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Abstract

In this thesis, we investigate the data analytic approach to integrate the model

selection uncertainty into the statistical inferences of high dimensional estimators.

Two closed-form formulae of covariance matrices are derived for high dimensional

bagging estimators, one for the nonparametric bootstrapping and the other for

the parametric bootstrapping. Two simulation studies are completed in detail for

demonstrating the validity of the new formulae. Several model selection methods

— the hypothesis testing, the Mallows’ Cp, AIC, BIC and LASSO — are compared

in terms of the effects on the accuracy of bagging estimators in the context of

multivariate linear regression. The confidence region and its coverage probability

are also estimated for the bagging estimators with those model selection methods.
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List of Notations

y ∈ Rp a p-dimensional column vector of response variables

Y ∈ Rn×p a n× p matrix in which the i-th row is yT

e ∈ Rp a p-dimensional column vector of random errors

E ∈ Rn×p a n× p matrix in which the i-th row is eT

x ∈ Rq a q-dimensional column vector of covariates

X ∈ Rn×q a design matrix in which the i-th row is xT

L , {(yi,xi)}, where, i = 1, 2, · · · , n; a data sample

L∗ a bootstrap sample

B ∈ Rq×p a q × p matrix of coefficients

Z ∈ Rp a p-dimensional random vector

z ∈ Rp a p-dimensional column vector

F (z) : Rp → R a cumulative distribution function (CDF) of Z

a(z) ∈ Rd a d-dimensional vector function

TF (z) : Rp → Rd a d-dimensional linear functional

µ ∈ Rd a parameter of interest in the d-dimensional space

Σ(·) (·) the covariance between two random elements
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1 Introduction

1.1 The Variability of Model Selection

In the classical statistical theory, the response and covariates are first determined

and transformed as needed on the basis of the observed data sample (ChatField,

1995). After the mathematical relation is assumed between the response and co-

variates, the covariates are selected once or iteratively by expert’s domain knowl-

edge, statistical hypothesis testings, etc. The determined model is then fitted

through the give data sample, and statistical inferences are made from the model

fitting results.

The variability of model selection is in practice ignored in making statistical

inferences as if the selected model is certain, although the best model is searched

from a class of possible candidates. The estimated accuracy is solely based on

the pre-selected model, and is therefore over-optimistic. The estimated standard

error is less than what it actually is, and the estimated confidence interval is nar-
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rower(Berk et al., 2013). This problem has been recognized in the statistics com-

munity for a long time, and it is well accepted that the model selection variability

needs to be incorporated into the accuracy estimate (Bickel, 1984; Pötscher, 1991;

Kabaila, 1998).

1.2 A Review of Some Relevant Literature

The approaches to incorporating the model selection uncertainty into the accu-

racy of estimators include: constructing confidence intervals irrespective of model

selection procedures, making inferences from the limiting distributions of estima-

tors that contains the model selection uncertainty, and approximating the model

selection uncertainty through bootstrap samples.

For the cases that the model selection procedure is unknown or hard to specify,

it is appropriate to build conservative intervals to incorporate the uncertainty of

model selection. (Berk et al., 2013) propose an approach to build conservative

simultaneous confidence intervals (CI) on the basis of normal theory. The true

parameter is guaranteed to be covered by the properly widened CIs, though the

true sub-model need not be in the full set of candidate models. However, the

estimated bounds are less than the Scheffé bound, as their method takes advantage

of the intrinsic structures of the functionals of CI limits. The random errors are

assumed to be estimated independently of the model selection procedures, hence
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the accuracy estimates are completely isolated from the selected model. Their

method generates valid inferences even for the misspecified models.

For the cases that the model selection procedure is known and can be specified,

the properties of a model selection procedure and the model averaging strategy

can be employed to improve the accuracy assessment of an estimator. On the

basis of the limiting distributions of an estimator, (Hjort and Claeskens, 2003)

build confidence intervals that accommodate the model selection uncertainty. The

variability of a model selection procedure is unified in a framework as a disturbance

to the data distribution through additional model parameters. And the true data

distribution is assumed known, but the true data model does not have to be

among the candidate models. Both post-model estimators and model averaging

estimators are analyzed in the frequentist view.

The computational approach incorporates the model selection uncertainty into

inferences of estimators through an approximation of the sampling distribution of

the observed data sample. This approach is more data analytic and assumes that

the true model is in the full set of candidate models. (Efron, 2014) introduces

the bootstrapping methods to simulate the variability of model selection proce-

dures. Bagging estimators are recommended for smoothing out the discontinuity

in the estimates of parameter of interest, because model selectors usually oscil-

late abruptly among the optimal models for bootstrap samples. Formulae for the
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variances of bagging estimators are derived and analyzed for both nonparametric

and parametric bagging procedures, though only one dimensional estimators are

investigated.

1.3 Multivariate Linear Regression (MLR)

Let y , [y1, y2, . . . , yp]
T be a vector of p (> 1) response variables, and x ,

[x1, x2, . . . , xq]
T be a vector of q (≥ 1) covariates. Without loss of generality,

let us assume that both the response variables and the covariates are centered,

so the intercept can be omitted. Let the random components of the response

variables be put into a vector e = [e1, e2, . . . , ep]
T , which is from a multivariate

normal distribution N (0,Σ). In a multivariate linear regression (MLR) model,

the response variables are linearly associated with the covariate separately as

yj = x1b1j +x2b2j + · · ·+xqbqj + ej , where j = 1, 2, . . . , p. The the vector form of

MLR model is yT = xTB + eT , where B is the coefficient matrix of which each

column is a coefficient vector for the associated response variable.

Denote L , {(yi,xi)}, i = 1, 2, . . . , n; as a data sample of size n. Let

y1,y2, · · · ,yn be independent and identically distributed on a p-dimensional ran-

dom vector y, while x1,x2, · · · ,xn are treated as fixed values. After the vectors

of response variables are stacked in rows of a matrix, the MLR model can be

4



expressed in a matrix form as follows.

Y = XB +E, (1.1)

where

Y =



y11 y12 . . . y1p

y21 y22 . . . y2p

. . . .

yn1 yn2 . . . ynp


, X =



x11 x12 . x1q

x21 x22 . x2q

. . . .

xn1 xn2 . xnq


,

B =



b11 b12 . . . b1p

b21 b22 . . . b2p

. . . .

bq1 bq2 . . . bqp


, E =



e11 e12 . . . e1p

e21 e22 . . . e2p

. . . .

en1 en2 . . . enp


.

Let the error matrix E be partitioned into column vectors as follows.

E =



e11 e12 . . . e1p

e21 e22 . . . e2p

. . . .

en1 en2 . . . enp


=

[
e(1) e(2) · · · e(p)

]
.
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It is assumed that E
[
e(j)
]

= 0 and cov
(
e(j), e(k)

)
= σjkIn, where j, k = 1, 2, · · · , n.

This indicates that the mean for an error component of response variable is 0,

and the variance or covariance between any two error components is a constant

value.

The coefficient matrix B and the covariance matrix Σ of the random vector

e are unknown parameters, and the MLE’s (Johnson and Wichern, 2007) for B

and Σ are

B̂ =
[
XTX

]−1
XTY ,

Σ̂ =
1

n
ÊT Ê =

1

n

(
Y −XB̂

)T (
Y −XB̂

)

respectively. The MLE’s of B and Σ are estimated from bootstrap samples for

the bagging estimators in the context of MLR in the simulation study (Section

2.4).

For the purpose of hypothesis testing, let us divide the covariates into two

groups {x1, x2, · · · , xr} and {xr+1, xr+2, · · · , xq} with the indices being reordered

from the original ones when necessary. Accordingly, the design matrix X is par-

titioned into the left and right blocks as
[
X(1)

∣∣X(2)

]
, and the coefficient matrix

into the upper and lower blocks as
[
BT

(1)

∣∣BT
(2)

]T
. The hypothesis testing is on

whether the second group of covariates makes insignificant contributions to the
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responses.

H0 : B(2) = 0, v.s. H1 : B(2) 6= 0.

Under H0, the MLR model turns into Y = X(1)B(1) + E, and the MLE’s of B

and E are

B̂(1) =
[
XT

(1)X(1)

]−1
XT

(1)Y ,

Σ̂(1) =
1

n

[
(Y −X(1)B̂(1)

]T [
Y −X(1)B̂(1)

]

respectively.

The test statistics popular in software packages are Wilks’ lambda, Pillai’s

trace and Hotelling-Lawley trace, to name just a few (Izenman, 2008). Small

Wilks’ lambda, large Pillai’s trace or Hotelling-Lawley trace lead to reject the

null hypothesis.

Wilks’ lambda =

∣∣∣Σ̂∣∣∣∣∣∣Σ̂(1)

∣∣∣ .
Pillai’s trace = tr

[
(Σ̂(1) − Σ̂)Σ̂−1(1)

]
.

Hotelling-Lawley trace = tr
[
(Σ̂(1) − Σ̂)Σ̂−1

]
.

The Pillai’s trace statistic is used in the simulation study for a representative of

7



hypothesis testing based variable selection methods.

The simulation study in Chapter 2 is based on the multivariate linear regres-

sion models. The parameter of interest is on the prediction of mean response of

a multivariate linear regression model.

1.4 Model Selection Methods for the MLR Model

There are a wide variety of model selection methods, and we only review some of

the commonly-used ones.

Hypothesis testing (Westfall and Young, 1993) can be applied to the cases

where the candidate models are nested. Covariates are tested against the null

hypothesis through the use of properly designed test statistics, and the statistically

significant ones are retained in the selected model. Some of the frequently used

test statistics are enumerated in section 1.3 for the MLR models.

Mallows’ Cp (Mallows, 1973) is a technique to select the optimal model from

candidate liner regression models. The Cp statistic is a criterion to assess how well

a linear model fits the data. The optimal model is determined as the candidate

model with the smallest Cp value. For the purpose of comparing the candidate

linear models that differ only in the number of covariates, the Cp statistic can be
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defined as

Cp = RSS of the candidate model +

2 σ̂2 × (the number of unknown parameters),

where RSS stands for the residual sum of squares, and σ̂2 is the variance of

random errors that are estimated from residuals of fitting the full model. For

a multivariate linear regression models, the statistic (Fujikoshi and Satoh, 1997)

may be updated to

Cp = n tr
[
Σ̂−1Σ̂t

]
+ 2 p t,

where n is the sample size, Σ̂ is the covariance matrix of the random errors

estimated from the residuals of fitting the full model with q covariates, p is the

number of responses per observation, and Σ̂t is the covariance matrix of the

random errors estimated from fitting the candidate model with t covariates.

Information criteria based approaches for the model selection derive various

quantities of the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951)

that measures the information loss in the approximation of the true distribution
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with another distribution. The KL distance may be expressed as

KL(g; f) =

∫
g(x)log

[
g(x)

f(x)

]
dx,

where g(x) and f(x) are the pdf functions for the unknown distribution and the

approximating distribution respectively.

The Akaike’s information criterion (AIC) (Akaike, 1974) takes into account

the bias of the maximized log-likelihood function of a model as an estimator of

the relative KL distance to the generating model. The general equation for the

AIC value of a model is given by

AIC = −2× (the maximum log-likelihood of candidate model) +

2× (the number of unknown parameters).

Accordingly, the AIC criterion for the purpose of selecting an optimal MLR model

may be defined as (Fujikoshi and Satoh, 1997)

AIC = n log(
∣∣Σ̂t

∣∣) + 2 p t,

where n is the sample size, Σ̂t is the covariance matrix of random errors esti-

mated from fitting the candidate model with t covariates, and p is the number
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of responses per observation. Of all the candidate models, the one with the least

AIC value is deemed as the optimal model.

The Bayesian information criterion (BIC) (Schwarz, 1978), also named Schwarz

criterion, has a penalty term that is dependent with the sample size. Its general

equation is given by

BIC = −2× (the maximum log-likelihood of candidate model) +

(the number of unknown parameters)× log (the sample size).

For the model selection in an MLR context, BIC may be defined as (Kass and

Raftery, 1995)

BIC = n log
∣∣Σ̂t

∣∣+ p t logn,

where n is the sample size, Σ̂t is the covariance matrix of random errors esti-

mated from fitting the candidate model with t covariates, and p is the number

of responses per observation. The candidate model with the least BIC value is

regarded as the optimal model.

LASSO (least absolute shrinkage and selection operator) is a regression method

that performs regularization and variable selection simultaneously (Tibshirani,
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1996). It tends to produce some coefficients that are exactly zero instead of

shrinking the coefficients altogether, thus can be employed as a model selection

procedure. In the context of MLR, the solution given by the LASSO algorithm is

B̂ = arg min
B

‖Y −XB‖22 + λ |B|1 ,

where |B| =
q∑
i=1

p∑
j=1

|bij | is the L1 norm of B, and λ is the tuning parameter.

There are other model selection methods. For example, cross-validation meth-

ods (Shao, 1993) select the model with the best performance after repetitively

partitioning data sample and building models. Bootstrapping methods (Shao,

1996) select the model with the best performance across the bootstrap samples.

1.5 Influence Function

Let random variables Z,Z1, Z2, . . . , Zn be independently and identically distributed.

Denote the CDF of Z by F (z) = P (Z ≤ z), −∞ < z < ∞. The empirical dis-

tribution function F̂n is the CDF that puts mass 1
n at each data point. Denote

T (F ) as a statistical functional, which is any function of F . An influence function

quantifies the rate of change in a statistical function upon a slight contamination

in the distribution F .

Definition 1.1. (Wasserman, 2006) Let δz be a point mass at z, the influence

12



function LF (z) is defined as

LF (z) = lim
ε→0

T ((1− ε)F + εδz)− T (F )

ε
.

Theorem 1.1. (Wasserman, 2006) Let T (F ) =
∫
a(z)dF (z) be a linear func-

tional, then the influence function of T (F ) has following properties.

1. LF (z) = a(z)− T (F ) .

2. For any distribution G, T (G) = T (F ) +
∫
LF (z)dG(z) .

3.
∫
LF (z)dF (z) = 0 .

4. If τ2 ,
∫
L2
F (z)dF (z) <∞, then

√
n
[
T (F )− T (F̂n)

]
D−→ N (0, τ2).

5. Let τ̂2 = 1
n

∑n
i=1 L̂

2
F (Zi) = 1

n

∑n
i=1

[
a(Zi)− T (F̂n)

]2
, then τ̂2

P−→ τ2 and

τ̂ /
√
n√

var(T (F̂n))

P−→ 1.

6.
√
n[T (F )−T (F̂n)]

τ̂
D−→ N (0, 1).

Proof. See (Wasserman, 2006) for the proofs.
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Let the p-dimensional random vectors Z,Z1,Z2, · · · ,Zn be independently and

identically distributed. Denote the CDF of Z by F (z) = P (Z ≤ z). Let z ,

[z1, · · · , zj , · · · , zp]T , where −∞ < zj < ∞, j = 1, 2, · · · , p. Theorem 1.1 is

extended for a high dimensional linear functional in the following theorem.

Theorem 1.2. Let T (F ) =
∫
a(z)dF (z) be a d-dimensional linear functional,

and δz be a point mass at z. The influence function of T (F ) is defined as

LF (z) = lim
ε→0

T ((1− ε)F + εδz)− T (F )

ε
,

which possesses the the following properties.

1. LF (z) = a(z)− T (F ).

2. For any distribution G, T (G) = T (F ) +
∫
LF (z)dG(z).

3.
∫
LF (z)dF (z) = 0.

4. If ΣLL ,
∫
LF (z)LTF (z)dF (z) is a positive definite matrix, then

√
n
[
T (F )− T (F̂n)

]
D−→ N (0,ΣLL).

5. Let Σ̂LL = 1
n

∑n
i=1 L̂(Zi)L̂

T (Zi)

= 1
n

∑n
i=1

[
a(Zi)− T (F̂n)

] [
a(Zi)− T (F̂n)

]T
,

then

Σ̂LL
P−→ ΣLL and

1

n
Σ̂LL

[
var(T (F̂n))

]−1 P−→ Id.
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6. n
[
T (F )− T (F̂n)

]T
Σ̂−1LL

[
T (F )− T (F̂n)

]
D−→ χ2

d.

Proof. 1. By the definition of influence function, we have

LF (z) = lim
ε→0

T ((1− ε)F + εδz)− T (F )

ε

= lim
ε→0

∫
a(z)d [(1− ε)F + εδz]−

∫
a(z)dF ((z))

ε

= lim
ε→0

∫
a(z)dF (z)− ε

∫
a(z)dF (z) + εa(z)−

∫
a(z)dF (z)

ε

= −
∫
a(z)dF (z) + a(z)

= a(z)− T (F ).

2. By using the first claim, we have

∫
LF (z)dG(z) =

∫
[a(z)− T (F )] dG(z)

=

∫
a(z)dG(z)−

∫
T (F )dG(z)

= T (G)− T (F )

=⇒ T (G) = T (F ) +

∫
LF (z)dG(z).
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3. By using the first claim, we have

∫
LF (z)dF (z) =

∫
[a(z)− T (F )] dF (z)

=

∫
a(z)dF (z)−

∫
T (F )dF (z)

= T (F )− T (F ) = 0.

4. By using the first and third claims, we have

T (F̂n) =

∫
a(z)dF̂n(z)

=

∫
[T (F ) + a(z)− T (F )] dF̂n(z)

=

∫
T (F )dF̂n(z) +

∫
LF (z)dF̂n(z) (by using 1st claim)

= T (F ) +
1

n

n∑
i=1

LF (Zi)

=⇒ E

{√
n
[
T (F̂n)− T (F )

]}
=

∫ √
n
[
T (F̂n)− T (F )

]
dF (z)

=

√
n

n

n∑
i=1

∫
LF (z)dF (z)

= 0 (by the 3rd claim), and
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var

{√
n
[
T (F̂n)− T (F )

]}
= n

∫ [
T (F̂n)− T (F )

] [
T (F̂n)− T (F )

]T
dF (z)

= n

∫ [
1

n

n∑
i=1

LF (zi)

][
1

n

n∑
i=1

LF (zi)

]T
dF (z)

=
n

n2

n∑
i=1

∫
LF (z)LTF (z)dF (z)

=

∫
LF (z)LTF (z)dF (z) = ΣLL.

According to the central limit theory (Ferguson, 1996), we obtain

√
n
[
T (F )− T (F̂n)

]
D−→ N (0,ΣLL).

5. By using E
[
F̂n(z)

]
= F (z) (Wasserman, 2006) and the law of large num-

bers (Ferguson, 1996), we get

Σ̂LL =
1

n

n∑
i=1

L̂F (Zi)L̂
T
F (Zi)

=
1

n

n∑
i=1

[
a(Zi)− T (F̂n)

] [
a(Zi)− T (F̂n)

]T
P−→
∫

[a(z)− T (F )] [a(z)− T (F )]T dF (z)

=

∫
LF (z)LTF (z)dF (z)

= ΣLL,

17



var
[
T (F̂n)

]
= var

[∫
a(z)dF̂n(z)

]
= var

[
1

n

n∑
i=1

a(Zi)

]

=
1

n2

n∑
i=1

var [a(Zi)]

=
1

n2

n∑
i=1

E [a(Zi)− Ea(Zi)] [a(Zi)− Ea(Zi)]
T

=
1

n
E [a(Z)− Ea(Z)] [a(Z)− Ea(Z)]T

=
1

n
E [a(Z)− T (F )] [a(Z)− T (F )]T

=
1

n
E
[
LF (Z)LTF (Z)

]
=

1

n

∫
LF (z)LTF (z)dF (z)

=
1

n
ΣLL.

Therefore 1
nΣ̂LL

[
var(T (F̂n))

]−1
= 1

nΣ̂LL

[
1
nΣLL

]−1 P−→ Id.

6. By using the fourth claim we get

n
[
T (F )− T (F̂n)

]T
Σ−1LL

[
T (F )− T (F̂n)

]
D−→ χ2

d.

By applying the Slutsky theorem (Ferguson, 1996) and Σ̂LL
P−→ ΣLL from the

fifth claim, we get

n
[
T (F )− T (F̂n)

]T
Σ̂−1LL

[
T (F )− T (F̂n)

]
D−→ n

[
T (F )− T (F̂n)

]T
Σ−1LL

[
T (F )− T (F̂n)

]
D−→ χ2

d.
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From the sixth claim of Theorem 1.2, a (1 − α)100% asymptotic confidence

region for T (F ) can be constructed as

{
T (F ) : n

[
T (F )− T (F̂n)

]T
Σ̂−1LL

[
T (F )− T (F̂n)

]
≤ χ2

d

}
,

where α is the significance level and χ2
p(α) denotes the upper (100α)th percentile

of χ2
d distribution.

In Section 2.2, the covariance matrix for the nonparametric bagging estimator

is constructed as Σ̂LL defined in Theorem 1.2. And the confidence region for the

true parameter of interest is built with the nonparametric delta method, as shown

above.

1.6 Purposes and Outline

The primary objective of this thesis is to investigate the model selection vari-

ability through a data analytic approach that applies model selection procedures

on bootstrap samples. We will derive the covariance matrices for the high di-

mensional bagging estimators, and examine the performance of those estimators

through simulation studies. We will also compare the effects of several model

selection procedures.

In Chapter 2, the derivation of covariance matrices is detailed for both the
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nonparametric and the parametric bagging estimators in the context of multivari-

ate linear regression. Some commonly used model selection methods are applied

in the simulation study for the comparison of their effects on the bagging esti-

mators. The properties of the nonparametric bagging estimator are investigated

through a polynomial regression in the MLR context. And the properties of the

parametric bagging estimator are examined through an MLR model with the full

set of five candidate covariates. Three covariates make contributions to the re-

sponses, however they are highly correlated with the other two that actually make

no contribution to the responses.

In Chapter 3, we summarize the main results of this study and discuss the

future work.
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2 Bootstrap Smoothing for Multivariate Estimators

2.1 Introduction

Bootstrap (Efron, 1979) is a widely-used general method to approximate the sam-

pling distribution of a statistic. Its theoretic foundations (Singh, 1981) prove that

bootstrapping distributions approximate sampling distributions fairly well. The

simplicity of bootstrap has led to its universality, as the expense of computing

power has been decreasing each year. Bootstrap has been directly used in ap-

proximating the standard error, bias, and confidence interval for an estimator

(Efron, 1987). Bootstrapped confidence intervals are usually asymptotically more

accurate than the standard confidence intervals derived under the assumptions of

normality (DiCiccio and Efron, 1996).

The data analytic approach of assessing model selection variability employs

the bootstrap approximation of sampling distribution to evaluate the variability

of model selection procedures (Politis, 2014). A model selection procedure may
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assign different models to different samples, hence the space of samples are divided

into partitions. At a border between two partitions, the estimate of a parameter

of interest may change abruptly although the samples from two partitions are

close enough.

Bootstrap aggregating (bagging) (Breiman, 1996; Buja and Stuetzle, 2006;

Hjort, 2014) is an effective computational methods to enhance the stability of

estimators. Bagging reduces the variance of estimation of testing-based linear re-

gression because hypothesis testing performs a role of hard thresholding operation

and bagging smoothes out its spurious abruptness (Bühlmann and Yu, 2002). The

same spirit applies in handling the discontinuity of estimation due to uncertainty

from other variable selection procedures (Gelman and Vehtari, 2014).

There are two major types of bootstrap schemes: nonparametric bootstrap-

ping and parametric bootstrapping (Efron and Tibshirani, 1993). Nonparametric

bootstrapping resamples with replacement the observed data sample by assigning

usually equal probability of being drawn to each observed sample point. And

parametric bootstrapping generates samples from a distribution that is usually

fitted from the observed data sample with the maximum likelihood estimation.

The rest of this chapter is organized as follows: the covariance matrix for the

nonparametric bagging estimator is derived in section 2.2. The covariance matrix

for the parametric bagging estimator is derived in section 2.3. Two examples in the
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context of multivariate linear regression, one for the nonparametric bootstrapping

and the other for the parametric bootstrapping, are enumerated and analyzed in

section 2.4.

2.2 Nonparametric Bootstrap Smoothing

Let y be a p-dimensional vector of response variables, and x be a q-dimensional

vector of fixed values for the covariates. Denote (yj ,xj) as a sample point, where

j = 1, 2, · · · , n; n is the sample size, and µ the parameter of interest in a d-

dimensional space. The bootstrapping is to resample the points of observed data

sample. The nonparametric bootstrap smoothing algorithm for the MLR is out-

lined as follows.

1. Resample with replacement the observed data sample L = {(yj ,xj)}, j =

1, 2, . . . , n; to obtain the bootstrap samples of same size as the observed one,

L∗b = {(ybj ,xbj)∗}, b = 1, 2, . . . , S.

2. Count the occurrences of each observed point in each bootstrap sample,

and record those counts into a vector K∗b = [K∗b1,K
∗
b2, . . . ,K

∗
bm, . . . ,K

∗
bn]T ,

where K∗bj = ]{(ybm,xbm)∗ = (yj ,xj)},
n∑

m=1

K∗bm = n,m = 1, 2, . . . , n.

3. Select the optimal MLR modelsM∗b for each bootstrap sample according to

a model selection procedure.
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4. Fit the selected MLR models M∗b to each bootstrap sample to obtain the

MLE’s B̂∗b , Σ̂∗b , and accordingly estimate the parameter of interest µ̂ with

respect to each bootstrap sample.

5. Average the estimates of the parameter of interest across all the boot-

strapped optimal models to obtain the bagging estimator

µ̃(x) = 1
S

S∑
b=1

µ̂(M∗b(x,L∗b)).

We derive the covariance matrix for the smoothed multivariate parameter of

interest µ̃(x), which extends the formula in (Efron, 2014) from the one dimen-

sional case to the high dimensional case.

The probability of being selected is same for each point (yj ,xj) in the observed

sample, namely 1
n since the observed sample is resampled with replacement and

equal weights are assigned to the sample points. The bootstrap sample is of

same size (i.e., n) as the observed sample, therefore there are nn permutations in

total. The counting vector K∗ has a multinomial distribution with n trials on n

categories and the n-dimensional probability vector p0 =
[
1
n ,

1
n , . . . ,

1
n

]T
, which is

denoted as K∗ ∼ Multn(n,p0). The expectation and the variance matrix of K∗

are 1n , [1, 1, . . . , 1]T and In − 1
n1n1

T
n respectively.

The estimator µ̂ can be viewed as a functional of a selected model objectM∗,

an input vector x or a model training sample L∗. It is usually discontinuous with
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respect to the sample space {(y,x)}. This is because model selection procedures

select different models, which results in jumps in estimates at borders between

partitions of a sample space. However, µ̂ can be viewed as a function of K∗, and

accordingly µ̃ is the expectation of µ̂ in the ideal case in which the bootstrapping

repeats nn times.

The smoothed estimator µ̃ is a continuous functional with respect to the prob-

ability vector. It can be viewed as a functional of µ̂, and further as a continuous

functional of the probability distribution that underlies the counting vector K∗.

Thanks to its continuity property in the probability space, the first derivatives

of µ̃ can be evaluated by quantifying its change over a slight contamination of

a probability distribution. By using the influence function of µ̃, we derive the

variance matrix of µ̃, as shown in the following theorem.

Theorem 2.1. Let µ̂ , [µ̂1, · · · , µ̂i, · · · , µ̂d]T and µ̃ , [µ̃1, · · · , µ̃i, · · · , µ̃d]T ,

where i = 1, 2, ...d. Denote the variance of µ̃ as a d× d matrix Σµ̃µ̃ of which the

(i, l)-th entry is cov(µ̃i, µ̃l) , E [(µ̃i − E µ̃i)(µ̃l − E µ̃l)], where l = 1, 2, · · · , d. De-

note the covariance between µ̂ and Kj (the number of times the j-th observed point

has been resampled in a bootstrap sample) as a d × 1 matrix Σµ̂,Kj
in which the

(i, 1)-th entry is cov(µ̂i,Kj) , E [(µ̂i − E µ̂i)(Kj − EKj)], where j = 1, 2, · · · , n.

Then the nonparametric delta-method estimate of the covariance matrix for
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the smoothed estimator µ̃ is

Σµ̃µ̃ =
n∑
j=1

(
Σµ̂,Kj

ΣT
µ̂,Kj

)
. (2.1)

Proof. We first consider the ideal case, where the observed sample is resampled

with replacement S = nn times. The smoothed estimator at the probability vector

p can be expressed as

µ̃(p) =
S∑
b=1

f(y∗i , y
∗
i , . . . , y

∗
n)µ̂∗b

=

S∑
b=1

p
K∗

b1
1 p

K∗
b2

2 . . . p
K∗

bn
n µ̂∗b

=
S∑
b=1

p
K∗

b1
1 p

K∗
b2

2 . . . p
K∗

bn
n

( 1
n)K

∗
b1( 1

n)K
∗
b2 . . . ( 1

n)K
∗
bn

1

nn
µ̂∗b

=
1

S

S∑
b=1

n∏
m=1

(npm)K
∗
bmµ̂∗b .

(2.2)

Denote wb(p) ,
∏n
m=1(npm)K

∗
bm , then we have

µ̃(p) =
1

S

S∑
b=1

wb(p)µ̂∗b . (2.3)

Let p(ε) , p0+ε(δj−p0), where δj = [0, 0, . . . , 1, . . . , 0]T is a vector with all com-

ponents of 0 except the j-th one. Then np(ε) = [1− ε, . . . , 1 + (n− 1)ε, . . . , 1− ε]T ,
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and

wb(p(ε)) = [1 + (n− 1)ε]K
∗
bj

n∏
m=1
m6=j

(1− ε)K∗
bm

= [1 + (n− 1)ε]K
∗
bj (1− ε)

n∑
m 6=j

K∗bm

= [1 + (n− 1)ε]K
∗
bj (1− ε)n−K

∗
bj .

(2.4)

Apply the Taylor’s expansion of log functions

log(1− x) = −
∞∑
k=1

xk

k
for |x| < 1,

log(1 + x) =
∞∑
k=1

(−1)k+1x
k

k
for |x| < 1

to equation (2.4), then we get

logwb(p(ε)) = K∗bj log[1 + (n− 1)ε] + (n−K∗bj)log(1− ε)

= K∗bj

∞∑
k=1

(−1)k+1 [(n− 1)ε]k

k
− (n−K∗bj)

∞∑
k=1

εk

k

≈ K∗bj(n− 1)ε− (n−K∗bj)ε

= nε(K∗bj − 1).

(2.5)
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Thus, wb(p(ε)) can be approximated as

wb(p(ε)) ≈ exp
[
nε(K∗bj − 1)

]
=
∞∑
k=0

1

k!

[
nε(K∗bj − 1)

]k
≈ 1 + nε(K∗bj − 1).

(2.6)

By plugging equation (2.6) into (2.3), we get

µ̃(p(ε)) =
1

S

S∑
b=1

wb(p(ε))µ̂∗b

=
1

S

S∑
b=1

[
1 + nε(K∗bj − 1)

]
µ̂∗b

=
1

S

S∑
b=1

µ̂∗b + nε

[
1

S

S∑
b=1

(K∗bj − 1)µ̂∗b

]

= µ̃(p0) + nεΣµ̂,Kj
.

(2.7)

And the influence function of µ̃ at p0 is

IF (µ̃)j = lim
ε→0

µ̃(p(ε))− µ̃(p0)

ε
= nΣµ̂,Kj

. (2.8)
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According to Theorem 1.2, we obtain the variance matrix for µ̃ at p0 as

Σµ̃µ̃ =
1

n2

n∑
j=1

[IF (µ̃j)] [IF (µ̃j)]
T

=
1

n2

n∑
j=1

[
nΣµ̂,Kj

] [
nΣµ̂,Kj

]T
=

n∑
j=1

(
Σµ̂,Kj

ΣT
µ̂,Kj

)
.

(2.9)

As for the practical cases in which S is less than nn, it is appropriate to use the

formula (2.9) for the variance matrix for µ̃ .

For a one-dimensional parameter of interest, its standard deviation is usually

estimated as the sample standard deviation of its estimates from the bootstrap

samples (σ̂). It has been shown that the standard deviation of bagging estimator

(σ̃) is no greater than σ̂ (Efron, 2014). This result also holds true for the variance

of each component of the high-dimensional parameter of interest, as illustrated in

the following theorem.

Theorem 2.2. Denote µ̂ , [µ̂1, · · · , µ̂m, · · · , µ̂d]T , where m = 1, 2, · · · , d. For

the m-th component, stack its centered estimates from all the bootstrap sam-

ples into to a column vector µ∗m = [µ∗m1 − µ∗m·, · · · , µ∗mb − µ∗m·, · · · , µ∗mS − µ∗m·]
T ,

where µ∗m· = 1
S

∑S
b=1 µ

∗
mb and b = 1, 2, · · · , S. Then the variance of µ̂m is esti-

mated by Σµ̂mµ̂m = 1
S

∑S
b=1 (µ∗mb − µ∗m·)

2.
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Let µ̃ , [µ̃1, · · · , µ̃m, · · · , µ̃d]T , where m = 1, 2, · · · , d; and denote the variance

of the m-th component of µ̃ by Σµ̃mµ̃m according to Theorem 2.1. Then we have

Σµ̃mµ̃m ≤ Σµ̂mµ̂m for m = 1, 2, · · · , d. (2.10)

Proof. Consider first the ideal case, where the observed sample is resampled with

replacement S = nn times.

Define an S × n matrix A as

A = [K∗1 − 1n,K
∗
b − 1n, · · · ,K∗S − 1n]T ,

where [K∗b − 1n] = [K∗b1 − 1,K∗b2 − 1, · · · ,K∗bn − 1]T , b = 1, 2, · · · , S.

As K∗b
iid∼ Multn(n,p0), we have

var(K∗) = 1
SA

TA = In − 1n1
T
n

and rank(A) = n− 1.

Accordingly the singular value decomposition (SVD) of A is A =
√
SUV T ,

where U is an S × (n − 1) orthonormal matrix and V is an (n − 1) × (n − 1)

orthonormal matrix, for the singular values are all ones.
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From Theorem 2.1, the variance of µ̃m is

Σµ̃mµ̃m =
n∑
j=1

(
Σµ̂mKj

Σµ̂mKj

)
=

(
1

S
ATµ∗m

)T ( 1

S
ATµ∗m

)
=

(µ∗m)T AATµ∗m
S2

= (µ∗m)T
√
SUV TV UT

√
S

S2
µ∗m

=
1

S
(µ∗m)T UUTµ∗m

=
1

S

∥∥UTµ∗m∥∥2 .

(2.11)

Hence, S times the variance of µ̃m can be interpreted as the squared length of

the projection of vector µ∗m onto the (n − 1)-dimensional space that is spanned

by the column vectors of matrix U .

Since Σµ̂mµ̂m = 1
S

∑S
b=1 (µ∗mb − µ∗m·)

2 = 1
S ‖µ

∗
m‖

2, S times the variance of µ̂m

can be interpreted as the squared length of µ∗m. Therefore the claim is true, and

the equal sign holds if µ∗m is in the (n − 1)-dimensional space spanned by the

column vectors of matrix U .

For the practical cases in which S is less than nn, the variance of K∗ needs be

replaced with the sample variance, and the derivation is valid too.
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2.3 Parametric Bootstrap Smoothing

Let y denote a p-dimensional vector of response variables, and x a q-dimensional

vector of fixed values for the covariates. Let (yj ,xj) denote a sample point, where

j = 1, 2, · · · , n; n is the sample size. New points are drawn from the distribu-

tion that fits the observed data sample. The parametric bootstrap smoothing

algorithm for the MLR is outlined as follows.

1. Select the optimal MLR modelM for the observed data sample L = {(yj ,xj)},

j = 1, 2, . . . , n.

2. Fit the selected MLR model M to the observed data sample to obtain the

MLE’s B̂ and Σ̂.

3. Generate the bootstrap samples L∗b = {(y∗j ,xj)}, j = 1, 2, . . . , n; b =

1, 2, . . . , S; where y∗j is drawn from the multivariate normal distribution

N (xTi B̂, Σ̂).

4. Select the optimal MLR model M∗b for each bootstrap sample according to

a model selection procedure.

5. Fit the selected MLR model M∗b to each bootstrap sample to obtain the

MLE’s B̂∗b , Σ̂∗b .

6. Average the estimates of the parameter of interest across all the boot-
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strapped optimal models to get the bagging estimator

µ̃(x) = 1
S

S∑
b=1

µ̂(M∗b(x,L∗b)).

We derive the covariance matrix for the smoothed parameter of interest µ̃(x)

in a high dimensional space, which extends the formula in (Efron, 2014) from the

one dimensional case to the high dimensional case. The coefficient matrix B is

first vectorized by column into a vector β = [b11, · · · , bq1, b21, · · · , · · · , bqp]T . We

can assume that the distribution of estimator β̂ belongs to an exponential family

fθ(β̂) = exp{θT β̂ − ψ(θ)}f0(β̂), (2.12)

where θ is the qp-dimensional natural parameter vector, ψ(θ) is a function of θ

only, and f0(β̂) is the “carrying density” function of β̂ only. This assumption

holds true since β̂ follows a multivariate normal distribution according to the

assumptions of MLR models. The exponential family of such a form maintains

the following properties:

Eθ(β̂) =
∂ψ(θ)

∂θ
= β, (2.13)

varθ(β̂) =
∂2ψ(θ)

∂θ2
=
∂β

∂θ
. (2.14)

In the case of MLR bagging, β̂ refers to the vectorized estimates of the coeffi-

cient matrix, which is the MLE of fitting the optimal model through the observed
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data sample. And the estimate of β̂∗b can be viewed as sampled from a MLE

distribution f
θ̂
(.), i.e.,

f
θ̂
(·) i.i.d.−−−→ β̂∗1, β̂

∗
2, ..., β̂

∗
b , ..., β̂

∗
S . (2.15)

And the smoothed estimate of parameter of interest can be expressed as a function

of β̂∗b , i.e.,

µ̃(x) =
1

S

S∑
b=1

µ̂(x, β̂∗b ). (2.16)

Theorem 2.3. Let Σµ̃µ̃ , E
[
(µ̃− E µ̃)(µ̃− E µ̃)T

]
be the covariance matrix of

µ̃. Let Σ
β̂µ̂

, E
[
(β̂ − E β̂)(µ̂− E µ̂)T

]
be the covariance matrix between β̂ and

µ̂. Then the parametric delta-method estimate of the covariance matrix for the

smoothed estimator µ̃ is

Σµ̃µ̃ = ΣT
β̂µ̂

Σ−1
β̂β̂

Σ
β̂µ̂
. (2.17)

Proof. Consider first the ideal case, S →∞. We apply the importance sampling

technique to the smoothed estimate µ̃ with respect to the distribution parame-
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terized with θ,

µ̃θ = Eθ(µ̂) =

∫
µ̂(β̂)fθ(β̂)dβ̂

=

∫
µ̂(β̂)fθ(β̂)

f
θ̂
(β̂)

f
θ̂
(β̂)dβ̂ =

∑S
b=1

µ̂(β̂∗
b )fθ(β̂

∗
b )

f
θ̂
(β̂∗

b )∑S
b=1

fθ(β̂
∗
b )

f
θ̂
(β̂∗

b )

.

(2.18)

From the equation(2.12),

fθ(β̂∗b )

f
θ̂
(β̂∗b )

=
exp{θT β̂∗b − ψ(θ)}f0(β̂∗b )
exp{θ̂T β̂∗b − ψ(θ̂)}f0(β̂∗b )

=
exp{θT (β̂∗b − β̂) + θT β̂ − ψ(θ)}
exp{θ̂T (β̂∗b − β̂) + θ̂T β̂ − ψ(θ̂)}

= exp{(θ − θ̂)T (β̂∗b − β̂)} exp{(θ − θ̂)T β̂ − ψ(θ) + ψ(θ̂)}.

(2.19)

Plugging equation(2.19) into equation(2.18) gives

µ̃θ =

∑S
b=1 exp{(θ − θ̂)T (β̂∗b − β̂)}µ̂(β̂∗b )∑S

b=1 exp{(θ − θ̂)T (β̂∗b − β̂)}
. (2.20)

Let θ → θ̂ and apply ex ≈ 1 + x, we get

µ̃θ =

∑S
b=1[1 + (θ − θ̂)T (β̂∗b − β̂)]µ̂(β̂∗b )∑S

b=1[1 + (θ − θ̂)T (β̂∗b − β̂)]

=
1

S

S∑
b=1

[1 + (θ − θ̂)T (β̂∗b − β̂)]µ̂(β̂∗b ).

(2.21)
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Expand µ̃θ at θ̂ and ignore the higher order terms as

µ̃θ = µ̃
θ̂

+

[
(β− β̂)T

∂µ̃θ
∂β

] ∣∣∣∣
θ=θ̂

= µ̃
θ̂

+

[
(β− β̂)T

∂θ

∂β

∂µ̃θ
∂θ

] ∣∣∣∣
θ=θ̂

= µ̃
θ̂

+

[
(β− β̂)T [

∂β

∂θ
]−1

∂µ̃θ
∂θ

] ∣∣∣∣
θ=θ̂

= µ̃
θ̂

+ (β− β̂)T
∣∣∣∣
θ=θ̂

[
V
θ̂
(β̂)
]−1 1

S

S∑
b=1

(β̂∗b − β̂)[µ̂(β̂∗b )]
T

= µ̃
θ̂

+ (β− β̂)T
∣∣∣∣
θ=θ̂

Σ−1
β̂β̂

Σ
β̂µ̂
.

(2.22)

Hence, the covariance matrix of µ̃θ is

Σµ̃µ̃ = var

[
(β− β̂)T

∣∣∣∣
θ=θ̂

Σ−1
β̂β̂

Σ
β̂µ̂

]
= ΣT

β̂µ̂
Σ−1
β̂β̂

var

[
(β− β̂)T

∣∣∣∣
θ=θ̂

]
Σ−1
β̂β̂

Σ
β̂µ̂

= ΣT
β̂µ̂

Σ−1
β̂β̂

Σ
β̂β̂

Σ−1
β̂β̂

Σ
β̂µ̂

= ΣT
β̂µ̂

Σ−1
β̂β̂

Σ
β̂µ̂
.

(2.23)

For the practical cases where S is finite, the variance matrix of µ̃ is obtained by

simply replacing the corresponding covariance matrices with sample covariance

matrices.

For a one-dimensional parameter of interest, the sample standard deviation of
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its estimates across the bootstrap samples is no greater than that of the bagging

estimator (Efron, 2014). This conclusion is also valid for the variance of each

component of the high-dimensional parameter of interest, as described in the

following theorem.

Theorem 2.4. Denote µ̂ , [µ̂1, · · · , µ̂m, · · · , µ̂d]T , where m = 1, 2, · · · , d. For

the m-th component, denote its centered estimates from all the bootstrap sam-

ples by a vector µ∗m = [µ∗m1 − µ∗m·, · · · , µ∗mb − µ∗m·, · · · , µ∗mS − µ∗m·]
T , where µ∗m· =

1
S

∑S
b=1 µ

∗
mb and b = 1, 2, · · · , S. Then the variance of µ̂m is estimated by Σµ̂mµ̂m =

1
S

∑S
b=1 (µ∗mb − µ∗m·)

2.

Let µ̃ , [µ̃1, · · · , µ̃m, · · · , µ̃d]T , where m = 1, 2, · · · , d; and denote the variance

of the m-th component of µ̃ by Σµ̃mµ̃m according to Theorem 2.3. Then we have

Σµ̃mµ̃m ≤ Σµ̂mµ̂m for m = 1, 2, · · · , d. (2.24)

Proof. Consider first the ideal case, S →∞.

Define an S × qp matrix A as

A =
[
β̂∗1 − β̂, · · · , β̂∗b − β̂, · · · , β̂∗S − β̂

]T
,

where β̂ is the column-wise vectorization of coefficient matrix B̂ that is the MLE

for B fitted through the observed data sample, and β̂∗b is with respect to the
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bootstrap sample, b = 1, 2, · · · , S.

As S →∞, then 1
SA

T1S
P→ 0, and 1

S

∑S
b=1 β̂

∗
b
P→ β̂.

Apply SVD to matrix A as

A = UDV T ,

where U is an S×qp orthonormal matrix, D is a qp×qp diagonal matrix with the

singular values at the diagonal entries, and V is a qp× qp orthonormal matrix.

By Theorem 2.3, the variance of µ̃m is

Σµ̃mµ̃m = ΣT
β̂µ̂m

Σ−1
β̂β̂

Σ
β̂µ̂m

=
1

S
[µ∗m]T A

[
1

S
ATA

]−1
ATµ∗m

1

S

=
1

S
[µ∗m]T A

[
ATA

]−1
ATµ∗m

=
1

S
[µ∗m]T UDV T

[
V DUTUDV T

]−1
V DUTµ∗m

=
1

S
[µ∗m]T UUTµ∗m

=
1

S

∥∥UTµ∗m∥∥2 .

(2.25)

Geometrically speaking, S times the variance of µ̃m is the squared length of

the projection of vector µ∗m onto the qp-dimensional space that is spanned by the

column vectors of matrix U .

Since Σµ̂mµ̂m = 1
S

∑S
b=1 (µ∗mb − µ∗m·)

2 = 1
S ‖µ

∗
m‖

2, then S times the variance

of µ̂m is the squared length of µ∗m. Therefore, the claim is true, and the equal
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sign holds if µ∗m is already in the qp-dimensional space spanned by the column

vectors of matrix U .

For the practical cases in which S is finite, the derivation applies too.

2.4 Simulation

We carry out the simulations to evaluate the performance of the bagging esti-

mator with various model selection methods in the context of multivariate linear

regression, by comparing its results with those of the standard method. Both a

nonparametric example and a parametric example are investigated.

2.4.1 A Nonparametric Example

A polynomial of degree three is chosen as the linear regression equation for either

response variable, and candidate polynomials of degree up to six are examined by

the model selection procedures. The coefficients of (10, 1.5, 1.0, 0.1, 0, 0, 0) are

preselected for the polynomial for the first response, while (20, 2.0, 1.2, 0.2, 0, 0, 0)

is for the second response. The total of 200 values of the independent variable X

are sampled from the uniform distribution with support of [−3, 3], and are treated

as fixed values within the parameter estimation procedure. The additive random

errors in response variables are sampled from a bivariate normal distribution that
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is implemented in the R function mvnorm. Both error components are with the

variance of 6.25, while the correlation between them is 0.5.

Several model selection methods are employed, i.e., AIC, Mallows’ Cp, BIC,

hypothesis testing, and LASSO. The informatic scores of AIC, Mallows’ Cp and

BIC are used to determine the highest degree of the polynomials. The degree

of the polynomial is determined as the one that gives the highest score. The

significance level of 5% is used in the hypothesis testings, and variables with p-

value less than 0.05 are selected into the model. The LASSO algorithm in the R

package glmnet is used to select the subset of variables that result in the maximum

deviance ratio.

The simulated data sample is resampled with replacement 4000 times. Each

bootstrap sample is of the same size as the original data sample, and is the training

data set for a model selection procedure to select the optimal model. Then the

coefficients of the selected model are estimated before the parameters of interest

are computed, e.g., the fitted center and its covariance matrix, the confidence

region, etc.

With each of the aforementioned model selection procedures being applied, the

performances of the standard method and the bagging method are compared in

terms of the fitted value, the variance of the estimate, and the coverage probability.

Twenty-one values of X that evenly cover the interval [−2.95, 2.95] are chosen
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for the comparison purpose. The fitted values with respect to those X values

are shown in Figure 2.1. The standard deviations of the estimates are plotted

in Figure 2.2. We consider the 95% confidence regions for both methods, and

Figure 2.3 is for the coverage probabilities of the confidence regions constructed

from the results of both estimators. There are slight differences in the fitted

centers from these two estimators, as the standard estimator fits the optimal

model through the observed data sample while the bagging estimator averages

over the variants of the data sample. The standard deviations of the bagging

estimates are always less than or equal to those of the standard estimates. This

is because the variance of the bagging estimator is a component of the sample

variance of the estimates across the bootstrap samples, while the variance of a

standard estimator is simply the sample variance of the estimates across all the

bootstrap samples. The coverage probability of the bagging confidence region

is equivalent with that of the standard confidence region. The model selection

procedures appear to cause noticeable differences in the fitted values and the

estimated standard deviations, as the model selection procedures tend to favor

different subsets of variables.

As an example, we look into the results for the x value of -0.295, which is close

to the minimum x value of -3.0 for this numerical study. The results are listed

in Table 2.1 for each model selection method. It is interesting to note that BIC,
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Mallows’ Cp and hypothesis testing give same fitted values since they pick the

same polynomial degree for the simulated data sample. However, the standard

deviations are different because the variations in the bootstrap samples come into

play and disturb the decisions of these three model selection procedures.

2.4.2 A Parametric Example

There are two response variables and five candidate covariates in the regression

model. The true coefficients [1, 0, 1, 0, 1]T are for the first response variable, and

[1.1, 0, 1.3, 0, 0.9]T for the second. The design matrix is drawn from the multivari-

ate normal distribution with the mean of [0, 0, 0, 0, 0]T and the covariance matrix



1.00 0.93 0.66 0.90 0.76

0.93 1.00 0.81 0.99 0.91

0.66 0.81 1.00 0.88 0.63

0.90 0.99 0.88 1.00 0.88

0.76 0.91 0.63 0.88 1.00


.

A sample of 200 points is drawn from this distribution as the given (or the ob-

served) data sample. The additive random errors are draw from the bivariate nor-

mal distribution with the mean of [0, 0]T , the variance of 6 for either component,

and the correlation coefficient of 0.6 between these two components. Accordingly,
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the given data sample (or the “observed” data sample) is constructed by adding

up the true means (multiplying the design matrix with the true coefficient matrix)

and the random errors.

The model selection methods that are based on AIC, Mallows’ Cp, BIC, hy-

pothesis testing, and LASSO, are employed to choose covariates for the optimal

models. For the informatic model selection criteria AIC, Mallows’ Cp, BIC, all

non-empty subsets of the five candidate covariates are examined, and the subset

with the best score is chosen as the variables in the optimal model. Therefore,

31 subsets of covariates are checked for each data sample. The significance level

of 5% is applied in the hypothesis testings, and variables with p-value less than

0.05 are selected into the model. The LASSO algorithm in the package glmnet

is used. The R functions output 100 candidate sets of coefficients together with

deviance. The BIC scores are thus computed from the output deviance. The set

of coefficients that results in the minimum value for the BIC score is selected.

The full model with all the five candidate covariates is fitted through the given

data sample for the fitted mean of each sample point and the fitted covariance

matrix. A bootstrap sample is obtained by drawing points from the bivariate

normal distributions with the previously fitted mean values and covariance matrix.

The optimal subset of candidate covariates is determined by the model selection

methods, and the values for the chosen variables are estimated thereafter. A total
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of 4000 bootstrap samples are drawn and inputted into model selection procedures.

And then the parameters of interest are computed, e.g., the fitted center and its

covariance matrix, the confidence region, etc.

At point x0 , [2.377, 2.377, 2.377, 2.377, 2.377]T , the estimates for the mean

response, the standard deviations for the estimates, and the coverage probability

are calculated by using the bagging method and the standard bootstrap estimator.

The component of x0 is close to the maximum value of the observed sample being

used in the simulation study. At points close to the minimum convex hull that

contains the whole sample points of covariates, the model selection uncertainty

is usually larger than that at the points close to the center of the hull. This

phenomenon is also noticed in (Efron, 2014), as a point close to the minimum

covariate value is chosen to demonstrate the fluctuation of selected polynomial

model. Similarly, a 6-dimensional point with all components being -2.5 is chosen

for checking the fitted mean response and its variance in (Wang, Sherwood, and

Li, 2014), where the values for each covariate are drawn independently from the

standard normal distribution.

The estimation results at point x0 are listed in Table 2.2. There is no sig-

nificant difference in the fitted centers among those model selection methods.

However, the standard deviations estimated with AIC are larger than those with

other model selection methods. This is because the AIC method tends to select
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more variables and thus overfit the bootstrap samples in this high-correlation case,

while other model selection methods tend to select parsimonious models with less

severity of collinearity. Table 2.3 lists the percentage of each candidate covariate

being selected across all the bootstrap samples.
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Table 2.1: Comparison of the Estimation Results from the Standard Estimator
with those from the Nonparametric Bagging Estimator under Various Model Se-
lection Methods

Model Estimation Fitted Standard Coverage

Selection Method Center Deviation Probability

AIC bagging (12.50, 18.77) (0.91, 0.80) 0.91

standard (12.67, 18.91) (1.00, 0.92) 0.95

BIC bagging (12.16, 19.13) (0.75, 0.84) 0.90

standard (11.88, 18.86) (0.87, 0.96) 0.93

Cp bagging (12.05, 19.40) (0.62, 0.95) 0.92

standard (11.88, 18.86) (0.72, 1.09) 0.95

Hypothesis bagging (12.40, 18.89) (0.85, 0.78) 0.90

Testing standard (11.88, 18.86) (0.95, 0.89) 0.92

LASSO bagging (12.41, 18.48) (1.00, 0.93) 0.93

standard (12.40, 18.89) (1.05, 0.99) 0.94
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Figure 2.1: Comparison of the Centers Estimated by the Standard Estimator and
those by the Nonparametric Bagging Estimator
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Figure 2.2: Comparison of the Standard Deviations Estimated by the Standard
Estimator and those by the Nonparametric Bagging Estimator
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Figure 2.3: Comparison of the Coverage Probabilities Estimated by the Standard
Estimator and those by the Nonparametric Bagging Estimator
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Table 2.2: Comparison of the Estimation Results from the Standard Estimator
and those from the Parametric Bagging Estimator with Various Model Selection
Methods

Model Estimation Fitted Standard Coverage

Selection Method Center Deviation Probability

AIC bagging (6.25, 6.69) (0.97,1.09) 0.90

standard (6.06, 7.06) (0.98,1.31) 0.91

BIC bagging (6.61, 7.30) (0.53,0.58) 0.95

standard (6.65, 7.24) (0.66,0.58) 0.97

Cp bagging (7.01, 7.54) (0.52,0.47) 0.96

standard (6.92, 7.42) (0.62,0.65) 0.97

Hypothesis bagging (6.78, 7.37) (0.59,0.60) 0.93

Testing standard (6.55, 7.19) (0.86,0.74) 0.95

LASSO bagging (6.47, 7.07) (0.53,0.50) 0.93

standard (6.47, 7.07) (0.53,0.54) 0.95
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Table 2.3: Percentage of Candidate Covariates being Selected during the Para-
metric Bootstrapping Example (Only Covariates V1,V3,V5 are Included in the
True Model)

Model Selection V1 V2 V3 V4 V5

AIC 43 81 40 44 47

BIC 18 65 18 20 27

Cp 15 45 22 63 20

Hypothesis Testing 100 100 24 24 25

LASSO 0 100 100 0 100
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3 Discussion

3.1 Summary

In this research, the data analytic approach has been investigated for integrating

model selection uncertainty into the statistical inferences of an estimator. For

the high dimensional bagging estimator, the formulae for covariance matrices are

derived, and the confidence regions are constructed and evaluated.

In Chapter 1, the consequences of ignoring model selection uncertainty have

been explained. Some primary approaches to tackling this problem have been

reviewed. The background theoretical results of multivariate linear regression,

model selection criteria, and the nonparametric delta method have been outlined.

Properties of the influence function have been derived for the high dimensional

linear functionals.

In Chapter 2, the derivation of covariance matrices for the high dimensional

bagging estimators are elucidated for both the nonparametric and the parametric
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cases. The performances of bagging estimators are analyzed empirically though

simulation studies in the context of multivariate linear regression. The effects of

some model selection methods have bee compared. The simulations have shown

that the model selection may influence on the accuracy of bagging estimators.

The derived covariance matrices perform better than the standard one under all

the the model selection procedures considered in this research.

3.2 Future Work

Bootstrap smoothing can be potentially applied in the context of other regression

models. For example, (Wang, Sherwood, and Li, 2014) have applied it to Poisson

regression and nonparametric regression with spline basis functions. (Shang and

Cavanaugh, 2008) investigate variants of bootstrapping schemes in the context

of mixed models. It is possible to apply the bootstrap smoothing to log-linear

models, linear mixed models, etc.

The new method of estimating covariance matrix may be applied to a bagging

M-estimator. (Hu, 2001) analyzed the properties of a resampling M-estimator

in the linear models. Bagging M-estimators in the context of MLR models may

improve the accuracy and robustness of regression models against outliers and/or

high-level noises in a data sample.

It is interesting to compare the bootstrap smoothing approach with the asymp-

53



totic approach (Hjort and Claeskens, 2003) in the context of multivariate linear

regression, as both take advantage of the intrinsic properties of model selection

procedures.

New model selection methods can also be combined with bootstrap smoothing,

for example, SCAD (Wang, Sherwood, and Li, 2014), ALASSO (Gupta and Lahiri,

2014), etc.
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