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ABSTRACT 

In this study, an improved treetop detection and region based segmentation 

algorithm was developed to delineate Individual Tree Crowns (ITCs) using 

multispectral Light Detection and Ranging (LiDAR) data. The dataset used for this 

research was acquired from Teledyne Optech’s Titan LiDAR sensor which was 

operated at three wavelengths: 1550 nm, 1064 nm, and 532 nm. Using multi-scale 

analysis the predominant crown sizes in the scene were initially identified and the 

treetops were detected for small, medium and large tree crowns. An advanced 

Gaussian based merging strategy, was employed to merge the treetops at different 

scales to determine the final crown positions. With the improved region growing 

segmentation method, neutrosophic logic was extensively used to incorporate 

contextual intensity information in the region merging decision heuristics. The 

LiDAR positional data was uniquely exploited, in this research, to generate refine 

crown boundary approximations. The results from the proposed method were 

compared with manually delineated ITCs to highlight the performance 

improvements. A 12% increase in the accuracy was observed with the proposed 

method over the popular Marker Controlled Watershed segmentation technique.  
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CHAPTER 1 

INTRODUCTION 

 

Individual tree analysis serves as a foundation in forestry, environmental protection and 

power line management applications. Analysis pertaining to individual tree crowns (ITCs) 

critically relies on the accurate delineation and detection of these tree crowns. The 

delineated ITCs are used for estimating the sizes, ages and heights of tree crowns (Kwak, 

et. al., 2007; Pouliot, et. al., 2002; Li et. al, 2012), tree species classification (Gougeon, et. 

al., 2006; Leckie, et. al., 2003) and tree growth monitoring (Yu, et. al., 2004). For the past 

few decades, many studies have been conducted for ITC delineation using high spatial 

resolution imagery. Among the popular delineation methods are edge detection (Koch et 

al., 2006; Pouliot et al., 2005), region growing (Erikson, 2004; Li et al., 2015) and 

watershed segmentation (Chen et al., 2006; Jing et al., 2012). Even though satisfactory 

results are obtained from these methods, incomplete crown edges are often detected due to 

illumination variation within the tree crown. Furthermore, high commission errors are 

commonly observed in dense tree stands due to the minimal variation in reflectance 

between two neighbouring crowns.  

 

Recently, with wide availability of Light Detection and Ranging (LiDAR) data, many 

studies are being conducted to re-examine region-based and watershed segmentation 
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algorithms for ITC delineation by exploiting the structural differences, canopy boundaries 

and spaces between crowns exhibited in the LiDAR data. LiDAR point clouds are often 

rasterized to generate Canopy Height Models (CHMs) where the local maxima represent 

treetops and neighbouring pixels with lower elevations represent canopies. Even though 

detailed crown profiles exhibited in LiDAR data allow accurate ITC delineation in open     

forests (as with passive optical imagery), problems remain in deciduous or mixed forest 

stands (Hu et al., 2014). In deciduous or mixed forest stands, tree crowns have varied sizes 

and overlaps among different crowns forms tree clusters without discernible structural 

parameters for ITC delineation. 

 

Studies have also indicated that the structural information from LiDAR data is useful in 

the identification of trees, but the spectral information in optical imagery remains a better 

source for discerning the boundary between adjacent crowns (Zhen et al., 2016; 

Briedenbach et al., 2010). As a result, the structural and spectral differences between tree 

crowns exhibited in LiDAR data and passive optical imagery, respectively, are 

incorporated in several studies to improve ITC delineation. With most of the methods, the 

CHM derived from LiDAR data is utilized to identify treetops, and the reflectance from 

optical imagery is used in the delineation of the crown boundaries using seeded region 

growing (SRG) or maker-controlled watershed (MCW) segmentation (with the detected 

treetops as the initial seeds or markers, respectively (Briedenbach et al., 2010; Zhen et al., 

2016). A very limited number of studies have examined the benefits of integrating LiDAR 

data with optical imagery at the crown delineation phase (Zhen et al., 2016). Lee et al., 

(2017) proposed an integration strategy to generate graph weights using both optical image 
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and LiDAR data in a graph cut approach. Their method was tested on coniferous stands 

and the reported accuracy metrics (ratio of extracted trees to the matched trees) were around 

50%. Lee et al (2017) further stated that around 100 LiDAR pixels were represented by a 

single hyperspectral pixel, which made it difficult to analyse the benefit of integrating 

spectral and structural information in ITC delineation (Lee et al., 2017). Apart from the 

large differences in the spatial resolution between the two datasets, issues and uncertainties 

in their co-registration also posed problems (Lee et al., 2017). 

 

As illustrated in Lee et al., (2017), the successful integration of LiDAR and optical imagery 

critically relies on the spatial resolution, coverage and minimal relief in the optical imagery. 

These requirements are difficult to obtain particularly if the datasets being integrated are 

collected from different missions at different times with different configurations (i.e. flying 

height, view angle, scan direction et cetera). Despite rectifying these differences, problems 

still exist due to shadows and registration errors (Lee et al., 2017). Current advances in the 

multispectral LiDAR technology provide a good opportunity to improve ITC delineation 

using spectral and structural information without encountering the frequent problems 

present in the integration of datasets from different missions and configurations. 

Multispectral LiDAR provides 3D coordinates of surface objects and the reflected 

intensities of the target by simultaneously emitting pulses and collecting returns at different 

electromagnetic wavelengths. The multispectral Titan LiDAR instrument of Teledyne 

Optech (www.teledyneoptech.com) is an airborne sensor that collects three different point 

clouds together with corresponding intensities at three wavelengths (1550 nm, 1064 nm 

and 532 nm). Since the three point clouds (with 3D coordinates and intensities) are 



4 

 

collected simultaneously with similar point densities (via the same platform), minimal 

processing is required to co-register the three data clouds. A few of the studies have 

reported the use of the Titan multispectral LiDAR data for land cover classification 

purposes (Morsy et al., 2016; Diaz et al., 2016; Zou et al., 2016), but none have investigated 

their applications in improving ITC delineation. 

 

The goal of this research was to exploit the capabilities of multispectral LiDAR data in the 

improvement of ITC delineation by fully and effectively utilizing the combined structural 

and spectral information of tree canopies. With most ITC methods, trees are usually 

detected first, and segmentation methods, such as seeded region growing, and watershed 

are then used to delineate the crown boundaries. This study aimed to improve the tree 

detection phase and the ITC delineation phase by integrating structural and spectral 

information. To achieve the research goal, the following specific objectives were identified 

and fulfilled.  

 

1) Develop procedures for pre-processing the Titan multispectral data 

 

Even though the methods are proposed to co-register the data clouds collected at different 

wavelengths and normalize the returned power for radiometric corrections, a completely 

integrated framework for pre-processing the Titan multispectral LiDAR data is not present 

(Yan and Shaker, 2015 & 2017). Furthermore, most methods are focused on improving the 

quality of the spectral information but do not emphasize on approaches for processing the 

LiDAR positional (i.e. structural information). In this study, a complete work flow to 
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radiometrically correct and co-register the multispectral Titan data was proposed and 

implemented. The intensity data was radiometrically corrected to remove the effect of 

ranges on the received target intensity. Processing to remove the effect of incidence angle, 

using a cosine correction, was not performed, as it induced over-correction in certain 

scenarios (Yan and Shaker, 2014). The LiDAR positional information was processed to 

extract the true dimensions of the canopy by eliminating the underlying low-frequency 

positional trend. Using a reference channel, determined by the maximum penetration power 

of the EM wavelength of the emitted pulse, a grid was formed, and the data co-registered 

via Inverse Distance Weighted (IDW) interpolation. The grid size was determined using 

the average returns per square meter in the three data clouds. The interpolation was then 

performed using the largest possible grid size to prevent gaps in resolution between the 

different intensity bands. Moreover, to mitigate the effect of scan lines, a smoothing kernel 

proportional to the crown size, was homogeneously applied over the interpolated intensity 

channels and the positional data. The integration strategy presented a simple yet effective 

framework for multi-wavelength LiDAR data. Further details on the integration 

methodology are outlined in the data pre-processing section. 

 

2) Improve multi-scale analysis for treetop detection by developing an advanced 

integration strategy for merging treetops identified at different scales 

 

Treetop detection methods (Zhang et al., 2015; Wang et al., 2004) rely on local maximum 

filtering (LMF) techniques to identify the local maxima as the treetops in the scene. 

However, with varying crown sizes, such methods yield high commission errors due to the 
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false detection of treetops.  Since trees, particularly in natural forest stands, tend to have 

varying sizes, multi-scale approaches are increasingly preferred (Jing et al, 2012 and Hu et 

al, 2014). Among the existing methods in the detection of treetops, the method proposed 

by Jing et al, (2012) and Hu et al (2014) had significant advantages over others as it 

accounted for varying crown sizes in the scene. Additionally, instead of detecting treetops 

as individual pixels, like most of the treetop detection methods, the multi-scale method 

detected the largest horizontal cross-sections of the tree crowns, which were not sensitive 

to noise in the data. However, Jing et al., (2012) and Hu et al., (2014) only proposed a 

simplified approach to merge the treetops at different scales based on a measure of region 

circularity. As a result, the method was sensitive to the initial selection of appropriate scales 

(to reflect the dominant crown sizes in the scene), which were difficult to detect (Hu et al., 

2014). To rectify these issues, an advanced merging strategy was proposed to integrate the 

identified treetops at different scales using LiDAR shape information.  

 

3) Develop a region-based ITC delineation method to effectively combine the structural 

and spectral information of tree canopies 

 

Among the existing segmentation methods, region growing has advantages in terms of 

combining information from different data sources. Region-based methods rely on the 

assumption that adjacent pixels (belonging to the same object) have similar features based 

on the grey-level, colour or texture. Using a pre-defined homogeneity criterion, region-

based methods merge adjacent pixels with similar features to produce a segmentation map. 

By exploiting high level knowledge of the image, seeds can be initialized to provide initial 
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approximations of the objects in the image. Since region-based methods do not make any 

morphological assumptions about the image, it is relatively easier to integrate different data 

sources by modifying the homogeneity criteria, statistics and imposing shape, size and 

texture based constraints on the growing patterns. Different similarity metrics can be 

constructed that reflect the underlying nature of the object in each data source (i.e. in 

LiDAR a morphological based similarity measure can describe the structural parameters 

of the crown whereas in optical imagery, first and second order statistics can be used to 

describe the spectral signature of the crown). Additionally, each similarity metric, 

characterizing a unique data source, can be weighted based on a measure of uncertainty to 

mitigate the effect of noise present in that dataset. Watershed segmentation and edge-based 

methods, in comparison, do not offer such versatility in integrating different data sources. 

Due to their dependency of intra-crown illumination variation to detect the edges in the 

image, watershed and edge-based methods tend to be sensitive to noise. Furthermore, it is 

hard to integrate multiple channels (i.e. data sources) in such methods as they primarily 

rely on assumed topology in the image. As a result, a region-based method was employed 

in this study to perform the ITC delineation. 

 

Existing studies that employ region-based ITC delineation methods do not emphasize on 

data integration at the delineation phase (Zhen et al, 2016; and Hyyppa et al., 2005). Even 

though several studies have proposed modified region-based ITC delineation methods, few 

have accounted for their expendability to ITC delineation using multiple data sources. The 

current region-based ITC delineation methods need to be improved in two aspects: an 
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integration strategy to merge different data sources and a contextual similarity measure to 

account for varying levels of noise in the dataset.  

 

To combine spectral and structural information in ITC delineation, studies, in the past, have 

used the CHM, derived from LiDAR, with optical imagery, in a multi-dimensional 

segmentation method by appending the CHM as an extra band onto optical imagery 

(Briendenbach et al., 2010; Zhen et al., 2016). Such approaches fail to fully exploit the 

crown morphology by treating the CHM has another spectral band with same homogeneity 

criterion. In this study, the structural information, in the CHM, was used to impose a 

positional constraint onto the growing regions by accounting for the natural morphology 

and shape of the crown. The positional constraint was used to eliminate neighbouring 

pixels of the growing patterns that did not conform to the morphological template of the 

tree crown, defined via a Gaussian function.  

 

In a second improvement to the region-based segmentation method a new contextual 

similarity measure based on neutrosophic logic was proposed. Neutrosophic logic was 

initially used to segment tumours in noisy ultrasound images (Shan et al., 2008). In this 

study neutrosophic logic was employed, for the first time, to perform ITC delineation. 

Dependent on a measure of variance, around the pixel of interest, the similarity criterion 

was adjusted to account for contextual information to prevent the merger of noisier pixels 

to the growing regions (Naveed and Hu, 2017). The approach also mitigated the effect of 

outliers in the dataset as the decision heuristics were derived using a weighted average of 
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multiple pixels.  The final metric for intensity was also adjusted to prevent noisier channels 

from having an equal weightage in the final merging decision.  

 

The proposed modifications, explained in further details in the proceeding sections, were 

shown to reduce cases of over and under segmentation and reduce omission errors in the 

generated segmentation map. Combined with the treetop detection phase a complete 

region-based ITC delineation framework, from multiple data sources, was presented. This 

study offered insight into ITC delineation from multiple data sources and addressed 

common cases of over and under segmentation by proposing a neutrosophic region 

growing method from integrated LiDAR data and spectral information (Naveed and Hu, 

2017).  

 

The rest of this thesis is structured as follows: section 2 introduces the background 

literature for this research. The commonly used architectures for ITC delineation are 

discussed and analysed. The concept and operations of the LiDAR are also introduced. The 

study area, dataset and reference tree crowns are introduced in section 3.  Section 4, outlines 

the data pre-processing required prior to the ITC delineation framework. LiDAR intensity 

and positional data processing are individually discussed in this section. The ITCD 

framework is presented in detail in section 5: improved multi-scale method and region-

based segmentation method, proposed in this study, are described in detail. A quantitative 

measure of accuracy assessment is also presented. Section 6 outlines the qualitative and 

quantitative results and provide a critique of the treetop detection and ITC delineation 

method. The conclusion and further improvements are suggested in section 7. 
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CHAPTER 2 

LITERATURE REVIEW 

 

ITC delineation dates to the 1990s when edge-detection methods were popularly applied 

to aerial and satellite imagery to extract crown boundaries (Gougeon, 1995). Many 

advanced methods have since been developed that exploit other properties of crowns for 

ITC delineations. These methods can be roughly broken down into three categories: Edge-

based methods, watershed segmentation and region-based methods. Even though different 

variants of these methods have been applied to different datasets (satellite and aerial 

imagery and LiDAR datasets), majority of the methods do not work well in dense mixed 

forest or deciduous stands (Chen et al., 2006; and Li et al., 2012). In the following sections, 

the LiDAR data including multispectral LiDAR data and different ITC delineation methods 

are described in detail. 

 

2.1   Multispectral Light Detection and Ranging (LiDAR) 

 

Light Detection and Ranging (LiDAR) instrument is an active remote sensing sensor that 

collects 3D coordinates of a distant target while moving along specific survey routes. By 

rapidly emitting discrete laser pulses, the instrument measures the time it takes for the pulse 
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to interact with the target and return to the sensor. The distance to the target is then 

computed by considering the travel time between the target and the receiver and the speed 

of light (Carter et. al., 2012). Combined with Global Position System (GPS) and Inertial 

Measurement Unit (IMU) data, the distance measurements are transformed to a 3D point 

cloud of the observed target area. The GPS and IMU provide the coordinates of the LiDAR 

scanner, and using range and angular measurements the coordinates of the observed target 

are determined. The results of a LiDAR survey, hence, yield a highly precise geo-

referenced point cloud with Easting (E) and Northing (N) coordinates and the elevation 

(U). In addition to collecting the 3D coordinates of the observed target area, LiDAR 

instruments also record the return power (i.e. intensity) (Wehr and Lohr 1999 and 

Baltsavias, 1999).  

 

Laser beam divergence, field-of-view (FOV), sensor altitude and view angle from the nadir 

control the size of the circular sampled area on the ground, called the footprint. A narrow 

beam-width can yield a smaller footprint (5-30 cm) and more precise Easting and Northing 

coordinates. The density of the point cloud is controlled by the pulse rate frequency (PRF), 

scan speed and platform speed. These days the LiDAR can collect data with spatial grid 

resolution of < 0.5 meters. The scanning method varies, but the commonly used variant is 

a bi-directional scanning mechanism that scans line by line producing Z shaped patterns. 

Since the sensor collects data laterally to the flying direction, the point density tends to be 

slightly higher at the edges of the point cloud.  
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Most existing LiDAR instruments operate in one single wavelength. The working 

wavelength for a topographic LiDAR instrument is often in the near-infrared varying from 

1000-1500 nm. Titan multispectral LiDAR (Teledyne Optech Inc., 2014) is the first of its 

kind that collects data in three spectral channels. This is achieved by installing three 

different sensors with different spectral wavelengths on board the same airborne platform. 

The three channels are collected at different viewing angles: 1550 nm at 3.5° forward 

looking, 1064 nm at 0° nadir looking, and 532 nm at 7° forward looking direction. Even 

though traditionally LiDAR instruments are known to provide accurate positional 

information, multispectral LiDAR also offer rich spectral information that can be exploited 

together the positional information in ITC delineation studies.  

 

Various radiometric correction methods have been developed to process the intensity data 

from discrete waveform LiDAR using the radar equation (Jutzi and Gross, 2010; Yan and 

Shaker, 2016). Radiometric correction accounts for system and atmospheric attenuation, 

ranges and incidence angle to retrieve the at surface reflectance of the target objects. 

Furthermore, radiometric normalization is also performed to co-register and normalize the 

intensity data from overlapping LiDAR strips by mapping the LiDAR strips to a selected 

reference using distance thresholding techniques (Yan and Shaker, 2016). For the Titan 

LiDAR data, Yan and Shaker (2017) proposed a polynomial approximation to model the 

laser attenuation as a function of the range and angle loss. The study also reported that the 

use of cosine correction for incidence angle loss was inefficient for different wavelengths 

and different land cover types (Yan and Shaker, 2014). In a separate study Yan and Shaker 

(2016) also examined the co-registration of different LiDAR strips by generating a joint 
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histogram for radiometric normalization. Using the LiDAR strip with the largest intensity 

range as reference, the overlapping strips were radiometrically normalized with respect to 

the reference and interpolated to generate the final intensity bands.  

 

Several studies have exploited the spectral capabilities of the Optech Titan LiDAR in 

examining cover type classification of 3D point cloud data (Morsy et al., 2016; Diaz et al., 

2016; Zou et al., 2016). Zou et al. (2016) examined the benefits of multispectral LiDAR 

point clouds for 3D land cover classification. The paper reported using an object based 

classification approach by prior segmentation of the intensity/spectral data and 

consequently using the segmentation map in a feature level classification. However the 

segmentation carried out by Zou et al. (2016) was a broad cover type segmentation to 

classify different cover types (i.e. high vegetation, low vegetation, water, road, building, et 

cetera). Furthermore no accuracy metrics were quoted for the segmentation results. Morsy 

et al. (2016) also used the Titan dataset for a land water classification using a region 

growing method. Using elevation, intensity and geometry based features, initial seed points 

were selected for the water cover type and region growing was used to discriminate water 

from land. Though many other studies have been conducted to exploit the benefits of 

multispectral LiDAR data, few have examined its capabilities in ITC segmentation. 

Furthermore, studies that have examined the effects of exploiting Titan spectral data for 

object segmentation have performed a broad cover type segmentation primarily for object 

classification purposes. In this study we offer an insight into the benefit of multispectral 

LiDAR data in ITC segmentation by examining the nature and quality of the spectral 

information and its integration with the structural data.  
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2.2   Edge-Based Methods 

 

Edge-based methods are among the earliest and popular methods that were used for ITC 

delineation (Gougeon, 1995). With edge-based approaches, edges are usually generated 

first by an edge-detection algorithm and then linked to continuous boundaries that outline 

the resulting segments through post-processing. Most edge-detection method rely on a 

constant or variable sized operator to detect initial edges (i.e. crown boundaries) in the 

scene and then incorporate edge linking as a post processing step. However, these types of 

methods are very sensitive to noise, and tend to over-segment the image easily. A more 

sophisticated edge-detection method relies on illumination variation between crowns to 

track pixels of the lowest illumination, representing the crown boundaries (Gougeon, 

1995). This category of method, known as valley following approach, was originally 

proposed by Gougeon (1995) and further refined by Gougeon et al., (2005). It tracked 

pixels of the lowest illumination in an 8-connected neighbourhood and used thresholding 

techniques to mask out small areas of shade. The study was tested on IKONOS imagery 

with a spatial resolution of 4 x 4 meters however the ITC delineation results were not 

validated to assess the quality of the detected crown boundaries.   

 

2.3   Watershed Segmentation 

 

The watershed method assumes the image to be an inverted topographical surface where 

the local minima represent the tree tops and the apexes are the crown boundaries (Beucher 

and Lantuejoul, 1979; Meyer and Beucher, 1990; Vincent and Soille, 1991). There are 
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different variants of the watershed method, but the original and the most popular variant is 

Marker Controlled Watershed (MCW). It exploits a flood fill strategy, where starting at the 

local minima (markers), neighbouring pixels are examined and merged to the respective 

markers based on the gradient magnitude of the pixel (Jing et al., 2012; Chen et al., 2006; 

Wang et al., 2004). Unlike region-based methods, described in the following section, no 

threshold needs to be specified as a pixel is simply added to the marker based on the 

gradient magnitude of that pixel. Due to the absence of a threshold or constraint, the regions 

are often over-segmented, generating irregular segments. Furthermore, MCW relies on 

radiometric peaks in the image to detect the initial markers and the crown boundaries are 

identified as the lowest radiometric points. This assumption does not always hold true 

particularly in dense deciduous stands where many non-treetop local maxima and non-

crown boundary local minima may be present due to the complex structure of overlapping 

crowns. 

 

Wang et al., (2004) used a MCW algorithm to delineate ITCs in a 256x256 Compact 

Airborne Spectrographic Imager (CASI) image of a commercially thinned forest. A two-

step process was employed to initially generate an edge map using Laplacian of Gaussian 

filter, and then applying local maxima filtering to generate tree tops, which were used as 

markers in the MCW segmentation. It was reported that an average pixel agreement of 75% 

between manually delineation and MCW results. It was worthy to mention that the study 

area, in Wang et al., (2004), was a commercially thinned forest that consisted of regularly 

spaced crowns with large gaps between adjacent crowns (i.e. there was minimal presence 

of tree clusters in the scene), which was a major factor for the reported high accuracies. 
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Chen et. al. (2004) also used MCW to isolate individual trees in a Savannah woodland 

using a small footprint LiDAR data. A Canopy Maxima Model (CMM) with a variable 

window size was proposed to initially detect treetops. The window sizes were determined 

from a regression curve between the crown size and tree height. Using an adaptable 

window size, the commission errors were reduced in the detected treetops by eliminating 

non-tree top local maxima in the CMM. The CMM also provided an ideal surface for 

watershed segmentation. Chen et. al. (2004) used two instances of segmentation to 

delineate the ITCs. The initial delineation was used to generate a distance-transformed 

image and refined tree top markers. A second watershed segmentation was then performed 

to generate final crown segments. The accuracy of delineation was evaluated using an 

Absolute Accuracy for Tree Isolation (AATI), which was a measure of the ratio of overlap 

between the delineated crown segment and reference polygon. An error margin of 10% 

between the delineated crown and the reference polygon was used for the calculation of 

the AATI. The reported average cross-validation accuracy was 64.1%. In addition, over-

segmentation remained an issue due to the presence of irregularly shaped old oak trees. 

Furthermore, commission errors also originated from dense tree clusters which were 

difficult to delineate even with initial markers.  

 

To mitigate the problem of over-segmentation due to the complex upper branch structure 

of deciduous crowns, Jing et. al. (2012) proposed a multi-scale filtering and segmentation 

method. Morphological opening operations (Serra et al., 2012) were used to identify the 

dominant scales corresponding to the sizes of tree crowns within the scene of interest and 

detect the cross-sections of tree crowns at the identified scales. It was reported that the 
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morphological opening operations with multi-scale analysis was able to remove the upper 

branch structure and detect cross sections of the crowns (as compared to the tree tops) at 

different tree heights. This was reported to greatly reduce the number of falsely identified 

tree tops. Watershed segmentation was then performed using the identified ‘treetops’ at 

different scales. A post segment boundary refinement process was used to combine the 

segments maps at different scales to produce the final crown segments. The methodology 

was tested on three plots containing mixed, coniferous and deciduous crowns. The final 

accuracies reported were 124 crowns matched out of 222 for the plot containing mixed 

trees, 160 out of 251 matched for the plot containing coniferous trees, and 84 out of 167 

matched for the plot containing deciduous crowns. A match was reported as an overlap of 

greater than 50% between the segments and the manually delineated reference polygons. 

The reported results were poor particularly for the deciduous and mixed plots due to the 

complex crown structure. The overlap of branches between deciduous crowns was reported 

as a large error source, which could not be completely mitigated using multi-scale analysis 

proposed in the paper. 

 

2.4   Region-Based Methods 

 

Region-based methods rely on some measure of distance or statistical significance to merge 

pixels to their respective regions. A variant of region-based methods known as Seeded 

Region Growing (SRG) works on a similar principal to MCW, where the seeds (i.e. 

treetops) are initially identified and the neighbouring pixels are merged to those seeds 

based on a similarity metric. The regions are grown until the boundaries of the crowns are 
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realized. Different similarity metrics have been proposed but the commonly used ones are 

Euclidean distance (Baartz and Schape, 2000; Li et. al., 2012) and absolute distance 

(Novotný et al., 2011). Majority of the studies do not account for any contextual 

information when computing the similarity metric and instead rely on heuristics derived 

based on single pixel alone. This, as address in the methodology section, is one of the main 

factors that can contribute to erroneous segmentation. 

 

Li et al., (2012) proposed a region-based ITC segmentation method by exploiting the 3D 

structure of a small foot-print discrete return LiDAR in a mixed conifer forest in California. 

A top-down rule-based approach was used to segment the tree crowns starting from the 

tree tops. The regions were grown by including nearby points based on a distance and 

height threshold. Points greater than a certain threshold were excluded from the target 

region and points below the threshold were classified based on a minimum distance rule. 

To account for adjacent tree crowns, a mutual distance metric was computed to decide the 

point assignment between the two competing regions. Additional compactness-based rules 

were incorporated by generating a 2D convex hull of the points in the growing region. The 

paper reported a recall and precision values of 0.86 and 0.94. The accuracies were 

significantly high, but the plot used consisted of predominantly coniferous tree crowns 

which do not exhibit significant overlap with adjacent crowns due to their structure and are 

relatively easier to delineate (Jing et. al., 2012). As a result, such high accuracies are easier 

to obtain, particularly with LiDAR data as it offers a detailed vertical profile of the tree 

capturing the elongated coniferous crown structure. 
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A more recent paper by Zhen et al., (2015), introduced an agent-based region growing 

method for ITC delineation using airborne laser scanning data. Unlike previous studies, it 

was tested on both coniferous and deciduous stands.  The paper examined three different 

methods: MCW with simultaneous growth of all regions (as compared to traditional MCW 

in which each region is grown fully before the next region is examined), agent-based region 

growing with one-way competition and agent-based region growing with two-way 

competition. One-way and two-way competition were used to mimic the natural growth of 

tree crowns in an ecological environment. This idea was based upon the assumption that 

competition for sunlight, in a forest, effects the growth and development of tree crowns. 

Taller trees receive more sunlight then shorter trees in a crowded scene, which in turn 

affects the growth, crown symmetry, and structure of the trees. One-way competition was 

used to describe the in-effect of smaller trees on larger trees whereas two-way competition 

illustrated the effect of smaller trees on larger trees and vice versa. The stand density and 

the ratio of the average distance between trees and the average height of the canopy were 

used in one-way and two-way competition in the region growing algorithm. In one-way 

competition, trees of smaller height could not compete with higher trees whereas in two-

way competition smaller trees could affect larger trees and vice versa. Specifically, if two 

growing regions were competing a smaller tree could take pixels from a larger tree and 

vice versa in two-way competition, while in one-way competition only the higher tree 

could take pixels from the smaller tree. The algorithms were tested on four different 

datasets containing a mixture of coniferous and deciduous plots. The reference data were 

used to generate initial markers (i.e. treetops) and hence the reported accuracy for tree top 

detection was 100%. The delineation results were evaluated using the relative error, 
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measured as the difference in the total area of the delineated and reference crown, and the 

overall accuracy which considered a greater than 50% overlap between the delineated 

crown and reference crown as a 1:1 match. It was reported an average overall accuracy of 

the four datasets were 77.5% and 81.2% for one-way and two-way competition, 

respectively. The average relative error was reported to be 6.6% and 6.8% for one-way and 

two-way competitions respectively. The proposed methodology was modelled on an 

ecological phenomenon to stimulate a natural growing environment for the regions. 

However, a key component of the region-growing algorithm (the initial tree top detection) 

was omitted, which allowed the study to assume an ideal scenario: 100% accuracy for tree 

top detection. In addition, the delineated results were more polygonal in shape than the 

natural elliptical shape of the crown, despite incorporating several constraints to ensure 

compact circular regions. 

 

2.5   ITC Delineation Techniques from Multiple Data Sources 

 

There are not many studies that have reported ITC delineation using multiple data sources 

(i.e. LiDAR data sand optical imagery), despite the potential improvements in discerning 

crown boundaries in dense deciduous stands (Zhen et al, 2016; and Hyyppa et al., 2005).  

Briedenbach et al. (2010) reported using a fused airborne laser scanning and multispectral 

dataset for ITC segmentation and tree species prediction. The LiDAR dataset was collected 

using the Optech ALTM 3100 EA scanner and the aerial imagery was acquired with Vexcel 

UltraCam D. The multispectral data contained the Near-Infrared (NIR), Red (R) and Green 

(G) bands with a pan sharpened resolution of 7500 x 11,500 pixels. The optical data was 

fused with the airborne LiDAR scan using a rasterized Digital Terrain Model (DTM) based 



21 

 

approach. The DTM was used as an additional channel to the optical imagery, generating 

a final dataset containing elevation, NIR, R, G channels. The fused data was, consequently, 

used in a region-based (region growing) segmentation method with constraints on the 

region shape. It was reported that out of the 2838 delineated ITCs only 52% contained just 

one tree crown.  

 

Zhen et al. (2013) also reported using a fused LiDAR and orthoimagery dataset for ITC 

delineation. The LiDAR data were collected from the airborne ALS60 sensor and the 

orthoimagery was obtained from an open source GIS platform. A rasterized Canopy 

Maxima Model (CMM) based approach was developed to merge the two datasets. The pit-

filled and smoothed CMM was used to register the two datasets using a correlation 

coefficient by searching for the best match between the CMM and orthoimagery. This was 

based upon the assumption that the local maxima of heights in the CMM and spectral 

responses were expected to be similar enough to detect the same trees. The fused datasets 

were used in a Marker Controlled Region Growing (MCRG) algorithm. The authors did 

not elaborate on using the fused dataset for crown delineation part but instead investigated 

the benefits of combining the two sensors in the detection of treetops at both plot and 

individual tree levels. A Local Maximum Filtering (LMF) treetop detection method was 

used with a variable window size. The results showed 2%-5% increase in the overall 

accuracy by using the fused datasets as compared to using LiDAR data alone (~82%). The 

segmentation accuracy was evaluated by computing the Relative Error of Crown Area 

(RE_CA) and producer and user Accuracies (PA and UA). A segmented crown was 

considered a 1:1 match if the overlap between the reference polygon and the delineated 
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segment was greater than 50%. The authors reported a RE_CA of ~3%, PA of ~60% and 

UA of ~70%. Despite low segmentation accuracies, the benefits of combining ALS data 

with the optical imagery for ITC delineation phase were not explored. The prime cause of 

erroneous delineation was the presence of dense deciduous tree clusters which resulted in 

multiple regions intersection a single crown (i.e. over segmentation) and certain regions 

not growing fast enough (i.e. under segmentation). 

 

2.6   Machine Learning Methods for ITC Delineation 

 

Not many studies have examined traditional machine learning based architectures for ITC 

delineation. Kandare et al. (2014) used a clustering algorithm to segment ITCs in a 

normalized ALS point cloud. The normalized point cloud was initially divided into slices 

and k-means clustering was consequently applied to each individual slice. Further cluster 

merging and splitting was used to eliminate clusters with multi-model distribution as they 

were deemed to not represent ITCs. The final crown boundaries were then detected as the 

2D polygons generated via a convex hull method. Though the method performed well, the 

total number of delineated trees were often greater than the number of field inventory in 

both plots. Hence on average the crowns were over-segmented. Zhang et al. (2010) used a 

Markov-Random Field (MRF) model for individual tree detection from LiDAR data. Local 

maxima filtering and MRF model was used to detect the treetops and the final crown 

boundaries were identified using variable crown radiuses. MRF labelling was used to 

eliminate false treetops based on the location of the top in relation to the boundaries and 

centre of the crown. A boundary radius constrain was used to penalize local maxima 
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detected towards the edges of the crown. The final crown boundaries were identified using 

a variable radius for each identified treetop. Zhang et al. (2010), did not report any accuracy 

metrics for the results. The visual results indicated a high treetop detection rate, but the tree 

crowns were not adequately captured by using a constant radius. The plot used in the study 

was significantly small with a few relatively isolated tree crowns. 

 

 

Recently deep learning based approaches have become popular for object and instance 

segmentation. An increasing number of deep learning based architectures have been 

applied to point clouds as well as optical imagery to segment and/or detect ITCs (Xiao et 

al., 2018; Li et al., 2016). Majority of these methods rely on a Convolutional Neural 

Network (CNN) based frameworks to perform instance or semantic segmentation of the 

image to identify the ITCs. Xiao et al., 2018, used a Fully Convolutional Network (FCN) 

to detect tree tops from a multi-view high resolution satellite imagery derived DSM and 

multispectral orthophoto. Instead of generating training data, the study reported using a 

local maximum detector (top-hat by reconstruction) to find treetops as the pseudo labels. 

Using a modified variant of the original FCN (Long et al., 2015) with 3 max-pooling layers, 

the study generated a 2-channel classification probability distribution map that was used to 

produce the final segmentation map of the treetops. The study reported accuracy metrics 

of 52.9% in a town area and 88% in the prairie area. Li et al., (2016) used a CNN for oil 

palm tree detection and counting in a high resolution QuickBird satellite image. The CNN 

structure (i.e. the number of hidden layers) was optimized via trial and error and the best 

architecture was then used for final prediction. Using a total of 7200 training images the 

CNN was trained on 17x17 image patches of oil palm trees and background images. A post 
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merging step was used to merge false multiple detections based on a distance threshold. 

The study reported achieving a final testing accuracy of 96% for tree detection with the 

post merging step. No accuracy metrics were reported for classification output from the 

CNN directly.  

 

Even though some studies have examined the benefits of applying deep learning 

architectures for ITC detection and counting, full crown delineation has not been as 

commonly explored. One of the key setbacks for such studies is the lack of openly available 

training data for full crown delineation. Additionally the methods work well in regularly 

spaced or thinned stands, but for dense tree clusters the applicability and accuracy of deep 

learning methods remains to be explored. 
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CHAPTER 3 

STUDY AREA AND DATASET 

3.1 Dataset 

 

The dataset used in this study was acquired by the Teledyne Optech’s Titan Multispectral 

sensor which is operated at three wavelengths: 1550 nm (Channel 1), 1064 nm (Channel 

2), and 532 nm (Channel 3). The three channels were collected at different viewing angles: 

1550 nm at 3.5° forward looking, 1064 nm at 0° nadir looking, and 532 nm at 7° forward 

looking direction. The spectral channels had similar configurations with channels 1 and 2 

having a beam divergence of 0.35 mrads and channel 3 having a 0.7 mrads beam 

divergence. The recommended flying height of the sensor was 300-2000 meters above the 

ground level (AGL) for topographic applications whereas for bathymetric data collection 

the preferred flying height was 300-600 meters AGL. The scan angle was programmable 

between 0 and 60 degrees and the PRF could be configured between 50-300 kHz for each 

channel. The horizontal accuracy of the point cloud was a function of the altitude (see Table 

1) whereas the reported elevation accuracy was 5-10 cm within 1 standard deviation.
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Table. 1 Optech Titan LiDAR Data Sheet 

Data Specification 

Parameter Specification 

Altitude Topographic: 300-2000 m Above Ground 

Level (AGL), all channels 

Bathymetric 300-600 m AGL, C3 

Beam Divergence C1 and C2 ≈ 0.35 mrad 

C3 ≈ 0.7 mrad 

Point Density Bathymetric: 15 pts/𝑚2 

Topographic: 45 pts/𝑚2 

Scan Angle 0-60° 

Horizontal Accuracy 1𝜎: 1/7,500 x altitude 

Elevation Accuracy 1𝜎: < 5-10 cm 

Pulse Repetition Frequency 50 – 300 kHz (per channel); 900 kHz total 

 

 

 

3.2 Study Area 

 

The dataset was collected over the West Rogue, in Scarborough area located South-East of 

Toronto, Ontario, Canada (Figure 3.1). The scene consisted of a deciduous stand with 

isolated trees located in urban zones (North-West side of the scene) and dense tree clusters 

in the woodlot, in the South-East side of the scene in Figure 3.1. The terrain varied in 

elevation from North-West region representing a flatter terrain to North-East exhibiting 

higher relief due to presence of a cliff. Due to the absence of field dataset, the exact number 

of deciduous and coniferous crowns could not be established but an independent 

examination of Google Earth imagery revealed predominantly deciduous crowns in the 

scene. 
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Figure. 3.1. Spatial coverage of the Titan LiDAR scan. The scan was collected over the West 

Rouge in Scarborough area located southern-east of Toronto, Ontario, Canada.   
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3.3 Reference Tree Crowns 

 

To validate the results, an independent manual ITC delineation of the scene was performed. 

To perform the delineation the 3D positional information was utilized along with the 

spectral data. Prior to performing the manual delineation, the data clouds were 

radiometrically corrected and co-registered via Inverse Distance Interpolation (IDW) to a 

common grid (the co-registration and radiometric correction is described in detail in 

Chapter 4). Each segmented crown was represented by a single polygon in the form of a 

shapefile. A total of 718 trees were delineated using the spatial toolbox in ArcGIS. The 

results of the delineation are in Figure 3.2.  

 

 

Figure. 3.2. Manually delineated ITCs overlaid on the rasterized Canopy Height Model (CHM). The 

colour variation from black to white indicates elevation change from low to high elevation, 

respectively.  
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Though the spectral and the 3D LiDAR positional data was communally used in manually 

delineating the ITCs, the positional information was found to be particularly useful in 

discerning the crown boundaries in the woodlot. The boundaries of the ITCs were 

considered as the largest cross-section of the tree crown as visualized in the 3D point cloud.  

 

Due to the lack of ground truth information for treetops, the multi scale method could not 

be quantitatively validated. Reference treetops were generated using the manually 

delineated polygons. The centroid of each polygon was computed, and a treetop was 

initialized, at the centroid pixel, using a disk kernel with a radius of 5 pixels.  Since the 

reference tops were computed as the centroid of the reference polygons, they did not 

represent the local maxima of the tree crowns (i.e. the morphological treetops). Hence the 

treetops identified with the improved multi-scale method did not align with the reference 

treetops. 
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CHAPTER 4 

DATA PRE-PROCESSING 

The three point clouds in the Titan dataset were co-registered by generating a reference 

grid. The reference grid was formed using channel 1 (1550 nm). Though channel 1 was 

used to generate the reference grid, it was observed that the selection of a different channel 

did not affect the spatial resolution of the grid or the quality of interpolation. 

 

The LiDAR point clouds were interpolated to generate a rasterized CHM and the intensity 

images corresponding to the three wavelengths of the Titan dataset. To generate the CHM, 

the Digital Surface Model (DSM) was initially computed via interpolation from the 

positional information in the 1550 nm point cloud. A Digital Elevation Model (DEM) was 

subsequently formed to extract the underlying terrain elevation from the DSM to generate 

the Canopy Height Model (CHM) (CHM = DSM – DEM). The flowchart for the CHM 

generation is shown in Figure 4.1. 
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Figure. 4.1. The flowchart of CHM generation. The CHM is generated by subtracting DEM from 

the DSM. 
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4.1   Digital Surface Model Generation 

To generate the DSM, a reference grid was initially generated using the 1550 nm point 

cloud due to its higher point density. Due to the different viewing angles and beam 

divergences there was a systematic shift in the three point clouds. This effect was most 

noticeable for the 532 nm data cloud, which had the largest difference in viewing angle 

(7°) from the reference (1550 nm). Despite the differences, it was, however, observed that 

the selection of reference channel did not significantly affect the spatial extent of the grid 

as the three point clouds had roughly the same spatial coverage.  

 

To determine the spatial resolution of the grid, the average distance between returns was 

used (Zhang et al., 2009). This distance was determined by the laser pulse density (first 

return/𝑚2) using equation 4.1 (Zhane et al., 2009). 

 

𝑑 = √
1

𝜆
 

 

(4.1) 

 

The average laser pulse density for the first returns was determined to be around 20 

returns/𝑚2 which led to a grid size of 0.25 meters. Using the grid size, the three point 

clouds were interpolated using an Inverse Distance Weighted (IDW) interpolation 

algorithm. The choice of interpolation method was again based on the effect of outliers and 

point density. In comparison with IDW interpolation, kriging was found to perform much 

worse in interpolating the DSM, due to the presence of non-ground objects. The computed 
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semi-variogram did not describe the spatial data and the hence the weights for interpolation 

were not reflective of the underlying spatial auto-correlation in the dataset. Additionally, 

direct application of kriging to first return LiDAR points resulted in data gaps and fuzzy 

boundaries (Zhang, 2009). IDW interpolation was, hence, found to be the most optimal 

interpolation method.  

 

The rasterized DSM is shown in figure 4.2. The DSM had gaps due to the variation in the 

elevation among the cover types (illustrated in Figure 4.2 c). This was due to the multiple 

returns being present for each x, y location in the grid (hence the most significant gaps were 

present in tree crowns as multiple returns were predominantly from underneath the tree 

canopy). To eliminate the gaps, the DSM was generated with only first returns and 

subsequent returns were removed (illustrated in Figure 4.2 a and b). This was found to 

remove the gaps and fill the holes in tree canopies.  
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(a) 

 

       
    

(b)                 (c) 

 

Figure 4.2. IDW interpolation of the DSM with zoom-in area to illustrate the effect of gridding with 

multiple returns. (a) The DSM generated via IDW interpolation from first returns with a grid size of 

0.25 meters, (b) The zoom-in area of the DSM generated via IDW from all returns with a grid size 

of 0.25 meters, (c) the zoom-in area of the DSM generated via IDW from first returns with a grid 

size 0f 0.25 meters. 
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4.2   Digital Elevation Model Generation 

The DEM was generated using an iterative progressive Triangular Irregular Network (TIN) 

densification (IPTD) method that initially generates a coarse approximation of the ground 

points and then iteratively refines the approximation by adding more ground points from 

the original data cloud (Zhao et al., 2016 and Axelsson, 2000). The DEM generation 

algorithm was implemented in C++ software language with TIN generation capability 

acquired from the FADE2D library (www.geom.at). The process was divided into two 

steps: (1) the coarse removal of non-ground points via morphological operations and (2) 

the refinement of the remaining ground points via TIN densification.  

 

1) Coarse removal of non-ground points via morphological operations 

 

In the first phase of DEM generation, morphological erosion and dilation operations (Serra 

and Soille, 1994) were used to obtain ground seed points (Zhao et al., 2016). A disk 

structuring element (SE) was constructed with the radius of the disk reflecting the size of 

the largest non-ground object in the image. The disk kernel was then used to remove the 

objects in the point cloud that were smaller than the radius of the kernel using a 

morphological erosion operation. A disk with a radius of 28 pixels was determined to be 

optimal in removing all non-ground objects in the dataset. The erosion operation resulted 

in removal of the ground points (as well as non-ground points) that were smaller than size 

of the kernel and hence a morphological dilation operation was used to fill the data gaps in 

the eroded image. By comparing the morphological dilated image with the original point 
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cloud, the ground points were extracted via a height threshold. A height threshold of 0.65 

meters was found to extract majority of the ground points and ignore the non-ground 

objects in the original point cloud. When selecting the height threshold, a smaller threshold 

was preferred that could potentially exclude some of the ground points. This approach was 

used to minimize the presence of any non-ground points, as they could represent inaccurate 

artefacts in the DEM that could not be corrected at a later stage. The over-erosion of ground 

data was rectified by an iterative TIN densification process in phase 2.  

 

2) Refinement of the ground-points via TIN densification 

 

In the second phase of the DEM generation, a TIN was generated using a 2.5D Delaunay 

Triangulation (Lee et al., 1980) algorithm from approximation of ground points from phase 

1 (Zhao et al., 1980). The initial approximation of the TIN model was improved by 

examining the raw LiDAR point cloud and iteratively adding ground points to the TIN. 

The criterion for determining a ground point was based upon the normal distance from the 

point to the surface of the TIN and the angle between the three vertices of the TIN and the 

point (Axelsson, 2000). If the point was determined to be a ground point, then it was added 

to the TIN and the TIN was reformed. The process was iteratively repeated until all the 

points in the raw LiDAR point cloud were exhausted. The DEM generation process (Phase 

I and II) is captured in the flowchart in Figure 4.3. 
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Figure. 4.3. Iterative Progressive TIN Densification (IPTD) for DEM Generation. 
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Although the first step is sufficient in removing majority of the non-ground points in the 

point cloud, it inevitably leads to over erosion of the ground data. Due to erosion of the 

ground data the interpolation can be inaccurate and hence densification of ground points is 

required to fill the gaps in the data prior to the interpolation. This was found to improve 

the results, shown in Figure 4.4, in areas of high relief where the terrain was removed due 

to the large size of the disk kernel. 

 

            
    

  (a)           (b)    
 

        
 

  (c)             (d)    
 

Figure. 4.4. (a, b) Initial TIN model generated from coarse approximation of the ground points in 

part of the original dataset. Different orientations are presented to visualize the relief in the terrain. 

(c, d) Post densification TIN model. The slope in the terrain is more defined with the presence of 

higher number of ground points. 
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The ground points were used to generate the DEM via interpolation. Different interpolation 

methods were examined and Inverse Distance Weighting (IDW) was found to be the 

optimal interpolation method due to its ability to handle inconsistent point density. The 

same grid size (i.e. spatial resolution of 0.25 m) as the DSM was used for interpolation and 

the results are shown in Figure 4.5. 

 

 

Figure 4.5. The RGB colour coded DEM generated from the Titan LiDAR data over West Rouge, 

Scarborough, Toronto. The colour code from blue to red represents the change in elevation from 

low to high, respectively. 
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4.3   Canopy Height Model Generation 

The CHM was generated by subtracting the DEM from the DSM (Figure 4.6). The 

generated CHM had ‘peaks’ along the edges of the image. These ‘peaks’ were due to the 

local variation in height within the tree crown (Zhang, 2008). A smoothing operation was 

used to remove the ‘peaks’ within the crown by applying a Gaussian function. The 

Gaussian filter was generated by using a kernel size proportional to the average crown size 

in the scene. A 13 x 13 Gaussian kernel was applied with a standard deviation of 2.5 in the 

x and y directions.  
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(a) 

    
    

   (b)     (c) 

 
Figure 4.6. Canopy Height Model. (a) The original CHM generated by subtracting the DSM from 

the DEM, (b) The zoomed-in area illustrates local variation in height among tree crowns, (c) the 

zoomed-in area of the smoothened CHM illustrates the mitigation of these local variations in 

elevation by applying a Gaussian kernel.  
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4.4   Intensity Normalization 

In this study, the intensity information was normalized to remove the effect of ranges. Since 

the scan angle was not available, correction for the angular loss could not be applied. The 

ranges were obtained by differencing the target coordinates from the coordinates of the 

laser scanner (determined via differential positioning using GPS and ground control 

stations). The intensity data were normalized to remove the effect of ranges from the 

spectral intensity using equations 4.2 and 4.3. The corrected intensity data is illustrated in 

Figure 4.7.  

 

𝑅 = √[(𝐸𝐹 − 𝐸𝐺)2 + (𝑁𝐹 − 𝑁𝐺)2] + (𝐻 − ℎ)2 

 

(4.2) 

 

where      𝐸𝐹 , 𝑁𝐹 = The coordinates of the laser scanner 

               𝐸𝐺 , 𝑁𝐺  = The coordinates of a LiDAR point 

               𝐻 = Flying height 

               ℎ = Elevation of the LiDAR point 

 

 

𝐼𝑐 = 𝐼 ∗ (
𝑅2

𝑅𝑀𝑎𝑥
2 ) 

 

 

(4.3) 

 

where       𝐼𝑐 = Normalized intensity 

                𝐼 = Original intensity 

                𝑅𝑀𝑎𝑥 = The maximal range 
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Figure 4.7. Range normalized intensity data (Top panel: 532 nm, Middle panel: 1064 nm, Bottom 

panel: 1550 nm).
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CHAPTER 5 

METHODOLOGY 

The normalized intensity data and the CHM were used to initially generate a tree mask. An 

improved multi-scale method was used to detect treetops for varying crown sizes to 

initialize the seeds for the region-based segmentation algorithm proposed in this study. 

This chapter outlines the improved architectures for treetop detection and crown boundary 

segmentation. 

 

5.1   Tree Mask Generation 

The normalized intensity and the CHM were used to generate a non-tree pixel mask to 

remove all non-tree pixels from further processing and analysis. The normalized 

differenced vegetation index (NDVI) was used to separate vegetated and non-vegetated 

pixels. The NDVI was calculated using channels 2 and 3 (1064 nm and 532 nm, 

respectively) using equation 5.1.  

 

𝑁𝐷𝑉𝐼 =
𝐼1064 − 𝐼532

𝐼1064 + 𝐼532
 

 

 

(5.1) 

 

To separate tree and non-tree pixels, a height threshold was defined. Any pixel below the 

height threshold in the CHM was labelled as a non-tree pixel and replaced by the mask.  
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A pixel was labelled as a non-tree pixel if the NDVI value was below a threshold of 0.25 

and the elevation in the CHM was below a threshold of 4 meters. The mask image was 

further smoothened via a morphological dilation operation with a disk SE with a diameter 

of 9 pixels. 

 

5.2   Multiscale Treetop Detection 

 

In this study, an existing multi-scale treetop detection method was improved to mitigate 

the false detection of treetops. Hu et al. (2014) previously developed a multi-scale treetop 

detection method to account for different crown sizes in the scene. Instead of detecting 

single points for treetops, as most of ITC methods, the multiscale approach detected the 

largest horizontal cross sections of individual trees. In the multi-scale method, the 3D 

cross-section of a crown, from a near-nadir view, was visualized as half an ellipsoid (Hu 

et al., 2014). Any single cross section of the ellipsoid was then viewed as a disk with a 

certain radius identifying the width of the crown at that elevation. A morphological opening 

operation with disk structuring element (SE) was proposed to remove objects (i.e. upper 

crown branches) smaller than the size of the specified kernel. The shapes and sizes of the 

SEs were selected to reflect the predominant crown sizes in the scene. The maxima in a 

given opened image than represented the cross-section of the tree crown at the 

corresponding scale.  

 

The scene was processed at multiple scales corresponding to small, medium and large 

crown sizes and the identified treetops were merged together based on a set of pre-

determined rules (Hu et al., 2014). A simple logical OR operation was used merge the 
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treetops at different scales. The final merged treetops were then used in MCW 

segmentation to determine final crown boundaries.  

 

Even though the previously developed multi-scale method yielded satisfactory results, 

issues remained with respect to merging of the treetops identified at different scales. The 

treetops identified at different scales were merged irrespective of whether the treetop 

represented the local maxima of the crown or a false local maxima corresponding to upper 

branches of large deciduous crowns. Furthermore at upper scales, treetops corresponding 

to smaller crowns were falsely merged into a single treetop which contributed to a high 

omission error in the final ITC delineation results. Even though a circularity threshold was 

used to eliminate erroneous treetop detections, there was no indication to suggest that a 

treetop could not be represented by a non-circular geometric primitive. Hence some 

treetops representing the local maxima of the crown were also falsely eliminated based on 

the circularity threshold.  

 

To overcome these problems, a new merging strategy was proposed to combine treetops at 

different scales during the treetop identification process. Instead of relying on the 

circularity of the crowns to eliminate erroneous detections, the proposed method used the 

detailed morphology of the tree crown in the CHM to eliminate treetops that could not be 

modelled by a 2-D Gaussian function. In this study, a two-step process was used to identify 

the treetops: 1) the range of scales corresponding to the predominant crown sizes in the 

scene was initially identified using the mean value analysis of the morphologically opened 

CHM images; and 2) treetops were identified at these scales and merged based on Gaussian 
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fitting by initially merging low scale treetops with medium scale treetops and then merging 

the resulting treetops with large scale treetops.  

 

In step 1, the scales corresponding to the predominant crown sizes in the scene were 

identified. The scales were selected by analysing the mean of the differenced 

morphologically opened CHM images (Jing et al., 2012). A series of disk SEs with 

diameters (i.e. scales) from 3 to 73 pixels, with increments of 2 pixels, were used to 

generate the morphologically opened images. The opening operation removed the objects 

with sizes smaller than the SE. As a result, opening operations with a series of different 

sized SEs were used to determine the dominant crown sizes in the scene. As illustrated in 

Figure 5.1, the scene with two crowns of different sizes (Figure 5.1 a and d) was processed 

using two disk SEs of dimeter of 7 pixels (b) and 9 pixels (e). Two tree crowns were 

retained in the opened image corresponding to the SE with the diameter of 7 pixels (c), 

since both tree crowns in (a) were bigger than the size of the SE. However, in the opened 

image corresponding to the SE with a diameter of 9 pixels (f), only the bigger tree crown 

was retained, as its size was larger than the SE. By comparing the opened images at 

adjacent scales, the dominant sizes of tree crowns could be identified. In this study, the 

morphologically opened images at two adjacent scales were differenced and the average of 

the differenced image was computed and plotted against the scale values. A significant 

difference in the sizes of the tree crowns between two adjacent scales was then highlighted 

by a local minima in the plot.  The scales corresponding to the local minima in the plot 

represented the predominant crown sizes in the scene and hence were selected as the final 

scales for detecting small, medium and large crowns in the scene (Jing et al., 2012).  
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Figure 5.1. Multiscale method visualized as detecting different cross-sections of the tree crown. (a, 

d) The original 3D representation of the tree crowns, (b) disk SE with a diameter of 7 pixels used 

for morphological opening operation on the crown, (c) the morphological opened image using disk 

SE in (b), (e) disk SE with a diameter of 9 pixels used for morphological opening of crowns in (d), 

(f) the morphologically opened image using disk SE in (e). A large disk SE removes the smaller 

crowns as well as the large upper branches of the larger crown. 

 

In step 2, the treetops were identified and merged using the scales identified in step 1. As 

illustrated in Figure 5.2, at a given scale (at each iteration), the CHM was morphologically 

opened at the lower (𝑖𝑡ℎ) and subsequent upper (𝑖𝑡ℎ + 1) scales. Local maxima were 

detected at both the scales to identify the cross-sections of tree crowns at the two scales. 

To determine which scale best represented a given tree crown, a Gaussian function shown 

in equation 5.2 was fitted for each identified treetop and the residuals were computed using 

equation 5.3.  
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𝐺(𝑥, 𝑦) = 𝐴𝑒
−(

(𝑥−𝑢𝑥)2

2𝜎𝑥
2 +

(𝑦−𝑢𝑦)
2

2𝜎𝑦
2 )

 

 

(5.2) 

𝑆𝑆𝐸 =
1

𝑛 − 1
 ∑[𝐶𝐻𝑀𝑖 − 𝐺(𝑥𝑖 , 𝑦𝑖)]2

𝑛

𝑖

 
 

(5.3) 

Multi-scale analysis was then performed by analysing the residuals and selecting the 

optimal scale for the identified top. The decision to increment from lower (𝑖𝑡ℎ) to upper 

(𝑖𝑡ℎ + 1) scales was based on comparison of the residuals at the two scales. If smaller 

residuals were observed at the upper scale, for an identified treetop, the scale was 

incremented, and a new treetop was initialized at the larger scale. If the residuals at the 

upper scale were however larger than the treetop at the smaller scale was retained.  

 

There were two potential scenarios when merging treetops from two different scales: 1) the 

treetops identified at two adjacent scales were concentric (or approximately concentric), or 

2) the treetops identified at the upper scale covered (or partially covered) multiple treetops 

at the lower scale. In the first scenario, the accuracy of treetop detection was invariant to 

the scale used to initialize the treetop, as at both upper and lower scales a tree crown was 

localized. However in the second scenario, the accuracy of treetop detection was entirely 

dependent on the scale. If at lower scales multiple treetops were correctly identified for a 

tree cluster, than at the upper scale those treetops were falsely merged together to represent 

a single crown. Conversely if at lower scales multiple treetops were falsely identified for a 

large tree crown than at the upper scales, those treetops were correctly merged together.  



50 

 

 

 

Figure 5.2. Improved multi-scale treetop detection flowchart. In step 1, the predominant crown sizes 

corresponding small, medium and large tree crowns are determined. In step 2, the tree tops are 

identified at each scale and merged using residual analysis.
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5.3   Improved Region-based ITC Delineation 

 

 

The identified treetops were used as seeds in a modified seeded region growing (SRG) 

algorithm to produce the final segments of the ITCs. The traditional SRG method was 

improved in the following aspects: (1) An improved contextual based homogeneity 

measure was proposed using the neutrosophic logic to mitigate the effect of spectral noise 

and integrate different intensity channels (Shan et al., 2008; Naveed and Hu, 2017). (2) A 

positional constraint based on the LiDAR information was employed to ensure that the 

growing region conformed to the Gaussian morphology of the tree crown, which 

effectively integrated the spectral and structural information of tree crowns in ITC 

delineation. In the following sections these two improvements are described in detail. 

 

5.3.1 Homogeneity criterion based on Neutrosophic logic 

 

Segmentation based on neutrosophic logic, was initially proposed by Shan et. al., (2008), 

to extract lesions in ultrasound images. It was reported that by accounting for contextual 

information in ultrasound images, the effect of noise, commonly present in medical images, 

could be mitigated and the segment boundaries could be refined. Based on this notion, in 

this study, neutrosophic logic was used, for the first time, to mitigate the effect of noise in 

the intensity of the LiDAR data for ITC delineation. Neutrosophic logic introduces a degree 

of variance when evaluating the spectral similarity between two regions (Shan et al., 2008). 

The criteria for the addition of a pixel to a region depends on two quantities: degree of truth 

and level of indeterminacy. The degree of truth is the normalized spectral distance between 

the seeded region (i.e. segment) and the pixel under examination. The level of 
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indeterminacy introduces a measure of spectral variance of a small circular neighbourhood 

surrounding the pixel. A lower level of indeterminacy implies that the region surrounding 

the pixel is homogeneous, whereas a higher level of indeterminacy is indicative of a noisier 

region (Shan et al., 2008). In this study, to determine if a pixel could be merged to its 

neighbouring segments, a rule-based approach was used: if the degree of indeterminacy 

was smaller than a threshold value, the degree of truth of the individual pixel was calculated 

(Shan et al., 2008). A level of indeterminacy higher than the threshold value was indicative 

of a noisy region or presence of potentially another crown type in the surrounding and 

hence the degree of truth of a small circular region surrounding the pixel was calculated 

instead. A region with higher indeterminacy indicated a lower confidence in a single pixel 

alone to decide on the merge criteria and hence a small circular region was used as an 

approximation of the individual pixel instead. Equation 5.5, originally proposed by Shan 

et. al., (2008), describes the similarity metric used to merge pixels to the segments. Since 

the similarity metric was computed for three intensity channels, a combined metric was 

devised in equation 5.6 using the variance of the three channels. Equation 5.6 was 

proposed, in this study, to merge the individual similarity metrics for different intensity 

channels to compute a final variance weighted similarity metric. However, instead of using 

the variance over the entire spatial extent of the image, the variance for each band was 

computed around the locality of the growing region. The degree of truth of the individual 

pixels and their surrounding regions was then weighted and averaged based on the 

variances in each individual band (𝜎𝐶 𝑖
2) in equation 5.6.  
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𝑇′
𝐶𝑖

(𝑥, 𝑦) = 1 −
|𝜇𝐶𝑖

 − 𝜇𝑅|

𝜇𝑅
 

 

 

 

(5.5) 

𝑆(𝑥, 𝑦) =

∑
1

𝜎𝐶 𝑖
2 𝑇𝐶𝑖𝑖

∑
1

𝜎𝐶𝑖
2𝑖

 

 

(5.6) 

Wherein 𝑢𝑅 and 𝑢𝐶𝑖
 represent the mean of the region surrounding the pixel (x, y) and the 

mean of the growing region in spectral channel i, respectively.  𝑇′𝐶𝑖
(𝑥, 𝑦) is the degree of 

truth for a small circular region surrounding pixel (x, y). To compute the degree of truth for 

individual pixel (𝑇𝐶𝑖
(𝑥, 𝑦)), the mean of the region surrounding pixel (x, y) (𝑢𝑅) was simply 

replaced by the pixel value at location (x, y). The decision to compute the degree of truth 

for individual pixel or a small circular region was based on the degree of indeterminacy, 

shown in equation 5.7 below.   

 

𝐼𝐶𝑖
(𝑥, 𝑦) = 1 − 𝑒−

𝜎𝐶𝑖
2

100 
(5.7) 

The degree of indeterminacy was computed by using the variance of small region 

surrounding pixel (x, y) (𝜎𝐶𝑖
2) (Shan et al., 2008).  If the degree of indeterminacy was below 

0.5, the degree of truth of individual pixel was calculated. Otherwise the degree of truth of 

the small circular region around the pixel was used. For 𝑇𝐶𝑖
(𝑥, 𝑦) a single threshold value 

of 0.6 was found optimal in successfully merging the pixels belonging to the growing 

regions. However, for 𝑇′𝐶𝑖
(𝑥, 𝑦) a single threshold, as proposed by Shan et al., (2008), did 
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not work, as the degree of truth of a region was dependent on the variance of that region. 

Instead, in this study, a thresholding sigmoid function was constructed to make a more 

informed merge decision. The input to the sigmoid function was 𝐼𝐶𝑖
(𝑥, 𝑦) and the output 

was a threshold value for the 𝑇′𝐶𝑖
(𝑥, 𝑦). The sigmoid function is shown in equation 5.8. 

 

𝐹𝑠𝑖𝑔𝑚𝑜𝑖𝑑 = (
𝐴 ∗ 𝐼𝐶𝑖

(𝑥, 𝑦)

1 + 𝑒
−𝐵(𝐼𝐶𝑖

(𝑥,𝑦)+𝐶)
)

1−𝐼𝐶𝑖
(𝑥,𝑦)

 

 

 

(5.8) 

The values of A and B controlled the scale and the steepness of the sigmoid curve. The 

value of C was used to adjust the inflection point at which the curvature of the curve 

changes. In this study the values of A and B were set to 1 and the value of C was 4.5. If 

 𝑇′𝐶𝑖
(𝑥, 𝑦) exceeded the threshold value determined from the sigmoid curve the pixel was 

merged to its respective segment.  

 

5.3.2 LiDAR Shape Constraint  

 

The positional information in the LiDAR was used to morphologically refine the 

boundaries of the crown and prevent over-segmentation in dense tree clusters. The tree 

crowns in the CHM could be modelled by a Gaussian function. As a result the morphology 

of the crown, exhibited in the CHM, was exploited during the region growing process to 

constrain the growing regions to follow a Gaussian shape.  
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In the implementation of the SRG algorithm, the 8-connected neighbouring pixels of a 

region were checked for spectral similarity using neutrosophic logic; however an additional 

constraint on the elevation was also enforced to ensure morphological similarity. Using the 

CHM the immediate 8-connected neighbouring pixels of a growing region were compared 

with the outermost contour of the region. Figure 5.3 illustrates the schematics of the 

method. 

 

 

Figure 5.3. The difference in elevation illustrated between the outer most contour of a region with 

the 8-connected neighbouring pixels.  

 

The difference in the elevation was then checked against a threshold buffer zone. The 

immediate neighbours were considered as valid if the absolute difference between the pixel 

and the outer most contour was within a given threshold. This behaviour was modelled 

upon the idea that from the initially identified treetop, the neighbouring points would 

reflect a general decreasing trend in elevation until the boundary of the crown (Figure 5.4). 

In the case of tree clusters, any sudden change in the elevation would indicate the presence 
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of another crown and hence the pixel would not be considered as a valid neighbour for the 

growing region. 

 

 

Figure 5.4. Nadir view of the tree crown in the CHM filtered to represent first returns. The elevation 

gradually decreases from the top of the crown (i.e. the treetop) to the boundary of the crown. The 

contour lines illustrate points (pixels) of constant elevation in the CHM. The inner most contour 

represents the highest elevation just around the treetop and the outermost contour represents the 

lowest elevation around the boundary of the crown.  

 

This morphological constraint was found to be most applicable to CHM based ITC 

delineation approaches as the subsequent returns, which could represent inconsistent 

elevation trends within a single crown, were removed. Furthermore, the effect of scan lines 

and noise in the CHM was also removed by prior smoothing applications.  
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5.4 ITC Delineation Accuracy Assessment  

 

The segmentation accuracy assessment was performed by comparing the results of the 

proposed region-based segmentation algorithm with the manually delineated reference 

polygons illustrated in section 3.3. The final accuracy metrics were computed by 

examining the overlap ratio between the delineated results and the corresponding reference 

polygons in the ground truth dataset using equation 5.9.  

 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 =
𝐴𝑟𝑒𝑎(𝑆𝑒𝑔𝑚𝑒𝑛𝑡 ∩ 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑜𝑙𝑦𝑔𝑜𝑛)

𝐴𝑟𝑒𝑎(𝑆𝑒𝑔𝑚𝑒𝑛𝑡)
 

 

 

(5.9) 

 

The overlap ratio between the delineated results and the reference polygon was computed 

and compared against threshold values. An overlap ratio of greater than 50% was 

considered a 1:1 match. An overlap ratio of less than 50% but greater than 25% was 

considered a partial match; and an overlap ratio of less than 25% was considered near 

complete omission. Based on these accuracy metrics, the following three different variants 

of the proposed method were examined.  

 

Method 1: Treetop detection with improved multi-scale method and crown boundary 

delineation with intensity data and CHM. It is referred as the original method hereafter.  

 

Method 2: Treetop detection with improved multi-scale method and crown boundary 

delineation with intensity data. Method 2, hereafter, is referred as the Neutrosophic method 

using intensity data only.  
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Method 3: Treetop detection with improved multi-scale method and crown boundary 

delineation with CHM. Method 3 is referred as the Neutrosophic method using CHM only. 

 

The first method was the method proposed in this study to uniquely exploit the intensity 

and positional data from the Titan LiDAR. The second evaluation (i.e. method) was used 

to check the effectiveness of combining positional information from the LiDAR with the 

LiDAR intensity data. With LiDAR shape constraint, the growth of individual regions was 

constrained by an elevation threshold in the CHM and hence the boundaries of the 

segments were refined to the morphology of the crown. Hence with the second method, the 

effectiveness of the positional constraint on the quality of the segmentation was examined 

by only segmenting the ITCs using the intensity information with neutrosophic logic (i.e. 

the LiDAR shape information was not used). The third method was added to check the 

applicability of neutrosophic logic using the LiDAR shape information itself. Hence in the 

third method, the intensity data was completely ignored and the positional information in 

the CHM was exploited to perform the segmentation using neutrosophic logic. The results 

derived from the proposed method and its variants were also compared with the Meyer’s 

flood fill variant of MCW segmentation. MCW segmentation is commonly exploited in 

ITC delineation and has been popularly reported to produce high accuracy metrics 

particularly with LiDAR data (Chen et. al., 2004; Jing et. al., 2012). The MCW method 

was tested with LiDAR and intensity information, individually and combined. The three 

variants of MCW segmentation used in this study are as follows: 
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1) MCW segmentation with intensity data and CHM 

 

2) MCW segmentation with intensity data 

 

3) MCW segmentation with CHM 

 

Additionally, the proposed region growing segmentation method was also judged 

independently of the improved multi-scale treetop detection method. Since the accuracy of 

the ITC delineation framework was exclusively dependent on the initial treetop detections, 

it was difficult to independently judge the segmentation results. To circumvent the loss of 

accuracy due to false treetop detection, reference treetops were generated using the 

manually delineated polygons. ITCs were then segmented using the reference treetops and 

the results were compared with the manually delineated crowns. Since reference treetops 

were used, the treetop detection accuracy was 100% and the overlap ratio metrics were 

exclusively reflective of the quality of segmentation. To generate the reference treetops, 

the manually delineated segments were individually isolated by converting the vectors (i.e. 

shapefiles) into individual rasters. Each raster, representing a single ITC, was then further 

processed to extract the contours which were subsequently used to compute the centroid 

coordinates of the reference polygon. The centroid coordinates were then used to initialize 

a disk with a radius of 5 pixels to create reference tree tops. The following variants of the 

method were examined with reference treetops. 
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1)  Reference treetops with crown boundary delineation with intensity data and CHM 

 

2) Reference treetops with crown boundary delineation with intensity data 

 

3)  Reference treetops with crown boundary delineation with CHM  
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CHAPTER 6 

RESULTS AND DISCUSSION 

6.1 Multi-scale Treetop Identification  

 

In this study, scale analysis, described in Chapter 5, was applied to the Titan CHM to 

identify the predominant crown sizes (i.e. scales) in the scene. The plot of the averaged 

differenced opened CHMs versus the diameters of the SEs used for opening operation is 

shown in Figure 6.1. A local minima was observed whenever there were significant 

differences in crown sizes between two successive opened CHMs (Jing et al., 2012). As 

shown in Figure 6.1, several minima were observed; the ones corresponding to the 

predominant crown sizes are marked with red circles. The first minima, corresponding to 

the diameter of the SE of 3 pixels was interpreted to be the result of upper tree branches 

and thus was excluded from the analysis.  
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Figure. 6.1 Mean value analysis of the differenced opened CHM images at multiple scales. The scale 

(i.e. the diameter of the disk structuring element) was incremented with a gap of 2 pixels with a 

starting scale of 3 pixels and final scale of 73 pixels. The local minima, corresponding to the 

predominant crown sizes, are indicated by red circles. The final scales identified from the mean 

value analysis were 7, 13 and 21.  
 

 

The local minima beyond the diameter of 21 pixels were subdued and were hence 

interpreted to represent tree clusters in the scene. Scale sizes of 7, 13 and 21 pixels were 

identified as representing the predominant crown sizes corresponding to small, medium 

and large tree crowns in the scene. The identified scales were used to generate the 

morphologically opened CHM images and consequently the local maxima were detected 

as the treetops in the opened images. Figure 6.2 shows the treetops identified at the scales 

of 7, 13 and 21 pixels. A small subset of the area is shown to better visualize the treetops 

at different scales. 
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Figure. 6.2 The identified local maxima in the opened images. The results have been overlaid on the 

masked CHM. (Top: LM identified in the morphological opened image with a disk SE with diameter 

of 7 pixels, Middle: LM identified in the morphological opened image with a disk SE with diameter 

of 13 pixels, Bottom: LM identified in the morphological opened image with a disk SE with diameter 

of 21 pixels).  
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The individually identified local maxima were integrated using the improved multi-scale 

method. The resulting treetops after merging the individual treetops from different scales 

are shown in Figure 6.3.  

 

  

 

Figure. 6.3 The treetops identified as local maxima in the morphologically opened images. The tops 

were detected at scale of 7, 13 and 21 pixels. (Top: treetops detected using multi-scale method, 

bottom: reference treetops).  The zoomed in regions are shown in figure 6.4. 
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Visual observation of Figure 6.3 indicated that most tree tops were identified correctly. 

This was especially true for trees in the residential areas, but in the woodlot area (marked 

by red squares in Figure 6.3), a higher commission error was observed. To illustrate this, 

the zoomed image of the areas marked by red squares in Figure 6.3 is shown in Figure 6.4. 

 

          

 

        

Figure. 6.4 Zoomed in map of the multi-scale treetop identifications evaluated against the reference 

treetops. The top row shows the treetop identification results in a dense stand and the bottom row 

shows the treetop results in an urban area. The reference treetops are shown in the left image and 

multi-scale results are compared in the right image.   

 

 

The treetop detection results were analysed with respect to the two potential scenarios 

described in Chapter 5. In the case, where a single treetop was initialized at both upper (𝑖 +

1) and lower (𝑖) scales, the decision to increment the scale was based upon the fit of the 
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Gaussian template to the CHM, at each scale. If the template at upper scale yielded smaller 

residuals than a treetop at the upper scale was initialized. Otherwise the treetop at the 

original smaller scale was retained. This did not directly affect the accuracy of treetop 

detection, as at both upper and lower scales the tree crown was correctly localized.  

 

In the case where the detected treetops at upper scale (𝑖 + 1) covered or partially covered 

multiple treetops identified at the lower scale (𝑖), the sum of the squared residuals was 

computed for the treetops at lower scale and compared with the residual of the treetop 

detected at upper scale. If the residual at upper scale was smaller than the sum of the 

residuals, for treetop at lower scale, than a single treetop was initialized at the upper scale. 

This scenario was commonly observed for large deciduous crowns, where at smaller scales, 

multiple treetops were falsely detected and at the upper scale a single treetop was correctly 

identified. However, for large crowns, multiple treetops were initialized at smaller scales 

(for the single tree crown) which may not have been merged at larger scales. This was due 

to the spatial distribution of the identified treetops: for large deciduous tree crowns with 

complex upper branch structure multiple treetops were identified away from the centre of 

the crown (i.e. closer to the crown edges). At larger scales, these treetops could not be 

merged due to their spatial distribution and hence this yielded a higher commission error 

in some areas. A few cases of such spatial distribution are shown in Figure 6.5. 

 

Furthermore, the multi-scale method relied on the assumption that the treetops could be 

modelled by a Gaussian function. The validity of the Gaussian assumption was not 

completely accurate in accounting for irregular shaped large deciduous crowns in dense 
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clusters. At larger scales, the treetops would generally yield higher residuals due to 

structural irregularities in the shape of large deciduous crowns. This effect contributed to 

a higher commission error as the false treetops at smaller scale could not be merged 

together at upper scales.  

 

     

     

(a)     (b)        (c) 

Figure 6.5. Identified treetops using the improve multi-scale method (top row) and the reference 

treetops generated as the centroid of the manually delineated polygons (bottom row). (a, c) The 

upper branches of the tree crown were falsely detected as treetops at the lower scale. Since the 

distribution of the false tops was away from the centre of the crown (where the true treetop was 

located), they could not be merged into a single top at the upper scales. (b) In some cases the treetops 

were falsely omitted when the crown was thinned and a local maxima could not be located at the 

given scale.  
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6.2 ITC Delineation with Multi-scale Treetop Identification 

 

The identified treetops, presented in Section 6.1, were used to perform the ITC delineation 

using the improved seeded region growing algorithm. The results of the original method 

(using both intensity data and CHM) and its two variants (using CHM only and using 

intensity data only) are shown in Figures 6.6, 6.7 and 6.8, respectively. For comparison, a 

zoomed in portion of the original area (outlined as the red bounding box) is illustrated in 

Figure 6.9.  

 

 

Figure 6.6. The delineated segments using the original method with CHM and intensity data. The 

intensity data was used to perform the segmentation using neutrosophic logic and the CHM was 

used to enforce the LiDAR shape constraint. A zoomed in portion of the area (in the red bounding 

box) is shown in Figure 6.9.  
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Figure 6.7. The delineated segments generated using the neutrosophic method with CHM only. 

 

 

 

Figure 6.8. The delineated segments generated using the neutrosophic method with intensity data. 

  

 



70 

 

       

Figure 6.9. Zoomed in region of the delineated segments. (Left: original method (using CHM and 

intensity data), middle: neutrosophic method (using CHM), right: reference polygons.  

 

From these figures, it can be observed that the results generated by the original method 

(using intensity data and CHM) were a better match to the reference delineation results as 

compared to its other two variants.  Furthermore, the crown boundaries generated via the 

original method were more refined and closely approximated the reference boundaries of 

the tree crown relative to those generated by the other two variants. Even though, for the 

neutrosophic method using CHM only, the boundaries of the delineated ITCs were also 

observed to follow the morphological boundaries of the crown, cases of under 

segmentation were commonly present. In comparison, the variant using only the intensity 

data had the worst performance out of the three methods with the delineated ITCs not 

conforming to the structural boundaries of the crown. These observations were consistent 

with the quantitative results shown in Table 6.1. 
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Table. 6.1 Accuracy metrics for ITC delineation using the proposed seeded region growing method 

and its neutrosophic variants. The initial approximations of the treetops were derived from the 

improved multi-scale method with scales 7, 13 and 21 corresponding to small, medium and large 

tree crowns. There were a total of 718 manually delineated tree crowns in the study area. The results 

were compared with similar variants of MCW segmentation.  

 

ITC Delineation Method 1:1 Match Partial Match Omitted 

 

Original method  

using Intensity and CHM 

414 107 197 

Neutrosophic method using 

CHM 

407 109 202 

Neutrosophic method using 

Intensity 

404 89 225 

MCW using CHM 

 

323 177 218 

MCW using Intensity 269 143 306 

MCW using CHM and 

Intensity 

327 164 227 

 

 

The obtained results on average reflected a combined ~70% 1:1 and partial match to the 

reference polygons for the original method and its two neutrosophic variants. For the 

original method (using CHM and intensity data), 57.7% of the crowns were a 1:1 match 

and 14.9% of the delineated ITCs were a partial match. For the method without spectral 

information (i.e. Neutrosophic method (using CHM only)) and the method without LiDAR 

positional information (i.e. Neutrosophic method (using intensity data only)) 56.7% and 

56.2% of the delineated ITCs were a 1:1 match and 15.2% and 12.4% of the ITCs were a 

partial match, respectively. It was observed that several segments were also completely 

omitted in the delineated results (~29% on average from all 3 methods). The results 

indicated that the original method (using CHM and intensity data) had the highest number 

of 1:1 matched crowns. The original method (using intensity data only) ranked the lowest 

among the three original methods with the highest number of complete omissions.  
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A 12% increase, in 1:1 matched crowns, was observed with the original method over the 

MCW segmentation (using intensity data and CHM). Other variants of the MCW 

segmentation had lower accuracies with MCW (using intensity data) having the lowest 1:1 

matched crowns and the highest number of complete omissions. Though the original 

method generally outperformed the MCW method, the results of the three proposed seeded 

region growing variants indicated that the intensity information alone was not sufficient in 

obtaining accurate ITC delineation results. In both variants of the original and MCW 

segmentation methods (i.e. neutrosophic method (using intensity data) and MCW (using 

intensity data)) the intensity information produced the lowest accuracy metrics with the 

highest number of complete omissions. In comparison the variants using the CHM yielded 

higher accuracies with fewer complete omissions. For the neutrosophic method, however, 

the difference between the intensity (a total of 404 1:1 matched crowns) and CHM (a total 

of 407 1:1 matched crowns) variants was not significant. This was attributed to the 

incorporation of the contextual information in the neutrosophic logic based merge criterion 

during region growing. Since a contextual based similarity metric was used, the presence 

of noise in the intensity data was mitigated to generate more accurate segmentation. In 

comparison, no such criterion was present in the flood fill variant of the MCW 

segmentation and hence the derived results were poor.  

 

For all variants of the original and MCW methods, a high number of completely omitted 

crowns were observed. This was primarily attributed to the erroneous treetop detections. 

There were two popular scenarios that led to low accuracies for 1:1 matched ITC segment 

and consequently a higher number of complete omissions. The first scenario, though not 
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as prevalent in this study, was the complete omission of the treetops in the treetop 

identification phase. If a treetop was falsely omitted (i.e. the crown was not localized) then 

the crown was never segmented. Majority of the studies reported the initial treetop 

omission as a major source of error for under-segmentation in dense forest stands and 

isolated tree crowns in urban environments alike. Although this was not as commonly 

observed in this study, due to the incorporation of the multi-scale method, there were still 

instances where the initial treetop omission in dense tree clusters and for isolated individual 

crowns contributed to the under-segmentation or complete omission of certain ITCs.  

  

The second and a more relevant factor for low accuracy metrics was the large commission 

error in the treetop detection module. The false identification of multiple treetops for a 

single crown led to multiple segments intersecting a common reference polygon. There 

were two possible scenarios that arose when multiple segments intersected a common 

reference polygon: 1) at least 1 segment had an overlap ratio of greater than 50%, which 

indicated that the segment could be considered as a 1:1 match for the reference polygon, 

2) none of the segments could be considered a 1:1 match (i.e. all the segments were a partial 

match). Figure 6.10 illustrates the instances where the two cases are encountered.  
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Figure 6.10. The delineated segments generated using the original method (using CHM and intensity 

data) with reference polygons with white boundaries overlaid on top. A zoomed in area (marked by 

red boxes) is shown to illustrate the cases of multiple segments intersecting a reference polygon. 

 

Since the erroneous treetop detections were more prevalent in the dense forest stand, a 

higher number of multiple segments intersecting a common reference polygon were 

observed in this region. In the case of multiple false detections, it was also observed that 

the LiDAR shape constraint did not prevent the erroneous growth of the regions as each 

identified top represented a local maxima at the selected scale. Hence the immediate region 
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around the top conformed to the Gaussian function which prevented the effective use of 

LiDAR positional information in stopping the erroneous growth of the region. This effect 

is demonstrated in Figure 6.11 below.   

 

       

Figure 6.11. Cases of multiple segments intersecting a common reference polygon (shown as the 

white boundary). The initial identified treetops from the proposed multi-scale method are shown 

with black circles. If any one of the multiple segments had an overlap ratio of greater than 50% with 

the reference polygon, it was considered as a 1:1 match and the other segments were discarded. In 

the case where none of the segments could be considered as a 1:1 match, the segment with the 

highest overlap was considered as a partial match and the rest were discarded. If none of the 

segments could be considered as 1:1 or partial matches, then the segment was considered as a 

complete omission.  

 

Though multiple false treetop detections contributed to a lower segmentation quality, it 

was observed that even in the case of multiple segments being identified for a single crown, 

the boundaries of those multiple segments still conformed to the structural boundaries of 

the ITC. In Figure 6.11, though multiple segments represented a single crown, the joint 

boundary of the multiple segments generally conformed to the structural boundary of the 

ITC. This was however not the case for multiple segments being identified due to over-

segmentation from neighbouring regions. The over-segmented crowns had a high 

overlapping ratio; however this came at the cost of neighbouring segments being under-

segmented due to the over growth of certain regions in areas of dense tree clusters. Hence 



76 

 

it was observed that the two quantities were correlated with one another particularly in 

dense tree clusters.  

 

6.3 ITC Delineation with Reference Treetops 

 

To assess the accuracy of the ITC delineation framework independently of the multi-scale 

treetop detection method, reference treetops were used as initial seeds for the proposed 

region-based segmentation method. Hence the accuracy for the treetop detection was 

assumed to be 100%. The results for the ITC delineation framework with reference treetops 

are shown in Figures 6.12, 6.13 and 6.14. The overlap ratio metrics are shown in Table 6.2.  

 

 

Figure. 6.12 The delineated segments using the original method with CHM and intensity data. 

Reference treetops with a radius of 5 pixels were used as the initial seeds for the region growing. A 

zoomed in portion of the area (in the red bounding box) is shown in figure 6.15 with reference 

polygons overlaid.  
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Figure. 6.13 The delineated segments generated using the neutrosophic method with CHM only. 

Reference treetops were used as the initial seeds.  

 
 

 

Figure. 6.14 The delineated segments generated using the neutrosophic method with intensity data 

only. Reference treetops were used as the initial seeds.       
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The results indicated that a significantly higher number of delineated segments were a 1:1 

match as compared to the ITC delineation with multi-scale treetops. Furthermore the 

boundaries of the delineated segments were also aligned with the structural boundaries of 

the crown in the CHM. The accuracy metrics for overlap ratio are quoted in Table 6.2 

below.  

 

Table. 6.2 Accuracy metrics for the ITC delineation with reference treetops. Results from the 

original method, its neutrosophic variants and MCW segmentation are illustrated. The centroids of 

the reference polygons were used as reference tree tops with a radius of 5 pixels. A total of 718 

reference treetops were generated from the reference polygon.  

 

ITC Delineation Method 

with Reference Tree Tops 

 

1:1 Match 

 

Partial Match 

 

Omitted 

Original method  

using Intensity and CHM 

635 16 67 

Neutrosophic method using 

CHM 

628 14 76 

Neutrosophic method using 

Intensity 

608 17 93 

MCW using CHM 

 

596 66 68 

MCW using Intensity 604 58 68 

MCW using CHM and 

Intensity 

605 58 67 

 

For the original method (using CHM and intensity data) a total of 88.4% of the crown were 

a 1:1 match with the reference polygon and 9.33% of the crowns were completely omitted. 

In comparison 87.4% and 84.7% of the total 718 crowns were a 1:1 match and 10.6% and 

13.0% of the crowns were completely omitted for neutrosophic method (using CHM) and 

the neutrosophic method (using intensity data), respectively. The results were significantly 

improved with the reference treetops and fewer cases of over and under segmented crowns 

were present. Figure 6.14 illustrates the zoomed-in-area of the segmented regions from the 

three variants of the original method with reference polygon overlaid. 
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Figure 6.15 The zoomed-in regions from figures 6.12, 6.13 and 6.14. The reference polygons with 

white boundaries have been overlaid on the coloured region growing segments (top row: original 

method (using CHM and intensity data), middle row: neutrosophic method (using CHM), bottom 

row: neutrosophic method (using intensity data).  
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From the results in Figure 6.15, all three variants of the original method produced regions 

that generally conformed to the structural boundaries of the crown. However for the 

neutrosophic method (using intensity data only), the boundaries of the segmented regions 

generally conformed to the spectral boundaries of the crown as there was no structural 

parameter used in the region growing process. For this reason the observed accuracy 

metrics were also lower than the other variants. In comparison with MCW segmentation 

(using CHM and intensity data), the original method (using CHM and intensity data) had 

a 4.2% improvement in 1:1 matched crowns. The number of complete omissions were 

however the same. The other variants of MCW had similar results with MCW (using CHM) 

having the lowest 1:1 matched crowns. In terms of the quality of segmentation, the original 

method (using CHM and intensity data) had lowest cases of over and under segmentation. 

The general trend of the observed results indicated that neutrosophic logic was able to yield 

better segmentation results by incorporating a measure of contextual information in the 

merging criterion during region growing. The neutrosophic logic based merging criterion 

was also demonstrated to work on CHM, however, the incorporation of LiDAR shape 

constraint was demonstrated to be a better metric for exploiting the positional information 

in the CHM.  

 

The accuracy metrics used in the study gave a macro assessment of the quality of 

segmentation. Additional metrics to provide a pixel level assessment were not computed 

as the ground truth data (i.e. manually delineated polygons) was not accurate at the pixel 

level. Hence a macro level validation was found to be a better metric for interpreting the 

results.
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

In this study a complete ITC delineation framework was proposed using multi-spectral 

LiDAR data. The framework included three routines: data pre-processing, treetop detection 

and full crown delineation.  

 

In the data pre-processing phase, the LiDAR intensity data and the LiDAR positional 

information were merged using a proposed integration strategy. A complete work flow to 

radiometrically correct the multispectral LiDAR data and co-register it with the LiDAR 

positional information was outlined and implemented. The three channels were 

individually processed to remove the effect of ranges from the intensity data. The LiDAR 

positional information was processed to extract the true canopy dimensions via a CHM.  

 

In the second phase, the pre-processed LiDAR positional data was used to identify the 

treetops using an improved multi-scale method. The morphology of the LiDAR data was 

extensively exploited in refining the initial tree localization in the treetop identification 

phase to improve the quality of segmentation and reduce commission and omission errors. 

The previously developed multi-scale method was able to account for varying crown sizes 

in the scene, but a meaningful approach to merge the tops at different scales was not 



82 

 

presented. At smaller scales the original multi-scale method was able to accurately detect 

crowns of smaller size, but this inevitably yielded a higher commission error in dense tree 

clusters or for large tree crowns, as multiple false tops were detected due to a smaller scale 

size.  The improved method, developed in this study, was able to accurately integrate the 

treetops from different scales by extensively exploiting the natural morphology of the tree 

crown present in the LiDAR CHM. In this study, the topology of the tree crown was 

modelled by a Gaussian function and treetops at different scales were merged based on 

residual analysis. The multiple false treetops at smaller scales (originating from upper 

branches of the tree crown) were merged into a single top at larger scale, hence reducing 

commission errors. Due to the lack of ground truth information for treetops, only a 

qualitative analysis was performed to evaluate the results of the proposed multi-scale 

method. However a quantitative analysis was performed for the final delineated segments 

derived from treetops detected using the proposed multi-scale method.   

 

In the final stage of ITC delineation, the identified treetops were used as initial approximate 

locations (i.e. seeds) of the tree crowns in a neutrosophic seeded region growing algorithm. 

Neutrosophic logic was effectively used, in this study, for the first time, to mitigate the 

effect of noise in the intensity data by exploiting contextual information around the seed to 

derive more accurate decision heuristics. The LiDAR positional information was 

incorporated as a constraint on the morphology of the growing regions. Unlike other 

region-based and watershed segmentation methods, which were either suited for optical 

imagery or LiDAR data, the proposed method was illustrated to effectively exploit both 

data sources and yield accurate results. To provide an independent examination of the 
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results, reference treetops were used to segment the regions and provide a more relevant 

comparison with the manually delineated polygons. The results indicated that neutrosophic 

logic was able to extensively exploit the intensity information to segment the crown 

boundaries however the segmented regional boundaries were coarse and did not align with 

the structural boundaries of the tree crowns. The LiDAR positional information was 

therefore shown to resolve this issue by constraining the growth of the regions beyond the 

structural boundary of the crown in the CHM. Hence by combining the LiDAR positional 

and intensity information the boundaries of the segmented regions were refined using a 

simple yet effective region growing module.  

 

The results of the proposed method were compared with the popular flood fill variant of 

the Marker Controlled Watershed (MCW) segmentation. The MCW method primarily 

relied on the assumed topology in the scene, hence it was particularly sensitive to the noise 

in intensity data. The assumed topology of the watershed method, where the treetop 

represents the point of highest ‘elevation’ and subsequent points are of lower ‘elevation’ 

(with the boundary of the crown being the lowest point) were inherently captured in the 

proposed LiDAR shape constraint, as it was deemed to best describe the morphology of 

the crown. However a similar assumption about the spectral response was not made as it 

did not conform to the nature of the intensity information. Hence the proposed method was 

able to produce higher accuracy metrics than the watershed method by exploiting the 

natural characteristics of each data source.  
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Using combined spectral data and LiDAR positional information was able to provide 

reasonably accurate ITC delineation results. However for individual isolated crowns, in 

urban areas, the intensity information was best able to isolate the ITCs due to the variation 

(in spectral domain) between the crown and other cover types. For dense tree clusters (in 

urban or forest areas), the LiDAR positional information was particularly useful in isolating 

ITCs from adjacent crowns based on the vertical profile and general morphology of the 

crown. However due to the high density of the ITCs in the forest area and a high overlap 

between adjacent crowns, erroneous segmentation results were observed. The results 

indicated over and under segmentation for dense tree clusters. Certain regions were also 

completely omitted or over-segmented to a size much larger than the reference polygon. 

However to provide a complete and accurate picture of the segmentation quality, these 

outliers were accounted for in the quoted accuracy metrics.  

 

The combination of LiDAR positional information and spectral data shows a great potential 

for ITC delineation studies. Multispectral LiDAR data provides a good opportunity to 

examine the benefits of integrating different data sources for ITC delineation purposes. 

However the intensity information present in the LiDAR data is often low resolution and 

contaminated with high noise levels. This prevents a meaningful integration of the two 

different data sources to examine the benefits in the discipline of ITC delineation. In this 

research, a neutrosophic logic based merging approach was used to mitigate the effect of 

noise in the intensity data to improve the quality of segmentation. However the quality of 

the intensity information must be improved for multispectral LiDAR data to be used as a 

replacement for optical imagery.   
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In future work, the proposed method can be applied to the combined dataset with CHM 

derived from LiDAR data and multispectral/hyperspectral data from passive optical 

imagery. Though issues exist in the co-registration of the two datasets, as outlined in this 

study, an integrated LiDAR and optical imagery dataset can offer rich spectral and 

positional information. In this study the CHM was exploited in the treetop detection phase. 

Though accurate results were obtained, a higher commission error was observed due to the 

complex upper branch structure in dense deciduous crowns. In future efforts, the LiDAR 

positional information can be combined with the multispectral data, from optical imagery, 

to reduce the commission error in treetop identification in dense deciduous crowns.  

 

To further improve the multi-scale analysis proposed in this study, statistical tests can be 

used during residual analysis. In this study, a Gaussian function was used to model the 

treetops at different scales. Consequently, residual analysis was used to select the 

appropriate scale at which the treetop was initialized. Though residual analysis worked 

well in this study, the method did not consider if the residuals at different scales 

significantly varied from each other. In future work, the residual analysis can be modified 

by performing a statistical test to determine if residuals at two different scales are 

significantly different from each other. Hence treetops at smaller and upper scale can be 

merged based on statistical test.  

 

In the segmentation results, with initial seeds generated using the proposed multi-scale 

method, a larger number of segments intersected a common reference polygon. This effect 
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was primarily attributed to the erroneous treetop detection, where multiple treetops were 

initialized for a single crown. Hence each treetop was grown, during region growing, to 

represent a section of the crown, which inevitably contributed towards a higher number of 

partial matches or complete omissions. Though the results may be significantly improved 

by reducing the error in the treetop detection phase, a post-segmentation merging process 

can also be used to improve the segmentation results. By using a measure of spectral 

variance adjacent regions can be merged together. Conversely in cases of over-

segmentation, where certain regions grow much larger than the corresponding reference 

polygons, splitting strategy can be used to split the region into smaller regions. Though the 

initial treetop detection remains central to an accurate segmentation, post-segmentation 

processes can be certainly exploited to increase the overall quality of the results. 

 

In this study, deep learning methods for instance segmentation were not used due to 

limitations in the training data. However recent architectures have been proposed that 

circumvent the problem of requiring copious amounts of training data. One such network, 

based on the encoder-decoder architecture, is known as U-Net. The U-Net architecture, 

originally proposed for biomedical image segmentation, can be trained on smaller training 

datasets to segment the crown boundaries. Due to addition of activation maps from earlier 

layers in the network, fine-grain spatial information can be retrieved to precisely detect 

object boundaries. Hence in future endeavours, the U-Net architecture can be exploited to 

further improve ITC delineation. 
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