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ABSTRACT 

 

N-heterocyclic carbenes (NHCs) have found enormous success as ancillary 

ligands in catalysts in many areas of organometallic chemistry. Surprisingly, their use in 

olefin polymerization, until recently, was not widely explored. The focus of this thesis is 

to investigate the synthesis of a bidentate ligand scaffold that incorporates an NHC 

moiety and to study the ability of the resulting complexes to catalyze chemical 

transformations such as olefin polymerization.  

The synthesis and characterization of several N-aryl substituted imino-imidazolin-

2-ylidene (C^ImineR) ligand precursors was achieved following one of two synthetic 

protocols. Coordination of these ligands was explored with Group 11 metals in order to 

develop synthetic protocols which were later extended to prepare complexes of 

ruthenium, cobalt, iron, nickel, palladium and zinc.  

The coordination of C^ImineR ligands to nickel using new copper carbene dimers 

as the transmetalating agent was established. All the nickel complexes were structurally 

characterized and the size of the iminic carbon substituent was found to have a profound 

impact on the bond angles and bond lengths around the metal center. However, when 

tested for ethylene polymerization activity at standard temperature and pressure, the 

nickel complexes were found to be inactive. 

With the discovery the nickel complexes of these C^ImineR ligands were inactive 

for ethylene polymerization, the research focus was extended to the diamagnetic 

palladium-methyl complexes in order to gain insight into their thermal stability and 
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insertion chemistry. The nature of the iminic substituent profoundly affects the thermal 

stability of the neutral palladium complexes. While inactive for ethylene polymerization, 

these palladium methyl complexes react with CO and isocyanides to form various 

coordination and insertion products.  
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Chapter 1 – General Introduction 
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1.1 Polymerization Catalysts – An Introduction  

 

The discovery of titanium halides and alkylaluminum reagents by Ziegler and Natta1 

to be used in the polymerization of ethylene and propylene has led to the development of 

several new homogeneous single-site catalysts.2-4 Studies of group 4 metallocenes have 

provided a mechanistic understanding of the critical elementary steps involved in the 

formation of polyolefins.5 As a result, various ligand scaffolds and their corresponding 

complexes have been developed with enhanced activity and control over the properties of 

the polymer.6  This work in the field of organometallic chemistry and polymer science 

has led to the development of commercial protocols to prepare polyolefins varying in 

microstructure and properties. Unfortunately, aside from radical polymerization, 

commercial processes for the preparation of new materials from copolymerization of 

ethylene and polar monomers (such as acrylate, vinyl acetate and acrylonitrile) do not 

currently exist.  

Polymerization catalysts based on early transition metals have proven to be excellent 

catalysts for the polymerization of ethylene and propylene. However in the presence of 

polar monomers, the high oxophilicity of early transition metals causes these catalysts to 

be poisoned and leads to catalyst deactivation. Late transition metals are more tolerant 

towards functional groups and therefore are more appealing candidates to be used in the 

development of catalysts for copolymerization. Therefore it is no surprise late transition 

metal catalysts have attracted a great deal of attention not only for the polymerization of 

α-olefins7 but also for copolymerization with polar monomers.8 For the purpose of this 
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thesis, the literature background moving forward will concentrate on late transition metal 

oligomerization and polymerization catalysts. An emphasis will be placed on identifying 

the key features crucial for the development of an active, robust catalyst and examining 

the ability of several late transition metal catalysts to copolymerize α-olefins with polar 

monomers. 

1.2 -Diimine Neutral Chelating Systems of Late Transition Metals 
 

Prior to the 1990s, the field of polymerization was heavily dominated by early 

transition metal-based catalysts. An important discovery in the mid 1990s by Brookhart 

revealed -diimine nickel and palladium pre-catalysts were active in ethylene 

polymerization to give high molecular weight polyolefins (Figure 1).7 This new found 

knowledge created renewed interest in the field of polymerization for late transition 

metals. A key component of this system is the -diimine ligand.  Features of the -

diimine ligand include:  they are  bidentate neutral ligands that enforce a cis geometry in 

square planar complexes,9,10 they are good donors and acceptors,11   and it is 

possible to prepare extensive libraries of the ligand that have varying steric and electronic 

properties at the backbone and aryl positions.12 

 The effect of the substitution pattern on catalyst activity and polymer properties 

has been investigated by many research groups. This work led to a series of important 

observations:  1) As the bulk of the ortho substituents is increased, the molecular weights 

of the polymer increase;13 2) Catalysts containing the 2,3-butanedione back bone produce 

polymers with molecular weights higher than those obtained from catalysts based on a 
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planar aromatic acenaphthyl backbone;13 3) Greater electron-donating ligands on the 

metal center result in more stable catalysts;14 4) Catalysts with greater electron-donating 

ligands gave higher molecular weight polymers;14 and  5) Catalysts with greater  

electron-donating ligands produced ethylene-acrylate copolymers with greater polar 

monomer incorporation.14  

 

 

Figure 1. Nickel(II) and Palladium(II) -diimine precatalysts. 

 

 In addition to being active catalysts for ethylene polymerization, Brookhart 

published findings that revealed cationic palladium complexes containing -diimine 

ligands showed activity toward the copolymerization of ethylene with acrylates.7,8 

However, the palladium catalysts did not exhibit high turnover frequencies (TOF) and the 

level of  acrylate incorporation was mainly found at the end of the polymer chains rather 

than into the polyethylene chain. Another shortcoming of these systems was the carbonyl 

group of the polar monomer would inhibit the catalyst by binding to the metal and 

occupying the vacant site thus not allowing for subsequent insertion to occur.8 
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1.3 Mechanism of Olefin Polymerization 
 

 With all the research surrounding nickel and palladium -diimine complexes, one 

area of focus has been the mechanism of ethylene polymerization. A cationic species is 

considered the active species responsible for polymerization, therefore starting from the 

neutral precatalysts (species 1.3a in Figure 2) activation is usually achieved in situ using 

several possible routes.15 The most common route for nickel complexes is achieved by 

treating the dihalide species with methylaluminoxane (MAO).16 Although the exact 

details of how MAO generates the active species is not clear, a probable sequence of 

events are the aluminum reagent alkylates the complex forming a dialkyl species which is 

followed by a mono-dealkylation from the nickel. This results in the formation of a 

cationic species containing a vacant site cis to the alkyl group which is able to 

accommodate binding of a substrate (Figure 2).6  

 

 

Figure 2. General representation for the activation of a Ni(II) -diimine polymerization 
catalyst. 

For palladium alkyl precatalysts, generation of the active species is easily 

achieved by abstraction of the chloride by either silver reagents or sodium tetrakis(3,5-
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bis(trifluoromethyl)phenylborate (NaBARF) (Figure 3) and can be performed in the 

presence of a coordinating solvent such as acetonitrile.17    

 

Pd
N

N

Pd
RN

N

Cl

Me

1.3c 1.3d

NaBARF

Pd
N

N

NCR

Me

1.3e

NaBARF
NCR

BARF

BARF

 

Figure 3. General representation for the activation of a Pd(II) -diimine polymerization 
catalyst. 

 

The mechanism of polymerization is outlined in Figure 4.7,17,18 Upon formation of 

a cationic species, coordination of an olefin gives rise to an alkyl olefin complex, 

structure I. Migratory insertion results in the formation of II. Polymerization proceeds 

with repeated coordination of ethylene, followed by migratory insertion to grow the 

polymer chain continuously cycling between structures I and II. Instead of ethylene 

coordination, complex II, can undergo a hydride elimination to form an olefin hydride 

species, III. Complex III can undergo hydride reinsertion to form a branched alkyl group 

on the polymer chain (structure V) which can further proceed in polymer growth. The 
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other possibility is complex III can undergo a chain transfer via an associative 

displacement19,20 of the polymer by ethylene from the olefin hydride species which 

initiates a new chain. 

 

 

Figure 4. General representation of mechanism of ethylene polymerization. 

 

 

1.4 Iminophosphine Chelating Systems of Late Transition Metals 
 

Despite the significant progress made by Brookhart, most -diimine-based nickel 

and palladium catalysts are thermally unstable and decompose17,21 rapidly at elevated 

temperatures.13 Therefore it is no surprise a lot of interest has been directed to improve 

the thermal stability of this class of catalysts which has led to alternative ligands with an 

N-N, N-O and P-P binding motif.4,22  Of particular interest is the work with the related 

iminophosphine ligand Brookhart and Marshall reported (Figure 5). The iminophosphine 

ligand is similar to the -diimine scaffold except one imine group is replaced with a 
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phosphine group. The results of this alteration were the iminophosphine-based catalysts 

were less productive than the -diimine-based catalysts but showed significantly 

improved thermal stability upon activitation.23,24 This was an important observation, 

indicating that greater electron-donating ligands can enhance the thermal stability of their 

corresponding complexes. 

 

 

 Figure 5. Nickel (II) and Palladium (II) iminophosphine precatalysts. 

 

1.5 Monoanionic Chelating Systems of Late Transition Metals 
 

 In addition to neutral ligands, monoanionic ligands have proven to be valuable in 

the area of oligomerization and polymerization. An example is the Shell Higher Olefin 

Process which uses nickel complexes bearing a monoanionic chelating [PO] ligand for 

the oligomerization of ethylene.25-27 The catalysts, depicted in Figure 6, produce linear α-

olefins from ethylene. Extensive research of these systems have revealed that the activity 

of SHOP-type catalysts can be controlled by the architecture of the ligand;28 large bulky 

groups next to the oxygen atom lead to an increase in activity of the resulting catalysts29 
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and the molecular weights of the oligomer can be increased by the addition of greater 

bulk as well as greater electron density on the substitutents on the phosphorous atom.27  

 

 

Figure 6. Nickel(II) precatalysts with monoanionic [PO] and [NO] ligands. 

 

With the immergence of monoanionic [PO] ligands, several related anionic 

chelates have also been introduced. Grubbs reported complexes of nickel bearing 

monoanionic salicylaldinaminato [NO] ligands that exhibited high activities towards 

ethylene polymerization (Figure 6).30 The bulky substitutents at the ortho position of the 

N-aryl rings result in an increase in the molecular weights of the polymer and bulky 

substitutens on the phenoxy group are an important feature as they deter the formation of 

bis-ligand complexes which lead to catalyst deactivation.4 In addition to be active 

catalysts for ethylene, salicylaldiminato complexes of nickel have also been found active 

in the copolymerization of ethylene with other α-olefins.  

1.6 Chelating Ligands for Copolymerization Catalysts of Late Transition Metals 

 

In the last two decades, the emergence of polymerization catalysts capable of 

incorporating polar monomers into a linear ethylene chain have been reported (Figure 
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7).31 Drent demonstrated neutral palladium catalysts that contain an anionic chelating 

sulfonate phosphine ligand can produce linear copolymers that incorporate acrylates. 31 

Unlike Brookhart’s work that also demonstrated palladium complexes bearing -diimine 

ligands can copolymerize ethylene with acrylates, the polymers produced were branched 

polyethylene chains  where the acrylate incorporation was mainly found at the end of the 

polymer chains, Drent’s system demonstrated acrylate incorporation within the 

polyethylene chain.  In addition, these palladium catalysts have also been shown to 

copolymerize vinyl ethers,32 vinyl fluoride and acrylamides.33 Although Drent’s initial 

report was based on a palladium catalyst generated in situ, research groups have 

successfully been able to prepare and characterize the isolated precatalyst. 34 

 

 

Figure 7. Palladium(II) precatalysts with monoanionic ligands. 

 

1.5 N-Heterocylic Carbenes – Introduction 
 

N-heterocyclic carbenes (NHCs) were first explored by Wanzlick several decades 

ago in the early 1960s35 and independently coordinated to transition metals by Wanzlick36 

and Ofele37 in 1968.  It was only until Arduengo38 reported the synthesis and isolation of 



11 

 

an NHC in 1991 that it became an area of immense research interest in the field of 

transition metal chemistry.39 

1.6 Features of NHC Ligands 
 

 The attractive features that have made NHCs so ubiquitous in the field of 

organometallic chemistry include their electronic properties and their ability to impart 

thermal stability in their corresponding complexes. NHCs are neutral strong sigma-

donors.40,41 Comparison studies using carbonyl complexes bearing either an NHC or 

phosphine have revealed NHCs are in fact more electron-donating than even the most 

basic phosphines.42-46 It is possible to alter the electronic character of an NHC by altering 

the electronic nature of the azole ring.47 Being the strong sigma donors as they are, NHCs 

form very strong bonds with metals 41,48 resulting in the formation of very robust metal-

carbene complexes. Despite the strength of a metal-carbon bond, there are reported cases 

where migratory insertion into a metal-carbene bond,49,50 reductive elimination,51 and 

carbene displacement by another ligand52 has occurred proving the metal-carbene bond is 

not exempt from decomposition pathways.  

1.7 Synthetic Routes to Prepare Metal-Carbene Complexes 
 

 There are a number of ways to prepare transition metal imidazol-2-ylidene 

complexes. The synthetic methodologies that were followed to prepare compounds in this 

thesis are generically represented in Figure 8. One of the most common methods to 

prepare NHC complexes involves the complexation of an isolated N-heterocyclic carbene 
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ligand via the ligand displacement reaction using a suitable metal precursor. This method 

has been successfully employed for a variety of transition metal precursors and used to 

displace several neutral ligands to include phosphines,53 carbonyls,43 amines54 and 

coordinated solvent molecules.55 When it is not possible to isolate the carbene, another 

method that can be employed is reaction of the imidazolium salt with a metal precursor 

that contains a basic ligand.56 Basic metal precursors are commercially available or can 

be prepared in situ.57,58 Another methology that can be used when isolation of the free 

carbene is not possible is the use of an isolated or in situ generated transmetalating agent 

such as a silver NHC complex, to transfer the ligand from silver to a suitable target metal 

precursor.59 In cases where the imidazolium precursors contain functional groups that are 

sensitive to deprotonation by a strong base, the use of transfer agents becomes a viable 

alternative. Lastly, oxidative addition of the imidazolium salt with appropriate metal 

precursors can be used to prepare metal carbene hydride species.60 

 

 

Figure 8. General routes to prepare NHC metal complexes. 
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1.8 Plan of Study 

 
 In the last few years, much effort has been made to synthesize novel N-

heterocyclic ligands and the corresponding metal complexes since the strong sigma donor 

ability of the NHC leads to complexes that are more thermodynamically robust than 

phosphine ligands.61 Until recently, their use in olefin polymerization was not widely 

explored.62,63 Considering the improved thermal stability of group 10 complexes with 

bulky iminophosphine ligands over those with the related α-diimines,23,24 it became of 

interest to investigate the synthesis of a bidentate ligand scaffold that incorporates an N-

heterocyclic carbene moiety (Figure 9) and study the ability of the resulting complexes to 

catalyze chemical transformations such as olefin polymerization. 

 

 

Figure 9. Design concept for N-heterocyclic carbene ligands and their corresponding 
metal complexes. 

 

The ligand scaffold of interest in our research group has several advantages over 

other bidentate imino-,64 pyridyl-,65-67 and oxazolinyl-functionalized68 carbene ligands 

(Figure 10).64,69-71  
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Figure 10. Functionalized carbene ligands. 

 

The absence of any carbon spacers between the carbene and imine group will 

avoid tautomerisation of the imine moiety to an enamine upon coordination with a metal 

precursor.64 In addition, the removal of the carbon spacer may prevent decomposition of 

the ligands during attempts to prepare the free carbenes.72 The bulky aryl subsitutents on 

both the imidazolin-2-ylidene and the imine nitrogen atoms will stabilize coordinatively-

unsaturated species, such as square-planar d8 complexes, and protect the axial sites 

against unwanted coordination or associative displacement of other loosely bound 

ligands. Bulky aryl substituents, not present in other related systems, turned out to be 

critical for the group 10 -diimine system in producing high molecular weight polymers.7 

In addition, the presence of bulky aryl groups at various locations along the ligand 

scaffold will allow fine-tuning of sterics and electronics of the active site. This is 

achieved by reaction of various easily prepared N-aryl-substituted imidazoles with N-

aryl-substituted imidoyl chlorides.  
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Chapter 2. Aryl-Substituted Imino-N-Heterocyclic Carbene Ligands: 
Synthesis, Characterization and Coordination with Silver(I), Copper(I) 
and Gold(I) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



16 

 

Preface 

       

A part of the research presented in this chapter has been published in several 

papers.73-75 Any work presented in these papers that was completed by other research 

colleagues does not appear in this thesis. 

2.1 Introduction 

 

 The use of NHCs as an ancillary ligand in the area of organometallic chemistry 

has grown immensely since Arduengo reported the isolation of an NHC. Due to the 

strong donor ability of the carbene, complexes are more thermodynamically robust 

compared to those with phosphine ligands. To explore the application of NHC ligands in 

olefin polymerization, the synthesis of a bidentate ligand that would have an NHC 

imbedded into the scaffold was investigated along with the coordination chemistry. This 

chapter describes the synthesis and characterization of the first N-aryl substituted imino-

imidazolin-2-ylidene ligand precursors, isolation of the free carbenes and coordination to 

Group 11 metals.  

2.2 Results and Discussion 
 

2.2.1 Synthesis of imidazolium salts and imino-N-heterocyclic carbene ligands 

 

In order to prepare a library of complexes bearing structurally and electronically 

distinct ligands, a synthetic protocol to easily prepare a variety of ligand precursor 
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scaffolds first needed to be established. Following a modified synthetic approach from 

the literature,72,76 a series of imino imidazolium salts can be prepared by reaction of a 

substituted arylimidazole with N-(aryl)acetimidoyl chloride (Scheme 1). 

 

Scheme 1. Synthesis of imino-NHC ligand precursors (1a1a”). 

NNAr2

N

Arylimidazole

Cl

1a ·

1a' ·

1a" ·

N

Cl

Ar1

Ar1

a

a'

a"  

 

The imidazolium salt 1a is readily prepared from 1-(2,4,6-

trimethylphenyl)imidazole and N-(2,6-dimethylphenyl)acetimidoyl chloride in THF at 

room temperature (Scheme 1). In the 1H NMR (CDCl3) spectrum, the resonance of the 

central imidazolium proton (NCHN) for the E-isomer resonance is observed at δ 11.98 

and the backbone protons of the heterocycle (NCHCHNmesityl) appear at  δ 8.51 and δ 

7.24. In the 13C NMR spectrum, the iminic carbon (C=N) resonance and the central 

imidazolium carbon (NCN) appear at δ 150.1 at δ 140.2, respectively. The FTIR ʋC=N 

absorption for the imine group of 1a is 1691 cm1. The 1H NMR spectrum of a freshly 

prepared DMSO-d6 solution initially shows the presence of both geometric isomers (E/Z) 

in approximately a 15:1 ratio, with the major isomer assigned unambiguously as the E-

isomer by 1D NOESY experiments using selective excitations. Slow isomerization to the 
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Z-isomer was observed at room temperature. In contrast, isomerization in CDCl3 at 333K 

was very slow, with no observable change in the initial ratio of isomers over 24 hours. 

The solid-state structure of compound 1a was determined by X-ray 

crystallography and the molecular structure is shown in Figure 11 along with select bond 

lengths and angles. Compound 1a crystallized in the centrosymmetric P –1 space group. 

Analysis reveals that the E-isomer preferentially crystallized out of the mixture of 

isomers. The solid-state structure shows that the mean plane passing through C5–C4–N3–

C6 is slightly twisted off from the imidazol-2-ylidene ring by 0.78º. The 2,6-

dimethylphenyl and the 2,4,6-trimethylphenyl rings are twisted 99.37º and 71.23º with 

respect to the 5-membered ring, respectively (Figure 11). 
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Figure 11. ORTEP plot of (C^ImineMeH·Cl) (1a) (30% probability level). Hydrogen 

atoms and dichloromethane molecules are omitted for clarity. Select bond lengths (Å) 

and angles (º): N1–C1 1.323(4), N2–C1 1.338(4), N1–C3 1.398(4), N2–C2 1.391(4), C2–

C3 1.344(5), N3–C4 1.262(4), N1–C1–N2 108.1(3), C1–N1–C14 125.8(3), C1–N2–C4 

126.1(3). 
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An analogous imino imidazolium salt, C^ImineMe’·HCl (1a’), was synthesized by 

replacing the 2,6-dimethylphenyl ring with a 2,6-diisopropylphenyl fragment by reaction 

of 2,4,6-trimethylphenylimidazole with N-(2,6-diisopropylphenyl)acetimidoyl chloride  

in toluene for a total of 19 h (Scheme 1). The 1H NMR (CDCl3) spectrum of 1a’ shows 

the presence of only one isomer. In the 1H NMR spectrum, the central imidazolium 

proton (NCHN) is observed at δ 12.20 and the remaining backbone protons of the 

heterocycle (NCHCHNmesityl) appear at δ 8.51 and δ 7.28. In the 13C NMR spectrum, the 

iminic carbon (C=N) resonance and the central imidazolium carbon (NCN) appears at δ 

149.8 and δ 140.3, respectively. The FTIR C=N absorption for the imine group of 1a’ is 

1698cm1. To introduce a different substitution pattern on the aryl substitutent bound to 

the azole nitrogen, compound 1a” C^ImineMe”·HCl, was prepared in a similar manner to 

1a from 1-(2,6-diisopropylphenyl)imidazole and N-(2,6-dimethylphenyl)acetimidoyl 

chloride in THF at room temperature (Scheme 1). Similar to 1a’, compound 1a” also 

shows the presence of only one isomer. 

Having found success at preparing several ligand precursors of different aryl 

substituents at the imine and 3-azole positions, the next step was to replace the methyl 

substituent at the iminic position for a tert-butyl and phenyl group. Reactions of N-(2,6-

dimethylphenyl)pivalimidoyl chloride or N-(2,4,6-trimethylphenyl)benzimidoyl chloride 

with 2,4,6-trimethylimidazole under similar reaction conditions used for compounds 1a 

and  1a’ unfortunately did not produce the desired imidazolium chloride. Numerous 

attempts were made varying the ratio between reagents, solvents, reaction time and 

temperature but no success was reached with this synthetic approach. The imidoyl 
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chloride was thus activated by first reacting it with sodium tetrafluoroborate to form the 

corresponding nitrilium ion and sodium chloride. Addition of 2,4,6-

trimethylphenylimidazole to the highly electrophilic nitrilium ion produced the targeted 

products (Scheme 2).  

 

Scheme 2. Synthesis of imino imidazolium salts 1b and 1c. 

 

 

Solution 1H NMR spectroscopy of 1b in CDCl3 showed that a single geometric 

isomer was formed, unambiguously assigned to the E conformer by a series of 1D 

NOESY NMR experiments. In the 1H NMR spectrum, the central imidazolium proton for 

the major isomer resonance is observed at δ 8.39 and the remaining backbone protons of 

the heterocycle appear at  δ 7.70 and 7.25. In the 13C{1H} NMR spectrum, the iminic 

carbon (C=N) resonance appears at δ 154.6 and the central imidazolium carbon appears 

at δ 134.8. The phenyl derivative C^IminePh·HBF4 (1c) also necessitated activation of the 

imidoyl chloride by reaction with sodium tetrafluoroborate to form the corresponding 

nitrilium salt in situ (Scheme 2). The 1H NMR (CDCl3) resonance for the central 

imidazolium proton of 1c is observed at δ 8.81, while those for the inequivalent backbone 

protons of the heterocycle appear at δ 8.09 and 7.52. The iminic and the central 
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imidazolium carbon nuclei resonate at δ 148.1 and 136.1, respectively. The FTIR 

stretching frequency for the imine group of 1c was observed at 1675 cm–1. With several 

salts in hand, the next step was to generate the free carbene.  

 

Reaction of the imidazolium salt (1b) with sodium bis(trimethylsilyl)amide cleanly 

gave the free carbene 2b, C^Iminet-Bu , in 91% yield (Scheme 3). The 1H and 13C NMR 

spectra are in agreement with the desired product. The 1H NMR resonance for the central 

imidazolium proton of 1b vanished and a new 13C NMR resonance appeared at 218.3 

ppm, characteristic of central carbon nuclei of NHCs.72 1D NOESY NMR spectoscopy 

showed that 2b exists as the Z conformer in solution. 

 

Scheme 3. Synthesis of free carbenes C^Iminet-Bu (2b) and C^IminePh (2c). 

 

 

 Crystals of the C^Iminet-Bu (2b) suitable for X-ray diffraction studies were grown at 

–35 °C from a saturated pentane solution and crystallized in the centrosymmetric P –1 

space group. Single crystal X-ray diffraction analysis confirmed generation of the free 

carbene 2b.  The molecular structure is shown in Figure 12 along with select bond 

lengths and angles.  The imine group also adopts the Z-conformation in the solid-state, 
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with a 54.03° angle between the mean planes formed by C14, C13, N3 and C18 and by 

the imidazol-2-ylidene ring. The 2,4,6-trimethylphenyl ring is twisted off by 82.95° with 

respect to the azole ring.  

C24

C20

C2
C3

C19

C12

C21

C15

C18

C9

C4

C8

C13

C17

C22

C14

C1

C7

C5

C11

C23C10

C6

C16

C25H2
H3

N1
N2

N3

 

Figure 12. ORTEP plot of (C^Iminet-Bu) (2b) (50% probability level). Hydrogen atoms 

and solvent molecules are omitted for clarity. Selected bond lengths (Å) and angles 

(°):N1–C1 1.354(3), N2–C1 1.380(3), N1–C2 1.393(3), N2–C3 1.388(3) , C2–C3 

1.338(3) , N3–C13 1.266(3), N1–C1–N2 101.48(19). 

 

Deprotonation of 1c with bis(trimethylsilyl)amide under similar conditions also 

cleanly gave the corresponding free carbene C^IminePh (Scheme 3) in 72% yield, with 1H 

and 13C NMR spectra consistent with the desired product. The stretching frequency of the 

imine group is observed for 2c at 1652 cm1.  
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2.2.2 Synthesis of group 11 imino-N-heterocyclic carbene complexes 

 

Attempts to deprotonate C^ImineMe·HCl (1a) with common bases, such as 

potassium tert-butoxide, bis(trimethylsilyl)amide, and hydride, to form the corresponding 

free carbene were unsuccessful and led to a mixture of unidentified products, possibly 

due to competing deprotonation of the iminic methyl group with subsequent 

decomposition. Similar observations were reported in other related systems.77 The 

preparation of the corresponding silver complex was thus investigated. This approach is 

valuable as silver complexes can effectively transmetalate the coordinated carbene to 

other transition metals and would allow us to prepare the corresponding group 10 

complexes as initially intended. C^ImineMe·HCl (1a) shows no reactivity towards 

silver(I) oxide under various experimental conditions, in contrast, reaction of 1a with 

silver carbonate at room temperature cleanly generated the silver chloride complex  

(C^ImineMe)AgCl (3a) in 77% yield (Scheme 4). 

 

Scheme 4. Synthesis of silver(I) complexes (3a3a”). 

 

The 1H and 13C NMR spectra are in agreement with the desired product. 1D 

NOESY (CDCl3) experiments using selective excitations confirm the presence of only 
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the E isomer in solution. The FTIR stretching frequency for the imine group of 3a was 

observed at 1682 cm1 comparable to that of C^ImineMe·HCl (1a) (C=N 1691 cm1) 

which is an indication of no coordination of the iminic arm.69  

 X-ray diffraction studies on a single crystal show the complex also adopts the E-

configuration in the solid-state (Figure 13), in agreement with that observed in solution.  

As expected, the ligand is coordinated to silver through the carbene center. The Ag1–C1 

and Ag1–Cl1 bond lengths are 2.074(3) and 2.3346(9) Å, respectively, with a C1–Ag1–

Cl1 angle of 176.29(9)º. Those values are in agreement with the corresponding values 

observed in related compounds.69,76,78,79 In contrast to C^ImineMe·HCl (1a), the imine 

nitrogen N3 in (C^ImineMe)AgCl (3a) is positioned so as to allow possible interactions 

with the metal center. However, the measured Ag(1)···N(3) distance (2.866 Å) is too 

great for any significant interaction. The elevated FTIR C=N absorption at 1682 cm1, 

further confirms the absence of any dative bond between N(3) and the metal center. This 

value is in fact comparable to that observed for the imidazolium salt precursor 1a, with a 

C=N absorption at 1691 cm–1. Coordination of N3 would have decreased the C=N value 

to ca. 1610 cm–1.69 The angles between the mean planes formed by the imidazol-2-

ylidene ring and those of the 2,6-dimethylphenyl and of the 2,4,6-trimethylphenyl rings 

are 52.15 and 74.87°, respectively.  
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Figure 13. ORTEP plot of [(C^ImineMe)AgCl] (3a) (30% probability level). Hydrogen 

atoms and dichloromethane molecules are omitted for clarity. Select bond lengths (Å) 

and angles (º): Ag1–Cl1 2.3346(9), Ag1–C1 2.074(3), N3–C4 1.263(5), C1–Ag1–Cl1 

176.29(9), N1–C4–N3 116.8(3). 

 

Once a set of conditions to successfully coordinate the C^ImineMe ligand to silver 

was established, this same synthetic protocol was used to prepare the other analogous 

silver carbene complexes 3a’ and 3a”. 

The 1H NMR (CDCl3) spectrum for compounds 3a’ and 3a” shows the presence 

of only one isomer. The 1H NMR spectrum is consistent with the formation of the 

carbene and coordination to silver. In the 13C NMR spectrum, the iminic carbon (C=N) 

resonance appears at δ 153.3 and 152.2 for 3a’ and 3a”, respectively. The carbene carbon 

(NCN) appears at δ 182.5 and 182.8 for 3a’ and 3a”, respectively. 
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 Despite being initially interested in group 10 transition metal complexes, it was 

important to first prepare and study the coordination chemistry of the ligand to group 11 

metals, as the resulting complexes would be diamagnetic and would allow for 

characterization by NMR spectrometry. Cu(C^ImineMe)2Cl (4) was synthesised in 69% 

yield as the expected sole product of the reaction of silver complex 3a with CuI in 

dichloromethane (Scheme 5). 

   

Scheme 5. Synthesis of Copper(I) Complex 4. 

 

 

The crystal structure of 4 shows a distorted T-shaped complex with Cu1, Cl1, C1 

and C23 forming a plane where both carbenes are approximately trans to each another 

(Figure 14). The C1–Cu1–C23 bond angle is 155.34(14)°, with C1–Cu1–Cl1 and C23–

Cu1–Cl1 bond angles of 105.35(10) and 99.29(10)º, respectively. No interaction between 

the iminic nitrogen to the metal center is observed, in agreement with the observed C=N 

absorption at 1678 cm–1. Biscarbene copper complexes normally adopt a linear 

conformation.80 To the best of my knowledge, only two T-shaped three-coordinate 

complexes of Cu(I)71 and Ag(I)81 containing two monodentate N-heterocyclic carbene 
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ligands coordinated to a metal center have been characterized by X-ray diffraction. 

Unlike Ag(C^ImineMe)Cl (3a), no interaction between the imine nitrogen atoms and the 

copper center is possible as the iminic arm points away from the copper metal center.  
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Figure 14. ORTEP plot of [(C^ImineMe)2CuCl] (4) (30% probability level). Hydrogen 

atoms and dichloromethane molecules are omitted for clarity. Select bond lengths (Å) 

and angles (º): Cu1–Cl1 2.4313(10), Cu1–C1 1.937(3), Cu1–C23 1.933(3), N6–C35 

1.259(4), Cl1–Cu1–C(1) 105.35(10), Cl1–Cu1–C23 99.29(10), C1–Cu1–C23 155.34(14). 

 

The average Cu-carbene bond length of 1.935(3) Å in (C^imine)2CuCl (4) is 

slightly shorter compared to the bond length (1.953 Å) observed for IPrCuCl82 but it is in 

close agreement with the corresponding bond length of 1.930(2)Å reported by Albecht 
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for a three-coordinate biscarbene copper halide complex (bis[1,3-dihydro-1-methyl-3-(1-

methylethyl)-2H-imidazol-2-ylidene]iodocopper).71 The Cu1–Cl1 bond length of 

2.4313(10) Å is also long compared to other copper carbene complexes.  

Interested to see if using different conditions would allow the preparation of a 

mono-ligand copper structure, another synthetic approach was tested to prepare 

additional imino-NHC copper(I) complexes. Complexes 5a and 5b were synthesized in 

81% and 95% yield, respectively, by reaction of the respective imidazolium salts with 

CuI and sodium hexamethyldisilazide (Scheme 6). Complex 5b was also independently 

prepared by addition of the free carbene 2b to a solution of copper(I) iodide.  

 

Scheme 6. Synthesis of (C^Imine)CuI Dimers (5a and 5b). 

 

 

As expected, the characteristic downfield resonance for the central imidazolium 

proton of 1a and 1b in the 1H NMR spectra is no longer present and resonances for the 

backbone (–NCHCHN–) protons move upfield to δ 8.19 and 6.83 for 5a and to δ 6.89 

and 6.69 for 5b. The 13C NMR resonances for the carbenoid carbon (–NCN–) and the 

iminic carbon nuclei of 5a are observed at δ 186.0 and 153.6, respectively, a significant 

downfield shift from that of the corresponding salt. A similar trend to higher frequency 
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was observed in 5b, for which the carbenoid carbon and iminic carbon nuclei resonate at 

δ 178.8 and 159.9, respectively. The FTIR C=N absorption for 5a and 5b were observed 

at the expected 1678 and 1664 cm–1, respectively.  

Crystals suitable for X-ray diffraction studies were obtained by slow vapor 

diffusion of pentane into a concentrated solution of dichloromethane. Complex 5a 

crystallized in the centrosymmetric P –1 space group as a dimer with two bridging iodide 

ligands forming a slightly puckered four-membered ring metallacycle (Figure 15). The 

geometry about each copper atom is best described as a slightly disordered trigonal 

planar structure, with angles about the metal centers ranging from 113.20(10) to 

126.69(11)°. The Cu1–C1 and Cu2–C23 bond distances of 1.926(3) and 1.936(3) Å, 

respectively, comparable to that reported in a related carbene copper dimeric structure.83 

Although N3 is positioned as to allow coordination to Cu1, the distance between Cu1 and 

N3 is 2.465(3) Å, slightly longer than the sum of the covalent radii of both atoms, 

suggests that no interaction actually exists and is likely due to crystal packing within the 

lattice.84 This is further supported by the statistically equivalent bond lengths for both 

iminic bonds N3–C4 and N6–C26, at 1.264(5) and 1.263(4) Å, respectively.  
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Figure 15.  ORTEP plot of [(C^ImineMe)CuI]2 (5a) (thermal ellipsoids at 50% 

probability). Hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles 

(°): Cu1–C1 1.926(3), Cu1–I1 2.6288(5), Cu1–I2 2.6047(5), Cu1–N3 2.465(3), N1–C1 

1.370(4), N2–C1 1.350(4), N3–C4 1.264(5), N2–C1–N1 103.0(3). 

 

The homologous tert-butyl complex 5b crystallized in the P21/c space group also 

as a dimer with two bridging iodide ligands and C^Iminet-Bu bound to copper in a 

monodentate fashion through the carbene center (Figure 16). The molecule lies on an 

inversion center. Similar to 5a, the geometry about the metal center is best described as 

slightly distorted trigonal plane, with C1–Cu1–I1, C1–Cu1–I1a and I1–Cu1–I1a bond 

angles of 120.83(9)°, 122.28(9)° and 116.516(14)°, respectively. 
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Figure 16.  ORTEP plot of [(C^Iminet-Bu)CuI]2 (5b) (thermal ellipsoids at 50% 

probability). Hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles 

(°): Cu1–C1 1.945(3), Cu1–I1 2.5688(4), Cu1–I1a 2.6030(4), N3–C4 1.259(4), C1–Cu1–

I1 120.83(9), I1–Cu1–I1a 116.516(14), C1–Cu1–I1a 122.28(9). 

 

Reaction of C^Iminet-Bu (2b) with Au(SMe2)Cl resulted in the formation of an off-

white solid providing proton and carbon spectra consistent with the target (C^Iminet-

Bu)AuCl (6b) compound (Scheme 7). The FTIR C=N stretching frequency of 1664 cm–1 

found for 6b suggests no chelation of the iminic arm to the metal center.57,73 
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Scheme 7. Synthesis of (C^Iminet-Bu)AuCl (6b) with subsequent rearrangement to 
[(C^Iminet-Bu)2Au][AuCl2

–1] (7b). 

 

 

X-ray quality crystals were grown at room temperature by slow vapour diffusion of 

pentane into a saturated THF solution. The complex crystallized in a triclinic crystal 

system in the P –1 space group. The solid-state structure showed a coordination complex, 

in which two carbenes are bound to a cationic gold(I) metal center with dichloroaurate as 

the counteranion (Figure 17). The C1–Au1–C26 bond angle is 172.6(2)° with the 

imidazole rings approximately orthogonal to each other  at 87.4°. The Au1–C1 and Au1–

C26 bond lengths are equivalent with an average value of 2.029(7) Å , this is slightly 

longer compared to (IMes)AuCl (1.998 Å) but expected considering the strong -

donation of both carbenes.85 The C^Iminet-Bu ligands coordinate to gold in a monodentate 

fashion through the carbenoid carbon with the iminic bond length (1.262(8) Å) 

statistically equivalent to that of C^Iminet-Bu (2b). 
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Figure 17. ORTEP plot of [(C^Iminet-Bu)2Au][AuCl2] (7b) (50% probability level). Two 

THF solvent molecules, the [AuCl2]– counteranion, hydrogen atoms, and N4/N5 

substituents are omitted for clarity. Select bond lengths (Å) and angles (º) are average 

values observed for both C^Iminet-Bu ligands present in the complex: N1–C1 1.363(8), 

N2–C1 1.354(8), C2–C3 1.341(9), N1–C4 1.464(8), N3–C4 1.262(8), Au–C1 2.029(7), 

Au–Cl1 2.262(2), N1–C1–N2 104.2(7)°, N1–C1–Au1 133.0(5)°, C26–Au1–C1 

172.6(2)°. 

The chemical shift for the carbenoid carbon observed in the 13C NMR spectrum ( 

172.7) is in closer agreement to a (carbene)Au(halide) neutral complex ( 173.4–175.1) 85 
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than to a (carbene)2Au+ cationic one ( 180.3–186.1).  This information suggests that 

complex 6b is not in fact formed in the reaction of the free carbene 2b with Au(SMe2)Cl 

but upon crystallisation, disproportionation occurs to yield complex 7b (Scheme 7). This 

behaviour has been observed with related gold and silver systems.59,86-89 

Reaction of (C^ImineMe)AgCl (3a) with Au(SMe2)Cl  gave (C^ImineMe)AuCl (6a) in 

85% yield (Scheme 8). The 1H and 13C NMR spectra were consistent with a 

(C^ImineMe)AuCl molecular formula where the carbenoid carbon is found at  172.5. As 

expected, the FTIR C=N stretching frequency at 1683 cm–1 suggests no chelation of the 

iminic arm to the metal center. 

 

Scheme 8. Reaction of (C^ImineMe)AgCl with Au(SMe2)Cl to form complex 6a. 

 

 

Single crystals suitable for X-ray diffraction studies were grown at –35 °C by layering 

pentane onto a saturated dichloromethane solution. Compound 6a crystallized in a 

monoclinic crystal system in the P 21/c space group. The solid-state structure of 6a shows 

a coordination complex where one carbene ligand is coordinated to a gold metal center 

with a bound chloride (Figure 18).  Au1–C1 and Au1–Cl1 bond distances are 2.014(5) 

and 2.2802(14) Å, respectively, with a C1–Au1–Cl1 angle of 177.83(15)°. The C4–N3 
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bond is 1.259(7) Å, which is consistent with the C=N stretching frequency and similar to 

that observed in the silver complex (3a). The solid-state structure of 6a suggests that 

compound 6b formed upon addition of C^Iminet-Bu (2b) to Au(SMe2)Cl then rearranges 

upon crystallisation to form 7b. This hypothesis is further supported by the similar 

chemical shifts observed from the carbenoid carbon nuclei in both compounds 6b and 6a, 

which are consistent with a (carbene)AuX-type structure. The combination of the NMR 

spectroscopic data for 6a with its solid-state structure supports the hypothesis that 

complex 6b is indeed initially formed upon addition of C^Iminet-Bu (2b) to Au(SMe2)Cl 

but undergoes ligand rearrangement upon recrystallization. 
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Figure 18. ORTEP plot of (C^ImineMe)AuCl (6a) (50% probability level). Hydrogen 

atoms and a dichloromethane solvent molecule are omitted for clarity. Select bond 

lengths (Å) and angles (º): N1–C1 1.352(6), N2–C1 1.331(6), C2–C3 1.309(8), N1–C4 

1.442(6), N3–C4 1.259(7), Au–C1 2.014(5), Au–Cl1 2.280(1), N1–C1–N2 106.9(5), N1–

C1–Au1 132.1(4). 
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2.3 Conclusions 

 

 In summary, a series of aryl-substituted imino imidazolium salts have been 

synthesized and structurally characterized. The phenyl and tert-butyl salt derivatives 

necessitated activation of the imidoyl chloride by reaction with sodium tetrafluoroborate 

to form the corresponding nitrilium salt in situ. In cases where permitted, the first stable 

aryl-substituted imino-N-heterocyclic carbenes were isolated and characterized. 

Coordination of these ligands was explored to group 11 metals and a series of new 

complexes were prepared from either ligand displacement, transmetalation or reaction 

with a basic metal precursor. The solid-state structures of all the silver, copper and gold 

complexes show monodentate coordination of the ligand through the carbene leaving the 

iminic arm unbound.  
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Chapter 3. Synthesis, Characterization of Nickel(II) Complexes with 
Imino-N-Heterocyclic Carbene Ligands 
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Preface 
 

      A part of the research presented in this chapter has been published in a paper in 

which I wrote the first draft and further revisions were done by my supervisor Dr. Gino 

Lavoie.57 

3.1 Introduction 
 

Group 10 nickel and palladium halide complexes containing bulky -diimine 

ligands were shown to be very effective catalysts for the polymerization of olefins.7 

These complexes, first reported in 1995, have created renewed interest in developing new 

coordination catalysts based on late transition metals, which are less oxophilic and more 

tolerant of functional groups than their early transition metal counterparts.90,91 

Interestingly, the initial -diimine system remains one of the most effective catalysts so 

far developed. However, despite the early promising results, these catalysts have yet to 

deliver acceptable performance at elevated temperature. Reaction temperatures in excess 

of 50 °C and the presence of small concentration of hydrogen both have severe damaging 

effects on the productivity observed with these -diimine-based catalysts, preventing 

their use in large-scale production plants.13,92-94 It became a research interest to study 

nickel complexes containing a related hybrid bidentate ligand composed of a -donor/-

acceptor imine and of strong -donor/poor -acceptor N-heterocyclic carbene (NHC). 

NHC’s have been widely used as ancillary ligands due to the enhanced thermal stability 

that they impart in catalytic systems.61,95 Although NHCs are now ubiquitous in the field 
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of metathesis polymerization,96-98 their use in olefin polymerization is still very 

limited.62,63,99,100 Chapter two described the synthesis of several different bis(aryl)-

substituted imino-N-heterocyclic carbene ligands and of their corresponding group 11 

transition metal complexes. This chapter describes the preparation and structural 

characterization of several copper and nickel complexes, including (C^ImineMe)NiBr2 

and (C^Iminet-Bu)NiBr2 complexes, along with their catalytic performance in ethylene 

polymerization. In addition, the coordination of these ligands was explored with zinc, 

iron and cobalt metals. 

 

3.2 Results and Discussion 

3.2.1 Synthesis of a bis(imino-N-heterocyclic carbene)nickel complex via oxidative 
addition 

 

Although the silver complex 3a was successfully used as a transmetalating agent 

to isolate copper (C^ImineMe)2CuCl (4) and gold (C^ImineMe)AuCl (6a) complexes, all 

attempts to prepare nickel complexes by reaction with either NiBr2(DME) or 

NiBr2(THF)2 failed. Therefore a new strategy reported by Fryzuk101  and Crabtree102 was 

adopted to investigate the oxidative addition of the imidazolium salt on nickel(0) metal 

precursors. Reaction of one equivalent of 1a with Ni(COD)2 in THF to form 

(C^ImineMe)Ni(H)(Cl) was attempted. This however resulted in the formation of 

Ni(C^ImineMe)2Cl2 (8). Addition of two equivalents of 1a also led to complex 8 as the 

major product in 66% yield. It is postulated that the resulting nickel dichloride complex is 
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generated when the partially-soluble nickel precursor oxidatively adds across the 

partially-soluble 1a to form the highly reactive and basic nickel(II) hydride complex A 

(Scheme 9). Deprotonation of a second equivalent of imidazolium salt by A subsequently 

generates 8 with the release of one equivalent of molecular hydrogen. Attempts by 

Crabtree to prepare a palladium carbene hydride complex also led to the formation of the 

corresponding bis(carbene) palladium dichloride species.102  

 

Scheme 9. Reaction of Imidazolium Salt 1a with Ni(COD)2. 

 

 

Complex 8 is diamagnetic, which is a good indication of a square-planar 

geometry. A highly symmetric structure is supported by the presence of only one set of 

resonances in its 1H NMR (CDCl3) spectrum. As expected, the resonance for the acidic 

proton in 1a is no longer present. The two backbone (–NCHCHN–) protons of the 

carbene in 8 resonate at  8.02 and 6.66 compared to  8.51 and 7.24 for the imidazolium 

salt 1a.73 The 13C NMR resonances for the backbone carbon nuclei at  123.0 and 120.0 

differ slightly from those observed for the corresponding salt (1a) ( 123.6 and 118.4). 

The symmetry of the structure is further supported by the presence of one single carbene 

resonance and one single iminic carbon resonance at δ 168.8 and 155.6, respectively. The 
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FTIR C=N absorption at 1674 cm–1 for 15 is lower than the value reported for the 

imidazolium salt precursor 1a (1691 cm–1) but comparable to those for both 3a (1682cm–

1) and 4 (1678 cm–1), in which the ligand is bound in a monodentate fashion to the metal 

center exclusively through the carbenoid carbon atom.73 Furthermore, the observed C=N 

stretching frequency is markedly larger than those reported for the family of early 

transition metal complexes (1604–1609 cm–1) in which the bidentate coordination of 2b 

was confirmed by X-ray crystallography.74 This coordination mode is however unlikely 

for a bis(carbene) Ni(II) dichloride complex.  

The solid-state structure of complex 8 was determined by X-ray diffraction 

analysis. Crystals were obtained by slow vapor diffusion of pentane into a concentrated 

solution of dichloromethane. Complex 8 crystallized in the centrosymmetric P –1 space 

group (Figure 19), as a slightly distorted square planar complex with both carbene ligands 

coordinated trans to each other, in agreement with the spectroscopic data. The nickel 

atom lies on an inversion center, which results in two sets of crystallographically-

equivalent ligands and chlorine atoms, with an angle of exactly 180° for both C1–Ni1–

C1a and Cl1–Ni1–Cl1a. The Ni1–C1 and Ni1–Cl1 bond lengths of 1.926(2) and 

2.1822(6) Å, respectively, are within the range reported for other (NHC)2NiCl2 

complexes.103-105 The crystal structure of 8 also confirmed the monodentate coordination 

of the ligand through the carbenoid carbon with a N3–C4 bond length of 1.265(3) Å, 

statistically equivalent to that observed in 1a. Coordination of N3 to the metal center 

would have led to a lengthening of the C=N bond by at least 0.02 Å.74  
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Figure 19.  ORTEP plot of (C^ImineMe)2NiCl2 (8) (50% probability level). Hydrogen 

atoms omitted for clarity. Selected bond lengths (Å) and angles (°): Ni1–C1 1.926(2), 

Ni1–Cl1 2.1822(6), N3–C4 1.265(3), C11–Ni1–C1a 180.0, C1–Ni1–Cl1 88.91(7), C1– 

Ni1–Cl1a 91.09(7), N1–C1–N2 103.27(17). 

 

Considering the outcome of the oxidative addition reaction between the salt 1a 

and Ni(COD)2, and the inability to use either the silver adduct 3a in transmetalation or 

surprisingly the free carbene 2b in simple ligand displacement reactions with nickel(II) 

precursors, it was of interest to probe the efficacy of the mono-carbene copper(I) 

complexes (5a and 5b)  as transmetalating agents, as other groups have recently 

reported.71,106  However, before transmetalation with copper agents was attempted, it was 
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first necessary to establish that the bidentate binding mode of the ligand could be 

observed.  

3.2.2 Synthesis of  chelating bis(imino-N-heterocyclic carbene) complexes of zinc, iron 
and cobalt 

 

Although the preparation of nickel and palladium carbene complexes was the 

initial intention, efforts to prepare these target molecules were not successful and 

appeared more complicated than originally anticipated. Despite the successful 

development of synthetic protocols to prepare several group 11 complexes, the synthesis 

of a complex in which a bidendate coordination mode of the ligand was observed became 

the next research initiative.  

The coordination of C^ImineMe 1a to zinc was investigated since the resulting 

complex would be diamagnetic and the zinc metal could accommodate a bidentate ligand. 

Following a similar approach to prepare select copper complexes, the addition of a cooled 

suspension of 1a in tetrahydrofuran to a basic zinc precursor, generated in situ by the 

reaction of zinc chloride with sodium bis(trimethylsilyl)amide, resulted in the formation 

of Zn(C^ImineMe)Cl2  (9) in 78% yield (Scheme 10).  

 



44 

 

Scheme 10. Preparation of  (C^ImineMe)ZnCl2 (9). 

 

The 1H NMR (CDCl3) spectrum is consistent with the formation of the carbene 

and coordination to zinc. The proton resonance for the central imidazolium salt (NCHN) 

is no longer present as expected. The two backbone protons of the azole ring 

(NCHCHNmesityl) now resonate more upfield (7.79 and 7.12 ppm) compared with that of 

the imidazolium salt 1a (8.51 and 7.24 ppm). In the 13C NMR spectrum, the iminic 

carbon (C=N) resonance appears at 157.3 ppm and the central imidazolium carbon 

(NCN) appears at 178.5 ppm compared to 150.1 ppm and 140.2 ppm for 1a, respectively. 

The relatively low FTIR C=N absorption of complex 9 for the imine group (1657 cm-1) 

and the higher frequency resonance for the iminic carbon at 157.3 ppm when compared 

to structurally-characterized monodentate-NHC complexes (3a, 4 and 6a) (1683-1674 

cm-1) suggest a chelating coordination mode of the ligand to the metal center. 

 Complex 9 was also characterized by X-ray diffraction methods and crystallized 

in the centrosymmetric Pcab space group (Figure 20). The crystal structure of 9 shows a 

distorted tetrahedral complex where the ligand binds in a bidentate fashion through the 

carbene center and iminic nitrogen atom. The bite angle of the chelate (C1Zn1N3) is 

79.49(16)° which is in the range of other reported  chelating imine-NHC complexes 

(78.53-81.6°).57,107   The Zn1C1 bond length is 2.030(4) Å. The 2,6-dimethylphenyl and 
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the 2,4,6-trimethylphenyl rings are twisted 87.81° and 70.54°, respectively, from the 

metallocycle (Zn1C1N1C4N3). Upon coordination, the imine bond length (N3C4) 

has lengthened to 1.281(5) Å compared to that of the starting imidazolium salt 1a 

(1.262(4) Å). 
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Figure 20. ORTEP plot of Zn(C^ImineMe)Cl2 (9) (50% probability level). Hydrogen 

atoms and a molecule of dichloromethane omitted for clarity. Select bond lengths (Å) and 

angles (deg): Zn1C1 2.030(4), Zn1N3 2.164(4), Zn1Cl1 2.2339(14), Zn1Cl2 

2.2201(12), C4N3 1.281(5), C1Zn1N3 79.49(16). 

 

Interested to see if the same methology used to prepare the zinc complex could be 

extended to other metals, this approached was tested with the appropriate nickel and 

palladium precursors without any success but proved successful for iron and cobalt. 

Complexes Fe(C^ImineMe)Cl2 (10) and Co(C^ImineMe)Cl2 (11) were generated in 70% 
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and 68% yield, respectively, following a similar protocol used for the preparation of the 

zinc and copper complexes (Scheme 11). The FTIR C=N absorption for 10 and 11 were 

observed to be 1650 cm1 and 1652 cm1 respectively. These values are shifted to much 

lower wave numbers compared to the imidazolium salt 1a (1691 cm1), indicating a 

bidentate binding motif for the ligand. Due to the paramagnetic nature of complexes 10 

and 11, characterization was achieved by elemental analysis and in the case of 10, also by 

structural analysis. 

 

Scheme 11. Preparation of Fe(II)and Co(II) imino-NHC complexes (10) and (11). 

 

 

Complex 10 was characterized by X-ray diffraction and crystallized in space group 

P21/a with two independent molecules in the asymmetric unit cell (Figure 21). The 

crystal structure of 10 shows a distorted tetrahedral complex where the ligand binds in a 

bidentate fashion through the central carbon and the iminic nitrogen atom. The bite angle 

of the chelate (C1FeN3) is found in the range of 75.4(2)-76.8(3)°. The FeC1 bond 

length range is 2.067(7)2.096(7) Å. The 2,6-dimethylphenyl and the 2,4,6-

trimethylphenyl rings are twisted 86.91-88.91° and 83.43-82.09°, respectively, from the 

metallocycle (FeC1N1C4N3).  
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Figure 21.  ORTEP plot of Fe(C^ImineMe)Cl2 (10) (30% probability level). Hydrogen 

atoms and three molecules of dichloromethane omitted for clarity and only one of two 

symmetrically independant molecules in the asymmetric unit cell is shown. Select bond 

lengths (Å) and angles (deg): FeC1 2.067(7)/2.096(7), FeN3 2.195(6)/2.176(6), 

FeCl1 2.2339(14)/2.231(3), FeCl2 2.46(2)/2.236(2), C4N3 1.267(9)/1.270(9), 

C1FeN3 75.4(2)/76.8(3). 
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3.2.3 Synthesis of chelating imino-N-heterocyclic carbene complexes of nickel 

 

Having demonstrated the imino-N-heterocyclic carbenes can bind to a metal 

centre in a bidendate fashion, the research focus was directed back to the preparation of 

palladium and nickel structures.   The transmetalating potential of complexes 5a and 5b 

was explored and successfully demonstrated. Addition of half an equivalent of the 

dimeric copper complex to NiBr2(DME) gave the targeted paramagnetic nickel 

complexes 12a and 12b in 58% and 94% yield, respectively (Scheme 12). 

   

Scheme 12. Synthesis of (C^Imine)NiBr2 (12a, 12b) and (C^Imine)2NiBr2 (13). 

 

 

Thus, in contrast to the square planar complex 8, these new (C^Imine)NiBr2 

complexes seemingly adopt the tetrahedral geometry with a chelating carbene ligand. The 
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bidentate coordination mode of the ligand is further supported by the C=N bond 

stretching frequency at 1646 and 1616 cm–1, significantly lower than that observed in the 

corresponding imidazolium salts (1a and 1b).73,74  

In both cases, crystals suitable for X-ray diffraction studies were obtained by slow 

vapor diffusion of pentane into a concentrated solution of dichloromethane. Complex 12a 

crystallized in the centrosymmetric P21/m space group, with a crystallographic plane 

dissecting the molecule and passing through the azole ring (Figure 22). As a result, both 

the mesityl ring and the 2,6-dimethylphenyl ring are perfectly orthogonal to the 

metallacycle. The crystal structure of 12a confirms the expected tetrahedral complex with 

the ligand coordinated to the metal center in a bidentate fashion. The bite angle of the 

chelate (C1–Ni1–N3) is 81.1(3)°, comparable to that reported for an analogous picoline-

functionalized imidazole-2-ylidene nickel(II) bromide complex (81.4(3)°)108 and within 

the range (78.5–81.6°) of other reported similar palladium(II) complexes.72,109,110 The 

Ni1–C1 bond length measures 1.954(8) Å, somewhat elongated compared to that 

observed in 8 (1.926(2) Å), but in agreement with that reported by Danopoulos.108 The 

iminic N3–C4 bond, at 1.290(11) Å, is also longer from that observed in the complexes 

5a, 5b and 8 (1.259(4)–1.265(7)°), in which the ligand is monodentate, but within the 

range (1.280(3)–1.38(2) Å) observed with related early transition metal complexes.74 The 

low stretching frequency observed in the FTIR at 1646 cm–1 is consistent with the C=N 

bond length.  
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Figure 22. ORTEP plot of (C^ImineMe)NiCl2 (12a) (50% probability level). Hydrogen 

atoms omitted for clarity. Selected bond lengths (Å) and angles (°): Ni1–C1 1.954(8), 

Ni1–N3 2.058(7), Ni1–Br1 2.3714(8), Ni1–Br1a 2.3714(8), C4–N3 1.290(11), C1–Ni1–

N3 81.1(3), Ni1–N3–C6 127.6(5). 

 

Complex 12b crystallized in the centrosymmetric P –1 space group (Figure 23). 

The asymmetric unit cell contains two molecules with similar data. The crystal structure 

shows a distorted tetrahedral complex with the bulky tert-butyl group leading to an 

average chelate (C1–Ni1–N3) bite angle for both independent complexes of 80.17°, 

slightly more acute than for the methyl analogue 12a. The 2,6-dimethylphenyl and the 

mesityl rings are twisted off, on average, by 87.50° and 86.98° with respect to the 

metallacycle. The iminic bond length is within the expected range for a chelated ligand, 

at 1.282 Å, comparable to that observed in 12a and in line with the measure C=N 
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stretching frequency (1616 cm–1). The nature of the alkyl group attached to C4 also has a 

marked impact on the position of the 2,6-dimethylphenyl ring. The increased bulk of the 

tert-butyl group leads to a less open coordination sphere, with the ring significantly more 

tilted towards the bromide ligands. The average Ni1–N3–C6 bond angle (116.2°) in 12b 

is in fact considerably lower than that observed in 12a (127.7(5)°). This also manifests 

itself by a closer Ni1–C6 distance of 2.99 Å, compared to 3.15 Å in 12a. This ability to 

control the steric environment about the metal center by varying the substituents on the 

aryl rings and on the iminic carbon is an interesting feature of this ligand. Considering the 

impact that some subtle changes have on catalyst activities, this feature may prove critical 

in harvesting the full potential of this ligand family and establishing structure-property 

relationships.  
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Figure 23. ORTEP plot of (C^Iminet-Bu)NiCl2 (12b) for one of the two molecules present 

in the asymmetric unit cell (50% probability level). Hydrogen atoms omitted for clarity 

and only one of two symmetrically independant molecules in the asymmetric unit cell is 

shown. Selected averaged bond lengths (Å) and angles (°): Ni1–C1 1.939, Ni1–N3 

2.0475, Ni–Br1 2.36095, Ni1–Br2 2.3765, N3–C4 1.282, C1–Ni1–N3 80.17, Ni1–N3–C6 

116.2. 

 

Having demonstrated that copper complexes were efficient transmetalating agents 

in the formation of (C^ImineR)NiBr2, it was of interest to determine whether two 

equivalents of the carbene could actually be transferred to NiBr2(DME) to synthesize the 

dibromide analogue of 8. (C^ImineMe)2NiBr2 (13) was successfully isolated in 70% yield, 

by reacting one equivalent of 5a with Ni(DME)Br2 (Scheme 12). Similar to that observed 

for complex 8, the 1H and 13C NMR (CDCl3) spectra of 13 consist of only one set of 
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resonances, indicative of a symmetric structure that was corroborated by the X-ray 

diffraction analysis (Figure 24). Bond lengths and angles of 13 are nearly identical to 

those of 8, as expected, with the exception of the metal-halide bond length, for which the 

0.16 Å- difference is in agreement with the difference in the halogen respective covalent 

radii.84  

 

 

Figure 24. ORTEP plot of (C^ImineMe)NiBr2 (13)  (50% probability level). Hydrogen 

atoms omitted for clarity. Selected bond lengths (Å) and angles (°): C1–Ni1 1.925(3), 

Ni1–Br1 2.3388(9), N3–C4 1.270(4), C1–Ni1–C1a 180.0,  C1–Ni1–Br1 91.26(10), C1–

Ni1–Br1a 88.74(10). 
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Complex 13 crystallized in the centrosymmetric P –1 space group (Figure 24).  

The crystal structure of 13 shows a slightly distorted square planar complex where the 

two carbenes are trans to each other. The nickel atom lies on an inversion center, 

resulting in a Br1–Ni–Br1a bond angle of exactly 180°. The Ni1–Br1 bond length is 

2.3387(10) Å and the Ni–C1 bond length of 1.925(3) Å are within the range reported for 

other (NHC)2NiBr2 complexes.108 In the final stages of refining structure 13, additional 

electron density was observed close to the nickel metal center. Upon further 

investigation, this electron density was attributed to a small contamination 

(approximately 4%) of iodine bound to nickel, presumably from [(C^ImineMe)CuI]2 used 

as transmetalating agent. The Ni1–I1 bond length of 2.633(12) Å is within the expected 

range. The FTIR C=N absorption at 1676 cm–1 for 13 is lower than the values reported for 

the imidazolium salt precursor 1a (1691 cm–1), and nearly identical to 8 (1674 cm–1).  

The crystal structure of 13 further confirms the ligand binds in a monodentate fashion 

solely through the carbene center. The N3–C4 bond length (1.270(4) Å) of the resulting 

uncoordinated imine fragment is within the expected values based on the previous group 

11 complexes reported (35). 73 

A nickel(0) NHC complex (14) was prepared by the addition of 2b to Ni(COD)2 ( 

Scheme 13). The 1H NMR (CDCl3) spectrum is consistent with the formation of the 

carbene and coordination to nickel with one molecule of bound 1,5-cyclooctadiene . The 

two backbone protons of the azole ring (NCHCHNmesityl) resonate at 6.34 and 7.28 ppm. 

In the 13C NMR spectrum, the iminic carbon (C=N) resonance appears at 150.8 ppm and 

the central imidazolium carbon (NCN) appears at 202.1 ppm. The relatively low FTIR 
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C=N absorption of complex 14 for the imine group (1652 cm-1) suggest a chelating 

coordination mode of the ligand to the metal center as has been observed for the related 

nickel, palladium, zinc and iron complexes (16161654 cm-1). 

 

Scheme 13. Preparation of a Ni(0) imino-NHC complex (14). 

 

 

X-ray quality crystals of 14 were grown at 35°C from a concentrated solution of 

pentane. Compound 14 crystallized in a monoclinic crystal system in the P 21/c space 

group. The geometry around the nickel center is distorted tetrahedral with the ligand 

bound in a bidentate fashion along with one 1,5-cyclooctadiene molecule (Figure 25). 

There are few reports in literature of structurally characterized nickel(0) complexes.48,111-

113 The only other nickel(0) structure to contain carbene and COD ligands was reported 

by Radius and is found as a dimer in the solid state with one molecule of COD bridging 

between two nickel atoms.114  
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Figure 25. ORTEP plot of (C^Iminet-Bu)Ni(COD) (14) (40% probability level). Hydrogen 

atoms and one solvent molecule of pentane are omitted for clarity. Select bond lengths 

(Å) and angles (deg): Ni1C1 1.854(5), Ni1N3 2.007(4), Ni1C26 2.044(5), Ni1C29 

2.087(5), Ni1C30 2.0849, Ni1C33 2.075(5), C1Ni1-N3 80.80(18). 

 

The catalytic activities of all five nickel complexes 8 and 12a towards 

ethylene polymerization were studied in toluene at atmospheric pressure and room 

temperature in the presence of 1000 equivalents methylaluminoxane as cocatalyst. 

Unfortunately, no ethylene uptake was observed over any extended periods of time. 

Chapter four will aim at understanding the poor performance of this class of complexes 

through the synthesis, characterization and reactivity study of the palladium analogues.  
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3.3 Conclusions  
 

In summary, zinc(II), iron(II), cobalt(II), nickel(0) and nickel(II) complexes 

coordinated with an aryl-substituted imino-N-heterocyclic carbene have been 

synthesized, isolated and characterized. The effect of the iminic carbon substituent was 

studied by preparing the methyl and tert-butyl nickel(II) homologues. The size of the 

iminic carbon substituent was found to have a large impact on the bond angles and bond 

lengths about the metal center. The oxidative addition of an imidazolium salt precursor 

with Ni(COD)2 led to a square planar bis(carbene)NiCl2 complex.  In exploring the 

reactivity of the 5a and 5b, it was further demonstrated that NHC copper(I) complexes 

are indeed good carbene transfer agents, and are an excellent alternative way to making 

NHC metal complexes. Preliminary studies using nickel complexes coordinated by one 

(12a, 12b, 14) and two (8, 13) of these ligands unfortunately showed no activity in 

ethylene polymerization.  
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Chapter 4. Reactivity Study of Imino-N-Heterocyclic Carbene 
Palladium(II) Methyl Complexes 
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Preface 
 

A part of the research presented in this chapter has been published in a paper in which I 

wrote the first draft and further revisions were done by my supervisor Dr. Gino Lavoie.115 

4.1 Introduction 
 

The reactivity of the metal–carbon bond plays a critical role in the stoichiometric 

and catalytic synthesis of organic compounds.116-122 While carbon monoxide has 

historically played an important role as substrate due to its role in hydroformylation,123,124 

the related isocyanide has received relatively far less attention.125,126 Isocyanides are of 

special interest due to the addition of a biologically-important nitrogen atom, and due to 

the presence of a new iminic reactive site for subsequent reaction on the molecule. 

Palladium methyl complexes of chelating nitrogen10,127-130 and phosphine131-135 ligands 

have proven capable of inserting not only one but multiple equivalents of aryl and alkyl 

isocyanides.130 In many cases, the use of excess isocyanide however leads to dissociation 

of the ancillary ligand used, such as monodentate phosphine,135 and chelating P–P131 and 

N–N10,131 ligands. This results in poor control over the reactivity of the transition metal 

complex.  

Coordination of strong σ-donors such as N-heterocyclic carbenes (NHCs) may 

mitigate or eliminate this undesired dissociation of the ancillary ligand. To my 

knowledge, only one NHC palladium methyl complex has been shown to insert one 

equivalent of isocyanide, even when the substrate was used in excess.63 Interestingly, in 
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the absence of an alkyl migratory group, isocyanide has also been found to insert into the 

palladium–carbene bond in palladium iodide dimers coordinated with remote N-

heterocyclic carbenes.136  

Chapter three described the synthesis and coordination of aryl-substituted imino-

N-heterocyclic carbenes to nickel, unfortunately, the nickel complexes were found to be 

inactive for ethylene polymerization.57 Therefore, considering the importance of 

palladium catalysts in cross-coupling reactions61,137,138 and their ability to polymerize 

functionalized olefins,8,32,94,139,140 it was decided to extend the study to diamagnetic 

palladium–methyl complexes to gain insight into their thermal stability and into their 

insertion chemistry. The synthesis and structural characterization  of Pd(II) allyl and 

methyl complexes of C^ImineR (R = Me, Ph, tBu)  is presented in this chapter. In 

addition, the thermal stability and reactivity of both neutral and cationic Pd(II) methyl 

complexes of C^ImineR ligands towards ethylene, isocyanides and carbon monoxide is  

also described in this chapter.  

4.2 Results and Discussion 
 

4.2.1 Synthesis and Characterization of Allylic Palladium(II) Imino-NHC Complexes 

Addition of two equivalents of the free carbene (2b) to the cationic palladium allyl 

complex, prepared in situ from reacting the palladium allyl  chloride dimer with two 

equivalents of silver tetrafluoroborate, resulted in the formation of the cationic palladium 

complex 15b (Scheme 14).  
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Scheme 14. Preparation of [Pd(C^Iminet-Bu)(ƞ3-C3H5)Me]BF4  (15a) and (15b). 

 

 

In the 1H NMR spectrum of 25b the central allylic proton (CH2CHCH2) appears as a 

multiplet at 5.24 ppm. The tert-butyl resonance appears at a sharp singlet at 1.45 ppm. In 

the 13C-NMR spectrum, the iminic carbon (C=N) resonance appears at 184.7 ppm and the 

central imidazolium carbon (NCN) appears at 169.2 ppm.  The methyl analogue, complex 

15a, was prepared by the addition of one equivalent of the silver complex (3a) to the 

cationic palladium allyl complex (Scheme 14). Proton and carbon assignments are similar 

to that of 15b. 

Complex 15b was further characterized by X-ray diffraction and crystallized in space 

group P21/c (Figure 26) along with selected bond lengths and bond angles. The geometry 

around the palladium centre is distorted square-planar with the ligand bound to the metal 

through the central carbon and the nitrogen atom of the imine group. The Pd1C1 bond 

length is 1.9898(1) Å and the Pd1-N3 bond length is 2.1380 Å. The Pd1C26 bond 

length is 2.0906 Å while the Pd1-C28 bond length is slightly longer, measuring 2.1566(1) 

Å. The 2,6-dimethylphenyl and the 2,4,6-trimethylphenyl rings are twisted 86.38° and 

89.68° to the metallocycle (Pd1C1N2C13N3). Having successfully demonstrated 
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the coordination of the ligand to palladium in a bidentate fashion, efforts were then 

directed to prepare more suitable palladium precatalysts. 
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Figure 26.  ORTEP plot of of [Pd(C^Iminet-Bu)(ƞ3-C3H5)Me]BF4  (15a) showing the 

major species (30% probability level). Hydrogen atoms and a counter anion molecule of 

sodium tetrafluoroborate omitted for clarity. Select bond lengths (Å) and angles (deg): 

Pd1C1 1.9898(1), Pd1N3 2.38(0), Pd1C26 2.090(6), Pd1C28 2.1566(1), 

C4C1Pd1N3 76.83, C26Pd1C28 105.69. 

4.2.1 Synthesis and Characterization of Palladium(II) Imino-NHC Methyl Complexes 

 

The neutral palladium complexes were prepared in good yields, 80–98%, either 

from copper(I) transmetalation (for 16a) or ligand displacement (for 16b and 16c) 

(Scheme 15). In contrast to the corresponding (C^ImineR)NiBr2 complexes,57 these 

complexes are diamagnetic, indicating a square planar geometry. Their 1H NMR spectra 
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showed one set of resonances, consistent with the formation of only one isomer, with the 

methyl group attached to the metal center resonating at  0.23–0.42 in CDCl3. The 

conformation of all complexes was determined by 1D-NOESY NMR experiments. 

Selective excitation on the methyl group bound to palladium resulted in a nuclear 

Overhauser effect (NOE) for the mesityl ring directly attached to the azole ring, 

consistent with the methyl group trans to the imine nitrogen and the chloride trans to the 

carbene.  

 

Scheme 15. Synthesis of Neutral (16a–c) and Cationic (17a–c) Palladium Complexes. 

 

 

The palladium methyl carbon and the central imidazolium (NCN) carbon nuclei 

resonate at approximately  9 and 177, respectively, for complexes 16a–c. While the 

resonance of the iminic carbon for both 16a and 16c appear at  156, that of the tert-butyl 

derivative 16b is found downfield at  161.2. The decrease in the FTIR C=N absorption 

for 16a–c (1626–1652 cm–1) from the corresponding imidazolium salt strongly suggests 
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coordination of the ligand through both the carbenoid carbon and the iminic nitrogen 

atoms.  

The crystal structures for all three palladium complexes 16a–c were obtained and 

selected bond angles and bond lengths are provided in Table 1 .  Complexes 16a (Figure 

27) and 16c (Figure 29) both crystallized in the space group P 21/n, while complex 16b 

crystallized in the space group P 212121 (Figure 28). All three complexes show a slightly 

distorted square planar structure where the chloride is trans to the carbene, in agreement 

with the assignment based on solution NMR spectroscopy. The palladium–methyl bond 

lengths are observed in the range 1.939(5)–1.969(4) Å, similar to those reported for 

related complexes of NHC^pyridine bidentate ligands.65,67,141 The palladium–chloride 

bond lengths are in the range of 2.3237(9)–2.3612(12) Å. In all three complexes 16a–c, 

the C1–Pd1–N3 bite angles are comparable, with values ranging from 77.22(17)° to 

78.54(13)°. In contrast, the nature of the substituent has a marked impact on the Pd1–N3–

Cipso angles, with the large tert-butyl group pushing the xylyl ring towards the metal and 

resulting in the smallest angle of 117.1(3)°. The smaller methyl group yields a larger 

angle of 127.8(2)°, which is only slightly further reduced to 126.0(2)° upon substituting 

the iminic carbon with a phenyl ring. The Pd1–N3 bond length is the smallest for the tert-

butyl (16b, 2.165(4) Å) and the phenyl (16c, 2.170(3) Å) derivatives, and the largest 

(2.184(3) Å) for the methyl derivative (16a). The Pd–C1 bond length in 16a and 16c are 

statistically equivalent, and longer at 1.969 Å compared to 16b (1.939(5) Å). Similarly, 

the Pd–N–Cipso bond angle in 16a and 61c are both significantly larger (127.8(2) and 

126.0(2)°, respectively) than that in 16b (117.1°). These greatly impact the coordination 



65 

 

sphere around the metal, possibly resulting in differences in reactivity towards various 

substrates. Finally, the solid-state structures clearly show the axial positions of the square 

planar structures well protected by the ortho-methyl substituents of both aryl rings, which 

are tilted by 85.8° and 74.0° (16a), 87.2° and 84.6°(16b), and 79.0° and 69.8° (16c), with 

respect to the mean plane formed by the metallacycle.  
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Figure 27. ORTEP plot of (C^ImineMe)PdMeCl (16a) (50% probability level). Hydrogen 

atoms and a solvent molecule of chloroform omitted for clarity. 
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Figure 28. ORTEP plot of (C^Iminet-Bu)PdMeCl (16b) (50% probability level). 

Hydrogen atoms and a solvent molecule of chloroform omitted for clarity.  
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Figure 29. ORTEP plot of (C^IminePh)PdMeCl (16c) (50% probability level). Hydrogen 

atoms omitted for clarity. 



67 

 

Table 1. Selected bond distances (Å) and angles (deg) for complexes 16a16c and 17b. 

 16a 16b 16c 17b 

Bond Lengths     

Pd1–C1 1.969(4) 1.939(5) 1.969(3) 1.949(3) 

Pd1–N3 2.184(3) 2.165(4) 2.170(3) 2.146(2) 

Pd1–Cl1 2.3605(10) 2.3612(12) 2.3237(9) — 

Pd1–CMe 2.033(4) 2.036(5) 2.040(4) 2.039(3) 

C4–N3 1.273(5) 1.295(6) 1.295(4) 1.278(3) 

Bond Angles     

C1–Pd1–N3 77.93(14) 77.22(17) 78.54(13) 77.47(10) 

C1–Pd1–Cl1 174.97(12) 172.75(16) 174.26(18) — 

Pd1–N3–Cipso 127.8(2) 117.1(3) 126.0(2) 116.27(16) 

 

The related cationic methyl complexes were also prepared as model compounds 

for the cationic hydrocarbyl propagating species that are present in the catalytic cycle of 

olefin polymerization. Addition of one equivalent of silver hexafluorophosphate to 

compounds 16a–c in acetonitrile resulted in the formation of the cationic complexes 17a–

c in excellent yields (Scheme 15). Similar to the neutral complexes, all cationic 

complexes showed only one set of resonances in the proton NMR spectra, consistent with 

the presence of only one isomer. 1D-NOESY NMR spectra are consistent with the methyl 

group trans to the imine nitrogen, with an acetonitrile molecule trans to the carbene.  
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The palladium-bound methyl protons in 17a–c resonate at lower frequencies to 

those of the neutral analogues 16a–c, with chemical shifts in chloroform-d ranging from 

 –0.10 to 0.10. The acetronitrile protons appears at approximately  1.6 for all three 

cationic complexes, consistent with its coordination to the metal center. The carbenoid 

carbon (NCN) nucleus of compounds 17a–c resonates at approximately  172, and 

upfield shift from that of 16a–c. The lower electron density on the cationic metal center 

of compounds 17a–c led to a decrease in -backdonation, as evidenced by the FTIR νC=N 

stretching frequencies (1635–1660 cm–1) that are 5–9 cm–1 larger than those observed in 

16a–c. The values of these stretching frequencies are also consistent with bidentate 

coordination of the ligand through the carbenoid carbon and the imine nitrogen.  

X-ray quality crystals of 17b were successfully grown at room temperature by 

slow vapor diffusion of diethyl ether into a saturated dichloromethane solution. 

Compound 17b crystallized in a monoclinic crystal system in the P 21/n space group. The 

complex adopts a distorted square planar geometry, with the acetonitrile bound trans to 

the carbene, as predicted from NMR spectroscopy experiments (Figure 30). Abstraction 

of the chloride ion and its replacement with a molecule of acetonitrile caused a decrease 

in both the Pd1–N3 and C4–N3 bond lengths from 2.165(4) Å in 16b to 2.146(2) Å in 

17b, and from 1.295(6) Å in 16b to 1.278(3) Å in 17b, respectively, with very little 

change to the Pd1–C1 bond length. This substitution also resulted in the Pd1–N3–Cipso 

bond angle decreasing from 117.1(3) to 116.27(16)°, with little change to the C1–Pd1–

N3 bite angle (77.47(10)° in 17b compared to 77.22(17)° in 16b). 
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Figure 30. ORTEP plot of [(C^Iminet-Bu)PdMe(MeCN)]PF6 (17b) (50% probability 

level). Counteranion (PF6
–) and hydrogen atoms omitted for clarity. 

 

4.2.2 Reactivity Studies of Palladium Complexes 

 

The activity of the compounds 16a–c in the polymerization of ethylene was tested 

at atmospheric pressure and room temperature using 1000 equivalents 

methylaluminoxane (MAO) as cocatalyst. Palladium black readily formed and no 

ethylene uptake was noted in any of the trials. Reactions with 17a–c  also did not produce 

polyethylene, with and without MAO added.  Considering reports of reductive 

elimination in other NHC palladium alkyl complexes,51,142 thermal studies of complexes 

16–17c were undertaken to determine whether these complexes also suffered from this 
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undesired side-reaction, limiting their utility in catalysis involving migratory insertion of 

an alkyl group.  

All complexes were heated to 60 °C in CDCl3 and monitored overtime for any 

sign of decomposition. The nature of the substituent on the iminic carbon impacted the 

thermal stability of the neutral complexes 16a–c. In the case of the tert-butyl derivative 

16b, N-(2,6-dimethylphenyl)pivalimidoyl chloride and 1-mesityl-2-methyl-1H-

imidazole143 were produced as the major species after 30 min, with complete 

decomposition of 16b within 24 h (Scheme 16). In contrast, both the methyl (16a) and 

phenyl (16c) derivatives and the cationic complexes (17a–c) showed no evidence of 

decomposition when heated to 60 °C in CDCl3. This is in stark contrast to other 

palladium alkyl systems for which the cationic species undergo reduction elimination 

more readily than their neutral analogues.50,142 

Two mechanisms accounting for the formation of N-(2,6-dimethylphenyl)pivalimidoyl 

chloride and 1-mesityl-2-methyl-1H-imidazole from 16b are proposed in Scheme 16. In 

path a, complex 16b undergoes reductive elimination to generate Pd(0) and the 2-

methylimidazolium salt (4.A), which could react with the chloride anion to produce the 

observed products. While chloride is a very poor nucleophile,  similar cleavage of the 

imidazole–imine bond has been observed in other related systems.55,58 In path b, the 

chloride first dissociates from 16b to form complex 4.B. Coordination of the imine to the 

cationic metal center would enhance the electrophilicity of the carbon atom, making it 

more susceptible to nucleophilic attack of the chloride to generate the observed imidoyl 

chloride. The resulting highly reactive two-coordinate (imidazolyl)(methyl)palladium 
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complex C could subsequently undergo reductive elimination to give the substituted 

imidazole.  

Scheme 16. Proposed Mechanisms for the Thermal Decomposition of Neutral 16b. 

 

 

To get a better understanding of the decomposition mechanism, the imidazolium 

tetrafluoroborate salt 1c, and both the neutral (16b) and cationic (17b) palladium methyl 

complexes were treated with chloride ions. Addition of tetrabutylammonium chloride to 

1c gave no reaction, even at elevated temperature, ruling out the formation of compound 

4.A, and consequently of path a. Compound 1c however rapidly decomposed to N-

mesitylimidazole and to the imidoyl chloride upon addition of HCl in diethyl ether at 

room temperature, probably due to protonation of the imine nitrogen, effectively 

activating the imine carbon for nucleophilic attack by the chloride.  

While palladium complex 16b remains intact at room temperature when exposed to 

Bu4NCl, formation of N-(2,6-dimethylphenyl)pivalimidoyl chloride and 1-mesityl-2-

methyl-1H-imidazole was observed upon heating the reaction mixture to 60 °C. The 

lower rate of decomposition to that observed in the absence of additional chloride ions is 
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in agreement with the cationic metal complex 4.B being a key intermediate in the 

decomposition of 16b. These results, coupled with the rapid decomposition of the 

cationic complex 17b induced by the addition of Bu4NCl, support the mechanism 

proposed in path b (Scheme 16). While dissociation of the chloride in 16a and 16c may 

also occur, the stronger imidazole–imine bond in these two complexes, indicated by their 

short C4–N1 bond lengths (1.406(5) and 1.412(4) Å, respectively, compared to 1.449(6) 

in 16b), may prevent further decomposition to compound C, resulting in the reversible 

coordination of the chloride anion to regenerate the stable four-coordinate neutral 

palladium complex. 

The stability of all three cationic complexes 17a–c at 60 °C however suggested that the 

inability of these complexes to catalyze the polymerization of ethylene was not due to 

decomposition of a cationic metal alkyl propagating species but possibly arose from their 

inability to undergo migratory insertion. To get further insight into the ability of the 

palladium methyl group to insert into electrophiles, reaction of complexes 16a–17c 

towards isocyanides was investigated. Interestingly, despite using similar experimental 

conditions, reaction of the palladium neutral complexes with tert-butyl isocyanide in 

toluene all led to different reaction products, further, highlighting the important role of 

the substituent on the imine carbon (Scheme 17). 
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Scheme 17. Reactivity of Neutral Complexes 16a–c with tert-Butyl Isocyanides. 

 

 

Addition of one equivalent of tert-butyl isocyanide to (C^ImineMe)PdMeCl (16a) 

in toluene at –35 °C, with subsequent warming to room temperature and standard work-

up resulted a yellow solid. The 1H NMR spectrum was surprisingly simple, with only 

resonances assigned to the coordinated C^ImineMe ligand present, with no other proton 

coming from either the palladium methyl group or the isocyanide. The FTIR C=N 

stretching frequency at 1674 cm–1 strongly suggests coordination of the C^ImineMe ligand 

exclusively through the carbenoid carbon atom. X-ray quality crystals of the isolated 

product were successfully obtained by slow vapor diffusion of pentane into a 

concentrated solution of dichloromethane.  
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The compound crystallized in the centrosymmetric P –1 space group, with the 

solid-state structure consistent with the spectroscopic data, in which two C^ImineMe 

ligands are bound to the metal center through the carbene, with the iminic arm remaining 

uncoordinated (Figure 31), similar to that observed in (C^ImineMe)2NiCl2. Compound 18 

adopts a slightly distorted square planar geometry, with both carbene ligands coordinated 

trans to each other. The palladium atom lies on an inversion center, which results in two 

sets of crystallographically-equivalent ligand sets and chlorine atoms. Other angles 

around the metal range from 89.7 (2)° to 90.3 (2)°. The Pd1–C1 bond length is of 

2.027(4) Å, within the range reported for other (NHC)2PdCl2 complexes.144-148 The N3–

C4 bond length measures 1.252(5) Å, statistically equivalent to that observed in 1a.73  
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Figure 31. ORTEP plot of (C^ImineMe)2PdCl2 (18) (50% probability level). Hydrogen 

atoms omitted for clarity. Selected bond distances (Å) and angles (deg): Pd1–C1 

2.027(4), Pd1–Cl1 2.413(10), C4–N1 1.445(5), C4–N3 1.254(5), C1–Pd1–Cl1 89.7(2). 

 
Under similar conditions, when tert-butyl isocyanide was added to (C^Iminet-

Bu)PdMeCl (16b) in toluene at –35 °C and allowed to warm up to room temperature, a 

gradual color change from tan to yellow was observed, with the final product identified 

as the coordinated isocyanide adduct (C^Iminet-Bu)PdMe(t-BuNC)Cl (19) (Scheme 17). 

The 1H NMR spectrum (C6D6) of compound 19 is consistent with coordination of the 

isocyanide with no insertion, as evidenced by a new resonance at  0.70 attributed to the 

protons of the coordinated isocyanide, and the palladium methyl protons remaining 

upfield at  –0.50. Migratory insertion would have resulted in the latter resonating at a 
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higher frequency ( 1.6–2.3), characteristic of the iminoacyl complex.131 In the 13C NMR 

spectrum, the isocyanide carbon atom that is directly attached to the metal center is 

observed at  119.6, consistent with simple coordination.129,149,150 The IR spectrum shows 

a strong band at 2189 cm–1, assigned to the coordinated isocyanide. Heating the reaction 

mixture to 70 °C to enforce migratory insertion of the methyl group into the coordinated 

isocyanide led to the formation of palladium black and unidentified products presumably 

through decomposition. 

In contrast, reaction of tert-butyl isocyanide with (C^IminePh)PdMeCl (16c) at 

room temperature yielded the insertion product 20, as a light orange solid (Scheme 17). 

The 1H NMR spectrum (C6D6) of 20 is consistent with the structure, as evidenced by a 

new resonance at  2.49 for the iminoacyl methyl protons, and the disappearance of the 

initial Pd–Me resonance at  –0.50. The imine bond stretching frequency at 1638 cm–1 

furthermore indicates that C^IminePh remains coordinated in a bidentate fashion to satisfy 

the preferred electronics and tetracoordinate nature of palladium(II). 

Replacing the tert-butyl group of the isocyanide by an aryl ring has a profound 

effect on the chemistry displayed by complex 16a. Reaction with an excess of 2,6-

dimethylphenyl isocyanide gave spectroscopic evidence of several products of multiple 

insertions (Scheme 18).  
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Scheme 18. Reactivity of Complex 16a with 2,6-Dimethylphenyl Isocyanide. 

 

X-ray quality crystals were successfully isolated from the reaction mixture with 

16a. Compound 21 selectively crystallized in a monoclinic crystal system in the P 21/c 

space group. The palladium center adopts a distorted square planar geometry with three 

molecules of isocyanide inserted into the Pd–Me bond, and forming a new five-

membered metallacycle, effectively breaking the chelate formed by C^ImineMe in 16a 

(Figure 32). This demonstrates the hemilability of the imine fragment, easily dissociating 

from the metal center to accommodate the steric and electronic properties of the other 

ligands. This feature may prove invaluable in catalytic transformations when reactive 

coordinatively- and electronically-unsaturated intermediates are produced. These 

intermediates could effectively be stabilized through coordination of the imine nitrogen 

atom before re-entering the catalytic cycle upon associative displacement of the nitrogen 

donor by an incoming substrate. Complex 21 resulted from three consecutive insertions 

of 2,6-dimethylphenyl isocyanide into the palladium–methyl bond, as previously 

observed and structurally-characterized by other groups.130,131,135 Formation of a five-

membered metallacycle through coordination of the isocyanide nitrogen atom N4 is 



78 

 

preferred over coordination of N3 from C^ImineMe, generating a more favourable metal 

bite angle of 79.71(12)°, compared to the more acute 77.93(14)° in 16a.  
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Figure 32.  ORTEP plot of (C^ImineMe)(1,2-bis[(2,6-dimethylphenyl)imino]-3-[(2,6-

dimethylphenyl)imino-κ-N]butyl-κ-C]palladium(II) chloride (21) (50% probability level). 

Hydrogen atoms and one solvent molecule of chloroform omitted for clarity. 

 

Considering the better thermal stability of the palladium complexes 17ac and the 

importance of cationic complexes in olefin polymerization catalysis, the reactivity of 

these complexes in isocyanide insertion was also explored. Addition of one equivalent of 
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either tert-butyl or 2,6-dimethylphenyl isocyanide to the palladium complex produced the 

isocyanide adduct in good yield (83–96%) (Scheme 19). The 1H NMR spectra of the tert-

butyl isocyanide reaction products (22a–c) showed sharp upfield resonances ( 0.01 to –

0.10) integrating to three protons, characteristic of the palladium methyl group. The FTIR 

νC=N absorption of the coordinated isocyanide were observed as a strong sharp band at 

2208–2211 cm–1, approximately 74 cm–1 higher than that of free isocyanide.128 The 1H 

NMR spectra for complexes 23a–c are also consistent with isocyanide coordination with 

no evidence of migratory insertion of the methyl group, as indicated by the corresponding 

FTIR νC=N absorption at 2181–2184 cm–1. The C=N stretching frequency for the 

C^ImineR ligand in 22a–23c ranged from 1626 to 1656 cm–1, indicating bidentate 

coordination.  

 

Scheme 19. Reactivity of Cationic Complexes 17a–c with Isocyanides. 

 

 

Addition of two to five equivalents of tert-butyl or 2,6-dimethylphenyl isocyanide 

to 17a–c resulted in multiple products. While unable to isolate each individual 

component, mass spectrometry on the reaction mixture shows signals corresponding to 

the isocyanide adduct of the palladium methyl complex 16b and of palladium N-(2,6-
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dimethylphenyl)iminoacyl insertion products, which are a result of single and multiple 

insertion of the methyl group into the isocyanide.  

Considering the ability of isocyanide to insert multiple times into a metal-carbon 

bond made and the challenge in isolating and characterizing the reaction mixture, it was 

of interest to explore the reactivity of complexes 16a–17c towards CO, which does not 

undergo multiple insertions. The tert-butyl derivative 16b reacts with CO within a few 

minutes to form the acyl complex 24 in 77% yield (Scheme 20). The low energy FTIR 

νC=N stretching frequency of complex 24 (1631 cm–1) indicates chelation of the iminic 

nitrogen atom. The νC=O absorption at 1689 cm–1 is consistent with a related NHC 

palladium acyl complex reported by Jordan.63 In contrast, neutral complexes 16a and 16c, 

and all cationic 17a–c remained intact upon exposure to one atmosphere of carbon 

monoxide, with no evidence of CO coordination, insertion or reductive elimination as 

observed by Elsevier in a related system.151   

 

Scheme 20. Reactivity of Complexes 16b with CO. 

 

 

X-ray quality crystals of 24 were grown at room temperature by slow vapor 

diffusion of pentane in a saturated dichloromethane solution. Compound 24 crystallized 
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in a monoclinic crystal system in the P 21/n space group. The palladium center adopts a 

distorted square planar geometry with one equivalent of CO inserted into the Pd–Me 

bond (Figure 33). The acyl group (C27–O1–C26) is approximately orthogonal (85.2°) to 

the mean plane formed by C1, N3, Pd1 and C27. The chelate angle of 77.45(14)° 

remained practically unchanged from that of the staring tert-butyl derivative complex 

16b (77.22(17)°. 
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Figure 33.ORTEP plot of (C^ImineMe)Pd(COMe)Cl (24) (50% probability level).

Hydrogen atoms omitted for clarity. Selected bond distances (Å) and angles (deg):

Pd1–C1 1.977(4), Pd1–N3 2.191(3), Pd–C27 1.972(5), C4–N3 1.282(5), C27–O1

1.205(6), C1–Pd1-N3 77.45(14), Pd–N3–C6 117.0(2). 
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4.3 Conclusions 
 

  Several neutral and cationic palladium complexes with an aryl-substituted acyclic 

imino-N-heterocyclic carbene were prepared, isolated and characterized to get insight 

into the inactivity of related nickel complexes in ethylene polymerization.57 None of the 

new palladium complexes gave polyethylene at 1 atm C2H4 and room temperature. All 

three cationic palladium methyl complexes 17a-c, model compounds for active olefin 

polymerization catalysts, and both neutral complexes 16a and 16c were found to be stable 

at elevated temperatures. In contrast, the tert-butyl derivative 16b rapidly decomposed 

under similar conditions, possibly through dissociation of the chloride followed by a 

series of nucleophilic attack and reductive elimination to yield palladium black, 1-

mesityl-2-methyl-1H-imidazole and the corresponding imidoyl chloride. Addition of 

MAO to 17ac at room temperature also caused formation of palladium black. The 

significant role of the substituent on the imine carbon on the reactivity of 16a16c with 

isocyanides and carbon monoxide was demonstrated. Compounds 16a16c indeed 

reacted with these electrophiles to give a variety of products, including simple adducts 

and multiple insertion products.  
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Chapter 5 – Experimental 
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5.1 General Comments 
 

All manipulations were performed under a dinitrogen atmosphere in a drybox or 

using standard Schlenk techniques. Solvents used in the preparation of air and/or 

moisture sensitive compounds were dried by refluxing and then distilling from sodium 

(pentane and THF) or CaH2 (dichloromethane) under a positive pressure of dinitrogen. 

Deuterated solvents were degassed using three freeze-pump-thaw cycles. C6D6 and 

CDCl3 were vacuum distilled from sodium and CaH2, respectively, and stored under 

dinitrogen. DMSO-d6 was dried over activated 4Å molecular sieves. NMR spectra were 

recorded on a Bruker DRX 600 (1H at 600 MHz, 13C at 150.9 MHz), Bruker AV 400 (1H 

at 400 MHz, 13C at 100 MHz) or Bruker AV 300 (1H at 300 MHz, 13C at 75.5 MHz) 

spectrometer and are at room temperature unless otherwise stated. The spectra were 

referenced internally relative to the residual protio-solvent (1H) and solvent (13C) 

resonances and chemical shifts were reported with respect to δ = 0 for tetramethylsilane. 

FTIR spectra were recorded a Thermo Scientific Nicolet 6700 FTIR spectrometer. Exact 

masses were determined by AIMS Laboratory of the Department of Chemistry, 

University of Toronto. Elemental composition was determined by ANALEST of the 

Department of Chemistry, University of Toronto or Guelph Chemical Laboratories 

Incorporated. 
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5.2 Materials 
 

1-(2,4,6-Trimethylphenyl)imidazole, 1-(2,6-diisopropylphenyl)imidazole,152 N-(2,6-

dimethylphenyl)acetimidoyl chloride, N-(2,6-diisopropylphenyl)acetimidoyl chloride,  N-

(2,6-dimethylphenyl)pivalimidoyl chloride, N-(2,4,6-trimethylphenyl)benzimidoyl 

chloride153 and RuCl2(PCy3)2(CHPh)154 were prepared according to published 

procedures. N-(2,6-Dimethylphenyl)acetamide was purchased from Sigma-Aldrich or 

Alfa Aesar and used without further purification. Silver carbonate and copper(I) iodide 

were purchased from BDH and Riedel-de Haën respectively, and were dried overnight in 

a vacuum oven at 80 °C. Sodium bis(trimethylsilyl)amide, nickel(II) bromide ethylene 

glycol dimethyl ether complex, zinc(II) chloride, iron(II) chloride, cobalt(II) chloride and 

bis(1,5-cycloocatadiene) nicke(0) were purchased from Sigma-Aldrich and used without 

further purification. Palladium(II) chloride, allyl palladium chloride dimer and (1,5-

cyclooctadiene)methyl palladium(II) chloride were purchased from Strem and used 

without further purification. Silver hexafluorophosphate was purchased from Alfa Aesar 

and used as received. tert-Butyl isocyanide, 2,6-dimethylphenyl isocyanide, sodium 

bis(trimethylsilyl)amide were purchased from Sigma-Alrich and used as received. 

Methylaluminoxane was donated by Albermarle Corp. Deuterated NMR solvents were 

purchased from Cambridge Isotope Laboratories.  
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5.3 Preparations 
 

Compound 1a, C^ImineMe·HCl: N-(2,6-Dimethylphenyl)acetimidoyl chloride (2.32 g, 

12.7 mmol) was dissolved in a minimal amount of THF and added to a THF (50 mL) 

solution of 1-(2,4,6-trimethylphenyl)imidazole (2.38 g, 12.8 mmol) at room temperature. 

A white precipitate formed within minutes. The reaction mixture was left to stir for a total 

of 3.5 h and filtered. The white solid was washed with THF (30 mL) and dried under 

vacuum (3.42 g, 9.27 mmol, 73 %). Crystals suitable for X-ray diffraction study were 

grown at room temperature under nitrogen by slow diffusion of pentane into a saturated 

dichloromethane solution using a diffusion bridge. 1H NMR (400 MHz, CDCl3) E-isomer 

(major): δ 11.98 (br t, 1H, NCHN(mesityl)), 8.51 (br t, 3J = 1.7 Hz, 1H, NCHCN(mesityl)), 

7.24 (br t, 3J = 1.6 Hz, 1H, NCCHN(mesityl)), 7.10 (d, 3J = 7.5 Hz, 2H, m-CH(2,6-xylyl)), 

7.01–7.03 (m, 3H, p-CH(2,6-xylyl) + m-CH(mesityl)), 2.76 (s, 3H, CH3(imine)), 2.32 (s, 3H, p-

CH3(mesityl)), 2.25 (s, 6H, o-CH3(mesityl)), 2.08 (s, 6H, o-CH3(2,6-xylyl)); Z-isomer (minor): δ 

7.97 (s, 1H, NCCN(mesityl)), 7.46 (s, 1H, NCCN(mesityl)), 7.05 (s, 3H, CH(2,6-xylyl)), 7.02 (2H, 

m-CH(mesityl), unobserved because of overlap with resonance from major isomer but 

predicted from correlation observed in 1H-13C HSQC spectra), 2.35 (s, 3H, p-CH3(mesityl)), 

2.22 (s, 3H, CH3(imine)), 2.21(s, 3H, CH3(mesityl)), 2.06 (s, 3H, CH3(mesityl)), 1.99 (s, 6H, o-

CH3(2,6-xylyl)). 13C{1H} NMR (100 MHz, CDCl3) E-isomer (major): δ 150.1 (C=N), 143.3 

(C(2,6-xylyl)), 141.6 (p-C(mesityl)), 140.2 (NCN), 134.3 (C(mesityl)), 130.8 (o-C(mesityl)), 130.1 

(m-CH(mesityl)), 128.5 (m-CH(2,6-xylyl)), 126.5 (o-C(2,6-xylyl)), 125.0 (p-CH(2,6-xylyl)), 123.6 

(NCCN(mesityl)), 118.4 (NCCN(mesityl)), 21.2 (p-CH3(mesityl)), 18.3 (o-CH3(2,6-xylyl)), 18.2 (o-
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CH3(mesityl)), 17.6 (CH3(imine)); Z-isomer (minor): δ 168.8 (C=N), 141.4 (p-C(mesityl)), 135.8 

(o-C(mesityl)), 130.0 (o-C(2,6-xylyl)), 129.9 (C(2,6-xylyl)), 128.73 (CH(2,6-xylyl)), 128.4 

(CH3(mesityl)), 128.3 (CH(2,6-xylyl)), 127.9 (m-CH(mesityl)), 124.3 (NCCN(mesityl)), 23.4 

(CH3(mesityl)), 21.2 (CH3(mesityl)), 18.6 (CH3(imine)), 17.6 (CH3(mesityl)), 17.41 (CH3(2,6-xylyl)). 

FTIR (KBr) C=N 1691 cm–1. Anal. Calcd. for C22H26ClN3 (%): C, 71.82; H, 7.12 ; N, 

11.42; Found (%): C, 71.38; H,7.66; N, 11.63. HRMS (ESI+, Dichloromethane) 

Calculated for C22H26N3Cl, m/z = 332.2121 [M – Cl]+; Found: 332.2121 [M – Cl]+.  

 

Compound 1a’, C^ImineMe’·HCl: N-(2,6-Diisopropylphenyl)acetimidoyl chloride (2.72 

g, 11.4 mmol) was dissolved in a minimal amount of toluene and added to a toluene (35 

mL) solution of 1-(2,4,6-trimethylphenyl)imidazole (2.13 g, 11.4 mmol) at room 

temperature. A white precipitate formed within minutes. The reaction mixture was left to 

stir for a total of 19 h and filtered. The white solid was washed with THF (30 mL) and 

dried under vacuum (3.28 g, 7.75 mmol, 68 %).1H NMR (400 MHz, CDCl3) : δ 12.20 (s, 

1H, NCHN(mesityl)), 8.51 (s, 1H, NCHCN(mesityl)), 7.27 (s, 1H, NCCHN(mesityl)), 7.20 (br s, 

3H, p-CH(DIPP) + m-CH(DIPP)), 7.04 (s, 2H, m-CH(mesityl)), 2.79 (s, 3H, CH3(imine)), 2.67 (m, 

3J = 6.8 Hz, 2H, o-CH(DIPP)), 2.34 (s, 3H, p-CH3(mesityl)), 2.26 (s, 6H, o-CH3(mesityl)), 1.20 

(d, 3J = 6.8 Hz, 6H, o-CH3(DIPP1)), 1.14 (d, 3J = 6.9 Hz, 6H, o-CH3(DIPP2). 13C{1H} NMR 

(100 MHz, CDCl3): δ 149.8 (C=N), 141.7 (p-C(mesityl)), 140.7 (C(DIPP)), 140.3 (NCN), 

136.7 (o-C(DIPP)), 134.2 (o-C(mesityl)), 130.74 (C(mesityl)), 130.2 (m-CH(mesityl)), 125.8 (p-

CH(DIPP)), 123.9 (NCCN(mesityl)), 123.7 (m-CH(DIPP)), 118.3 (NCCN(mesityl)), 28.7 (o-

CH(dipp)), 23.5 (o-CH3(dipp2)), 23.0 (o-CH3(DIPP1)), 21.3 (p-CH3(mesityl)), 18.3 (o-CH3(mesityl)), 
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17.4 (CH3(imine)). FTIR (cast-CDCl3) υC=N 1698 cm–1. Anal. Calcd. for C26H34ClN3 (%): 

C, 73.65; H, 8.08 ; N, 9.91; Found (%): C, 73.38; H,8.18; N, 10.17. 

 

Compound 1a”, C^ImineMe”·HCl: N-(2,6-Dimethylphenyl)acetimidoyl chloride (119.9 

mg, 0.660 mmol) was dissolved in a minimal amount of THF and added to a THF (10 

mL) solution of 1-(2,6-diisopropylphenyl)imidazole (150.7 g, 0.660 mmol) at room 

temperature. The reaction mixture was left to stir for a total of 4 h and filtered. The white 

solid was washed with pentane (15 mL) and dried under vacuum to give a white solid 

(206 mg, 0.502 mmol,  76 %). 1H NMR (400 MHz, CDCl3) E isomer δ 11.75 (s, 1H, 

NCHN(mesityl)), 8.78 (s, 1H, NCHCN(DIPP)), 7.53 (t, 3J = 7.9 Hz, 1H, p-CH(DIPP)), 7.33 (d, 

3J = 7.9 Hz, 2H, m-CH(DIPP)), 7.32 (s, 1H, NCCHN(DIPP)), 7.09 (d, 3J = 7.5 Hz, 2H, m-

CH(xylyl)), 7.09 (t, 3J = 7.5 Hz, 1H, p-CH(xylyl)), 2.80 (s, 3H, CH3(imine)), 2.45 (m, 3J = 6.6 

Hz, 2H, o-CH(DIPP)), 2.09 (s, 6H, o-CH3(xylyl)), 1.33 (s, 3J = 6.6 Hz, 6H, o-CH3(DIPP)), 1.17 

(s, 3J = 6.6 Hz, 6H, o-CH3(DIPP)). 13C{1H} NMR (100 MHz, CDCl3): δ 150.2 (C=N), 

145.2 (o-C(DIPP)), 145.1 (C(xylyl)), 139.4 (NCN), 132.3 (p-CH(DIPP)), 130.3 (C(DIPP)), 128.5 

(m-CH(xylyl)), 126.4 (o-C(xylyl)), 125.1 (p-CH(xylyl)), 125.0 (NCCN(DIPP)), 124.9 (m-

CH(DIPP)), 119.2 (NCCN(xylyl)), 29.0 (o-CH(DIPP)),  24.6 (o-CH3(DIPP)), 24.3 (o-CH3(DIPP)), 

18.4 (o-CH3(xylyl)), 17.8 (CH3(imine)). Anal. Calcd. for C25H32ClN3 (%): C, 73.24; H, 7.87 ; 

N, 10.25; Found (%): C, 73.37; H,8.12; N, 10.10. 

 

Compound 1b, C^Iminet-Bu·HBF4: Solid NaBF4 (1.78 g, 16.2 mmol) was added to a 

solution of N-(2,6-dimethylphenyl)pivalimidoyl chloride (3.63 g, 16.2 mmol) in 
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acetonitrile (70 mL). The turbid solution was allowed to stir for 48 h at ambient 

temperature. Solid 1-(2,4,6-trimethylphenyl)imidazole (3.03 g, 16.3 mmol) was added to 

the solution and the brown solution was allowed to stir for an additional 24 h. Volatiles 

were removed in vacuo and the product was redissolved in CH2Cl2 (25 mL), filtered and 

the product was precipitated with pentane (60 mL). The white solid was filtered and 

washed with pentane to give a light brown product (5.38 g, 11.7 mmol, 72%). 1H NMR 

(400 MHz, CDCl3) (Major Isomer E):  8.39 (s, 1H, NCHN(mesityl)),  7.70 (s, 1H, 

NCHCN(mesityl)),  7.25 (s, 1H, NCCHN(mesityl)), 6.93–6.85 (m, 3H, m-CH(2,6-xylyl) + p-

CH(2,6-xylyl)), 6.91 (s, 2H, m-CH(mesityl)), 2.28 (s, 3H, p-CH3(mesityl)), 2.09 (s, 6H, o-CH3(2,6-

xylyl)), 1.65 (s, 6H, o-CH3(mesityl)), 1.53 (s, 9H, C(CH3)3(imine)). 13C{1H} NMR (100 MHz, 

CDCl3) (Major Isomer): 154.6 (C=N), 143.1 (C(2,6-xylyl), 141.7 (p-C(mesityl)), 134.8 

(NCN(mesityl)), 134.2 (o-C(mesityl)),  129.9 (C(mesityl)), 129.8 (m-CH(mesityl)), 128.6 (m-CH(2,6-

xylyl)), 125.7 (o-C(2,6-xylyl)), 125.2 (p-CH(2,6-xylyl)), 124.2 (NCCN(mesityl)), 122.5 

(NCCN(mesityl)), 40.5 (C(CH3)3(imine)), 28.3 (C(CH3)3(imine)), 21.2 (p-CH3(mesityl)), 18.1 (o-

CH3(2,6-xylyl)), 16.7 (o-CH3(mesityl)). FTIR (cast film) C=N 1696 cm-1, 1673 cm-1. Anal. 

Calcd. for C25H32BF4N3 (%): C, 65.09; H, 6.99 ; N, 9.11; Found (%):C, 65.22; H, 7.10 ; 

N, 8.86. 

 

Compound 1c, C^IminePh·HBF4: N-(2,4,6-Dimethylphenyl)benzimidoyl chloride (3.10 

g, 12.0 mmol) was dissolved in a minimal amount of acetonitrile and added to a 

suspension of acetonitrile (60 mL) solution of NaBF4 (1.32 g, 12.0 mmol) at room 

temperature and stirred for 36 h. 2,4,6-Trimethylphenylimidazole (2.24 g, 12.04 mmol) 
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was subsequently added and the reaction mixture was stirred for an additional 12 h. 

Volatiles were then removed under vacuum and the resulting brown solid was dissolved 

in a minimal amount of dichloromethane. The solution was filtered and pentane was 

added to the filtrate to precipitate the product. The solid was further washed with pentane 

and dried under vacuum, giving the product as a light brown solid (4.83 g, 9.75 mmol, 

81%). 1H NMR (400 MHz, CDCl3): δ 8.81 (s, 1H, NCHN(azole)), 8.09 (s, 1H, 

NCHCN(azole-mesityl)), 7.52 (s, 1H, NCCHN(azole-mesityl)), 7.37 (m, 5H, CH(phenyl)), 7.01 (s, 

2H, m-CH(azole-mesityl)), 6.74 (s, 2H, m-CH(N-mesityl)), 2.33 (s, 3H, p-CH3(azole-mesityl)), 2.20 (s, 

3H, p-CH3(N-mesityl)), 2.17 (s, 6H, o-CH3(N-mesityl)), 2.02 (s, 6H, o-CH3(azole-mesityl)).13C{1H} 

NMR (100 MHz, CDCl3): δ 148.1 (C=N), 141.8 (p-C(azole-mesityl)), 140.7 (Cipso(N-mesityl)), 

134.5 (C(phenyl)), 134.4 (o-C(azole-mesityl)), 132.6 (C(phenyl)), 130.7 (Cipso(azole-mesityl)), 130.1 (m-

CH(azole-mesityl)), 130.0 (p-C(N-mesityl)), 129.5 (C(phenyl)), 129.0 (m-CH(N-mesityl)), 128.0 

(C(phenyl)), 126.6 (o-C(N-mesityl)), 124.9 (NCCN(azole-mesityl)), 121.9 (NCCN(azole-mesityl)), 21.2 

(p-CH3(azole-mesityl)), 20.8 (p-CH3(N-mesityl)), 18.4 (o-CH3(N-mesityl)), 17.6 (o-CH3(azole-mesityl)). 

FTIR (cast-CDCl3) νC=N 1675 cm–1. Anal. Calcd for C28H30N3BF4 (%): C, 67.89; H, 6.10; 

N, 8.48. Found (%): C, 68.13; H, 5.86; N, 8.33. 

 

Compound 2b, C^Iminet-Bu: A cooled solution of NaN[Si(CH3)3]2 (439 mg, 2.20 mmol) 

in THF (15 mL) was added slowly to a THF (15 mL) solution of C^Imine∙HBF4 (1b) 

(953 mg, 2.07 mmol) at –78 °C. The light brown solution was allowed to stir at –78 °C 

for 30 min before the flask was removed from the bath and allowed to stir at room 

temperature for an additional 1.5 h. Volatiles were removed under reduced pressure and 
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the light brown product was redissolved in pentane, filtered, and dried in vacuo to yield 

the tan-coloured product (455 mg, 1.22 mmol, 59%). Crystals suitable for X-ray 

diffraction studies were grown from a saturated pentane solution at –35 °C.  1H NMR 

(400 MHz, C6D6) 6.88 (d, 3J = 7.2 Hz, 2H, m-CH(2,6-xylyl)), 6.81 (t, 3J = 7.4 Hz, 1H, p-

CH(2,6-xylyl)),  6.70 (s, 2H, m-CH(mesityl)), 6.40 (s, 1H, NCHCN(mesityl)), 5.98 (s, 1H, 

NCCHN(mesityl)), 2.21 (s, 6H, o-CH3(2,6-xylyl)), 2.09 (s, 3H, p-CH3(mesityl)), 1.87 (s, 6H, o-

CH3(mesityl)), 1.63 (s, 9H, C(CH3)3(imine)). 13C{1H} NMR (100 MHz, C6D6) 218.3 

(NCN(mesityl)), 162.5 (C=N),  146.7 (C(2,6-xylyl), 138.5 (C(mesityl)), 137.5 (p-C(mesityl)), 135.3 

(o-C(mesityl)), 129.0 (m-CH(mesityl)), 127.9 (m-CH(2,6-xylyl)), 126.5 (o-C(2,6-xylyl)), 123.3 (p-

CH(2,6-xylyl)), 119.0 (NCCN(mesityl)), 118.9 (NCCN(mesityl)), 41.0 (C(CH3)3(imine)), 29.3 

(C(CH3)3(imine)), 21.0 (p-CH3(mesityl)), 18.8 (o-CH3(2,6-xylyl)), 17.7 (o-CH3(mesityl)). FTIR (cast 

film) C=N 1662 cm-1.  

  

Compound 2c, C^IminePh: A suspension of C^IminePh·HBF4 1c (96.7 mg, 0.195 mmol) 

and KN[Si(CH3)3]2 (39.1 mg, 0.196 mmol) in toluene (15 mL) was cooled to –78 °C and 

stirred at this temperature for 30 min. The flask was then removed from the bath and 

stirred at room temperature for an additional 1.5 h. Volatiles were removed under 

reduced pressure and pentane (20 mL) was added to extract the product. The pentane 

solution was filtered and the filtrated was dried under reduced pressure to give a yellow 

solid (57.2 mg, 0.140 mmol, 72%). 1H NMR (400 MHz, C6D6): δ 7.51 (d, 3J = 7.5 Hz, 

2H, p-CH(phenyl)), 7.32 (s, 1H, NCHCN(azole-mesityl)), 6.94–6.89 (m, 3H, m-CH(phenyl) + o-

CH(phenyl)), 6.65 (s, 2H, m-CH(azole-mesityl)), 6.48 (s, 1H, NCCHN(azole-mesityl)), 6.48 (s, 2H, 
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m-CH(N-mesityl)), 2.07 (s, 6H, o-CH3(azole-mesityl)), 1.97 (s, 3H, p-CH3(azole-mesityl)), 1.94 (s, 3H, 

p-CH3(azole-mesityl)), 1.80 (s, 6H, o-CH3(N-mesityl)). 13C{1H} NMR (100 MHz, C6D6): δ 158.2 

(C=N), 146.0 (Cipso(N-mesityl)), 137.9 (p-C(azole-mesityl)), 136.8 (Cipso(azole-mesityl)), 135.3 (o-

C(azole-mesityl)), 131.8 (p-C(N-mesityl)), 130.1 (NCCN(azole-mesityl)), 129.7 (o-C(phenyl)), 129.3 (p-

C(phenyl)), 129.1 (Cipso(phenyl)), 128.9 (NCCN(azole-mesityl)), 128.8 (m-CH(azole-mesityl)), 127.6 (m-

C(phenyl)), 125.0 (o-C(N-mesityl)), 123.7 (m-CH(N-mesityl)), 21.0 (p-CH3(azole-mesityl)), 20.7 (p-

CH3(N-mesityl)), 18.4 (o-CH3(N-mesityl)), 18.0 (o-CH3(azole-mesityl)); resonance for NCN was not 

observed. FTIR (cast-solvent) νC=N 1652 cm–1. Anal. Calcd for C28H29N3 (%): C, 82.52; 

H, 7.17; N, 10.31. Found (%): C, 82.26; H, 6.90; N, 10.58. 

 

Compound 3a, Ag(C^ImineMe)Cl: To a solution of C^imine·HCl 1a (1.04 g, 2.82 

mmol) in acetonitrile (70 mL) was added activated powdered 4Å molecular sieves and 

silver carbonate (0.807 g, 2.93 mmol) at room temperature. The reaction mixture was 

stirred with exclusion of light for 64 h and then filtered. The filtrate was evaporated to 

dryness and dissolved in the minimum amount of dichloromethane, pentane was added 

dropwise to precipitate the product. The solid was filtered, washed with pentane and 

dried in vacuo to yield the product as a light brown solid (1.02 g, 2.17 mmol,  77%). 

Crystals suitable for X-ray diffraction study were grown at  

–35 ºC under nitrogen by layering pentane onto a saturated dichloromethane solution. 1H 

NMR (400 MHz, CDCl3): 8.32 (d, 3J = 1.5 Hz, 1H, NCHCN(mesityl)), 7.10 (d, 3J = 7.4 Hz, 

2H, m-CH(2,6-xylyl)), 7.06 (d, 3J = 1.5 Hz, 1H, NCCHN(mesityl)), 6.98–7.03 (m, 3H, p-CH(2,6-

xyly) + m-CH(mesityl)), 2.59 (s, 3H, CH3(imine)), 2.35 (s, 3H, p-CH3(mesityl)), 2.10 (s, 6H,o-



93 

 

CH3(2,6-xylyl)), 2.08 (s, 6H, o-CH3(mesityl)). 13C{1H} NMR (100 MHz, CDCl3): 152.2 (C=N), 

144.5 (C(2,6-xylyl), 140.3 (p-C(mesityl)), 135.7 (o-C(mesityl)), 134.6 (C(mesityl)), 129.9 (m-

CH(mesityl))), 128.5 (m-CH(2,6-xylyl)), 126.4 (o-C(2,6-xylyl)), 124.4 (p-CH(2,6-xylyl)), 123.0 

(NCCN(mesityl)), 119.5 (NCCN(mesityl)), 21.3 (p-CH3(mesityl)), 18.3 (CH3(imine) and o-CH3(2,6-

xylyl)), 18.1 (o-CH3(mesityl)). FTIR (KBr) C=N 1682 cm–1. Anal. Calcd. for 

C22H25AgClN3·0.5 CH2Cl2 (%): C, 52.25; H, 5.07; N, 8.12; Found (%): C, 51.02; H, 4.97; 

N, 8.85. HRMS (ESI+, Dichloromethane) Calculated for C22H25AgN3Cl, m/z = 438.1099 

[M – Cl]+; Found: 438.1074 [M – Cl]+.  

 

Compound 3a’, Ag(C^ImineMe’)Cl: To a solution of C^ImineMe’·HCl 1a’ (1.25 g, 

0.00295 mol) in acetonitrile (40 mL) was added activated powdered 4Å molecular sieves 

and silver carbonate (0.813 g, 0.00295 mmol) at room temperature. The reaction mixture 

was stirred with exclusion of light for 64 h and then filtered. The filtrate was evaporated 

to dryness and dissolved in the minimum amount of dichloromethane, pentane was added 

dropwise to precipitate the product. The solid was filtered, washed with pentane and 

dried in vacuo to yield the product as a light brown solid (156 mg, 0.000295 mmol,  

10%). 1H NMR (400 MHz, CDCl3) : δ 8.34 (s, 1H, NCHCN(mesityl)), 7.21-7.17 (m, 3H, p-

CH(DIPP) + m-CH(DIPP)), 7.07 (s, 1H, NCCHN(mesityl)), 7.02 (s, 2H, m-CH(mesityl)), 2.73(m, 3J 

= 6.8 Hz, 2H, o-CH(DIPP)), 2.62 (s, 3H, CH3(imine)), 2.36 (s, 3H, p-CH3(mesityl)), 2.10 (s, 6H, 

o-CH3(mesityl)), 1.21 (d, 3J = 6.8 Hz, 6H, o-CH3(DIPP1)), 1.18 (d, 3J = 6.9 Hz, 6H, o-

CH3(DIPP2). 13C{1H} NMR (100 MHz, CDCl3): δ 182.5 (d, 1J13C-107Ag = 924 Hz, d, 1J13C-

109Ag = 1068 Hz ),  153.3 (C=N), 142.0 (C(DIPP)), 140.3 (p-C(mesityl)), 136.7 (o-C(DIPP)), 
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135.7(C(mesityl)), 134.6 (o-C(mesityl)), 129.9 (m-CH(mesityl)), 125.1 (p-CH(DIPP)), 123.6 (m-

CH(DIPP)), 123.1 (d,3JAg-C = 24 Hz, NCCN(mesityl)), 119.3 (d, 3JAg-C = 20 Hz, NCCN(mesityl)), 

28.7 (o-CH(DIPP)), 23.5 (o-CH3(DIPP2)), 23.0 (o-CH3(DIPP1)), 21.3 (p-CH3(mesityl)), 18.8 

(CH3(imine)), 18.1 (o-CH3(mesityl)). Anal. Calcd. for C26H33AgClN3: C, 58.82; H, 6.27; N, 

7.92; Found (%): C, 58.40; H, 6.01; N, 7.60. 

 

Compound 3a”, Ag(C^ImineMe”)Cl: To a solution of C^ImineMe”·HCl 1a” (76.9 mg, 

0.188 mmol) in acetonitrile (10 mL) was added activated powdered 4Å molecular sieves 

and silver carbonate (51.7 mg, 0.187 mmol) at room temperature. The reaction mixture 

was stirred with exclusion of light for 64 h and then filtered. The filtrate was evaporated 

to dryness and dissolved in the minimum amount of dichloromethane, pentane was added 

dropwise to precipitate the product. The solid was filtered, washed with pentane and 

dried in vacuo to yield the product as a light brown solid (76.6 mg, 0.148 mmol, 79%).1H 

NMR (400 MHz, CDCl3) δ 8.34 (s, 1H, NCHCN(DIPP)), 7.52 (t, 3J = 7.8 Hz, 1H, p-

CH(DIPP)), 7.31 (d, 3J = 7.8 Hz, 2H, m-CH(DIPP)), 7.13 (s, 1H, NCCHN(DIPP)), 7.11 (s, 2H, 

m-CH(xylyl)), 7.02 (t, 3J = 7.7 Hz, 1H, p-CH(xylyl)), 2.61 (s, 3H, CH3(imine)), 2.47 (m, 3J = 6.8 

Hz, 2H, o-CH(DIPP)), 2.13 (s, 6H, o-CH3(xylyl)), 1.30 (s, 3J = 6.8 Hz, 6H, o-CH3(DIPP)), 1.17 

(s, 3J = 6.8 Hz, 6H, o-CH3(DIPP)). 13C{1H} NMR (100 MHz, CDCl3): δ 182.8 (NCN), 

152.2 (C=N), 145.5 (o-C(DIPP)), 144.3 (C(xylyl)), 134.9 (C(DIPP)), 131.1 (p-CH(DIPP)), 128.4 

(m-CH(xylyl)), 126.3 (o-C(xylyl)), 124.6 (m-CH(DIPP)), 124.4 (p-CH(xylyl)), 124.0 

(NCCN(DIPP)), 119.1 (NCCN(xylyl)), 28.4 (o-CH(DIPP)), 24.6 (o-CH3(DIPP)), 24.5 (o-
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CH3(DIPP)), 18.3 (o-CH3(xylyl) + CH3(imine)). Anal. Calcd. for C25H31AgClN3 (%): C, 58.10; 

H, 6.05 ; N, 8.13; Found (%): C, 57.88; H,5.84; N, 7.91. 

 

Compound 4, Cu(C^ImineMe)2Cl: A solution of Ag(C^ImineMe)Cl (3a) (321 mg, 0.677 

mmol) dissolved in dichloromethane (5 mL) and was added to solid copper(I) iodide (128 

mg, 0.674 mmol). The reaction mixture was stirred in the dark for 18 h. The solution was 

then filtered and volatiles were removed from the filtrate. The resulting solid was 

dissolved in a minimal amount of dichloromethane and pentane was added to crash out 

the product. The isolated solid was further purified by a pentane wash to give a cream-

coloured solid. (178 mg, 0.465 mmol, 69% yield). Crystals suitable for X-ray diffraction 

study were grown at –35 ºC under nitrogen by layering pentane onto a saturated 

dichloromethane solution. 1H NMR (400 MHz, CDCl3): 8.26 (d, 3J = 1.8 Hz, 1H, 

NCHCN(mesityl)), 7.10 (d, 3J = 7.4 Hz, 2H, m-CH(2,6-xylyl)), 6.99–7.02 (m, 3H, m-CH(mesityl) 

+ p-CH(2,6-xylyl)), 6.98 (d, 3J = 1.9 Hz, 1H, NCCHN(mesityl)), 2.69 (s, 3H, CH3(imine)), 2.35 (s, 

3H, p-CH3(mesityl)), 2.11 (s, 6H, o-CH3(mesityl)), 2.10 (s, 6H, o-CH3(2,6-xylyl)). 13C{1H} NMR 

(100 MHz, CDCl3): 178.6 (C-Cu), 152.1 (C=N), 144.3 (C(2,6-xylyl), 139.8 (p-C(mesityl)), 

135.2 (o-C(mesityl)), 134.3 (C(mesityl)), 129.6 (m-CH(mesityl)), 128.2 (m-CH(2,6-xylyl)), 126.2 (o-

C(2,6-xylyl)), 124.1 (p-CH(2,6-xylyl)), 122.5 (NCCN(mesityl)), 118.3 (NCCN(mesityl)), 21.0 (p-

CH3(mesityl)), 18.5 (CH3(imine) 18.0 (o-CH3(2,6-xylyl)), 17.9 (o-CH3(mesityl)). FTIR (KBr) C=N  

1678 cm–1. HRMS (ESI+, Methanol) Calculated for C44H50CuN6Cl, m/z = 725.3393 [M – 

Cl]+; Found: 725.3344 [M – Cl]+.  
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Compound 5a, [Cu(C^ImineMe)I]2: Sodium bis(trimethylsilyl)amide (1.16 g, 6.34 

mmol) was dissolved in THF (5 mL) and added dropwise to a THF (5 mL) suspension of 

copper(I) iodide (1.21 g, 6.34 mmol) at a –35 °C. The reaction mixture was gradually 

warmed to room temperature and subsequently stirred for an additional hour. To this 

reaction mixture was then added dropwise a THF (5 mL) suspension of 1a (2.33 g, 6.34 

mmol) at –35 °C. The reaction mixture was gradually warmed to room temperature and 

stirred for an additional 4 h. The mixture was filtered and the filtrate was concentrated to 

about 5 mL. Pentane was added to precipitate a yellow solid. The solid was collected by 

filtration and further washed with pentane to give the desired product as a yellow solid. 

Yield: 2.67 g, 5.14 mmol, 81%. Crystals suitable for X-ray diffraction studies were 

grown at –35 °C under nitrogen by layering pentane onto a saturated dichloromethane 

solution. 1H NMR (400 MHz, CDCl3): δ 8.19 (s, 1H, NCHCN(mesityl)), 7.09 (d, 3J = 7.5 

Hz, 2H, m-CH(2,6-xylyl)), 6.98 (t, 3J = 7.5 Hz, 1H, p-CH(2,6-xyly) ), 6.87 (s, 2H, m-CH(mesityl)), 

6.83 (s, 1H, NCCHN(mesityl)), 2.46 (br s, 3H, CH3(imine)), 2.15 (s, 3H, p-CH3(mesityl)), 2.10 (s, 

6H, o-CH3(mesityl)), 2.07 (s, 6H, o-CH3(2,6-xylyl)). 13C{1H} NMR (100 MHz, CDCl3): 186.0 

(NCN), 153.6 (C=N), 145.2 (C(2,6-xylyl), 139.4 (p-C(mesityl)), 135.8 (C(mesityl)), 135.2 (o-

C(mesityl)), 129.4 (m-CH(mesityl)), 128.2 (m-CH(2,6-xylyl)), 126.8 (o-C(2,6-xylyl)), 123.9 (p-CH(2,6-

xylyl)), 122.0 (NCCN(mesityl)), 117.8 (NCCN(mesityl)), 21.0 (p-CH3(mesityl)), 18.5 (o-CH3(2,6-

xylyl)), 18.5 (o-CH3(mesityl)), 18.5 (CH3(imine) unobserved because of overlap with other 

carbon resonances but predicted from correlation observed in 1H-13C HSQC spectra). 

FTIR (cast film): νC=N 1678 cm–1. Anal. Calcd for C22H25N3CuI (%): C, 50.63; H, 4.83; 

N, 8.05. Found (%): C, 50.38; H, 4.90; N, 7.76.  
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 Compound 5b, [Cu(C^Iminet-Bu)I]2: C^Iminet-Bu (1b) (79.6 mg, 0.213 mmol) was 

dissolved in THF (1.5 mL) and added to a suspension of copper(I) iodide (40.6 mg, 0.213 

mmol) in THF (1.5 mL). The reaction mixture was stirred for 4 h. The solution was then 

filtered and volatiles were removed under vacuum. The resulting solid was washed with 

pentane to give the desired product as a beige solid. Yield: 114 mg, 0.202 mmol, 95%. 

Crystals suitable for X-ray diffraction studies were grown at –35 °C under nitrogen by 

layering pentane onto a saturated dichloromethane solution. 1H NMR (400 MHz, CDCl3): 

δ 6.90 (s, 2H, m-CH(mesityl)), 6.89 (s, 1H, NCHCN(mesityl)), 6.87 (s, 2H, m-CH(2,6-xylyl)), 6.81 

(m, 1H, p-CH(2,6-xylyl)), 6.69 (d, 3J = 1.8 Hz, 1H, NCCHN(mesityl)), 2.29 (s, 3H, p-

CH3(mesityl)), 2.28 (s, 6H, o-CH3(2,6-xylyl)), 1.75 (s, 6H, o-CH3(mesityl)), 1.58 (s, 9H, 

C(CH3)3(imine)). 13C{1H} NMR (100 MHz, CDCl3): δ 178.8 (NCN(mesityl)), 159.9 (C=N), 

144.5 (C(2,6-xylyl), 139.8 (p-C(mesityl)), 134.6 (o-C(mesityl)), 134.5 (C(mesityl)), 129.5 (m-

CH(mesityl)), 128.0 (m-CH(2,6-xylyl)), 125.5 (o-C(2,6-xylyl)), 124.1 (p-CH(2,6-xylyl)), 120.7 

(NCCN(mesityl)), 119.7 (NCCN(mesityl)), 40.6 (C(CH3)3(imine)), 29.7 (C(CH3)3(imine)), 21.3 (p-

CH3(mesityl)), 20.0 (o-CH3(2,6-xylyl)), 17.5 (o-CH3(mesityl)). FTIR (cast film): νC=N 1664 cm–1. 

Anal. Calcd for C25H31N3CuI (%): C, 53.24; H, 5.54; N, 7.45. Found (%): C, 52.55; H, 

5.56; N, 7.35. HRMS (ESI+, CH2Cl2) Calculated for C50H62Cu2I2N6, m/z = 1126.1717 

[M]+; Found: 1126.1685 [M]+. 

 

Compound 6a, Au(C^ImineMe)Cl: A solution of (C^ImineMe)AgCl (3a) (177 mg, 0.374 

mmol) in dichloromethane (3 mL) was added to a solution of Au(SMe2)Cl (110 mg,  

0.374 mmol) in dichloromethane (5 mL). The resulting mixture was stirred for 30 min, 
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and subsequently filtered through Celite. The filtrate was evaporated to dryness under 

reduced pressure and taken up in a minimum amount of THF. The product was isolated 

as a beige solid by pentane-induced precipitation (179 mg, 0.318 mmol, 85%). 1H NMR 

(400 MHz, CDCl3): δ = 8.26 (d, 3J = 1.8 Hz, 1 H, NCHCN(mesityl)), 7.10 (d, 3J = 7.6 Hz, 2 

H, m-CH(2,6-xylyl)), 7.03–6.99 (m, 4 H, p-CH(2,6-xylyl) + m-CH(mesityl) +  NCCHN(mesityl)), 2.82 

(s, 3 H, CH3(imine)), 2.35 (s, 3 H, p-CH3(mesityl)), 2.10 ppm (s, 12 H, o-CH3(2,6-xylyl) + o-

CH3(mesityl)); 13C NMR (100 MHz, CDCl3):  = 172.5 (NCN), 153.1 (C=N), 144.5 

(Cipso(2,6-xylyl), 140.2 (p-C(mesityl)), 135.3 (Cipso(mesityl)), 134.7 (o-C(mesityl)), 129.8 (m-

CH(mesityl))), 128.5 (m-CH(2,6-xylyl)), 126.3 (o-C(2,6-xylyl)), 124.5 (p-CH(2,6-xylyl)), 122.3 

(NCCN(mesityl)), 119.5 (NCCN(mesityl)), 21.3 (p-CH3(mesityl)), 19.9 (CH3(imine)), 18.3 (o-

CH3(2,6-xylyl)), 18.2 ppm (o-CH3(mesityl)); FTIR (cast film) νC=N 1683 cm–1;  Anal. Calcd for 

for C22H25AuClN3 (%): C 46.86, H 4.47, N 7.45; Found (%): C 47.12, H 4.50, N 7.19. 

 

Compound 6b, Au(C^Iminet-Bu)Cl: C^Iminet-Bu (1b) (122 mg, 0.326 mmol) was 

dissolved in toluene (6 mL), and solid dimethylsulfidegold(I) chloride (96.1 mg, 0.326 

mmol) was added in small portions. The reaction mixture was stirred for 2 h at room 

temperature. Excess solvent was removed under vacuum. The sample was then dissolved 

in a minimal amount of THF, filtered through a plug of Celite and pentane was added to 

the filtrate to precipitate the product. The product was isolated by filtration and washed 

with pentane to give 6 as an off-white solid (156 mg, 0.258 mmol, 79%). Crystals 

suitable for X-ray diffraction studies were grown at room temperature under nitrogen by 

layering pentane onto a saturated THF solution. 1H NMR (400 MHz, C6D6): δ = 6.79 (s + 
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br, 2 H, m-CH(2,6-xylyl)), 6.73 (t, 3J = 6.8 Hz, 1 H, p-CH(2,6-xylyl)), 6.51 (s, 2 H, m-

CH(mesityl)), 6.18 (d, 3J = 1.8 Hz, 1 H, NCHCN(mesityl)), 5.68 (d, 3J = 1.8 Hz, 1 H, 

NCCHN(mesityl)), 2.74 (s + br, 3 H, o-CH3(mesityl)), 1.96 (s, 3 H, p-CH3(mesityl)), 1.77 (s + br, 

6 H, o-CH3(2,6-xylyl)), 1.38 (s, 9 H, C(CH3)3(imine)), 1.33 ppm (s + br, 3 H, o-CH3(mesityl)); 13C 

NMR (100 MHz, C6D6): δ = 172.7 (NCN), 158.9 (C=N), 144.6 (C(2,6-xylyl), 139.7 (p-

C(mesityl)), 134.8 (o-C(mesityl)), 134.9 (C(mesityl)), 129.5 (m-CH(mesityl)), 128.9 (m-CH(2,6-xylyl)), 

127.7 (m-CH(2,6-xylyl)), 124.2 (p-CH(2,6-xylyl)), 120.0 (NCCN(mesityl)), 119.4 (NCCN(mesityl)), 

41.1 (C(CH3)3), 29.7 (C(CH3)3), 21.2 (p-CH3(mesityl) + o-CH3(mesityl)), 18.5 (o-CH3(2,6-xylyl)), 

17.5 (o-CH3(2,6-xylyl)), 17.0 ppm (o-CH3(mesityl)); FTIR (cast film): νC=N 1664 cm–1; Anal. 

Calcd for C50H62N6Au2Cl2 (%): C 49.55, H 5.16, N 6.93; Found (%): C 49.7, H 4.93, N 

6.68. 

 

Compound 8, Ni(C^ImineMe)2Cl2: A THF (12 mL) suspension of 1-(1-(2,6-

dimethylphenylimino)ethyl)-3-(2,4,6-trimethylphenyl)imidazolium chloride (1a) (246 

mg, 0.669 mmol) was added dropwise to a THF (4 mL) suspension of Ni(COD)2 (91.6 

mg, 0.333 mmol). The reaction mixture was stirred for 4 h, resulting in a color change 

from a milky yellow to deep red. The mixture was filtered through a plug of Celite and 

the solution was dried under vacuum to give an orange-red solid. Further purification was 

achieved by recrystallization by dissolving the solid in a minimal amount of 

dichloromethane and adding a layer of pentane. The solution was stored at –35 °C for 

overnight, resulting in the formation of reddish orange crystals. The mother liquor was 

decanted off, the solid was washed with pentane (2 × 6 mL). The crystals were crushed 
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into a fine powder and the sample was dried under reduced pressure to give a reddish 

orange solid.  Yield: 174.5 mg, 0.220 mmol, 66%. Crystals suitable for X-ray diffraction 

studies were grown at room temperature under nitrogen by slow vapor diffusion of 

pentane into a saturated dichloromethane solution. 1H NMR (400 MHz, CDCl3): δ 8.02 

(s, 1H, NCHCN(mesityl)), 7.23 (s, 2H, m-CH(2,6-xylyl)), 7.13 (t, 3J = 7.1 Hz, 1H, p-CH(2,6-xyly) 

), 7.03 (s, 2H, m-CH(mesityl)), 6.66 (s, 1H, NCCHN(mesityl)), 3.70 (s, 3H, CH3(imine)), 2.27 (s, 

6H, o-CH3(mesityl)), 2.17 (s, 3H, p-CH3(mesityl)), 2.16 (s, 6H,o-CH3(2,6-xylyl)). 13C{1H} NMR 

(100 MHz, CDCl3): 168.8 (NCN), 155.6 (C=N), 145.8 (C(2,6-xylyl), 139.7 (p-C(mesityl)), 

137.5 (o-C(mesityl)), 136.3 (C(mesityl)), 129.4 (m-CH(mesityl)), 128.1 (m-CH(2,6-xylyl)), 127.0 (o-

C(2,6-xylyl)), 123.7 (p-CH(2,6-xylyl)), 123.0 (NCCN(mesityl)), 120.0 (NCCN(mesityl)), 20.9 (p-

CH3(mesityl)), 20.6 (CH3(imine)), 19.10 (o-CH3(mesityl)), 18.3 (o-CH3(2,6-xylyl)). FTIR (cast film): 

νC=N 1674 cm–1. Anal. Calcd for C44H50Cl2N6Ni (%): C, 66.68; H, 6.36; N, 10.60. Found 

(%): C, 66.40; H, 6.17; N, 10.42.  

Compound 9, Zn(C^ImineMe)Cl2: Sodium bis(trimethylsilyl)amide (1.16 g, 6.34 mmol) 

was dissolved in THF (5 mL) and added dropwise to a THF (5 mL) suspension of zinc(II) 

chloride (1.21 g, 6.34 mmol) at  a temperature of -35 °C. The reaction mixture was 

gradually warmed to room temperature and subsequently stirred for 1 h. To this reaction 

mixture, was then added dropwise a THF (5 mL) suspension of 1-(1-(2,6-

dimethylphenylimino)ethyl)-3-(2,4,6-trimethylphenyl)-imidazolium chloride (1a) (2.33 g, 

6.34 mmol) at 35 °C. The reaction mixture was gradually warmed to room temperature 

and stirred for an additional 4 h. The mixture was filtered and the filtrate was 
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concentrated to about 5 mL. Pentane was added to precipitate a yellow solid, which was 

further washed with pentane to give a white solid. Yield: 191.2 mg, 4.94 mmol, 78%. 1H 

NMR (400 MHz, CDCl3): δ 7.79 (d, 3J = 1.6 Hz, 1H, NCHCN(mesityl)), 7.12 (d, 3J = 1.8 

Hz, 1H, NCCHN(mesityl)), 7.04 (m, 3H, p-CH(2,6-xylyl) + m-CH(2,6-xylyl)), 6.98 (s, 2H, m-

CH(mesityl)), 2.34 (s, 3H, CH3(imine)), 2.33 (s, 3H, p-CH3(mesityl)), 2.28 (s, 6H,o-CH3(2,6-xylyl)), 

2.13 (s, 6H, o-CH3(mesityl)). 13C{1H} NMR (100 MHz, CDCl3): 178.5 (NCN), 157.3 

(C=N), 141.4 (C(2,6-xylyl), 140.5 (p-C(mesityl)), 134.5 (o-C(mesityl)), 134.1 (C(mesityl)), 129.7 (m-

CH(mesityl))), 129.5 (o-C(2,6-xylyl)), 128.8 (m-CH(2,6-xylyl)), 126.6 (p-CH(2,6-xylyl)), 125.8 

(NCCN(mesityl)), 118.4 (NCCN(mesityl)), 21.2 (p-CH3(mesityl)), 18.9 (o-CH3(2,6-xylyl)), 18.0 (o-

CH3(mesityl)), 15.4 (CH3(imine)). FTIR (cast-DCM) C=N 1653 cm–1. Anal. Calcd for 

C22H25N3Cl2Zn (%): C, 56.49; H, 5.39; N, 8.98. Found (%): C, 56.20; H, 5.12; N, 9.25. 

Compound 10, Fe(C^ImineMe)Cl2: Sodium bis(trimethylsilyl)amide (164 mg, 0.892 

mmol) was dissolved in THF (4 mL) and added dropwise to a THF (4 mL) suspension of 

iron(II) chloride (113 mg, 0.893 mmol) at  a temperature of -35 °C. The reaction mixture 

was gradually warmed to room temperature and subsequently stirred for 1 h. To this 

reaction mixture, was then added dropwise a THF (6 mL) suspension of imidazolium salt 

1a (329 mg, 0.893 mmol) at -35 °C and an additional 5 mL of THF was added. The 

reaction mixture was gradually warmed to room temperature and stirred for an additional 

4 h. The mixture was filtered twice through Celite and the filtrate was concentrated down. 

Pentane was added to precipitate a yellow solid which was further washed with pentane, 

toluene and twice with ether, then was dried under reduced pressure. Yield: 287 mg, .624 
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mmol, 70%. FTIR (cast-DCM) C=N 1650 cm–1. Anal. Calcd for C22H25N3Cl2Fe (%): C, 

57.67; H, 5.50; N, 9.17. Found (%): C, 57.55; H, 5.34; N, 8.89. For elemental analysis, 

further  purification of the sample was achieved by recrystallization by dissolving the 

solid in a minimal amount of THF and adding a layer of  pentane. The solution was 

stored at -35° for overnight, resulting in the formation of fine needle-like yellow crystals. 

The mother liquor was decanted off, the solid was washed with pentane and the crystals 

were dried under reduced pressure to give a yellow solid.   

Compound 11, Co(C^ImineMe)Cl2: Sodium bis(trimethylsilyl)amide (108 mg, 0.590 

mmol) was dissolved in THF (4 mL) and added dropwise to a THF (4 mL) suspension of 

cobalt(II) chloride (76.5 mg, 0.589 mmol) at  a temperature of 35 °C. The reaction 

mixture was gradually warmed to room temperature and subsequently stirred for 1 h. To 

this reaction mixture, was then added dropwise a THF (8 mL) suspension of imidazolium 

salt 1a (217 mg, 0.589 mmol) at 35 °C. The reaction mixture was gradually warmed to 

room temperature and stirred for an additional 4 h. The mixture was filtered twice 

through Celite and the filtrate was dried under reduced pressure. Pentane was added to 

wash the blue solid which was then dried under reduced pressure. The solid that was 

recovered from the first filtration was washed with 10 mL of dichloromethane, filtered 

through Celite and dried under reduced pressure. The solid from the dichloromethane 

fraction was washed with pentane and combined with the blue solid of the THF filtrate 

fraction. Yield: 186 mg, .400 mmol, 68%. FTIR (cast-DCM) C=N 1652 cm–1. Anal. 
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Calcd for C22H25N3Cl2Co (%): C, 57.28; H, 5.46; N, 9.11. Found (%): C, 57.37; H, 5.19; 

N, 8.95. 

 

Compound 12a, Ni(C^ImineMe)Br2:  Complex 5a (298 mg, 0.285 mmol) was dissolved 

in THF (4 mL) and added dropwise to a THF (8 mL) suspension of NiBr2(DME) (176 

mg, 0.570 mmol). The mixture was stirred for 18 h at room temperature, filtered through 

a plug of Celite. The filtrate was collected and the volatiles removed in vacuo give an 

orange-brown solid. The solid was further purified by recrystallization from 

dichloromethane and pentane at –35 °C. Yield: 183.5 mg, 0.331 mmol, 58%. Crystals 

suitable for X-ray diffraction studies were grown at room temperature under nitrogen by 

slow vapor diffusion of pentane into a saturated dichloromethane solution. FTIR (cast 

film): νC=N 1646 cm–1. Anal. Calcd for C22H25Br2N3Ni (%): C, 48.05; H, 4.58; N, 7.64. 

Found (%): C, 47.82; H, 4.31; N, 7.50.  

 

Compound 12b, Ni(C^Iminet-Bu)Br2: Complex 5b (528 mg, 0.468 mmol) was dissolved 

in THF (10 mL) and added dropwise to a THF (10 mL) suspension of NiBr2(DME) (288 

mg, 0.933 mmol). The mixture was allowed to stir at room temperature for 27 h, filtered 

and the solution was concentrated to 4 mL and pentane was added to precipitate the 

product. The solid was further washed with pentane (3 × 6 mL) and dried under reduced 

pressure to give a brown solid. Yield: 522 mg, 0.877 mmol,  94%. Crystals suitable for 

X-ray diffraction studies were grown at room temperature under nitrogen by slow vapor 

diffusion of pentane into a saturated dichloromethane solution. FTIR (cast film): νC=N 
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1616 cm–1. Anal. Calcd for C25H31Br2N3Ni (%): C, 50.72; H, 5.28; N, 7.10. Found (%): 

C, 50.45; H, 4.99; N, 6.87.  

 

Compound 13, Ni(C^ImineMe)2Br2: A solution of [(C^ImineMe)CuI]2 5a (44.5 mg, 

0.0426 mmol) in THF (6 mL) was added dropwise to a THF (4 mL) suspension of 

NiBr2(DME) (13.3 mg, 0.0431 mmol). The mixture was allowed to stir for 2 h at room 

temperature. The resulting solution was filtered through a plug of Celite. The volume of 

the solution was reduced to 2 mL and was pentane was added to crash out the product. 

The isolated solid was further purified by a pentane wash and dried under reduced 

pressure to give an orange solid. Yield: 26.2 mg, 0.0298 mmol, 70%. Crystals suitable for 

X-ray diffraction studies were grown at room temperature under nitrogen by slow vapor 

diffusion of pentane into a saturated tetrahydrofuran solution. 1H NMR (400 MHz, C6D6): 

δ 7.87 (s, 1H, NCHCN(mesityl)), 6.94-6.90 (m, 3H, m-CH(2,6-xylyl) and m-CH(2,6-xylyl)), 6.62 

(s, 2H, m-CH(mesityl)), 5.86 (s, 1H, NCCHN(mesityl)), 2.43 (s, 3H, CH3(imine)),  2.06 (s, 6H, o-

CH3(mesityl)), 1.91 (s, 3H, p-CH3(mesityl)), 1.89 (s, 6H, o-CH3(2,6-xylyl)). 13C{1H} NMR (100 

MHz, C6 D6): 153.7 (C=N), 145.51 (C(2,6-xylyl), 139.3 (p-C(mesityl)), 135.53 (o-C(mesityl)), 

129.4 (m-CH(mesityl)), 128.2 (m-CH(2,6-xylyl)), 127.2 (o-C(2,6-xylyl)), 123.9 (p-CH(2,6-xylyl)), 

121.5 (NCCN(mesityl)), 117.3 (NCCN(mesityl)), 20.6 (p-CH3(mesityl)), 17.9 (o-CH3(mesityl)), 17.8 

(o-CH3(2,6-xylyl)). 17.7 (CH3(imine)). The poor solubility of the compound precluded the 

observation of resonances for the carbenoid and the mesityl ring ipso carbon nuclei. FTIR  

(cast film): νC=N1676 cm–1. Anal. Calcd for C44H50Br2N6Ni (%): C, 59.96; H, 5.72; N, 

9.53. Found (%): C, 60.04; H, 5.56; N, 9.79. 
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Compound 14, Ni(C^Iminet-Bu)COD: A solution of C^Iminet-Bu (2b) (165 mg, 0.441 

mmol) in toluene (6 mL) and was added to a solution of bis-(1,5-cyclooctadiene)nickel(0) 

(121 mg, 0.441 mmol) in toluene (6 mL). The reaction mixture was stirred at room 

temperature overnight. The reaction mixture was filtered through a plug of Celite and 

volatiles were removed under reduced pressure to give a dark purple solid. A minimal 

amount of pentane was added and the sample was placed in the freezer (35°C) overnight 

which resulted in formation of a crystalline dark purple. Excess pentane was carefully 

removed and the sample was dried under vacuum (194 mg, 0.359 mmol, 81%). Crystals 

suitable for X-ray diffraction were grown from a concentrated pentane solution that was 

cooled  overnight at 35°C. 1H NMR (400 MHz, CDCl3): δ 7.28 (s, 1H, NCHCN(mesityl)), 

7.03 (d, 3J = 7.1 Hz, 2H, m-CH(2,6-xylyl)), 6.98 (t, 3J = 7.1 Hz, 1H, p-CH(2,6-xylyl), 6.87 (s, 

2H, m-CH(mesityl)), 6.34 (s, 1H, NCCHN(mesityl)), 4.46 (m, 2H, CHCOD), 3.53(m, 2H, 

CHCOD),  2.20 (s, 6H, o-CH3(mesityl)), 2.16 (s, 3H, p-CH3(mesityl)), 2.12 (s, 6H, o-CH3(2,6-

xylyl)), 2.06 (m, 4H, CHCOD), 1.76 (m, 4H, CHCOD), 1.03 (s, 9H, C(CH3)3(imine)). 13C{1H} 

NMR (100 MHz, CDCl3): δ 202.1 (NCN(mesityl)), 150.8 (Cipso(2,6-xylyl), 144.9 (C=N), 138.8 

(Cipso(mesityl)), 138.1 (p-C(mesityl)), 136.6 (o-C(mesityl)), 129.1 (m-CH(mesityl)), 128.8 (o-C(2,6-

xylyl)), 127.8 (m-CH(2,6-xylyl)), 122.8 (p-CH(2,6-xylyl)), 122.3 (NCCN(mesityl)), 114.6 

(NCCN(mesityl)), 81.6 (CHCOD), 79.3 (CHCOD), 39.9 (C(CH3)3(imine)), 31.6 (CHCOD), 30.9 

(CHCOD), 28.5 (C(CH3)3(imine)), 22.7 (p-CH3(mesityl)), 18.8 (o-CH3(2,6-xylyl)), 18.2 (o-

CH3(mesityl)). Anal. Calcd for C33H43N3Ni (%): C, 73.34; H, 8.02; N, 7.78. Found (%): C, 

73.08; H, 7.74; N, 8.05. 
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Compound 15a, [Pd(C^ImineMe)(ƞ3-C3H5)]BF4: A solution of palladium allyl chloride 

dimer (88.6 mg, 0.242 mmol) in THF (8 mL) was added to a suspension of silver 

tetrafluoroborate (94.8 mg, 0.487 mmol) in THF (2 mL). Upon addition, the solution 

immediately became cloudy and the formation of a white precipitate was observed. The 

solution was left to stir for an additional 15 min and was then filtered through celite. A 

solution of (C^ImineMe)AgCl (3a) (230 mg, 0.484 mmol) in THF (6 mL) was added 

dropwise to the cationic palladium precursor. The resulting reaction mixture was left to 

stir for 4 h. The solution was then filtered through celite, the solvent was concentrated 

down and pentane was added to precipitate the product. The solid was collected and 

further washed with pentane and dried under reduced pressure to give a pale beige/brown 

solid. Yield: 228 mg, 0.358 mmol,  74%. 1H NMR (400 MHz, CDCl3): δ 8.23 (d, 3J = 1.7 

Hz, 1H, NCHCN(mesityl)), 7.15-7.11 (m, 4H, p-CH(2,6-xylyl) + m-CH(2,6-xylyl) + 

NCCHN(mesityl)), 7.04 (s, 2H, m-CH(mesityl)), 5.29-5.19 (m, 1H, allyl CH2CHCH2), 3.42 

ppm (d + br, 3Jsyn
H-H = 7.7 Hz, 1H, allyl C(trans to carbene)HantiHsyn), 3.04 (d, 3Janti

H-H = 14.0 

Hz, 1H, allyl C(trans to carbene)HantiHsyn), 2.76 (m, 1H, allyl C(trans to imine)HantiHsyn), 2.55 (s, 

3H, CH3(imine)), 2.38 (s, 3H, p-CH3(mesityl)), 2.26 (s + br, 4H, o-CH3(xylxyl) + allyl C(trans to 

imine)HantiHsyn, splitting pattern is not observed as there is overlap from resonance from 

one ortho-CH3 group from xylyl ring), 2.12 (s, 6H, o-CH3(xylxyl) + o-CH3(mesityl)), 2.02 (s, 

3H, o-CH3(mesityl)). 13C{1H} NMR (100 MHz, CDCl3): δ 183.3 (NCN), 165.5(C=N), 145.2 

(C(2,6-xylyl), 140.4 (p-C(mesityl)), 135.4 (C(mesityl)), 134.6 (o-C(mesityl)), 134.3 (o-C(mesityl)), 

129.5 (m-CH(mesityl)), 129.4 (m-CH(mesityl)), 129.0 (m-CH(2,6-xylyl)), 128.9 (m-CH(2,6-xylyl)), 

128.74 (o-C(2,6-xylyl)), 129.70 (o-C(2,6-xylyl)), 127.0 (p-CH(2,6-xylyl)), 124.0 (NCCN(mesityl)), 
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120.9 (NCCN(mesityl)), 119.9 (allyl CH2CHCH2), 72.6 (allyl C(trans to carbene)H2CHCH2), 50.3 

(CH2CHC(trans to imine)H2), 21.3 (p-CH3(mesityl)), 18.4 (o-CH3(2,6-xylyl)), 18.0 (o-CH3(mesityl)), 

14.4 (o-CH3(imine)). Anal. Calcd for C25H30BF4 N3Pd (%): C, 53.07; H, 5.34; N, 7.43. 

Found (%): C, 52.84; H, 5.55; N, 7.15. 

 

Compound 15b, [Pd(C^Iminet-Bu)(ƞ3-C3H5)]BF4: A solution of palladium allyl chloride 

dimer (60.6 mg, 0.166 mmol) in THF (6 mL) was added to a suspension of silver 

tetrafluoroborate (65.0 mg, 0.334 mmol) in THF (2 mL). Upon addition, the solution 

immediately became cloudy and the formation of a white precipitate was observed. The 

solution was left to stir for an additional 15 min and was then filtered through celite. A 

solution of carbene 2b (124 mg, 0.333 mmol) in THF (4 mL) was added dropwise to the 

cationic palladium precursor. The resulting reaction mixture was left to stir for 1.5 h. The 

solution was then filtered, the solvent was concentrated down to 4 mL and pentane was 

added to precipitate the product. The solid was collected and further washed pentane and 

dried under reduced pressure to give a pale beige solid. Yield: 179 mg, 0.293 mmol,  

88%. 1H NMR (400 MHz, CDCl3): δ 8.45 (d, 3J = 2.2 Hz, 1H, NCHCN(mesityl)), 7.32 (d, 3J 

= 1.9 Hz,  1H, NCCHN(mesityl)),7.08-7.04 (m, 3H, p-CH(2,6-xylyl) + m-CH(2,6-xylyl)), 7.01 (s, 

2H, m-CH(mesityl)), 5.29-5.18 (m, 1H, allyl CH2CHCH2), 2.98 (d, 3Janti
H-H = 14.1 Hz, 1H, 

allyl C(trans to carbene)HantiHsyn), 2.87 ppm (dd, 3Jsyn
H-H = 8.0 Hz, 2JH-H = 1.4 Hz, 1H, allyl 

C(trans to carbene)HantiHsyn), 2.48 (m, 1H, allyl C(trans to imine)HantiHsyn), 2.36 (s, 6H, o-CH3(xylxyl) 

+ p-CH3(mesityl)), 2.22 (s, 3H, o-CH3(xylxyl)), 2.13 ppm (dd, 2JH-H = 2.1 Hz, 1H, allyl C(trans to 

imine)HantiHsyn, splitting pattern is not completely observed as there is partial overlap from 
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resonance from one ortho-CH3 group from mesityl ring at 2.12 ppm), 2.12 (s, 3H, o-

CH3(mesityl)), 2.01 (s, 3H, o-CH3(mesityl)), 1.45 (s, 9H, C(CH3)3(imine)). 13C{1H} NMR (100 

MHz, CDCl3): δ 184.7 (NCN), 169.2(C=N), 148.4 (C(2,6-xylyl), 140.4 (p-C(mesityl)), 135.7 

(C(mesityl)), 134.5 (o-C(mesityl)), 134.1 (o-C(mesityl)), 129.5 (m-CH(mesityl)), 129.4 (m-

CH(mesityl)), 128.4 (m-CH(2,6-xylyl)), 128.3 (m-CH(2,6-xylyl)), 126.9 (o-C(2,6-xylyl)), 129.7 (o-

C(2,6-xylyl)), 126.3 (p-CH(2,6-xylyl)), 123.8 (NCCN(mesityl)), 123.1 (NCCN(mesityl)), 121.1 (allyl 

CH2CHCH2), 76.2 (allyl C(trans to carbene)H2CHCH2), 48.9 (CH2CHC(trans to imine)H2), 40.9 

(C(CH3)3(imine)), 29.7 (C(CH3)3(imine)), 21.3 (p-CH3(mesityl)), 19.1 (o-CH3(2,6-xylyl)), 19.0 (o-

CH3(2,6-xylyl)), 17.99 (o-CH3(mesityl)), 17.96 (o-CH3(mesityl)). Anal. Calcd for C28H36BF4 N3Pd 

(%): C, 55.33; H, 5.97; N, 6.91. Found (%): C, 55.15; H, 6.13; N, 7.07. 

 

Compound 16a, Pd(C^ImineMe)MeCl: A solution of [Cu(C^ImineMe)I]2 (5a) (233 mg, 

0.224 mmol) in THF (12 mL) was added to a solution of (1,5-

cyclooctadiene)palladium(II) methyl chloride (118 mg, 0.447 mmol) in THF (4 mL). The 

resulting mixture was stirred at room temperature for 16 h then the solution was filtered 

through Celite. The mixture was concentrated down to 6 mL and pentane was added to 

precipitate the product. A beige solid was recovered and further washed with pentane (2 

× 6 mL) and dried under reduced pressure (173 mg, 0.354 mmol, 80%). Crystals suitable 

for X-ray diffraction were grown at room temperature by slow vapor diffusion of pentane 

into a saturated chloroform solution. 1H NMR (400 MHz, CDCl3): δ 7.49 (d, 3J = 1.9 Hz, 

1H, NCHCN(mesityl)), 7.07–7.06 (m, 3H, p-CH(2,6-xyly) + m-CH(2,6-xylyl)), 6.98 (s, 2H, m-

CH(mesityl)), 6.83 (d, 3J = 1.9 Hz, 1H, NCCHN(mesityl)), 2.35 (s, 3H, p-CH3(mesityl)), 2.22 (s, 
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9H, CH3(imine) + o-CH3(2,6-xylyl)), 2.13 (s, 6H, o-CH3(mesityl)), 0.30 (s, 3H, Pd–CH3). 13C{1H} 

NMR (100 MHz, CDCl3): δ 176.0 (NCN), 156.2(C=N), 142.2 (Cipso(2,6-xylyl), 140.1 (p-

C(mesityl)), 134.8 (Cipso(mesityl)), 134.5 (o-C(mesityl)), 129.7 (o-C(2,6-xylyl)), 129.4 (m-CH(mesityl)), 

128.2 (m-CH(2,6-xylyl)), 126.2 (p-CH(2,6-xylyl)), 124.2 (NCCN(mesityl)), 116.9 (NCCN(mesityl)), 

21.4 (p-CH3(mesityl)), 18.9 (o-CH3(2,6-xylyl)), 18.0 (o-CH3(mesityl)), 14.8 (CH3(imine)), –8.9 (Pd–

CH3). FTIR (cast-DCM): νC=N 1652 cm–1. Anal. Calcd for C23H28N3ClPd (%): C, 56.57; 

H, 5.78; N, 8.60. Found (%): C, 56.42; H, 6.07; N, 8.42. 

 

Compound 16b, Pd(C^Iminet-Bu)MeCl: A solution of C^Iminet-Bu (2b) (323 mg, 0.864 

mmol) in THF (8 mL) and was added to a solution of (1,5-cyclooctadiene)palladium(II) 

methyl chloride (207 mg, 0.782 mmol) in THF (6 mL). The reaction mixture was stirred 

for 5 h. Volatiles were removed under reduced pressure and a pentane wash (2 × 8 mL) 

was performed to give a beige solid (415 mg, 0.766 mmol, 98%). Crystals suitable for X-

ray diffraction were grown at room temperature by slow vapor diffusion of pentane into a 

saturated chloroform solution.1H NMR (400 MHz, CDCl3): δ 7.81 (d, 3J = 2.0 Hz, 1H, 

NCHCN(mesityl)), 6.70 (m, 3H, p-CH(2,6-xylyl) + m-CH(2,6-xylyl)), 6.97 (s, 2H, m-CH(mesityl)), 

6.81 (d, 3J = 2.2 Hz, 1H, NCCHN(mesityl)), 2.34 (s, 3H, p-CH3(mesityl)), 2.29 (s, 6H, o-

CH3(2,6-xylyl)), 2.15 (s, 6H, o-CH3(mesityl)), 1.39 (s, 9H, C(CH3)3(imine)), 0.23 (s, 3H, Pd–

CH3). 13C{1H} NMR (100 MHz, CDCl3): δ 177.8 (NCN(mesityl)), 161.2 (C=N), 143.7 

(Cipso(2,6-xylyl), 139.9 (p-C(mesityl)), 135.1 (Cipso(mesityl)), 134.5 (o-C(mesityl)), 129.4 (m-

CH(mesityl)), 128.8 (o-C(2,6-xylyl)), 127.3 (m-CH(2,6-xylyl)), 125.4 (p-CH(2,6-xylyl)), 122.7 

(NCCN(mesityl)), 119.5 (NCCN(mesityl)), 39.9 (C(CH3)3(imine)), 30.0 (C(CH3)3(imine)), 21.3 (p-
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CH3(mesityl)), 19.4 (o-CH3(2,6-xylyl)), 18.02 (o-CH3(mesityl)), –8.6 (Pd–CH3). FTIR (cast-

DCM): νC=N 1626 cm–1. Anal. Calcd for C26H34N3ClPd (%): C, 58.87; H, 6.46; N, 7.92. 

Found (%): C, 59.10; H, 6.32; N, 8.09. 

 

Compound 16c, Pd(C^IminePh)MeCl: C^IminePh (2c) (259 mg, 0.635 mmol) dissolved 

in THF (8 mL) and was added to a solution of (1,5-cyclooctadiene)palladium(II) methyl 

chloride (159 mg, 0.601 mmol) in THF (8 mL). The reaction mixture was stirred for 4 h. 

Volatiles were removed under reduced pressure and a pentane wash was performed to 

give a light cream solid (307 mg, 0.544 mmol, 91%). Crystals suitable for X-ray 

diffraction were grown at room temperature by slow diffusion of pentane into a saturated 

chloroform solution. 1H NMR (400 MHz, CDCl3): δ 7.50 (t, 3J = 7.5 Hz, 1H, p-

CH(phenyl)), 7.42 (t, 3J = 7.5 Hz, 2H, m-CH(phenyl)), 7.35 (d, 3J = 7.5 Hz, 2H, o-CH(phenyl)), 

7.08 (d, 3J = 2.0 Hz, 1H, NCHCN(azole-mesityl)), 7.02 (s, 2H, m-CH(azole-mesityl)), 6.75 (s, 3J = 

2.0 Hz, 1H, NCCHN(azole-mesityl)), 6.73 (s, 2H, m-CH(N-mesityl)), 2.38 (s, 3H, p-CH3(azole-

mesityl)), 2.25 (s, 6H, o-CH3(N-mesityl)), 2.21 (s, 6H, o-CH3(azole-mesityl)), 2.19 (s, 3H, p-CH3(N-

mesityl)), 0.42 (s, 3H, Pd–CH3).13C{1H} NMR (100 MHz, C6D6): δ 176.5 (NCN(azole-mesityl)), 

156.5 (C=N), 140.1 (p-C(azole-mesityl)), 139.6 (Cipso(N-mesityl)), 135.1 (p-C(N-mesityl)), 134.9 

(Cipso(azole-mesityl)), 134.5 (o-C(azole-mesityl)), 131.8 (p-CH(phenyl)), 129.4 (m-CH(azole-mesityl)), 

129.0 (m-CH(phenyl)), 128.6 (m-CH(N-mesityl)), 128.3 (o-CH(phenyl)), 128.1 (Cipso(phenyl)), 123.5 

(NCCN(azole-mesityl)), 118.7 (NCCN(azole-mesityl)), 21.4 (p-CH3(azole-mesityl)), 21.1 (p-CH3(N-

mesityl)), 19.2 (o-CH3(N-mesityl)), 18.0 (o-CH3(azole-mesityl)), –8.8 (Pd–CH3), resonance for (o-
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C(N-mesityl)) was not observed. FTIR (cast-DCM): νC=N 1635 cm–1. Anal. Calcd for 

C29H32N3ClPd (%): C, 61.71; H, 5.71; N, 7.44. Found (%): C, 61.49; H, 5.45; N, 7.18. 

 

Compound 17a, Pd(C^ImineMe)(Me)(MeCN)]PF6: A solution of (C^ImineMe)PdMeCl 

(16a) (202 mg, 0.414 mmol) in MeCN (6 mL) was added to a suspension of silver 

hexafluorophosphate (105 mg, 0.415 mmol) in MeCN (4 mL) and stirred at room 

temperature for 1 h in the absence of light. The solution was filtered through a plug of 

Celite and the volatiles were removed under reduced pressure. The resulting tan residue 

was washed with pentane (2 × 4mL) and dried under reduced pressure to give a light 

beige solid (236 mg, 0.369 mmol, 89%). 1H NMR (400 MHz, CDCl3): δ 7.93 (d, 3J = 2.0 

Hz, 1H, NCHCN(mesityl)), 7.13 (m, 3H, p-CH(2,6-xylyl) + m-CH(2,6-xylyl)), 6.98 (s, 2H, m-

CH(mesityl)), 6.93 (d, 3J = 2.0 Hz, 1H, NCCHN(mesityl)), 2.43 (s, 3H, CH3 (imine)), 2.35 (s, 3H, 

p-CH3(mesityl)), 2.23 (s, 6H, o-CH3(2,6-xylyl)), 2.09 (s, 6H, o-CH3(mesityl)), 1.72 (s, 3H, 

CH3CN), 0.00 (s, 3H, Pd–CH3). 13C{1H} NMR (100 MHz, CDCl3): δ 170.3 (NCN(mesityl)), 

160.1 (C=N), 141.1 (C(2,6-xylyl), 140.4 (p-C(mesityl)), 134.4 (o-C(mesityl)), 134.3 (C(mesityl)), 

129.8 (o-C(2,6-xylyl)), 129.5 (m-CH(mesityl)), 128.6 (m-CH(2,6-xylyl)), 126.9 (p-CH(2,6-xylyl)), 

124.9 (NCCN(mesityl)), 120.1 (NCCN(mesityl)), 117.2 (CH3CN), 21.3 (p-CH3(mesityl)), 18.3 (o-

CH3(2,6-xylyl)), 17.8 (o-CH3(mesityl)), 14.7 (CH3(imine)), 1.6 (CH3CN), –9.1 (Pd–CH3). FTIR 

(cast-DCM): νC=N 1662 cm–1. Anal. Calcd for C25H31N4F6PPd (%): C, 47.00; H, 4.89; N, 

8.77. Found (%): C, 46.90; H, 5.15; N, 8.52. 
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Compound 17b, Pd(C^Iminet-Bu)(Me)(MeCN)]PF6: A solution of (C^Iminet-

Bu)PdMeCl (16b) (122 mg, 0.230 mmol) in MeCN (8 mL) was added to a suspension of 

silver hexafluorophosphate (60.0 mg, 0.237 mmol) in MeCN (2 mL) and stirred at room 

temperature for 1 h in the absence of light. The solution was filtered through a plug of 

Celite and the volatiles were removed under reduced pressure. The resulting brown 

residue was washed with pentane and dried under reduced pressure to give a champagne-

colored solid (140 mg, 0.206 mmol, 89%). 1H NMR (400 MHz, CDCl3): δ 8.19 (d, 3J = 

2.1 Hz, 1H, NCHCN(mesityl)), 7.11 (d, 3J = 7.4 Hz, 2H, m-CH(2,6-xylyl)), 7.06 (m, 1H, p-

CH(2,6-xylyl)), 7.03 (d, 3J = 2.1 Hz, 1H, NCCHN(mesityl)), 6.97 (s, 2H, m-CH(mesityl)), 2.34 (s, 

3H, p-CH3(mesityl)), 2.30 (s, 6H, o-CH3(2,6-xylyl)), 2.10 (s, 6H, o-CH3(mesityl)), 1.71 (s, 3H, 

CH3CN), 1.43 (s, 9H, C(CH3)3(imine)), –0.08 (s, 3H, Pd-CH3). 13C{1H} NMR (100 MHz, 

CDCl3): δ 172.1 (NCN(mesityl)), 164.5 (C=N), 143.6 (Cipso(2,6-xylyl), 140.4 (p-C(mesityl)), 134.5 

(Cipso(mesityl)), 134.2 (o-C(mesityl)), 129.5 (m-CH(mesityl)), 128.3 (o-C(2,6-xylyl)), 128.0 (m-

CH(2,6-xylyl)), 126.0 (p-CH(2,6-xylyl)), 124.5 (NCCN(mesityl)), 122.2 (NCCN(mesityl)), 118.7 

(CH3CN), 40.4 (C(CH3)3(imine)), 29.7 (C(CH3)3(imine)), 21.3 (p-CH3(mesityl)), 19.0 (o-CH3(2,6-

xylyl)), 17.9 (o-CH3(mesityl)), 1.6 (CH3CN), –8.2 (Pd–CH3). FTIR (cast-DCM): νC=N 1634 

cm–1. Anal. Calcd for C28H37N4F6PPd (%): C, 49.38; H, 5.48; N, 8.23. Found (%): C, 

49.09; H, 5.41; N, 8.05.  

 

Compound 17c, Pd(C^IminePh)(Me)(MeCN)]PF6: A solution of (C^IminePh)PdMeCl 

(16c) (125 mg, 0.221 mmol) in MeCN (10 mL) was added to a suspension of silver 

hexafluorophosphate (57.1 mg, 0.226 mmol) in MeCN (2 mL) and stirred at room 
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temperature for 1 h in the absence of light. The solution was filtered through a plug of 

Celite and the volatiles were removed under reduced pressure. The resulting brown 

residue was washed with pentane and dried under reduced pressure to give a brown solid 

(148 mg, 0.207 mmol, 94%). 1H NMR (400 MHz, CDCl3): δ 7.56 (t, 3J = 7.4 Hz, 1H, p-

CH(phenyl)), 7.48 (t, 3J = 7.4 Hz, 2H, m-CH(phenyl)), 7.41 (d, 3J = 7.4 Hz, 2H, o-CH(phenyl)), 

7.37 (d, 3J = 2.0 Hz, 1H, NCHCN(azole-mesityl)), 7.00 (s, 2H, m-CH(azole-mesityl)), 6.98 (s, 3J = 

2.0 Hz, 1H, NCCHN(azole-mesityl)), 6.83 (s, 2H, m-CH(N-mesityl)), 2.36 (s, 3H, p-CH3(azole-

mesityl)), 2.22 (s, 3H, p-CH3(N-mesityl)), 2.21 (s, 6H, o-CH3(N-mesityl)), 2.01 (s, 6H, o-CH3(azole-

mesityl)), 1.75 (s, 3H, CH3CN), -0.10 (s, 3H, Pd–CH3).13C{1H} NMR (100 MHz, CDCl3): δ 

171.3 (NCN(mesityl)), 158.8 (C=N), 140.5 (p-C(azole-mesityl)), 138.9 (Cipso(N-mesityl)), 136.4 (p-

C(N-mesityl)), 134.4 (o-C(azole-mesityl)), 133.0 (p-CH(phenyl)), 129.8 (o-C(N-mesityl)), 129.6 (m-

CH(azole-mesityl)), 129.5 (m-CH(phenyl) + Cipso(azole-mesityl)), 129.1 (m-C(N-mesityl)), 128.5 (o-

CH(phenyl)), 126.2 (Cipso(phenyl)), 125.0 (NCCN(azole-mesityl)), 121.1 (NCCN(azole-mesityl)), 119.5 

(CH3CN), 21.3 (p-CH3(azole-mesityl)), 20.8 (p-CH3(N-mesityl)), 18.7 (o-CH3(N-mesityl)), 17.9 (o-

CH3(azole-mesityl)), 1.6 (CH3CN), –8.9 (Pd–CH3). FTIR (cast-DCM): νC=N 1640 cm–1. Anal. 

Calcd for C31H35N4F6PPd (%): C, 52.07; H, 4.93; N, 7.84. Found (%): C, 51.86; H, 4.70; 

N, 8.01.  

 

Compound 18, Pd(C^ImineMe)2Cl2: tert-Butyl isocyanide (6.0 μL, 0.053 mmol) was 

syringed into a cooled (–35 °C) solution of 16a (26.0 mg, 0.053 mmol) in toluene (4 mL) 

and stirred at room temperature for 16 h. Volatiles were removed under reduced pressure 

and a pentane wash was performed to give a yellow-cream-colored solid. Sample was 
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further purified by slow vapor diffusion of pentane onto a saturated dichloromethane 

solution over a period of several days to provide small yellow crystals (14.2 mg, 0.0169 

mmol, 32 %). 1H NMR (400 MHz, CDCl3): δ 7.97 (s, 1H, NCHCN(mesityl)), 7.16 (d, 3J = 

7.4 Hz, 2H, m-CH(2,6-xylyl)), 7.07 (m, 1H, p-CH(2,6-xyly)), 6.97 (s, 2H, m-CH(mesityl)), 6.67 (s, 

1H, NCCHN(mesityl)), 3.61 (s, 3H, CH3(imine)), 2.19 (s, 6H, o-CH3(mesityl)), 2.10 (s, 3H, p-

CH3(mesityl)), 2.07 (s, 6H, o-CH3(2,6-xylyl)). 13C{1H} NMR (100 MHz, CDCl3): δ 168.2 

(NCN), 155.1 (C=N), 145.2 (Cipso(2,6-xylyl), 139.3 (p-C(mesityl)), 137.0 (o-C(mesityl)), 135.7 

(Cipso(mesityl)), 128.9 (m-CH(mesityl)), 127.6 (m-CH(2,6-xylyl)), 126.5 (o-C(2,6-xylyl)), 123.2 (p-

CH(2,6-xylyl)), 122.6 (NCCN(mesityl)), 119.5 (NCCN(mesityl)), 20.4 (p-CH3(mesityl)), 20.1 

(CH3(imine)), 18.6 (o-CH3(mesityl)), 18.9 (o-CH3(2,6-xylyl)). FTIR (cast-DCM): νC=N 1700 cm–1. 

Anal. Calcd for C44H50N6Cl2Pd (%): C, 62.90; H, 6.00; N, 10.00. Found (%): C, 62.67; H, 

5.74; N, 10.17. 

 

Compound 19, Pd(C^Iminet-Bu)Me(tert-BuNC)Cl:  tert-Butyl isocyanide (30.0 μL, 

0.265 mmol) was syringed into a cooled (–35 °C) solution of 16b (67.5 mg, 0.127 mmol) 

in toluene (6 mL) and stirred at room temperature for 16 h. Volatiles were removed under 

reduced pressure and a pentane wash was performed to give a cream-colored solid (60.0 

mg, 0.0978 mmol, 77%). 1H NMR (400 MHz, C6D6): δ 7.09 (s + br, 1H, p-CH(2,6-xylyl)), 

6.91 (d, 3J = 7.2 Hz, 2H, m-CH(2,6-xylyl)), 6.62 (s, 1H, m-CH(mesityl)), 6.61 (d, 3J = 1.6 Hz, 

1H, NCHCN(mesityl)), 6.58 (s, 1H, m-CH(mesityl)), 5.98 (s, 1H, NCCHN(mesityl)), 3.19 (s, 3H, 

o-CH3(2,6-xylyl)), 2.60 (s, 3H, p-CH3(mesityl)), 1.96 (s, 3H, o-CH3(mesityl)), 1.80 (s, 3H, o-

CH3(mesityl)), 1.79 (s, 9H, C(CH3)3(imine) + 3H, o-CH3(2,6-xylyl)), 0.70 (s, 9H, 
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CNC(CH3)3(isocyanide), –0.50 (s, 3H, Pd–CH3). 13C{1H} NMR (100 MHz, C6D6): δ 157.6 

(C=N), 144.7 (Cipso(2,6-xylyl), 138.6 (o-C(mesityl)), 137.5 (p-C(mesityl)), 136.6 (o-C(mesityl)), 

134.3 (Cipso(mesityl)), 130.1 (m-CH(mesityl)), 129.0 (p-CH(2,6-xylyl)), 128.5 (m-CH(mesityl)), 128.0 

(m-CH(2,6-xylyl)), 124.2 (m-CH(mesityl)), 123.2 (o-C(2,6-xylyl)), 122.8 (o-C(2,6-xylyl)), 120.5 

(NCCN(mesityl)), 120.2 (NCCN(mesityl)), 119.6 (CNC(CH3)3(isocyanide), 55.8 

(CNC(CH3)3(isocyanide), 41.4 (C(CH3)3(imine)), 30.3 (C(CH3)3(imine)), 29.5 

(CNC(CH3)3(isocyanide), 21.9(o-CH3(2,6-xylyl)), 21.0 (o-CH3(mesityl)), 20.0 (p-CH3(mesityl)), 19.0 

(o-CH3(2,6-xylyl)), 18.1 (o-CH3(mesityl)), –14.9 (Pd-CH3); resonance for NCN(mesityl) was not 

observed. FTIR (cast-DCM): νC=N-ligand 1696 and 1684 cm–1, νC=N-isocyanide 2189 cm–1. 

Anal. Calcd for C31H43N4ClPd (%): C, 60.68; H, 7.06; N, 9.13. Found (%): C, 60.42; H, 

7.22; N, 8.85.  

 

Compound 20, Pd(C^IminePh)Me(tBuNC)Cl: tert-Butyl isocyanide (22 μL, 0.20 

mmol) was syringed into a cooled (–35 °C) solution of 16c (54.2 mg, 0.0960 mmol) in 

toluene (8 mL) and stirred at room temperature for 24 h. Volatiles were removed under 

reduced pressure to give an light orange solid. A minimal amount of DCM was added to 

dissolve the crude material that was then filtered through a plug of Celite. Pentane was 

added to precipitate the product as an orange solid, which was further washed with 

pentane. The solid was dried under reduced pressure to give the desired product was a 

light orange solid (42.9 mg, 0.0555 mmol, 69%). 1H NMR (400 MHz, C6D6): δ 6.84 (m, 

1H, p-CH(phenyl)), 6.80 (m, 4H, m-CH(phenyl) + o-CH(phenyl)), 6.72 (s, 1H, m-CH(azole-mesityl)), 

6.71 (s, 1H, m-CH(azole-mesityl)), 6.62 (s, 1H, m-CH(N-mesityl)), 6.54 (s, 1H, m-CH(N-mesityl)), 
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6.31 (s, 1H, NCHCN(azole-mesityl)), 5.80 (s, 1H, NCCHN(azole-mesityl)), 2.48 (s, 3H, p-CH3(azole-

mesityl)), 2.19 (s, 3H, o-CH3(azole-mesityl)), 2.18 (s, 3H, Pd-C=N(CCH3)3CH3), 2.16 (s, 3H, o-

CH3(N-mesityl)), 2.07 (s, 3H, o-CH3(azole-mesityl)), 2.03 (s, 3H, p-CH3(N-mesityl)), 2.01 (s, 3H, o-

CH3(N-mesityl)), 1.89 (s, 9H, Pd-C=N(CH3)3CH3). 13C{1H} NMR (100 MHz, C6D6): δ 156.1 

(C=N), 140.2 (p-C(N-mesityl)), 140.1 (p-C(azole-mesityl)), 135.4 (o-C(azole-mesityl)), 135.3 

(Cipso(azole-mesityl)), 134.8 (o-C(N-mesityl)), 134.2 (o-C(N-mesityl)), 131.4 (CH(phenyl)), 131.3 

(CH(phenyl)), 129.9 (m-CH(N-mesityl)), 129.6 (m-CH(azole-mesityl)), 129.1 (m-CH(azole-mesityl)), 

129.0 (m-CH(N-mesityl)), 128.8 (CH(phenyl)), 128.5 (CH(phenyl)), 123.0 (NCCN(azole-mesityl)), 

118.8 (NCCN(azole-mesityl)), 55.5 (Pd–C=N(CCH3)3CH3), 32.7 (Pd–C=N(CCH3)3CH3), 32.5 

(Pd–C=N(CCH3)3CH3), 21.0 (p-CH3(N-mesityl) + 19.2 o-CH3(N-mesityl)), 19.8 (p-CH3(azole-

mesityl)), 18.9 (o-CH3 (azole-mesityl) + o-CH3(N-mesityl)), 18.3 (o-CH3(azole-mesityl)); resonances for 

NCN(azole-mesityl), ipso-C(phenyl), and Pd–C=N(CCH3)3CH3 were not observed. FTIR (cast-

DCM): νC=N 1638 cm–1. Anal. Calcd for C34H41N4ClPd (%): C, 63.06; H, 6.38; N, 8.65. 

Found (%): C, 62.86; H, 6.32; N, 8.49.  

 

Compound 21, [(C^IminePh)][(1,2-bis[(2,6-dimethylphenyl)imino]-3-[(2,6-

dimethylphenyl)imino--N]butyl--C}palladium chloride:  A cooled solution (–35 °C) 

solution of 2,6-dimethylphenyl isocyanide (13.3 mg, 0.101 mmol) in THF (4 mL) was 

added to a cooled (–35 °C) partially-soluble solution of 11a (24.5 mg, 0.0502 mmol) in 

THF (2 mL). The mixture was dried in vacuo and washed with pentane to give the 

product as an orange-pink solid (mass recovered 32.4 mg). Crystals suitable for X-ray 

diffraction were grown at room temperature by slow vapor diffusion of pentane into a 
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saturated chloroform solution.  1H NMR (400 MHz, CDCl3): major isomer (80%) δ 8.35 

(d, 3J = 1.3 Hz, 1H, NCHCHN(mesityl)), 7.04 (s + br; accidental overlap with minor 

isomer), 6.98 (m; accidental overlap with minor isomer), 6.88 (m; accidental overlap with 

minor isomer), 6.78 (m; accidental overlap with minor isomer), 3.35 (s, 3H, CH3(C^Imine)), 

2.37 (s, 3H), 2.33 (s, 3H), 2.25 (s, 3H), 2.10 (s, 3H), 2.08 (s, 3H), 1.97 (s, 6H), 1.91 (s, 

3H), 1.77 (s, 3H), 1.58 (s, 3H), 1.41 (s, 3H),  1.15 (s, 3H),  ; minor isomer (20%)  8.40 

(s, 1H, NCHCHN(mesityl)), 7.04 (s + br, 3H; accidental overlap with major isomer), 6.98 

(m; accidental overlap with major isomer), 6.88 (m; accidental overlap with major 

isomer), 6.78 (m; accidental overlap with major isomer), 3.32 (s, 3H, CH3(C^Imine)), 2.37 

(s, 3H; accidental overlap with major isomer), 2.35 (s, 3H), 2.29 (s, 3H), 2.06 (s, 3H), 

2.01 (s, 3H), 1.91 (s, 3H; accidental overlap with major isomer), 1.77 (s, 3H; accidental 

overlap with major isomer), 1.58 (s, 3H; accidental overlap with major isomer), 1.41 (s, 

6H; accidental overlap with major isomer), 1.15 (s, 6H; accidental overlap with major 

isomer), . 13C{1H} NMR (100 MHz, CDCl3; only resonances for the major isomer are 

reported) δ 180.5, 170.9, 164.6, 154.3, 150.3, 146.8, 145.3, 143.0, 138.9, 137.7, 136.5, 

135.2, 129.9, 129.5, 128.7, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 127.7, 126.9, 124.0, 

123.5, 122.3, 122.1, 120.4 (NCCN), 59.7 (Pd–(C(=NXyl))3CH3), 21.2 (CH3(C^Imine)), 19.7, 

19.5, 19.0, 18.6, 18.4, , 17.5, 16.8. Anal. Calcd for C50H55N6ClPd (%): C, 68.10; H, 6.29; 

N, 9.53. Found (%): C, 67.89; H, 6.24; N, 9.35. 

 

Compound 22a, [Pd(C^ImineMe)(Me)(t-BuNC)]PF6: tert-Butyl isocyanide (8.0 μL, 

0.071 mmol) was syringed into a solution of 17a (45.5 mg, 0.0712 mmol) in THF (6 mL) 
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and stirred at room temperature for 1 h. Volatiles were removed under reduced pressure 

and a pentane wash was performed to give a brown solid (46.1 mg, 0.0677 mmol, 96%). 

1H NMR (400 MHz, CDCl3): δ 7.95 (d, 3J = 1.8 Hz, 1H, NCHCN(mesityl)), 7.12 (m, 3H, p-

CH(2,6-xylyl) + m-CH(2,6-xylyl)), 6.99 (s, 2H, m-CH(mesityl)), 6.97 (d, 3J = 1.8 Hz, 1H, 

NCCHN(mesityl)), 2.41 (s, 3H, CH3(imine)), 2.35 (s, 3H, p-CH3(mesityl)), 2.24 (s, 6H, o-CH3(2,6-

xylyl)), 2.10 (s, 6H, o-CH3(mesityl)), 1.11 (CNC(CH3)3(isocyanide), 0.01 (s, 3H, Pd–

CH3).13C{1H} NMR (100 MHz, CDCl3): δ 177.2 (NCN(mesityl)), 162.0 (C=N), 143.9 

(Cipso(2,6-xylyl), 140.4 (p-C(mesityl)), 135.0 (CNC(CH3)3(isocyanide), 134.3 (o-C(mesityl)), 134.0 

(Cipso(mesityl)), 129.5 (m-CH(mesityl)), 129.4 (o-C(2,6-xylyl)), 128.7 (m-CH(2,6-xylyl)), 126.9 (p-

CH(2,6-xylyl)), 124.9 (NCCN(mesityl)), 120.4 (NCCN(mesityl)), 57.95 (CNC(CH3)3(isocyanide), 29.7 

(CNC(CH3)3(isocyanide), 21.3 (p-CH3(mesityl)), 18.4 (o-CH3(2,6-xylyl)), 17.8 (o-CH3(mesityl)), 14.5 

CH3(imine)), –12.6 (Pd–CH3). FTIR (cast-DCM): νC=N(ligand) 1656 cm–1, νC=N(isocyanide) 2208 

cm–1. Anal. Calcd for C28H37F6N4PPd (%): C, 49.38; H, 5.48; N, 8.23. Found (%): C, 

49.14; H, 5.52; N, 7.95. 

 

Compound 22b, [Pd(C^Iminet-Bu)(Me)(t-BuNC)]PF6: tert-Butyl isocyanide (5.3 μL, 

0.047 mmol) was syringed into a solution of 17b (31.9 mg, 0.0468 mmol) in THF (4 mL) 

and stirred at room temperature for 1 h. Volatiles were removed under reduced pressure 

and a pentane wash was performed to give a brown solid (31.2 mg, 0.0431 mmol, 92%). 

1H NMR (400 MHz, CDCl3): δ 8.25 (d, 3J = 1.4 Hz, 1H, NCHCN(mesityl)), 7.08 (m, 3H, p-

CH(2,6-xylyl) + m-CH(2,6-xylyl)), 7.07 (s, 1H, NCCHN(mesityl)), 6.97 (s, 2H, m-CH(mesityl)), 2.34 

(s, 9H, p-CH3(mesityl) + o-CH3(2,6-xylyl)), 2.10 (s, 6H, o-CH3(mesityl)), 1.41 (s, 9H, 
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C(CH3)3(imine)), 1.13 (CNC(CH3)3(isocyanide), –0.07 (s, 3H, Pd–CH3). 13C{1H} NMR (100 

MHz, CDCl3): δ 178.5 (NCN(mesityl)), 166.1 (C=N), 147.0 (Cipso(2,6-xylyl), 140.3 (p-

C(mesityl)), 134.7 (CNC(CH3)3(isocyanide), 134.3 (o-C(mesityl)), 134.2 (Cipso(mesityl)), 129.5 (m-

CH(mesityl)), 128.2 (m-CH(2,6-xylyl)), 127.8 (o-C(2,6-xylyl)), 126.1 (p-CH(2,6-xylyl)), 124.6 

(NCCN(mesityl)), 122.7 (NCCN(mesityl)), 57.8 CNC(CH3)3(isocyanide),40.6 (C(CH3)3(imine)), 29.9 

(C(CH3)3(imine)), 29.7 (CNC(CH3)3(isocyanide), 21.3 (p-CH3(mesityl)), 19.1 (o-CH3(2,6-xylyl)), 17.8 

(o-CH3(mesityl)), –11.4 (Pd-CH3). FTIR (cast-DCM): νC=N(ligand) 1626 cm–1, νC=N(isocyanide) 

2211 cm–1. Anal. Calcd for C31H43N4F6PPd (%): C, 51.49; H, 5.99; N, 7.75. Found (%): 

C, 51.58; H, 6.12; N, 8.02.  

 

Compound 22c, [Pd(C^IminePh)(Me)(t-BuNC)]PF6: tert-Butyl isocyanide (7.0 μL, 

0.062 mmol) was syringed into a solution of 17c (43.9 mg, 0.0614 mmol) in THF (6 mL) 

and stirred at room temperature for 1 h. Volatiles were removed under reduced pressure 

and a pentane wash was performed to give a light brown solid (38.8 mg, 0.0512 mmol, 

83%). 1H NMR (400 MHz, CDCl3): δ 7.54 (t, 3J = 7.5 Hz, 1H, p-CH(phenyl)), 7.46 (t, 3J = 

7.5 Hz, 2H, m-CH(phenyl)), 7.40 (d, 3J = 7.5 Hz, 2H, o-CH(phenyl)), 7.36 (d, 3J = 1.8 Hz, 1H, 

NCHCN(azole-mesityl)), 7.03 (s, 3J = 1.8 Hz, 1H, NCCHN(azole-mesityl)), 7.00 (s, 2H, m-CH(azole-

mesityl)), 6.80 (s, 2H, m-CH(N-mesityl)), 2.36 (s, 3H, p-CH3(azole-mesityl)), 2.23 (s, 6H, o-CH3(N-

mesityl)), 2.20 (s, 3H, p-CH3(N-mesityl)), 2.15 (s, 6H, o-CH3(azole-mesityl)), 1.13 

(CNC(CH3)3(isocyanide), –0.10 (s, 3H, Pd–CH3).13C{1H} NMR (100 MHz, CDCl3): δ 178.2 

(NCN(mesityl)), 160.5 (C=N), 141.7 (Cipso(N-mesityl)), 140.4 (p-C(azole-mesityl)), 136.3 (p-C(N-

mesityl)), 134.90 (CNC(CH3)3(isocyanide), 134.4 (o-C(azole-mesityl)), 134.1 (Cipso(azole-mesityl)), 133.0 
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(p-CH(phenyl)), 129.5 (m-CH(azole-mesityl)), 129.5 (m-CH(phenyl)), 129.1 (m-C(N-mesityl)), 129.1 

(o-C(N-mesityl)), 128.5 (o-CH(phenyl)), 126.0 (Cipso(phenyl)), 125.2 (NCCN(azole-mesityl)), 121.5 

(NCCN(azole-mesityl)), 58.0 (CNC(CH3)3(isocyanide), 29.6 (CNC(CH3)3(isocyanide), 21.3 (p-

CH3(azole-mesityl)), 20.8 (p-CH3(N-mesityl)), 18.8 (o-CH3(N-mesityl)), 17.9 (o-CH3(azole-mesityl)), –

12.0 (Pd–CH3). FTIR (cast-DCM): νC=N(ligand) 1636 cm–1, νC=N(isocyanide) 2208 cm–1. Anal. 

Calcd for C34H41F6N4PPd (%): C, 53.94; H, 5.46; N, 7.40. Found (%): C, 54.02; H, 5.71; 

N, 7.28.  

 

Compound 23a, [Pd(C^ImineMe)(Me)(ArNC)]PF6: A solution of 2,6-dimethylphenyl 

isocyanide (10.7 mg, 0.0816 mmol) in THF (6 mL) was added to a solution of 17a (52.0 

mg, 0.0814 mmol) in THF (4 mL) and stirred at room temperature for 1 h. The solution 

was filtered through a plug of Celite and the volatiles were removed under reduced 

pressure. The resulting brown solid was further washed with pentane and dried under 

reduced pressure to give the desired product (52.7 mg, 0.888 mmol, 89%). 1H NMR (400 

MHz, CDCl3): δ 7.99 (d, 3J = 1.6 Hz, 1H, NCHCN(mesityl)), 7.19 (t, 3J = 7.7 Hz, 1H, p-

CH(2,6-xylyl)), 7.09 (m, 3H, p-CH(2,6-xylyl)-isocyanide + m-CH(2,6-xylyl)-isocyanide), 7.02 (s, 2H, m-

CH(mesityl)), 7.00 (s + br, 3H, NCCHN(mesityl) + m-CH(2,6-xylyl)), 2.42 (s, 3H, CH3(imine)), 2.37 

(s, 3H, p-CH3(mesityl)), 2.29 (s, 6H, o-CH3(2,6-xylyl)), 2.14 (s, 6H, o-CH3(mesityl)), 1.93 (s, 6H, 

o-CH3(2,6-xylyl)-isocyanide), 0.23 (s, 3H, Pd-CH3). 13C{1H} NMR (100 MHz, CDCl3): δ 176.7 

(NCN(mesityl)), 162.5 (C=N), 144.2 (Cipso(2,6-xylyl), 140.4 (p-C(mesityl)), 135.7 (o-C(2,6-xylyl)-

isocyanide), 134.5 (o-C(mesityl)), 134.0 (Cipso(mesityl)), 130.4 (p-CH(2,6-xylyl)), 129.5 (m-

CH(mesityl)), 129.2 (o-C(2,6-xylyl)), 129.0 (m-CH(2,6-xylyl)-isocyanide), 128.2 (m-CH(2,6-xylyl)), 127.0 
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(p-CH(2,6-xylyl)-isocyanide), 124.1 (NCCN(mesityl) + C(2,6-xylyl)-isocyanide), 120.6 (NCCN(mesityl)), 

21.3 (p-CH3(mesityl)), 18.4 (o-CH3(2,6-xylyl)), 18.3 (o-CH3(2,6-xylyl)-isocyanide), 17.8 (o-

CH3(mesityl)), 14.5 CH3(imine)), –11.8 (Pd-CH3); CN-(2,6-dimethylphenyl) carbon 

resonances not observed. FTIR (cast-DCM): νC=N(ligand) 1653 cm–1, νC=N(isocyanide) 2181 cm–

1. Anal. Calcd for C32H37N4F6PPd (%): C, 52.72; H, 5.12; N, 7.68. Found (%): C, 52.49; 

H, 5.03; N, 7.41. 

 

Compound 23b, [Pd(C^Iminet-Bu)(Me)(ArNC)]PF6: A solution of 2,6-dimethylphenyl 

isocyanide (22.3 mg, 0.170 mmol) in THF (8 mL) was added to a solution of 17b (112 

mg, 0.165 mmol) in THF (6 mL) and stirred at room temperature for 1 h. The solution 

was filtered through a plug of Celite and the volatiles were removed under reduced 

pressure. The resulting brown solid was further washed with pentane and dried under 

reduced pressure to the desired product (114 mg, 0.148 mmol, 89%). 1H NMR (400 

MHz, CDCl3): δ 8.31 (d, 3J = 1.8 Hz, 1H, NCHCN(mesityl)), 7.19 (t, 3J = 7.8 Hz, 1H, p-

CH(2,6-xylyl)-isocyanide), 7.13 (d, 3J = 1.8 Hz, 1H, NCCHN(mesityl)), 7.19 (d, 3J = 7.8 Hz, 2H, 

m-CH(2,6-xylyl)-isocyanide), 7.00 (s, 2H, m-CH(mesityl)), 6.95 (d, 3J = 7.6 Hz, 2H, m-CH(2,6-xylyl)), 

6.80 (t, 3J = 7.6 Hz, 3H, p-CH(2,6-xylyl)), 2.38 (s, 6H, o-CH3(2,6-xylyl)), 2.35 (s, 3H, p-

CH3(mesityl)), 2.14 (s, 6H, o-CH3(mesityl)), 2.04 (s, 6H, o-CH3(2,6-xylyl)-isocyanide), 1.43 (s, 9H, 

C(CH3)3(imine)), 0.11 (s, 3H, Pd–CH3).13C{1H} NMR (100 MHz, CDCl3): δ 177.9 

(NCN(mesityl)), 166.5 (C=N), 146.8 (Cipso(2,6-xylyl), 140.4 (p-C(mesityl)), 135.2 (C(2,6-xylyl)-

isocyanide), 134.3 (o-C(mesityl)), 134.2 (Cipso(mesityl)), 130.3 (p-CH(2,6-xylyl)-isocyanide), 129.6 (m-

CH(mesityl)), 128.2 (m-CH(2,6-xylyl) + m-CH(2,6-xylyl)-isocyanide), 127.5 (o-C(2,6-xylyl)), 126.1 (p-
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CH(2,6-xylyl)), 125.1 (o-C(2,6-xylyl)-isocyanide), 124.9 (NCCN(mesityl) + o-C(2,6-xylyl)-isocyanide), 123.0 

(NCCN(mesityl)), 40.7 (C(CH3)3(imine)), 29.9 (C(CH3)3(imine)), 21.3 (p-CH3(mesityl)), 19.2 (o-

CH3(2,6-xylyl)), 18.6 (o-CH3(2,6-xylyl)-isocyanide), 17.9 (o-CH3(mesityl)), –10.8 (Pd–CH3), (CN-

(2,6-dimethylphenyl) carbon missing. FTIR (cast-DCM): νC=N(ligand) 1628 cm–1, 

νC=N(isocyanide) 2184 cm–1. Anal. Calcd for C35H43F6N4PPd (%): C, 54.51; H, 5.62; N, 7.27. 

Found (%): C, 54.26; H, 5.45; N, 7.00.  

 

Compound 23c, [Pd(C^IminePh)(Me)(ArNC)]PF6: A solution of 2,6-dimethylphenyl 

isocyanide (9.20 mg, 0.070 mmol) in THF (4 mL) was added to a solution of 17c (50.0 

mg, 0.070 mmol) in THF (6 mL) and stirred at room temperature for 1 h. The solution 

was filtered through a plug of Celite and the volatiles were removed under reduced 

pressure. The resulting brown solid was further washed with pentane and dried under 

reduced pressure to the desired product (48.6 mg, 0.0604 mmol, 86%). 1H NMR (400 

MHz, CDCl3): δ 7.53 (t, 3J = 7.4 Hz, 1H, p-CH(phenyl)), 7.46 (t, 3J = 7.4 Hz, 2H, m-

CH(phenyl)), 7.41 (d, 3J = 7.4 Hz, 2H, o-CH(phenyl)), 7.39 (d, 3J = 1.8 Hz, 1H, NCHCN(azole-

mesityl)), 7.20 (t, 3J = 7.7 Hz, 1H, p-CH(2,6-xylyl)-isocyanide), 7.07 (s, 3J = 1.8 Hz, 1H, 

NCCHN(azole-mesityl)), 7.03 (s, 2H, m-CH(azole-mesityl)), 7.01 (m, 2H, m-CH(2,6-xylyl)-isocyanide), 

6.72 (s, 2H, m-CH(N-mesityl)), 2.37 (s, 3H, p-CH3(azole-mesityl)), 2.27 (s, 6H, o-CH3(N-mesityl)), 

2.20 (s, 6H, o-CH3(azole-mesityl)), 2.11 (s, 3H, p-CH3(N-mesityl)), 1.97 (s, 6H, o-CH3(2,6-xylyl)-

isocyanide), 0.31 (s, 3H, Pd–CH3).13C{1H} NMR (100 MHz, CDCl3): δ 177.3 (NCN(mesityl)), 

161.0 (C=N), 141.9 (Cipso(N-mesityl)), 140.5 (p-C(azole-mesityl)), 136.4 (p-C(N-mesityl)), 135.7 

(C(2,6-xylyl)-isocyanide), 134.5 (o-C(azole-mesityl)), 134.1 (Cipso(azole-mesityl)), 133.0 (p-CH(phenyl)), 
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130.4 (p-CH(2,6-xylyl)-isocyanide), 129.6 (m-CH(azole-mesityl)), 129.4 (m-CH(phenyl)), 129.3 (m-C(N-

mesityl)), 128.9 (o-C(N-mesityl)), 128.6 (o-CH(phenyl)), 128.2 (m-CH(2,6-xylyl)-isocyanide), 126.0 

(C(phenyl)), 125.4 (NCCN(azole-mesityl)), 121.7 (NCCN(azole-mesityl)), 21.3 (p-CH3(azole-mesityl)), 

20.7 (p-CH3(N-mesityl)), 18.9 (o-CH3(N-mesityl)), 18.2 (o-CH3(2,6-xylyl)-isocyanide), 17.9 (o-CH3(azole-

mesityl)), –11.3 (Pd–CH3). FTIR (cast-DCM): νC=N(ligand) 1635 cm–1, νC=N(isocyanide) 2181 cm–

1. Anal. Calcd for C38H41N4F6PPd (%): C, 56.69; H, 5.13; N, 6.96. Found (%): C, 56.91; 

H, 4.97; N, 7.10.  

 

Compound 24, Pd(C^Iminet-Bu)(C=OMe)Cl: A Schlenk tube containing a solution of 

16b (32.5 mg, 0.0613 mmol) in 6 mL of THF was back-filled with CO and stirred for 15 

mins at atmospheric pressure and room temperature. The reaction was dried under 

vacuum and brought inside the glove box. The solid residue was dissolved in a minimal 

amount of THF, filtered through a plug of Celite and the yellow solution was dried under 

vacuum. The solid was washed with pentane and dried under vacuum to give a yellow-

green solid (26.5 mg, 0.0474 mmol, 77%). 1H NMR (400 MHz, CDCl3): δ 7.82 (d, 3J = 

1.3 Hz, 1H, NCHCN(mesityl)), 6.97 (m, 3H, p-CH(2,6-xylyl) + m-CH(2,6-xylyl)), 6.94 (m, 2H, m-

CH(mesityl)), 6.87 (s + br, 1H, NCCHN(mesityl)), 2.31 (s, 3H, p-CH3(mesityl)), 2.29 (s, 6H, o-

CH3(2,6-xylyl)), 2.14 (s, 6H, o-CH3(mesityl)), 1.71 (s, 3H, Pd–CO–CH3), 1.36 (s, 9H, 

C(CH3)3(imine)). 13C{1H} NMR (100 MHz, CDCl3): δ 228.5 (Pd-CO-CH3), 179.4 

(NCN(mesityl)), 161.7 (C=N), 143.1 (C(2,6-xylyl), 140.3 (p-C(mesityl)), 135.5 (o-C(mesityl)), 134.4 

(C(mesityl)), 129.4 (m-CH(mesityl)), 127.9 (o-C(2,6-xylyl)), 127.4 (m-C(2,6-xylyl)), 125.2 (p-CH(2,6-

xylyl)), 122.2 (NCCN(mesityl)), 120.0 (NCCN(mesityl)), 40.2 (C(CH3)3(imine)), 38.7 (Pd–CO–
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CH3), 29.9 (C(CH3)3(imine)), 21.3 (p-CH3(mesityl)), 19.6 (o-CH3(2,6-xylyl)), 18.1 (o-CH3(mesityl)). 

FTIR (cast-DCM): νC=N 1632 cm–1, νC=O 1690 cm–1. Anal. Calcd for C27H34N3OClPd (%): 

C, 58.07; H, 6.14; N, 7.52. Found (%): C, 58.19; H, 6.28; N, 7.24. 

 

Scheme 21. Preparation of a Ru(II) benzylidene imino-NHC complex (25). 

NN

N
Ru

Cl Cl

NN RuCl2( CHPh)(PCy3)2

Toluene, RT, 16 h

25 (C^Imine -Bu)Ru(=CHPh)Cl2
2b

N

 

 

 

Compound 25, Ru(C^Iminet-Bu)(CHPh)Cl2: A solution of C^Iminet-Bu (2b) (65.2 mg, 

0.175 mmol) in toluene (10 mL) was added to a solution of RuCl2(PCy3)2(CHPh) (119 

mg, 0.144 mmol) in toluene (6 mL). The reaction mixture was stirred for 24 h. Volatiles 

were removed under reduced pressure. The solid was subsequently washed with pentane 

(2 × 6 mL) and diethyl ether (3 × 6 mL) to give compound 25 as a green solid (67 mg, 

0.11 mmol, 76%). 1H NMR (400 MHz, CDCl3): δ = 18.41 (s, 1H, CHPh), 8.65 (s, 1H, 

NCHCN(mesityl)), 7.70 (t, 3J = 7.6 Hz, 1H, p-CH(phenyl)),  7.32 (t, 3J = 7.6 Hz, 2H, m-

CH(phenyl)), 7.08 (d, 3J = 2.0 Hz, 1H, NCCHN(mesityl)), 7.06 (br, 2H, o-CH(phenyl)), 6.97 (t, 3J 

= 7.5 Hz,  1H, p-CH(2,6-xylyl)), 6.86 (s, 1H, m-CH(mesityl)), 6.84 (s, 1H, m-CH(2,6-xylyl)), 6.73 

(d, 3J = 7.5 Hz, 1H, m-CH(2,6-xylyl)), 6.40 (s, 1H, m-CH(mesityl)), 2.25 (s, 3H, o-CH3(mesityl)), 

2.10 (s, 3H, p-CH3(mesityl)), 1.81 (s, 3H, o-CH3(2,6-xylyl)), 1.41 (s, 9H, C(CH3)3(imine)), 1.22 
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(s, 3H, o-CH3(2,6-xylyl)), 1.02 (s, 3H, o-CH3(mesityl)). 13C{1H} NMR (100 MHz, CDCl3): δ = 

318.4 (CHPh), 196.1 (NCN(mesityl)), 169.2 (C=N), 154.2 (Cipso(phenyl)), 145.2 (Cipso(2,6-xylyl), 

138.5 (p-C(mesityl)), 136.5 (Cipso(mesityl)), 135.2 (o-C(mesityl)), 134.9 (o-C(mesityl)), 132.1 (p-

CH(phenyl)),  131.5 (o-C(2,6-xylyl)), 131.3 (o-C(2,6-xylyl)), 130.5 (o-CH(phenyl)), 130.2 (m-

CH(phenyl)), 128.6 (m-CH(mesityl)), 128.5 (m-CH(mesityl)), 128.4 (m-CH(2,6-xylyl)), 127.8 (m-

CH(2,6-xylyl)), 126.3 (p-CH(2,6-xylyl)), 124.8 (NCCN(mesityl)), 120.5 (NCCN(mesityl)), 40.5 

(C(CH3)3(imine)), 30.0 (C(CH3)3(imine)), 21.0 (p-CH3(mesityl)), 20.4 (o-CH3(2,6-xylyl)), 20.2 (o-

CH3(2,6-xylyl)), 19.8 (o-CH3(mesityl)), 17.6 (o-CH3(mesityl)). Elemental analysis calcd (%) for 

C32H37N3Cl2Ru: C 60.47, H 5.87, N 6.61; found C 60.22, H 5.74, N 6.37. After the 

preparation and characterization of 25, this work was taken up by another member of the 

Lavoie group, Tim Larocque, to investigate the potential of this compound in 

metathesis.155  

General Procedure for Ethylene Polymerization. Ethylene polymerization was 

performed at atmospheric pressure and room temperature in a 500-mL Schlenk flask 

containing a magnetic stir bar. The flask was conditioned in an oven at 160 °C for at least 

12 h prior to use. The hot flask was brought to room temperature under dynamic vacuum, 

and back-filled with ethylene. This cycle was repeated a total of three times. Under an 

atmosphere of ethylene, the flask was charged with 25 mL of dry toluene and 1000 

equivalents of methylaluminoxane (2M in toluene). The solution was stirred for 15 min 

before the catalyst (10.3 mol) in 1 mL of toluene was introduced into the flask via 

syringe. The reaction mixture was vigorously stirred for 10 min after the addition of the 

catalyst, and subsequently quenched with a 50:50 mixture of concentrated hydrochloric 
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acid and methanol. The resulting mixture was filtered and any solid collected was washed 

with distilled water. Solids collected, if any, were dried under vacuum at approximately 

60 °C for several hours. 

 

5.4 X-Ray Crystallography  
 

Detailed crystallographic data for all structures including structure refinement 

parameters, tables of atomic coordinates with isotropic and anisotropic displacement 

parameters, bond lengths and angles that have been published can be found on the 

Cambridge Crystallographic Data Centre (CCDC) website. CCDC reference numbers for 

each compound are given in parentheses: 1a (759030), 2b (808924), 3a (759031), 4 

(759032), (5a (853927), 5b (853928), 8 (853926), 12a (853929), 12b (853930), 13 

(853931), 16a (940711), 16b (940712), 16c (940713), 17a (940714), 18 (940715), 21 

(940716), 24 (940717). Structure refinement parameters for structures 9, 10, 14 and 15b 

are listed in the tables below. 

X-ray crystallographic data for 1a, 2b, 3a, 4, 6a, 6b, 8, 12a, 12b, 16ac, 17b, 18 

and 21 were collected at the University of Toronto on a Bruker-Nonius Kappa-CCD 

diffractometer using monochromated Mo-K radiation ( = 0.71073 Å) at 150K and 

were measured using a combination of  scans and  scans with  offsets, to fill the 

Ewald sphere. Intensity data were processed using the Denzo-SMN package. Absorption 

corrections were carried out using SORTAV.156 Structures  1a, 2b, 3a, 4 and  6a, 12a, 

16ac, 17b, 18 and 21  were solved and refined using SHELXTL V6.1157 for full-matrix 
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least-squares refinement was based on F2. Structures 6b and 12b were solved and refined 

using Superflip158  and refined with SHELXS-97159 for full-matrix least-squares 

refinement that was based on F2. All H atoms were included in calculated positions and 

allowed to refine in riding-motion approximation with Uiso tied to the carrier atom.  

  X-ray crystallographic data for 17b and 24 were collected at the University of 

Toronto on a Bruker Kappa APEX-DUO diffractometer using monochromated Mo-K 

radiation (Bruker Triumph) and were measured using a combination of  scans and  

scans. The data were processed using APEX2 and SAINT. Absorption corrections were 

carried out using SADABS. Structures were solved and refined using Superflip158 and 

refined with SHELXS-97159 for full-matrix least-squares refinement that was based on F2. 

All H atoms were included in calculated positions and allowed to refine in riding-motion 

approximation with Uiso tied to the carrier atom. 

X-Ray crystallographic data for 13 was collected at McMaster University on a 

Bruker APEX2 diffractometer diffractometer using monochromated Mo-K radiation ( 

= 0.71073 Å) at 100K and were measured using  and  scans. Unit cell parameters were 

determined using at least 50 frames from three different orientations. Data were 

processed using SAINT, and corrected for absorption with accurate face-indexing as well 

as redundant data (SADABS).  Structure 13 was solved and refined using Superflip158 

and refined with SHELXS-97159 for full-matrix least-squares refinement that was based 

on F2. All H atoms were included in calculated positions and allowed to refine in riding-

motion approximation with Uiso tied to the carrier atom.  
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Table 2. Crystal data and structure refinement for Compound 9. 

Empirical formula  C23 H27 Cl4 N3 Zn 

Formula weight  552.65 

Temperature  150(1) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Pcab 

Unit cell dimensions a = 13.8221(6) Å = 90°. 

 b = 14.6035(4) Å = 90°. 

 c = 26.3013(10) Å  = 90°. 

Volume 5308.9(3) Å3 

Z 8 

Density (calculated) 1.383 Mg/m3 

Absorption coefficient 1.343 mm-1 

F(000) 2272 

Crystal size 0.30 x 0.20 x 0.06 mm3 

Theta range for data collection 2.55 to 27.49°. 

Index ranges -17<=h<=17, -16<=k<=18, -34<=l<=34 

Reflections collected 32679 

Independent reflections 6063 [R(int) = 0.0806] 

Completeness to theta = 27.49° 99.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.939 and 0.791 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6063 / 0 / 286 

Goodness-of-fit on F2 1.040 

Final R indices [I>2sigma(I)] R1 = 0.0613, wR2 = 0.1541 

R indices (all data) R1 = 0.1329, wR2 = 0.1871 

Largest diff. peak and hole 0.555 and -0.916 e.Å-3 
 

 

 



129 

 

Table 3. Crystal data and structure refinement for Compound 10. 

Empirical formula  C47 H50 Cl10 Fe2 N6 

Formula weight  1165.13 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 21/a 

Unit cell dimensions a = 15.9310(4) Å = 90°. 

 b = 14.1817(5) Å = 105.802(2)°. 

 c = 26.1895(9) Å  = 90°. 

Volume 5693.3(3) Å3 

Z 4 

Density (calculated) 1.359 Mg/m3 

Absorption coefficient 1.015 mm-1 

F(000) 2384 

Crystal size 0.2 x 0.24 x 0.28 mm3 

Theta range for data collection 2.56 to 27.46°. 

Index ranges -20<=h<=20, -18<=k<=18, -27<=l<=33 

Reflections collected 37540 

Independent reflections 12878 [R(int) = 0.1155] 

Completeness to theta = 27.46° 98.8 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 12878 / 15 / 572 

Goodness-of-fit on F2 1.120 

Final R indices [I>2sigma(I)] R1 = 0.0996, wR2 = 0.2242 

R indices (all data) R1 = 0.2385, wR2 = 0.2832 

Extinction coefficient 0.0000(2) 

Largest diff. peak and hole 1.374 and -1.308 e.Å-3 
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Table 4. Crystal data and structure refinement for Compound 14. 

Empirical formula  C33 H43 N3 Ni 

Formula weight  497.07 

Temperature  150(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P -1 

Unit cell dimensions a = 10.7987(7) Å = 92.936(4)°. 

 b = 11.3719(5) Å = 100.271(3)°. 

 c = 13.9439(9) Å  = 90.580(4)°. 

Volume 1682.36(17) Å3 

Z 2 

Density (calculated) 0.981 Mg/m3 

Absorption coefficient 0.595 mm-1 

F(000) 494 

Crystal size 0.45 x 0.24 x 0.10 mm3 

Theta range for data collection 2.60 to 27.46°. 

Index ranges -13<=h<=13, -14<=k<=14, -15<=l<=18 

Reflections collected 17297 

Independent reflections 7555 [R(int) = 0.0954] 

Completeness to theta = 27.46° 98.2 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7555 / 2 / 372 

Goodness-of-fit on F2 1.030 

Final R indices [I>2sigma(I)] R1 = 0.0880, wR2 = 0.1824 

R indices (all data) R1 = 0.1595, wR2 = 0.2236 

Largest diff. peak and hole 0.798 and -0.494 e.Å-3 
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Table 5. Crystal data and structure refinement for Compound 15b. 

Empirical formula  C28 H36 B F4 N3 Pd 

Formula weight  607.81 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 21/c 

Unit cell dimensions a = 12.7101(4) Å = 90°. 

 b = 11.6376(3) Å = 101.353(2)°. 

 c = 19.3405(5) Å  = 90°. 

Volume 2804.77(14) Å3 

Z 4 

Density (calculated) 1.439 Mg/m3 

Absorption coefficient 0.710 mm-1 

F(000) 1248 

Crystal size 0.3 x 0.22 x 0.08 mm3 

Theta range for data collection 2.75 to 27.44°. 

Index ranges -16<=h<=16, -14<=k<=15, -25<=l<=25 

Reflections collected 26260 

Independent reflections 6381 [R(int) = 0.0560] 

Completeness to theta = 27.44° 99.7 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6381 / 9 / 352 

Goodness-of-fit on F2 1.036 

Final R indices [I>2sigma(I)] R1 = 0.0563, wR2 = 0.1496 

R indices (all data) R1 = 0.0857, wR2 = 0.1689 

Largest diff. peak and hole 1.089 and -0.560 e.Å-3 
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