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Researchers in education are often interested in determining whether independent
groups are equivalent on a specific outcome. Equivalence tests for 2 independent
populations have been widely discussed, whereas testing for equivalence with more
than 2 independent groups has received little attention. The authors discuss alterna-
tives for testing the equivalence of more than 2 independent populations, and they
use a Monte Carlo study to demonstrate and compare the performance of these alter-
natives under several conditions. The results indicate that a 1-way test (e.g., Wellek’s
F test) is recommended for assessing the equivalence of more than 2 independent
groups because approaches based on conducting pairwise tests of equivalence are
overly conservative.
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MANY EMPIRICAL QUESTIONS IN EDUCATIONAL RESEARCH involve
assessing the differences among independent groups on a specific dependent
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variable. For example, a researcher may be interested in demonstrating that mean
scores differ for participants taking a paper-and-pencil test and for those taking a
computer-based test. The null hypothesis in this case would be that the population
group means are equal, and the researcher would typically use a two-independent-
samples t test (or a one-way-independent-samples analysis of variance [ANOVA]
if there were more than two groups) to evaluate this hypothesis. In fact,
evaluating the null hypothesis that independent population means are equal ac-
counts for almost all hypothesis testing involving independent groups, despite the
fact that in many cases the researcher’s primary interest is in whether or not the
population means are equivalent. Testing the null hypothesis of equal population
means is inappropriate for studies in which the primary objective is to demon-
strate that groups are equivalent, rather than different, on a particular measure. In
this case, equivalence tests are available for demonstrating that population means
are equivalent—in other words, that any differences between the means of the
populations can be considered trivial.

When using tests of equivalence, the goal is not to show that treatment condi-
tions are perfectly identical, but that the differences between the treatments are too
small to be considered meaningful. One example is an investigation in which an
attempt is made to demonstrate that scores from a computer-based test are equiv-
alent to those from a paper-and-pencil test (e.g., Epstein, Klinkenberg, Wiley, &
McKinley, 2001). In this example, the researchers may not need to show that the
test scores are exactly equivalent, as with the traditional null hypothesis (Ho: µ1 =
µ2), but that any differences in test scores are inconsequential (i.e., |µ1−µ2|< D,
where D represents an a priori critical difference for determining equivalence).
As Cribbie, Gruman, and Arpin-Cribbie (2004) and Rogers, Howard, and Vessey
(1993) noted, the rejection or nonrejection of the null hypothesis of traditional
tests tells us very little about the potential equivalence of the groups in question.
More specifically, traditional tests of Ho: µ1 = µ2 (e.g., two independent-samples
t test) evaluate whether the means are exactly identical, and larger sample sizes
result in greater power for detecting any differences between the means. Hence,
even minute differences between the means of the populations may be statistically
significant with traditional tests; however, this result provides no valuable infor-
mation to a researcher who would like to know whether the population means are
equivalent.

Several tests have been designed to evaluate the equivalence of two population
means, the test designed by Schuirmann (1987) being one of the most popular.
Schuirmann’s test of equivalence has been introduced to the behavioral sciences
through influential articles by Rogers et al. (1993), Seaman and Serlin (1998), and
others. The first step in applying Schuirmann’s test of equivalence is to establish
a critical mean difference for declaring two population means equivalent (D).
Any mean difference smaller than D would be considered meaningless within the
framework of the experiment. It is assumed that the two samples are randomly
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and independently selected from normally distributed populations with equal vari-
ances. Two one-sided hypothesis tests can be used to establish equivalence, where
the null hypothesis relates to the nonequivalence of the population means and can
be expressed as two separate composite hypotheses, thus: Ho1 : µ1−µ2 ≥ D; Ho2

: µ1−µ2 ≤ −D.
Rejection of Ho1 implies that µ1−µ2 < D, and rejection of Ho2 implies that

µ1−µ2 > −D. Further, rejection of both hypotheses implies that µ1−µ2 falls
within the bounds of (−D, D), and the means are deemed equivalent.

Ho1 is rejected if t1 ≤ −tα,df where

t1 = (X̄1 − X̄2) − D√
(n1+n2)[(n1−1)s2

1 +(n2−1)s2
2 ]

n1n2(n1+n2−2)

and Ho2 is rejected if t2 ≥ tα,df where

t2 = (X̄1 − X̄2) − (−D)√
(n1+n2)[(n1−1)s2

1 +(n2−1)s2
2 ]

n1n2(n1+n2−2)

X̄1 and X̄2 are the group means, n1 and n2 are the group sample sizes, s1 and
s2 are the group standard deviations, and tα,df is the upper-tailed α-level t critical
value with n1 + n2−2 degrees of freedom. Several articles have discussed the use
of equivalence tests in two-independent-group designs (e.g., Cribbie et al., 2004;
Rogers et al., 1993; Seaman & Serlin, 1998; Tryon, 2001); more recently, Gruman,
Cribbie, and Arpin-Cribbie (2007) have discussed the use of a heteroscedastic
version of the Schuirmann test statistic, the Schuirmann-Welch test, where the
denominator in both t1 and t2 is replaced with

√
s2

1
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2

n2

and the degrees of freedom are replaced by
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1
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Although the Schuirmann-Welch test is designed for situations in which the
population variances are unequal (which is not the case in the present study), the
Schuirmann-Welch test performs well both when variances are equal and when
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they are unequal; therefore, it is included as an alternative test in the present
research and recommended as a generic test for assessing the equivalence of two
independent groups (whether the variances are equal or unequal).

Although equivalence tests for two-independent groups have been discussed
frequently, the case of general one-way-independent-groups designs has received
little attention even though hypotheses concerning equivalence often deal with
more than two groups. For example, one researcher might be interested in demon-
strating that satisfaction with university life is not a function of type of living
accommodation, where students who live on-campus, at home with their par-
ents, off-campus alone, or off-campus with others, all score similarly on satis-
faction with university life. Another researcher might be interested in demon-
strating that students from many cultural backgrounds (e.g., North American,
South American, Asian, European) score equivalently on standardized tests (e.g.,
Graduate Record Exam). Important methodological questions arise when more
than two groups are being considered, including what form of test should be
applied.

Researchers familiar with the popular two-independent-samples tests of equiv-
alence (e.g., Schuirmann test) would be likely to evaluate the equivalence of J
population means by demonstrating in a pairwise manner that each group was
equivalent to every other group. For example, if a researcher wanted to demon-
strate that three population means are equivalent, he or she might demonstrate that
the first population is equivalent to the second population, that the first population
is equivalent to the third population, and that the second population is equivalent to
the third population. Another option is to evaluate the equivalence of J population
means by demonstrating the equivalence of the two means with the largest mean
difference.

An alternative approach, outlined by Wellek (2003), is to use a one-way test of
equivalence, where the equivalence of all J population means is simultaneously
evaluated.

The null hypothesis for a one-way equivalence test would be that the combined
difference between multiple groups falls within an equivalence interval. Wellek
suggested the following hypotheses: Ho: �2 ≥ ε2, Ha: �2 < ε2, where ε is the
equivalence interval and

�2 =
∑j

i=1

(
ni

n̄

)
(X̄i − X̄.)2

σ 2

n̄ represents the mean sample size of the groups, X̄i represents the sample mean
of the ith population, X̄. represents the average of the sample means for the J
populations, and σ 2 represents the average within group variability (assumed to
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be equal across populations). Ho: �2 ≥ ε2 is rejected if �2 < �crit, where

ψcrit =
(

J − 1

n̄

)
FJ−1,N−J,α(n̄ε2)

and n̄ε2 represents the noncentrality parameter.
The purpose of the present study was to evaluate the available approaches

to assessing the equivalence of J independent groups and to be able to make
recommendations regarding the most appropriate test.

METHOD

A simulation study was used to compare the performance of three approaches to
assessing the equivalence of J independent groups: (a) Wellek’s one-way equiv-
alence test (Wellek, 2003), (b) multiple pairwise Schuirmann tests (where the J
populations are considered equivalent if each group is equivalent to each other
group) using either the original Schuirmann statistic (S P) or the heteroscedastic
Schuirmann-Welch statistic (SW P), and (c) largest mean difference Schuirmann
test (where the J populations are considered equivalent if the two groups with
the largest mean difference are declared equivalent) using either the original
Schuirmann statistic (S L) or the heteroscedastic Schuirmann-Welch statistic
(SW L). For the Wellek procedure, ε2 was set equal to �2 for the Type I er-
ror conditions. For the Schuirmann test, D was set equal to 1 for all tests. Several
variables were manipulated in this study including (a) number of groups (J = 3
and 5), (b) average sample size (average n = 20 and average n = 75), (c) degree
of sample size heterogeneity (equal n, moderately unequal n, extremely unequal
n), and (d) population mean configuration (see Table 1).

Ten thousand simulations were performed using the SAS software package,
specifically SAS’s Interactive Matrix Language package (SAS Institute, 1999).
Normally distributed random variables were generated using the RANNOR ran-
dom number generator. A nominal α level of .05 was used for all analyses.

RESULTS

J = 3

The Type I error and power rates for the Wellek, S P, SW P, S L, and SW L,
with three independent groups are presented in Tables 2 and 3. When there were
three independent groups, the Type I error rates for the Wellek one-way test of
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TABLE 1
Population Mean (µj) Configurations Used in the Monte Carlo Study

Configuration Type Type I Error Condition Power Conditions

J = 3
Not Equally Spaced µj = 0,0, 1 µj = 0,0, .8

µj = 0,0, .6
Equally Spaced µj = 0,.5, 1 µj = 0,.4, .8

µj = 0,.3, .6
J = 5

Not Equally Spaced µj = 0,0, 0, 1, 1 µj = 0,0, 0, .8, .8
µj = 0,0, 0, .6, .6

Equally Spaced µj = 0,.25, .5, .75, 1 µj = 0,.2, .4, .6, .8
µj = 0,.15, .3, .45, .6

equivalence were maintained at approximately α under all conditions. The empir-
ical Type I error rates for the S P, SW P, S L, and SW L were very conservative
with the population mean configuration µ1 = 0, µ2 = 0, µ3 = 1, ranging between
.007 and .014. The empirical Type I error rates for the S P, SW P, S L, and SW L
were less conservative with the population mean configuration µ1 = 0, µ2 = .5, µ3

= 1, and n = 20, ranging between .032 and .037, and accurate with the population
mean configuration µ1 = 0, µ2 = .5, µ3 = 1, and n = 75, ranging between .048
and .049.

The power results closely mirrored those of the Type I error results. The
empirical power rates for the S P, SW P, S L, and SW L were considerably lower
with the population mean configuration µ1 = 0, µ2 = 0, µ3 = 1 than were the
rates for the Wellek one-way equivalence test across all conditions. The empirical
power rates for the S P, SW P, S L, and SW L were lower with the population
mean configuration µ1 = 0, µ2 = .5, µ3 = 1, and n = 20, relative to the rates
for the Wellek one-way equivalence test, although with an average n = 75 the
empirical power of the S P, SW P, S L, and SW L was slightly larger than that of
the Wellek one-way equivalence test.

J = 5

The Type I error and power rates for the Wellek, S P, SW P, S L and SW L
with five independent groups are presented in Tables 4 and 5. When there were
five independent groups, the Type I error rates for the Wellek one-way test of
equivalence were maintained at approximately α under all conditions. The em-
pirical Type I error rates for the S P, SW P, S L, and SW L were conservative
across all conditions, with the rates extremely conservative for the population
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TABLE 2
Probability of Declaring Three Normally Distributed Populations Equivalent, With the
Population Mean Pattern for Declaring Equivalence Equal to µ1 = 0, µ2 = 0, µ3 = 1

µ1, µ2, µ3 n1, n2, n3 ε Wellek D S P SW P S L SW L

Type I Error Results
0, 0, 1 20, 20, 20 .816 .049 1 .012 .012 .013 .013

15, 20, 25 .866 .051 1 .010 .010 .011 .011
10, 20, 30 .913 .054 1 .007 .007 .011 .011
75, 75, 75 .816 .046 1 .010 .010 .014 .014
70, 75, 80 .830 .048 1 .011 .011 .013 .013
60, 75, 90 .856 .050 1 .011 .011 .011 .011

Power Results
0, 0, .8 20, 20, 20 .816 .163 1 .056 .055 .057 .057

15, 20, 25 .866 .175 1 .049 .048 .052 .052
10, 20, 30 .913 .199 1 .036 .033 .045 .045
75, 75, 75 .816 .391 1 .188 .187 .190 .189
70, 75, 80 .830 .396 1 .175 .174 .179 .178
60, 75, 90 .856 .409 1 .177 .177 .178 .178

0, 0, .6 20, 20, 20 .816 .389 1 .181 .181 .186 .185
15, 20, 25 .866 .424 1 .168 .164 .172 .171
10, 20, 30 .913 .445 1 .121 .110 .145 .144
75, 75, 75 .816 .857 1 .671 .671 .672 .672
70, 75, 80 .830 .868 1 .674 .674 .676 .676
60, 75, 90 .856 .882 1 .666 .664 .668 .666

Note. ε = equivalence interval for the equivalence F-test; Wellek = equivalence F-test; D =
equivalence interval for the Schuirmann equivalence t-test; S P = Pairwise Schuirmann test
of equivalence; SW P = Pairwise Schuirmann-Welch test of equivalence; S L = Schuirmann
test of equivalence on the largest pairwise mean difference; SW L = Schuirmann-Welch test of
equivalence on the largest pairwise mean difference.

mean configuration µ1 = 0, µ2 = 0, µ3 = 0, µ4 = 1, µ5 = 1. The empirical Type
I error rates for the S P, SW P, S L, and SW L were less conservative with the
population mean configuration µ1 = 0, µ2 = .25, µ3 = .5, µ4 = .75, µ5 = 1,
although the rates for n = 20 never exceeded .012, and the rates for n = 75 never
exceeded .035.

The power results again mirrored those of the Type I error results. The empirical
power rates for the S P, SW P, S L, and SW L were considerably lower with the
population mean configuration µ1 = 0, µ2 = 0, µ3 = 0, µ4 = 1, µ5 = 1 than were
the rates for the Wellek one-way equivalence test across all conditions, and they
were also consistently lower for the S P, SW P, S L, and SW L with the mean
configuration µ1 = 0, µ2 = .25, µ3 = .5, µ4 = .75, µ5 = 1, relative to the Wellek
one-way procedure.
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TABLE 3
Probability of Declaring Three Normally Distributed Populations Equivalent, With the
Population Mean Pattern for Declaring Equivalence Equal to µ1 = 0, µ2 = .5, µ3 = 1

µ1, µ2, µ3 n1, n2, n3 ε Wellek D S P SW P S L SW L

Type I Error Results
0, .5, 1 20, 20, 20 .707 .046 1 .036 .035 .036 .035

15, 20, 25 .707 .055 1 .037 .036 .037 .036
10, 20, 30 .707 .062 1 .032 .034 .032 .034
75, 75, 75 .707 .048 1 .048 .048 .048 .048
70, 75, 80 .707 .048 1 .049 .049 .049 .049
60, 75, 90 .707 .052 1 .048 .048 .048 .048

Power Results
0, .4, .8 20, 20, 20 .707 .141 1 .108 .108 .108 .108

15, 20, 25 .707 .146 1 .102 .102 .102 .102
10, 20, 30 .707 .169 1 .093 .089 .093 .089
75, 75, 75 .707 .327 1 .339 .339 .339 .339
70, 75, 80 .707 .314 1 .322 .322 .322 .322
60, 75, 90 .707 .336 1 .333 .333 .333 .333

0, .3, .6 20, 20, 20 .707 .316 1 .260 .259 .260 .259
15, 20, 25 .707 .322 1 .247 .240 .247 .240
10, 20, 30 .707 .325 1 .195 .190 .195 .190
75, 75, 75 .707 .762 1 .779 .779 .779 .779
70, 75, 80 .707 .761 1 .783 .783 .783 .783
60, 75, 90 .707 .763 1 .774 .772 .774 .772

Note. ε = equivalence interval for the equivalence F-test; Wellek = equivalence F-test; D =
equivalence interval for the Schuirmann equivalence t-test; S P = Pairwise Schuirmann test
of equivalence; SW P = Pairwise Schuirmann-Welch test of equivalence; S L = Schuirmann
test of equivalence on the largest pairwise mean difference; SW L = Schuirmann-Welch test of
equivalence on the largest pairwise mean difference.

DISCUSSION

The Wellek one-way test of equivalence performed very well across all condi-
tions investigated in this study. The Type I error rates were very accurate, and
the power was generally much larger for the Wellek procedure than it was for
the Schuirmann pairwise approach or the Schuirmann approach based on the
largest mean difference between groups. There was little difference between the
Schuirmann pairwise approach and the Schuirmann approach based on the largest
mean difference across all of the conditions in the present investigation. These
results indicate that, although researchers may be more familiar with two-sample
based equivalence tests for independent groups, when there are more than two
groups, there is much to be gained by adopting a one-way test of equivalence
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TABLE 4
Probability of Declaring Five Normally Distributed Populations Equivalent, With the

Population Mean Pattern for Declaring Equivalence Equal to µ1 = 0, µ2 = 0, µ3 = 0,
µ4 = 1, µ5 = 1

µ1, µ2, µ3, µ4,µ5 n1,n2,n3,n4,n5 ε Wellek D S P SW P S L SW L

Type I Error Results
0, 0, 0, 1, 1 20, 20, 20, 20, 20 1.095 .050 1 .000 .000 .000 .000

14, 17, 20, 23, 26 1.136 .056 1 .000 .000 .000 .000
10, 15, 20, 25, 30 1.162 .055 1 .000 .000 .000 .000
75, 75, 75, 75, 75 1.095 .052 1 .001 .001 .001 .001
65, 70, 75, 80, 85 1.114 .053 1 .000 .000 .000 .000
55, 65, 75, 85, 95 1.131 .052 1 .000 .000 .000 .000

Power Results
0, 0, 0, .8, .8 20, 20, 20, 20, 20 1.095 .224 1 .004 .004 .005 .005

14, 17, 20, 23, 26 1.136 .240 1 .003 .003 .004 .004
10, 15, 20, 25, 30 1.162 .251 1 .002 .002 .004 .004
75, 75, 75, 75, 75 1.095 .567 1 .032 .032 .033 .033
65, 70, 75, 80, 85 1.114 .574 1 .033 .032 .037 .037
55, 65, 75, 85, 95 1.131 .578 1 .028 .027 .030 .029

0, 0, 0, .6, .6 20, 20, 20, 20, 20 1.095 .555 1 .033 .033 .037 .037
14, 17, 20, 23, 26 1.136 .575 1 .024 .023 .030 .032
10, 15, 20, 25, 30 1.162 .592 1 .019 .020 .027 .029
75, 75, 75, 75, 75 1.095 .972 1 .402 .402 .404 .404
65, 70, 75, 80, 85 1.114 .975 1 .406 .405 .409 .408
55, 65, 75, 85, 95 1.131 .978 1 .393 .391 .397 .396

Note. ε = equivalence interval for the equivalence F-test; Wellek = equivalence F-test; D =
equivalence interval for the Schuirmann equivalence t-test; S P = Pairwise Schuirmann test of
equivalence; SW P = Pairwise Schuirmann-Welch test of equivalence; S L = Schuirmann test of
equivalence on the largest pairwise mean difference; SW L = Schuirmann-Welch test of equiva-
lence on the largest pairwise mean difference.

rather than adopting an approach that assesses equivalence using only two groups
at a time.1

These results are interesting because they contradict recommendations for con-
ducting traditional tests of the difference between groups (e.g., one-way ANOVA
F test) in one-way designs. For example, Bernhardson (1975) and Hancock and
Klockars (1996) explained that conducting pairwise multiple comparison tests
of the J groups only when an omnibus test is statistically significant is not
recommended unless rejection of the omnibus test is required for the multiple
comparison procedure. In other words, if a researcher were interested in deter-
mining if the means of three independent groups were different, and he or she
intended on using Tukey’s popular honestly significant difference (HSD) multi-
ple comparison procedure (which does not require a significant omnibus test for
use) for family-wise error control, he or she should conduct the pairwise multiple
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TABLE 5
Probability of Declaring Five Normally Distributed Populations Equivalent, With the

Population Mean Pattern for Declaring Equivalence Equal to µ1 = 0, µ2 = .25, µ3 = .5,
µ4 = .75, µ5 = 1

µ1, µ2, µ3, µ4,µ5 n1,n2,n3,n4,n5 ε Wellek D S P SW P S L SW L

Type I Error Results
0, .25, .5, .75, 1 20, 20, 20, 20, 20 .791 .053 1 .010 .010 .012 .012

14, 17, 20, 23, 26 .791 .056 1 .010 .009 .010 .011
10, 15, 20, 25, 30 .791 .060 1 .006 .005 .007 .007
75, 75, 75, 75, 75 .791 .050 1 .030 .030 .033 .033
65, 70, 75, 80, 85 .791 .052 1 .034 .034 .035 .035
55, 65, 75, 85, 95 .791 .051 1 .033 .033 .034 .035

Power Results
0, .2, .4, .6, .8 20, 20, 20, 20, 20 .791 .156 1 .038 .038 .039 .039

14, 17, 20, 23, 26 .791 .162 1 .035 .034 .043 .043
10, 15, 20, 25, 30 .791 .168 1 .028 .027 .038 .038
75, 75, 75, 75, 75 .791 .370 1 .290 .290 .290 .290
65, 70, 75, 80, 85 .791 .377 1 .287 .288 .288 .288
55, 65, 75, 85, 95 .791 .365 1 .271 .269 .272 .273

0, .15, .3, .45, .6 20, 20, 20, 20, 20 .791 .336 1 .106 .106 .115 .115
14, 17, 20, 23, 26 .791 .336 1 .096 .096 .112 .112
10, 15, 20, 25, 30 .791 .344 1 .069 .067 .093 .097
75, 75, 75, 75, 75 .791 .832 1 .753 .753 .754 .754
65, 70, 75, 80, 85 .791 .835 1 .745 .746 .747 .747
55, 65, 75, 85, 95 .791 .831 1 .721 .723 .722 .723

Note. ε = equivalence interval for the equivalence F-test; Wellek = equivalence F-test; D =
equivalence interval for the Schuirmann equivalence t-test; S P = Pairwise Schuirmann test of
equivalence; SW P = Pairwise Schuirmann-Welch test of equivalence; S L = Schuirmann test of
equivalence on the largest pairwise mean difference; SW L = Schuirmann-Welch test of equiva-
lence on the largest pairwise mean difference.

comparison procedures regardless of whether or not the omnibus test is signifi-
cant. If the researcher only conducted the pairwise tests if the omnibus test were
statistically significant, the empirical Type I error rates and power would be biased
downward. This is an important consideration that is often overlooked by applied
researchers. This also contradicts the findings of the present study that conducting
all pairwise tests of equivalence without conducting an omnibus test would bias
the Type I error and power rates downward.

An interesting question that emerges is why the approaches based on the
Schuirmann test statistic are generally conservative. The answer to this question
is in the fact that declaring all J groups equivalent requires multiple statistically
significant test statistics.2 Therefore, the probability of declaring all J groups
equivalent is a function of the product of the probabilities of declaring each
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pairwise mean difference equivalent. For example, with the population mean
configuration µ1 = 0, µ2 = 0, µ3 = 1, and the critical difference (D) set equal
to 1, one knows that if all the assumptions are met, the probability of a Type I
error for the pairwise null hypotheses Ho: µ1 = µ3 and Ho: µ2 = µ3 would each
be approximately .05 (assuming α = .05). The power of Ho: µ1 = µ2 would
depend for example on the sample size and the variability. It should be clear that
unless Ho: µ1 = µ3 and Ho: µ2 = µ3 were perfectly correlated and the power
of Ho: µ1 = µ2 equalled 1.0, the Type I error rate of the pairwise Schuirmann
approach would be less than .05.3 Using this logic, one can also see that when the
population mean configuration is µ1 = 0, µ2 = .5, µ3 = 1, the approach will be less
conservative because now the empirical Type I error rate for declaring all J groups
equivalent with the Schuirmann approach will equal .05 when the Type I error
rate for Ho: µ1 = µ3 equals .05 and the power of Ho: µ1 = µ2 and Ho: µ2 = µ3

equals 1.
An important consideration in adopting the Wellek (2003) one-way test of

equivalence is what value to use for ε. Wellek recommends adopting ε = .25 for a
strict equivalence criterion and ε = .50 for a liberal equivalence criterion. It is also
important to note that ε2 can be computed using the formula for �2 in the case
where researchers have established population values that establish the bounds for
equivalence (and the average within-group variance is known).

In summary, many empirical questions in educational research involve demon-
strating the equivalence of multiple groups. For example, educational researchers
may be interested in determining whether two pedagogical methods produce equiv-
alent learning outcomes. Tests of the null hypothesis Ho: µ1 = . . . = µJ, where
J represents the number of groups, are inappropriate because failing to reject Ho

does not imply that the groups are equal, and further, the probability of declaring
the groups equivalent decreases (rather than increases) as sample size increases.
Instead, tests of equivalence allow researchers to evaluate whether differences
among groups are too small to be considered meaningful, where the researcher
controls what difference is no longer meaningful. Although tests of equivalence
are relatively new to educational researchers, we expect that as these tests be-
come more popular, researchers will be able to use equivalence tests to address
novel research questions that were previously avoided because of a lack of ap-
propriate methodology. The results of the present study suggest that educational
researchers conducting one-way tests of equivalence (i.e., assessing the equiva-
lence of multiple independent groups) should use a one-way equivalence test (such
as that proposed by Wellek, 2003), rather than a pairwise approach to assessing
the equivalence of the means, to ensure that Type I error rates are accurate and
power is maximized. With regard to the one-way equivalence test evaluated in the
present study, pairwise approaches generally produced conservative results that
are less powerful for detecting true equivalencies among means.
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NOTES

1. It is also possible to conduct the Wellek one-way equivalence test with only two groups,
although we found slightly inflated Type I error rates for the Wellek test with only two
groups, and we therefore recommend the Schuirmann two-independent-groups equivalence
test for this design.
2. Even when we are only comparing the largest difference between means, there is an
expectation that smaller differences between means will be statistically significant, even
though this is not always the case and hence the approach using only the largest difference
between means is sometimes slightly more powerful.
3. Although it is more difficult to see, this also applies to the case of declaring all J groups
equivalent if the largest mean difference is declared equivalent because generally this will
only occur when all null hypotheses are rejected.
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