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Abstract

Active galaxies are an important subclass of galaxies, distinguished by an energetic

core radiating an extraordinary amount of energy. These hyperactive cores, referred

to as Active Galactic Nuclei (AGN), are driven by enhanced accretion onto a central

supermassive black hole about a million to a billion times the mass of our Sun. Accre-

tion onto a supermassive black hole may be a convincing mechanism to explain the

extreme properties stemming from an active galaxy, but this proposal inevitably opens

up another problem: what source provides the gaseous fuel for black hole accretion?

In this research project, we examine the possibility that these active galaxies have

engaged in some form of galactic “cannibalism” of their neighbouring galaxies to

acquire a fuel supply to power their energetic cores. By using data from the Sloan

Digital Sky Survey (SDSS), we conduct an environmental survey around active and

non-active galaxies and map out the spatial distribution of their neighbouring galaxies.

Our results show that, in gravitationally isolated environments, the local environment

(< 0.5 Mpc) around active galaxies are seen to have an under-density or scarcity of

neighbouring galaxies relative to the non-active control sample – a possible indication

of a history of mergers and consumptions.
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Chapter 1

Introduction

1.1 Why are Active Galaxies special?

Starting in the early 20th century, our Milky Way was discovered to actually be one

of many billions of galaxies populating the cosmos. As astronomers began collecting

detailed catalogues of this galaxy zoo beyond our own and investigating their prop-

erties, one particular sub-class of galaxies stood out as a special outlier, known as

Active Galaxies. At first glance, these objects appeared optically normal but, after

closer inspection, astronomers were able to measure extreme luminosities stemming

from the nucleus, referred to as Active Galactic Nuclei (AGN) (Netzer, 2013). These

AGNs can produce an intense amount of radiation greater than the entire output

released by a typical galaxy (Sabater et al., 2015). It is not necessarily this degree of

energy production that is astonishing; it is the fact that a tiny volume spanning a few

light-years has the ability to generate more luminosity and, at times, can outshine

the entire disk of a typical galaxy, which generally spans about hundred thousand

light-years (Netzer, 2013). Even more intriguing, astrophysicists learned that an

AGN’s energy production cannot be simply attributed to the light from stars and dust

alone, known as thermal radiation – there must be some other mechanism powering

these nuclei.

What is the cause of this extreme activity? Astrophysicists have strong evidence

to believe that there exists a supermassive black hole anywhere from a million to a

billion M� at the centre of these active galaxies, where M�(= 2× 1030 kg) is a solar

mass unit equivalent to the mass of our Sun (Richstone et al., 1998). These cosmic
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entities are like hungry galactic monsters devouring whatever gas is available from the

swirling disk of gas – the accretion disk – surrounding the black hole. As this matter

falls into the black hole, it heats to high temperatures via some kind of frictional force

and releases an enormous amount of energy in the form of non-thermal radiation.

Interestingly, there is also evidence suggesting that all large galaxies possess central

supermassive black holes and experience a certain extent of material infall; however,

active galaxies have elevated this accretion process far beyond the typical intensity

of normal galaxies (Netzer, 2015). To put this accretion rate into perspective, it is

estimated that a 108 M� black hole may consume about 1 M� of gas per year to

power its engine. The process is very efficient for an astrophysical phenomenon, where

detailed calculations estimate 10% to 20% of the total mass-energy of the infalling

matter has the ability to be converted to radiation before crossing the black hole’s

horizon (Richstone et al., 1998). It is this enhanced accretion that gives rise to the

observed non-stellar and intense radiation from the nucleus.

1.1.1 Interesting Examples of AGNs

Over the years, astrophysicists have discovered a great variety of AGNs with different

spectral features, radiative outputs and large-scale structures (Fabian, 2012). One of

the first investigations of active galaxies was done by Carl K. Seyfert in 1943. His

findings suggested that a small population of galaxies had highly luminous galactic

nuclei and possessed atypical spectral features unseen in most galaxies. These objects

are now collectively known as Seyfert galaxies; Figure (1.1a) depicts a well-studied

Seyfert known as NGC 5793. They have been widely studied in astrophysics because

they are the most common active galaxy found in high number densities. Visually,

they often appear very similar to common spiral galaxies, like our Milky Way; however,

when we analyze the light from their nuclei, there are noticeable differences in the

spectral features. In fact, Seyferts turned out to actually be one family member of a

rich variety of active galaxies. These further discoveries transitioned AGNs from an

observational curiosity into an important sub-classification of galaxies and allowed us

to expand our knowledge of galaxy formation and supermassive black hole evolution.

We now explore some interesting examples of active galaxies.

2



Figure 1.1: (a) Seyfert galaxy (NGC 5793). Seyferts are the most common active
galaxies and particularly relevant to this thesis. (Source: NASA, ESA, & E. Perlman);
(b) Quasar (3C 273). Quasars are one of the most luminous active galaxies. (Source:
NASA/HST ); (c and d) Two images of the same radio active galaxy, Hercules A (3C 348),
in the visible spectrum (c) and a superposition of the visible, x-ray and radio spectrum
(d). There are two bipolar beams extending about 1.5 million light-years in length, known
as astrophysical jets. These jets represent the outflow of highly energized and ionized
matter moving at relativistic speeds. They are often powered by strong magnetic fields and
accretion onto a central supermassive black hole. (Source (c): NASA/STScl/HST; Source
(d): NASA/STScl/CXO/SAO/NRAO/VLA/HST )
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An AGN that has caught much attention over the years, especially in popular

scientific literature, are Quasi-Stellar Radio Sources (Quasars). These active galaxies

particularly stand out because they are one of the most luminous objects among

galaxies and can be seen at far cosmological distances. The total luminosity from a

typical Quasar can vary anywhere from 1038 Watts to more than 1041 Watts, which is

almost 100,000 times more energetic than a typical galaxy like our Milky Way (Netzer,

2015). Figure (1.1b) is an image of one of the first Quasars, 3C 273, ever discovered.

The observation of quasars has also led to investigations exploring the frequency of

active galaxies over different cosmic timescales. In general, we see a progressively

increasing presence of more luminous active galaxies in the past, where Quasars were

notably much more predominant billions of years ago than now (Netzer, 2013).

Figure (1.1c) and (1.1d) depicts another active galaxy named Hercules A (3C 348).

In the left image, we see Hercules A only in visible light with no particularly noticeable

features; however, when we include the signal from the x-ray and radio wavelength in

the right image, we suddenly see a new wealth of information. Hercules A is a special

type of AGN referred to as a radio galaxy. Even though the central galaxy appears

to be a regular elliptical galaxy, there are stunning bipolar extensions originating

from the center. This large-scale structure is the result of the relativistic ejection of

charged electromagnetic particles arising from the violent environment created by the

accretion onto the supermassive black hole. Astrophysicists estimate the extension of

these jets to be about 1.5 million light-years in length, which is almost 10 times the

diameter of the entire Milky Way (Osterbrock & Ferland, 2006). We include a brief

summary of different AGN sub-classes in Table (1.1).
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Table 1.1: Summary of AGN Classes.

Class Sub-Class Description

Seyfert Type 1
Weak radio emission; X-ray emission;
Spiral galaxies; Variable brightness;
Broad and narrow emission lines

Type 2
Weak radio and x-ray emission;
Spiral galaxies; Not variable brightness;
Narrow emission lines only

Quasars Radio-Loud (QSR)
Strong radio emission; Variable;
Some polarization; Broad and Narrow
emission lines

Radio-Quiet (QSO)
Weak radio emission; Variable;
Weak polarization; Broad and narrow
emission lines

Radio Galaxies BLRG
Strong radio emission; Elliptical galaxies;
Variable; Weak polarization;
Broad and narrow emission lines

NLRG
Strong radio emission; Elliptical galaxies;
Not variable; No polarization;
Narrow emission lines only

LINERs
Spiral galaxies;
Low-ionization emission lines
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1.2 Central Problem: Supplying Fuel to the Core

Accretion onto a supermassive black hole may be a convincing mechanism to explain

the extreme properties stemming from an AGN, but this proposal inevitably opens up

another problem (Lynden-Bell, 1969). If all major galaxies have central supermassive

black holes and experience a certain extent of material infall, then why are some

galaxies active and others not? What pathway has permitted active galaxies to engage

in enhanced accretion to power this extreme core activity? In essence, these galaxies

have somehow worked out a route to transport a supply of gaseous fuel directly to the

galactic core.

Across the board, actives galaxies generally require anywhere from 0.1 to 10 M�

worth of matter per year to feed their engines (Osterbrock & Ferland, 2006). If so,

where does this supply of gas come from? At first thought, we may immediately turn

to the gas in the surrounding galactic disk, but studies have revealed this gas to be

relatively stable; after all, the vast majority of spiral galaxies, which are also the

dominant morphology of Seyferts, are not AGN (Fabian, 2012). If there is no such

fuel supply to power the engine, then it is perfectly possible for a galactic core to have

a supermassive black hole but have no activity, collectively referred to as non-AGNs.

Our Milky Way is an example of a non-AGN with a 4.5× 106 M� supermassive black

hole with no signs of significant core activity. The existence of a supermassive black

hole is a necessary condition to activate the center of a galaxy; however, it is not a

sufficient condition to claim that a galaxy’s core will be active (Netzer, 2013). With

all of this said, active galaxies are distinguished structures that have in some way

worked out this transport mechanism to deliver this activating fuel to the core.

This leads us to one of the central questions driving current research in the field of

Active Galaxies: What pathway allows AGNs to efficiently supply their cores with

gaseous fuel and engage in enhanced accretion onto the central supermassive black

hole compared to non-AGNs? Where does this gas originate from?

6



1.3 Pathways to Activating a Core

There exists a great deal of literature exploring how active galaxies may have re-

ceived their fuel supply and discussions on various pathways to activation. Overall,

researchers have approached the question via two routes: (1) internal mechanisms and

(2) external mechanisms. As for internal means, secular evolution involves scenarios

whereby existing gaseous material in the disk grows unstable from a galaxy’s own

self-perturbations and this instability ultimately plunges matter into the core. For

instance, the possibility of stellar bars as a pathway has been considered as a viable

option. These bar structures are common morphological features found in many spiral

galaxies and research suggests they may give way to funneling gaseous material into

the core. Cisternas et al. (2015) investigated this pathway and found that the role

of bars may not be a convincing mechanism to deliver a sufficient amount of fuel to

the central 100 pc and power black hole accretion. Another possible internal source

would be nuclear star clusters. Seth et al. (2008) studied galaxies that hosted both

nuclear star clusters and AGNs to examine any correlations between the two features.

They found that the fraction of galaxies with nuclear star-cluster were equally likely

to have AGN and non-AGN characteristics; there were no strong correlations.

With this said, the focus of this thesis is particularly directed at the possibility of

an external source being the main culprit responsible for triggering gas inflow and,

ultimately, initiating core activity. What are these external sources? The modern

definition of a galaxy is regarded as a gravitationally bound collection of stars and gas

situated in an encompassing dark matter halo (Mo, Bosch, & White, 2010). However,

galaxies themselves may belong to larger gravitational structures forming a hierarchical

framework of the universe, such as galaxy pairs, groups, and clusters. These neighbour

galaxies are constantly interacting with each other via long-range gravitational forces.

Over the years, researchers have investigated whether an active galaxy’s neighbours

may have possibly played an important role in initiating core activity. There are

two main pathways allowing neighbour galaxies to stimulate gas inflow: (i) a direct

contribution of fuel, whereby the neighbour merges with the host and directly supplies

its reserve of gas to the core and/or (ii) the physical closeness of a neighbour induces

instabilities in the host’s existing gas supply, which gives way to radial movement

of gas to the core (Netzer, 2013). While we can group all of these possibilities as

7



gravitational interactions, different interactions have acquired special attention over

the years.

Galactic Collision

Galactic collisions are an example of one of the most direct ways a neighbour galaxy

can supply fuel to the core. If the typical diameter of a major galaxy is anywhere

between 20 to 40 kiloparsec (kpc), then galaxy pairs within 1000 kpc or 1 megaparsec

(Mpc) are often seen to be more strongly interacting and, depending on the orbital

configurations, approaching trajectories can result in direct inbound collisions under

their mutual gravitational attraction (Binney & Tremaine, 2008). Figure (1.2a) depicts

an example of a galactic collision – the spiral galaxy NGC 2207 is undergoing a direct

collision with a smaller neighbour galaxy IC 2163. It is interesting to note that in a

galactic collision the individual stars themselves do not collide, but rather the gas and

dust from both members can experience significant compressions and shocks.

In terms of galactic collisions as a pathway to AGN activation, these kind of

gravitational interactions can be both beneficial and detrimental to promoting core

accretion. It is a challenge to determine what particular kinds of collision can lead to

AGN activity because modeling galactic collisions is extremely difficult via analytical

methods, and often requires detailed numerical simulations or high-resolution imaging

from telescope data. In general, there are four important properties that influence the

final structure of a merger: (i) mass ratio between the colliding pair (if a progenitor’s

mass ratio is less than 1/3, then it is referred to as a minor merger); (ii) morphologies

of the progenitors (disk or elliptical); (iii) gas mass fraction of the progenitors (mergers

with gas-rich encounters referred to as wet mergers); (iv) orbital properties (Mo, Bosch,

& White, 2010). In terms of AGNs, we would expect minor and wet mergers with

orbital configurations that do not entirely disrupt existing disk structure to be the

most favorable collisions leading to core activity (Combes et al., 2009).

Galactic Cannibalism

Another important scenario is galactic cannibalism, whereby the orbit of a smaller

neighbour gradually decays into the host via the process of dynamical friction. The

influence of dynamical friction can be thought of as a “gravitational drag” experienced

by a smaller body as it moves in the presence of a larger gravitational body; as a

8



Figure 1.2: (a) Galactic collision between NGC 2207 and small neighbour IC 2163 (Source:
ESO); (b) Galactic cannibalism of active (Seyfert) galaxy M51 of smaller dwarf neighbour
(NGC 5195) (Source: ESA, NASA); (c) Small compact galaxy group, HCG 87. Close
promixity of neighbour galaxies contained within projected diameter of > 0.1 Mpc situates
group members in an asymmetric gravitational potential, which may possibly lead to gas
inflows. Known as galactic harassment (Source: Sally Hunsberger (Lowell Obs.) Jane
Charlton (Penn State) et al.); (d) The system ESO 69-6 of two interacting galaxies with
elongated tidal tails stretching out between them like a bridge. (Source: NASA, ESA, Hubble
Heritage)
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consequence, there is a loss in angular momentum and the orbital trajectory begins to

decay (Ogiya & Burkert, 2016). This decaying process would allow a larger host to

consume smaller partners over reasonable cosmological timescales. Even though the

initial concept proposed by Chandrasekhar (1943) involved a large body transversing

through a cloud of smaller bodies, this phenomenon is still relevant for a large host

galaxy and its interaction with smaller partners. The Chandrasekhar formula says

that the velocity of an orbiting smaller companion ~vc in the presence of a large host

experiences the following deceleration (Ogiya & Burkert, 2016):

d~vc
dt

= −4πG2Mc ln(Λ)ρhost
~vc
v3
c

, (1.1)

where Mc is mass of the companion, ρhost is the mass density distribution of the

host, ln(Λ) is the Coulomb logarithm, and vc is the speed. From this formula, we

immediately observe that if the companion has any tangential velocity component,

then it will necessarily have a negative and tangential acceleration component, which

leads to an angular momentum loss and a gradual spiraling towards the system’s

center-of-mass. This is why dynamical friction is often referred to as a “gravitational

drag”.

Figure (1.2b) shows the Seyfert galaxy M51 undergoing a strong interaction with

a neighbouring dwarf galaxy (NGC 5195). At this stage, the neighbours have begun

merging and a common gaseous envelope has formed from exchanged material. These

kind of satellite galaxies (less than 10% the mass of the host) are ideal candidates

to be cannibalized because of their mass difference relative to the host and their

general abundance. An interesting calculation by Binney and Tremaine (2008) roughly

estimate the number of satellites consumed by a large host via dynamical friction over

a Hubble time of about 13 billion years is equivalent to ∆L ≈ 0.13LHost, where is

LHost is the current luminosity of the host. In other words, a typical giant galaxy has

eaten one or two satellites equivalent ≈10% of its own luminosity. Another interesting

idea worth mentioning is that gravitationally bound companions may play different

roles for a host in the consumption process, as opposed to unbound companions. For

instance, a study by Filippenko et al. (1998) showed that nearly half of all spiral

galaxies have some level of non-thermal activity in their centres; however, there is

no compelling evidence that half of all galaxies are merging or have recently merged.

This may be evidence that a nearby bound smaller satellite may have been consumed

to power the core.
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Galactic Harassment and Tidal Stripping

Neighbours do not necessarily have to directly merge with the host via a collision or

cannibalism process to activate the core. Ultimately, the stimulation of gas inflow is

what leads to the onset of enhanced accretion. It turns out that the physical closeness

of a neighbour galaxy can also lead to this stimulation (Ellison et al., 2011). For

instance, the close proximity of a comparable-sized neighbour can situate a host galaxy

in an asymmetric gravitational potential. This imbalance may give rise to stresses

and strains to transport gas into the core (Haan et al., 2009). As an example, Figure

(1.2d) illustrates a small compact group of galaxies known as HCG 87 that contain a

collection of galaxies within close proximity. If the typical distance between major

galaxies is ≈ 1.0 Mpc, then astronomical measurements indicate that this group has

a projected diameter around 0.1 Mpc. Within this collection itself, there are two

active galaxies close to other comparable-sized galaxies, suggesting that gravitational

interaction with close neighbours may be possibly assisting core activity.

The nearness of a neighbour can also exert tidal forces such that gaseous material

is striped from the outskirts. This type of gravitational interaction may give rise to

thin, elongated stretches of stars and gaseous material, known as tidal streams and

tails, allowing for a direct exchange of matter without direct merger (Putman et al.,

2003). Figure (1.2c) shows an example of such a system of two interacting galaxies

(ESO 69-6) with long elongated tidal tails stretching out.
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1.4 Observational Approach:

Investigating Routes to Activation

We have introduced Active Galaxies as an important sub-class of galaxies, distin-

guished by an energetic core, or AGN, radiating an extraordinary amount of energy.

This radiation is not the result of typical stellar or thermal activity as found in

most galaxies, but, rather, astrophysicists have strong evidence to believe that this

hyperactive core is driven by enhanced accretion onto a central supermassive black

hole. However, the presence of a supermassive black hole is not unique just to AGNs;

most large galaxies, like our Milky Way, also harbour these black holes and, yet, do

not have extreme core activity – collectively referred to as non-AGNs (Netzer, 2013).

In essence, the primary difference between AGNs and non-AGNs is that active galaxies

have found some way to transport fuel to their nucleus. This brings us to an important

open question: what pathway allows these active galaxies to supply gaseous fuel to

power their active cores?

In terms of plausible mechanisms, there seem to be many routes to activating a

core. The focus of this thesis is directed at understanding how neighbour galaxies

via gravitational interaction with a host may stimulate gas inflow. By gravitational

interactions, we are referring to situations whereby a neighbour galaxy makes a direct

contribution of gas to the host and/or the physical closeness of a neighbour induces

gravitational disturbances in the existing gas of the host. Any of these situations can

potentially lead to the onset of enhanced accretion and, thus, activate the core.

In this section, we address how researchers have investigated and tested these possi-

bilities to examine their validity. We present two important approaches, which include

capturing high-resolution images of active galaxies with telescopes and studying their

surroundings to search for particular environmental traces indicative of gravitational

interactions.

1.4.1 First Approach: Imaging the Active Galaxy

The first approach involves taking high-resolution imaging of the active galaxy and

searching for morphological evidence of past mergers and gas inflow. For instance, a

study by Combes et al. (2009) inspected the disk morphology of the active (LINER)
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galaxy NGC 1961. Compared to other disk galaxies, this galaxy stands out because of

a perturbed and deformed galactic structure with a very large radial extent, suggest-

ing that NGC 1961 may have undergone a direct head-on collision. This may have

ultimately driven cold gas into the core of the galaxy and initiated AGN activity.

Major mergers can often lead to significant distortions and damages to the integrity

of a host’s existing disk, which may also conversely inhibit efficient gas inflow and,

thus, prevent core activity. However, minor mergers with smaller-mass neighbours

may be a more effective process. For instance, a study by Tanaka, Yahi & Taniguichi

(2017) search for morphological evidence of past minor mergers in the Seyfert galaxy,

NGC 1068. They used deep optical imaging from the Subaru Telescope and reported

at least three Ultra Diffuse Objects (UDOs) at a radial distance of 45 kpc away from

the active core of NGC 1068. This evidence of distorted disk morphology suggests

that NGC 1068 may have been involved in a past merger that did not entirely disrupt

the integrity of the disk but, at the same time, may have provided subtle changes in

the gas inflows and potentially triggered nuclear activity.

The effects of dynamical friction, which allows for a slower and less-dramatic

cannibalism of smaller neighbours, is more challenging to study via these imaging tech-

niques. One astrophysical system that has received attention in the light of dynamical

friction is the orbital decay of the Milky Way’s two notable satellite galaxies: the Large

Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC), as seen in the left of

Figure (1.3). A study by Hashimoto, Funato & Makino (2003) investigate the orbital

evolution of satellite galaxies, in general, using N-body numerical simulations. The

right-side plot in Figure (1.3) attempts to predict the decay of the LMC by modeling

the satellite’s radius (in kpc) from the Milky Way over 10 billion years into the future

and from the past (the simulation assumes the LMC’s mass to be 2× 1010 M�, and

located at 50 kpc with speed of ≈ 340 km/s). Since the Milky Way has a disk radius

around 15 kpc, the study estimates the LMC may encounter our galaxy anywhere

within the next 5 to 10 billion years. The Λ parameter is known as the Coulomb

logarithm, which is dependent on the distribution and kinematics of the dark matter

halo.

Beside directly merging with the Milky Way, tidal forces induced on the LMC

and SMC by our Galaxy has sheared off gaseous material, leading to tidal tails and
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streams. Putman et al. (2003) conducted spectroscopic studies to reveal the satellites

are actually connected by a low metallicity bridge of gas, or Magellanic Bridge, and

share a common gaseous envelope. This is observational evidence that the LMC

and SMC have been merging with the Milky Way via dynamical friction over an

estimated timescale of 2 to 6 Gyr. Even though our Milky Way’s central 4.5× 106 M�

supermassive black hole is not fully active, some researchers speculate that the supply

of gas from the LMC and SMC may stimulate core accretion.

Figure 1.3: (Left) Image of the Paranal Observatory in northern Chile and the nighttime
sky containing a view of the Milky Way’s two notable satellite galaxies: the Large Magellanic
Cloud (LMC) and the Small Magellanic Cloud (SMC) (Source: ESO/J. Colosimo); (Right)
Radial evolution of the LMC over –10 to +10 billion year (Gyr) time period from today.
Figure adopted from Hashimoto, Funato & Makino (2003).

1.4.2 Second Approach: Environmental Study of Neighbours

The second approach to studying the influence of neighbouring galaxies involves

surveying the surrounding environment of a host. The reasoning is that if a host

had indeed engaged with its neighbours to stimulate gas inflow and activate its core,

then there should be traces seen in the environment indicative of a past violent and

interactive history, which led to a direct merger. Along the same lines, if the closeness

of a neighbouring galaxy is stimulating gas inflow and invigorating core activity, then

current observations of the surroundings should be indicative of such an environment

of close-range companions to the host.

One of the challenges of conducting an environmental study is defining the par-

ticular spatial domain to be surveyed. Galaxies may be embedded in a hierarchical

framework of different structures; however, there are no concrete and clear-cut defini-
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tions distinguishing these different structures. If the mean number density of galaxies

is ≈ 0.01 Mpc−3, then any region of galaxy clustering denser than this mean number

density is often regarded as a galactic structure of interest (Osterbrock & Ferland,

2006). To start, two galaxies within 1.0 Mpc of each other are often seen in bound con-

figurations where they are gravitationally interacting – they are known as galaxy pairs.

Beyond pairs, a significant number of galaxies in our present-day Universe are also ar-

ranged into groups and clusters. While there is no sharp division between a group and

cluster, any volume where the number of galaxies is a few tens to a few hundred times

the mean number density is regarded as a group or cluster. A radius of 1 to 3 Mpc is

often regarded as a group radius with 10 to 30 galaxies, while a radius less than 10 Mpc

with fewer than 100 galaxies is often considered as a cluster (Mo, Bosh, & White, 2010).

Researchers have investigated the distribution and properties of AGNs in these

different levels of structure. For instance, a study by Ellison et al. (2011) explore the

idea of galaxy pair interaction as a possible trigger of AGN activity by examining a very

local environment within a projected radius of 0.08 Mpc. By surveying galaxies with

close companions from the Sloan Digital Sky Survey (SDSS), they found a significant

increase in the AGN fraction in close pairs with projected separation > 0.04 Mpc by

an average factor of 2.5 relative to the control sample, with an increase in the AGN

fraction strongest in equal mass galaxy pairs and weakest in unequal mass pairs.

Figure 1.4: Figure (3) from Ellison et al. (2011). It shows AGN excess, which is a measure
of the fraction of AGN in the pairs relative to the fraction of AGN in the control sample, is
plotted as a function of projected separation. Black open symbols show galaxies at z < 0.1
and red filled points show galaxies at z ≥ 0.1.
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Satyapal et al. (2014) conducted a mid-infrared to study of AGNs in merger

circumstances and galaxy pairs to understand how AGNs may be triggered by gravi-

tational interactions. The researchers initially collected a sample of galaxy pairs and

post-mergers from the Sloan Digital Sky Survey and then matched the objects to the

Wide Field Infrared Sky Explorer (WISE) database. Relative to a mass-, redshift-,

and environment-matched control sample, the fraction of AGNs in pairs were found

more commonly within closer projected separations of < 100 kpc.

A study by Khabiboulline et al. (2018) aimed to measure another indicator of AGN

activity beyond spatial distributions. They examined how the ionization conditions

in AGN activity varied across different environments from galaxy pairs to clusters

for z < 0.2. They measured the strength of AGN activity by considering an active

galaxy’s position on the BPT diagram (see Figure (1.5)). Their results indicate that a

galaxy’s interaction enhances AGN ionization activity toward the top right of the BPT

diagram, especially in galaxy-pair interactions within a projected radius of 100 kpc and

AGNs found in larger cluster environments where starforming activity is more common.

Figure 1.5: The Baldwin, Phillips & Terlevich (BPT) diagram plots the relative fluxes from
[OIII]/Hβ and [NII]/Hα for a galaxy. It is often used as a diagnostic test to determine and
classify galaxies as AGNs (denoted in red) or Star-Forming (SF) (denoted in blue) based on
their relative positioning on the diagram. Figure taken from Ellison et al. (2011).

Beyond the immediate surrounding of galaxy pairs, researchers have also investi-

gated the distribution of AGNs in clusters and groups of galaxies in order to study

their evolution and how they are correlated with their environment on a scale beyond
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1.0 Mpc. An important question involves asking: is the evolution of AGNs in clusters

different from AGN evolution in non-cluster environments (referred to as field AGNs)?

Martini, Mulchaey & Kelson (2007) studied the distribution of 35 AGNs in eight

galaxy clusters with 0.06 ≤ z ≤ 0.31. These researchers found that the most luminous

AGNs (LX−ray > 1042 ergs s−1) are more centrally concentrated compared to other

non-AGN cluster members with similar luminosities.

1.5 Our Approach

1.5.1 Our General Model and Methods

The challenge of understanding the pathway active galaxies have taken to activate

their cores is an open problem that may be explored from many different angles. In

this thesis, our approach to understanding how these galaxies may have become active

involves conducting an environmental survey of their surroundings. We use data from

the Sloan Digital Sky Survey (SDSS) – a monumental astronomical surveying project

that imaged 35% of the sky in a variety of filters and collected a database of over 500

million objects.

Counting
Volume

Central Host
Galaxy

Companion
Galaxy

Figure 1.6: Around a (non-AGN or
AGN) host galaxy, we consider spheri-
cally symmetric volume and search for
neighbour galaxies, referred to as com-
panions (or partners) of the central
host, within this volume. A host and
its partners are collectively known as
a host-partner system. Once we have
an ensemble of these host-partner sys-
tems, we investigate how the compan-
ion number density n(r) (i.e. number
of galaxies per unit volume) varies over
distance r from the host.

From this extensive database, we first establish a target sample of AGN galaxies

and a control sample of non-AGN galaxies normalized under certain macroscopic

parameters such as distance range (measured in astrophysics by redshift z), galaxy

shape, and mass. The matched galaxies in this collection will be referred to as host

galaxies. Around each host galaxy, we consider a spherical volume and identify the
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neighbouring galaxies within this volume, which we refer to as companions (or part-

ners) of the central host. Once we have identified and established these host-partner

systems, we investigate how the number density of companions (i.e. the number of

galaxies per unit volume) varies as a function from the central host.

Ultimately, we want to investigate whether the physical presence of these compan-

ion galaxies may be responsible for core activity in a host. Our hypothesis is that, if

companion galaxies via some form of gravitational interaction are indeed responsible

for triggering an AGN, then we would expect some observable difference in the number

density of AGN companions compared to the number density of non-AGN companions.

Our project aims to investigate whether there possibly exists such a difference. Even

though we acknowledge there are many different forms of gravitational interactions

(as described in the previous section), our project is not necessarily interested in these

specific details. To answer the questions, (i) how intensely are companion galaxies

interacting with their host and (ii) which particular form of gravitational interaction

is being invoked, we can essentially distill these two questions to investigating the

following question: How does the number density of companions vary around a host?
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Companions of Active Host
Companions of Non-Active Host

Over-Dense
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Figure 1.7: A sketch generally illustrating how the number density of companions may
behave over a certain radial range. By observing how the number density of AGN companions
varies relative to the non-AGN control sample, we can understand whether these active host
are placed in a under-, over-, or equally-dense environment. This comparison allows us to
directly study the relative environment of active and non-active host and make inferences
about the cause of core activity from environmental differences.

The number density of companions has important interpretational value and may

be used to understand the statistical behaviour of companions around a host. In our

project, the non-AGN number density will give us a control standard that represents
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the typical clustering of companions such that a host is not seen to be active. Now, by

observing how the AGN number density varies relative to the control, we can measure

if AGN hosts are, on average, situated in under-, over-, or equally-dense environments

compared to their non-AGN counterparts. This difference between the AGN and

non-AGN number density has important interpretational value in this project allowing

us to reason whether gravitational interaction with companions may possibly lead to

core activity.

1.5.2 Important Isolation Constraint

Host

Massive
Perturbing
Companion

Gravitationally Non-Competitive Gravitationally Competitive

Companion

Figure 1.8: The central galaxy may be the mathematical host of the surrounding volume,
but, whether or not it is the physical host of the volume depends on the central host’s
gravitationally dominance. In the Gravitationally Non-Competitive (GNC) environment
(left), there are no comparable-sized companions in the volume; therefore, the clustering of
lower-mass companions is predominantly determined by the gravitational presence of the
central host. However, if there is a comparable-sized partner (right), then the central host
has to compete with this massive partner for other companions.

One of the key ideas distinguishing our project is the consideration and exploration

into an important isolation constraint referred to as Gravitational Competitiveness

(GC). As mentioned above, our methodology and model involves establishing a sample

of non-AGN and AGN hosts and then searching around them for companions within

a certain volume. By placing an object at the center of a volume, it only defines

the central galaxy to be the mathematical host. However, what does it mean for

a galaxy to be a physical host in its surrounding? A physical host must be the

gravitationally dominant presence in this volume. However, if there is a companion of
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comparable-mass in this volume, then the central host is not the dominant source of

gravity. The central host has to compete with the other comparable-sized partner(s)

for the clustering of lower-mass companions. This physical circumstance is what we

refer to as Gravitational Competitiveness.

With all of this said, we adopt a model that is conscious of the gravitational

environment of the host. We want to investigate whether the gravitational dominance

of a central host plays an important role in determining the spatial distribution of

companions. This is a subtle condition that may not have been fully appreciated by

previous researchers.

1.6 Objectives of Thesis

To summarize, our project aims to investigate the following relationships:

→ Even after AGN and non-AGN host galaxies have been matched within certain

macroscopic parameters, does the spatial distribution of companions depend on

core activity of the host?

→ How does the mass of a companion influence how it clusters around a host? Is

there radial bias for different mass partners?

→ How does a host’s gravitational dominance (i.e. the Gravitational Competitive-

ness constraint) influence the spatial distribution of companions?

From this point on, the thesis will adhere to the following outline. In Chapter (2):

Our Model, we clearly define the model we use to develop the statistics associated

with the number density. We introduce the meaning of an Equivalent Ensemble and

the important parameters that identify an ensemble. We engage in an important dis-

cussion about calculating distances to and between galaxies. The detailed uncertainty

considerations in distance calculations play an important part throughout the project.

In Chapter (3): Our Methods, we address the challenge of locating of galaxies with

positional uncertainties. We present important probabilistic tools like representing

the position of galaxies as Gaussian functions and ensemble averages to determine the

average number in different radial volume-shells.
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In Chapter (4): Data Analysis, we delve into the data processing methods applied

to the galaxy data from the Sloan Digital Sky Survey (SDSS). We address the

important idea of selecting a host, completeness limits and potential systematic

biases. In Chapter (5): Results, we put together all the developed ideas to study two

important case studies: (i) the Gravitationally Non-Competitive (GNC) Environment

and (ii) Gravitationally Competitive (GC) Environment. In each case study, we

examine different host-partner configurations to investigate the spatial distribution of

companions around their host galaxies and examine how core activity, partner mass,

and the gravitational–competitive condition influences this spatial clustering. The

possible interpretations and implications behind these results are explored in Chapter

(6): Discussion. For instance, we discuss how the observation of an under-dense

environment within the inner 0.5 Mpc of AGN host may be indicative of a past history

of mergers. Finally, in Chapter (7): Conclusion, we summarize our main findings,

interpretations and briefly discuss future works.
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Chapter 2

Our Model:

Defining Three Levels of Structure

2.1 Structure of Our Model

The ultimate goal is to be able to compute the number density of companions around

an ensemble of AGN and non-AGN host galaxies. Another way of thinking about

the number density function is that it is statistical description of where we, on av-

erage, expect to find companions around a host. To form this description, a single

host-partner system cannot give us a distribution; we need to consider an ensem-

ble of equally “configured” host-partner systems and examine this ensemble’s statistics.

In this chapter, we discuss the schemes we use to organize raw galaxy data into

a structured model. This is briefly illustrated in Figure (2.1). Here are the three

levels of structure in increasing order of complexity: (1) Individual Galaxies, (2) Host-

Partner System, and (3) Equivalent Ensemble. We discuss the important parameters

associated with each level and how these levels are organized. It is important to note

we assume a spherically symmetric distribution and only attempt to understand the

radial clustering of companions around host.

2.2 First Level: Individual Galaxies

Galaxies are the most basic units in this project. They are treated like point particles

located in 3D space. To uniquely locate a galaxy, we need its angular position on the
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First Level
of Structure

Individual Galaxies

Absolute Magntidue

Spectral Sub-Class

Luminosity Distance
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Third Level
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Figure 2.1: Three Levels of Structure in Our Model: (i) First level consist of individual
point-like galaxies, characterized by different parameters; (ii) Second level is a single host
galaxy at the center of a counting volume V(R0 = 3.0 Mpc) along with companion galaxies
separated at rp. A host and its companions are collectively referred to as a host-partner
system; (iii) Third level consist of a collection of “similar” host-partner systems, referred to
as an Equivalent Ensemble.

celestial sphere (specified by two coordinates, the declination δ and the right ascension

α) and a separation distance from Earth to the galaxy d. δ and α are raw parameters

from SDSS but we cannot directly measure the separation distance to the galaxy d –

it must be inferred from other measurements. In this section, we describe how we use

raw positional parameters to compute the separation distance, its uncertainties, and

how the intrinsic brightness of a galaxy is determined.

2.2.1 Calculating the Distance to Galaxies

For centuries, telescopes have provided stunning images of the cosmos with highly

precise measurements of angular separations; however, these two-dimensional repre-

sentations cannot immediately provide us with information on the depth of celestial

objects. In fact, determining the distance to galaxies is one of the most challenging

tasks in astrophysics. There are many different types of cosmic distance estimators,

but Hubble’s law is often the most flexible and accurate estimation of distance, and it

is how we estimate distances in this project.

In 1929, the astronomer, Edwin Hubble, noticed that the characteristic lines in the

spectra of almost all galaxies outside our local environment seemed to be shifted in

some regular manner to a longer wavelength than what was expected. This wavelength

stretch is known as a redshift and it may be quantified by measuring the change in
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the wavelength,

z =
∆λ

λ0

=
λ− λ0

λ0

, (2.1)

where λ is the observed wavelength and λ0 is (emitted) rest-length wavelength from

the galaxy. Over the century, studies into relativity theory revealed that this redshift is

analogous to a cosmological Doppler shift, but, rather than a result of a relative motion

between Earth and the observed galaxies, the spacetime between us is expanding and,

thus, the light waves are stretched in the process of reaching us. For simplicity, we

avoid attributing spacetime with a speed and, rather, assign a recessional velocity vrec

to the observed galaxy and model the redshift as an analogous cosmological Doppler

shift. It can be shown that, for z � 1, we may relate the redshift to the recessional

velocity of a galaxy via the relationship

z = vrec/c,

where c is the speed of light. Hubble (1929) was the first to propose a relationship

between the distance to a galaxy D and its recessional velocity,

D =
vrec
H0

or, equivalently, D =
c zrec
H0

, (2.2)

where zrec is the redshift resulting from the recessional velocity and H0 = 67.74± 0.46

km/s/Mpc (PLANCK, 2015) is a proportionality constant known as the Hubble

constant, which relates the recessional rate of galaxies over separation distances.

The above description has an important assumption that requires careful consider-

ation. We have assumed that, relative to some local rest frame, the galaxies have no

motion; however, this is not true. Galaxies are three dimensional objects with three

dimensional velocity components evolving in a gravitational potential. This intrinsic

motion of the galaxy leads to deviations from the Hubble flow, and we must be careful

and understand which particular component of a galaxy’s motion is contributing to

the redshift. A galaxy’s three-dimensional velocity vgal may be decomposed into two

components: a speed along the radial or line-of-sight from Earth vr and a tangential

speed along the plane-of-the-sky vt, where the magnitude of vgal is

v2
gal = (vr)

2 + (vt)
2. (2.3)
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When it comes to distance estimations via spectroscopic redshifts, it is only the line-

of-sight translation vr that contributes to the redshift. However, there are two further

components contributing to the line-of-sight velocity. This includes the recessional

velocity arising from the expansion of the universe vrec and the galaxy’s intrinsic

motion in its local environment, referred to as its peculiar motion vpec. Therefore, we

may further decompose the line-of-sight (radial) vr component into,

vr = vrec + v(r)
pec, (2.4)

where v
(r)
pec is the peculiar velocity component along the radial or line-of-sight direction.

It is here where we have to be careful. The redshifts measured from SDSS are a

consequence from the full velocity component vr, i.e. zSDSS = vr/c; however, the

redshift inputted into Hubble’s law is the shift resulting from the recessional velocity:

zrec = vrec/c.

We take care and combine the components in the following manner. We know

that,

vr = vrec + v(r)
pec ⇒ v(r)

pec = vr − v(r)
pec (2.5)

⇒ zrec = zSDSS − v(r)
pec/c. (2.6)

The term v
(r)
pec/c is a correctional term that accounts for the shift resulting from the

peculiar motion of a galaxy. With this information, we may update Hubble’s law to

be,

D =
czrec
H0

→ c

H0

(
zSDSS −

v
(r)
pec

c

)
. (2.7)

Based on typical values cited in the literature, we estimate v
(r)
pec = (150± 100) km/s

(Mo, Bosch & White, 2010). We may compute the uncertainty in the distance D from,

∆D2 =

(
∂D

∂zSDSS
∆zSDSS

)2

+

(
∂D

∂v
(r)
pec

∆v(r)
pec

)2

(2.8)

∆D =
c

H0

√
(∆zSDSS)2 + (∆v

(r)
pec/c)2. (2.9)
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This error consideration plays an important role in the calculation of the separation

distance in Section 2.3 and, ultimately, in how the number density is computed in

Section 3.3.

Along with this information about distance measures and relationships to redshift

z, we also mention one other important concept related to the project. The distance

measure D is actually the distance to galaxies calibrated to our current time from

the Big Bang. This calibrated distance is referred to as the co-moving distance D. If

we were to consider the expansion of spacetime, this new distance, referred to as the

proper distance d, must be multiplied by a factor of (1 + z),

d = (1 + z)D. (2.10)

From now on, when we discuss the “distance to a galaxy”, we are actually referring

to the proper distance d that is equal to the co-moving distance D multiplied by the

factor of (1 + z).

2.2.2 Absolute Magnitude

Another computed variable associated with a galaxy is its absolute magnitude M .

The absolute magnitude of an object is defined to be the object’s apparent magnitude,

or brightness in the sky, if it were located at distance of 10 pc. It may be computed

by the relation,

M = m− 2.5 log

(
F

F10

)
, (2.11)

where m is the measured apparent magnitude, F is the measured flux from the galaxy

and F10 would be the apparent flux if it were placed at 10 pc. It is important to note

that we take into consideration cosmological effects, like the expansion of spacetime.

The above flux is equivalent to

F =
LHost

4πd2
L

, (2.12)

where LHost is the intrinsic luminosity of the host galaxy and dL is the luminosity

distance to the host. The luminosity distance dL is related to the distance d via the

formula: dL = (1 + z)D. Combining these results together, we get
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M = m− 5 log

(
1 + z

10 pc
×D

)
, (2.13)

where z is the measured redshift of the galaxy. It is important to note that, since the

apparent magnitude itself is dependent on which particular wavelength, or passband,

you observe the galaxy, the absolute magnitude is also dependent on the observed

passband.

2.3 Second Level: Host-Partner Systems

We have established the idea of galaxies being fundamental point-like units spread

out in space with associated parameters like distance d and absolute magnitude M .

However, our project is not necessarily how these galaxies are situated relative to

us on Earth, but rather we want to investigate their surrounding environment. In

this section, we build the second level of our model: the Host-Partner System. As

described in the introduction, this involves defining a galaxy as a host and searching

for neighbouring galaxies, referred to as companions, within a certain volume. We

now discuss the process of selecting host galaxies, defining the spatial volume around

these host galaxies, and how we find associated partners.

2.3.1 Defining the Host

We define the parameters used to determine whether a galaxy is considered a host,

and, in Chapter (4), we discuss the the full numerical details. From SDSS, any galaxy

that satisfies the following three conditions is considered a host:

1. Redshift Limit: 0.01 ≤ z ≤ zUpper. Since galaxies become fainter with larger

distance (or redshift) separations and SDSS has a minimum brightness cutoff,

then there is a maximum distance (or redshift) we can observe a galaxy before

it becomes too faint and is not registered in SDSS’s spectroscopic catalog;

2. Absolute magnitude range: M ± σ, where σ represents a bin size around the

average value M . The luminosity of a galaxy is proportional to its mass and,

since this project is centered around the idea of clustering in a host’s gravitational

field, we want to localize the mass or, equivalently, the absolute magnitude of

our host;
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3. Spiral Confidence Value: s > 0.6. Majority of active galaxies are Seyferts,

whose dominant morphology is spiral. Therefore, we aim to select spiral host

galaxies;

4. Core Identity: C = AGN or C = non-AGN. A host can either be a AGN or

non-AGN according the spectral sub-classifications determined by SDSS.

2.3.2 Defining the Spatial Domain

Once we have a collection of host galaxies, we define a spherically symmetric volume

around each galaxy. We refer to this volume as the Counting Volume V(R0), where R0

is the radius of this domain. Throughout this project, we use the value R0 = 3.0 Mpc.

To put 3.0 Mpc in perspective, the typical diameter of disk galaxies is around 0.02 to

0.04 Mpc and the distance between major galaxies is about ≈ 1 Mpc (for instance,

the distance between our Milky-Way and our nearest major neighbour, Andromeda or

M31, is about 0.8 Mpc). Our spatial distribution will be surveyed from this volume.

Figure 2.2: Cross-sectional diagram
of two host within a counting vol-
ume V1 (containing 3 associated part-
ners) and V2 (containing 1 associated
partner). Non-Interacting condition
is violated, as indicated by middle
shaded region; therefore, only one of
these host is allowed into the sample.

An important constraint associated with the counting volume is the Non-Interacting

Condition. Even though a single host may be associated with one or more partners, we

need, however, to ensure that a single partner is only associated with one unique host.

In our search algorithm, this translates to the condition that the counting volumes

associated with each individual host cannot overlap (See Figure (2.2)). Physically,

this condition may be regarded as a constraint to control the tolerated extent of

host-to-host gravitational interaction. Also, statistically, we may run into the problem

of over-counting host-partner relationships and biasing our distribution if we do not

implement this condition. If there were any overlapping pairs of host galaxies (which
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was about fewer than 8% of our population), one of the host was arbitrarily chosen to

be in the final host sample and the other one was disregarded. There was no particular

prefer over one host.

2.3.3 Defining the Partner

Once we have a collection of host galaxies, any neighbour galaxies within a 3.0 Mpc

volume is defined to be a companion (or partner) associated with the central host. We

now discuss two important parameters associated with these companions.

Mass Ratio µ Between Host and Partner

Since the strength of a gravitational field is proportional to the mass of the interacting

objects, the mass ratio between the host and partner plays an important role. However,

we can not directly measure the mass of a galaxy S through the data provided by

SDSS; we can only measure a galaxy’s brightness, or apparent magnitude m, in the

sky. In this section, we derive a relationship between a galaxy’s apparent magnitude

and its mass.

Suppose a host and partner galaxy have a mass of Shost and SPartner, respectively,

then the mass ratio µ between these two objects may be defined as,

µ ≡ SPartner
SHost

. (2.14)

This mass definition is not immediately useful because we can not directly “observe”

the mass of a galaxy through SDSS; it must be inferred from the luminosity L of the

object. If we assume that there exists a consistent mass-to-light ratio γ for both the

partner and host such that S = γL, then we can express the mass ratio between a

partner and its host in terms of the luminosity:

µ =
SPartner
SHost

=
LPartner
LHost

, (2.15)

where it is important to note that we assume the mass-to-light ratio γ between the

host and partner is the same. We may relate this expression to magnitudes by taking
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the difference of the absolute magnitudes between the partner and the host,

MPartner −MHost = −2.5 log

(
FPartner
FHost

)
(2.16)

= −2.5 log

(
LPartner
LHost

)
= −2.5 log(µ), (2.17)

⇒ µ = 10−(MPartner−MHost)/2.5 = 10−∆M/2.5. (2.18)

We have assumed the flux ratio to be equivalent to the luminosity ratio because the

distance of separation between us and the galaxies are much larger than the individual

separation between the host and partner.

This formula gives us a direct means to estimate how the mass ratio µ between the

partner and host is related to their absolute magnitude difference. For this project,

we aim to confidently find partners with a mass ratio of µ ≥ 0.05 or 5% the mass of

the host. Here are some sample mass ratios:

µ =



1.0 if ∆M = 0

0.6 if ∆M = 0.555

0.3 if ∆M = 1.307

0.1 if ∆M = 2.500

0.01 if ∆M = 5.000

One interesting idea worth mentioning is a possible systematic error that may arise

from using a galaxy’s luminosity as a proxy for mass, especially in the case of dealing

with active galaxies. Since active galaxies have particularly bright galactic cores, if we

are not careful, the inclusion of this luminous core in our total estimate of a galaxy’s

luminosity may misrepresent the galaxy’s mass as higher than the actual value. In our

particular project, our selection process of active galaxies has a preference for Seyferts.

These active galaxies have much less luminous cores (on average, about 5% to 15%

the total stellar light (Netzer, 2013)) compared to very luminous AGNs like Quasars;

therefore, this effect is not expected to introduce a serious bias.
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Figure 2.3: Schematic diagram illustrating the geometry associated with locating a host-
partner system. The host and partner are recorded to be located at distance of dH ±∆dH
and dp ±∆dp, respectively (See Section 2.2 for distance calculation from redshift). Once
dH , dp, and the subtended angle between the host and partner θ are known, the separation
distance rp is computed from Equation (2.19). Its error relation ∆rp is given in Equation
(2.23). If rp is less than the Counting Volume V radius of R0 = 3.0 Mpc, then galaxy is
labeled a companion of the host.

2.3.4 Separation Distance Between Host and Partner

We have discussed a great deal about computing distance to galaxies; however, to

understand the statistics of host-partner systems, we need to be able to determine

the distance between a host and its partners. To determine the separation distance

rp, we can use the geometry depicted in Figure (2.3). Using the cosine law, rp can be

determined:

rp =
√

(dH)2 + (dp)2 − 2dHdp cos(θ), (2.19)

where dH and dp are the distances computed via spectroscopic redshifts outlined in

Section 2.2 and θ (as shown in Figure (2.3)) is the subtended angle between the host

and partner. In fact, the definition of a partner galaxy may be more precisely defined

to be: if a neighbour galaxy has rp ≤ 3.0 Mpc, then it is a companion of the central

host.

2.3.5 Uncertainties in the Separation Distance

The uncertainty associated with rp is a much more involved calculation that is depen-

dent on the unique uncertainty associated with the distance to the host-partner system
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and the subtended angle between them. To start, we begin with the general uncertainty

relation for a function f(x1, x2, . . . , xn) of n-variables each with independent random

errors ∆xn:

(∆f)2 =

(
∂f

∂x1

∆x1

)2

+ . . .+

(
∂f

∂xn
∆xn

)2

. (2.20)

As for our case, we are dealing with a function of three variables rp(dH , dp, θ). However,

the greatest uncertainty is found in dH and dp, and the error in θ may be negligible.

To explain, suppose we have a host located at distance 150 Mpc (a typical scale

for our project) and a partner 0.5 Mpc from the host (for simplicity, assume along

the plane of the sky). Rewritten in terms of our current variables, this would

correspond to a separation distance of rp = 0.5 Mpc and a subtended angle of

θ = arctan(0.5/150) ≈ 0.0033 radians. SDSS has an angular resolution with a typical

uncertainty of ∆θ = 1 arcsecond ≈ 4.8× 10−6 radian, and the typical uncertainty in

separation distance may be ∆rp = 0.05 Mpc. From this, if we were to consider, as

required above, the square of the fractional uncertainty,

(
∆θ

θ

)2

=

(
4.8× 10−6

0.0033

)2

(2.21)

= 2.115× 10−6 �
(

∆rp
rp

)2

=

(
0.05

0.5

)2

= 0.01, (2.22)

then we clearly see that uncertainty in the resolving the radial position of galaxies is

much greater than the uncertainty in determining their angular separation. With this

information, we may compute the specific form to be,

(∆rp)
2 =

(
∂rp
∂dH

∆dH

)2

+

(
∂rp
∂dp

∆dp

)2

(2.23)

=
d2
h∆d2

h + cos2(θ)
(
d2
p∆d2

h + d2
h∆d2

p

)
− 2dhdp cos(θ)

(
∆d2

h + ∆d2
p

)
+ d2

p∆d2
p

d2
h + d2

p − 2dhdp cos(θ)

The typical range of ∆rp can vary depending on a partner’s relative positioning to

the host. ∆rp plays an important role in the upcoming sections because we need to

know confidence value when we are placing galaxies in numerical bins to calculate the

number density.
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2.4 Third Level: An Equivalent Ensemble

Our third and final level of structure involves collecting host-partner systems that

are “similar” in configuration. This collection of equally-configured host-partners

systems is referred to as an Equivalent Ensemble. In this work, we define two or more

host-partner systems to be “similar” if the mass ratio µ of all the partners are localized

within a certain range. By restricting the values of µ, this allows us to consider an

important constraint for this project known as Gravitational Competitiveness (GC).

By our definition, if the environment is Gravitationally Non-Competitive, then all

partners in the counting volume have µ ≤ 0.6.
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Summary of Chapter (2)

In this chapter,

→ We outlined three levels of structure to our model: (1) Individual Galaxies; (2)

Host-Partner Systems; (3) Equivalent Ensemble;

→ Individual galaxies are the most fundamental level of structure, and are treated

as point-like units. They are characterized by various parameters like their

morphology, their separation distance d (computed from the spectroscopic

redshift z and Hubble’s law), and absolute magnitude M . A certain subset of

these galaxies were considered as host galaxies;

→ Once we have a sample of host galaxies, we consider a spherical volume of radius

3.0 Mpc centred around each host and search for neighbouring galaxies within

this volume, referred to as companion (or partner) galaxies. A host and its

companions form a single unit: the host-partner system;

→ Our final level of structure is a collection of “similar” host-partner systems,

referred to as an Equivalent Ensemble. Two host-partner systems are considered

similar if each system’s companions are localized within a certain host-partner

mass ratio µ range;

→ We have now established a model. In the next chapter, we discuss how we may

use this model to examine the distribution of companions around active and

non-active host galaxies, i.e. compute the number density of companions.
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Chapter 3

Our Methods:

Computing the Number Density

Function

3.1 Two Challenges with Galaxy Data

One of the core questions in this research is: How does the surrounding environment of

neighbouring galaxies compare around AGN and non-AGN hosts? The number density

function n is the important measure that gives a quantitative description of host’s

environment and the extent of companion clustering. This distribution determines the

number of companion galaxies per volume around a central host and, since we have

assumed a spherical symmetry, this number density is a function of the separation

distance r from the host: n = n(r). To mathematically describe this idea, we may

define the number density function n(r) to be,

n(r) =
dN(r)

dV
, (3.1)

where N(r) is the number of galaxies contained within a differential volume dV . This

may be a good starting point and a mathematically elegant definition, but it is not

immediately useful to us when dealing with galaxies.

Let’s consider an example. Suppose we have a host-partner system with five

companions within the 3.0 Mpc volume around the central host. Even though these

five companions may have different polar θ and azimuthal φ angles relative to each
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other, in our spherically symmetric model, we are only concerned with their radial

separation r from the central host located at r = 0. Therefore, this 3D problem

of understanding companion positions is reduced to a 1D radial scale. The idea is

illustrated in the top of Figure (3.1). From this Figure, we also begin to see two

distinct features of galaxy data that pose a challenge and must be carefully dealt with:

(i) they are discrete and (ii) contain positional uncertainties.

Radial Distance from Host (Mpc)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Radial Distance from Host (Mpc)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 3.1: (Top) Illustration of how a 3D host-partner system with five partners is projected
onto 1D radial scale by assuming a spherically symmetric system. Not only are the galaxy
data discrete, but they have positional uncertainties associated with them. (Bottom) Figure
shows how the positional uncertainties associated with a partner can spread across different
bin separators (the dotted lines). Rather than assigning partners in a yes-or-no manner to
one bin, we represent these partners as Gaussian probabilities and ask what is the probability
of finding a partner in a particular bin.

To deal with discreteness, we introduce the idea of binning into Volume-Shells.

That is, the total 3.0 Mpc volume around a host is partitioned into spherically sym-

metric volume-shells. If n = dN/dV represents how many galaxies are contained in

an “infinitesimal volume” dV , this question has now been re-framed to be: how many

galaxies are contained in a volume-shell bin?

The more subtle challenge is the second one: how do you “count” the number of

galaxies contained in a volume-shell bin? If galaxies were just truly point-like entities

in space with perfectly resolved positions, then the answer to the above question

would be trivial – this is not the case. Galaxies have positional uncertainties and,

therefore, they do not have unique positions. This is illustrated at the bottom of
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Figure (3.1). In this Figure, we see a partner located at a distance of 1.35 Mpc but,

because of its positional uncertainty of ±0.25 Mpc, the companion’s separation from

the host is smeared in-between (1.35− 0.25 =) 1.15 Mpc and 1.60 Mpc. The dotted

lines occurring every 0.25 Mpc mark the boundary of numerical volume-shell bins.

The problem begins when we ask: What bin does the companion, whose average

separation is 1.35 Mpc, belong in? Do we count the partner to belong in the red, or-

ange, or green bin? This is the challenge of counting data with positional uncertainties.

In this chapter, we address how we go about dealing with these two challenges.

Section 3.2 deals with the binning scheme associated with volume-shells. Section 3.3

discusses how we overcome the positional uncertainty challenge by representing a

partner’s position as a Gaussian probability function and considering the probability of

finding companions in a bin. Lastly, we put all this information together in Section 3.4

and reveal how we transform the above differential expression into a discrete expression

to compute the number density for a single host-partner system and, ultimately, an

ensemble of many host-partner systems.

3.2 Binning into Volume-Shells

(a) (b)

Figure 3.2: (a) Cross-sectional view of spherically symmetric volume-shells around a host.
Each of of these shells have a radius Ri from the host and are separated by the same distance
of ∆R = 0.25 Mpc; (b) Spherical shell is a three dimensional volume around a host.

As illustrated in Figure (3.2), we take the total R0 = 3.0 Mpc volume around the

host and partition this volume into equal-width segments of ∆R = 0.25 Mpc, which

corresponds to 12 total volume-shell bins in this particular 3.0 Mpc volume. The
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different radii are,

Rm = {0.00, 0.25, 0.50, 0.75, . . . , 2.75, 3.00} Mpc. (3.2)

It is important to note that we try to keep the width of shells above 0.1 Mpc.

3.3 Quantifying Positional Uncertainty of Partners

3.3.1 The Gaussian Representation of a Companion Galaxy

When it comes to dealing with galaxy data, we began this chapter by bringing our

attention to two important challenges: their discrete nature and positional uncertain-

ties. The previous section addressed the challenge of discreteness by partitioning the

counting volume of 3.0 Mpc into volume-shells and counting in these shells, as opposed

the abstract idea of infinitesimal volumes dV . Now, in this section, we directly address

the issue of dealing with galaxy data that have positional uncertainties. The bottom

of Figure (3.1) demonstrated that if a spread in a companion’s position stretched

across more than one bin then it was ambiguous as to which bin the galaxy belongs

in. As opposed to considering the companions as point-like entities, we resolve this

issue by representing partners’ positions as Gaussian probabilities and, rather than

asking in a black-and-white fashion which bin the partner belongs to, we re-frame the

question to be: what is the probability of finding a companion in a certain bin?

In general, the Gaussian probability density can be stated as,

p(x) =
1√

2π(σ)2
exp

[
−
(
x− 〈x〉√

2σ

)2
]
, (3.3)

where 〈x〉 is the mean value of some random variable x, σ is the standard deviation,

and
∫ b
a
p(x)dx represents the probability of finding x in the interval [a, b]. Now, in

terms of galaxies, if we were to measure a separation distance between a host and

its partner to be rp ± δrp, then, from this statistical perspective, this is equivalent to

saying that the mean separation of the partner is 〈r〉 ≡ rp and the range in which we

believe the position to lie, or its standard deviation, is σr ≡ ±δr. This allows us to

say that the probability density associated with a partner is
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p(r) =
1√

2π(δrp)2
exp

[
−
(
r − rp√

2δrp

)2
]
, (3.4)

where rp is a companion’s mean separation distance from the host and a standard

deviation of δr. It is important to note that the Gaussian is technically normalized

along an infinite domain but, our spatial distributions are surveyed in a 3.0 Mpc

domain. Since δr � 3.0 Mpc, we simply assume a sufficient normalization occurs after

3δr and any remaining probability contribution is rounded off as numerical/counting

errors. Also, if there are any Gaussians at the edge of the counting volume, we

integrate beyond the limit of 3.0 Mpc to ensure we include their number density in

the final bin.

To model multiple companions, we may consider the superposition of these func-

tions. Suppose we measure a host to have Np partners, then the probability of finding

a galaxy in the range [Rn, Rn+1] is

P (Rn ≤ r ≤ Rn+1) =

∫ Rn+1

Rn

p(r) dr (3.5)

=
1√

2πNp

∫ Rn+1

Rn

∑
i

1

δri
exp

[
−
(
r − rip√

2δri

)2
]
dr, (3.6)

where now rip and δrip represents the separation and uncertainty of the ith partner. If

we want to evaluate the typical number of partners N(r) in this range, then we simply

multiply by the total number of partners Np,

N(Rn ≤ r ≤ Rn+1) =

∫ Rn+1

Rn

Np p(r) dr. (3.7)

After presenting this continuous probability model of locating partners around

a host, it is important to mention that we have assumed a spherical symmetric

probability distribution. The full separation distance vector is not only characterized

by its magnitude rp; to uniquely locate a galaxy, we need to specify a polar angle θ and

azimuth angle φ. However, since this project is aimed at investigating the influence of

gravitational interactions between host and partners, we assume that the probability

of finding a galaxy at a r radius is independent of θ and φ.
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3.3.2 Sample Calculation

We now consider a quick example with an actual host galaxy from SDSS to show

numerical calculations using the developed tools. Our sample host is a galaxy with

the following properties:

→ Non-AGN Spiral galaxy;

→ Redshift of z ± δz = (0.04425± 0.00001)

→ dH ± δdH = (193.81± 0.05) Mpc

→ Within a 3.0 Mpc volume around this host, there are Np = 6 galactic partners.

Furthermore, the distance to each partner dp± δdp, their separation distances rp± δrp
and their subtended angles θ (See Figure (2.3) for parameters) are provided in the

below table. Now, each r
(i)
p and θi can be associated with a Gaussian function and

their superposition represents the total probability distribution.

Partner 1 Partner 2 Partner 3 Partner 4 Partner 5 Partner 6

dp ± δdp 193.04±0.03 194.39±0.03 194.71±0.04 192.24±0.04 195.40±0.06 193.02±0.03
rp ± δrp 2.00 ± 0.02 0.86 ± 0.04 0.91 ± 0.06 1.58 ± 0.06 1.66 ± 0.07 1.44± 0.03

θ 0.00952 0.00330 0.000559 0.000906 0.00250 0.00622

Table 3.1: Parameters associated with Np = 6 partners near the non-AGN host listed above.
The distance to the partner is dp (Mpc), the separation distance between the host and
partner is rp (Mpc), and the subtended angle between the host and partner is θ (radian).
See Figure (2.3) for the setup’s geometry.

As an example, we ask the question: what is the probability of finding a partner

within the interval 0.5 Mpc to 1.5 Mpc? We simply integrate by substituting the

parameters from Table (3.3.2),

P (0.5 ≤ r ≤ 1.5) =

∫ 1.5

0.5

p(r) dr (3.8)

=
1√

2π(6)

∫ 1.5

0.5

6∑
i=1

1

δri
exp

[
−
(
r − 〈ri〉√

2δri

)2
]
dr (3.9)

= 0.513739. (3.10)
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Figure 3.3: A single host-partner system with six partners. The host is a non-AGN spiral
galaxy and located at a distance of dH ± δdH = (193.81± 0.05) Mpc. The six companions
have been represented as six Gaussian functions (left) and their superposition represents the
entire host-partner system (right). The width of the Gaussians vary because the separation
uncertainties depend on different variables, as calculated in Section 2.3.

Therefore, there is ≈ 51.3% chance you will find a partner within 0.5 Mpc to 1.5 Mpc

for this system. To determine, the typical number of partners within this range, we

evaluate,

N(0.5 ≤ r ≤ 1.5) =

∫ 1.5

0.5

Np p(r) dr (3.11)

= 6

∫ 1.5

0.5

p(r) dr (3.12)

= 6× 0.513739 = 3.08 partners. (3.13)

3.4 Computing the Number Density Function

We began with a number density function that was continuous:

n(r) =
dN(r)

dV
. (3.14)

This formula tells us that the number density of companions is the number of com-

panion galaxies contained in an infinitesimal volume dV at a separation distance r

from the host.

However, as we discussed in the previous two sections, galaxy data are discrete and

contain positional uncertainties. The above definition may capture the interpretation

of the number density, but it is not computationally useful to us. We resolved this
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issue by introducing two ideas: (i) binning the discrete data into volume-shells; (ii)

counting companions with positional uncertainties by representing them as a Gaussian

probability. Now, the above definition of number density becomes,

n(r) =
dN(r)

dV
→ n(Rn, Rn+1) =

N(Rn ≤ R ≤ Rn+1)

Vshell
, (3.15)

where N(Rn ≤ R ≤ Rn+1)) is the integral expression developed in Equation (3.7) and

Vshell = (4π/3)(R3
n+1 −R3

n) is the volume of a shell between the range [Rn, Rn+1].

For thoroughness, we can calculate the number density for the sample system

illustrated in the previous section. We asked the question how many partners were

expected in-between the range of 0.5 Mpc to 1.5 Mpc. The answer was N(Rn, Rn+1) =

N(0.5, 1.5) = 3.08. This would correspond the following number density,

n(0.5, 1.5) =
N(0.5, 1.5)

Vshell
=

3.08
4
3
π(1.53 − 0.53)

= 0.226 Mpc−3. (3.16)

It is important to note that all the calculation up to this point have been for one host-

partner system. This is just the second-level of our model. The values of n(Rn, Rn+1)

given above do not represent a distribution. To form a proper statistically distribution,

we need to find “identical” copies of similar host-partner systems, or an equivalent

ensemble, and compute the n(Rn, Rn+1) for each host-partner system. The average in

each bin would represent the number density in that range.
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Summary of Chapter (3)

In this chapter,

→ Once we established a model, we characterize and measure the distribution of

companion galaxies around active and non-active host by studying the number

density function;

→ The number density n is a measure of the number of galaxies contained in a unit

volume around a host. Since we assumed our system to be spherically symmetric,

we are only concerned with variation along the radial direction n = n(r);

→ If the galaxy data from SDSS were representative of perfectly resolved point-

like entities, then it would be straightforward to compute the number density

function – however, this is not the case. Galaxies have positional uncertainties

that must be taken into account when counting companions around a host;

→ To manage these positional uncertainties, we represented partners as Gaussian

probabilities and, instead of asking how many galaxies were in different numerical

bins, we re-framed the binning scheme to compute the probability of finding

companions in a particular bin;

→ In the next chapter, we discuss how initial data from SDSS was collected and

calibrated before computing the number density function.
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Chapter 4

Data Analysis

We have discussed a great deal about developing a methodology to study the envi-

ronment of companions around host galaxies. However, before we can work out any

kind of statistical conclusions, we must build a complete set of galaxies that meet

our scientific objectives. We must take careful steps to ensure our selection criteria

correctly isolate the intended objects and do not contain any contamination that may

bias the data and, ultimately, compromise the resulting conclusions. In this chapter,

we directly discuss the task of establishing a well-calibrated galaxy sample from the

Sloan Digital Sky Survey (SDSS) database.

4.1 Data Processing: Correcting for Systematic

Errors

Galaxy data from SDSS has inherent systematic errors that need to be corrected

for. Here are three important calibrations and systematic corrections that need to be

considered:

1. CMB Rest-Frame Correction

2. K-Corrections to Redshifts

3. Extinction from Interstellar Medium

(i) Internal extinction from the Milky Way

(ii) External extinction from observed galaxy’s interstellar medium
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In this work, the calibrated data were taken from catalogs personally developed by G.

J. Conidis. A full description of the methods can be found in the works: Conidis, G.

J., (2013). Analogues of the Local Sheet. Master of Science Thesis in Physics and

Astronomy. York University, Toronto Canada. Nevertheless, for thoroughness, we

briefly discuss the physical significance of these corrections in the next sections.

4.1.1 CMB Rest-Frame Correction

Figure 4.1: Map of the CMB captured by the Planck Telescope. Figure includes (left)
image of the CMB with the dipole anisotropy and (right) without the dipole anisotropy.
Figure adopted from Liguori, Matarrese & Moscardini (2003).

Initial measurements on the Cosmic Microwave Background (CMB) revealed the

existence of a dipole anisotropy on the CMB’s temperature map (See Figure (4.1)).

This provided compelling evidence that our solar system has a peculiar motion. If we

were to consider all the contributions to this peculiar motion, like our Sun’s motion

in the Milky Way, our attraction to M31, etc., we find that our Local Group has a

peculiar speed of about 600 km s−1 moving away from the Local Void. These ideas

are relevant to understanding galaxy data because any large-scale redshifts taken

from Earth will inherently be affected by this peculiar motion. Tully et al. (2008)

discuss the corrections for three types of motion: (i) the orbital velocity of the Sun

in the Milky Way; (ii) the Milky Way’s motion about the Local Group’s centre of

mass; (iii) the Local Group’s motion about the Virgo Cluster. All of these motions

are characterized by a single rest-frame, referred to as the CMB rest-frame.
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4.1.2 K–Corrections

When we want to characterize the light emitted from astrophysical objects, the spectral

energy distribution (SED) is an important measure that plots the emission energy

over frequency (or wavelength) of light emitted. Some sample SEDs are depicted

in Figure (4.2). With this said, there is an important idea to keep in mind when

computing SEDs. Because of the expansion of the Universe, the observed SED is

redshifted with respect to the rest-frame SED. This creates a potential problem when

observing galaxies. Since we image galaxies only through a particular passband, we

are actually looking at these objects in different rest-frame wavebands. Therefore,

if there are two identical galaxies but at different redshifts, various observational

properties like absolute magnitude and colours may appear to be different compared

to their respective rest-frames values. The transformation aimed at correcting for this

potential systematic error is referred to as the K–correction. The methods used to

apply the K-corrections were developed by Blanton et al. (2005).

Figure 4.2: Sample spectral energy distributions (SED) of four different galaxies with
different morphologies and features. The SED is a unique profile associated with an
astrophysical object that portrays the energy emission from the object. Figure adopted from
Galliano (2004).
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4.1.3 Extinction through Interstellar Medium

When light passes through the interstellar medium, the incident light can be absorbed

or scattered. Therefore, the light emitted from an astrophysical source after interacting

with the interstellar medium (ISM) can be attenuated, confusing the actual physical

processes occurring. The corrections performed to photometric measurements to

account for this effect are referred to as extinction corrections. There are two type of

corrections: (a) internal extinction correction, referring to the light passing through the

Milky Way’s ISM, and (b) extragalactic extinction correction, light passing through

an observed galaxy’s own ISM. Due to various scattering and absorption processes,

observed astrophysical objects behind columns of dust often appear redder than

the source. If we do not correct for these systematic errors, then we may end up

misrepresenting the apparent magnitudes of galaxies. The York Extinction Solver

(YES) (developed and published by McCall (2004)) was used to estimate the internal

extinction in each passband by specifying the spectral energy distribution (SED) of

the galaxy.

4.2 Building a Sample of Host Galaxies

In Section 2.3, we discussed four parameters that determined the identity of a host

galaxy:

1. Absolute magnitude range: M ± σ

2. Redshift Limit: 0.01 ≤ z ≤ zupper

3. Core Identity: C = AGN or C = non-AGN

4. Spiral Confidence Value: s > 0.6

We now justify these constraints and discuss their specific numerical values.

4.2.1 Absolute Magnitude: Constraining the Host Mass

The host galaxy sample selection is an optimization problem aimed at maximizing the

number of host galaxies and localizing their mass. If this were the goal, by examining

the luminosity function depicted in Figure (4.3), it would be best to place a broad

absolute magnitude bin centered around the maximum of the luminosity function.
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Figure 4.3: i-band luminosity function for 100,000 galaxies within z ≤ 0.1 of SDSS. Plot
has a bin size of 0.1 and shows the greatest abdundance of galaxies centered around -21.5.
The shade orange region shows the absolute magnitude range of the host galaxies used in
this research.

However, we need to be careful and consider other factors. If we make the width of the

absolute magnitude bin too wide, then the mass of the host will not be constrained

within a limit. Since this project aims at understanding how partners gravitationally

cluster around a host, we need to be able to localize the mass of the host within a

certain range. At the same time, another important effect takes place; it is the spectro-

scopic completeness limit. If a galaxy is fainter than a certain threshold (mr ≥ 17.77)

then SDSS will not provide spectroscopic information of that particular object, which

is needed for the redshift and distance estimates. Therefore, the faintest partner of

the faintest host is placed at the completeness limit and ultimately determines the

redshift limit. A deeper redshift increases the volume of selection and allows for a

larger selection of host galaxies.

All of these ideas indicate that selecting the absolute magnitude range of the host

is an optimization problem that aims at maximizing the number of host galaxies and

constraining their mass. After considering these details, we were able to determine

that the i-band absolute magnitude range that generally best fit this description would

be Mhost = −23 ± 0.5 or −23.5 ≤ Mhost ≤ −22.5. This range is indicated by the

orange shaded region in Figure (4.3). We particularly chose the i-band because it is

not expected to be as sensitive to star formation and interstellar extinction that would

lead us to overestimate the luminosity of a galaxy’s stellar component and, thus, the
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luminous mass.

4.2.2 Redshift Limit: Spectroscopic Completeness of SDSS

The redshift limit plays an important role in constraining the selection of host galaxies.

The upper bound on z ≤ zupper is a consequence of the spectroscopic completeness

cutoff. To explain, all of our distance estimates in this project stem from the spectro-

scopic redshift and its relation to distance given by Hubble’s law. However, SDSS does

not provide spectroscopic information for all galactic objects. If a galaxy is fainter

than 17.77 magnitudes in the r-band (or 17.51 in the i-band), then SDSS does not

provide spectroscopic redshifts on the object. This condition limits the completeness

of partner galaxies and, thus, the sample of host galaxies as well.

We want to now compute the upper bound on the redshift zupper that results from

the spectroscopic cutoff. To make this calculation, we place the faintest companion of

the faintest host at the spectroscopic cutoff and compute the redshift this minimum

condition would correspond to. The faintest companion of this faintest host is a

free parameter and we, as researchers, must decide to determine what extent of

completeness are we aiming for. To start, we saw that the absolute magnitude of a

galaxy may be expressed in terms of this co-moving distance d and redshift z from

Equation (2.13),

M = m− 5 log

(
dL

10 pc

)
= m− 5 log

(
1 + z

10 pc
× d
)
, (4.1)

where dL(= (1 + z)d) is the luminosity distance and m is the apparent magnitude (all

magnitudes are measured in the i-band). We make a further substitution of d = cz/H0

and convert 10 pc to 10−5 Mpc,

M = m− 5 log

(
1 + z

10−5 Mpc
× cz

H0

)
, (4.2)

log

(
1 + z

10 pc
× cz

H0

)
=

m−M
5

(4.3)

z(1 + z) =
10−5H0

c
10m−M/5. (4.4)

The above formula is a quadratic relation that can be solved for the redshift z

given an apparent m and absolute M magnitude value. We place our the faintest
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companions of the faintest host at the spectroscopic cutoff of msc = 17.51. Suppose our

faintest companions were 5% mass-of-host partners, then by the mass-to-light ratios

developed in Equation (2.21), this 5% companion would corresponds the magnitude

difference of,

∆M = −2.5 log(µ) = −2.5 log(0.05) ≈ 3.25 (4.5)

Therefore, if the faintest 5% companion has an apparent magnitude of 17.51 then its

associated host must have (mH = 17.51− 3.25 =) 14.26 in apparent magnitude. If our

sample of host varies between −23± 0.5, then our faintest host is (MH = −23 + 0.5 =

) − 22.5. From this information, we may determine the redshift of such a host to be,

z(1 + z) =
10−5H0

c
10m−M/5 (4.6)

=
10−5H0

c
1014.26−(−22.5)/5 (4.7)

⇒ z(1 + z) = 0.05071 (4.8)

⇒ zupper = 0.048, (4.9)

where the quadratic solution has provided two redshifts but the negative one is ignored

because it has no physical value. We may also consider another cutoff for the 10%

mass-of-host companions or µ ≥ 0.1:

z(1 + z) =
10−5H0

c
1015.01−(−22.5)/5 = 0.07173 (4.10)

⇒ zupper = 0.067. (4.11)

4.2.3 Core Identity: Assigning Spectral Sub-Classifications

Spectroscopic information plays an important role not only in determining redshifts

and distances, but it also took part in determining object classifications as non-AGNs

and AGNs. We obtained the spectroscopic information from the SpecObjAll catalog,

and capitalized on the availability of a wide range of Value-Added catalogs. Par-

ticularly, to identify core activity of galaxies, we used the MPA-JHU spectroscopic

re-analysis catalog called GalSpec. The data were originally established and provide

by the Max Planck Institute for Astrophysics and Johns Hopkins University, where

the methods were developed and examined by the groups of Brinchmann et al. 2004,

Kauffmann et al. 2003 and Tremonti et al. 2004.
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Classifications in SDSS are stored under two parameters: (i) class and (ii)

subclass. For this project, we require classification beyond the precision of class =

‘galaxy’; that is, we need to consider the various subclassifications. Here are the six

main sub-classifications given by SDSS:

1. StarForming: Galaxy has detectable emission lines that adhere to the following

starforming criteria:

log10

(
[O III]

Hβ

)
< 0.7− 1.2 (log10 ([N II]/Hα) + 0.4) . (4.12)

2. StarBurst: If a galaxy has a positive StarForming match and an equivalent

width of Hα greater than 50 Angstroms, then the object is recognized as a

StarBurst.

3. QSO: Galaxy adheres to a pre-defined Quasar template.

4. AGN: Galaxy has detectable emission lines that adhere to the Seyfert and

LINER criteria:

log10

(
[O III]

Hβ

)
> 0.7− 1.2 (log10 ([N II]/Hα) + 0.4) . (4.13)

5. Broadline: Any object with detected lines at the 10-σ level with σ > 200

km/s receives a Broadline classification.

6. Galaxy: General objects in the galaxy catalog that do not satisfy any of above

conditions.

For this project, we particularly divided galaxy sub-classifications into two cate-

gories for simplicity:

C =

AGN if subclass = {AGN, AGN Broadline}

non-AGN if subclass = {Galaxy}
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We did not consider QSO objects in our study for AGNs. The majority of our

identified active galaxies were Seyferts and LINERs based on the pre-defined emission

criteria outlined above. The dominant morphology of Seyferts and LINERs are spiral

galaxies. This is why we implemented a spiral confidence value of s > 0.6. This

parameter was, to a degree, a free parameter that we could vary.
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Summary of Chapter (4)

→ Chapter (2) and (3) focused a great deal on understanding the setup and goals

of our model. In this chapter, we directly addressed the specifications of galaxy

data and discussed specific numerical values used in the project;

→ The data taken from SDSS needed to be calibrated and corrected for potential

systematic errors. We identified three possibilities: (i) CMB rest-frame correction

to the redshift, (ii) K-corrections to the redshift, and (iii) Extinction corrections

to the magnitudes;

→ We discussed the procedure taken to build a sample of host galaxies, which

included localizing the absolute magnitude range, imposing a spectroscopic

redshift limit to ensure completeness, and determining core identity from the

GalSpec catalog;

→ We are now ready to put the development from Chapters (2), (3), and (4)

together to compute results.
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Chapter 5

Results

Over the previous three chapters, we have set the foundation for the project. Chapter

(2) involved defining our three-level model and the specific parameters used to con-

trol and calibrate the set-up. We delivered the idea that, to understand the spatial

distribution of partners, we need to first build an ensemble of similarly configured

host-partner systems constrained by the partners’ mass ratios µ. Chapter (3) involved

defining the number density function n(r) and how we may go about computing this

function in practice. In Chapter (4), we tackled the challenge of processing the raw

data from SDSS to avoid potential systematic errors.

Now, we are ready to explore the results. This section is divided into two case

studies that each explores different ensemble configurations:

(#1) Gravitationally Non-Competitive (GNC) Case Study

(a) Minor Ensemble: All companion galaxies in every host-partner system

has a mass ratio of 0.01 ≤ µ ≤ 0.1.

(b) Intermediate Ensemble: All companion galaxies in every host-partner

system has a mass ratio of 0.1 < µ ≤ 0.3.

(c) Comparable Ensemble: All companion galaxies in every host-partner

system has a mass ratio of 0.3 < µ ≤ 0.6.

(#2) Gravitationally Competitive (GC) Case Study

(a) Mixed Ensemble: Unlike the GNC Case Study where we considered

three different ensembles, in the GC Case Study, we consider only one
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ensemble that is a mixture of different mass companions, referred to as the

mixed ensemble.

– In the mixed ensemble, every host-partner system always has one

massive perturbing partner with a mass ratio anywhere between 1.0 ≤
µ ≤ 3.0 (thus, violating gravitational non-competitiveness condition).

– Along with this one massive partner, there exists a mixture of one

or more lower-mass companions with a mass ratio anywhere between

0.01 ≤ µ ≤ 0.6.

– To understand where different mass companions are clustering around

the host, we selectively filter different ranges of companion mass ratios,

and individually model their number densities to understand where

these particular mass companions are clustered.

The ultimate goal in each case study is to examine whether there are any:

1. Correlations between Companion Number Density and Core Activity?

2. Correlations between Companion Number Density and Partner Mass Ratio?

3. Correlations between Companion Number Density and Gravitational Competi-

tiveness Condition?
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5.1 Case Study (#1):

Gravitationally Non-Competitive (GNC) En-

vironment

This GNC Case Study explores the three individual ensembles depicted in Figures

(5.1) to (5.3). It is important to note that all of these ensembles contain a localized

range of partner mass ratios µ (see above for definition). All partners have µ ≤ 0.6 to

ensure that the central host is the dominant source of the gravitational field in every

host-partner system.

Even though there are three separate ensembles, there are two common trends

associated with all of the number density curves in Figures (5.1) to (5.3). Starting from

the edge of the counting volume at 3.0 Mpc to about 1.0 Mpc, AGN and non-AGN

ensembles have similar number densities (ND) and are generally indistinguishable

within the same range; this is seen in the near-zero value of the relative number

density (RND). Within this interval, AGN and non-AGN hosts are seen to be placed

in equally-dense environments of companions.

However, once we begin approaching the inner domain of about less than 0.5

Mpc, we begin to see a clear trend where the non-AGN ND continues increasing in a

monotonic fashion to a maximum value in the last radial bin at [0.0, 0.3] Mpc, while

the AGN ND is observed to reach a local maximum at a non-zero radius (minor:

rmax ≈ 0.4 Mpc; intermediate: rmax ≈ 0.4 Mpc; comparable: rmax ≈ 0.6 Mpc) then

progresses in a steady and declining fashion. The data seem to be indicating that the

signal is strongly truncated within the inner 0.5 Mpc for the AGN curves in all three

ensemble cases. The stronger non-AGN ND over the AGN ND within this inner 0.5

Mpc region results in the negative value of the RND, which indicates that AGN host

are placed in an under-dense environment of companions within this inner domain of

0.5 Mpc. It may also be worth mentioning that not only is there a local maximum in

the AGN ND that is not in the first or last bin, but there also exists two inflection

points on both sides of the local maximum.
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Figure 5.1: Number density and Relative Number Density for the non-AGN and AGN
ensembles containing only companions with mass ratios 0.01 ≤ µ ≤ 0.1. All host were
between 0.010 ≤ z ≤ 0.048; spiral galaxies (s > 0.6); Mhost = −23± 0.5. Companions were
defined as neighbouring galaxies to the central host within a 3.0 Mpc volume. Data taken
from SDSS DR 9.
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Figure 5.2: Number density and Relative Number Density for the non-AGN and AGN
ensembles containing only companions with mass ratios 0.1 ≤ µ ≤ 0.3. All host were between
0.010 ≤ z ≤ 0.067; spiral galaxies (s > 0.6); Mhost = −23± 0.5. Companions were defined
as neighbouring galaxies to the central host within a 3.0 Mpc volume. Data taken from
SDSS DR 9.
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Figure 5.3: Number density and Relative Number Density for the non-AGN and AGN
ensembles containing only companions with mass ratios 0.3 ≤ µ ≤ 0.6. All host were between
0.010 ≤ z ≤ 0.067; spiral galaxies (s > 0.6); Mhost = −23± 0.5. Companions were defined
as neighbouring galaxies to the central host within a 3.0 Mpc volume. Data taken from
SDSS DR 9.
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We set out to investigate correlations between the spatial distribution and three

parameters. This case study examines how core activity and partner mass ratios

influence the spatial distribution of companions. Figures (5.1) to (5.3) clearly show

that core activity and partner mass have significant influence on the companion NDs.

AGNs are consistently placed in an under-dense environment of companions within

0.5 Mpc. The mass of a companion plays an important role in shifting the steepness

of the curve for the non-AGN ND and, for the AGN ND, it plays a determining factor

in the location of rmax.

We performed a quick calculation to determine the “missing” number of AGN

companions relative to the non-AGN control within the first three radial bins (or

about less than 1.0 Mpc). This would correspond to the following calculation,

Ninner =

∫ r=1

r=0

(nAGN − nnonAGN) dV →
3∑
i=1

(n
(i)
AGN − n

(i)
nonAGN) ·∆Vi, (5.1)

where n(i) is the number density within the ith radial bin and ∆Vi = 4
3
π(R3

i −R3
i−1)

represents the volume of the radial shell around the host. The results are summarized

in Table (5.1). The negative sign in each case may be interpreted as the “missing”

GNC Ensemble: Ninner

(1) Minor (0.01 ≤ µ ≤ 0.1) −0.06± 0.02
(2) Intermediate (0.1 ≤ µ ≤ 0.3) −0.011± 0.005
(3) Comparable (0.3 ≤ µ ≤ 0.6) −0.04± 0.01

Table 5.1: Number of galaxies Ninner within the inner 0.5 Mpc AGN host galaxies relative
to the non-AGN control sample. A negative value signifies an under-dense local environment
around AGN host galaxies and a positive value signifies an over-density of companions.

number of AGN companions relative to the non-AGN control sample. Since there

is a negative Ninner for each of the three GNC cases, this signifies an under-dense

environment arising from a scarcity of AGN companions. In Table (5.1), the GNC

environment with the minor ensemble contains the largest absence of companions

within the inner domain of about 1.0 Mpc.
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5.1.1 Examining the 95% Confidence Interval

In Figures (5.1) to (5.3), we plot the AGN number density (orange) and the non-AGN

number density (blue) for a total of 10 radial bins that span the entire volume of radius

3.0 Mpc. In this subsection, we perform a statistical test aimed at comparing the

AGN and non-AGN number density measurements in each radial bin and determining

how statistically distinguished they are. We quantify this validity with the Confidence

Value (C) parameter, where 0 ≤ C ≤ 1. In essence, two measurements are statistically

distinguished, or highly confident with C → 1, if the interval spanned by their error

bars do not overlap in any significant manner.

To explain, for a single radial bin, there is a number density measurement n and its

associated standard error bar σ, both for the AGN ensemble and non-AGN ensemble.

If this is so, then the interval spanned by 2σ around n (or n− 2σ to n + 2σ) has a

special statistical value – it represents an interval where we are 95% confident the

“true” value of the measurement lies here. Now, if the non-AGN control measurement

spans the 95% confidence interval of nnA − 2σnA to nnA + 2σnA for a particular radial

bin, then the Confidence Value C determines to what extent the AGN measurement

interval overlaps with this non-AGN control interval.

To quantify this description, we associate a Gaussian probability distribution

with the AGN and non-AGN measurements and check for the AGN’s overlap in the

control’s 95% confidence interval. Suppose we measure a number density of n with an

error bar of σ for a particular radial bin, then we can represent the number density

measurement as the following Gaussian probability distribution,

p(n′) =
1√
2πσ

exp

(
−(n′ − n)2

2σ2

)
. (5.2)

To determine the Confidence Value C, we begin by measuring the overlap O of

the AGN measurement distribution in the 95% confidence interval of the non-AGN

measurement,

O =
1√

2πσA

∫ nnA+2σnA

nnA−2σnA

exp

(
−(n− nA)2

2(σA)2

)
dn, (5.3)

where nnA ± σnA is the non-AGN number density measurement and nA ± σA is the
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AGN’s measurement. From this, we may define the confidence value C to be,

C = 1−O. (5.4)

It is important to note that C is for a specific radial bin. According to the above

definition, C can be mathematically thought of as a measure of how much the AGN’s

measurement do not overlap with the control’s 95% confidence interval.

We know that, after a typical radius of 1.0 Mpc, the AGN and non-AGN number

density curves generally begin to merge. The interesting region is between 0.0 and 1.0

Mpc. Therefore, we only conduct the statistical test for the first 4 radial bins: (1) 0.0

to 0.3 Mpc; (2) 0.3 to 0.6 Mpc; (3) 0.6 to 0.9 Mpc; (4) 0.9 to 1.2 Mpc. The results

are presented in the table below.

Confidence Values C (%) 0.0–0.3 Mpc 0.3–0.6 Mpc 0.6–0.9 Mpc 0.9–1.2 Mpc

Minor Ensemble 99.9 99.9 32.8 95.4
Intermediate Ensemble 99.9 56.8 50.2 42.6
Comparable Ensemble 99.9 17.3 48.8 86.3

Table 5.2: The confidence value represents how statistically distinguished the AGN and
non-AGN number densities are in a particular radial bin. Mathematically, it may be thought
of as a measure to determine how much the error bars of two measurements do not overlap.
If there is high confidence between two measurements (C → 1), then this essentially means
the interval spanned by their error bars do not overlap in any statistically significant manner.

From Table (5.2), we clearly observe that the inner most radial bin of 0.0–0.3 Mpc

consistently has a high confident value of 99.9%. This implies that the AGN and

non-AGN number densities are a distinguished and statistically valid measurement;

that is, their error intervals do not overlap in any significant manner. Another

interesting confidence measurement is the last radial bin (0.9–1.2 Mpc) in the minor

and comparable ensemble. An examination of Figure (5.1) and Figure (5.3) reveal

that, in this radial bin, the AGN number density reaches a maximum value before

descending and, ultimately, merging with the background number density. The

confidence value of 95.4% and 86.3% reveal that this maximum number density is a

statistically distinguished feature in the AGN number density curve for the minor and

comparable ensemble.
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5.1.2 Fiber Collision in SDSS

An interesting observation in the GNC environment is the paucity of AGN companions

in the inner volume compared to the non-AGN number density. In order to rule out

any possible systematic effects that could lead to this observation, we had to rule out

any technical issues that could play a role. We examined the possibility of SDSS fibre

collisions. Because of the finite angular width of spectroscopic fibres, SDSS cannot

study the spectroscopic information from two sources that are generally placed within

55 arcseconds of each other. Therefore, it is important to rule out fibre collisions as a

possible explanation for the “missing” inner number density of companions.

A quick calculation reveals that this fibre collision angle of 55 arcseconds translates

to the projected radius of 12 kpc for our closest redshift host galaxies at z = 0.010 and

79 kpc for our farthest redshift at z = 0.067. With this said, our bin size is 300 kpc,

which is much larger than the projected collision distance. If fibre collisions were a

significant problem, then we would not get any measurement in the non-AGN number

density within the inner radial bins as well – this is not the case. These observations

suggest fibre collisions may not be a significant systematic issue.
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5.1.3 Colour Distribution

The examination of galaxy colour in astrophysics often carries important information

about star-formation history and galactic composition. Researchers have also observed

that colour differences between matched samples of galaxies may possibly rise from

interaction with neighbouring galaxies (Netzer, 2013; Sabater et al., 2013). Since the

aim of our project is to examine how gravitational interactions influence companion

clustering, in this sub-section, we compare the AGN and non-AGN companion colour

distributions to examine for any potential difference between these matched sample of

host galaxies.

When analyzing the number density function, we required a single data point

(i.e. the average number density of companions) from a single bin. However, when

discussing the colour distribution, we require a distribution of data points from a

single bin. Therefore, this greatly restricts the size of our bins. We explore three

different bin sizes: (i) 0.0 to 1.0 Mpc range, (ii) 1.0 to 2.0 Mpc range, and (iii) 2.0 to

3.0 Mpc range. In each range, we study three colour distributions of the companions

around AGN and non-AGN hosts: (1) u − g, (2) g − r, and (3) r − i. In terms of

the host galaxies used in the analysis, we took all the host galaxies from the GNC

environment provided in the last section and examined their colours. There were a

total of (Minor + Intermediate + Comparable = 92 + 268 + 107 =) 467 non-AGN

hosts and a total of (17 + 36 + 25 =) 78 AGN hosts. Our results are illustrated in

Figures (5.4) to (5.6).

P–Values u− g g − r r − i
0.0 – 1.0 Mpc 0.295 0.397 0.667
1.0 – 2.0 Mpc 0.329 0.418 0.613
2.0 – 3.0 Mpc 0.352 0.397 0.666

Table 5.3: P-Values from the Kolmogorov-Smirnov Test with a 95% confidence level for the
distribution depicted in Figures (5.4) to (5.6).

In the GNC environment, one of the key features observed in the number density

of AGN companions was that it is differentiated from non-AGN number density within

in the inner 0.5 Mpc region. The results from Figures (5.4) to (5.6) show that the

AGN and non-AGN colour distribution of companion, however, do not appear to be

differentiated in any statistically significant manner. In Table (5.1.3), we performed

the Kolmogorov-Smirnov Test with a 95% confidence level and determined the p–values
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for each of the nine total distributions depicted in Figures (5.4) to (5.6). The p–value

is an important indicator we may use to decide if the null hypothesis is true or not. In

our case, the null hypothesis is to determine whether the AGN and non-AGN colour

distribution functions are different at a particular confidence level. The p-value ranges

may be interpreted as,

→ 0.00 ≤ p ≤ 0.05: Significant result, i.e. The null hypothesis may be rejected and

there is a significant statistical difference between the two distributions;

→ 0.05 < p ≤ 0.15: Marginally significant result;

→ 0.15 < p ≤ 1.00: No significant result, i.e. Null hypothesis is true.

With this information, none of the nine distributions shown in Figures (5.4) to (5.6)

have p-values indicating a statistically significant result. The null hypothesis is true,

i.e. AGN and non-AGN companions have similar colour distributions. The 0.0–1.0

Mpc range shows a somewhat significant variation in the u− g colour within the range

of 1.5 to 2.5, but no other significant trend is observed.
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Figure 5.4: Three colour distributions (u−g, g−r, r− i) for AGN and non-AGN companion
galaxies within a 0.0 to 1.0 Mpc range around the central hosts. All host galaxies were taken
from the GNC environment. There were a total of 78 AGN hosts and 467 non-AGN hosts.
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Figure 5.5: Three colour distributions (u−g, g−r, r− i) for AGN and non-AGN companion
galaxies within a 1.0 to 2.0 Mpc range around the central hosts. All host galaxies were taken
from the GNC environment. There were a total of 78 AGN hosts and 467 non-AGN hosts.
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Figure 5.6: Three colour distributions (u−g, g−r, r− i) for AGN and non-AGN companion
galaxies within a 2.0 to 3.0 Mpc range around the central hosts. All host galaxies were taken
from the GNC environment. There were a total of 78 AGN hosts and 467 non-AGN hosts.
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5.2 Case Study (#2):

Gravitationally Competitive (GC) Environment

Before we begin discussing the results of the GC case study, it is very important to

understand the set-up of this case study because it is different from the GNC case.

Unlike our GNC case study where we surveyed three separate ensembles and their

NDs, for our GC case study, we surveyed only one ensemble, referred to as the mixed

ensemble. Every host-partner system in the ensemble always has one massive perturb-

ing compaion (1.0 ≤ µ ≤ 3.0) and a mix of one or more lower-mass (0.01 ≤ µ ≤ 0.60)

companions. Even though we have just one ensemble, Figures (5.7) to (5.10) produced

four different plots because we selectively have filtered for different mass companions

to examine how they specifically cluster around the central host. This mixed case

study contains 30 AGN host-partner systems and 61 non-AGN host-partner systems.

Figure (5.7) is the ND function for all mass-companions contained in the counting

volume. One of the most distinguishing features of Figure (5.7) is that AGN and

non-AGN NDs are seen to strongly overlap; thus, producing a RND that is fluctuating

near-zero in an equally-dense zone throughout the 3.0 Mpc domain, with one exception

being the inner most radial bin of 0.0 to 0.3 Mpc where the uncertainty greatly grows.

In this GC environment, we see for the first time the AGN and non-AGN NDs begin

to resemble each other, as opposed to the GNC cases where the resemblance was only

outside 1.0 Mpc.

Similar to the GNC Environment, we performed a quick calculation to determine

the “missing” number of AGN companions relative to the non-AGN control within

the first two radial bins (or about less than 0.5 Mpc). This would correspond to the

following calculation,

Ninner =

∫ r=0.5

r=0

(nAGN − nnonAGN) dV →
2∑
i=1

(n
(i)
AGN − n

(i)
nonAGN) ·∆Vi, (5.5)

where n(i) is the number density within the ith radial bin and ∆Vi = 4
3
π(R3

i −R3
i−1)

represents the volume of the radial shell around the host. The results are summarized

in the Table (5.4).
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Figure 5.7: All non-AGN and AGN ensembles contain exactly one large perturbing com-
panion with mass ratio 1.0 ≤ µ ≤ 3.0 and any combination of lower-mass companions
0.01 ≤ µ ≤ 0.6. This plots includes all partners in the number density count. All host
galaxies were between 0.010 ≤ z ≤ 0.048; spiral galaxies (s > 0.6); Mhost = −23± 0.5. Data
taken from SDSS DR 9.
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Figure 5.8: All non-AGN and AGN ensembles contain exactly one large perturbing com-
panion with mass ratio 1.0 ≤ µ ≤ 3.0 and any combination of lower-mass companions
0.01 ≤ µ ≤ 0.6. This plots selectively filters for minor companions in the number den-
sity count. All host galaxies were between 0.010 ≤ z ≤ 0.048; spiral galaxies (s > 0.6);
Mhost = −23± 0.5. Data taken from SDSS DR 9.
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Figure 5.9: All non-AGN and AGN ensembles contain exactly one large perturbing com-
panion with mass ratio 1.0 ≤ µ ≤ 3.0 and any combination of lower-mass companions
0.01 ≤ µ ≤ 0.6. This plots selectively filters for intermediate companions in the number
density count. All host galaxies were between 0.010 ≤ z ≤ 0.048; spiral galaxies (s > 0.6);
Mhost = −23± 0.5. Data taken from SDSS DR 9.
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Figure 5.10: All non-AGN and AGN ensembles contain exactly one large perturbing
companion with mass ratio 1.0 ≤ µ ≤ 3.0 and any combination of lower-mass companions
0.01 ≤ µ ≤ 0.6. This plots selectively filters for comparable companions in the number
density count. All host galaxies were between 0.010 ≤ z ≤ 0.048; spiral galaxies (s > 0.6);
Mhost = −23± 0.5. Data taken from SDSS DR 9.
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GC Ensemble: Ninner

(1) All Partners −0.001± 0.002
(2) Minor (0.01 ≤ µ ≤ 0.1) 0.02± 0.01
(3) Intermediate (0.1 ≤ µ ≤ 0.3) −0.030± 0.007
(4) Comparable (0.3 ≤ µ ≤ 0.6) 0.03± 0.01

Table 5.4: Number of galaxies Ninner within the inner 0.5 Mpc AGN host galaxies relative
to the non-AGN control sample. A negative value signifies an under-dense local environment
around AGN host galaxies and a positive value signifies an over-density of companions.

Now, in Figure (5.8), we take the same mixed ensemble and ask where are the

minor companions (0.01 ≤ µ ≤ 0.1) particularly clustered around the host. Remember,

the gravitational influence of the other companions, including the massive perturbing

partner is still present, but just not incorporated in the counting of the number density.

When we apply this selective filtering for minors in Figure (5.8), we begin to see a

similar re-emergence of the trend seen in the GNC cases in the RND variation. The

RND reveals a system where AGN host galaxies are placed in an under-dense inner

domain of minors, while there is also a sudden surge in over-density of minors between

0.5 Mpc and 0.9 Mpc. Figure (5.9) for minor companions is similar again to the GNC

case with the under-dense inner region.

Figure (5.10) is the most significant plot that breaks the so-far established norm.

Up until now with the minor and intermediate companions, the RND has been

consistently under-dense in the inner region. If this was always true, then the full

ND seen in Figure (5.7) with all the partners would also have an inner under-density.

However, it is the inclusion of the comparable companions seen in Figure (5.10) that

causes over-dense deflection. This case is the only example of all the cases we have

studied with an over-density in the inner domain of 0.5 Mpc.

5.2.1 Examining the 95% Confidence Interval

We perform the same Confidence Value (C) calculations as outlined in Section 5.1.1.

for the first 4 radial bins. The results are presented in the table below. One of the

clear-cut differences seen in these confidence values compared to the GNC environment

is that there are very few high confidence values. The presence of the massive perturber

companion has significantly altered the statistics of the companion clustering. The last

row on the comparable partner measurements is the only case where the confidence
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values seems to be indicating a statistically distinguished result. The comparable

partners were also the only case where the AGN number density was greater than the

non-AGN number density in the inner radial shells, placing AGN host galaxies in an

over-dense environment of companions.

Confidence Values (C) 0.0–0.3 Mpc 0.3–0.6 Mpc 0.6–0.9 Mpc 0.9–1.2 Mpc

All Partners 5.22 11.9 15.6 32.4
Minor Partners 46.7 52.4 70.2 99.9
Intermediate Partners 0.001 50.0 16.7 38.3
Comparable Partners 89.8 64.0 87.1 56.0

Table 5.5: The confidence value represents how statistically distinguished the AGN and
non-AGN number densities are in a particular radial bin. Mathematically, it may be thought
of as a measure to determine how much the error bars of two measurements do not overlap.
If there is high confidence between two measurements (C → 1), then this essentially means
the interval spanned by their error bars do not overlap in any statistically significant manner.
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Chapter 6

Discussion

This project was ultimately motivated by the central question: What pathway allows

AGNs to efficiently supply their cores with gaseous fuel and engage in enhanced

accretion onto the central supermassive black hole compared to non-AGNs? Where

does this gas originate from? Our approach to understanding this question involved

asking: whether or not gravitational interactions with companion galaxies is the

primary cause of core activity. By gravitational interaction, we refer to situations

whereby a companion makes a direct contribution of gaseous fuel to the host’s core

(such as galactic collision or cannibalism) and/or the physical closeness of a partner

induces gravitational disturbances in the host (such as galactic harassment or tidal

stripping). Any of these scenarios may possibly stimulate gas inflow and lead to core

activation.

While we recognize there are many details in the literature about the specific

physical mechanics behind companion interactions, we are not necessarily concerned

with the exact details. To understand how intensely companions are interacting with

their host and what forms of gravitational interactions are being invoked, we were

able to distill these two questions to: what is the spatial distribution of companion

galaxies? By finding a collection of similarly configured host-partner systems (or

equivalent ensemble), we were able to analyze the typical distribution of companions,

quantified by the number density function n(r).

We explored two different case studies that analyzed different ensemble possibilities:

(i) a Gravitationally Non-Competitive Environment with three different ensembles;

(ii) a Gravitationally Competitive Environment with one ensemble, referred to as the
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mixed ensemble. In these different cases, we examined the correlation between the

number density of companions and core activity/mass ratio of partners µ.

An important gap in the literature is the lack of consistency among different

environmental surveys about whether or not gravitational interaction with companions

are linked to core activity and, if so, which particular form of interaction (i.e. collision,

cannibalism, harassment, etc.) is primarily responsible for AGN activity. Our results

aim at showing the importance of considering the relative number density, and how

the condition of Gravitational Competitiveness can significantly alter the spatial

distribution of companions around active host.

6.1 Observational Interpretation of the Results

6.1.1 Case Study (#1): Gravitationally Non-Competitive En-

vironment

Figures (5.1) to (5.3) allow us to examine the correlation between the number density

of companions and different parameters like core activity and mass ratio of partners.

In this section, we discuss the possible physical interpretations between any observed

correlations. The GNC environment results indicate that, when active galaxies occupy

an isolated environment (within 3.0 Mpc), their inner domains (less than 0.5 Mpc)

are consistently placed in an under-dense environment of companions. There are two

significant parts to this statement that have important interpretations:

(i) There is an under-density of companions within the inner domain;

(ii) This inner under-density is consistent among all three companion mass ratios

(minors, intermediates, comparables).

We now explore the possible interpretations behind these observations.

For the first observation, if the non-AGN number density represents the typical

clustering of partners around a host such that gravitational interactions have not

initiated core activity, then a deviation from this stable configuration may be possibly

interpreted as a potential cause leading to core activity. Furthermore, deviations in

the RND within the inner domain have particular significance because this is where
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we would expect the strongest gravitational interactions to occur. In our case, an

inner under-density may be possibly hinting at a history of past mergers, whereby a

now-active host consumed its neighbours to acquire fuel. In other words, the absence

of companions around AGN host, where one should expect to find companions as

seen in the non-AGN cases, may be indicative of a past history of consumption.

Another possibility is that active galaxies have engaged in some kind of physical

mechanism whereby they have “pushed out” existing companions in the inner 0.5

Mpc out to 1.0 Mpc, explaining the local maximum number density near that range.

However, based on the gravitational interaction schemes described in the introduction,

it is not clear what kind of physical process would actually lead to this outward

migration of companions. The effects of dynamical friction is like a “drag” force that

decays orbits toward the system’s center-of-mass, as opposed to an outward movement.

The second observation is also significant. When we examined the GNC environ-

ment for three groups of mass-companions ranging from 1% to 60%, we observed an

inner under-density in all three of these cases. This consistent behaviour across these

three groups may be suggestive that active hosts have engaged in a wide range of

gravitational interactions to merge with companions. There may possibly be multiple

channels to initiate core activity. As discussed in the introduction, there were two

main kinds of mergers: galactic collisions and galactic cannibalism. Galactic collisions

can occur across all companion mass ratios, but it is interesting to note that galactic

cannibalism, which is the orbital decay of smaller companions via dynamical friction,

is typically seen when there is a stronger mass difference between the host and partner.

With that said, the minor companions (0.01 ≤ µ ≤ 0.1) are also seen to have an inner

under-density. AGNs may have engaged in multiple different merging mechanisms to

possibly consume companions.

We can also draw inferences based on what we do not observe. Since the RND is not

equally-dense or over-dense within the inner domain, this may imply that gravitational

interactions associated with gravitational disturbances (such as galactic harassment

and tidal stripping) may not play a significant role in the initiation of core activity

in galaxies. Even though there is generally an equally-dense environment outside of

0.5 Mpc, the physical interactions associated with harassment and/or tidal stripping

require a closeness within 0.5 Mpc. Therefore, the evidence seems to be suggesting that

merging, as opposed inducing disturbances, is the primary gravitational interaction

initiating core activity.
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It is important to understand how different lines of reasoning may lead to different

interpretations across the literature. For instance, Ellison et al. (2011) focus on

finding merger candidates and examining the fraction of close range galaxy pairs that

have AGNs. This work implies that the process of merging or, at least, the nearness

of a comparable-sized candidate (in our study, this would be interpreted as galactic

harassment) leads to core activity. However, it may not be clear whether the act of

merging is initiating core activity, or the gravitational disturbances caused by the

nearness of a comparable-sized companion, is the cause of core activity. Our study

considers the absence of companions where one expects to find companions as also

having important interpretational value.

6.1.2 Case Study (#2): Gravitationally Competitive Envi-

ronment

With all of this said, how does the GC results add to the so-far developed narrative?

In the GNC case study, we saw that, by finding host galaxies that are gravitationally

dominant in a 3.0 Mpc volume, we were able to better define what it meant to be a

physical host of an environment and how this influenced the number density of com-

panions. We noticed that, in this kind of isolated environment, AGNs are consistently

placed in an under-density within the 0.5 Mpc environment. However, as the GC

results show, this behaviour is not always true.

In the GC case study, we include a single massive perturbing companion that

significantly alters the gravitational field in the 3.0 Mpc volume and, thus, the central

active/non-active host is not the only dominant source of gravity. There are two

interesting observations in this case study:

(i) By including all partners in the number density count, both non-AGN and AGN

number densities look very similar and, thus, the RND fluctuates near zero or

equally-dense;

(ii) When we selectively examine how specific mass-companions cluster around the

host, we suddenly notice a RND behaviour with similar trends as the GNC case

study with one exception (0.3 ≤ µ ≤ 0.6), where there is a strong over-density

in the inner domain.
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The first observation has important implications. It shows that, when we allow

for a mixture of different–mass partners in the counting volume, unlike the GNC

case, it becomes difficult to distinguish the AGN and non-AGN number densities.

This stresses the importance of the Gravitational Competitive constraint and it is

important to consider this condition when studying active galaxies. In the second

observation, when we selectively filter for different–mass partners studied in the GNC

environment (satellites, minors, intermediates), we suddenly observe a change in the

number density behaviour. We were able to differentiate number density curves when

we begin to localize the partner mass.

6.1.3 Comparison to Ellison et al. (2011) Study

Ellison et al. and our study both explore the possibility of whether neighbouring

galaxies play an important role in causing gas inflow toward the core and initiat-

ing/sustaining AGN activity. This surge of gas is what allows for enhanced accretion

onto the central supermassive black hole. However, there is an undetermined compo-

nent to this description. The question of whether of the inflowing gas originated from

the galaxy’s own disk and/or was supplied by an external source, like the gaseous

content of companions, is still an open question.

In the case of Ellison et al. (2011), they investigate the specific possibility of

close range galaxy-galaxy interaction as a possible mechanism. That is, if a host

galaxy has a nearby neighbouring galaxy that is close proximity to the host, then

this places the host in an asymmetric gravitational potential, which may give rise to

instabilities in existing gas of the host and ultimately cause a net inward migration

of gas. Ellison et al. collect a sample of 11,060 galaxies from the Sloan Digital Sky

Survey (SDSS) and examine the fraction of AGN occurring in these close-range galaxy

pairs. Galaxies are paired if they are within a projected distance from each other of 80

kpc and ∆V < 200 km s−1. Ellison et al. acknowledge SDSS fibre collisions may lead

to a high incompleteness at separation angle less than 55 arcseconds. However, by

using a methodology that involves adopting information from photometric catalogs to

calculate separation angles and other available survey data, they were able to reduce

the effects of this possible bias. They found a significant increase in the AGN fraction

in close pairs with projected separation > 0.04 Mpc by an average factor of 2.5 relative

to the control sample, with an increase in the AGN fraction strongest in equal mass
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galaxy pairs and weakest in unequal mass pairs. This supports the picture that the

physical closeness of gravitational bodies, especially when unequal in mass, may be

sufficient to cause the onset of gas inflow in the host and power AGN activity.

It is interesting to consider Ellison et al. (2011) study with respect to our research.

A common ground is that we both explore the question of whether an external source is

causing gas inflow to the core; however, Ellison et al. particularly look at the scenario

of close-range galaxy pairs. The central investigative tool of our research, the number

density function, maps out the spatial distribution. While Ellison et al. implement

the specific constraint and only examine host galaxies with close-by neighbours, we

do not implement such strict constraints. The number density functions allows us to

measure the presence and, at the same time, the absence of the neighbours. That is,

both of the paucity and the surplus of companions around active galaxies relative to

the control have important interpretational value.

When we compare the results of the Ellison et al. to our study’s outcomes, there

is both a degree of consistency and indeterminacy among the results. For instance,

in our Gravitationally Competitive environment in Figure (5.10), we see a similar

result in line with the Ellison et al. conclusion, whereby there is an over-density of

companions near active galaxies. This is suggestive that the physical nearness of

companions may be a possible cause of AGN activity. However, there is also a degree

of indeterminacy. One of the key ideas distinguishing our project is the notion of

Gravitational Competitiveness. Ellison et al. do not place any major constraints

more global environment (< 3 Mpc) around the host. It is not clear if the examined

galaxy pairs are in, by our definitions, a competitive and non-competitive environment

and, therefore, we may not be able to make a fair comparison. As this work has

demonstrated, this competitive environmental factor does seem to play an important

role in the spatial distribution of neighbouring galaxies.

6.2 Theoretical Interpretation of the Results

Our ultimate goal in this project was to determine if the gravitational interaction with

companion galaxies could be the primary cause of core activity. In the previous section,

we examined the dependence of the number density of companions on variables like the

host’s core activity and mass ratio of partners. We observed that, in gravitationally
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isolated environments (or GNC), active galaxies were consistently situated in an inner

under-density for all partner mass–regimes. This scarcity of AGN companions may

suggest that these galaxies became active via gravitational interaction, particularly

mergers, with companion galaxies.

We now briefly explore the possibility of interpreting the number density of

companions from a different perspective – a more theoretical viewpoint rooted in

statistical physics/mechanics. Even though we recognize a full discussion and extension

of these ideas are beyond the scope of this work, it is, nevertheless, worthwhile to

mention and discuss the importance of these interpretations because they open up

possibilities for future projects and have very interesting implications.

6.2.1 Importance of the GNC Case Study to Statistical Me-

chanics

Our motivation is simple: can we use statistical physics to relate the number density

of companions n(r) to physical variables like energy, volume, and velocity? Can

these theoretical relations be connected with our observational results seen in Figures

(5.1) to (5.10)? The answer is yes. Our current observational models can indeed be

connected to theoretical models by studying the statistical physics of self-gravitating

collisionless systems. The idea is to represent galaxies as point-like particles in a

“fluid” that move under the influence of a mean gravitational potential φ, where we

assume these particles do not undergo frequent collisions. With this said, it turns out

that these criteria are satisfied by the GNC case study. The GNC results depicted

in Figures (5.1) to (5.3) are a good approximation of a self-gravitating collisionless

system, where galaxies are predominantly subjected to the gravitational potential φH

generated by the central host.

Even though a full discussion of these ideas may be outside the scope of this

work, this section briefly explores a spherically symmetric collisionless model. We

show that the non-AGN number density generally follows the behaviour predicted

by an isotropic and isothermal model, but the AGN number density curve cannot

be represented by an isothermal model. The local maximum consistently seen in the

GNC case study in Figures (5.1) to (5.3) has significant implications regarding the

kinematical configuration of the AGN companions. We want to show that they are
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not in “thermal” equilibrium or, in other words, there exists a possible net flow of

companions within the inner 0.5 Mpc around the AGN host that is not seen around

the non-AGN host.

6.2.2 Spherically Symmetric + Isotropic Model

We follow the models and derivations developed by Longair (2008) and Binney &

Tremaine (1987). These sources set out to provide a similar answer to the central goal

of this thesis – can we understand the spatial density of galaxies in terms of statistical

physics? They explore the possibility of modeling galaxies in a cluster environment

as an ideal gas. At first glance, this may seem counter-intuitive, but the ideal-gas

treatment becomes relevant when we consider more closely the similarities between the

statistical physics of gas molecules and galaxies. If we assume the velocity distribution

of galaxies in a cluster have reached some kind of stationary dynamical state and

have well-defined distribution (like a Maxwell-Boltzmann distribution), then we can

evaluate a mean kinetic energy for the galaxies, which may be interpreted as a kind of

“temperature”. From this, we may define other quantities like pressure and proceed

with a thermodynamic-like treatment of the galaxies. These kinds of statistical models

have been used in the literature by different researcher such as King (1966), who

generally predicted the spatial distribution of galaxies in cluster environments by

modeling them as an isothermal gas sphere.

As for our project, we may follow a similar reasoning. Let’s assume we have a

collisionless system of point-like particles (galaxies) subjected to the gravitational

potential φH of a central non-AGN/AGN host. Along with this, we begin with the

simplest assumption that the system is isotropic, i.e. there is no preferred direction of

motion or net flow in the movement of the companion galaxies. Within this model,

we can now give meaning to the number density n(r). Since we consider companion

galaxies as particles in an ideal gas, we would expect galaxies to adhere to an equation

of state,

P =
ρkBT

m
= nkBT, (6.1)

where kB is the Boltzmann constant (for this point, we set kB = 1), P is pressure, T

is temperature, and ρ is the mass density of this identical collection of particles each

with an individual mass m. Borrowing another result from statistical mechanics, if

83



there is an equipartition of energy, we may relate the temperature to the degrees of

motion (in this case, the three translational components) as,

3

2
kBT =

1

2
m〈v2〉 ⇒ T =

m

3kB
〈v2〉. (6.2)

The companions are subjected to the gravitational potential of the central host:

φH = −GMH/r, where G is the gravitational constant, MH is the mass of the host,

and r is the radius from the host. Now, if companions are like fluid particles with a

pressure P and embedded in this gravitational potential, then the companions must

be supported by a pressure gradient,

dP

dr
= −dφH

dr
ρ = −GMH

r2
ρ. (6.3)

The mass density ρ is equal to the number density n(r) multiplied by the mass of

an individual companion m (we assume all companions are of similar mass; this is

why the GNC case’s localized partner mass is particularly important). Along with

the equation of state developed above and ρ = m · n(r), we may simplify the pressure

gradient expression to

dP

dr
= −GMH

r2
ρ ⇒ d(nT )

dr
= −GMH

r2
(mn), (6.4)

⇒ d(n〈v2〉)
dr

= −3GMH

r2
n. (6.5)

Using this simple model, the developed differential equation describes the behaviour

of the number density function n(r) as a function of other physical variables like mass

of the central host MH . We now explore possible solutions to this equation.

6.2.3 Spherically Symmetric + Isotropic + Isothermal Model

There are two unknowns in Equation (6.5): the number density n(r) and velocity

component 〈v2〉. If we wanted to determine an analytical function for n(r), we may

assume 〈v2〉 is some constant value and solve for n(r). This assumption of a constant

〈v2〉 may be regarded as an isothermal system, i.e. there is no “temperature” gradient

or, equivalently, all radii have the same average kinetic energy. Now, we can to solve
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the differential equation for n(r),

dn

dr
= −3GMH

〈v2〉r2
n, (6.6)

⇒
∫
dn

n
= −

∫
3GMH

〈v2〉r2
dr, (6.7)

⇒ n(r) = n0 exp

[
3GMH

〈v2〉

(
1

r
− 1

r0

)]
, (6.8)

where n0 is representative of some background number density of companions near

the edge of the counting volume at r0 = 3.0 Mpc.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

Radial Distance from Host (r)

Number
Density
n(r)

Figure 6.1: Sketches of the number density solution given in Equation (6.8) for the spherically
symmetric, isotopric and isothermal model. We set G = MH = 1 and the initial condition to
some background number density n0 = 0.1 at r0 = 3. We know that T ∝ 〈v2〉 according to
Equation (6.2); therefore, the four different 〈v2〉 represent different isothermal curves. The
monotonically decreasing nature of this solution is seen in the non-AGN number density
curves in Figures (5.1) to (5.3).

Figure (6.1) provides quick sketches of Equation (6.8) for different values of 〈v2〉,
given that G = MH = 1 and the initial condition is set to some background number

density n0 = 0.1 at r0 = 3. The solutions are seen to follow a monotonically decreasing

nature. Even though we recognize a full curve fitting procedure is required to determine

how good a fit the above curve is, this quick qualitative inspection has, nevertheless,

shown that the non-AGN number density seen in the GNC case study seems to be

reasonably represented by a spherically symmetric, isotropic and isothermal model.
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6.2.4 Important Implications of AGN Number Density’s

Local Maximum

In the previous section, we attempted to model a spherically symmetric, isotropic

and isothermal solution. We observed that this solution seemed to generally be a

reasonable model for the non-AGN number density seen in the GNC case study.

However, in this section, we want to demonstrate how the isothermal model cannot

work at all for the AGN number density curve. Furthermore, we want to show that

the local maximum seen in Figure (5.1) to (5.3) has significant physical implications

on the kinematical configuration of the AGN companions.

By assuming isothermality, we begin by demonstrating a clear contradiction.

Suppose 〈v2〉 was independent of r, then we can pull it out of the derivative to get

d(n〈v2〉)
dr

= −3GMH

r2
n ⇒ dn

dr
= −3GMH

〈v2〉r2
n. (6.9)

Now, we use an observation from the data. Figures (5.1) to (5.3) clearly show the

AGN number density to generally increase from the 0.0 Mpc to about 1.0 Mpc, reach

a local maximum and then generally decrease toward 3.0 Mpc. This means that the

derivative of the number density is dn/dr′ ≥ 0 for the interval between the origin and

the local maximum. Mathematically, this means

dn

dr′
≥ 0 ⇒ − 3GMH

〈v2〉(r′)2
≥ 0, (6.10)

⇒ 3GMH

〈v2〉(r′)2

?

≤ 0. (6.11)

However, this cannot be true. None of the variables seen on the left-side of Equation

(6.11) can be negative or zero. This simple consideration shows that isothermality

cannot work for the AGN number density.

The simplest correction would be to assume 〈v2〉 was dependent on the radius r.

If we were to consider 〈v2〉 as a function of r and apply the local maximum constraint,
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we would get,

d(n〈v2〉)
dr

= 〈v2〉dn
dr

+ n
d〈v2〉
dr

= −3GMH

r2
, (6.12)

If
dn

dr
= 0 at local max. ⇒ nmax

d〈v2〉
dr

= − 3GMH

(rmax)2
, (6.13)

⇒ d〈v2〉
dr

< 0 (at local max.) (6.14)

This is a very interesting result. It implies that the region where the AGN number

density and non-AGN number density begin to deviate (i.e. near the AGN’s local

maximum) represents a fundamental change in the kinematical configuration of the

companions. In other words, the AGN number density is not isothermal and the

system is not in “thermal” equilibrium. There is a net flow within the inner region of

0.5 Mpc. This theoretical implication adds more strength to the idea that AGN host

galaxies have consumed companions acquiring fuel because AGN companions may

kinematically be in a preferred infall state.

The statistical mechanics of self-gravitating collisionless systems has given us a

means to interpret the number density n(r) that was observationally determined. If we

have a host’s gravitational potential φH and a statistical arrangement of collisionless

galaxies, then we can expect a regular distribution of these companions to cluster

around the host. However, this number density of companions is dependent on the ve-

locity distribution of the galaxies. We saw that the monotonically decreasing non-AGN

number density in the GNC case study was indicative of a generally uniform average

companion velocity of 〈v2〉 across 3.0 Mpc. However, the violation of monotonicity

seen in the AGN number density (i.e. the local maximum) is a clear sign that the

kinematical nature of the companions has to be different. These AGN companions

cannot be in thermal equilibrium and there seems to be a net flow within the inner

radial domain of 0.5 Mpc.

As a future project, it would further be interesting to investigate which component

of the companion’s velocity is changing. We started with an isotropic model where all

velocity components were equal 〈v2
r〉 = 〈v2

θ〉 = 〈v2
φ〉. However, Binney and Tremaine

(2008) explore the possibility of anisotropic flow, where only 〈v2
θ〉 = 〈v2

φ〉 = constant
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and 〈v2
r〉 is dependent on r, or

d

dr

(
n〈v2

r〉
)

+
2n

r

(
〈v2
r〉 − 〈v2

θ〉
)

= −dφ
dr
n. (6.15)

Notice, anisotropy introduces the extra term, 2n
r

(〈v2
r〉 − 〈v2

θ〉), which otherwise would

be zero if the velocity component were equal and reduce to Equation (6.9). A full

investigation of these possibilities are beyond the scope of this thesis, but are never-

theless intriguing to consider.
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6.3 Assumptions and Limitations of the Model and

Methods

6.3.1 Redshift Range and Relation to Cosmic Timescale

One important constraint affecting our dataset was that all galaxies used in the sample

were between the redshift range of 0.010 ≤ z ≤ 0.064. Redshift is not only a measure

of distance, but it is indicative of cosmic time as well. Using the cosmology relation

given by Ryden (2011),

tpast = H−1
0

(
1− 1

1 + z

)
, (6.16)

where H0 is the Hubble constant, the redshift range given above corresponds to 150

million to 890 million years into the past. To put this time in more perspective, it

takes approximately 220 million years for the Sun to make one complete orbit around

the Milky Way. Therefore, this time range may be equivalently stated as 0.68 to 4.04

Milky Way years.

In cosmology, the study of key epochs plays an important role in understanding

galaxy formation and the growth of supermassive black holes (SMBH), which power

AGNs. Our spatial distributions depicted in the results are based on galactic evolution

and SMBH sizes within recent cosmological timescales. It would be interesting to

examine how these spatial distributions would change according to different cosmic

epochs. For us, we are significantly limited the SDSS data. It is not that higher

redshift objects are not be measured by SDSS beyond z > 0.067, but, to make accurate

distance estimates, we need spectroscopic information and, therefore, the spectroscopic

cutoff prevents us from examining fainter objects.

6.3.2 Selection Bias to AGN Type

Due to the selection process outlined by the value-added catalog, the AGNs used in

our project were predominantly Seyferts and LINERs. These active galaxies are on

the scale of AGNs with weaker core activity. It is not clear if more energetic AGNs

such as quasars and radio galaxies would be placed in the same environment as these

galaxies. One would expect that these more powerful AGNs to have adopted a much

more larger in-take of gaseous fuel and may have possibly consumed more companions

and/or larger ones.
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Chapter 7

Conclusion

We set out to investigate whether gravitational interaction with companion galaxies

was the primary cause leading to core activity. By gravitational interaction, we refer

to situations whereby a companion makes a direct contribution of gaseous fuel to the

host’s core (such as galactic collision or cannibalism) and/or the physical closeness of

a partner induces gravitational disturbances in the host (such as galactic harassment

or tidal stripping).

Our approach to investigating this problem was to conduct a 3.0 Mpc environmental

survey around a matched sample of active and non-active host galaxies, and to examine

how the number density of companions radially varied within this volume. If active

galaxies have been engaging in gravitational interaction with their neighbour galaxies,

then we would expect some kind of difference in the spatial arrangement of compan-

ions around these host, which could potentially be observable in the number density

function. Our model also adopted an important constraint known as Gravitational

Competitiveness. This condition particularly investigated how a host’s gravitational

dominance in its environment influenced the spatial distribution of companions.

Here is a summary of our main results, their implications, and possible future works:

1. When active galaxies are placed in an isolated environment (i.e. Gravitationally

Non-Competitive (GNC) within 3.0 Mpc), their inner domains within about 0.5

Mpc seem to consistently be placed in an under-dense environment of companions

(minors, intermediates, & comparables) relative to their non-active counterparts.
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→ In this GNC environment, the number density of companions follow consis-

tent trends. The non-AGN number density is seen to be a monotonically

decreasing curve starting from a maximum value in the inner-most radius

and decaying to some background density at 3.0 Mpc. The AGN number

density is similar to the non-AGN number density outside about 1.0 Mpc,

but there is an important change that occurs within the inner domain – the

AGN curve reaches a local maximum and then decays to a near-zero value.

→ This absence of AGN companions where one should expect to find compan-

ions (according the standard set by the non-AGN control) may possibly be

indicative of a history of mergers and consumptions of neighbour galaxies

to power these now-active host.

→ We may also model the GNC case study from the perspective of a self-

gravitating collisionless system. In this light, the local maximum seen

in AGN number density may have important interpretational value as a

change in the kinematical configuration of the companions. That is, AGN

companions may not be in equilibrium and there may be a preferred net

flow of companions. This implication further supports the idea that AGNs

have consumed neighbour galaxies.

2. In the Gravitationally Competitive (GC) environment, we allowed for one massive

perturbing partner to be present in the counting volume and one-or-more lower-

mass companions. The presence of this massive companion had noticeable

impacts on the spatial distribution of the lower-mass partners.

→ The results from the GC study show how the presence of a massive part-

ner can significantly alter the spatial distribution of companions. When

attempting to consider all partners in the count for the number density,

the AGN and non-AGN number density curves started to become indistin-

guishable.

→ It was only when we selectively analyzed specific partner masses that the

number densities became distinguishable. This shows that different mass-

companions cluster in different arrangements around hosts.
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3. Overall, the results of this study support the idea that, in gravitationally isolated

environments, active galaxies are placed in different environments than their non-

active counterparts, which may be directly suggestive of a history of mergers and

consumptions. These findings support the idea that gravitational interactions

with neighbour galaxies may lead to core activation.

4. In terms of future work, there are many different directions we can take to

further test and refine the hypotheses. Here are a few examples:

→ For simplicity, we explored two relatively straightforward ensemble setups:

the GNC environment and GC environment with a single massive perturber.

It would be interesting to explore different ensemble configurations with

more competitive environments. Perhaps, it may be worthwhile to look

into how two or more AGNs in a close range environment influence the

clustering of companions around them;

→ As mentioned in the discussion section, based on the selection process

implemented, our active galaxies were mainly Seyferts and LINERs. It

would be interesting to examine how neighbouring galaxies cluster around

other types of active galaxies, like radio galaxies and Quasars. Since these

active galaxies are often more energetic, they require more fuel to power

their AGN engines. It would be interesting to investigate how this increased

fuel demand to power the supermassive black hole would change the number

density of companions within the inner volume around these host galaxies;

→ SDSS posed limitations on our surveying depth and our dataset. Future

works with other telescopes with more richer spectroscopic data may allow

for a deeper redshift range. Since the redshift is also related to cosmological

time, it would be interesting to explore how the number density function

of AGN companions changes over different cosmic timescales.
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