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Abstract 

 

The hippocampus is critical to discriminating between newly learned, highly similar 

stimuli; less clear is its role in discriminating representations based on prior knowledge. In this 

study, young adults, older adults divided by performance on a cognitive screening measure, and 

people with hippocampal amnesia were asked to discriminate between pairs of real-world 

familiar landmarks and well-known animals using the metrics of geographical distance and size. 

Results showed all participants had lower accuracy for judgments with more similar item pairs. 

Low-performing older adults showed selectively worse performance on judgments with more 

similar item pairs. Amnesic individuals’ performance appeared to depend on lesion location. 

Only patient BL, who has selective bilateral dentate gyrus lesions, had difficulty on the landmark 

task when judging between highly similar distances. These results reinforce the importance of 

investigating representation similarity, even for well-established representations, and offer 

insight into mnemonic discrimination across the lifespan and within amnesia. 
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Introduction 

 

The hippocampus, a brain region located in the medial temporal lobe (MTL), is involved 

in episodic memory. Neuroimaging and patient research that have used both laboratory stimuli, 

such as word lists, and naturalistic stimuli, such as film clips and autobiographical events, have 

demonstrated that the hippocampus is critical to episodic memory, whether the episodes were 

experienced recently or in the remote past (Moscovitch et al., 2016). Indeed, the more detail 

recollected from episodic memory and the greater the recollective re-experiencing, the higher the 

likelihood of increased hippocampal activation (Moscovitch et al., 2016). This role of the 

hippocampus in episodic re-experiencing appears to differ from its more temporary role in 

supporting at least some types of semantic memories, including general knowledge. Patients with 

hippocampal amnesia and corresponding episodic memory impairments are known to have 

relatively intact remote semantic memory (e.g., Westmacott & Moscovitch, 2001; evidence 

against from Manns et al., 2003). Research has shown that patients with extensive adult-onset 

hippocampal damage are able to retain knowledge of famous names and vocabulary words 

learned long ago, with additional evidence of postmorbid semantic learning (Tulving, Hayman, 

& Macdonald, 1991; Westmacott & Moscovitch, 2001). Work with patients with hippocampal 

amnesia, Alzheimer’s Disease (AD), and Semantic Dementia suggests that knowledge of 

concepts can consist of non-contextual semantic components and sometimes an 

autobiographical, episodic component (Westmacott et al., 2003; Renoult et al., 2012). This 

research highlights how semantic knowledge may be influenced by episodic processes via the 

hippocampus, and the intertwined nature of semantic and episodic memory. The differential role 

of the hippocampus in episodic versus semantic memory appears to also apply to remote spatial 

memory: more detailed representations of places navigated long ago depend on the 

hippocampus, whereas more schematic or gist-like representations of the same environments do 

not (Herdman et al., 2015).  

The hippocampus is required for yet another process that may or may not be orthogonal 

to the other forms of memory mentioned: mnemonic discrimination, the ability to discriminate 

between similar items or events in memory. This project aimed to better understand whether 

mnemonic discrimination operates on prior knowledge previously encoded, specifically, spatial 

and semantic memory representations. To examine this relationship, this thesis studied 
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mnemonic discrimination processes on semantic memories of well-known environments and 

common animals.   

Hippocampus and Spatial Memory  

Past studies indicate a necessary role for the hippocampus in some types of spatial 

memory. According to the Cognitive Map Theory (CMT), the hippocampus is necessary for 

supporting an allocentric mental representation of the external world (O’Keefe, 1990; right 

hippocampus Burgess et al., 2002). Allocentric mental representations are not dependent on the 

subject’s location in space; instead the representations contain the locations of objects or 

landmarks in relation to one other. In contrast, egocentric representations vary based on the 

perspective of the viewer in relation to objects in space, and engage the parietal cortex (Burgess 

et al., 2002). While predictions of this theory appear to be supported by findings of hippocampal 

involvement in recent spatial memories for newly encountered environments, CMT cannot fully 

account for findings of spared remote allocentric spatial memories of environments learned long 

ago in patients with hippocampal damage (Herdman et al., 2015; Rosenbaum et al., 2000, 2005).  

Evidence for the involvement of the hippocampus in distance judgments in humans 

comes from multiple sources. In one study, participants with a minimum of a year experience 

with their university campus viewed photos of prominent landmarks in an fMRI scanner and 

pressed a button when they identified each landmark (Morgan et al., 2011). Landmarks were 

repeated across different photos. The results showed that when landmarks were repeated, there 

was an attenuation in fMRI response in the parahippocampal place area and retrosplenial cortex, 

as well as adaptation in the left superior lingual gyrus and left medial retrosplenial region 

(Morgan et al., 2011). Further analyses showed that participants’ subjective distance judgments 

(which were highly correlated with the objective distances) were related to activity in the left 

anterior hippocampus. The authors proposed that the hippocampus is automatically involved in 

distance-related effects since participants were not given a specific navigational task. The 

authors interpreted the results as demonstrating a response of the hippocampus to the ‘mismatch’ 

between spatial locations of presented landmarks (Morgan et al., 2011). In our task, participants 

were asked to make distance judgments in a familiar environment between pairs of landmarks to 

a cue, which theoretically should also invoke the hippocampus if the hippocampus codes 

distances between landmarks. Interestingly, previous work with vector mapping has found that 

amnesic patients K.C. and D.A. were intact compared to controls (Herdman et al., 2015). 
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However, the hippocampus does appear to be needed for representing spatial details contained 

within well-known environments when recounting well-traveled routes verbally or when drawing 

maps (Herdman et al., 2015). The Multiple Trace theory (MTT) suggests that the hippocampus is 

required whenever detailed representations are needed in memory, whether spatial or episodic in 

nature (Moscovitch et al., 2005; Moscovitch et al., 2006). In remote spatial memory, basic 

knowledge of maps, which appears to be sufficient for navigation, is conceptualized as schematic 

or semantic-like, and does not appear to depend on the hippocampus for retrieval. By contrast, 

fine-grained details contained within well-known environments, such as the identity of 

landmarks or visual features incidental to navigation, always depend on the hippocampus 

(Rosenbaum et al., 2001).  

 Another influential theory of the role of hippocampus in spatial memory, derived from 

CMT, is the Scene Construction Theory. According to this theory, the hippocampus is involved 

in the construction of scene representations and plays a larger role in creating models of the 

environment (Zeidman & Maguire, 2016). The medial anterior hippocampus and the subiculum 

are viewed as particularly necessary when remote spatial knowledge is required, as this region is 

believed to integrate information from various regions of cortex (Zeidman & Maguire, 2016). 

This theory has been criticized for its lack of specificity in describing what constitutes a scene 

and for neglecting to elaborate on how these scene constructions relate to allocentric spatial 

representations as initially proposed in CMT (Ekstrom & Raganath, 2017). As an alternative, 

Ekstrom and Raganath have proposed that the hippocampus represents stable, regular 

information within its 4-D spatiotemporal framework and then revises this framework according 

to environmental demands. This theory differs from the CMT as it proposes that the 

hippocampus prioritizes spatial and temporal processing and that additional information is 

integrated depending on what is needed in the moment.  

All the above theories propose that the hippocampus is playing a critical role in spatial 

memory and, as such, can help account for changes in strategy use in typical aging, which 

involves a shift from reliance on allocentric strategies to greater use of egocentric strategies, 

which are non-hippocampally based (Colombo et al., 2017). This age-related pattern has been 

attributed to changes in hippocampal structure and function, as well as declines in executive 

function that affect the ability to switch between hippocampal-based strategies (Colombo et al. 

2017). Proponents of the above theoretical frameworks would likely predict that aging would be 
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associated with spatial representations that are lacking in either detail in their construction or 

spatiotemporal specificity. This project helps elaborate on how older adults’ representations of 

well-known spatial environments may differ from younger adults’ representations.  

Mnemonic Discrimination  

In a literature that has developed largely independently of the CMT literature, the 

hippocampus is also implicated in pattern separation. Pattern separation, expressed behaviourally 

as mnemonic discrimination, is the ability to discriminate between overlapping or similar items 

and events as they are encoded. At a neural level, projections from the entorhinal cortex reach 

the granule cells in the dentate gyrus (DG) via this perforant pathway and in turn, the granule 

cells also project to the CA3 cells via mossy fibers (Rolls, 2016). Mossy fibers are unmyelinated 

axon cells with large boutons which are related to collaterals within the polymorphic layer of the 

DG before entering the CA3 (Amaral et al., 2008).  Projections begin in the DG and project to 

the CA3 via the mossy fibers; the Schaffer collaterals then project from the CA3 to the CA1 

(Van Strien et al., 2009). The perforant pathway links the entorhinal cortex with the 

hippocampus, with the strongest projections reaching the DG of the hippocampus and weaker 

projections to the CA1 and CA2 subfields and subiculum (Kivisaari et al., 2013). In Rolls’ theory 

of hippocampal function, it is proposed that the relatively small number of mossy fiber 

connections into CA3 creates a sparse signal and a randomizing effect on CA3 representations, 

physically separating representations (Rolls, 2016). These unstructured, separated CA3 

representations are proposed to allow for the storage of many memories in the CA3 and allow for 

interference between representations to be kept to a minimum (Rolls, 2016). The sparse signal 

produced through DG mossy fiber connections to the CA3 is hypothesized to allow for this 

process of pattern separation or mnemonic discrimination (also named orthogonalization), 

whereby similar memories or representations are differentiated from one another (Rolls, 2016).  

The Mnemonic Similarity Task 

A staple behavioural test of pattern separation (mnemonic discrimination) in humans is 

the Mnemonic Similarity Task (MST; Bakker al., 2008). The MST has been tested across 

multiple task variations and has shown to be reliable (Stark et al., 2015). In this task, participants 

first engage in incidental encoding of everyday objects on a computer. Participants are then 

presented with new objects that resemble studied objects (i.e., “lures”), previously studied 

objects (i.e., “targets”), and novel objects that differ from studied objects (i.e., “foils”). 
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Behaviourally, participants have the greatest difficulty discriminating lures from studied targets, 

a finding that is heightened in healthy older adults relative to younger adults, and even more so 

in individuals diagnosed with amnestic Mild Cognitive Impairment (aMCI) and AD (Yassa & 

Stark., 2011). This pattern of performance is reflected in greater activation within the DG and 

CA3 in an fMRI study of young adults (Bakker et al. 2008). This finding received direct support 

in a recent human lesion study, in which a patient with selective lesions to his DG showed 

impaired pattern separation relative to age-matched controls on the MST (Baker et al., 2016).  

In a review of the role of the hippocampus in pattern separation, Yassa and Stark (2011) 

concluded that aging is associated with a shift from a bias for pattern separation to a bias for 

pattern completion. This bias is linked to elevated firing in the CA3 and thought to result in a 

preference for previous associations, favoring the associative network of pattern completion 

(Yassa & Stark, 2011). Experimental evidence using the MST shows declines in pattern 

separation in healthy adults across the lifespan, from 20 years to 89 years (Stark et al., 2013). In 

healthy adults over the age of 60, performance on the MST and measures of episodic memory 

are positively correlated (Stark et al., 2013). These findings are consistent with well-established 

age-related declines in memory linked to hippocampal dysfunction (Small, 2001). There is 

evidence that drug treatments reducing hippocampal hyperactivity in the CA3 and DG in patients 

with MCI (a condition which often progresses to AD) are associated with improvements in 

cognition and improvements on the MST (Bakker et al., 2012). To investigate age-related effects 

on pattern separation within prior knowledge we recruited participants across the lifespan and 

tested all participants on the MST.   

Mnemonic Discrimination and Episodic Memory  

The role of the hippocampal subfields CA3 and DG in pattern separation has figured in 

experiments on episodic memory. In one fMRI study, participants recalled recent (2-3 weeks 

prior) and remote (10 years prior) autobiographical memories (Bonnici et al., 2013). Critically, 

the recent and remote memories analyzed were matched on features that would be associated 

with recollective, episodic re-experiencing (i.e., ease of recall, vividness, amount of detail). 

Results showed that remote autobiographical memories were significantly better classified in the 

CA3 and DG (Bonnici et al., 2013). The study supports the involvement of the hippocampal 

subfields in vivid re-experiencing of autobiographical events, even within remote memories 

(Bonnici et al., 2013).  



6 
 

 

Recent work has also shown that DG/CA2/3 volumes are positively correlated with remote 

and recent real-world episodic memories (Palombo et al., 2017). The authors used the 

Autobiographical Memory Interview and found that internal details of autobiographical 

memories, which are synonymous with episodic re-experiencing, were positively correlated with 

subiculum as well as DG/CA2/3 volume (Palombo et al., 2017). Both studies support the idea that 

rich detail in remote episodic memories may be represented in the CA3/DG regions, but neither 

study examined mnemonic discrimination within these memories. Using film clips with 

overlapping events and contexts, Chadwick et al. (2014) found that CA3 volume predicted 

participants’ subjective feelings of confusion and CA3 neural interference or voxel overlap. This 

work supports the involvement of the CA3 in the process of mnemonic discrimination (pattern 

separation) and pattern completion for rich, episodic-like stimuli (Chadwick et al., 2014).  

Taken together, this research bridges the episodic memory and mnemonic discrimination 

literatures under their shared neural substrate of the DG/CA3. How specifically mnemonic 

discrimination is implicated in these processes, however, remains speculative. One possibility is 

that it is needed to represent detailed episodic memories with overlapping elements to reduce 

interference among them. 

One study aimed to investigate how overlapping context may influence the involvement 

of the hippocampus. Participants learned artificial city environments differing in the degree of 

overlapping spatial context, which was manipulated by shared or unique geometry and store 

locations (Kyle et al., 2015). Results showed that participants were more likely to become 

confused learning the city with the most overlap with store locations and making errors to the 

similar cities (Kyle et al., 2015). Pattern classification through a searchlight classifier throughout 

the MTL found a cluster in the left CA3/DG and CA1 of the hippocampus which classified city 

identity above chance for all but the city highest in interference. Results showed that the 

interference city was often misclassified as one of the two similar cities, consistent with 

behavioural findings of confusion. These results are consistent with a pattern separation 

explanation of the findings, as this city did not have distinct representation from the other cities 

(Kyle et al., 2015). This study offers support that the DG/CA3 is involved in separating out 

similar representations for spatial information in healthy young adults.  

In summary, there is substantial evidence for the importance of hippocampal subregions 

in representing fine-grained details, but not schematic or gist-like information, in remote spatial 
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and episodic memory. Additionally, the hippocampus, including the DG/CA3, has been 

implicated in the process of mnemonic discrimination or pattern separation in multiple 

paradigms. These functions may interact with one another, as indicated by a recent finding that 

these subregions’ volumes are correlated with level of episodic memory detail in 

autobiographical memories (Palomba et al., 2017). One possibility is that the DG is critical when 

mnemonic discrimination operates on detailed information, even if the information is part of 

one’s prior knowledge within remote semantic memory.   

Current Study 

In this study, we hypothesize that the ability to discriminate between highly similar 

representations, even within otherwise preserved remote spatial or semantic memory, will be 

impaired with hippocampal damage to the DG/CA2/3 when the process of pattern separation 

(mnemonic discrimination) is required to discriminate highly similar stimuli. Likewise, older 

adults, who, on average, show an age-related shift in bias from pattern separation towards pattern 

completion, are predicted to have greater difficulty than younger adults in mnemonic 

discrimination within remote memory. Given the preservation of remote spatial memory and 

semantic knowledge within aging, we predict that a subset of our older adults showing potential 

cognitive impairment may show this effect.  

To address these hypotheses, we will investigate remote spatial memory and semantic 

knowledge with a task that involves mnemonic discrimination in neurotypical younger and older 

adults, older adults identified as “at-risk” of developing AD or other dementias (defined below), 

and individuals with amnesia likely due to hippocampal damage, including a patient with 

selective lesions to the DG. The remote spatial memory task is a distance discrimination task or 

vector mapping task, in which participants are asked to judge the proximity of pairs of well-

known Toronto landmarks, with distances between one pair closer or farther apart from those of 

another pair. For example, participants are asked to decide whether Toronto Eaton Centre or the 

Art Gallery of Ontario is closer in distance to the CN Tower. For those familiar with the city, this 

would be a more difficult judgment than deciding whether the Toronto Eaton Centre or Bata 

Shoe Museum is closer to the CN Tower. We hypothesize that this task tests one’s mnemonic 

discrimination abilities in remote spatial memory.  

To investigate whether mnemonic discrimination operates within prior knowledge 

beyond spatial information, we used animal stimuli in a similar manner to landmark stimuli. 



8 
 

 

Animal knowledge is a commonly measured aspect of semantic memory that is known to be 

impacted by Semantic Dementia and other conditions which impact conceptual knowledge 

(Patterson et al., 2007; Binder et a., 2009). Animals offer a good contrast to landmark stimuli, as 

they are visually rich, have associated functions, and are well-known. In this study, participants 

were asked to decide which of two well-known animals is closer in size to a target animal. Using 

animal judgments in a similar manner to landmark judgments, with size as a metric instead of 

distance, allows us to see if the pattern of performance differs based on stimulus type. We predict 

that if there is a high similarity in size between the two cues and the target, there will be a greater 

requirement for mnemonic discrimination, and therefore lower performance accuracy. Given the 

relative lack of hippocampal involvement in semantic memory and its general preservation in 

aging, we would predict that these judgments will not be as difficult as the landmark judgments 

and amnesic patients should not be impaired relative to controls. We predict that at-risk older 

adults will show impairments on the highly similar judgments given the potential for abnormal 

aging (defined below) and therefore impaired semantic knowledge (Patterson et al., 2007).  

We predict that at-risk older adults and amnesic cases, including an individual with DG 

lesions, will show impairments on high similarity trials compared to healthy younger adults. We 

predict that healthy older adults and healthy young adults will show similar performance on the 

task for judgments that rely on schematic, gist-like knowledge and do not require mnemonic 

discrimination. This prediction stems from previous work showing intact semantic and gist-like 

knowledge in older adult participants for spatial information (Rosenbaum et al., 2004). However, 

for judgments with highly similar information, older adults should show worse performance, 

specifically on the landmark remote spatial memory task, which we hypothesize involves the 

hippocampus to a greater degree than the other tasks. If at-risk older adults show decreased 

performance on high-similarity trials compared to the healthy older adults, we propose that these 

results would reflect the activation of DG/CA3 when mnemonic discrimination is required, even 

in remote spatial memory or knowledge of visual stimuli.  

BL, an individual with selective bilateral DG lesions, will provide insight into the causal 

nature of the DG in remote memory when pattern separation is required. BL has been described 

previously in the literature and shows impaired pattern separation on the MST, as would be 

predicted in a person with hippocampal damage selective to the DG (Baker et al., 2016). Two 

additional amnesic patients will offer insight into how damage to the episodic memory system 
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more broadly impacts mnemonic discrimination abilities. This is an important consideration 

given previous work that has investigated mnemonic discrimination in AD and proposes that the 

hippocampus drives impairments in performance (Yassa & Stark, 2011).  

The results will have implications for theories of hippocampal function and may help to 

refine and unify them. For example, if people at-risk of developing dementia, and amnesic 

patients including a person with DG lesions, have difficulties on tests of remote spatial and non-

spatial memory only when pattern separation is necessary, it would suggest that the role of the 

hippocampus is not specific to spatial representations, not fully consistent with predictions of the 

CMT. These results would also offer insight into how mnemonic discrimination in prior 

knowledge (spatial and semantic) differs compared to mnemonic discrimination for newly 

learned information (specifically using the MST). Given the testing of participants experiencing 

potentially abnormal aging and people with amnesia, these results also have implications for 

theories of mnemonic discrimination and theories explaining memory difficulties in AD. If the 

hypothesized results are confirmed, they would also support the involvement of the DG/CA2/3 

pathway in mnemonic discrimination beyond the visual discrimination of objects within newly 

formed representations or even details of rich episodes, in well-represented semantic and spatial 

information.  

Methods 

Participants 

The study received approval from the University of Toronto, Baycrest Hospital, and York 

University research ethics boards. Participants were recruited from the University of Toronto, 

Baycrest, and York University communities. All participants gave informed consent for 

participation, were debriefed, and compensated for their time.  

Three groups of participants were recruited for this study, healthy young participants 

between the ages of 18 and 35 years, older participants, between the ages of 60 and 90 years, and 

3 patients with amnesia and their respective control participants. All participants had normal or 

corrected-to-normal vision and no history of neurological or psychological diagnoses. 

Participants were tested individually, and an experimenter was present during testing to review 

task instructions and answer any questions that might arise. 
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Participants over the age of 50 were administered the Montreal Cognitive Assessment 

(MoCA) to characterize cognitive status. Participants who received a score of 26 or above on the 

MoCA were included in the “healthy aging” sample, whereas those who score 25 or below were 

considered “at-risk” for developing dementia, following previous practices in research studies 

looking at group-based differences based on MoCA performance (see Newsome et al., 2015 and 

Fidalgo et al., 2016). Data on other factors associated with the risk of developing dementia, such 

as genetic, physiological, and cognitive were not considered in assigning group status, as per 

previous practices (Newsome et al., 2015; Fidalgo et al., 2016). Recent work has advocated for a 

standard cut-off of 23 when using the MoCA clinically, as this appears to be more sensitive to 

cognitive dysfunction in the general population (Luis et al., 2009; Rossetti et al., 2011; Carson et 

al., 2017). To this end, a cut-off of 23 was also considered in the analyses.  

Younger Adults 

23 younger adult participants were recruited to participate in this study. Three 

participants were excluded due to insufficient landmark familiarity (see supplemental methods 

for more information), and an additional participant was excluded due to an inability to complete 

the task. The remaining sample consists of 19 participants. Two participants reported a history of 

anxiety but were not currently being treated with medication or other interventions and remained 

in the sample. Demographic information is provided in Table 1.  

Older Adults  

 46 participants over the age of 50 participated in this experiment, including participants 

recruited as controls for the amnesic cases. Twelve participants were excluded from analyses due 

to not meeting enrollment criteria, lack of familiarity with landmarks, inability to complete task 

within the allotted time. Additionally, a further participant withdrew from the experiment. A 

final sample of 33 participants were included in the analyses. Demographic information for the 

older adults is presented in Table 1. Eighteen of the older participants scored at or above 26 on 

the MoCA and were included in the healthy older adult group and fifteen participants scored at 

or below 25 and were placed into the “at-risk” group. Controls matched to the three amnesic 

cases are identified in Table 2.   
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Amnesic Cases 

Three adult men with documented memory impairment were also recruited. These 

patients have diverse etiologies and differ in their degree of memory impairment.  

Patient DA is a 66-year-old man with 17 years of education in mathematics and finance 

who has been described previously (Rosenbaum et al., 2008; Kwan et al., 2015). He is a right-

handed male and native English speaker. In 1993, he contracted viral encephalitis, which resulted 

in substantial MTL damage (see Figure 3, adapted from Kwan et al., 2013). His MTL damage is 

bilateral, with more severe damage in his right hemisphere than left hemisphere. In addition, he 

has volume reductions in the posterior temporal, ventral frontal, occipital regions, anterior 

cingulate, and posterior thalamus (Kwan et al., 2013).  

Patient BL is a 57-year-old man with 13 years of education who has been described 

previously. He is right-handed and native English speaker. In 1985, he experienced a hypoxic-

ischemic brain injury following an electrical accident and cardiac arrest (Kwan et al., 2015). BL 

has bilateral loss of the DG/ CA3 of his hippocampus (See Figure 2; Baker et al., 2016). In 

addition to this loss, he has also has left hemisphere volume loss relative to controls in the 

superior parietal lobule as well as right hemisphere loss in the precuneus (Baker et al., 2016). 

Prior work has shown that BL is selectively impaired on the MST lure discrimination relative to 

controls, consistent with his DG lesion (Baker et al., 2016).  

Patient JD is a 65-year-old man with 19 years of education in mathematics and 

engineering. His case has not been previously documented in the literature. He is left-handed and 

is a native English speaker. JD suffered a severe anoxic brain injury secondary to cardiac arrest 

in 2013. There are no MRIs available for JD due to contraindications. Within the year following 

his injury, JD underwent neuropsychological testing (Table 3). JD’s most prominent deficits 

appeared on tests of memory, consistent with subjective report, as well as on tests of verbal 

fluency and processing speed (symbol search). JD has experienced difficulties writing and 

forming a fist since his injury, which may be suggestive of damage beyond the MTL or nerve 

damage outside the central nervous system. These issues may also relate to an earlier injury 

involving dislocation of his left shoulder years prior. He also exhibited minor facial paralysis, but 

the source is unclear.  
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Procedure & Materials 

Procedure 

 Because participants have different experience navigating in different portions of the 

downtown core, the stimuli used for the landmark condition were necessarily tailored to the 

individual. Prior to participation, all participants completed a survey either online or over the 

telephone where they were asked to indicate their familiarity with 54 landmarks in downtown 

Toronto on a Likert scale ranging from 1-5, with 5 indicating high familiarity and 1 indicating no 

familiarity. Participants were only recruited to participate if they gave a rating of 4 or 5 on a 

clear majority of landmarks. Because distances between landmarks was a key manipulation, 

participants were required to be highly familiar with landmarks in different areas of the city and 

not just a single area of the downtown core. Participants were required to have a minimum of 3 

years’ experience living or navigating frequently in the city, with most participants having 10 

years’ or more experience. Given the variability in experience with the city, years’ experience 

was included as a predictor in the analyses.  

All participants began the experiment by giving informed consent for participation, and 

then filling out demographic questionnaires. Participants then completed the MST described 

above (See Supplemental Methods for how missing MST data was handled). The MST takes 

place over 2 phases, first an incidental encoding task for images of objects followed by a forced 

choice recognition task where participants indicate whether presented objects are old (previously 

presented), similar (similar to but different from a previously presented image), or (new) newly 

presented. Afterwards, participants were administered the main experimental task, the Similarity 

Judgment Task, which consisted of two practice runs and at least 6 test runs 1, with 32 trials in 

each run. For each of the landmark, animal, and number conditions, trial runs involved 

presentation of a target on the screen. Two seconds later, 2 additional cues appeared below the 

target on the screen. Participants were asked to choose which of the 2 bottom choice stimuli was 

closer in distance, size, or value to the target stimulus (see Figure 1 for a visual depiction of the 

task). Participants were then asked to rate on a 7-point likert scale the vividness (ability to 

visualize in the mind’s eye) of the landmarks and animals or the ease of judgment for the 

numbers. Participants completed two trials during each run where they counted the number of 

                                                           
2Some participants in the young adult group completed 7 runs.  
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vowels in landmark stimuli.  This was included to replicate an fMRI version of the task, which 

required a low-level control condition but that is not meaningful behaviourally. For this reason, 

the vowel counting condition was not analyzed in the current study. The results of the number 

task are also not reported here.  

After completing the Similarity Judgment Task, participants were questioned about the 

strategies they used to complete the task. Participants also completed a brief visual working 

memory task, the results of which are not reported here, for brevity. The scoring procedure of the 

participants’ strategies is included in Supplemental Methods.  

Materials 

Landmark condition  

 Twenty landmarks rated as most familiar (with rating ≥ 4 on the prescreening survey) 

were selected for each participant. The distance between all possible pairs of landmarks was 

calculated using Google-map walking distance. Next, we chose 100 sets of 3 landmarks (one 

designated as the starting location and the other two as targets) such that the differential 

distances, i.e., the distance between the starting location and Target 1 minus the distance between 

the starting location and Target 2, were equally grouped into 5 distance bins (0 m – 249 m, 250 

m – 499 m, 500 m –749 m, 750 m – 999 m, 1000 m – 1249 m). For example, the walking 

distance from the CN Tower (start location) to City Hall (Target 1) is 1300 m and from the CN 

tower (start location) to Union Station (Target 2) was 750 m, with a stimulus distance value of 

1300 m-750 m = 650m. This trial was included in bin level 3 (moderate stimulus distance). To 

counterbalance the left/right response choice, we randomly presented half of the closer targets 

(i.e., the correct response) on the left side of the screen within each bin. The stimuli were 

prepared using an Excel Visual Basic script.  

Landmarks for patients BL and DA differed from those of other participants, as both 

patients were not sufficiently familiar with downtown Toronto. Both patients’ environments 

were municipalities located outside of the downtown core and, as such, shared commonalities in 

terms of more residential houses and fewer landmarks overall. BL’s environment allowed for the 

creation of bins identical to those of control participants in terms of range of differential 

distances. DA’s environment differed from that of control participants, and his bin 5 landmarks 
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exceeded the maximum 1249 metres used for controls and extended to 5700 metres. His other 

bins (1-4) were identical.  

Animal condition 

 Twenty familiar animals were used for all participants, and the ranking of the animal 

sizes was guided by a seminal publication (Moyer, 1973). Like the landmark condition, 100 sets 

of 3 animals were selected such that the differential size could be equally distributed into five 

bins. Here, the differential size was calculated using animal rankings (from 1-10), with the 

minimum size differential set at 1 and maximum set at 5. For example, if the starting animal had 

a size ranking of 7 (e.g., lynx), and Target 1 had a ranking of 1 (e.g., flea), and Target 2 had a 

ranking of 8 (e.g., bear), then the differential ranking would be [(7-1)-(8-7)] = 5. This trial would 

be placed in bin 5, as it is relatively large. The left and right correct responses were also 

counterbalanced within bins. With this method of stimulus creation, stimulus distance was 

largely manipulated by varying the size of the two targets, such that the differential distance and 

the intra-target distance (the difference in size between the targets) were highly correlated (r = 

.99).  

Stimulus Presentation 

During each trial of the landmark and animal condition (Figure 1), participants were first 

shown the name of a target landmark for 2 seconds. Then, two different cues were presented, and 

participants were asked to determine which of the landmarks represented by the cues is closer to 

the presented target. For the landmarks, ‘closer’ was closest geographic distance and for animals, 

this was overall size. All stimuli remained on the screen for 6 seconds. After responding, 

participants were given 4 seconds to provide a vividness rating from 1–7, where a higher rating 

indicated stronger vividness of the judgment. Patient DA and his wife (included as a control 

participant for him) had an additional 2 seconds (total of 8 seconds) to respond to the task, since 

DA struggled to successfully complete the practice within the allotted 6 seconds.   

 

 

 



15 
 

 

Data Analyses 

To investigate task performance on the MST across participant groups, analysis of 

variances was used followed by pairwise comparisons. To investigate performance on the 

similarity judgment task, generalized hierarchical logistic regressions were used. Logistic 

regression was chosen as it predicts performance for a binary variable, in this experiment 

accuracy. Accurate responses were coded as 1 and inaccurate responses were coded as 0. 

Demographic and experience covariates were included in the model if they were relevant to 

predicting task performance and were not highly correlated with one another. Pairwise 

comparisons were completed to test the difference in accuracy across the stimulus bins holding 

all predictors constant. Patients’ performance on all conditions was compared to that of controls 

using Crawford and Garthwaite’s (2002) modified t-test procedure. All t-tests’ p-values are 

reported with one-tailed probability.  

Results 

Mnemonic Similarity Task (MST) 

 MST results are presented in figures 4 and 5.  Figure 4 shows recognition accuracy across 

the old, similar, and new conditions across younger adults, healthy older adults, and ‘at-risk’ 

older adult participants. Figure 5 shows the Lure Discrimination Index (LDI) scores for each of 

the participant groups. The LDI has been used in the MST task as a measure of pattern separation 

(Stark et al., 2013; Baker et al., 2016). The LDI is the difference between the rate of “Similar” 

responses given by participants to lure stimuli minus the rate of “Similar” responses given to foil 

items (Stark et al., 2015).  

There were no significant differences in accuracy in the Old and New conditions between 

younger adults, healthy older adults, and ‘at-risk’ older adults (Old: F(2,44) = 0.058, p = 0.94; 

New: F(2,44) = 0.15, p = 0.86). However, there was a significant difference in the Similar 

Condition [F(2,44) = 21.42, p < .001]. To investigate these differences in a more detailed 

manner, LDI scores were analyzed. ‘At-risk’ older adults had numerically but not significantly 

lower LDI scores than healthy older adults (t(29) = (-1.46) , p = 0.16), healthy older adults had a 

significantly lower MST LDI scores than young adults (t(32) = 2.81 , p = 0.01), and ‘at-risk’ 

older adults had significantly lower MST LDI scores than young adults (t(27) = 4.75 , p < .001).  
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 Patient DA had an LDI score of 29.03. His accuracy for correctly identifying targets 

(indicating old) was 89%, correctly identifying lures (indicating similar) was 31%, and correctly 

identifying foils (indicating new) was 97%. Patient JD had an LDI score of 14.09. His accuracy 

for correctly identifying targets (indicating old) was 65%, correctly identifying lures (indicating 

similar) was 16% and correct identifying foils (indicating new) was 95%. Patient BL’s 

performance on the MST has been documented previously in the literature (Baker et al., 2016). 

BL’s LDI score across two sessions of testing was 0.84. His accuracy for correctly identifying 

targets (indicating old) was 81%, correctly identifying lures (indicating similar) was 15% and 

correctly identifying foils (indicating new) was 72.79%. 

Similarity Judgment Task 

Young Adults 

Landmarks 

A generalized hierarchical logistic regression was used to predict landmark accuracy 

from differential distance bins, with MST LDI Score, years living in Toronto, frequency 

navigating in downtown Toronto, years of education, and intra-target distance held constant. 

MST score and age were excluded from the model due to the high collinearity with MST LDI 

Score and years of education, respectively. Regression coefficients are shown in Table 9. 

Frequency navigating in downtown Toronto had significant partial effects in the null model.  

Separate models were run to test whether bin type and frequency downtown are significant 

contributors, both of which were significantly different (see Table 9).  

Pairwise comparisons were conducted to test the difference in accuracy across the 

differential distance bins, holding the aforementioned predictors constant. Accuracy across the 

bins is shown in Table 5, which demonstrates accuracy increases over the differential distance 

bins. Bin 1 was found to be significantly different from bins 3, 4, and 5 (Bin 3: Z = 2.13, p = .03; 

Bin 4: Z = 2.53, p =.01; Bin 5: Z = 5.21, p < .001). Bin 2 was significantly different from Bin 5 

(Z = 4.65, p <.001). Bin 3 was significantly different Bin 5 (Z = 3.38, p < .001]. Bin 4 was 

significantly different from Bin 1 [(Z = (-2.53), p = 0.01)] and Bin 5 [(Z =2.96, p = 0.003)].  
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Animals 

A generalized hierarchical regression was used to predict animal accuracy from 

differential distance bins, with MST LDI Score, age, and years of education held constant. MST 

score and age were excluded from the model due to the high collinearity with MST LDI Score 

and years of education, respectively. Regression coefficients are presented in Table 10. Age had 

significant partial effects (.05 level) in the null model. To test whether bin is a significant 

predictor of accuracy in the model, an identical model was run without bin as a predictor and 

compared to the original model, and results showed the model containing bins was significantly 

different (see Table 10). 

Pairwise comparisons were completed to test the difference in accuracy across the 

differential distance bins holding the aforementioned predictors constant. Accuracy was found to 

increase with increasing bin level (see Table 5 for means). Bin 1 was found to be significantly 

different from bins 3, 4, and 5 (Bin 3: Z = 3.17, p = .002 .01; Bin 4: 4.67, p < .001; Bin 5: Z = 

4.45, p < .001). Bin 2 was significantly different from Bins 4 and 5 (Bin 4: Z = 3.59, p <.001; 

Bin 5: Z = 3.27, p = .001).  Bin 3 was significantly different from Bins 1, 4, and 5 [Bin 1: Z = (-

3.17), p = .002; Bin 4: 2.68, p =.007; Bin 5: Z = 2.27, p = .02]. Bin 4 was significantly different 

from Bins 1, 2, and 3 [Bin 1: Z = -4.66, p < .001; Bin 2: Z = (-3.59), p < .001; Bin 3: Z = (-2.68); 

p = .007].  

Healthy Older Adults Task Performance 

Landmarks 

A generalized hierarchical regression was used to predict distance accuracy from 

differential distance bins, with MST LDI Score, MoCA Executive Functions subscale, MoCA 

memory subscale, years living in Toronto, age, years of education, and intra-target distance held 

constant. MST score and age were excluded from the model due to the high collinearity with 

MST LDI Score and years of education, respectively. Regression coefficients are presented in 

Table 11. MST LDI Score had significant partial effects (p = .03) in the null model. To test 

whether bin is a significant predictor of accuracy in the model, an identical model was run 

without bin as a predictor and compared to the original model, and results showed the model 

containing bins was significantly different (Table 11). A model with frequency navigating in 

Toronto was compared to the original model and found not to be significant (Table 11).   



18 
 

 

Pairwise comparisons were completed to test the difference in accuracy across the 

differential distance bins, with the aforementioned predictors held constant. Mean accuracy 

increased over the differential bins (see Table 6). Bin 1 was found to be significantly different 

from bins 3, 4, and 5 (Bin 3: Z = 2.24, p = .02; Bin 4: 3.73, p < .001; Bin 5: Z = 4.93, p < .001). 

Bin 2 was significantly different than Bins 4 and 5 (Bin 4: Z = 3.13, p = .001; Bin 5: Z = 4.42, p 

< .001). Bin 3 significant different from Bins 1 and 5 [Bin 1: Z = (-2.24), p = .02; Bin 5: Z = 

3.03, p = .003]. Bin 4 was significantly different from Bins 1 and 2 [Bin 1: (Z = (-3.73), p < 

.001); Bin2: Z = (-3.13); p = .002].  

Animals 

A generalized hierarchical regression was used to predict distance accuracy from 

differential distance bins holding MST LDI Score, MoCA Executive Functions subscale, MoCA 

memory subscale, Years living in Toronto, downtown frequency, age, years of education and 

intracue distance constant. MST score was excluded from the model due to the high collinearity 

with MST LDI Score. Age had significant partial effects in the null model.  Regression 

coefficients are shown in Table 12.  

Pairwise comparisons were completed to test the difference in accuracy across the 

differential distance bins holding the aforementioned predictors constant. Accuracy increases 

over the differential bins (see Table 6). Bin 1 was found to be significantly different to bin 3 (Bin 

3: Z = 2.76, p = .006). Bin 2 was not found to be significantly different from any other bins. Bin 

3 significant different from Bin 1 [Bin 1: Z = (-2.76), p = .006]. Bin 4 was not found to be 

significantly different from any other bins. 

‘At-risk’ Older Adult Task Performance 

Landmarks 

A generalized hierarchical regression was used to predict landmark accuracy from 

differential distance bins holding MST LDI Score, MoCA Executive Functions subscale, MoCA 

Memory subscale, years living in Toronto, downtown frequency, age, years of education, and 

intracue distance constant. Regression coefficients are shown in Table 13 for all but the bin 

condition. Age had significant partial effects (.05 level) in the null model. To test whether bin is 

a significant predictor of accuracy in the model, an identical model was run without bin as a 
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predictor and compared to the original model. Results showed the model containing bins was 

significantly different (Table 13). To test whether downtown frequency is significant predictor of 

accuracy in the model, an identical model was run without frequency as a predictor and results 

showed the model containing downtown frequency was not significantly different (Table 13). 

Pairwise comparisons were completed to test the difference in accuracy across the 

differential distance bins holding the aforementioned predictors constant. Accuracy increases 

over the differential bins (see Figure 6). Bin 1 was found to be significantly different to bin all 

bins (Bin 2: Z = 2.28, p = .02; Bin 3: Z = 2.99, p =.003; Bin 4: Z = 3.19, p = .001; Bin 5: Z = 

5.82, p < .001). Bin 2 was found to be significantly different from Bin 1 and Bin 5 [Bin 1: Z = (-

2.28), p =.02; Bin 5: Z = 3.90, p = < .001]. Bin 3 was found to be significantly different from Bin 

1 and Bin 5 [Bin 1: Z = (-2.99), p = .003; Bin 5: Z = 3.14, p = .002].  Bin 4 was significantly 

different from Bins 1 and 5 [Bin 1: (Z = (-3.19), p = .001); Bin 5: Z= (2.88); p = .004].  

Animals 

A generalized hierarchical regression was used to predict animal accuracy from 

differential distance bins holding MST LDI Score, MoCA Executive Functions subscale, MoCA 

memory subscale, age and years of education constant. Regression coefficients are shown in 

Table 14. MoCA memory score had significant partial effects in the null model. To test whether 

bin is a significant predictor of accuracy in the model, an identical model was run without bin as 

a predictor and compared to the original model and results showed the model containing bins 

was significantly different (Table 14). 

Pairwise comparisons were completed to test the difference in accuracy across the 

differential distance bins holding the aforementioned predictors constant. Accuracy increases 

over the differential bins (see Figure 6). Bin 1 was found to be significantly different from bins 

3, 4, and 5 (Bin 3: Z = 3.22, p = .001; Bin 4: Z = 3.22, p = .001; Bin 5: Z = 3.65, p < .001).  Bin 2 

was found to be significantly different from bin 5 (Bin 5: Z = 2.29, p = .02).  Bin 3 was found to 

be significantly different from bin 1 [Bin 1: Z = (-3.22), p = .001]. Bin 4 was found to be 

significantly different from bin 1 (Bin 1: Z = (-3.22), p = .001].  
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Group Comparisons 

Younger versus Healthy Older adults  

Landmarks 

A generalized hierarchical regression was used to predict landmark accuracy from 

differential distance bins for older and younger adults holding MST LDI score, Participant 

Group, Downtown Frequency, Years of Education, and intracue distance constant. Years living 

in Toronto was not included in the model as it was highly collinear with Participant Group. 

Regression coefficients are shown in Table 15. No partial coefficients were significant. To test 

whether bin is a significant predictor of accuracy in the model, an identical model was run 

without bin as a predictor and compared to the original model and results showed the model 

containing bins was significantly different (Table 15). A model with group removed was not 

significantly different from a model including group (Table 15).  

Pairwise comparisons were completed to test the difference in accuracy across the 

differential distance bins holding the aforementioned predictors constant. Accuracy increases 

over the differential bins for both groups but there is not a difference in accuracy between older 

and younger adults (see Figure 6). Bin 1 was found to be significantly different from bins 3, 4, 

and 5 (Bin 3: Z = 2.97, p = .003; Bin 4: Z = 4.34, p < .001; Bin 5: Z = 7.10, p < .001). Bin 2 was 

found to be significantly different from bins 3, 4, and 5 (Bin 3: Z = 2.18, p = .03; Bin 4: Z = 3.61, 

p < .001; Bin 5: Z = 6.50, p < .001).  Bin 3 was found to be significantly different from bin 1, 2, 

and 5 [Bin 1: Z = (-2.97), p = .003; Bin 2: Z = (-2.18), p = .03; Bin 5: Z = (4.56), p < .001]. Bin 4 

was found to be significantly different from bin 1, 2, and 5 [Bin 1: Z = (-4.34), p < .001; Bin 2: Z 

= (-3.61), p < .001; Bin 5: Z = (3.11), p = .002].  

Animals 

A generalized hierarchical regression was used to predict animal accuracy from 

differential distance holding MST LDI Score and group constant for older and younger adults. 

Age was not included in the model as it was highly collinear with Group. Regression coefficients 

are shown in Table 16. To test whether bin is a significant predictor of accuracy in the model, an 

identical model was run without bin as a predictor and compared to the original model. The 

results showed the model containing bins was significantly different. The same procedure was 
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taking to test whether group was a significant predictor of accuracy, and these models were also 

significantly different.  

Group means show that healthy older adults have higher accuracies than young adult 

participants across bins (Table 6). Pairwise comparisons were completed to test the difference in 

accuracy across the differential distance bins holding the aforementioned predictors constant. Bin 

1 was found to be significantly different from all bins (Bin 2: Z = 2.51, p = .01; Bin 3: Z = 4.26, 

p < .001; Bin 4: Z = 5.51, p < .01; Bin 5: Z = 5.46, p < .001).  Bin 2 was found to be significantly 

different from all bins (Bin 1: Z = (-2.51), p = .01; Bin 3: Z = 1.97, p = .05; Bin 4:   = 4.33, p < 

.001; Bin 5: Z = 5.46, p < .001).  Bin 3 was found to be significantly different from all bins [Bin 

1: Z = (-4.26)), p < .01; Bin 2: Z = (-1.967), p = .05; Bin 4: Z = (-3.19), p < .001; Bin 5: Z = 2.90, 

p < .001]. Bin 4 was found to be significantly different from bins 1, 2, and 3 (Bin 1: Z  =  (-3.19), 

p = .001; Bin 2: Z  =  (-4.33), p < .001; Bin 3: Z  =  (-5.51), p < .001]  

Healthy older adults and ‘At-risk’ older adults  

Distances 

A generalized hierarchical regression was used to predict landmark accuracy from 

differential distance bins holding MST LDI score, MoCA Status, Downtown Frequency, Years 

of education, age, and intracue distance constant for all older adults. Regression coefficients are 

shown in Table 17. Significant null predictors of performance were MST LDI Score and Intracue 

Distance. To test whether bin is a significant predictor of accuracy in the model, an identical 

model was run without bin as a predictor and compared to the original model. Results showed 

the model containing bins was significantly different. A model with downtown frequency was 

not significantly different from a model. The same procedure was taken to test whether group 

was a significant predictor of accuracy, and these models were significantly different.  

Bin 1 was found to be significantly different from all bins (Bin 2: Z = 2.19, p = .03; Bin 

3: Z = 3.68, p < .001; Bin 4: Z = 4.9, p < .001; Bin 5: Z = 7.62, p < .001).  Bin 2 was found to be 

significantly different from bins 1, 4, and 5 [Bin 1: Z = (-2.19), p = .03; Bin 4: Z = 2.97, p =.003; 

Bin 4: Z = 4.9, p < .001; Bin 5: Z = 5.91, p < .001].  Bin 3 was found to be significantly different 

from bins 1 and 5 [Bin 1: Z = (-3.68), p < .001; Bin 5: Z = 4.38, p < .001).  Bin 4 was found to be 

significantly different from bins 1, 2, and 5 [Bin 1: Z =  (-4.897), p < .001; Bin 2: Z  = (-2.97), p 

= .003; Bin 1: Z  = 3.00, p =.003]  
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Animals 

A generalized hierarchical regression was used to predict animal accuracy from 

differential distance holding MST LDI Score, MoCA status, years of education and age constant 

for all older adults. Regression coefficients are shown in Table 18. To test whether bin is a 

significant predictor of accuracy in the model, an identical model was run without bin as a 

predictor and compared to the original model and results showed the model containing bins was 

significantly different from its competitor. The same procedure was taken to test whether group 

was a significant predictor of accuracy, and these models were significantly different.  

Pairwise comparisons were completed to test the difference in accuracy across the 

differential distance bins holding the aforementioned predictors constant. Mean Accuracy 

increases over the differential bins and differs depending on the bin (see Figure 6). Bin 1 was 

found to be significantly different from bins 2, 3, 4, and 5 (Bin 2: Z = 2.47, p = .01; Bin 3: Z = 

2.47, p < .001; Bin 4: Z = 4.76, p < .001;Bin 5: Z  = 4.85, p < .001).  Bin 2 was found to be 

significantly different from all bins [(Bin 2: Z = (-2.52, p = .01; Bin3: Z = 2.23, p = .03; Bin 4: Z 

= 3.12, p < .001; Bin 5: Z = 3.54, p < .001).  Bin 3 was found to be significantly different from 

bins 1 and 2 [Bin 1: Z = (-4.35), p < .001; Bin 2: Z = (-2.23), p = .03]. Bin 4 was found to be 

significantly different from bins 1 and 2 [Bin 1: Z = (-4.91), p < .001; Bin 2: Z = (-3.13), p = 

.002].  

Defining Healthy and ‘At-risk’ Older Adults - MoCA cut-offs 

 Mean performance for 8 older adult participants scoring 24 and 25 on the MoCA was not 

significantly different from mean performance for the 7 older adults scoring 23 and lower on the 

MoCA in any bin for the landmark condition [Bin 1: t(13) = 0.25, p = 0.63; Bin2 : t(13) = (-1.0), 

p = 0.67; Bin 3: t(13) = (-0.10), p = 0.68; Bin 4: t(13) = 0.41, p = 0.78; Bin 5: t(13) = (-0.70) , p 

= 0.19]. In the animal condition there was a significant difference between the groups in Bin 4 

[Bin 4: t(13) = 0.28 , p = 0.51] and no differences in the remaining bins [Bin 1: t(13) =(-0.77), p 

= 0.20 ; Bin 2: t(13)= (-1.61), p =0.24; Bin 3: t(13) = (-1.23), p = 0.03; Bin 5: t(13) = (-.070) , p 

= 0.59]. In the animal bin 4 condition, a single participant had an accuracy of 75% which offers 

some explanatory value for this significant difference. 
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Amnesic Patients 

Patient JD  

Patient JD was compared to 7 control participants (see Table 2).  JD’s performance on the 

landmark condition is comparable to that of his 7 controls for all bins (1 tailed tests; Bin 1: t = 

0.29, p = 0.39; Bin 2: t = 0.18, p = 0.43; Bin3: t = 0.06, p = 0.48; Bin 4: t = 0.22, p = 0.42; Bin 5: 

t = 0.37, p = 0.36). 

 On the animal condition, JD showed impaired performance relative to controls for bins 3-5 [Bin 

1: t = (-0.35), p = 0.37; Bin 2: t = (- 0.680), p = 0.26; Bin3: t = (-233.85), p = 0.00; Bin 4: t =-

308.687, p < .001; Bin 5: t = -187.083 p < .001]. For a graphical presentation see Figure 8.  

 To help interpret JD’s results on the animal condition, further exploratory testing was 

conducted to investigate the integrity of his semantic knowledge of animals. Several weeks 

following testing, JD was asked to rank the twenty presented animals in terms of size (Figure 9). 

This was largely normal, with a few oddities. Specifically, he ranked a skunk as smaller than a 

dove and finch. He also ranked a tiger as smaller than a wolf and goat. Next, JD was asked to 

describe a feature, function, colour, as well as a similar sized everyday object to each animal. 

Interestingly, JD had many semantic-like stories for certain animals (for example, a family friend 

who had lyme disease, which originates from ticks), which he repeated (consistent with his 

memory impairment). Notably, some of these stories were repeated for different animals, 

showing interference for the underlying semantic representation of the animal. For example, JD 

shared the same story about goats and sheep eating grass at an old home, failing to discriminate 

between the two animals in memory. In addition, JD sometimes struggled to generate detailed 

descriptions of the visual properties for each animal and needed encouragement at times. He was, 

however, able to generate responses to every animal.  

Patient DA 

Patient DA’s performance was compared to that of 8 control participants (see Table 2 for 

details). One control participant for DA is his wife whose landmark condition was based on the 

same geographic environment on which DA was tested and who also had the same additional 2 

seconds to respond to the task as DA. For a graphical presentation see Figure 10. 
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 Statistically, DA’s performance in the landmark condition did not differ from control 

participants’ for any bin (Bin 1: t = 0.16, p = 0.44; Bin 2: t = 0.16, p = 0.44; Bin 3: t = 0.27, p = 

0.40; Bin 4: t = -0.878, p = 0.20; Bin 5: t = 0.157, p = 0.44). In the animal condition, DA’s 

performance also did not differ from control participants’ for any bin (Bin1: t = 0.11, p = 0.46; 

Bin 2: t = 0.31, p = 0.38; Bin 3: t = 0.00, p = 0.50; Bin 4: t = 0.00, p = 0.50; Bin 5: t = 0.00, p = 

0.50).  

Patient BL 

Patient BL was compared to five control participants (see Table 2). With this sample size 

there are large variabilities in standard deviation. Control participants were tested in the 

downtown Toronto environment.  For a graphical presentation see Figure 11. 

BL’s landmark performance was not statistically different from controls in any bin [Bin 

1: t = (-0.75), p = 0.25; Bin2: t = 0.00, p = 0.50; Bin 3: t = (-0.34), p = 0.38; Bin 4: t = (-0.34), p 

= 0.38; Bin 5: t = (-0.47), p = 0.33]. As seen in Figure 10, BL’s performance in bin 1 is well 

below chance at 25% and is numerically lower than control participants in bin 4 by 16% and in 

bin 5 by 17%.  In the animal condition, BL is comparable to controls in all bins [Bin1: t = -0.39, 

p = 0.36; Bin 2: t = -0.20, p = 0.42; Bin 3: t = 0.27, p = 0.40; Bin 4: t = (-1.22), p = 0.15; Bin 5: t 

= 0.000, p = 0.50].  

Discussion 

Overall Summary 

This project aimed to determine whether mnemonic discrimination operates on prior 

knowledge previously encoded, specifically, remotely formed spatial and semantic memory 

representations. We investigated whether mnemonic discrimination operates on prior knowledge 

across the lifespan where hippocampal function is known to decline (Small, 2001) and within the 

face of potentially abnormal aging and amnesia. All participant groups showed decreased 

accuracy on higher similarity judgments for both landmark and animal stimuli, demonstrating 

how discriminating between overlapping representations within prior knowledge is more difficult 

than discriminating between less similar memory representations. Results showed that young 

adults and healthy older adults performed similarly on the task, suggesting preservation of this 

discrimination ability with age or a relative decrease in ability given older adults’ higher 

familiarity with the city and overall higher knowledge. ‘At-risk’ older adults, who may have a 
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higher likelihood than healthy older adults for developing cognitive impairments, performed 

significantly worse than their healthy older adult counterparts on highly similar judgments in 

both landmark and animal judgments. Patients with amnesia (DA and JD) showed preservation 

on the landmark judgments relative to controls while patient BL, who has bilateral DG lesions, 

showed impairment in the highly similar judgments in the landmark condition. In the animal 

condition, patients DA and BL performed normally, while a patient, JD, showed impairment. 

Follow-up testing with JD found that his semantic representations were impoverished and 

sometimes dependent on personalized-semantic-like (Renoult et al. 2012) knowledge. These 

results suggest that with decreased hippocampal functioning, there are challenges with the ability 

to discriminate among similar representations that form part of one’s prior knowledge. Our 

findings suggest that the ability to discriminate between these representations interacts with 

multiple other brain regions given intact performance in healthy older adults and some patients 

with amnesia. These results will be discussed in the context of the prior literature on spatial 

memory, semantic knowledge, and how it informs theories of mnemonic discrimination.   

High Similarity Judgments for Spatial Information 

Young & Older Adults  

Healthy older adults performed similarly to younger adults in the landmark condition (see 

Table 6, Figure 6). These results are not consistent with our hypothesis that older adults would 

struggle on the most similar discrimination judgments due to findings of decreased hippocampal 

functioning occurring with age, age-related decrements in mnemonic discrimination, or based on 

their MST scores (Figure 4; Small, 2001; Yassa & Stark, 2011). It is worth noting the confound 

of years of experience in the city. Healthy older adults, on average, have 37 more years’ 

experience with the city than younger adults. With the difference of experience in mind, healthy 

older adults’ performance should probably be higher than younger adults’ task performance if 

they are cognitively intact. However, in no condition does the performance significantly differ. 

Instead, these results are consistent with predictions that the landmark condition is relying on 

semantic-like, schematic knowledge of the remote environments, which is typically intact in 

aging as well as hippocampal amnesia (Rosenbaum et al., 2000; Rosenbaum et al., 2012; 

Herdman et al., 2015).  
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Unlike the current results, Holden et al. (2012) found that cognitively intact older adults 

over 65 years of age performed significantly worse than younger adults on a delayed match-to-

sample task, and statistically controlling for delayed recall scores did not change this effect. 

Performance in both groups improved with increasing spatial separation between stimuli, but to a 

lesser extent in the older adults (Holden et al., 2012). The authors concluded, based on their 

findings and previous research, that spatial pattern separation may become less efficient with 

healthy aging (Holden et al., 2012; Holden & Gilbert, 2012). Our study does share the finding of 

improved performance with increasing separation between representations. However, our results 

contrast with these findings, as we do not see impaired performance in our older adult group. 

Given that our task does not involve new learning and the stimuli are within prior knowledge, we 

suggest that spatial pattern separation may decrease in aging when the stimuli are novel and the 

same may not be true for remote spatial information.   

The ‘at-risk’ group of older adult participants performed worse than the healthy older 

adults in the highest similarity landmark condition, though their performance was numerically 

inferior in all similarity conditions. This group of heterogenous participants scored between 18 

and 25 on the MoCA, meaning that some participants scored in the range of MCI (Carson et al., 

2017).  MST LDI scores for this ‘at-risk’ group were also comparable to patients diagnosed with 

aMCI (Stark et al., 2013). While neither the MoCA nor MST are diagnostically conclusive, the 

converging evidence suggests that these participants as a group are potentially showing cognitive 

changes that may put them ‘at-risk’ for further cognitive decline (Newsome et al., 2015).   

 Previous work has found that the hippocampus activity relates to images of landmarks 

which are geographically closer to one another (Morgan et al., 2011). Other evidence has found 

the entorhinal/subiculum regions are involved in coding goal proximity; specifically, a negative 

correlation between goal proximity and activity was found in this region using virtual navigation 

videos of London with taxi driver participants highly familiar with the city (Spiers & Maguire, 

2007). Recent work has found a relationship between reduced anterolateral entorhinal volume 

and lower MoCA performance in community-dwelling older adults (Olsen et al., 2017). It is 

therefore reasonable to interpret these ‘at-risk’ older adult participants’ results in the landmark 

condition as potential evidence of difficulty deciphering distance to goal or target, which may be 

linked to possible volume loss in the entorhinal region of the brain as well as possible 
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hippocampal dysfunction. Further work can test these hypotheses by correlating participants’ 

hippocampal and entorhinal volumes with performance on the most similar landmark judgments. 

Our patients’ results speak to the involvement of the hippocampus in this task, but are not fully 

consistent with all of our predictions. Further correlational work using volumetric analyses may 

help with understanding the subtle contributions of the different MTL regions. 

No differences were found in performance within the ‘at-risk’ older adult groups while 

using the different MoCA cut-off scores on the task. This offers evidence that these task results 

are not being driven by older adults who scored lower and within MCI range on the MoCA 

(Carson et al., 2017). However, the sample size of the ‘at-risk’ group is small with only 15 

participants. Further investigation of whether different MoCA cut-off scores can be used to 

predict task performance with a larger sample size would be helpful. 

Patients DA & JD  

Amnesic patients DA and JD show preservation on the distance judgment task relative to 

controls, even in the highest similarity condition. Both patients have MST LDI scores expected 

for their ages. Both patients were tested with landmark stimuli which were highly familiar and in 

their home environments unlike the majority of older adult participants who were tested with 

landmarks, which though highly familiar, were mostly not within their home environments. This 

is consistent with amnesic patient KC’s performance, who had extensive pathology bilaterally in 

his hippocampus and additional volume loss in the parahippocampal cortex, but still was able to 

effectively judge distances between landmark pairs, and also decide which of 2 landmarks was 

closer in distance to a third (Rosenbaum et al., 2000). KC’s difficulty was in correctly identifying 

familiar landmarks and locations of cities in Canada, both of which required more detailed 

information and speaks to the lack of detail and schematic nature of his representations 

(Rosenbaum et al., 2000).    

Patient DA has a more severe memory impairment than JD and does not often navigate 

independently. He has, however, been living in his home environment for over 30 years. Prior 

testing found that DA drew an intact schematic map of his environment that lacked detail, as 

seen with placement of fewer landmarks and street segments than controls (Herdman et al., 

2015). With this depleted knowledge, DA may still be able to determine distances between 

familiar landmarks, even if the routes themselves may lack detail. Given that the only landmarks 
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included in the study were those to which DA felt confident navigating, it is likely that DA had 

intact representations for all the locations and routes tested.  

DA’s MTL damage is bilateral, with relative preservation in his left hemisphere (Kwan et 

al., 2013). A past study with younger adults found that participants’ left anterior hippocampal 

activity was related to objective distance between landmarks (Morgan et al., 2011). Given DA’s 

relative preservation in his left hemisphere, this supports his intact task performance which 

involves determining distances between landmarks. High-resolution MRI scans are not available, 

so it is not possible to decipher whether DA has CA3/DG damage, where this ability to 

discriminate between similar representations would be localized (Yassa & Stark, 2011). DA’s 

intact task performance could be attributed to his high familiarity with his environment, intact 

schematic knowledge, relative MTL preservation in his left hemisphere and potential CA3/DG 

preservation.   

Patient JD has been living in the area for approximately 10 years and frequently (almost 

daily) navigates in the area tested. He navigates independently in the city by relying on intact 

remote spatial knowledge. JD utilized a more egocentric strategy than most older adult 

participants who were biased towards allocentric strategies on the task (Table 8). JD described 

completing the task by imagining himself traveling to the location and thinking of the time 

needed to get to each location. This strategy and high familiarity may allow JD to compensate 

for his memory impairments. Unfortunately, due to contraindications we are unable to determine 

whether he has lesions in the MTL. His neuropsychological test results clearly indicate amnesia, 

and his anoxia etiology is suggestive of MTL damage.    

Patient BL  

BL’s landmark performance was numerically but not statistically well below chance at 

the highest similarity judgments of differential distance. He also shows numerically low 

performance at the lowest similarity conditions. Given BL’s bilateral DG lesions, MST task 

performance and his performance on the highest similarity judgments are consistent with 

predictions that successful completion of these highly similar judgments necessitates an intact 

DG/CA3 and mnemonic discrimination abilities.  
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However, the stark contrast in performance between the similarity bins is surprising, 

given the task performance of other participants. The bin division is arbitrary, in that there is no 

clear theoretical reason to divide bin 1 at 200, 250 or 300 metres. The bin division therefore does 

not clearly explain why his performance would increase substantially on differential distance 

judgments greater than 250 metres to then decrease again. It is also important to note that the 

actual number of trials during the task is quite low, so differences in performance may be 

amplified by errors. Regardless, in the highest similarity condition BL performed well below 

chance. BL does not show the same improvement in discriminating between these distances over 

the bins which decrease in stimulus distance as his control participants or other amnesic patients 

DA and JD. Given that his amnesia is less severe than patients DA and JD (see Table 5 for 

neuropsychological test results), his results suggest the importance of his bilateral DG lesions. It 

is possible that the ability to discriminate between similar representations has generalized to 

easier similarity trials, which would explain why BL’s performance is not intact on lower 

similarity judgments in addition to being impaired on high similarity judgments.    

BL has additional volume loss in his left parietal regions and right precuneus (Stevenson 

et al., 2016). The precuneus has been shown to be functionally connected to regions important to 

spatial navigation (Zhang & Chiang-Shan, 2012; Epstein, 2008). BL does not have lesions 

bilaterally in his precuneus, but his right hemisphere precuneus volume loss indicates that 

caution should be exercised in interpreting his results.  

High Similarity Judgments for Semantic information 

Animal knowledge is a well-documented aspect of semantic knowledge (Patterson et al., 

2007). The animal size judgments condition provides an important contrast to the landmark 

condition as it offers a comparison for discriminating between similar representations in memory 

with stimuli which are not spatial in nature.  

Young and Older Adults 

 Like the landmark condition, there was no significant difference in performance between 

young and older adult participants. This suggests a preservation of semantic knowledge in the 

healthy older adults as well as the ability to discriminate between semantic representations when 

highly similar. Interestingly, healthy older adults actually performed numerically better than 
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younger adults, which offers credence to the benefit of life experience and also intact cognitive 

abilities of these healthy older adult participants. 

‘At-risk’ older adult participants show lower accuracy than healthy older adults in the 

highest similarity bin. This is consistent with our hypotheses that the ability to discriminate 

between these overlapping representations within prior knowledge would be particularly difficult 

for older adults who may be at-risk for developing clinically significant cognitive conditions and 

are demonstrating subtle cognitive changes. The replication of this finding in the animal 

condition in addition to the landmark condition suggests that this difficulty in discriminating 

between similar representations is not stimulus specific. Comparing ‘at-risk’ older adults using 

the two MoCA cut-off scores (26 and 24) found no difference between participants in 4 of the 5 

conditions. In one condition, there was a statistically significant difference. Given the small 

sample size and the particularly low performance of a single participant, we are reluctant to 

interpret this result. And regardless of this result, it does not appear that the lowest performing 

older adult participants (scoring a 23 and below on the MoCA) are driving performance in the 

highest similarity condition for the at-risk older adult group. 

Patients DA & BL  

Patients DA and BL showed intact animal performance on the task relative to controls. 

This is consistent with other accounts of intact semantic knowledge within amnesia (Vargha-

Khan et al., 1997). Neither patient has extensive damage to areas outside the MTL region that 

would suggest issues with semantic knowledge. The semantic system in the human is extensive 

and encompasses multiple regions outside of the MTL (Binder et al., 2009). DA’s animal 

performance suggests that the hippocampus is not necessary to complete the task and suggests 

the critical involvement of other brain regions. 

BL’s intact performance on the animal high similarity trials suggests his difficulties may 

only exist with stimuli within prior knowledge which are sufficiently complex, taxing, and 

hippocampally dependent as spatial memory. It is also worth noting BL has intact perirhinal and 

entorhinal cortices which have been linked to object perception (Baker et al., 2016; Fidalgo et 

al., 2016) These results also place an importance on acknowledging that there may be other more 

diffuse damage occurring in the ‘at-risk’ older adult group while there is no evidence of 

additional cognitive decline for BL beyond his lesions.  
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Patient JD  

Patient JD did not show task improvement as similarity decreased in the animal 

condition. Follow-up testing with JD elaborated on his performance by showing his 

impoverished representations of certain animals, and improper grouping of certain animal sizes. 

JD immigrated to Canada from Australia, and as such, has personal experience with certain 

animals that some North Americans may not (for example, certain species of goats, and sheep). 

His ability to describe these animals in follow-up testing was often linked to semanticized 

personal memories (Renoult et al., 2012) involving the animal. JD shows impaired semantic 

fluency and some issues with executive functioning, which suggest damage outside of the medial 

temporal lobe (Table 3). It is possible that his memory difficulties inhibit his ability to recall 

sufficient details about animals to make judgments quickly in the experimental task, though this 

is would not be consistent with BL and DA’s intact task performance. Instead, JD’s performance 

on the task and results in follow-up testing offer evidence that the animal condition is relying on 

semantic memory.  

A region of interest given JD’s subtle deficits in semantic knowledge would be the 

anterior ventrolateral temporal lobes, given their involvement in semantic dementia and 

proximity to the posterior cerebral artery (Binder et al., 2009; Patterson et al., 2007). Testing 

other patients with anoxia secondary to cardiac arrest and severe memory disturbances on tests of 

semantic memory may offer some insight into whether this brain area may be related to semantic 

knowledge impairments with amnesia.  

Implications for Mnemonic Discrimination 

 The performance of the ‘at-risk’ older adult participants and patient BL offers 

correlational and causal evidence that the process of discriminating between similar 

representations within prior knowledge may relate to CA3/DG integrity. This is supported by the 

low MST task performance in both groups of participants. The intact performance of healthy 

older adults and amnesic patients DA and JD is confounded with high experience relative to their 

control groups (younger adults and other older adults respectively). It also demonstrates that 

other brain regions are likely being recruited in this process of mnemonic discrimination for prior 

spatial and semantic knowledge that are critical to task performance.   

Theorists posit that pattern separation can occur only at encoding when representations 

are orthogonalized (Hunsaker & Kesner, 2013). According to this conceptualization, in our task 
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only retrieval-based representation pattern separation is possible, since all information is based 

on prior knowledge. If mnemonic discrimination is a retrieval based process, and this task is 

capturing a hippocampally dependent process through the discrimination of highly similar 

representations, then task performance should correlate with MST performance, particularly in 

the landmark condition. This relationship only exists for healthy older adult participants in the 

landmark condition, and not for ‘at-risk’ older adults. Regardless, the results suggest a 

relationship between accuracy in discriminating between two similar representations within well-

preserved knowledge and performance on discriminating between similar items on the MST. 

MST LDI scores for the ‘at-risk’ group are consistent with impaired pattern separation abilities, 

as are their animal and landmark results. BL’s task performance offers causal evidence for the 

involvement of the DG in this task.  

According to theorists on pattern separation and pattern completion, the knowledge-based 

memory system is where pattern completion processes can occur based on previous event-based 

memories (Hunsaker & Kesner, 2013). Our hypothesis that the ability to discriminate similar 

distances and similar sizes in memory is a form of pattern separation is in contradiction to these 

ideas. The definition of mnemonic discrimination used in this thesis, in which pattern separation 

occurs at retrieval when participants discriminate between similar representations within prior 

knowledge, is difficult to conceptualize as a pattern completion process, given that participants 

must discriminate between two similar options to complete this task. One interpretation 

consistent with these theories is that participants pattern complete an association between 

animals or locations to choose the correct response (possibly new or old associations; we did not 

measure frequency traveling between locations or comparing particular animal sizes). This 

account offers explanatory value but is not consistent with our findings of lower performance on 

highly similar trials for our ‘at-risk’ older adults, the prediction value of the MST LDI score with 

task performance for healthy older adult participants, or BL’s impaired task performance. These 

results reveal difficulty in discriminating similar representations, consistent with an explanation 

of pattern separation. A way to disentangle these two processes within remote spatial knowledge 

would be to have participants state frequently traveled certain routes prior to the experiment, 

complete distance discrimination for frequently and infrequently traveled routes, and randomly 

intermix repetition trials to see whether decisions which have been recently activated result in 

different behaviour.  
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Our landmark results are explained best by a combination of DG contribution to pattern 

separation processes and outside brain regions supporting performance. Theorists have proposed 

the uniqueness of the CA3 subregion within spatial memory, in which spatial representations may 

be stored outside the DG (Hunsaker & Kesner, 2013). Given the performance of amnesic patients 

DA and JD, this account may be the most parsimonious explanation. Patients appear able to 

recruit other intact brain regions (which the ‘at-risk’ group and BL appear unable to) to complete 

these judgments. Supporting this hypothesis, that other major brain regions are involved in 

mnemonic discrimination for spatial information, is recent work that used scene stimuli in the 

same manner as objects in a revised MST and found that this did not relate to volumes of the 

DG/CA3 regions in healthy aging (Stark & Stark, 2017). The task also did not show sensitivity to 

parahippocampal volume, but only to subiculum volume (Stark & Stark, 2017). Discriminating 

between visual scenes does appear to invoke other brain regions, the subiculum in particular has 

been proposed to be involved in remote spatial memory (Zeidman & Maguire, 2016). This work 

suggests that the landmark condition is likely invoking the DG, but possibly also other brain 

areas such as the parahippocampus and subiculum. Our results suggest that using spatial and 

semantic stimuli can provide insight into mnemonic discrimination processes, but the results are 

complicated by other brain regions which are involved when accessing well-known information.  

Contribution to Hippocampal Theory  

Despite well-documented hippocampal changes that occur with age, healthy older adults 

performed as well as (and often numerically better than) younger adults on the landmark 

condition. Given the relative lack of experience living and navigating in the city, younger adults 

would be expected to have lower performance than older adults. Given that younger adults have 

far less experience in the city, yet performed as well as the older adults, suggests a decline or 

sub-optimal performance for the older adults. With a larger sample size, younger adults with 

more years living in the city and older adults newer to the city could be compared so that this 

confound of years of experience could be addressed. Currently, it is difficult to disentangle the 

explanations of older adults showing preservation on this task or potential loss given their 

experience.  

Contrary to the Cognitive Map Theory (O’Keefe, 1990), and consistent with the Multiple 

Trace Theory (Moscovitch et al., 2005; Moscovitch et al., 2006), two of our three patients with 



34 
 

 

amnesia related to hippocampal damage could effectively complete the landmark condition, 

which is consistent with previous work (Rosenabum et al., 2000, Herdman et al., 2015). As noted 

above, care was taken to ensure that patients were tested on landmarks which were highly 

familiar. Given these patients’ inability to learn new environments and having lived in the same 

environments for years if not decades, these landmarks were extremely familiar and frequently 

visited by all the patients. In contrast, the patients’ control participants endorsed familiarity with 

the locations, and their years of experience and frequency downtown was covaried. As such, the 

‘at-risk’ older adults’ low performance is confounded with potential frequency effects that the 

patients’ do not have. Furthermore, older adults almost always used an allocentric strategy to 

complete the task. Patient JD reported using a purely egocentric strategy to complete the task. 

Therefore, we can conclude that familiarity and non-hippocampally based strategy can allow for 

discrimination between highly similar distances even in the face of dense amnesia. Patients 

appear to be able to rely on schematic, gist-like knowledge to adequately complete this task. 

However, BL’s performance does suggest that when there is high similarity between 

representations, the DG region of the hippocampus may be needed to make these fine-grained 

discriminations. This suggests that the CMT may be better revised to consider how making 

decisions within remote allocentric mental representations may interact with the detail needed 

within each decision, with decisions between highly similar representations requiring the 

hippocampus. 

Other work has found a shift away from allocentric strategies to egocentric strategies 

with aging, the latter which are not hippocampally based (Colombo et al., 2017). In our task, our 

healthy older adult participants reported a higher confidence navigating in new spatial 

environments than younger adults (Table 1) and a similar strategy to younger adults which was 

biased allocentric (Table 8). The landmark condition is likely to be done easiest with an 

allocentric, ‘bird’s-eye’ view strategy, given that route detail is not needed to successfully 

complete the task, which may explain why older adults used a similar strategy to younger adults. 

This also may explain why ‘at-risk’ older adult participants showed impaired performance, if 

these participants are relying on a hippocampally-based strategy and have more dysfunction, this 

will be the most difficult for them.  

In this paradigm, intracue distance was not systematically varied. Previous work with 

vector mapping systematically manipulated intracue distance so that landmarks were on opposite 
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ends of the city, and therefore there were always large intracue distances (Rosenbaum et al., 

2012). While intracue distance did not seem to uniformly impact performance in this paradigm, a 

more systematic investigation of the influence of intracue distance is warranted. It is possible 

that landmarks in proximity with one another allow a person to utilize their knowledge of the 

environment and boosts their performance. Alternatively, these landmarks being close to one 

another may make the task more difficult as the person may need to access fine-grained 

knowledge of the environment in order to make the distance judgments. It is possible that the 

lack of effect of intracue distance on the differential distance judgments in this study may be due 

to these two opposing effects. Further research can systematically varying intracue distance 

could help elucidate if and how intracue distance influences judgments of distance for highly 

similar representations.  

Future Directions 

Given the observed results in the ‘at-risk’ older adult group, future studies should 

investigate task performance in populations with well-defined etiology. Recruiting patients with 

diagnosed MCI and AD and acquiring hippocampal volumes could offer more information as to 

whether these effects persist with neurodegeneration.  

 As a consequence of maintaining high ecological validity, many aspects of cognitive 

maps’ complexity was not manipulated. Intracue distance was not systematically varied, 

landmarks were not controlled for their external appearance, function, or landmark name 

similarity. The latter points may be particularly influential for older adults, who may struggle 

more with the interference caused by similar functions or names. For example, two museums in 

Toronto with different names (Art Gallery of Ontario and the Royal Ontario Museum) have a 

similar activity association of visiting exhibits and may be more likely to be confused with one 

another. The kind of landmarks may also be influential. For example, Kensington Market is an 

area in the city with multiple stores while St. Lawrence market is a single, historic, building with 

multiple vendors. In this example, area and landmark are confounded as well as function.  

Future testing of semantic representations should have all participants describe and 

categorize animals so that experimenters can evaluate the accuracy of each participants’ animal 

representations. For example, asking all participants to rank animals in order prior to testing 

would allow for incorrect representations to be excluded from analyses. Currently, animals were 



36 
 

 

only excluded if subjects reported a lack of familiarity with animals. The animal trials were 

created in a manner in which similarity was manipulated through intracue distance, and targets 

were typically smaller in size than cues as well as sometimes being a member of a different 

animal category (insects, birds, mammals). Future paradigms could systematically vary animal 

category to investigate whether these effects are generalizable across all animal types.  

Conclusion 

Our results suggest that there is increased difficulty and differences based in cognitive 

status within aging when discriminating between similar representations for well-established 

information. Healthy older adults show preservation on both tasks, supportive of a wealth of 

previous information showing that remote spatial memory and semantic knowledge are intact in 

normal aging. However, in a group of community-dwelling participants screened for cognitive 

impairment and showing MST LDI Scores in line with patients diagnosed with MCI, there is a 

reduction in performance for highly similar judgments in the landmark and animal conditions – 

suggestive of hippocampally-dependent declines in judgment. Patient BL shows impaired task 

performance only in the landmark condition and has numerically lower performance on the 

highly similar landmark judgments, in accordance with the idea that the dentate gyrus is 

selectively involved in separating out similar representations in memory. Patient DA, who has 

well-documented amnesia, shows intact performance on both tasks, which brings to question 

what other brain regions may be influencing performance for the landmark condition and also the 

importance of studying multiple amnesic patients with specific lesions. Patient JD, whose lesions 

are unknown but also has substantial memory impairments is also able to complete the landmark 

condition comparable to controls. It is possible that high familiarity, strategy differences, and 

even intracue distance may aid patients to access their cognitive maps in enough detail to 

perform well on the landmark condition. JD’s animal performance is impaired and consistent 

with difficulties representing animals. His impairment offers additional support for the validity 

of using the animal condition to assess an aspect of semantic memory. Overall, the results here 

expand on how and if mnemonic discrimination is involved in prior knowledge across the 

lifespan, within potential cognitive decline, and how people with memory impairments and 

hippocampal damage access similar representations within prior-knowledge.  
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Supplemental Methods 

Difference in number of Trials 

Of the 19 young adult participants, four young adult participants completed 6 instead of 7 

runs. Experimenters found young adults were finishing well before the older adults and did not 

need additional practice trials, so an extra experimental run was added for the remaining 

participants.  

Participant Exclusion  

Despite administering a familiarity survey prior to the experiment, it was not uncommon 

for participants to report being unfamiliar with landmarks they once reported being familiar with 

after the experiment. Given the frequency of this occurrence, participants were excluded from 

analyses if they reported being unfamiliar with at least 3 landmarks in the experiment. If 

participants reported post-experiment being less unfamiliar with more than 2 landmarks, trials 

containing these landmarks were removed from analyses. Similarly, Animal trials were removed 

if participants had knowledge of the animal and told the experimenter at the end of testing. If a 

person said they were familiar with an animal but it was not highly familiar to them (for example 

not as familiar with a lynx as they are familiar with a tick) the animal remained in their results.  

Missing MST Task Data 

The MST task crashed and was unavailable for 6 participants (3 older adult participants, 

3 younger adult participants). To keep MST as a predictor in models and not lose these 

participants’ data for the task MST LDI Scores were imputed for these participants. Imputed 

values were generated by using SPSS statistical package. The predictors of MST score, MST 

LDI Score, MoCA score, age, years of education, gender, and participant group were used in the 

scholastic regression model. The average of all the imputed values for each participant was 

calculated to create a single imputed value for each of the 6 participants. While imperfect, this 

method has been used previously in the literature. All MST graphs do not include any imputed 

data..  
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Strategy Usage Scoring 

 After the experiment, each person was asked how they completed the landmark 

condition. Their responses were recorded, and they were probed by the experimenter for details 

(for example if they utilized street names, cardinal directions, subway system). These responses 

were then coded into five Categories ranging from 1 to 5. A strategy entirely or predominantly 

allocentric was given a score of 1, a strategy biased allocentrically a score of 2, an equal usage of 

both strategies given a score of 3, a biased egocentric strategy score given a 4, and an entirely or 

predominantly egocentric strategy was given a score of 5. These were scored by S.P. and also by 

a research assistant. Where there were discrepancies in scoring, S.P. evaluated these for 

consistency with the scoring scheme. Large discrepancies were rare.  
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Tables 

 

Table 1 

Young and Older Adult Demographics 

Note: Values in table reflect means and in parentheses are standard deviations 

Note: Participants’ confidence navigating new and old spatial location was indicated by a 1 to 10 

likert scale, 10 being ‘Very confident’ and 1 being ‘Not at all confident’. 

 

  

 Sample 

Size 

Sex 

Division 

MoCA 

Score 

Age Years of 

Education  

Years 

in  

Toronto 

Confidence 

Navigation 

New 

Spatial 

Locations 1 

Confidence 

Navigation 

Old 

Spatial 

Locations 1 

Younger 

adults  

N = 19  6M, 13F NA  25.89 

(4.04) 

17.42 

(2.52) 

16.55 

(10.39) 

7.05 (1.90) 8.90 (0.94) 

Healthy 

Older 

Adults   

N = 18 10M, 8F 27.22 

(1.00) 

66.89 

(4.57) 

16.50 

(2.01) 

54.33 

(16.62) 

8.22 (1.56) 9.28 (0.83) 

At-risk 

Older 

Adults  

N = 15 10M, 5F 22.93 

(2.34) 

66.73 

(4.70) 

16.77 

(3.55) 

44.67 

(13.65) 

7.53 (2.00) 9.13 (0.83) 
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Table 2 

Patient Demographics and Controls  

 DA DA 

Controls 

JD  JD 

Controls 

BL BL  

Controls 

Number of 

People  

1 8  1 7 1 5 

Age  

 

66 65.86 

(1.35) 

65 65.86 

(1.35) 

57 60.6 (3.65) 

Years of 

Education 

 

17 16.86 

(0.90) 

19 16.86 

(0.90) 

13 15.20 

(1.64) 

Sex  

 

M 5M, 3F M 5M, 2F M 4M, 1F 

Note: Table values are means and in parentheses are standard deviations. M indicates male sex 

while F indicates female sex. All control scored 26 or above on the Montreal Cognitive 

Assessment (MoCA).  
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Table 3   

Demographic and Neuropsychological Data for Patient JD  

 J.D Description 

Age at injury 60  

Years of Education 19  

WAIS -Ra    

  FSIQ 90th percentile High average 

  VIQ 94th percentile Superior 

  PIQ 73rd percentile Average 

WMS-IV   

LP-I (percentile) 9 Low average 

LP- II (percentile) 1 Impaired 

Recognition 10-16% Low average 

CVLT   

  Acquisition (T score)   

  Short delay free (Z score) -2.5 Impaired 

  Long delay free (Z score) -3.0 Impaired 

  Recogn. Discrim. (Z score) -3.5 Impaired 

Block Design 58 High Average 

Judgment of Line (1/2x2) 86+ Superior 

Symbol Search 5 Borderline Impaired 

Digits 13 High average 

Trails A (scaled score) 40 Low average 

Trails B (scaled score)  43 Average 

Stroop (D-KEFS)   

  Color Naming (scaled score) 11  Average 

  C total errors 0  

  Word reading (scaled score)  11 Average 

  W total errors 0  

Boston Naming Test (/60) 60 Intact 

WCST   

  Categories (/6) >16th percentile Intact 

  Persev. Response (Z score) 9th percentile Low average 

FAS Fluencyc (Z score) -2.98 Impaired 

Semantic Fluency (Z score) -1.95 Borderline Impaired 

ROCF   

  Copy 16th percentile Low average 

  Immediate Recall 4th percentile Borderline impaired 

  Delayed Recall  <1 percentile  Impaired 

MoCA  21  

  Visuospatial/Executive (/5) 4  

  Naming (/3) 3  

  Attention (/6)  6  

  Language (/3) 1  
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  Abstraction (/2) 2  

  Delayed Recall (/5) 0  

  Orientation (/6) 5  

 

Note. WAIS-R _ Wechsler Adult Intelligence Scale–Revised; WMS-R _ Wechsler Memory 

Scale–Revised; LP _ Logical Passages; CVLT _ California Verbal Learning Test; ROCF _ Rey 

Osterrieth Complex Figure; WCST _ Wisconsin Card Sorting Test; AI _ Autobiographical 

Interview; FSIQ _ Full-scale IQ; VIQ _ Verbal IQ; PIQ _ Performance IQ; Recog. Discrim. _ 

Recognition Discrimination; Persev. Resp. _ Perseverative Responses; MoCA_Montreal 

Cognitive Assessment 

 

a Scores reflect performance on the Wechsler Abbreviated Scale of Intelligence–II.  

b Score is based on the number of animal names produced in 1 min.  

c Score is based on the total number of words produced for the letters F, A, and S when given 1 

min for each. 
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Table 4 

DA’s Demographics neuropsychological testing results, adapted from Kwan et al., 2013  

 DA  

Age at Injury 47 

 

Years of Education 17 

WAIS -Ra   

  FSIQ 117 

  VIQ 121 

  PIQ 106 

Digits 13 

WMS-R   

LP I (percentile) 15th 

LP II (percentile) <1st 

Boston Naming/60 56 

Semantic Fluency (scaled score)b 12 

Letter Fluency (scaled score)c 8 

CVLT  

Acquisition (T score) 9 

Short delay free (Z score) -4 

Long delay free (Z score) -4 

Recog. Discrim. (Z score) -4 

ROCF (/36)  

Copy 35 

Immediate recall  

Delayed recall 0 

WCST  

Categories (/6) 6 

Persev. Resp. (Z score) -.5 

Note. WAIS-R _ Wechsler Adult Intelligence Scale–Revised; WMS-R _ Wechsler Memory 

Scale–Revised;LP _ Logical Passages; CVLT _ California Verbal Learning Test; ROCF _ Rey 

Osterrieth Complex Figure;WCST _ Wisconsin Card Sorting Test; AI _ Autobiographical 

Interview; FSIQ _ Full-scale IQ; VIQ _ VerbalIQ; PIQ _ Performance IQ; Recog. Discrim. _ 

Recognition Discrimination; Persev. Resp. _ Perseverative Responses;  

a Scores reflect performance on the Wechsler Abbreviated Scale of Intelligence–II.  

b Score is based on the number of animal names produced in 1 min. c Score is based on the total 

number of words produced for the letters F, A, and S when given 1 min for each. 
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Table 5 

BL Neuropsychological Data, adapted from Baker et al., 2016 

 
 

Note. FSIQ: Wechsler Abbreviated Scale of Intelligence– 

IV. WCST: Wisconsin Card Sorting Test, number of completed categories /6. The following 

measures are reported in scaled scores: LF: letter fluency. Verb Learn: Verbal learning based on 

California Verbal Learning Test-II; AQ, acquisition; LDFR, long delay free recall; R, 

recognition. ROCF: Rey-Osterrieth Complex Figure, C, copy, DR, delayed recall.  

  



53 
 

 

Table 6 

Mean and standard deviation on task by participant group and MoCA score  

Trial 

Type 

Group Bin 

Number 

MoCA 

Status 

Mean 

Accuracy 

Standard 

Deviation 

Accuracy 

Number of 

Participants  

Distance YA Bin1 NA 0.6085 0.16508 19  

Distance YA Bin2 NA 0.64714 0.13578 19  

Distance YA Bin3 NA 0.71922 0.14179 19  

Distance YA Bin4 NA 0.73681 0.12395 19  

Distance YA Bin5 NA 0.84617 0.16221 19 

Distance OA Bin1 Fail 0.52011 0.13524 15  

Distance OA Bin1 Pass 0.63595 0.17233 17  

Distance OA Bin2 Fail 0.64893 0.12879 15  

Distance OA Bin2 Pass 0.69476 0.15248 18  

Distance OA Bin3 Fail 0.66955 0.17133 15  

Distance OA Bin3 Pass 0.74212 0.1901 18  

Distance OA Bin4 Fail 0.68209 0.16726 15  

Distance OA Bin4 Pass 0.81655 0.16993 18  

Distance OA Bin5 Fail 0.81804 0.1001 15  

Distance OA Bin5 Pass 0.86978 0.16915 18  

Animal YA Bin1 NA 0.8181 0.11007 19  

Animal YA Bin2 NA 0.88426 0.09519 19  

Animal YA Bin3 NA 0.92134 0.09076 19  

Animal YA Bin4 NA 0.97851 0.05467 19  

Animal YA Bin5 NA 0.9726 0.04852 19  

Animal OA Bin1 Fail 0.81624 0.15418 15  

Animal OA Bin1 Pass 0.90534 0.06895 18  

Animal OA Bin2 Fail 0.90838 0.07657 15  

Animal OA Bin2 Pass 0.94716 0.07198 18  

Animal OA Bin3 Fail 0.95111 0.08176 15  

Animal OA Bin3 Pass 0.97474 0.0424 18  

Animal OA Bin4 Fail 0.95131 0.1037 15  

Animal OA Bin4 Pass 1 0 18  

Animal OA Bin5 Fail 0.96732 0.05953 15  

Animal OA Bin5 Pass 1 0 18  
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Table 7 

Accuracy on task for Patients  

Trial Type Bin Number Patient Accuracy 

Distance Bin1 BL 0.25 

Distance Bin2 BL 0.75 

Distance Bin3 BL 0.58 

Distance Bin4 BL 0.64 

Distance Bin5 BL 0.67 

Distance Bin1 DA 0.70 

Distance Bin2 DA 0.75 

Distance Bin3 DA 0.82 

Distance Bin4 DA 0.50 

Distance Bin5 DA 0.92 

Distance Bin1 JD 0.77 

Distance Bin2 JD 0.79 

Distance Bin3 JD 0.71 

Distance Bin4 JD 0.85 

Distance Bin5 JD 1.00 

Animal Bin1 BL 0.92 

Animal Bin2 BL 0.92 

Animal Bin3 BL 1.00 

Animal Bin4 BL 0.92 

Animal Bin5 BL 1.00 

Animal Bin1 DA 0.89 

Animal Bin2 DA 1.00 

Animal Bin3 DA 1.00 

Animal Bin4 DA 1.00 

Animal Bin5 DA 1.00 

Animal Bin1 JD 0.73 

Animal Bin2 JD 0.79 

Animal Bin3 JD 0.75 

Animal Bin4 JD 0.67 

Animal Bin5 JD 0.80 
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Table 8 

Strategy Usage across groups 

Group Mean Strategy 

Score 

Standard Deviation Number of 

Participants 

Young Adults 

 

2.32 1.25 19 

Healthy Older 

Adults 

2.5 

 

1.65 

 

18 

‘At-risk’ Older 

Adults 

2.2 

 

1.26 

 

15 
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Table 9 

Logistic Regression and other model results using accuracy as the criterion for younger adults 

(Landmark condition)  

Predictor B (Estimate) Standard error  Z- Value Significance  

(Intercept) 0.75 0.57 1.31 0.19 

MST LDI 

Score 

0.00 
0.00 

1.04 0.30 

Years Living in 

Toronto  

0.02 
0.01 

2.76       0.01 ** 

Years of 

Education 

-0.05 
0.03 

-1.37 0.17 

Intracue 

Distance 

0.00 0.0001 0.96 0.34 

Analysis 

Contrasting 

Bins 

  X2 = 34.29 p < .001*** 

Analysis 

Contrasting 

Downtown 

frequency 

  X2 = 9.4566 0.01** 

 

Note. * indicates p < .05. ** indicates p < .01 *** indicates p <.001 
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Table 10 

Logistic Regression and other model results using accuracy as the criterion for younger adults 

(Animal condition) 

Predictor B (Estimate) Standard error  Z- Value Significance  

(Intercept) -2.81    1.03 -2.73 0.01** 

MST LDI 

Score 

0.01    0.01 1.16 0.25     

Age 0.11    0.04 2.57 0.01*   

Years of 

Education 

0.07    0.07 1.06  0.29     

     

Analysis 

Contrasting 

Bins 

  X2 = 

52.82 

 p <.001*** 

 

 

Note. * indicates p < .05. ** indicates p < .01 *** indicates p <.001 
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Table 11 

Logistic Regression and other model results using accuracy as the criterion for healthy older  

Adults (Landmark condition)  

  

 

        Note. * indicates p < .05. ** indicates p < .01 *** indicates p <.001 

 

  

Predictor B 

(Estimate) 

Standard error  Z- Value Significance  

(Intercept) 1.29 2.29 0.56 0.57 

MST LDI Score -0.01 0.01 -2.14     0.03 * 

MoCA Executive 

Function Subscale 

score  

0.18 0.17 

1.10  0.27 

 

MoCA Memory 

Subscale score 
-0.16 0.13 

-1.27  0.20 

Years Living in 

Toronto   
-0.01 0.01 

-1.23  0.22 

age -0.02 0.03 -0.71 0.48 

Years of 

Education   
0.10 0.07 

1.50 0.13 

Intracue Distance     -0.0001 0.0001 -1.51 0.13 

Analysis 

Contrasting Bins 

 X2 = 35.629 p <.001 

Analysis 

Contrasting 

Downtown 

frequency 

 X2 = 1.9354 

 

0.58 
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Table 12 

Logistic Regression and other model results using accuracy as the criterion for healthy older 

adults (Animal condition)  

Predictor B (Estimate) Standard error  Z- Value Significance  

(Intercept) 10.80 3.97 2.72       0.01 ** 

MST LDI Score -0.01 0.01 -0.59 0.55 

MoCA 

Executive 

Function 

Subscale score  

-0.29 0.25 

-1.14 0.25 

MoCA Memory 

Subscale score 
-0.26 0.20 

-1.29 0.20 

Age 
-0.09 0.04 

-2.25  0.02* 

Years of 

Education 
-0.02 0.11 

-0.20            0.84 

Analysis 

Contrasting 

Bins 

 X2 = 43.959 

 

p <.001 

 

Note. * indicates p < .05. ** indicates p < .01 *** indicates p <.001 
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Table 13 

Logistic Regression and other model results using accuracy as the criterion for ‘at-risk’ older 

adults (Landmark condition) 

 

Note. * indicates p < .05. ** indicates p < .01 *** indicates p <.001 

  

Predictor B (Estimate) Standard error  Z- Value Significance  

(Intercept) -2.21 2.25 -0.98 0.33 

MST Lure Score 0.01 0.01 0.56 0.58 

MoCA 

Executive 

Function 

Subscale score  

-0.02 0.11 

-0.17 0.87 

MoCA Memory 

Subscale score 
-0.08 0.07 

-1.07 0.28 

Years Living in 

Toronto              
0.01 0.01 

0.50 0.61 

Age 0.03 0.03 0.92 0.36 

Years of 

Education  
0.02 0.04 

0.39 0.70 

Intracue 

Distance 
-0.0001 0.0001 

-1.19 0.24 

Analysis 

Contrasting 

Bins 

 X2 = 37.7

3 

 

p < .001*** 

Analysis 

Contrasting 

Downtown 

frequency 

 X2 = 1.21 

 

 0.55 
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Table 14 

Logistic Regression and other model results using accuracy as the criterion for ‘at-risk’ older 

adults (Animal condition) 

 

Note. * indicates p < .05. ** indicates p < .01 *** indicates p <.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predictor B (Estimate) Standard error  Z- Value Significance  

(Intercept) -0.70 3.83 -0.18 0.85 

MST Lure 

Score 

0.04 0.02 2.21    0.03* 

MoCA 

Executive 

Function 

Subscale score  

0.29 0.23 1.29 0.20 

MoCA Memory 

Subscale score 

-0.39 0.16 -2.40   0.02* 

Age 0.03 0.06 0.53 0.60 

Years of 

Education 

0.02 0.08 0.23 0.82 

Analysis 

Contrasting 

Bins 

 X2 = 22.7

97 

 

p <.001 
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Table 15 

Logistic Regression and other model results using accuracy as the criterion for young adults and 

healthy older adults (Landmark condition) 

 

Predictor B (Estimate) Standard error  Z- Value Significance  

(Intercept) 0.80 0.67 1.18 0.24 

MST LDI Score -0.01 0.004      -1.9 0.06 

Group  -0.29 0.20      -1.46 0.14 

Years of 

Education 

0.017 0.04 0.48 0.63 

Intracue 

Distance 

-0.00001 0.00005      -0.23 0.82 

Analysis 

Contrasting 

Bins 

 X2 = 68.0

8 

 

p < .001 *** 

Analysis 

Contrasting 

Group 

 X2 = 6.55 

 

0.09 

 

Note. * indicates p < .05. ** indicates p < .01 *** indicates p <.001 
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Table 16 

Logistic Regression and other model results using accuracy as the criterion for young adults and 

healthy older adults (Animal condition) 

 

Predictor 

 

B (Estimate) Standard error  Z- Value Significance  

(Intercept) 2.40 0.25 9.61 p < .001*** 

MST LDI 

Score 

0.003 0.01 0.53 0.60 

Analysis 

Contrasting 

Bins 

 X2 = 90.73 

 

 

p < .001*** 

Analysis 

Contrasting 

Group 

 

 

 

X2 = 11.70 

 

p <.001*** 

 

Note. * indicates p < .05. ** indicates p < .01 *** indicates p <.001 
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Table 17 

Logistic Regression and other model results using accuracy as the criterion for healthy older 

adults and ‘at-risk’ older adults (Landmark condition) 

 

Predictor B (Estimate) Standard error  Z- Value Significance  

(Intercept) 0.04 1.37 0.03 p < .001*** 

MST LDI Score -0.01 0.004     -2.34 0.02* 

MoCA 

Status<26 cut-

off 

0.44 0.19 2.35 0.02* 

Years of 

Education 

-0.003 0.03      -0.10 0.92 

Age 0.006 0.02 0.30 0.76 

Intracue  

Distance 

-0.0001 0.00006 -1.93 0.05* 

Analysis 

Contrasting 

Bins 

 X2 = 70.681 

 

p < .001*** 

Analysis 

Contrasting 

Downtown 

Frequency 

 X2 = 1.9555 

 

0.58 

 

Analysis 

Contrasting 

MoCA Group 

 

 

 

X2 = 5.36 

 

0.02* 

 

Note. * indicates p < .05. ** indicates p < .01 *** indicates p <.001 
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Table 18 

Logistic Regression and other model results using accuracy as the criterion for healthy older 

adults and ‘at-risk’ older adults (Animal condition) 

Predictor B (Estimate) Standard error  Z- Value Significance  

(Intercept) 5.60 2.48 2.26 0.02* 

MST LDI Score 0.004 0.01 0.47            0.64 

MoCA Status < 26 

cut-off 

0.80 0.34 2.38 0.02* 

Years of 

Education 

0.003 0.06 0.06 0.95 

Age -0.06 0.04 -1.62            0.10 

Analysis 

Contrasting Bins 

 X2 = 55.18

2 

 

p <.001*** 

Analysis 

Contrasting 

MoCA Group 

 

 

 

X2 = 5. 29 

 

 .02* 

 

Note. * indicates p < .05. ** indicates p < .01 *** indicates p <.001 
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Figure Captions 

Figure 1: Schematic of Task for both landmark and animal conditions 

Figure 2: BL Hippocampal Segmentation of patent BL (in A) and a control participant (B) 

adapted from Baker et al., 2016. Borders in red outline the CA3&DG subregions, in Green the 

CA1-2 transition, in yellow the CA1 region, and in blue the subiculum. 

Figure 3: Patient DA’s MRI. Adapted from Kwan et al., 2013. Coronal T1 MRI. Image is 

presented according to radiological convention (right hemisphere is on the left side of the 

image). 

Figure 4: MST Accuracy across younger adults and older adult participant groups. Error bars 

represent standard error.  

Figure 5: MST LDI scores across younger adults and older adult participant groups. Error bars 

represent standard error.  

Figure 6. Bar graph depicting accuracy for the landmark condition for healthy young and older 

adult participants. Error bars show standard error. 

Figure 7. Bar graph depicting accuracy for the landmark condition for healthy and at-risk older 

adult participants. Error bars show standard error. 

Figure 8. Bar graph depicting accuracy for the animal condition for healthy young and older 

adult participants. Error bars show standard error. 

Figure 9. Bar graph depicting accuracy for the animal condition for healthy and at-risk older 

adult participants. Error bars show standard error. 

Figure 10. Line graph depicting animal and landmark condition accuracy for patient JD 

compared to 7 control participants, including his wife. 

Figure 11. Patient JD Follow-Testing Documents. This image is a copy of JD’s ranking of 

animals used in the experiment in size 

Figure 12. Line graph depicting animal and landmark condition accuracy for patient DA 

compared to 8 control participants, including his wife. 

Figure 13. Line graph depicting animal and landmark condition accuracy for patient BL 

compared to 5 control participants. 
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Figure 1 

Task Schematic 
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Figure 2 

Hippocampal Segmentation for Patient BL 
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Figure 3 

MRI for Patient DA 
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Figure 4 

Young and Older Adult MST Recognition Accuracy Performance   
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Figure 5 

Young and Older Adult MST LDI Score performance  
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Figure 6 

Young and Healthy Older Adult Landmark Accuracy 
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Figure 7 

Healthy and At-risk Older Adult Landmark Accuracy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



74 
 

 

Figure 8 

Young and Healthy Older Adult Animal Accuracy 
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Figure 9 

Healthy and At-risk Older Adult Animal Accuracy 
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Figure 10 

Patient JD Task Performance  
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Figure 11 

Patient JD’s animal rankings 
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Figure 12 

Patient DA Task Performance 
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Figure 13 

Patient BL Task Performance 
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