (€.Be — ¢E;)-fi=0

Proof:
By definition, in a linear, homogeneous, isotropic material D = ¢,¢E, where
the permittivity of free space and e, ; is the relative permittivity of the part
media. Boundary condition follows straight from B.C. 3.
u

B.C. 5. Eetan = Eitan

Proof:

Faraday’s Law under electrostatic conditions reduces to
VXxE=0,

which by Stokes theorem is equivalent to

fE-dle.

Using the line integral along the loop defined in figure A.2 we have,

/ Ee-dltop+/ E-dh+/ Ei~dlbtm+/ E-dh=0,
top side btm side
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where the definitions of the line segments and field are as noted in the figure.
Now consider reducing the height of the loop. As we reduce the height, the

contribution from the sides become negligible and can be ignored, Hence,

/ Ec - dliop + / E;-dlyym = 0.
top btm

As the line segments face opposite directions, dl;op = —dlptm. |Denoting this

quantity by dl, we find,
/ (E. —E;)-dl=0.
top

Noting, this equation holds for all dl, it must be that the integrand is zero.
Equivalently,

Eetan = Eitam

where Ei,, is the tangential component of the electric field.

Figure A.2: Gaussian path - Gaussian path straddling the boundary between two
different dielectrics.

B.C. 6. g.Eer + €% = g;E;r + ;%5

Proof:
This is simply a result of Kirchhoff’s current law. The terms g are the conductiv-
ity of the particular media and E,, the radial / normal component of the electric

field. And in turn, gE, is Ohm’s law describing the conduction current. The
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9E,

second term €%5=, comprised of the dielectric constant € and the time derivative

of the field’s normal component, describes the displacement current within the

particular dielectric media.

B.C. 7. ®.(r,0) = ;(r,6) whenr =a

Proof:
By definition,

A
<I>(A)—<I>(C)=—/ E-dl,
o
B—e¢ B+e A
=—U E-dl+/ E-dl+ E~dl],

C B—¢ B+e
for any € > 0, see figure A.3. Consider the right-hand-side as we let ¢ — 0,

—lim

B—e A B¢
e—0 [

E-dl+ E~dl]-lim E.dl

c B+e 0 /p_¢

Unless E = oo at B, the value of the third integral is 0. Since we assume Ithat

there are no free charges we may assume that E < oo and hence,

@(A)-¢(0)=-nnéUCB-EE-dH/BA E-dl],

e +€
= lim [#(B - ©) - $(C) + B(4) ~ 2(B + )]
= B(4) - 8(C) + lim [B(B — ¢) ~ &(B +¢)]

0= lim [2(B - ¢) ~ &(B + )
This implies that the potential is continuous accross the boundary B.
n
Electrostatics

The boundary conditions above are used to solve for the unknown constants of
Laplace equation (A.1). We apply the subscripts ¢ and e to indicate whether

particular measure is that in the interior or exterior of the sphere, respectively. Si
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dl

C.

€;

Figure A.3: Path Connecting the two media - Straight path extending from one

media to the other. The boundary is marked by B.

potentials both on the inside and outside the sphere need to be solved separately, each

with possibly different coefficients, we denote

o0

®;(r,0) = Z (Anrn + Bnﬁlq_-T) P,(cosf) and

n=0
oo

D (r,0) = Z (Cnrn + Dn-ﬁl-_’:-l-> P, (cos?9)

n=0

Now, consider the effect of the above boundary conditions
B.C.1. &.(r,0) > —E,rcos(f) asT — o

Hence, as 7 — o0,

o0
1
= Z (Cnr" + D"7T+1) Pp(cosf) - —E,r cosé,

n=0

o0 o
= Cy+ Circosf + Z Cpr™Pp(cos ) + Z D

n,n+l
n=2 n=0 T

As, 1 — oo the first sum diverges, whereas the second converges to

constants C,, and D,. Hence it must be that,
Cy=0, C,=-FE,, C,=0,Vn>2.

Thus, the potential outside the sphere is given by

[o.]
®.(r,0) = —E,rcos 6 + ZD,”%HPN(COSH).

n=0
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B.C.2. As7r — 0, ®;(r,0) < 0
Hence, asr — 0

[o<]

®i(r,0) = Z (AnT + Bn n+1) Py (cos8) < oo.

n=0

So it must be that B, = 0,¥n > 0, reducing the potential inside the sphere to

o0
@i(r,0) = > Anr"Py(cos).

n=0

B.C. 7. ®.(r,0) = ®;(r,0) whenr =a

®.(a,0) = ®;(a,b)

[o.o] 1 oo
—Esacosf + Z DnmPn(cos 6) = Z Apa™Py(cos )

n=0 n=0

Equating the coefficients of the Legendre function:

1
Po : DOE = Ao = AO = éDo, \A4)
1 1
P —FEya + Dl;ﬁ = Aja = A= ‘—z-é-Dl — E,, Al5)
1 . 1
P, : Dnm = Ana = A a2"+1 Dn, n2> 2. GAﬁ)

B.C. 4. (¢E. —¢E;)-ii=0,whenr =a
Using the definition, E = -V,

eeV<I>e ‘0= EiV‘I),j . fl,

Lo _ o
¢ an r=a ’ an T_—'a’
ool om

Cor|_, ‘orl|._’

d = 1 9 [
€y, (—Eor cosf + z DnmRL(cos 0)) =€ (Z Anr™ P, (cos 0)) ,
r=a

‘ _
\>=

n=0 n=0

[ o) .
€e (—Eo cosf — Z (n+ I)D"Tn1+ P, (cos 0)) (Z nA,r" "1 P, (cos )
r=a

n=0 n=0

( E,cos8 — Z(n+1)D e cos())) =€ (Z nAna" 1P, (cos

n=0 n=0
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Now, if we equate the coefficients of the Legendre function:

-1
I €e (TD()):O = Dg=0
a
= Ap=0 by A4
1 € [ —2
P1 I €e —Eo - 2—3D1 = EiAl = Al = — —3D1 — E'o
a €; a
1
= -a—3D1 — Eo by A5
= D1 = an3—‘—‘-:i'_’__2€55, Al = —Eo—-ﬂ—éi‘?:zee
1 -1 c€en+1 1
P, : —Ce(TL + l)mDn =egna" A, = A,= —e—i - ﬁ""—an
1
= ————a2n+l Dn by A.6

= D,=0, A,=0,Vn>2

Substituting the coefficients into the potential equation (A.1), we find

3ee
Qi )9 =—E0 0, .
(r,0) I (A7)
e 1
=—E, Eya3 5t~ Ce
@, (r,0) rcosf + Eya o121 cos ),
ad e —¢
= - 01-=—""-—=4. .
oT COS [ 3 €i+2€e:| (A.8)

The first term in the equation (A.8) is the original (unperturbed) potential in the
absence of the dielectric sphere. Therefore, the second term represents the perturbation
that results when the dielectric sphere is introduced into the uniform ﬁeld\. Hence, the
potential which constitutes the formation of an electric image on the fish surface is of

the form,

Eja%cosf € — e,

9%(r,6) = 2 €+ 2

(A.9)

111
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Electrodynamic

The case of a spatially uniform field with temporally oscillating magnitude is similar as

above. Starting with solutions of the Laplace equation given in spherical coordinates

[eo]

®;(r,0) = z (Anr" + Bnﬁlﬁ) P,(cosf) and

n=0
[+

1
‘I’e(T’, 0) = Z (Cnr" + Dnm) Pn(COS 0),

n=0

we assume that ®(r,6,t) = ®(r,0)e™!, where w is the angular frequency of the u?per-

turbed field. Now, using the boundary conditions above, we solve for the coefficients

of the Legendre functions.

B.C. 1. ®.(r,0) - —E,rcos(f) as r — 0

Hence, as r — 00,

oo
= Z (Cnr" + DnL) P,(cos8) - —E,rcosb,

rn+1
n=0

oo oo
1
= Cy+ Circosf + Z Cnr™ Pp(cos ) + Z Dn,T.H

n=2 n=0

P,(cosf) - —E,r cosl|f.
As,  — oo the first sum diverges, whereas the second converges to zero for all
constants C, and D,,. Hence it must be that,

Co=0, Ci = ~FE,, C,=0, Vn>2.

Thus, the potential outside the sphere is given by
= 1
®.(r,0) = —E,rcosf + Z(]Dnmpn(cos 0).
n=

B.C.2. Asr =0, &;(r,0) < 0

Hence, as 7 — 0

oo
y(r,0) = Z (Anr" + Bn'rn%) P, (cos8) < oo.
n=0

So it must be that B, = 0,Vn > 0, reducing the potential inside the sphere to

®;(r,0) = Z Apr™ P, (cos9).
n=0
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B.C. 6. g.E.r + Gea—gt“ = giEir + Eia_gtm \
Noting that

ET=E-ﬁ=—V@-ﬁ=—6—®, and a—(I):iuJ(D.\
or ot

We find, \
0%; 0%, o 5%®,

— g€ —_°t
95 Timar ~ %o T <o \
, | 8%,
(gl+1’w6@) or r=a_(ge+zw€e) or 7‘=¢1’ \
0%;| . 0%,
A M N

r=a
where we have denoted g + iwe = £ for simplicity. Hence, \

& inAnan_an(cos 6) =& (—Eo cosf — i (n+1)D, 1 P\‘n(cos 0)) .

n+2
n=0 n=0 a

Equating the Legendre coefficients: \

Py 0=—D0i2§e = Dy=0 \
a
1 &e 1
P A =& -E, - 2D = A1==\|-E,-2D1—
a’ & a3
(A.10)
- 1 €e(n+1)! 1
. . 1_ —
Pryy: &ndna™ ' = —&(n+1)Dn—s = A= —é —— Dy
B.C. 5. Eetan = Eita.n
This boundary condition is equivalent to \
o8, _ 09,
060~ 98 \
Now,
0P o 1 \
a0«: = —FE,rPj(cosf) + Z[)Dnrn—_l_-l'PT’L(COS 6),
2 \
= —E,rP|(cosf) + Z DnmP,’L(cos 6),
n=1
0%,
L = An "P,
20 nz=:0 r" Py (cos6),
.9}
= Z A,r" P, (cosb),

\
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where, we have denoted d%P(cos 6) = P’ and noted that P} = 0. Hence, by the

boundary condition, when r = a we must have

(o ¢] [e o]
Z A,r" P! (cos0) = —E,rP{(cosf) + Z D, P! (cos®).

rn+l
n=1 n=1

We now equate the coefficients of the derivatives of the Legendre function:

1 1
P Ao =-Epa+D1— = A1=-E+Di~
1 1
71122 : Ana" = D'"'an—'}-l- = An = Dnm

Using this result along with that found in equation (A.10) to solve for the coeffici
we find
&—&) (&—&)
Dy =d3E, [ =22}, A =-E,+E
L= "(mzse ' “\&+2¢
and
Dﬂ=07 An=0 VnZZ

Substituting the coefficients into the potential equation (A.1), we find
= 1

Be(r,0) = > (Cnrn + Dnm> P, (cos ),

n=0
o 3
= —F,rcosf + (—éz+ ;ge) g

The first term in the equation (A.11) is the original (unperturbed) potential in

ents,

E,,T—2 cosf. (A.11)

the

absence of the dielectric sphere. Therefore, the second term represents the perturbation

that results when the dielectric sphere is introduced into the uniform field. Hence‘, the

perturbation of a spatially uniform field with temporally oscillating magnitude

dielectric sphere is given by

A 3
0%(r, 6) = (éz+ 25&) E,% cost,
Pe — pi + iwpepi(€; — €) -, a®

= - E,— cos?#.
Pe + 2pi + iwpepi(e; + 2€) 12

by a

(A.12)

where £ = g+1iwe = 1/p+iwe and p is the resistivity of the particular dielectric media.
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Appendix B

Perturbation by General
Dielectric Object

Theory

The electric potential v, of a uniform electrostatic field in a medium with dielectric

constant €. at any point P must obey Poisson’s Equation,

2 ___F
Vey(P) = e

(B.1)

Consider an imaginary boundary surface S dividing the medium into two regions V

and V’, interior and exterior to S, respectively. We denote measures taken interior to

S by the subscrip ¢ and exterior by the subscript e.

Boundary conditions for the unperturbed potential 1 on the surface S are

hmP,—m w(Pz) = 1/’(‘1) = limPe—>q "/)(Pe), and
OY(P;) _ oy(e) _ 9¥(q) OY(Pe
on; — On; T One

n; ne

limp, 4 =limp, ¢

(B.2a)
(B.2b)

where 9/3n represents the derivative along the normal just interior or just exterior to

S, P are field points interior and exterior to S and ¢ is a point on the surface S.

We now consider filling the imaginary boundary surface S by a dielec

tric body of

relative permittivity ¢;. The resulting potential ¢ must still satisfy PoissoL’s Equation
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at all points:

p

V2$(P) = —-—, VP inside S, (B.3)
€;€p
V24(P) = —--2-, VP, outside S. (B.4)
€€
Boundary conditions for the now perturbed potential ¢ are
limp,_,q ¢(P;) = ¢(q) = limp,,p ¢(Pe), and (B.5a)
€ limp, g a¢§1P) =¢ 8¢7$?) €e 64>(q) = €. limp, g %n%l. (B.5b)

Equation (B.5a) is due to the continuity of potential across the boundary owi
the absence of free charges there. Equation (B.5b) is derived by considerin
normal component of the electric field across the boundry, and follows directly

(ecEe — ¢E;) - = 0.

Consider Green’s Identity,

/ / / (aV28 — V?a) dv = / / (aVB — BVa) ds,
// ( “on ~Pon )

ng to
g the

from

B.6)

where the volume D is bounded by the closed surface 0D, and 8/9n is the directional

derivative in the direction of the outward pointing normal to the surface element

We begin by letting

S Bi=cdi—eti  and o= e~ Ve

|7 —7p|
It can be varified [60] that

1
v2m = —47é(F — 7p), V2Bie =0, and

91 _90 1
on; |f-—Fp| - One |F—T_‘P|.
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Let us first consider Green’s Identity (B.6), in region V' exterior to S. Substituting

equations (B.7) into (B.6), we have

/V [[ [ 6= v0- o BV

1 0 P 1
- —{/ []Fq _fp|5,;(¢e_¢e) — (¢ —¢e)5;;m] ds

1 9 U

(B.9)

where I is a sphere of infinite radius R, S is the surface separating the region V and V’

and 7, — 7p is the directed distance from the field point P to the point ¢ on the surface.

In this way, region V"’ is completly enclosed by the surface that is comprised of £ and S.

Now, as we increase R, both |R — 7#p|~! and ¢, — 9. decrease at least as R~! and

EB_R (¢e — ¥e) and %IR — 7p|! decrease at least R~2, while d¥ only increases by R?,

(surface element in spherical coordinates: dXg = R?sinfdfd¢). Hence, the integral

f[[] dT in equation (B.9) decreases at least as R™!, and can be discarded as it
z

vanishes with increasing R. Using (B.8) to simplify

J[[ - v -rerav
J

1 19} a 1
——l/ [Wa—m(%—%)_((ﬁe—%)a—mm] ds.

In a similar way Green’s Identity in the interior V, of S is

I 72 e e - et ey V= o
\'

=// [; 0 (€idi — €eti) — (€idhi — €ei) 0 —1——] ds.
s

|7y — 7P| Oni an; |7q — 7p|

Again, using (B.8) to simplify,

/V/ / ot (ests — exths) 6(F — Fp) dv

1 0 0 1
= é/ [ma—ni (es00s — €i) — (eshi — €:9s) 'a—n—zm] ds.
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Consider the case where the field point P is located exterior to the surface S ’I that
is P = P,. Taking advantage of the sifting property of the é-function, integration of

equations (B.10) and (B.12) yield

1 1 1] 1
62 - 0P =~ [[ [ (0 =90 = (e ) e ] b, and
S e e ‘e e
(B.13)
1 1 0 0 1
= In l/ [ma—ni (€ibi — €ei) — (esdi — €cti) a—nim’] ds,
(B.14)

respectivly. Upon multiplying equation (B.13) by €. and adding equation (B.14) we
find

1
€ed(Pe) — €c(Pe) = ——// [ e — 7R ane (€ete — €ce) — (€ethe — fewe) on lr I, |]
1
E // [ma—nl (€i¢z’ - fe‘f’i) - (€z¢z - €e"/’i) %l_i — 7_'P¢|] ds

// {m_rp,( (e ) = g (eede — ecte))

3
~ on 7 — 7P I (€idhi — €ethi — €cde + fe'l»be)} ds

//{ ( a¢z a¢e+ 6'/) _ 3%
- |Tq — 7P, “on; n; 6ne eane ‘ea_m

+ (€e¢e — €idi + €ct; — €€¢8) _1_} ds

on |fq —7p,|

Applying our boundary conditions, (B.2) and (B.5), we arrive at

e — & 0
BPe) = W(Pe) + - ]/ ¢(q)3_nm_;r_}>|ds, (B.15)
S e

describing the electrostatic potential at an exterior point P, of S, [61]. As the integral
|

in equation (B.15) is evaluated for g ranging over the entire surface S, it is clear that the

potential at any point exterior to S is dependent on the surface potential distribution.

Consider the value of the integral as the point P. approaches a particular point|qg
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on the surface S.

hm // d)(q) 5 |7" ds = //¢ Bnq | . dsq + 2mé(go).! (B.16)

Thus,

hm ¢(P)— llm ¢(P)+ llm _l;r_ee—- //qS( 58____1__

7‘—7'\|

= 4la0) = Ylao) + 1= 2 // ) o e+ ),

— ¢(QO)( o ) Yl + 37 : // #la) 6an7 —1'rqo|

Hence,

1

Bao) = = )+ s / 8(q) anq——m_rqol

(B.17)

Equation (B.17) describes the potential at the point gy on the surface S.

‘[62)
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