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Abstract 
 
 
This dissertation presents research on learning of interactive layouts. I develop two 

models based on a theory of cognition known as ACT-R (Adaptive Control of 

Thought–Rational). I validate them against experimental data collected by other 

researchers. 

The first model is a simulation model that emulates the transition from novice to 

expert level in text entry. The model transcribes the presented English letters on a 

traditional phone keypad. It predicts the non-movement time to copy a pre-cued 

letter.  It explains the visual exploration strategy that a user may employ in the 

novice to expert continuum. The second model is a closed-form model that accounts 

for the combined effect of practice, decay, proactive interference and mental effort on 

task completion time while practicing target acquisition on an interactive layout. 

The model can quantitatively compare a set of layouts in terms of the mental effort 

expended to learn them. 

My first model provides insight into how much practice is needed by a learner to 

progress from novice to expert level for an interactive layout. My second model 

provides insight into how effortful is it to learn a layout relative to other layouts.  
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Chapter 1  
Introduction 

 
The goal of this thesis is to develop simulation and closed-form cognitive models of 

learning interactive layouts. 

How much practice is needed by a learner to progress from novice to expert level for 

an interactive layout? How effortful is it to learn a layout relative to other layouts? 

Answers to these questions are important in the design and evaluation of user 

interfaces. In this thesis, I look for cost-effective solutions to these questions. 

1.1 Learning in User Interface Design 
Learning refers to the acquisition of skill over time. Learning provides performance 

improvements with practice (Ritter et al., 2013). Yet, individuals often forget 

important skills due to disuse over time. This leads to decrease in performance. For 

example, an alarming 75% of 120 occupational first responders had their proficiency 

degraded only 6 months after receiving cardiopulmonary resuscitation training 

(McKenna & Glendon, 1985). Training and education are designed to improve 

learning and produce qualified performance through retention of knowledge (Kim, 

Ritter & Koubek, 2013). 

Kim, Ritter and Koubek (2013) divide learning into three stages—Stage I (early 

stage), Stage II (intermediate stage), and Stage III (late stage). Stage I refers to the 

first stage where the user acquires declarative knowledge to perform a task—that is, 
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enough knowledge to generate behaviour using the declarative knowledge structure, 

like following a recipe (Kim & Ritter, in press). Stage II refers to the second stage for 

consolidating the acquired declarative knowledge to procedural knowledge. Stage III 

refers to the final stage for tuning the existing declarative and procedural 

knowledge—users still get faster at the task, although the improvements get 

diminishingly smaller (Ritter et al., 2013). Kim, Ritter and Koubek (2013) illustrated 

how the shape of the learning curve looks like, reflecting all the three stages (Figure 

1, p. 24). Figure 1.1 replicates this figure here. The thick continuous line in the 

figure indicates performance improvement through continuous practice over time. 

Ritter et al. (2013) emphasize that the study of learning is important for the design 

of interactive layouts. Learning curve prediction can provide answers to several 

important questions related to the design of layouts—for example, it can provide 

insight into how fast item acquisition can be at a given stage of learning, which 

stage a learner is in, and how much practice is needed by a learner to reach the 

expert level. These answers may save valuable training time and cost and help to 

allocate resources effectively. 
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Figure 1.1  Performance change in three stages with declarative, mixed (i.e. 
declarative + procedural), and procedural representation of 
knowledge. The thick continuous line indicates continuous 
practice.  (Figure taken from Kim, Ritter & Koubek, 2013). 

My first model attempts to predict such a learning curve for text entry on a 

traditional phone keypad. It proposes a mechanism to account for the effect of the 

users' visual exploration strategy on task completion time when a learner progresses 

from novice to expert level. Although I demonstrate the use of this mechanism in 

text copying on a phone keypad, the mechanism may also be used for item 

acquisition on other kinds of interactive layouts. 

Ritter et al. (2013, p. 137) suggests that for an interface, a relatively shallow 

learning curve but with a low intercept indicates that the interface may be easier to 
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relearn after forgetting (see Figure 1.2a). Such a learning curve may be appropriate 

for interfaces that are not used often. In contrast, a relatively steep and long 

learning curve but with a lower final time may be harder to learn. Such a learning 

curve may be appropriate for interfaces that are used by experts (see Figure 1.2b). 

If we were to compare a set of learning curves, one alternative is to use a generic 

curve fitting equation. However, a generic curve fitting equation is not derived from 

any principles of cognition (Busemeyer & Diederich, 2010; Chapter 1). Consequently, 

the effect of a cognitive phenomenon cannot be interpreted from such an equation. 

On the other hand, my second model being based on the ACT-R cognitive theory of 

declarative memory can be helpful in this case.  

My second model attempts to quantitatively compare a set of learning curves of 

interfaces in terms of the mental effort needed to learn them. 
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Figure 1.2  Two learning curves with approximately the same final time: (a) 
a shallow learning curve versus (b) a steep and long learning 
curve. A relatively shallow learning curve but with a low 
intercept indicates that the interface may be easier to relearn 
after forgetting. Such a learning curve may be more 
appropriate for interfaces not used often. Contrariwise, a 
relatively steep and long learning curve but with a lower final 
time may be more appropriate for interfaces used by experts— 
interfaces that may be harder to learn and relearn but may be 
faster under continuous practice. The figure is taken from 
Ritter et al. (2013, p. 137). 
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1.2 Model based evaluation in User 
Interface Design 

Model based evaluation has potential advantages over experimental evaluation 

(Ivory & Hearst, 2001). Some of the advantages include (i) a reduced cost of 

evaluation; (ii) cost-effective comparison among alternative designs; and (iii) a 

reduced need of evaluation expertise through automation of some aspects of 

evaluation. Pew and Mavor (2007, as cited in Paik, Kim, Ritter, Morgan, Haynes & 

Cohen, 2010) encourage using models as shared representation that may help 

identify, predict, and when possible, mitigate risks. They point out that models have 

proven to be useful in predicting and preventing human or monetary losses. 

Simulation modelling involves emulating the behaviour of a system over time. It 

involves designing and implementing a model of the system and executing the model 

on a computer. It is routinely applied while designing integrated circuits to predict 

device performance (Freed & Remington, 2000). However, it is infrequently used 

while designing human-machine systems. An important reason is that using 

available simulation modelling frameworks to predict human performance requires 

a great deal of expertise, time and labour to prepare the formal descriptions of the 

procedures (i.e. how-to knowledge) for operating in the domain of interest (Freed & 

Remington, 2000).  

To make modelling usable by user interface evaluators with a range of expertise, it 

is necessary to provide easy-to-understand high-level abstractions. Such 

abstractions can replace cryptic, low-level descriptions of simulation models in parts 
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or in its entirety, but can still predict the human performance. Such high-level 

abstractions may expose fewer details about the underlying processes involved in 

generating behaviour but may be less complex and more straightforward to apply in 

comparison to low-level descriptions of simulation models. 

Overall, the necessity of simple and transparent high-level abstractions in cognitive 

modelling (e.g. Paik, Kim, Ritter et al., 2010) is the primary reason motivating my 

research. I present this thesis in two parts.  

In the first part of the thesis, I develop a cognitive simulation model that executes a 

text copying task on a traditional phone keypad. The model provides insight into the 

amount of practice needed by a learner to progress from novice to expert level. I use 

a mathematical equation as a sub-model to emulate changes in the visual 

exploration strategy, as a learner progresses from novice to expert level. I do so to 

avoid developing a relatively complex, low-level description of visual search that 

would otherwise be required by current cognitive architectures such as ACT-R1. I 

augment this mathematical equation to a simulative sub-model that simulates the 

memory encoding process and the memory retrieval process. The resulting hybrid 

model predicts the time to find a symbol located on a button of the keypad, as the 

learner transitions from novice to expert level.  

In the second part of the thesis, I develop a closed-form model that can assist in 

comparing the mental effort required to learn different layouts. These layouts vary 

1 As an example, the reader may refer to the complex low-level description of the custom visual search 
functionality in Ehret (1999). This custom functionality was built using an early version of ACT-R 
notation. 
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in terms of their label representativeness. Each label representativeness condition 

imposes a certain level of difficulty during learning. The model is computationally 

inexpensive, less complex and more straightforward to apply than an analogous 

simulation model. 

1.3 Summary 
This dissertation presents simulative and closed-form cognitive models of learning 

interactive layouts. I develop two models as part of this research. 

First Model 

My first model is a simulation model that emulates novice to expert transition in 

layout learning. Specifically, it simulates a text copying task on a traditional phone 

keypad. It models the change in visual exploration strategy from search of items to 

choice of items through a mathematical equation. 

My first model can be generalized to any user interaction that involves progression 

of a learner from a phase that mostly involve visual search to a phase that mostly 

involve a choice decision. This type of interaction is common in user interfaces, for 

example selecting an item on the desktop, or a smart-phone, or a button-panel. 

Second Model 

My second model is a closed-form model that accounts for the combined effect of 

practice, decay, proactive interference and mental effort on task completion time. The 

main advantage of my model is that it can be used to quantitatively compare the 
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mental effort required to learn different interactive layouts that vary in their label 

representativeness.  

I have validated my model against two different sets of empirical data of graphical 

layouts. Although I have demonstrated the use of my model for graphical layouts, it 

can be generalized to compare effortfulness of different kinds of interactive layouts. 

1.4 Organization of the dissertation 
This dissertation is organized as follows. Chapter 2 provides a literature review. I 

briefly touch upon the previous works on expert performance, novice performance, 

novice-to-expert transition and, effortful conditions affecting learning. Chapter 3 

presents a simulation model of novice to expert transition in text entry. The goal of 

chapter 3 is to predict how the time to visually explore a layout for a symbol affects 

the total time spent in copying it. Chapter 4 presents a closed-form model that 

accounts for proactive interference as well as mental effort in a combined fashion. 

The goal of chapter 4 is to develop a technique that can help to quantitatively 

compare the mental effort required to learn different layouts, which vary in terms of 

their label representativeness. Finally, chapter 5 concludes the dissertation with 

recommendation for future work. I also provide three appendices at the end. 

Appendix A provides a disclaimer. Appendix B explains the production rules that act 

as the procedural knowledge of my simulation model of Chapter 3. Appendix C is 

related to the closed-form model of Chapter 4. It shows sample computations of the 

predicted task completion time using the closed-form model. 
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Chapter 2  
Literature Review 
 

I develop two cognitive models. With respect to my first model, I focus on the 

learning of interfaces taking into account the transition from the behaviour of search 

at the novice level to the behaviour of choice at the expert level by a learner. With 

respect to my second model, I focus on comparing different effortful conditions of 

learning interfaces. There already exists relevant literature that analyzes the 

learning of interfaces. Also, there is previous work that analyzes the effect of 

effortful conditions in which learning takes place. These two sets of literature 

provide the context in which I develop my two models. I review previous works 

related to expert performance, novice performance, novice-to-expert transition, and 

some sample causes of effortful conditions. I also discuss a single example of work 

that observed the effect of effortful conditions on retention and relearning. I discuss a 

hypothesis called Soft Constraint Hypothesis that conjectures how performance cost 

can be interpreted in terms of effort. 

Later in this dissertation, I develop a closed-form model for comparing effortful 

conditions of learning. I account for the effect of proactive interference in that model. 

For this, I briefly review the phenomenon of proactive interference in the domain of 

spatial learning. Thereafter, I discuss few earlier works on modelling the effect of 

interference. Next, I briefly review ACT-R theory—the theory of cognition that both 

of my models are based upon. Finally I briefly review Fitts' Law, which I use to 

predict the average movement time for a finger or a mouse cursor. 
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2.1 Expert Performance 
The KLM performance model of Card et al. (1983, as cited in Cockburn & Gutwin, 

2010) is the earliest response time model in Human-Computer Interaction (HCI). 

The KLM performance model predicts performance times for low-level human 

activities. It does so by decomposing tasks into component parts and applying 

standard predictions for each part. It predicts expert performance of routine tasks 

(e.g. prediction of the time to highlight and delete the word color) by summing the 

times for the task’s atomic components: Texecute = Tk + Tp + Th + Td + Tm+ Tr, where k 

refers to pressing a key or button, p refers to pointing with a mouse to a target object 

on a display, h refers to homing2 on the keyboard or any other device, d refers to 

drawing a line segment on a grid, m refers to mentally preparing to do an action or a 

closely related series of primitive actions, and r refers to the system response during 

which the user has to wait for the electronic system she is interacting with. Default 

estimates of average values are used for some of the atomic components. For 

example, Th = 0.4 sec is used for moving hand from keyboard to mouse or vice versa; 

Tm = 1.35 sec is used as the mental preparation time (Card et al., 1983). The values 

for Tk and Tp are often custom computed. Tk is computed in terms of seconds per 

keystroke. The expert-level value is chosen for Tk and Tp after substantial practice of 

the task in question (Kim & Ritter, in press). The KLM model thus predicts a single 

point of performance time (Cockburn & Gutwin, 2010). It does not model the 

transition from novice to expert behaviour (Cockburn & Gutwin, 2010, p. 13:6). 

2 A home location implies a location where a user will recoil and rest her finger after pressing a key on 
a keyboard/keypad. Homing refers to the process of recoiling to said home location.  
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Other work has also modelled the response time of expert performance in layouts. 

Some of these approaches include text entry in mobile computing (MacKenzie & 

Soukoreff, 2002), cell phone menu interaction (St. Amant, Horton & Ritter, 2007), 

and interaction with HTML mock-ups of interfaces where expert performance is 

estimated using the KLM model (John, Prevas, Salvucci & Koedinger, 2004). In the 

domain of mobile text entry using traditional phone keypad, Dunlop and Crossan 

(1999), Silfverberg et al. (2000), James and Reischel (2001), Butts and Cockburn 

(2002) and Cockburn and Siresena (2003) analyzed expert users. All of them 

reported single-point expert performance time. 

2.2 Novice Performance 
Pavlovych and Stuerzlinger (2004) presented an empirical study for learning of a 

phone keypad for text entry. The authors performed multiple studies on the 

behaviour of novices in text entry on a traditional phone keypad. I focus here on 

their first empirical study that involved a text copying task. This study measured 

the mean response time in finding a letter on a key of the keypad. This response 

time did not include the movement time of a finger from key to key (a motor 

component). From the empirical data, Pavlovych and Stuerzlinger inferred that a 

typical novice user will initially use a search strategy to locate the next letter to be 

entered, and later, after having learned the location of the letter, may use a recall 

strategy. Pavlovych and Stuerzlinger extrapolated a later part of their novice 

empirical data (that consisted of response times for a few sessions) based on a power 

function and thereby predicted a learning curve (p. 357). Their power function was 

however not based on any theory of human cognition. 
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Before Pavlovych and Stuerzlinger (2004), there were couple of empirical approaches 

that dealt with novice performance in text entry on the traditional phone keypad. To 

the best of my knowledge, they include the work of Dunlop and Crossan (2000, as 

cited in Cockburn and Siresena, 2003), James and Reischel (2001), Butts and 

Cockburn (2002), Cockburn and Siresena (2003), and Pavlovych and Stuerzlinger 

(2003). All of these works focussed on single-point novice performance time. 

2.3 Novice-to-Expert Transition 
Cockburn et al. (2007a) 

Cockburn et al. (2007a) proposed a closed-form model of learning of a traditional 

graphical menu, i.e. a non-hierarchical, column layout of graphical buttons. The 

model incorporated a time component for visually searching a button by a novice 

user—this component is a function of the number of buttons on the layout; a time 

component for choosing a button by an expert user—this component is also a 

function of the number of buttons on the layout; and finally a expertise component 

that modelled the gradual change from novice to expert behaviour—assuming a 

spatially stable layout, this component is a function of the number of trials 

previously completed to select a button on the layout. The model is thus a function of 

the number of buttons and the number of trials—it does not take human cognition 

into account (Cockburn & Gutwin, 2010; p. 13:5). 

Kim and Ritter (in press) 

Kim and Ritter (in press) observed novice to expert transition in a spreadsheet task 

to examine learning. The task consisted of subtasks such as opening a file, 
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performing calculations, typing name, inserting rows, inserting date using a 

command, and finally saving the work in a printable format. They examined two 

independent groups of subjects—one group completed the spreadsheet task using a 

mouse and a keyboard (mouse group) and the other group completed the spreadsheet 

task using only the keyboard (keyboard group). Both the groups completed a series of 

learning sessions for four consecutive days from Day 1 to Day 4. Kim and Ritter 

observed that practice leads to faster task performance for both the groups. 

2.4 Effortful conditions 
The causes for effortful learning conditions can be manifold. In this section, I review 

a few of them. 

2.4.1 Effortful conditions due to difference in label 
representativeness 

Ehret (2002) and Cockburn et al. (2007b) 

Ehret (2002) observed that the response time in learning varies depending on the 

representativeness of the labels on the objects in a layout. In his experiment, he 

varied the representativeness of the labels on 12 stable graphical buttons that were 

arranged along the periphery of a circle on a computer screen. There were multiple 

label conditions differing in the level of representativeness. Listed in order of 

decreasing label representativeness, three of the conditions were: a textual label 

condition where the buttons were labelled with different colour names in English; an 

arbitrary label condition where the buttons were labelled with different, 

meaningless arbitrary icons that have nothing to do with colours; and an invisible 
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label condition where the buttons were left blank with no labels at all. The task was 

to find a button with a pre-cued colour, from among the twelve buttons. Tooltips 

were available for the buttons, each tooltip revealing the colour for the button. 

Subjects were encouraged to use the tooltip, if memory failed.  

Cockburn, Kristensson, Alexander and Zhai (2007b) performed an empirical study 

similar to that of Ehret (2002). They varied the label representativeness of the keys 

on a virtual keyboard. The representativeness was varied between a labelled 

(visible) condition and an unlabelled (invisible) one.  

Both Ehret (2002) and Cockburn et al. (2007b) observed the following: the higher the 

label representativeness of buttons on a layout, the lower is the mental effort 

required to learn it. In contrast, the lower the label representativeness of buttons on 

a layout, the higher is the mental effort required to learn it. 

The endeavour of Ehret (2002) and Cockburn et al. (2007b) motivates me to develop 

a cost-effective mechanism that could help to quantitatively compare the effortful 

conditions due to the difference in label representativeness of interfaces. 

2.4.2 Effortful conditions due to difference in input 
modality 

Keyboard versus Mouse 

Through a spreadsheet task, Kim and Ritter (in press) observed how the differences 

in effortfulness of input modalities could affect learning. The task consisted of 

subtasks such as opening a file, performing calculations, typing name, inserting 
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rows, inserting date using a command and finally saving the work in a printable 

format. They examined input modality as an independent factor on learning—the 

keystroke-driven modality (keyboard group) requiring keystroke commands and the 

mouse-based menu-driven modality (mouse group) requiring menu-driven 

commands. Keystroke-driven modality represented a higher effort condition 

compared to the menu-driven modality.  

Subjects completed a series of practice sessions for four consecutive days from Day 1 

to Day 4. During every practice session, the subjects had access to a study booklet to 

learn the task knowledge. Each practice session was allowed a maximum of 30 

minutes. For example, on Day 1, subjects had a maximum of 30 minutes to study 

and perform the task. 

Kim and Ritter observed that the keyboard group (high effort condition) was slower 

to complete the task on Day 1 than the mouse group (low effort condition). However 

it gradually became faster ending with a lower final time on Day 4 in comparison to 

the mouse group. This implies that keystroke-driven modality encouraged memory-

intensive strategy, which resulted in a faster task time in a later stage of learning. 

This is in contrast to the mouse-based menu-driven modality that encouraged 

interaction-intensive strategy. 

Command-line interface versus Direct manipulation interface 

O'Hara and Payne (1998) suggest that a high effort condition demands higher degree 

of planning compared to the low effort condition. A higher degree of planning 

promotes better problem solving strategies than a lower degree of planning. They 
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observed this in solving the 8-puzzle task using a command-line interface versus a 

direct manipulation interface. The command-line interface represented a higher 

effort condition compared to the direct manipulation interface. The 8-puzzle task 

involves sliding eight numbered tiles in a 3×3 matrix to reach a given solution state. 

One group of subjects practiced on the command-line interface (command-line group) 

and another group of subjects practiced on the direct manipulation interface (direct 

manipulation group). They observed that lower number of moves was taken to reach 

the solution state by the command-line group as opposed to the direct manipulation 

group. They concluded that the use of command-line interface led to a higher degree 

of planning as opposed to the use of the direct manipulation interface. This implies 

that the command-line interface (high effort condition) encouraged memory-

intensive strategy, which resulted in greater savings in the number of moves taken 

to reach the solution state. This is in contrast to the direct manipulation interface 

(low effort condition) that encouraged interaction-intensive strategy. 

2.4.3 Effortful conditions due to difference in system 
delay 

A study by Golightly, Hone and Ritter (1999) used the 8-puzzle task to compare a 

speech interface and a direction manipulation interface. The speech interface 

involved a system delay, which had a disruptive effect on the interaction. This 

system delay resulted in making the interaction through the speech interface more 

effortful than the direction manipulation interface, which did not involve any system 

delay.  
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There were 10 different starting configurations for the 8-puzzle.  All subjects 

received the starting configurations in the same order. One group of subjects used 

the speech interface and the other used the direction manipulation interface. There 

was one practice session. The session ended when a subject either completed all the 

10 8-puzzles or had worked for 55 minutes, whichever came first.  

Direct manipulation users were required to click on the tile they wished to move. If 

the tile was next to a space (i.e. the move was legal) the tile would move into the 

space. Speech interaction users, instead of clicking on the tile, indicated the tile they 

wished to move by vocally stating the digit labelled on the tile. There were no 

reliable differences between the interfaces in terms of the total task completion time.  

Speech interaction users showed longer move intervals than direct manipulation 

users. This indicates that a higher degree of planning was undertaken by speech 

interface users to accommodate the system delay in comparison to the direct 

manipulation interface users. Moreover, speech interface users required a lower 

number of moves to reach a solution.  

They concluded that the use of the speech interface required a higher degree of 

planning in contrast to the direct manipulation interface. This implies that the 

speech interface (high effort condition) encouraged a memory-intensive strategy, 

which resulted in lowering the number of moves taken to reach the solution state. 

This is in contrast to the direct manipulation interface (low effort condition) that 

encouraged an interaction-intensive strategy.  
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2.5 Effortfulness, Retention and 
Relearning 

Through a spreadsheet task, Kim and Ritter (in press) observed how differences in 

effortfulness of input modalities can affect retention and relearning. They examined 

two independent factors on learning. The first factor was input modality—the 

keystroke-driven modality and the mouse-based menu-driven modality. Keystroke-

driven modality represented a higher effort condition compared to the menu-driven 

modality. The second factor was retention interval—the retention interval being a 

period of inactivity between the last day of practice and the return day for the 

retention test. There were three retention intervals—a 6-day retention interval, a 

12-day and an 18-day one.  

There were 6 groups, each consisting of 10 subjects, randomly assigned. The 6 

groups were divided into three pairs—Group1 and Group2; Group3 and Group4; 

Group5 and Group6. In each pair, one group used keystroke-driven modality 

(keyboard group—Group1, Group3, Group5) and the other group used the mouse-

based menu-driven modality (mouse group—Group2, Group4, Group6). 

Subjects completed a series of practice sessions for four consecutive days from Day 1 

to Day 4. During every practice session, the subjects had access to a study booklet to 

learn the relevant task knowledge. After Day 4, Group1 and Group2 returned for the 

retention test on Day 10 (6-day retention interval), Group3 and Group4 returned for 

the test on Day 16 (12-day retention interval) and Group5 and Group6 returned for 
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the test on Day 22 (18-day retention interval). In each test session, the subjects 

completed the spreadsheet task without the aid of the study booklet. 

Kim and Ritter observed that the keyboard group was slower to complete the task on 

Day 1 than the mouse group. However it gradually became faster, ending with a 

lower final time on Day 4 in comparison to the mouse group.  

Under the 6-day retention interval, the mouse group was observed to forget more 

than the keyboard group. That is, the mouse group showed more increase in time to 

complete the task. Under the 12-day retention interval, the keyboard group was 

observed to forget more than the mouse group. Under the 18-day retention interval, 

the keyboard group was again observed to forget more. 

After the retention test on Day 10, Group1 and Group2 returned again for a 

relearning test on Day 16. On Day 16, the mouse group, Group2, showed greater 

decrease in task completion time compared to the keyboard group, Group1. 

Consequently, Kim and Ritter concluded that Day 10 may have served as a 

relearning opportunity and Group 2, a mouse group, relearned quickly. 

From their study, Kim and Ritter suggest that the high effort condition of the 

keystroke-driven modality promotes a memory-intensive strategy which in turn 

facilitates short-term retention. On the other hand, the low effort condition of the 

mouse-based menu-driven modality promotes an interaction-intensive strategy. 

Such a strategy facilitates long-term retention. Moreover, a low effort condition 

promotes quick relearning. 
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2.6 Soft Constraint Hypothesis 
Norman (1988, as cited in Kim and Ritter, in press) introduced the terms 

knowledge-in-the-world and knowledge-in-the-head to illustrate a fundamental 

design principle for an interactive system. Norman (1988, as interpreted by Kim and 

Ritter, in press) suggests that placing the knowledge in the environment (i.e. in the 

world) might be helpful in reminding, rather than placing the knowledge in memory 

(i.e. in the head). Anderson (1991, as cited in Fu & Gray, 2004) proposed a theory of 

rational analysis, which conjectures that goal-directed actions are chosen and 

executed through interactions between the human’s adaptive mechanisms and the 

environment in ways that optimize efficiency. 

As an extension to the above theoretical accounts, Gray and associates (Fu & Gray, 

2001, 2004; Gray, Sims, Fu, & Schoelles, 2006) coined the term soft constraints 

hypothesis to provide an understanding of how cognitive resources are allocated in 

interactive behaviour. The soft constraints hypothesis conjectures that a mixture of 

four effort components may be needed to acquire knowledge in-the-world or to 

retrieve the knowledge in-the-head. The four effort components are perceptual-motor 

search effort, perceptual-motor access effort, memory encoding effort, and memory 

retrieval effort (Fu & Gray, 2004; p. 366).  

The four effort components are described as follows: 

When an item is at an unknown location, effort is needed to do perceptual-motor 

search to locate the item. This effort is the overall effort expended in activities such 
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as planning, search strategy, spatial judgement, evaluation of items, and the actions 

carried out during the search for the target information. 

When an item is at a known location, effort is expended for perceptual-motor access 

to reach the item. Examples of access include an eye movement to an icon in a menu 

ribbon of Microsoft Word or moving the mouse and clicking on a key of an on-screen 

keyboard. 

To store an item in-the-head, an effort is required to encode it into the memory— 

memory encoding effort. To use an item present in-the-head, an effort is required to 

retrieve it from the memory—memory retrieval effort. 

The mixture of the aforementioned four effort components mentioned above is 

allocated for interactive behaviour in a way that the least-effort path of executing 

the spatial task at hand, gets implicitly chosen (Fu & Gray, 2001, 2004). As 

acquisition of information from the environment (the-world) becomes difficult, 

people get motivated to choose the least-effort option of retrieving the information 

from memory (the-head), even if the retrieval is imperfect. Conversely, when 

acquisition of information from the environment becomes easier, people get 

motivated to choose the least-effort option of accessing information from the 

environment. 

In their analysis, Fu and Gray (2001) accounted for one combination of the effort 

components—the perceptual-motor access effort + the related memory encoding effort 

+ the related memory retrieval effort. However, they ignored the other combination—
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the perceptual-motor search effort + the related memory encoding effort + the related 

memory retrieval effort (Fu & Gray, 2001, p. 112; Fu & Gray, 2004, p. 366). The 

reason for doing this is that there was a training phase (i.e. non-expert phase) before 

the actual empirical study (Fu & Gray 2004; p. 366). Hence they assumed that the 

second combination—the perceptual-motor search effort + the related memory 

encoding effort + the related memory retrieval effort—has already been met before 

their actual empirical study began.  

Fu and Gray (2001, 2004) thus accounted for the combination of effort components 

that are expended predominantly in the expert phase of the learning curve. Unlike 

Fu and Gray, I focus on the combination of effort components that are expended 

predominantly in the non-expert phase of the learning curve. 

2.7 Interference Phenomenon 
Forgetting occurs not only due to passage of time but also through interference from 

information learned at other times (Wickens & Hollands, 2000, p. 252). Proactive 

interference (PI) is one explanation for the phenomenon in which encoding of non-

target items prior to the encoding of target item disrupts the subsequent retrieval of 

the target item (Underwood, 1957; Keppel & Underwood, 1962).  

Proactive Interference effect on spatial learning 

Elmes (1988) 

Elmes (1988) demonstrated that PI effects are relevant for spatial memory tasks. He 

used a variation of the card game known as concentration for the purpose. The 
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subjects saw a tableau of cards face down. The game then involved turning over 

pairs of cards, one pair at a time.  If the cards in a pair match (e.g. a king and a 

king), the cards remained exposed in their tableau positions until the end of the 

trial. If the cards in a pair did not match (e.g. a king and a queen), an error was 

recorded and the non-matching cards were turned back over with their faces down in 

their same tableau positions. A trial ended when the entire deck was matched. Then 

the cards were turned face down again, and the process was repeated. Learning was 

complete when the subject could expose the cards in matching pairs without error. 

Elmes divided his subjects into 3 groups—2 experimental and 1 control. He made 

the control subjects learn just one game. In contrast, he made one group of the 

experimental subjects learn two successive games and made the other group of 

experimental subjects learn four successive games. Thus there were zero proactive 

games for the control subjects, and one or three proactive games for the 

experimental subjects before the terminal game. The same deck was used for all the 

games. Before each game the deck was thoroughly shuffled, which resulted in an 

essentially random placement of pair locations in each game. For each group, once 

the terminal game was learned, there was a retention interval of 10 minutes, and 

then the terminal game was played again. The experimental subjects committed 

more errors during the replay of the terminal game than the control subjects. Also, 

the experimental subjects with three proactive games committed more errors than 

the experimental subjects with one proactive game during the replay of the terminal 

game. From the result, Elmes concluded that the lower the number of proactive 

tasks, the lower is the build up of PI on the target task (i.e. the terminal task). 
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Modelling Interference 

Despite advocating PI as the cause of forgetting, Keppel and Underwood (1962, 

Experiment 3) had suggested the spontaneous recovery of previously extinguished 

distractors as a cause while explaining the effect of the retention interval (see 

Altmann & Schunn, 2002 for details). Looking at the retention interval as a passage 

of time, Altmann and Schunn (2002) rationalized the spontaneous recovery of 

previously extinguished distractors as the loss of memory activation of the target 

item with passage of time, in other words the decay of the target item. Based on this, 

Altmann and Schunn (2002) developed a mathematical model that took into account 

the effect of both decay and proactive interference on verbal learning. 

Other works attempt to model interference as a whole, not specifically proactive 

interference. I list some of those endeavours below. 

West, Pyke, Rutledge-Taylor and Lang (2010) modelled the effect of interference on 

verbal learning using ACT-R. They modelled the role of interference on the fan effect 

using a single model parameter from ACT-R, the latency exponent. The fan effect 

refers to the phenomenon that cues associated with more facts result in slower recall 

of the target fact compared to cues associated with less. Although the value of the 

latency exponent parameter in ACT-R is traditionally expected to stay fixed across 

experimental conditions being compared, West and colleagues had modelled the 

interference effect in two different conditions (false cues versus true cues) with two 

different values of the latency exponent. Having identified this as an exception, they 

recommended investigation of an explicit model of the interference phenomenon in 
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ACT-R (p. 280). They pointed out that such a model should ideally keep the latency 

exponent parameter fixed across different experimental conditions being compared. 

Spacing effect refers to the effect—of spacing practice events over a time span—on 

learning and retention. In their models of the spacing effect, Raaijmakers (2003) as 

well as Pavlik & Anderson (2005) accounted for interference in verbal learning. Both 

however abstracted the effect of interference using a constant, since their main focus 

was the spacing effect and not the interference phenomenon. 

The models discussed above are all in the domain of verbal learning. While some of 

them have accounted for interference, only one of them has accounted for both 

interference and decay (Altmann & Schunn, 2002). On the other hand, there has not 

been much progress towards theoretically accounting for interference on spatial 

learning. The proactive interference due to distractors on spatial learning can be 

substantial, as Elmes (1988) had observed. In this thesis, I attempt to model the 

combined effect of proactive interference and decay in spatial learning. 

2.8 ACT-R Theory 
I develop models based upon a cognitive architecture known as ACT-R (Anderson et 

al., 2004). ACT-R is a unified theory of cognition, in the spirit proposed by Newell 

(1990), in that it reflects declarative and procedural learning and declarative 

forgetting (Kim, Ritter & Koubek, 2013; p. 23). ACT-R is designed to predict human 

behaviour by processing information and generating behaviour (Ritter & Kim, 2010). 
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The ACT-R system is composed of memory, perceptual, and motor modules. The 

memory module consists of a procedural memory sub-module and a declarative 

memory sub-module. The procedural memory sub-module consists of a set of 

production rules (procedures with an if-then structure) and a computational engine 

for interpreting those rules. The production rules coordinate cognition, perception 

and motor actions. The declarative memory module stores chunks. Each chunk 

represents the memory encoding of an object, and has an activation (i.e. a strength) 

associated with it. A chunk can be created, retrieved or updated by the production 

rules. The activities of the memory modules together with the actions of the 

perceptual and motor modules enable ACT-R to simulate cognition. 

I develop two models—one simulative and one closed-form. In my first model, which 

is simulative, I use the declarative learning and forgetting mechanisms of ACT-R. 

Here, I leverage the default forgetting mechanism implemented through a constant 

representing the decay of memory. I utilize the procedural module for its 

computational engine to interpret the custom production rules of my simulation 

model.  

For my second model, I focus solely on the set of ACT-R equations that describe the 

declarative memory strength as a function of practice. My use of ACT-R declarative 

memory equations as a stand-alone unit, while abstracting out the production rules, 

is not an exception. It follows previous work of Pavlik and colleagues (e.g. Pavlik & 

Anderson, 2005; Pavlik, Presson & Koedinger, 2007) on modelling spacing effects 

and Altmann and Schunn (2002) on modelling proactive interference. 

 27 



The core of ACT-R declarative memory builds upon the notion of memory activation. 

This notion posits that chunks (memory encodings of objects) have different levels of 

activation to reflect their past use: chunks that have been used recently or chunks 

that are used frequently receive a high activation. This activation decays over time if 

the chunk is not used. When the cognitive system needs to retrieve a chunk, memory 

returns the one with the highest activation at that instant. The job of memory 

retrieval is complicated by the noise in activation levels, which can temporarily 

make a chunk more active than the current one, or which can temporarily push all 

chunks below a threshold, thereby making the cognitive system transiently unable 

to recall information. Furthermore, the activation of a chunk controls its speed of 

retrieval. These dynamics bear similarity to other formal activation constructs (e.g., 

Just & Carpenter, 1992; as cited in Anderson et al., 2004). 

ACT-R theory consists of independent sets of equations, each set driving the 

computation for the relevant ACT-R module. In the following subsections, I discuss 

the three core equations behind the ACT-R declarative memory module. 

2.8.1 ACT-R Activation Equation of Declarative 
Memory 

The equation describing the activation of a chunk in the memory is given by 

𝐴𝑛+1 =  𝐵𝑛 + 𝑂𝑛+1                    Activation Equation 

In the above equation, 𝐴𝑛+1 is the activation of the chunk during its (𝑛 + 1)𝑡ℎ 

practice. 𝐵𝑛   is the base-level activation of the chunk after n practices have been 
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completed—𝐵𝑛 is computed just before the (𝑛 + 1)𝑡ℎ practice happens. 𝑂𝑛+1 denotes 

the optional terms in the equation. The optional terms are accounted for when a 

practice is in progress. Thus, 𝑂𝑛+1 is accounted for when the (𝑛 + 1)𝑡ℎ practice is in 

progress. One such optional term is the noise component. Noise is assumed to cause 

transient fluctuations in activation levels. In this dissertation, I account for noise 

only in the first model (the simulation model). I do not account for noise in my 

second model (the closed-form model). To keep both of my models simple, I do not 

account for any other optional terms. Note that avoiding the use of optional terms is 

not an exception. It follows previous work of Altmann and Schunn (2002) on 

modelling proactive interference and Cochran, Lee and Chown (2006) for modelling 

the arousal effect. 

2.8.2 ACT-R Base-Level Activation Equation of 
Declarative Memory 

The equation describing the base-level activation of a chunk in the memory is given 
by 
 

𝐵𝑛 = 𝑙𝑛�∑ 𝑡𝑗−𝑑𝑛
𝑗=1 �              Base-Level Activation Equation 

          
where n is the number of practices of the chunk completed so far, tj is the age of the 

j-th practice of the chunk, and the negative exponent -d is a constant that controls 

how quickly activation decays. 𝐵𝑛  is computed just before the (𝑛 + 1)𝑡ℎ practice. As 

postulated by ACT-R theory, the negative d term models the loss of memory strength 

with the passage of time. The equation therefore represents the strength of a chunk 

as the sum of a number of individual memory strengthenings, each corresponding to 

a past practice event. It implies that each time a chunk is practiced, the activation of 
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the chunk receives an increment in strength that decays away as a power function of 

time. 

Overall, Bn is the strength of a chunk (memory encoding of an object) after n 

practices of the chunk have been completed. A practice of a chunk is said to occur 

whenever the chunk is presented to the declarative memory. Such presentation 

happens due to either visual encoding or recall of the object represented by the 

chunk. 

The base-level activation equation is a central theme of my research. It postulates 

the metaphor that information is lost from human memory due to decay, a process 

indexed by time. Several other researchers (for example, Peterson & Peterson, 1959), 

have also postulated the hypothesis of memory weakening due to decay. In contrast, 

another school of researchers have historically argued that interference from 

distracting information is an important cause of forgetting (for example, Keppel & 

Underwood, 1962). 

2.8.3 ACT-R Reaction Time Equation of Declarative 
Memory 

The time required for the declarative memory to respond to a request for a chunk 

representing an object is given by the following equation: 

𝑅𝑇𝑛+1 = 𝐼 +  𝐹𝑒(−𝑓∗𝐴𝑛+1)         Reaction Time Equation 

In the above reaction time equation, 𝑅𝑇𝑛+1 is the reaction time of the (n+1)th practice. 

𝑅𝑇𝑛+1 depends on the activation 𝐴𝑛+1 of the chunk being practiced. I is an intercept 
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time reflecting the fixed time cost of visual encoding and motor response  (Anderson 

et al., 2004, p. 1043). F is the latency factor, and maps the activation to time. f is the 

latency exponent. The reaction time does not depend on the estimation of the 

parameters I and F. The effect of I and F is only to scale the critical quantity 

𝑒(−𝑓∗𝐴𝑛+1) onto the range of the latencies. 

The fixed time cost of a visual encoding is set at 85 ms which is taken from the 

estimate used by ACT-R for human attention to move to an object at a given location 

(Anderson et al., 2004; p. 1039). 

The time cost of a motor response is set according to the task specific behaviour. 

Different values are chosen depending on whether the movement is, for example, a 

finger press on a key of a computer keyboard, or pointing with a mouse and then 

clicking a button in a graphical user interface. 

2.9 Fitts' Law 
Fitts' law predicts the Movement Time MT it takes for a pointing device (e.g. a 

finger or a mouse cursor) to move a given distance to an item of a given size. It is 

expressed as follows. 

𝑀𝑇 = 𝑎 + 𝑏 ∗  log2 �
𝐴
𝑊

+  1� = 𝑎 + 𝑏 ∗ 𝐼𝐷        Fitts' Law (MacKenzie's formulation) 

In the above equation of Fitts' law (MacKenzie, 1992), A is the amplitude of the 

movement (e.g. the distance between two keys on a keyboard—a source key where 

the movement begins from and a target key where the movement ends), and W is the 
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width of the target item. The log term in the equation is called the index of difficulty 

ID. ID is measured in bits. 

In target acquisition tasks on user interfaces, the width W of the target item is 

measured assuming that the item is either rectangle or square shaped (MacKenzie 

and Buxton, 1992) or assuming a bounding rectangle around the item if it is not 

rectangular (Silfverberg et al., 2000, p. 12). According to MacKenzie and Buxton 

(1992, p. 221), the smaller of the two sides of the rectangle seems more indicative of 

the accuracy demands of a target acquisition task in a user interface. Hence 

MacKenzie and Buxton recommends to consider the smaller side of the rectangle to 

be the target width W. 

There are other versions of Fitts' law such as the original Fitts' formulation or 

Welford's formulation whose ID term is different from that of MacKenzie's 

formulation. Whenever A/W ratio drops below 0.5, these formulations result in a 

negative ID. However, to predict the movement times on human-computer interfaces 

including phone keypads and graphical user interfaces, MacKenzie and Buxton 

(1992, p. 219) and Kim and Ritter (in press) recommend the use of MacKenzie's 

(1992) formulation because it prevents the ID from being negative. 

The coefficients a and b are usually determined empirically for a given device (e.g. 

computer screen, phone keypad, computer keyboard) and the interaction style (e.g. 

pointing with a mouse cursor, pointing with a finger, pressing with a thumb) 

(Pavlovych & Stuerzlinger, 2004; p. 352). They are determined by regressing 

observed movement times on the index of difficulty ID (Mackenzie, 1992; p. 98).  
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For a given interface and interaction style, the Fitts law coefficient a and b are held 

constant as noted above. In this situation, change in movement time MT depends 

only on the change in ID. 

In the early and intermediate stages of spatial learning, the movement time is only a 

small fraction of the total time needed to perform a target acquisition. The rest of 

the time is spent in non-movement tasks such as search, encoding, and recall (e.g. 

Salthouse, 1986; Pavlovych & Stuerzlinger, 2004; Kim, Ritter & Koubek, 2013; Kim 

& Ritter, in press). If we consider a given mean ID in a location learning task on a 

stable user interface and same interaction style, the movement time as predicted by 

Fitts' law stays the same over practice sessions. However the non-movement time of 

item acquisition should decrease with decrease in search time and improvement in 

recall over practice sessions.  

In this thesis, I consider the novice-to-expert transition phase. For the simplicity of 

my analysis, I include an average movement time predicted from Fitts' law in the 

task completion time (to acquire items on a layout) as and when required. To do so, I 

take into account the minimum and the maximum amplitude possible on the layout. 

Next, I show a sample calculation of movement times using Fitts' law. 

Given a task completion time (to acquire an item on a layout), I often refer the 

movement time (e.g. to move a finger or a mouse cursor) predicted from Fitts' law as 

Fitts time. I refer to the non-movement time portion that remains after subtracting 

the Fitts time from the task completion time as non-Fitts time. As noted earlier, the 
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non-Fitts time is assumed to be spent in activities such as search, encoding, and 

recall. 

Prediction of an average movement time using Fitts' law: An example 

I now show how Fitts' law can be used to predict average movement time for text 

input on a traditional phone keypad using either left or right thumb. Figure 2.1 

shows a traditional phone keypad of Nokia 5190 cell phone. I use the Fitts' law 

coefficients a = 0.176 sec and b = 0.064 sec/bit. Silfverberg et al. (2000) determined 

the values of these coefficients empirically for one-handed thumb use for text entry. 

Silfverberg et al. had used the traditional keypad of a Nokia 5100 series cell phone 

for collecting human data. 

 

Figure 2.1  Traditional keypad layout as found on a Nokia 5190 cell phone. 
Letters occupy eight keys. They are spread over key-2 to key-9. 

I first digitize the screenshot of the keypad provided in Silfverberg et al. (2000). 

Here, I use the Engauge Digitizer version 4.1 for digitization. Using the digitizer, I 
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set the height of a key as 1 unit. Then, in terms of the height of a key as 1 unit, I 

obtain the approximate distances between the centers of three pairs of keys—the 

vertical distance between key-1 and key-4, the horizontal distance between key-1 

and key-2, and the diagonal distance between key-1 and key-9. The minimum and 

the maximum among these three distances are the minimum and the maximum 

amplitudes respectively. In this case, the minimum amplitude is 1.44 units (vertical 

distance between key-1 and key-4) and the maximum is 5.30 units (diagonal 

distance between key-1 and key-9). Next, using Fitts' law in the MacKenzie's 

formulation equation, I obtain a minimum 𝑀𝑇 = 𝑎 + 𝑏 ∗  log2(𝐴/𝑊 +  1)  = 

0.176+0.064 ∗  log2(1.44/1 +  1)  ≈ 0.258  sec and a maximum 𝑀𝑇 = 𝑎 + 𝑏 ∗

 log2(𝐴/𝑊 +  1)  =  0.176 + 0.064 ∗  log2(5.30/1 +  1)  ≈ 0.346 sec. Then the average 

movement time is approximated as MT =  (minimum MT +  maximum MT) / 2 ≈

 0.302 sec. 

2.10 Summary 
The goal of this thesis is to develop simulation and closed-form cognitive models for 

learning of layouts. Through a brief review of literature, this chapter creates a 

context to develop these models. In this regard, I discussed related work for expert 

performance, novice performance, and novice-to-expert transition.  

Then I discussed some sample effortful conditions. I also discussed the effect of 

effortful conditions on retention and relearning. Moreover, I discussed the soft 

constraint hypothesis that conjectures how performance cost can be interpreted in 

terms of effort.  
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Next, I briefly reviewed the phenomenon of interference, specifically the 

phenomenon of proactive interference in the domain of spatial learning. Thereafter, I 

discussed earlier work on modelling the effect of interference.  

I briefly reviewed the ACT-R theory that my models are based upon. The ACT-R 

theory provides a simulation framework of mutually interacting modules of 

cognition. This enables the creation of simulation models that can explain aspects of 

novice to expert transition in layout learning. The ACT-R theory provides a rich set 

of mathematical equations that models declarative memory.  These equations can 

help to create closed-form models accounting for the combined effect of practice, 

decay, interference and mental effort. 

Finally I reviewed Fitts' Law. I use it to predict the average movement time for a 

finger or a mouse cursor. 
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Chapter 3  
A Simulation Model of Novice to Expert 
Transition in Layout Learning 
 

3.1 Introduction 
The work presented in this chapter is related to the peer-reviewed material of Das 

and Stuerzlinger (2007, 2008). 

In layout learning, the involvement of cognitive and perceptual processes is 

substantial, especially in the early and intermediate stages of learning (e.g. Kim, 

Ritter & Koubek, 2013). This is evident in text copying tasks using keyboard layouts 

(e.g. Salthouse, 1986; John, 1996) or in the item acquisition tasks on graphical 

layouts (e.g. Byrne, 2001; Ehret, 2002; Kim & Ritter, in press). The time for item 

acquisition on a layout can be divided into two parts—non-movement time and 

movement time. Ahlstrom et al. (2010, p. 1374) suggests that, unlike experts, who 

spend most of the time on movement aspects, non-experts spend the majority of the 

time in the visual search for items.  

I will use the term non-Fitts time to refer to the non-movement time. The non-Fitts 

time (NFT) is the part of the user’s task completion time that remains after 

subtracting the movement time. 
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Goal 

The goal of this chapter is to predict the learning curve for a text copying task on a 

traditional phone keypad. This would need the prediction of non-Fitts times for the 

novice to expert transition. Specifically, the aim is to account for the effect of the 

visual exploration behaviour on the non-Fitts time.  

I represent the non-Fitts time (NFT) to be the sum of two parts—one part is the 

Visual Exploration Time (VET) and the other part is the Non-Exploration Time 

(NET), that is, NFT  = NET  + VET. I describe VET and NET next. 

I conjecture that VET is either the visual search time for a symbol present on a 

button (i.e. symbol location) of a layout or, the choice time for a button on the layout 

or, a combination of both. Here, the visual search time is the time to search for a 

symbol by a pure novice. The maximum VET is the visual search time and the 

minimum VET is the choice time. VET is thus a continuum from the visual search 

time to the choice time. I obtain the VET from a mathematical equation. 

I conjecture that NET is either the visual encoding time of a symbol (and its 

location) or the memory retrieval time of a symbol (and its location).  

To meet the goal, I develop a model that simulates the task of copying textual 

symbols by pressing buttons (labelled with the symbols) on a traditional phone 

keypad layout. My model is able to simulate the different stages of learning. Figure 

3.1 illustrates the model. My model has two sub-models: a simulative sub-model 

based on the ACT-R 6.0 simulation framework to predict NET and a non-simulative 

 38 



sub-model to predict VET. The results of the simulative sub-model are utilized in the 

calculation of VET.  

 

Figure 3.1 My first model 

Motivation 

I am motivated to develop the simulation model due to the following reasons. First, 

Cognitive simulation can help to predict the learner’s future cognitive states (Kim, 

Ritter & Koubek, 2013; p. 23). A cognitive simulation model can be developed within 

a cognitive architecture such as ACT-R. A model thus developed is believed to 

simulate the interactions of cognitive subsystems and predict human performance 

accurately (Kim, Ritter and Koubek, 2013; p. 23). 

 
First model 

(predicts non-Fitts time NFT) 
 

NFT = NET + VET 

Simulative Sub-model 
(based on ACT-R) 

 
accounts for visual encoding 
and memory retrieval 
 

predicts NET, RA 
 

Non-simulative Sub-model 
 
 
accounts for visual 
exploration on a layout 
 

predicts VET 
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Second, the modelling endeavour can reduce the cost of running experiments with 

subjects. Once a model is validated with experimental data, the validated model can 

provide predictions of human performance, reducing the cost to evaluate systems 

and interfaces (see for example, Pew and Mavor 2007, St. Amant et al. 2007 as cited 

in Kim, Ritter and Koubek, 2013). 

The third reason that motivates me to develop the model is specific to a constraint in 

the classic ACT-R Theory.  The classic version of ACT-R theory realizes a vision 

subsystem that is a purely attentional system—that is, although the vision 

subsystem models the visual encoding time for a symbol as a fixed cost, it does not 

model any visual search strategy or any mechanism to assess visual search cost. 

Previously few works (e.g. Byrne, 2001; Ehret, 2002) have tried to alleviate this 

constraint of classic ACT-R by implementing a custom visual search functionality. 

However such an endeavour may need a great deal of expertise in specifying cryptic, 

low-level descriptions of simulation models within a cognitive architecture. 

Consequently, I model the visual exploration time VET in terms of a mathematical 

equation and avoid implementing a custom simulation model for visual search. 

Although a custom search model (such as the ones by Byrne, 2001; Ehret, 2002) may 

provide a richer description of visual search strategies, my mathematical equation is 

less complex and more straightforward to apply. 

3.2 Text Entry on Cell Phone 
The simulation model I develop in this chapter is for copying textual symbols on a 

traditional cell phone keypad. My model predicts the novice to expert transition. To 
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do this, one of the things my model needs is the human non-Fitts times for the first 

few sessions. 

In this section, I mention some empirical studies that have been carried out in the 

domain of text entry on cell phones. These studies observed text entry performance 

for novice or expert or both. 

To the best of my knowledge, Dunlop and Crossan (1999) were the first to 

investigate text entry on cell phones. Shortly after that, Silfverberg et al. (2000) 

performed an empirical study and provided a model to predict text entry speed of 

expert users. This was followed by other studies: one by James and Reischel (2001) 

and another by Butts and Cockburn (2002). 

Dunlop and Crossan (1999) and Silfverberg et al. (2000) concentrated on expert 

users. Dunlop and Crossan (2000, as interpreted in Cockburn and Siresena, 2003) as 

well as Pavlovych and Stuerzlinger (2004) concentrated on novice users. A few 

studies such as the ones by James and Reischel (2001), Butts and Cockburn (2002), 

as well as Cockburn and Siresena (2003) analyzed both novice and expert users.  

The studies by James et al. (2001) and Butts et al. (2002) point out that the model of 

Silfverberg et al. (2000) is an overly optimistic model, as it focuses solely on the 

motor part. Silfverberg et al. (2000) effectively ignores any potential cognitive 

component, which is non-zero even for expert behaviour (James and Reischel, 2001). 

Pavlovych and Stuerzlinger (2004) then empirically demonstrated the existence of 
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this cognitive component in novice user behaviour through a text copying task on a 

traditional phone keypad. 

Related to the work of Pavlovych and Stuerzlinger (2004), I have obtained the 

human non-Fitts times for the first few sessions through personal communication 

with Dr. Andriy Pavlovych. I will test the novice predictions of my model against 

this human data. 

3.3 The task to be executed by the model 
A single run of my model executes the task of copying a group of 5 distinct English 

letters in a given session, for 160 sessions. At every session, a group of 5 distinct 

English letters out of 26 letters are randomly chosen and copied by the model. The 

copying task is performed on a simulated layout of the traditional phone keypad 

labelled with English letters as shown in Figure 3.2. For the ease of explanation, I 

assume that there are only three main areas on the visual scene that I use for my 

model. They are, text display area, text output area and keypad area from top to 

bottom respectively. Figure 3.2 shows the three areas.  

At a given session, the five letters to be copied are first displayed in the text display 

area. To accomplish the task, the model looks at the letter to be copied in the text 

display area; next it shifts its attention to the target letter on the keypad area; 

finally the model presses the key containing the letter. As a consequence of pressing 

the key, the letter is outputted in the text output area.  
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A single model run predicts the mean non-Fitts time to copy a letter in each of the 160 

sessions. 

 

Figure 3.2 Layout showing text display area, text output area and keypad 
area. This layout acts as the visual scene for the simulation sub-
model. 

3.4 Model Foundation 
The model that I introduce in this chapter predicts the non-Fitts time (NFT) to copy 

an English letter on a traditional phone keypad. It consists of two sub-models—one 

simulative and the other non-simulative. I explain the two sub-models next. 
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3.4.1 Simulative sub-model 
The simulative sub-model predicts the followings. (i) The Non-Exploration Time 

(NET) to copy a letter in a session. (ii) The ratio of the number of successful memory 

retrievals in a session to the total number of retrieval attempts in that session. I call 

this ratio recall accuracy (RA). The RA will be used in the non-simulative sub-model. 

To develop my simulative sub-model, I use the learning mechanism of ACT-R 

declarative memory. I use the ACT-R production rules as an engine to control the 

cognitive actions such as visual encoding of a symbol or retrieval of a symbol from 

the declarative memory. ACT-R theory assumes that a visual encoding of a symbol 

takes a constant time (Anderson et al., 2004). It also assumes that at any given time 

point along practice sessions, the retrieval time is the same for any symbol. Thus, at 

any given time point, the NET (the visual encoding time or the retrieval time) is the 

same for any symbol. 

My simulation sub-model utilizes five modules of ACT-R 6.0. These modules are—

the motor, vision, declarative memory, procedural memory, and goal modules. (i) I 

use the motor module to model the interaction of the right-hand thumb with the 

keys on a keypad. Figure 3.3 shows the model of the keypad that my simulation sub-

model interacts with, through the motor module. It is a traditional keypad of the 

Nokia 5190 phone. (ii) I use the vision module to model the visual attention on the 

symbols. Figure 3.2, shown earlier, represents the visual scene in the external 

environment that my simulation sub-model interacts with, through the vision 

module. At the top of the visual scene is the text display area. The area displays the 
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five letters to be copied. Below the text display area is the text output area. It shows 

the letters that has already been copied. The remaining area is the keypad area. The 

keypad area shows the characters on the traditional phone keypad of a Nokia 5190 

phone. (iii) The declarative memory module stores information about symbols and 

their locations. It keeps track of activations of symbols. It models increase in 

activation due to practice and loss of activation due to decay. I model the noise in 

declarative memory by setting the activation noise scale parameter (ans) to a value 

of 0.1. I choose a small value for the noise to model a scenario where memory 

retrieval failures can normally occur as they do in real subjects. (iv) The procedural 

memory module controls the execution of my production rules. To keep my model 

simple, I create the production rules in a way that no two rules compete at any given 

instant of time. The rules execute a finite state machine. I do not add any noise to 

the procedural memory. An English description of the nineteen production rules that 

I create for my simulation sub-model is provided in Appendix B. (v) I use the goal 

module to keep track of the current state of the execution. 

The key production rules of my simulation sub-model are as follows: 

can-recall-letter-location-on-keypad matches if the keypad coordinates of the current 

letter (that has just been encoded from the text display area) is same as the 

information present in the retrieval buffer and fails to match if it doesn’t. If the 

match occurs, the model will execute a motor action directly, without any attention 

shift, to enter the letter. 
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cannot-recall-letter-location-on-keypad matches if the keypad coordinates of the 

current letter (that has just been encoded from the text display area) is not same as 

the information present in the retrieval buffer (more specifically when the retrieval 

buffer is empty). If the match occurs, it will lead to the shift of visual attention, to 

the keypad area, for the current letter. 

 

Figure 3.3  Virtual grid for the Nokia 5190 keypad. 

Adapting the Motor Module of ACT-R 6.0 Framework 

To support the development of my simulative sub-model for text copying on a 

traditional phone keypad, I add a model for the keypad interface of the Nokia 5190 

phone to the motor module of ACT-R 6.0. As part of my model development, I add 

certain motor movement styles as follows: 
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(i) I create a virtual grid of key locations, the start position, and the recoil 

position for the right thumb. Figure 3.3 shows this grid, with four columns and six 

rows. Columns 0 to 2 contain the keys themselves, whereas column 3 contains the 

start position and the recoil position of the right-hand thumb. Although the 

recoil/home position might vary and hence affect the movement time predicted by 

Fitts’ law, my assumption of a fixed recoil position is still valid for this work since I 

am interested only in the non-Fitts time portion of the user’s task completion time. I 

further assume that a) all the keys on the keypad are of the same size, b) the width 

of a key is one key unit, c) the horizontal and vertical distance between adjacent keys 

on the keypad is one key unit, and d) that the user is right-handed (holds the phone 

handset in her right hand) and uses only the thumb to press keys. 

(ii) I create a new movement style called thumb-recoil-to-location that models the 

movement of the right-hand thumb from a key to the recoil/home location (3, 2). The 

grammar of the ACT-R model description language for the new style is as follows: 

+manual> 

  ISA      thumb-recoil-to-location 

  hand     right 

  finger   thumb 

  to-loc   location in virtual grid 

 

 (iii) The default Peck movement style of ACT-R (a directed movement of a finger to a 

new location followed by a keystroke, all as one continuous movement) may be 
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considered sufficient for text entry modelling. However, this style was developed for 

computer keyboards where only one letter is mapped to one key. Since a single key 

on a traditional phone keypad contains multiple characters, I extend the ACT-R 

system to allow the modeller specify the location of the target key as well as the 

character the simulative sub-model would be pecking for. I name the new movement 

style peck-to-location-for-char. The grammar for the extended style is as 

follows: 

+manual> 

  ISA       peck-to-location-for-char 

  hand      right 

  finger    thumb 

  to-loc    location in virtual grid 

    for-char     string 

 

(iv) The default Punch movement style of ACT-R (a down-stroke directly followed by 

an upstroke of a finger, for pressing a key that is already directly below the finger) 

was originally developed for the home keys (recoil / resting positions of the fingers) 

on a computer keyboard. In my case, however, punch can be executed on any key. I 

therefore extend the default movement style to enable the modeller to specify the 

character to be punched as well. I name the new style punch-for-char. The 

grammar for the extended style is as follows: 
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+manual> 

  ISA       punch-for-char 

  hand      right 

  finger    thumb 

    for-char     string 

 

It is to be noted that among the three movement styles that I have described above, I 

have included the punch-for-char style for the sake of completeness of my 

simulative sub-model's description. The punch-for-char style does not actually 

get used in the execution of the task described in this chapter. This is because, as 

described earlier, the task executed by the simulative sub-model involves copying 

distinct English letters in a given session—there is no repetition of letters getting 

transcribed. Consequently, the production rule implementing the movement style 

punch-for-char does not get invoked during the task execution. 

I leave the ACT-R motor module at its default configuration and computational logic, 

except that I force the Fitts’ law mathematical function in the ACT-R motor module 

to return zero at every simulated key press. I do this so that the movement time 

predicted by Fitts’ law does not get added up in the task completion time during 

simulation. This allows me to focus only on the non-Fitts time. 
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3.4.2 Non-simulative sub-model 
The non-simulative sub-model predicts the Visual Exploration Time (VET) to copy a 

letter in a session. To develop this sub-model, I make the following conjecture—

when the user is a pure novice with respect to a given keypad layout, she performs 

an explicit visual search to find a letter. However, as she gains expertise with 

practice over time, she starts spending less time in visual search; she now begins to 

spend more time choosing letter location (i.e. button). The non-simulative sub-model 

accounts for this gradual transition from a searching process to a choosing process. 

I represent the non-simulative sub-model as a mathematical equation. I predict VET 

from that equation. VET is either the visual search time for a letter present on a 

button of a keypad or, the choice time for a button or, a combination of both visual 

search time and choice time. The novice VET is the visual search time and the expert 

VET is the choice time. VET is thus a continuum from the visual search time to the 

choice time. 

In the computation of VET, I account for the choice behaviour of an expert user via 

Hick’s law (Hick, 1952). Guided by Sears et al. (2001, p. 161), I treat Hick’s law as a 

non-cognitive model that predicts the choice time for a button as a function of the 

number of known alternative buttons. 

In the computation of visual exploration time VET, I further use the recall accuracy 

term noted earlier. Recall accuracy (RA) is the ratio of the number of successful 

memory retrievals in a session to the total number of retrieval attempts in that 

session. RA is predicted by the simulative sub-model. RA influences the gradual 
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shift of behaviour from pure search for letters at novice level to pure choice of 

buttons at expert level as the user learns the keypad layout with practice. RA is one 

term that accounts for the effect of cognition in the non-simulative sub-model. 

3.4.2.1 Novice Visual Exploration Time 

I assume that the novice VET to find a letter on a layout is the time required to find 

it in the first session. I denote the novice VET by the visual search time VST. 

The empirical data that I validate my model against does not specify the VST. 

Instead it provides the non-Fitts time NFT of a digit and the NFT of a letter in the 

first session. Specifically, these NFTs came from unpublished data.  I obtained this 

data through personal communication with Dr. Andriy Pavlovych related to the 

work of Pavlovych and Stuerzlinger (2004). I estimate the VST of a letter from these 

two NFTs as described next. 

The empirical non-Fitts time NFT of a letter in a session was obtained as an average 

of the total non-Fitts time spent in copying 5 consecutive letters from an external 

reference in that session. Similarly, the empirical NFT of a digit in a session was 

obtained as an average of the total non-Fitts time spent in copying 5 consecutive 

digits from an external reference in that session. The empirical NFT of a letter in 

the first session is 1748 ms and the empirical NFT of a digit in the first session is 974 

ms. 

I assume that the NFT of a digit was observed to be smaller than the NFT of a letter 

because of the following three reasons: First, participants were active users of the 
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traditional phone keypad used for dialling phone numbers. Therefore, they were 

familiar with the digit locations on the keypad; Second, the digits on the keypad of a 

Nokia 5190 phone are substantially larger in size compared to the letters (see Figure 

3.3); Third, unlike letters, only a single digit is mapped to each key (see Figure 3.3). 

Therefore, I assume that some form of “pop-out” effect (Treisman & Gelade, 1980) 

occurs for digits. These reasons permit me to speculate that the visual search time 

VST required for a digit is negligible compared to the VST required for a letter. As a 

consequence, I assume that the time required to copy a digit consists mostly of the 

NET component of the non-Fitts time. 

To estimate the visual exploration time VET for a letter in the first session (i.e. VST), 

I assume the following. (a) I assume that at any given time point along the practice 

sessions, the time to visually encode a symbol into the ACT-R declarative memory is 

the same (specifically, 85 ms—an ACT-R axiom (Anderson et al., 2004, p. 1039)). (b) I 

further assume that a letter or a digit has been considered equiprobably in the 

context of the text copying task in Pavlovych and Stuerzlinger (2004). Therefore, in 

the first session, I assume that the time to retrieve a letter or a digit from the ACT-R 

declarative memory is the same. Thus, overall, in the first session, I assume that the 

non-exploration time NET (i.e. the time to visually encode or the time to retrieve a 

symbol from the ACT-R declarative memory) for either a digit or a letter is the same. 

In summary, I assume the following. To copy a digit or a letter in the first session: (i) 

the NFT required to copy a digit is only the NET; the VST for a digit is assumed to 

be negligible compared to the VST for a letter, and is therefore ignored for my 
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modelling purposes. (ii) the NFT required to copy a letter consists of the NET plus 

the VST. (iii) the NET is same for either a letter or a digit.  

Thus for the first session, I can write, 

NFTdigit = NETdigit   as per the assumption (i) above. 

 NFTletter = NETletter + VSTletter   as per the assumption (ii) above. 

NETletter = NETdigit  as per the assumption (iii) above. 

Using (i), (ii) and (iii), I can derive, 

VSTletter = NFTletter   –  NETletter    

                      =  NFTletter  –  NETdigit   

              =  NFTletter  –  NFTdigit  =  1748  − 974 = 774 ms 

Thus the visual search time (VST) for a letter (i.e. the VET for a letter in the first 

session) is approximately 774 ms. 

3.4.2.2 Expert Visual Exploration Time 

Guided by Cockburn et al. (2007a), I consider the expert VET to be the choice 

reaction time (CRT) for a button on a layout. I use Hick’s Law (Hick, 1952) to 

compute the CRT. Hick’s law is defined as follows. 

CRT = a + b * log2 (n)  = a + b * H             Hick's Law 
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In the above equation, n is the number of already known buttons to choose from. The 

coefficients a and b are empirically determined constants. They are determined by 

regressing the observed choice reaction times on the bits per stimulus presentation, 

H (Seow, 2005, p. 324). The assumption is that users know the correct response (e.g. 

which button to press) for each stimulus (e.g. letter) (Sears et al., 2001, p. 160).  

The coefficient b serves as an index of the time taken to process one bit of 

information (Seow, 2005, p. 320). The coefficient a reflects the individual differences 

in sensory-motor lags in task performance (Seow, 2005, p. 329).  

Welford (1968, as cited in Soukoreff & MacKenzie, 1995) assumes that in continuous 

text-entry there is no uncertainty as to when the stimulus signal arrives. 

Consequently, Welford (1968, as cited in Soukoreff & MacKenzie, 1995) suggests to 

assume the coefficient a to be 0 for continuous text-entry. 

Welford (1968, as cited in Soukoreff & MacKenzie, 1995) also maintains that the 

throughput (also known as rate of gain of information in Hick’s paradigm (Seow, 

2005, p. 332)) of key presses in response to stimulus presentation would range 

between 5 to 7 bits per second (see Sears et al., 2001, p. 160). I assume that the 

maximum choice processing throughput to be appropriate for a pure expert user. 

Therefore I set the constant b to 1/7 seconds per bit.  

Sears et al. (2001, p. 161) suggested that, the number of alternatives (i.e. n) should 

be based upon the number of keys (i.e. reactions) on the keypad rather than the 
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number of letters (i.e. stimuli). Hence I set n = 8 since the traditional phone keypad 

of Nokia 5190 phone has the letters spread only over eight buttons. 

Consequently, my choice reaction time CRT for a button is  

CRT = b log2 (n) = (1/7) * log28 ≈ 429 ms. 

3.4.2.3 The Equation representing Non-Simulative Sub-Model 

The equation representing the non-simulative sub-model is as follows: 

VET =  (1 – RA) * VST  +  RA * CRT             Visual Exploration Time Equation 

In the visual exploration time equation, VET is the visual exploration time, VST is 

the visual search time (i.e. the novice VET), and CRT is the choice reaction time (i.e. 

the expert VET). The term RA represents recall accuracy.  

Next I explain the way to compute RA specific to the task executed by my model. 

As I had mentioned earlier, a session in a run of my simulative sub-model consists of 

the task of copying a group of 5 distinct English letters. In a given run, the task is 

repeated across 160 sessions; at every session a group of 5 distinct English letters are 

randomly identified out of 26 letters and copied by the model. 

I have created my simulative sub-model so that during each run the sub-model first 

attempts to recall the location of a pre-cued letter on the keypad. The simulative 

sub-model does this through its system of production rules. Each recall attempt 
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either fails or succeeds. A successful recall results in the retrieval of the chunk 

containing the location information of the letter. The retrieval of a chunk occurs 

when its activation exceeds the retrieval activation threshold set at the onset of the 

run. Let the number of successful recalls in a given session be x where x <= 5 (the 

total number of letters to be copied in a session being 5). Then I express recall 

accuracy, RA as follows: 

RA = x / 5                       Recall Accuracy Equation 

 
The recall accuracy RA, thus, ideally varies from 0 corresponding to visual search 

only by a pure novice, to 1 corresponding to choice only by a pure expert. 

The visual exploration time equation reflects the following: With practice, the user is 

able to know more and more letter locations on the keypad; hence her visual search 

time for a letter location decreases towards zero. With the increase in familiarity of 

keypad layout, she adapts her behaviour to spend more time in choosing a letter 

location (button) out of all the letter locations she knows so far, and consequently 

her choice reaction time dominates.  

An equation similar to my visual exploration time equation was used earlier by 

Cockburn et al. (2007a, Equation 4). Cockburn et al. used it to model the increase in 

user’s level of expertise during the novice to expert transition in learning a graphical 

menu. Assuming a spatially stable menu layout, their equation was a function of the 

number of buttons on the menu and the number of trials previously completed to 
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select a button on the menu. Their equation, therefore, is not based on any cognitive 

principles (Cockburn & Gutwin, 2010, p. 13:5). 

I model the user’s level of expertise by the notion of Recall Accuracy. The Recall 

Accuracy computation is influenced by the activation equation of ACT-R's 

declarative memory. Since the said activation equation accounts for the effect of both 

learning (declarative) and forgetting (declarative), the Recall Accuracy therefore also 

reflects the effect of learning as well as forgetting unlike Cockburn et al. (2007a). 

I substitute VST (=774 ms) and CRT (=429 ms) in the visual exploration time 

equation with the values obtained in earlier sections. Thereby I obtain an average 

visual exploration time (in ms) as follows: 

VET =  (1 – RA) * VST  +  RA * CRT  =  (1 – RA) * 774   +  RA * 429 

3.5 Non-Fitts Time Equation: the new 
Hybrid Model 

My new model is a hybrid of the two sub-models—the simulative sub-model and the 

non-simulative sub-model described in the previous sections. At a high level of 

abstraction, my hybrid model can be symbolically represented as follows: 

NFT  = NET  + VET              Non-Fitts Time Equation 

 

In the non-Fitts time equation above, NFT is the mean non-Fitts time, NET is the 

mean non-exploration time and VET is the mean visual exploration time per letter, 

corresponding to a given session. The VET equation expressed earlier consists of the 
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terms VST, CRT and RA. The NFT equation can be thought of as a unification of the 

cognitive components (NET, RA) and the non-cognitive components (VST, CRT). 

NET and RA are predicted from the simulative sub-model. 

I use the Non-Fitts Time Equation to model the user’s non-Fitts time for copying a 

pre-cued letter in a given session. The Non-Fitts Time Equation can be rewritten as 

follows: 

NFT = NET  + VET 
 

or,   NFT = NET  + (1 – RA) * VST  +  RA * CRT 
 

or,   NFT = NET  + (1 – RA) * 774  +  RA * 429 
 
where VET is substituted by an expression derived earlier. 

3.6 Comparison of model data and human 
data 

In this section, I validate the first 15 sessions of the predicted non-Fitts times 

against the first 15 sessions of the human non-Fitts times. 

3.6.1 Human data to validate the model 
The human data that I validate my model against came from the unpublished data 

that I obtained through personal communication with Dr. Andriy Pavlovych related 

to the work of Pavlovych and Stuerzlinger (2004). They measured the non-Fitts time 

to copy a visually pre-cued English letter on a traditional phone keypad of Nokia 

5190 phone. The keypad was connected to a computer. The keypad is shown earlier 

in Figure 3.3. There were 12 participants in that study, recruited from university 
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campus. Five participants were female, one was left-handed, and three were 

frequent users of text messaging. All had extensive computer experience (seven 

years or more). One did not own a cell phone. One reported using text messaging on 

the cell phone daily, another two did weekly; all others used it infrequently.  

The data entry application used in Pavlovych and Stuerzlinger (2004) was created in 

a way so as to avoid repeated key presses required to arrive at a letter on a 

traditional phone keypad (Figure 3.3). For example, to copy the character sequence 

cei, the user needed to press the key containing c only once instead of pressing it 

thrice (refer to Figure 3.3 for the location of c), the key containing e only once 

instead of pressing it twice, and the key containing i only once instead of pressing it 

thrice. 

To data-fit my model, I obtained the human mean non-Fitts times to copy a letter for 

the first 15 sessions. The non-Fitts time per letter in a session was obtained as an 

average of the total non-Fitts time spent in copying 5 consecutive letters in that 

session. Table 3.1 shows the human data points for the first 15 sessions. Figure 3.4 

shows the plot. The standard deviations associated with the data points were not 

available to me. 

Table 3.1    Human mean non-Fitts times to copy an English letter on 
traditional phone keypad of a Nokia 5190 cell phone. 

Session Mean non-Fitts time per English letter 
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1 1748 

2 1618 

3 1890 

4 1811 

5 1591 

6 1608 

7 1621 

8 1691 

9 1628 

10 1651 

11 1688 

12 1617 

13 1623 

14 1798 
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15 1614 

 

 

 

 

Figure 3.4  Human data for the first 15 sessions. The linear regression line 
for the human data is also shown. 

I assume that the first 15 sessions of the human data in Figure 3.4 belong to the 

Stage I of learning (Kim, Ritter & Koubek, 2013). From Figure 3.4 it is evident that 

considerable oscillation exists in the human data from sessions 1 to 7 and sessions 

13 to 15. This is possibly owing to this relatively short test in Stage I of learning. 
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Although correlation between the human data and model data is a way to show the 

degree of match between them (Grant, 1962, as cited in Ritter et al., 2011), in the 

present case a direct correlation between the human and the model data for the first 

15 sessions makes little sense due to the oscillations in the human data. Given the 

situation, a comment from Taatgen and Van Rijn (2010, p. 251) may be relevant 

here: 

"When we create a cognitive model, it is not our goal to fit a particular data graph, 

although this may be part of the process, but to explain the phenomena that we are 

interested in." 

An alternative in this case could be to try matching the rate of learning of the model 

data to that of the human data for the first 15 sessions. In this regard, I compute a 

linear regression line of the human data points using MS Excel. Figure 3.4 shows 

the linear regression line. The equation for the regression line is 𝑌�ℎ(𝑋) = −5.66𝑋 +

1725. Using this equation, I obtain the session 1 point as 𝑌�ℎ  (1) =  1719 ms and 

session 15 point as 𝑌�ℎ(15) = 1640  ms. Thus the regression line of human data shows 

a difference of about 𝑌�h(1)  −  𝑌�h(15)  = 1719 − 1640 = 79 ms between session 1 and 

session 15. 

Making the model output compatible with human data 

To stay compatible with the scenario in which the human data was collected, I 

discard the model data for the very first group of 5 distinct letters at every model 

run. I assume that the first session for the model execution starts from the second 

group of 5 distinct letters to be copied. The reason behind this is explained below. 
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At every simulation run, the modelled recall accuracy is always 0 for the very first 

group of 5 distinct letters. This is because the model has been developed in such a 

way that at each run, the model is not familiar with the location of any letter that 

belongs to the first group of 5 distinct letters. However, I validate my model against 

a set of human data that has been obtained from a group of participants who were 

frequent or infrequent users of cell phone (Pavlovych & Stuerzlinger, 2004, p. 355). 

Hence I assume that a participant being familiar with the phone keypad layout, 

would have, on average, recalled the location of at least one letter while entering the 

first group of letters. I therefore assume that the mean human recall accuracy has 

not been zero for the very first group of 5 distinct letters with respect to a 

participant.  

3.6.2 Power Analysis: number of simulation runs for 15 
sessions 

Before I try matching the model data to the human data, I need to estimate the 

minimum number of runs my model should execute to provide stable predictions of 

non-Fitts times for the first 15 sessions. I use Power Analysis (Howell, 2007) to 

obtain an initial estimate of this minimum number of runs. 

In the power analysis, I need to consider an effect size of interest (Ritter et al., 2011, 

p. 114). The present case is a case of matched samples where session 1 and session 

15 are being compared. The effect size d in case of matched samples is defined as 

(Howell, 2007; p. 223) follows: 
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𝑑 =  
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛𝑠 𝑜𝑓 𝑡𝑤𝑜 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑐𝑜𝑟𝑒𝑠 𝑑𝑟𝑎𝑤𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒𝑠𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠
 

The estimated effect size of interest 𝑑̂ (Howell, 2007; pp. 189-190) can be computed 

as follows: 

𝑑̂ =  
𝑌�h(1)  −  𝑌�h(15)

𝑠1−15
 

where (i) the numerator represents the desired difference in mean non-Fitts time 

that my model should achieve between session 1 and session 15. This desired 

difference should be 𝑌�h(1)  −  𝑌�h(15) as obtained from the regression line of human 

data. (ii) the denominator 𝑠1−15  represents the sample standard deviation of 

difference scores. The difference scores can be obtained by subtracting the simulated 

non-Fitts time of session 15 from that of session 1 corresponding to a given run, for 

several runs. Agresti and Finley (1997, p. 180) specifies that for a sample size 

greater than or equal to 30, the sample standard deviation provides a good 

approximation for the population standard deviation. Therefore at this point, I 

decide to run my model 30 times to obtain 𝑠1−15. 

As noted earlier, the difference 𝑌�h(1)  −  𝑌�h(15) obtained from the regression line of 

human data is 1719 − 1640 = 79 ms. 

I then ran my model for 30 runs and obtain a value of 𝑠1−15 = 142 ms. I ran the 

model on a Dell System XPS 15Z laptop running the 64 bit Windows 7 Home 

Premium operating system. 30 runs took about 3 minutes. The ACT-R parameters 
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were retrieval threshold (rt) = 0.25, latency factor (lf) = 0.01, activation noise scale 

(ans) = 0.1 and decay rate (bll) = 0.5. The rest of the parameters were at their default 

values. 

Thus the estimated effect size 𝑑̂ is 

𝑑̂ =  
𝑌�h(1)  −  𝑌�h(15)

𝑠1−15
=  

79 ms
142 ms

=  𝟎.𝟓𝟔 

For a matched-sample t-test, the non-centrality parameter δ (Howell, 2007; p. 224) 

will be as follows:  

𝛿 = 𝑑̂ ∗  √𝑁 

where N is the number of subjects. In present case, N would imply the minimum 

number of simulation runs required for a given value of δ and the desired effect size 

𝑑̂. 

For a matched-sample t-test (𝛼 = 0.05, two-tailed), the minimum δ should be 4.2 to 

achieve a power of 0.99 (Howell, 2007; p. 678). Therefore the minimum number of 

simulation runs required to achieve the desired effect size 𝑑̂ = 0.56  between sessions 

1 and 15 is 

𝑁 = (𝛿/𝑑̂)2 = (4.2/0.56)2 = 57 

I should therefore run my model for a minimum of 57 times for the aforementioned 

desired effect size. However, I should repeat the runs until I see that the change in 
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cumulative standard deviation (between run N and N − 1) and change in cumulative 

mean (between run N and N − 1) become negligible (Ritter et al., 2011).   

I ran my simulation model 100 times for the first 15 sessions. Across those 15 

sessions, I find that the absolute value of the change in the cumulative standard 

deviation between run 99 and run 98 is less than 4 ms (and therefore assumed 

negligible) and the absolute value of the change in the cumulative mean between 

run 99 and run 98 is also less than 4 ms (and therefore assumed negligible) in each 

session. Therefore, I conclude that to model the human data for the first 15 sessions, 

a minimum of 99 model runs is required. 

I further carried out an analysis based on standard error of mean (SEM) 

recommended by Ritter et al. (2011) to find out the minimum number of runs that 

my model would need to obtain stable predictions of the mean and the standard 

deviations of non-Fitts times in every session across 160 sessions. I describe the 

SEM based analysis next. 

3.6.3 SEM based analysis: number of simulation runs 
for 160 sessions 

The central limit theorem states that given a population with mean 𝜇 and standard 

deviation 𝜎, the sampling distribution of the mean (the distribution of sample 

means) will have a mean equal to 𝜇 and a standard deviation equal to  𝜎/√𝑁 where 

N is the size of each sample. The distribution will approach the normal distribution 

as N increases (Howell, 2007; p. 170). The standard deviation of this distribution of 

sample means is also known as the Standard Error of Mean (SEM). 

 66 



When the population standard deviation 𝜎 is unknown, the sample standard 

deviation s is used as an estimate of 𝜎 for large sample size (Howell, 2007, p. 175). 

The Standard Error of Mean (SEM) then becomes 

𝑆𝐸𝑀 =  
𝑠
√𝑁

 

The 95% confidence limits on the population mean is sample mean ± 1.96*SEM. 

That is, the population mean has a 95% chance of being within the range of (sample 

mean − 1.96*SEM, sample mean + 1.96*SEM). Thus, one way to determine how 

many simulation runs are to be executed is to run the model until the estimated 

range of the population mean is small enough for my purposes (Ritter et al., 2011, p. 

109).  

For a spread of  ±25 ms of non-Fitts time with 95% confidence, we would have to 

have a SEM of 25/1.96 or a SEM of about 12.7 ms (25 = 1.96*SEM, or 25/1.96 = SEM 

≈ 12.7). 

In the present case, the NFT in each session in a given simulation run can be 

thought of as a sample point. Thus, each simulation run will generate one sample 

point per sample for 160 matched samples. Therefore N runs will generate N sample 

points per sample for 160 matched samples. Using the equation 𝑆𝐸𝑀 =  𝑠
√𝑁

,, N can be 

found as (𝑠/𝑆𝐸𝑀)2.  

I find that the absolute value of the change in cumulative SD between run 99 and 

run 98 is less than 7 ms (and therefore assumed negligible) in each of the 160 
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sessions. Therefore for my modelling purposes, I decide to use the SD of the first 99 

runs in each session to compute the number of runs N for that session. As an 

example, I show next how I compute the minimum number of runs required for 

session 1. In session 1, the SD of the first 99 runs is 103 ms. Therefore N = (𝑠/𝑆𝐸𝑀)2 

= (103/12.7)2 ≈ 66 given that SEM ≈ 12.7 as computed earlier. Thus, a minimum of 

66 runs is required to provide stable prediction in session 1. Table 3.2 shows the 

minimum number of runs required for every session for the first 15 sessions after 

SEM based analysis. 

Table 3.2    Minimum number of model runs required for the first 15 
sessions using SD of first 99 runs for each session. Obtained 
using SEM based analysis. 

Session Minimum number of model runs required 

1 66 

2 40 

3 43 

4 36 

5 45 

6 43 
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7 52 

8 46 

9 76 

10 86 

11 54 

12 83 

13 96 

14 79 

15 92 

 

On inspecting the minimum number of model runs across all 160 sessions, I find 

that session 50 needs 322 runs. This is the maximum of the minimum number of 

runs computed across all 160 sessions. Since my model runs have been inexpensive, 

I decided to run my model 500 times. Figure 3.5 shows the plot of modelled mean 

non-Fitts times from 500 runs across 160 sessions. The vertical SEM bars for each 

model data point are also shown in the plot. The shape of the plot is similar to the 

curve showing the three stages of learning in Kim, Ritter and Koubek (2013). 
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Figure 3.5  Modelled mean non-Fitts times over 500 runs across 160 
sessions. SEM bars are shown on the model data points. 

3.6.4 Model data versus human data for first 15 
sessions 

Now that I have obtained the minimum number of runs my model should execute to 

provide stable predictions of non-Fitts times, I go back to my earlier question—is the 

rate of learning of model data similar to that of the human data for the first 15 

sessions? The answer to this question would help me verify whether my model 

follows the learning phenomena reflected by the human data of first 15 sessions. I 

test whether the slopes of the two linear regression lines—one from 15 human data 

points and the other from 15 model data points—are statistically significantly 

different or not. I describe this test next. 
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3.6.4.1 Testing the difference between the slopes of two 
regression lines 

Table 3.3 tabulates the human data and the model data for the first 15 sessions. 

Figure 3.6 shows the plot. The model data for each of the 15 sessions is the average 

over 500 runs. The RMSE of the fit is 117 ms. The R2 of the fit is 0.09. In Table 3.3, 

X denotes the session number, Yh denotes the human non-Fitts time, and Ym 

denotes the model non-Fitts time. In the descriptions that follow, the subscript h 

denotes human and the subscript m denotes model. 

Table 3.3    Human data and model data for first 15 sessions. The model 
data for each session is the average over 500 runs. 

X (session) Yh (human)  (ms) Ym (model)  (ms) 

1 1748 1798 

2 1618 1788 

3 1890 1783 

4 1811 1780 

5 1591 1771 

6 1608 1775 

7 1621 1768 

8 1691 1758 

9 1628 1751 

10 1651 1753 

11 1688 1752 

12 1617 1745 

13 1623 1737 

14 1798 1735 
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15 1614 1725 
 

 

 

 

Figure 3.6  Human data and model data for first 15 sessions, as well as their 
linear regression lines. SEM bars are shown on the model data. 
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The equations of the linear regression lines for the human data and the model data 

are as follows. 

Linear regression line (human) 
Ŷℎ = −𝑏ℎ𝑋 + 𝑎ℎ = −5.66𝑋 +  1725 

 
 

Linear regression line (model) 
Ŷ𝑚 = −𝑏𝑚𝑋 + 𝑎𝑚 = −4.73𝑋 +  1799 

 
 
 
Below I use the formula for the error variance taken from Howell (2007, pp. 244-

245). The error variances for the human data and model data are as follows.  

Error variance (human, N = 15) 
 

𝑠𝑌ℎ.𝑋
2 =

∑(𝖸h − Ŷℎ)2

𝑁 − 2 = 8198 
 

 
 

Error variance (model, N = 15) 
 

𝑠𝑌𝑚.𝑋
2 =

∑(𝖸m − Ŷ𝑚)2

𝑁 − 2 = 12 
 

 
 
The variance of X is as follows. 
 

Variance of X 
(N = 15) 

 

𝑠𝑋2 =
∑(X− 𝑋�)2

𝑁 − 1 = 20 
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The above tables can be summarized below as follows. 

Human Model 

𝑏ℎ = −5.66 𝑏𝑚 = −4.73 

𝑠𝑌ℎ.𝑋
2 = 8198 𝑠𝑌𝑚.𝑋

2 = 12 

𝑠𝑋2 = 20 𝑠𝑋2 = 20 

𝑁 = 15 𝑁 = 15 
 
 

The analysis in the rest of the subsection below follows Howell (2007, p. 258). It 

utilizes the mathematical formulae and follows the style of reporting results as 

recommended by Howell (2007, p. 258). 

The t test for differences between two independent slopes is directly analogous to the 

test of the difference between the means of two independent samples (Howell, 2007, 

p. 258).  

The Shapiro-Wilk test (a test for normality) revealed that the model data appears to 

be normally distributed, W(15) = 0.977, p = 0.946. But human data is not, W(15) = 

0.824, p = 0.008 (Mayers, 2013, Chapter 3, pp. 50-51). Subsequently, I applied the z-

score tests of skewness and kurtosis to the human data (Mayers, 2013, Chapter 3, 

pp. 52-54). The obtained z-score for skewness is 2.1 and the obtained z-score for 

kurtosis is 0.427. Since the z-score for skewness is close to 2 and the z-score for 

kurtosis is lower than 2, I conclude that the human data is reasonably normally 

distributed. 
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Howell (2007, p. 203) suggests that for equal sample sizes, violating the assumption 

of homogeneity of variances produces very small effects. In general, Howell notes 

that t-test is robust against the departures from its underlying assumptions.  

Drawing from the conclusions above, I apply the t-test for differences between two 

independent slopes. In the ensuing discussions, the subscript h denotes human and 

the subscript m denotes model. 

The null hypothesis that we test is H0: 𝑏ℎ  𝑜𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑏𝑚 𝑜𝑓 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛. If H0 is 

true, the sampling distribution of 𝑏ℎ − 𝑏𝑚 is normal with a mean of zero and a 

standard error of  

𝑠𝑏ℎ−𝑏𝑚 = �𝑠𝑏ℎ
2 + 𝑠𝑏𝑚

2   

The ratio  

𝑡 =
𝑏ℎ − 𝑏𝑚
𝑠𝑏ℎ−𝑏𝑚

=  
𝑏ℎ − 𝑏𝑚

�𝑠𝑏ℎ
2 + 𝑠𝑏𝑚

2
 

is distributed as t on N + N − 4 df. 

The 𝑠𝑏𝑖  can then be estimated by 𝑠𝑏𝑖 =
𝑠𝑌𝑖.𝑋

𝑠𝑋√𝑁−1
, 𝑖 = ℎ 𝑜𝑟 𝑚   (h denotes human, m 

denotes model). 
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Therefore, 

𝑠𝑏ℎ−𝑏𝑚 = �
𝑠𝑌ℎ.𝑋
2

𝑠𝑋2(𝑁 − 1)
+

𝑠𝑌𝑚.𝑋
2

𝑠𝑋2(𝑁 − 1)
 

In our case,   𝑠𝑏ℎ−𝑏𝑚 = � 8198
20(14)

+ 12
20(14)

= 5.42.   

We now solve for 𝑡 as follows. 

𝑡 =
𝑏ℎ − 𝑏𝑚
𝑠𝑏ℎ−𝑏𝑚

=
−5.66− (−4.73)

5.42 = −0.17 

with the degree of freedom df = N + N − 4 = 30 − 4 = 26. 

For α = 0.05 (two-tailed), the critical t(26) = ±2.056. Since the obtained t-score −0.17 

lies between the critical t-scores −2.056 and 2.056, I would fail to reject H0 and would 

therefore conclude that I have no reason to doubt that the mean non-Fitts time 

decreases as a function of practice sessions at the same rate for the model as for the 

human3. 

3.6.4.2 Achieved effect size of the model 

I test the difference between the population mean NFTs of session 1 and session 15 

through matched sample t-test. I do this to compute the estimated effect size 𝑑̂ 

between session 1 and session 15. Table 3.4 shows the test results. 

3 I have reported the results here following the style of Howell (2007, p. 259).  
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Table 3.4    Results of testing the difference between the model population 
mean NFTs of session 1 and session 15. 

Sessions 
pair 
compared 

Difference  
of sample 
mean 
NFTs (ms) 

SD of 
Difference 
of sample 
NFTs 
(ms) 

t p-value 
(two-
tailed) 

Effect 
Size, 𝑑̂ 

Power 

 
1st and 
15th 

 
 

74 

 
 

142 
 

 
 

11.62 

 
 
 < .05 

 
 

0.52 

 
 
> 0.99 

α = 0.05 (two-tailed). Sample size per session N = 500.  df = 499. Critical t(499) = ±1.96. Non-
centrality parameter δ can be computed as  𝛿 = 𝑑̂ ∗ √𝑁 for matched samples where N is the 
sample size (Howell, 2007, p. 224). <.05 implies that p-value (two-tailed) for the pair of 
sessions is less than .05. >0.99 implies that power of the t-test for comparing the population 
means of the pair of sessions is greater than 0.99. 
 

As found from Table 3.4, a matched sample t-test of the difference between the 

model population mean NFTs of 1st and 15th sessions produces a statistically 

significant result: t(499) = 11.62, p < .05, given α = 0.05 (two-tailed), critical t(499) = 

±1.96. The effect size 𝑑̂ = 0.52 shows that the two sessions differed by nearly 0.52 

standard deviations of the difference of sample NFTs. This effect size of 0.52 is close 

to the effect size of interest 0.56 noted earlier in section 3.6.2 that we wanted our 

model to achieve. 

3.6.5 Model based predictions 
I test the difference between the model population mean NFTs of session 1 and 

session 160 through matched sample t-test. I do this to reveal that, on average, the 
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non-Fitts time (NFT) did decrease over the course of practice, implying performance 

improvement. Table 3.5 shows the test results.  

Table 3.5    Results of testing the difference between the model population 
mean NFTs of session 1 and session 160. 

Sessions 
pair 
compared 

Mean of 
Difference  
of sample 
NFTs  
(ms) 

SD of 
Difference 
of sample 
NFTs 
(ms) 

t p-value 
(two-
tailed) 

Effect 
Size, 𝑑̂ 

Power 

1st and 
160th 941 81 259.71  < .05 11.62 > 0.99 

α = 0.05 (two-tailed). Sample size per session N = 500.  df = 499. Critical t(499) = ±1.96. Non-
centrality parameter δ can be computed as  𝛿 = 𝑑̂ ∗ √𝑁 for matched samples where N is the 
sample size (Howell, 2007, p. 224). <.05 implies that p-value (two-tailed) for a pair of sessions 
is less than .05. >0.99 implies that power of the t-test for comparing the population means of 
a pair of sessions is greater than 0.99. 

As found from Table 3.5, a matched sample t-test of the difference between the 

model population mean NFTs of 1st and 160th sessions produces a statistically 

significant result: t(499) = 259.71, p < .05, given α = 0.05 (two-tailed), critical t(499) 

= ±1.96. The 95% Confidence Interval on the mean of difference of the population 

NFT of the 1st session and the population NFT of the 160th session is (934 ms, 948 

ms).  

Recall Accuracy curve 

The recall accuracy, RA (i.e. the number of successful memory retrievals in a session 

divided by the total number of retrieval attempts at that session) influences the 

visual exploration time. In case of my model, the total number of retrieval attempts 

in every session is 5 since a group of 5 letters are copied per session. Across the three 
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stages of learning, RA controls the shift of behaviour from visual search to choice. 

Figure 3.7 shows the plot of RA against 160 sessions.  

 

 

Figure 3.7  Modelled mean recall accuracy RA over 500 runs across 160 
sessions. SEM bars are shown on the model data points. 

I test the difference between the population mean RAs of session 1 and session 160 

through matched sample t-test. I do this to reveal that, on average, the RA did 

increase for the pair over the course of practice. Table 3.6 shows the result of 

comparison. 
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Table 3.6    Results of testing the difference between the model population 
mean RAs of session 1 and session 160.   

Sessions 
pair 
compared 

Mean of 
Difference  
of sample 
RAs  
(ms) 

SD of 
Difference 
of sample 
RAs 
(ms) 

t p-value 
(two-
tailed) 

Effect 
Size, 𝑑̂ 

Power 

160th and 
1st 0.97 0.078 279.76  < .05 12.44 > 0.99 

α = 0.05 (two-tailed). Sample size per session N = 500.  df = 499. Critical t(499) = ±1.96. Non-
centrality parameter δ can be computed as  𝛿 = 𝑑̂ ∗ √𝑁 for matched samples where N is the 
sample size (Howell, 2007, p. 224). <.05 implies that p-value (two-tailed) for a pair of sessions 
is less than .05. >0.99 implies that power of the t-test for comparing the population means of 
a pair of sessions is greater than 0.99. 

As found from Table 3.6, a matched sample t-test of the difference between the 

model population mean RAs of 1st and 160th sessions produces a statistically 

significant result: t(499) = 279.76, p < .05, given α = 0.05 (two-tailed), critical t(499) 

= ±1.96. The 95% Confidence Interval on the mean of difference of the population RA 

of the 160th session and the population RA of the 1st session is (0.964, 0.977). 

3.6.6 Which stage of learning does a human data point 
belong to? 

Given a single measured data point reflecting a learner's performance, I will try to 

predict which stage of learning the learner belongs to. In this regard, I will use two 

figures: One is the Figure 1.1, concluded by Kim, Ritter and Koubek (2013), that 

shows the shape of the learning curve depicting different stages of learning—Stage I 

(early stage), Stage II (intermediate stage) and Stage III (late stage). The other is 

Figure 3.5 which is the learning curve predicted by my model for the text copying 
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task on a traditional phone keypad of a Nokia 5190 cell phone. These two curves are 

roughly similar in shape. 

I now go back to the discussion of the single measured data point to identify where it 

belongs to (roughly) in the learning curve (Figure 3.5) of my model. Pavlovych and 

Stuerzlinger (2003) observed a text entry task of copying English sentences using a 

traditional phone keypad shown earlier in Figure 3.3. They reported a mean entry 

speed of 7.15 words per minute (wpm). 

Assuming five letters per word, the Task Completion Time to enter a letter, TCT, 

would be TCT = (1 / 5) * (1 / wpm) * 1000 * 60, where TCT is in milliseconds. The 

assumption of five letters per word follows standard typists' definition of a word as 

five characters (MacKenzie & Soukoreff, 2002; p. 158). From the mean entry speed of 

7.15 wpm observed by Pavlovych and Stuerzlinger (2003) noted above, I obtain the 

mean time to enter a letter to be 1678 ms (TCT = (1 / 5) * (1 / wpm) * 1000 * 60 = (1 / 

5) * (1 / 7.15) * 1000 * 60 = 1678).  

Earlier, in the Literature Review chapter, section 2.9, I had predicted the mean Fitts 

time of 302 ms for one-handed thumb entry on the traditional phone keypad. 

Assuming that the participants in the study of Pavlovych and Stuerzlinger (2003) 

used either their left or right thumb to enter text, I subtract the mean Fitts time of 

302 ms from the task completion time of 1678 ms to obtain the mean non-Fitts time 

that would have been observed by Pavlovych and Stuerzlinger (2003). That observed 

mean non-Fitts time would have been 1376 ms (Non-Fitts time = Task Completion 

Time – Fitts time = 1678 – 302 = 1376).  
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Figure 3.5 is the non-Fitts time curve of 160 sessions obtained from my model. 

Figure 1.1 is the generic learning curve from Kim, Ritter and Koubek (2013), 

showing the three stages of learning. Comparing the shape of these two curves, and 

then eyeballing the non-Fitts time curve in Figure 3.5, I find that the mean non-

Fitts time of 1376 ms appears to be occurring at Stage II of learning. This is in 

agreement with Pavlovych and Stuerzlinger (2004) who had concluded the human 

mean entry speed of 7.15 wpm (observed by them in 2003) to be a non-expert 

performance. 

Thus, a learning curve obtained from my model could help in identifying which stage 

of learning a learner's expertise lies in. This may save training time and cost and 

help allocating training resources appropriately. My model therefore could become a 

useful complement to the experimental evaluation. 

3.7 Discussion and Conclusions 
I have proposed a model that predicts how the visual exploration time to find a pre-

cued symbol on a layout affects the non-Fitts time. The prediction demonstrates that 

as the recall accuracy for a symbol increases with practice, the user gradually 

changes her exploration strategy from visual search of the symbol towards choice of 

the symbol location (button) from among the known alternative buttons.  

I model the visual exploration time in terms of a mathematical equation and avoid 

implementing any custom simulation model for visual search. Although such a 

custom search model may provide a richer description of visual search strategies, my 

mathematical equation is less complex and more straightforward to apply. 
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I have demonstrated the effect of visual exploration on non-Fitts time by developing 

a simulation model for text copying task on a phone keypad layout. A similar effect 

can be demonstrated in other situations such as item acquisition on graphical 

layouts using the modelling concepts described in this chapter as follows: The VST 

should be provided; a simulation sub-model should be developed that will predict the 

NET and RA for each session; the parameters of the simulation sub-model should be 

tuned using the empirical data provided for the first few sessions; the VET for each 

session should be predicted using the visual exploration time equation, that utilizes 

the VST and the RA of the given session, as well as the CRT (computed using the 

number of buttons). Finally the non-Fitts time for each session can be predicted by 

adding the NET and VET of that session.            

I have tested the novice part of my model's prediction against human data. The 

human data contained considerable oscillations. Although correlation between the 

human data and model data is a way to show the degree of match between them 

(Grant, 1962, as cited in Ritter et al., 2011), in the present case a direct correlation 

between the human and the model data makes little sense due to these oscillations. 

Therefore I tested the difference between the independent slopes of the regression 

lines of novice human data and novice model data (Yet, I do acknowledge that this is 

a weak way of testing a model against human data. Rather, the R2 measure should 

be used to report the quality of fit between model data and human data, whenever 

possible, as Grant (1962) indicates). For α = 0.05 (two-tailed), I concluded I have no 

reason to doubt that the mean non-Fitts time decreases as a function of practice 

sessions at the same rate for the model as for the human. 
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My model can help predict the expertise level of a learner. The prediction can be 

achieved from the learning curve generated using my model. Depending on the 

predicted stage of learning the learner is in, one can identify how many more 

sessions of practice would be necessary for the learner to achieve mastery over the 

task. Roughly knowing the expertise level a learner is in, may save training time, as 

one then can allocate training resources appropriately. 

The limitations of this work are as follows.  

My model does not account for the effect of potential errors that may be committed 

by entering unexpected characters while copying text. A modification of the current 

model to accommodate the effect of such errors is not a straightforward task. Future 

investigation is therefore warranted in this regard. 

To model an expert user, I predict the choice reaction time for choosing a button 

containing the target letter to be copied. My model therefore becomes constrained by 

its dependence on the choice reaction time as follows: In a key-pressing task on a 

keyboard, Seibel (1963) had observed that the choice reaction time increased for 2 to 

approximately 8 alternatives, and showed trivial further increase no matter how 

many additional alternatives were added to the task. Thus, being dependent on the 

choice reaction time, my model becomes constrained by the limitation of a maximum 

of 8 alternative buttons. However, if one were to develop a similar model for 

graphical layouts, a maximum of 12 alternative buttons may be supported to model 

the choice reaction time (Cockburn et al., 2007a; Ahlstrom et al., 2010; Cockburn & 

Gutwin 2010).  
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I use Hick's Law (Hick, 1952) to model the choice reaction time. Hick’s Law 

postulates that choice reaction time increases log-linearly with the number of choice 

alternatives. Having used Hick’s Law, my second model is constrained by its 

limitations as follows: Kveraga, Boucher and Hughes (2002, as cited in Bogacz, 

Usher, Zhang & McClelland, 2007, p. 1669) observed that in tasks involving 

saccades to visual targets where one of the alternatives receives much more support 

than all the others, Hick’s Law is violated and the choice reaction time does not       

depend on the number of alternatives. Besides, Lawrence, St. John, Abrams and 

Snyder (2008) observed that for saccadic eye movements, the choice time may 

decrease as number of alternatives increases, in contrast to predictions based on 

Hick’s Law. 

My simulation sub-model is limited in that it avoids repeated key presses required 

to arrive at a letter on a traditional phone keypad (see Figure 3.3 for the layout). For 

example, to copy the character sequence cei, the user needed to press the key 

containing c only once instead of pressing it thrice (refer to Figure 3.3 for the 

location of c), the key containing e only once instead of pressing it twice, and the key 

containing i only once instead of pressing it thrice. I do this to stay compatible with 

the specific user study of Pavlovych and Stuerzlinger (2004) that I validate my 

model against.  
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My model in this chapter is restricted to a layout of items at a single level4 (i.e. a 

non-hierarchical layout). However, the model can be adapted to multi-level layouts 

(i.e. hierarchical layouts) as well. Let us consider an item acquisition task in the 

hierarchy starting from the root level of the hierarchy. In that case, the total non-

Fitts time to acquire an item at a given level of the hierarchy at a given practice 

session could be predicted by summing the predicted non-Fitts times at that level 

and all the prior levels at that session. 

I have tested the novice part of my model's prediction against human data. However, 

the progression along the learning curve from novice to expert level is yet to be 

validated. With the ubiquity of cell phones, such a validation seems difficult due to 

the lack of novice subjects, the boredom of the subjects associated with time 

consuming longitudinal experiments, and the financial burden in form of 

remuneration to be paid to the subjects. 

To compute the VET for a letter, I need its VST. The value of VST was derived from 

the human data observed on a Nokia 5190 phone keypad (Figure 3.3). This is a 

traditional layout that a typical phone user is very familiar with. If a different phone 

keypad layout is used, a different value may be necessary. I suggest that a study be 

undertaken on other phone keypad layouts to investigate this possibility. 

4 An example of a non-hierarchical layout is a computer keyboard whereas an example of a hierarchical 
layout is a cascaded menu in applications like Adobe Acrobat or Firefox internet browser. 
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Chapter 4  
A Closed-Form Model to Compare 
Effort to Learn Layouts 
 
 

4.1 Introduction 
The work presented in this chapter is related to the peer-reviewed material of Das 

and Stuerzlinger (2010, 2012, 2013). 

Some layouts are easier to learn than others (Ehret, 2002; Cockburn et al, 2007b). 

The layouts that are easier to learn have also been observed to be easily relearnable 

implying that they can be learned again easily after forgetting (Kim & Ritter, in 

press). A certain amount of effort needs to be expended to learn a layout (Gray & Fu, 

2004). I term this effort mental effort. 

The level of mental effort required to learn a layout is influenced by several factors 

such as (i) the effort to be expended in search to obtain the target information 

(Casner & Larkin, 1989, as cited in Ritter & Larkin, 1994). This refers to the overall 

effort expended in activities such as planning, search strategy, spatial judgement, 

evaluation of items, and the actions carried out during the search for the target 

information; (ii) the amount of knowledge about the layout available (Kotovsky & 

Simon, 1990).  
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Ehret (2002) and Cockburn et al. (2007b) observed that poorer the label 

representativeness of items on a layout, the harder it is to learn the layout. Poorer 

label representativeness restricts the amount of knowledge and strategies. This in 

turn increases the effort to search for the target item.  

Goal 

The goal of this chapter is to develop a closed-form model that helps to 

quantitatively compare the level of mental effort expended to learn layouts in 

different information access conditions (henceforth called access condition). An 

access condition of a layout reflects a particular level of difficulty in acquiring the 

items on the layout. In this chapter, an access condition is represented by the label 

representativeness of the layout.  

Motivation 

Proactive Interference refers to the difficulty in recalling a target item caused by 

prior encoding of non-target items (distractors). Underwood (1957) observed that 

lower the number of distractors, the lower is the proactive interference. Proactive 

interference causes loss of memory activation. People exert mental effort to mitigate 

the effect of such interference. 

Learning is influenced by multiple factors. Some of them are practice, decay, 

interference and mental effort. In human memory research, Rowe et al. (2008) 

suggested that practice positively influences spatial learning while proactive 

interference impacts it negatively. On the other hand, Altmann and Schunn, (2002) 
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concluded that not only proactive interference but also decay, i.e., loss of memory 

activation with passage of time, is responsible for forgetting. 

Taking into account the mutually constraining effects of practice, mental effort, 

proactive interference and decay, an integrated, yet simple and easily applicable 

performance model seems viable that reflects the effect of these phenomena on 

spatial learning. 

Following this idea, I propose a closed-form model of spatial learning that combines 

the effect of practice in terms of age of practice, the effect of decay in terms of a 

numeric constant, the effect of proactive interference in terms of Distractor Cost—

number of distractors visually encoded while searching for a pre-cued target item, 

and effort factor—a model parameter that quantifies the mental effort. All these 

effects are expressed in a single equation of memory activation. To achieve this, I 

adapt an existing memory activation model of ACT-R cognitive theory developed by 

Anderson et al. (2004).  

The advantage of my model is that it can be used to quantitatively compare the level 

of mental effort expended to learn layouts in different label representativeness.  

I consider the effect of the number of distractors on the proactive interference. 

However, I do not consider the effect of visual similarity between the distractors and 

the target on proactive interference. 
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I implement my closed-form model in a spreadsheet and validate it against two sets 

of empirical data previously collected by other researchers. My model is a 

deterministic model. It does not account for activation noise. 

4.2 The Model 

4.2.1 Motivation 
To develop my closed-form model, I exploit the equations of the ACT-R declarative 

memory discussed in Section 2.8. I stay within the framework of the ACT-R reaction 

time equation of declarative memory, 𝑅𝑇𝑛+1 = 𝐼 +  𝐹𝑒(−𝑓∗𝐴𝑛+1), 𝑛 ≥ 1. In this 

equation, 𝑅𝑇𝑛+1 is the reaction time of the (𝑛 + 1)𝑡ℎ practice. 𝑅𝑇𝑛+1 depends on the 

activation 𝐴𝑛+1 of the item being practiced. 𝐴𝑛+1 is the activation of the item during 

(𝑛 + 1)𝑡ℎ practice. 𝐴𝑛+1 =  𝐵𝑛 +  𝑂𝑛+1 where 𝐵𝑛 is the base-level activation of the item 

after n practices have been completed—𝐵𝑛 is computed just before the (𝑛 + 1)𝑡ℎ 

practice happens. 𝐵𝑛 is given by the base-level activation equation 𝐵𝑛 = 𝑙𝑛�∑ 𝑡𝑗−𝑑𝑛
𝑗=1 �, 

𝑛 ≥ 1. 𝑂𝑛+1 denotes the optional terms. The optional terms are accounted for when a 

practice is in progress. Thus, 𝑂𝑛+1 is accounted for when the (𝑛 + 1)𝑡ℎ practice is in 

progress. I modify the base-level activation equation to model the effect of the 

proactive interference and the mental effort.  

 In the reaction time equation 𝑅𝑇𝑛+1 = 𝐼 +  𝐹𝑒(−𝑓∗𝐴𝑛+1), I is an intercept time 

reflecting the fixed time cost of perceptual (visual) encoding and motor response  

(Anderson et al., 2004, p. 1043). F is the latency factor, and maps the activation to 

time. f is the latency exponent. The reaction time does not depend on the estimation 

 90 



of the parameters I and F. The effect of I and F is only to scale the critical quantity 

𝑒(−𝑓∗𝐴𝑛+1) onto the range of the latencies. 

Two previous work that motivate my model development in this chapter are 

Anderson (1983) and Stewart and West (2007).  Anderson (1983, p. 277) had used a 

scaling factor as a coefficient of the age of a practice event to reflect the strength of 

that event. Stewart and West (2007, p. 235) conjectured that when the trace of an 

item is inserted into memory, it also strengthens the activation of related traces 

already present in the memory by certain amount. To reflect this increment in 

strength, Stewart and West suggested a scaling factor for the 𝑡𝑗−𝑑 terms in the base-

level activation equation. 

The development of my model is also influenced by Pavlik, Presson and Koedinger 

(2007). They used the ACT-R Reaction Time equation of declarative memory 

𝑅𝑇𝑛+1 = 𝐼 +  𝐹𝑒(−𝑓∗𝐴𝑛+1) , 𝑛 ≥ 1 to analytically compare the learning difference 

quantitatively between a study practice session and a test practice session in a 

paired-associate memory task. The study practice session involved visual encoding of 

two words in a pair that were presented on a computer screen. It did not involve any 

recall. A test practice session involved recalling the second member of a pair of words 

when the first member was presented on a computer screen. Pavlik et al. formulated 

the chunk activation 𝐴𝑛+1 so that it consisted of a modified form of the base-level 

activation equation. They replaced the decay constant d with dj to account for the 

spacing effect and included a parameter 𝑏𝑗 as a coefficient of 𝑡𝑗
−𝑑𝑗. Their logarithmic 

term in their modified base-level equation therefore had the form 𝑙𝑛 �∑ 𝑏𝑗𝑡𝑗
−𝑑𝑗𝑛

𝑗=1 �. 
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The parameter 𝑏𝑗 was to compare the learning difference between practice sessions. 

The value of the parameter came out to be different for the practice session involving 

recall (i.e. test practice) in comparison to the practice session that did not involve 

recall (i.e. study practice). 

 The closed-form model of Pavlik et al. (2007) discussed above motivates me to use a 

modified form of the base-level activation equation 𝐵𝑛 to account for the effect of 

proactive interference and to reflect the difference in the mental effort required to 

learn different layouts; given that the layouts differ in terms of their access condition 

(e.g. label representativeness of items). The approach of Pavlik et al. also motivates 

me to model the mean task completion time per item using the ACT-R reaction time 

equation of declarative memory 𝑅𝑇𝑛+1 = 𝐼 +  𝐹𝑒(−𝑓∗𝐴𝑛+1).  

Finally, another important work that motivates my modelling of mental effort is the 

soft constraints hypothesis of Gray and associates (Fu & Gray, 2001, 2004; Gray, 

Sims, Fu, & Schoelles, 2006). The hypothesis proposes that the mixture of effort—

perceptual-motor search effort, perceptual-motor access effort, memory encoding 

effort, and memory retrieval effort—is allocated for interactive behaviour in a way 

that the least-effort path of executing the spatial task at hand gets implicitly chosen 

(Fu & Gray, 2001, 2004). As the acquisition of information from the environment 

becomes harder, people get motivated to choose the least-effort option of retrieving 

the information from memory, even if the memory retrieval is imperfect. Conversely, 

when acquisition of information from the environment becomes easier, people get 

motivated to choose the least-effort option of accessing information from the 
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environment. Specifically, the work of Gray and associates motivates me to develop 

my model assumptions. 

4.2.2 Assumptions in the model 
The main equation of my model is the ACT-R reaction time equation of declarative 

memory 𝑅𝑇𝑛+1 = 𝐼 +  𝐹𝑒(−𝑓∗𝐴𝑛+1),𝑛 ≥ 1. In this equation 𝐴𝑛+1 =  𝐵𝑛 +  𝑂𝑛+1 where 

𝑂𝑛+1 denotes the optional terms and 𝐵𝑛 = 𝑙𝑛�∑ 𝑡𝑗−𝑑𝑛
𝑗=1 �. To keep my model simple, I 

ignore the optional terms. As I have noted earlier in the chapter on Literature 

Review, Section 2.8, ignoring the optional terms for simplifying model 

representation is not an exception. It follows previous work of Altmann and Schunn 

(2002) on modelling proactive interference, and Cochran, Lee and Chown (2006) for 

modelling the arousal effect. Therefore, from now onwards, I represent the ACT-R 

reaction time equation as 𝑅𝑇𝑛+1 = 𝐼 +  𝐹𝑒(−𝑓∗𝐵𝑛),𝑛 ≥ 1, by replacing the term 𝐴𝑛+1 by 

𝐵𝑛 for my modelling purposes. I will modify 𝐵𝑛 to model the effect of proactive 

interference and the mental effort in the next subsections. 

I intend to validate my model stand-alone, without merging it in the ACT-R 

simulation framework. I intend to do so to bypass the expertise required in the 

merger. Doing so, I forgo a richer, albeit complex, description of behaviour. On the 

other hand, I intend to develop a model that is simple and straightforward to apply. 

To fulfil my intention, I need to simplify the description and analysis of my model. In 

this regard, I make certain assumptions. They are as follows.  

In the process of finding a pre-cued target item on a layout, (i) I assume that a 

subject is unfamiliar with the layout before the start of the first practice session. 
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Therefore no item is recalled in the first practice session. (ii) I assume that from the 

second practice session onwards, the reaction time to find the target item at a given 

session is affected by the number of distractors encountered in the previous sessions. 

As I have mentioned in the chapter on Literature Review, section 2.6, Fu and Gray 

(2001, 2004) had conjectured the existence of two combinations of effort components 

that goes into the learning of a visuo-spatial task. These combinations are (i) the 

perceptual-motor access effort + the related memory encoding effort + the related 

memory retrieval effort, (ii) the perceptual-motor search effort + the related memory 

encoding effort + the related memory retrieval effort.  

Fu and Gray (2001, 2004) further conjectured that the first aforementioned 

combination—the perceptual-motor access effort + the related memory encoding effort 

+ the related memory retrieval effort—is expended predominantly in the expert phase 

of the learning curve. Moreover, Fu and Gray were able to successfully interpret 

these effort components as the effort analogue of the terms in the default ACT-R 

reaction time equation 𝑅𝑇𝑛+1 = 𝐼 +  𝐹𝑒(−𝑓∗𝐵𝑛)  (Fu & Gray, 2001, p. 112). 

Fu and Gray (2001) however suggested that the second aforementioned 

combination—the perceptual-motor search effort + the related memory encoding effort 

+ the related memory retrieval effort—is expended predominantly in the non-expert 

phase of the learning curve (Fu & Gray, 2001, p. 112; Fu & Gray 2004; p. 366). They 

ignored this second combination since their main interest laid in modelling the 

expert phase of the learning curve.  
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Unlike Fu and Gray (2001, 2004), I intend to account for the second combination of 

effort—the perceptual-motor search effort + the related memory encoding effort + the 

related memory retrieval effort—to reflect the effort that goes predominantly in the 

non-expert phase of learning. For my model analysis, I refer to this second 

combination as mental effort. The mental effort will subsequently be reflected by a 

new model parameter effort factor that I will introduce later in this chapter. 

Next, I propose my extension to the base-level activation equation. I introduce the 

extension to account for the effect of proactive interference and the mental effort. I do 

so largely by adapting existing cognitive constructs rather than developing new 

ones. 

4.2.3 Modelling the Proactive Interference 
Proactive Interference (PI) refers to the difficulty in recalling a target item caused by 

prior encoding of non-target items (distractors). In the domain of verbal learning, 

Underwood (1957) holds the number of distractors to be responsible for proactive 

interference. The lower the number of distractors is, the lower is the PI. Similar 

observations were made by Elmes (1988, p. 672) in the domain of spatial learning. 

To account for PI in my model, I replace the decay constant d of the base-level 

activation equation 𝐵𝑛 = 𝑙𝑛�∑ 𝑡𝑗−𝑑𝑛
𝑗=1 � with a new function described next. I assume 

that the effect of PI in a given session is due to the number of distractors visually 

encoded in the previous sessions.  
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The new function will consist of a constant term and a functional term. The constant 

term will model the decay—the loss of memory strength with the passage of time— 

as in classic ACT-R. The functional term will model the loss of memory strength due 

to proactive interference. My proposal for modelling the combined effect of decay and 

interference on memory activation is in line with the observations of Altmann and 

Schunn (2002), which indicts both decay and proactive interference for forgetting. 

The functional term I propose is a function of the Distractor Cost—the number of 

distractors that get visually encoded prior to encoding a pre-cued target item when 

one tries to find the said target item on a layout in a practice session. The Distractor 

Cost contributes to my measure for the proactive interference effect: the lower the 

number of distractors is, the lower the loss of activation of the target item should be. 

Consequently, the reaction time to find the target item in the next practice session 

will be lowered. This will show an improvement in search-and-selection performance 

during exploration of the layout in question. My hypothesis is grounded in the 

primary research result of Underwood (1957) on proactive interference. His research 

identified the effect that the number of previously learned items has on the recall of 

the target item: the lower the number of previously learned items is, the lower is the 

forgetting effect and therefore the lower is the retrieval latency for the target item. 

The new function 𝑑𝑗  that replaces the decay constant d of 𝐵𝑛 = 𝑙𝑛�∑ 𝑡𝑗−𝑑𝑛
𝑗=1 � is as 

follows.  

𝑑𝑗 = ℎ +  0.5 ∗  𝑋𝑗 𝑁⁄               Decay Rate Equation 
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I call dj the decay rate. The decay rate dj for an item reflects how quickly the memory 

strength of the item diminishes once j practices for the said item have been 

completed. 

In the decay rate equation above, h is the constant term and (0.5 ∗  𝑋𝑗 𝑁⁄ ) is the 

functional term. h represents the time-based decay constant; it models the loss of 

memory strength with the passage of time. The term (0.5 ∗  𝑋𝑗 𝑁⁄ ) models the loss of 

memory strength due to proactive interference. 

In the term (0.5 ∗  𝑋𝑗 𝑁⁄ ), N is the total number of items on the layout. Xj is the 

Distractor Cost at jth practice, i.e. the mean number of distractors that have been 

visually encoded at jth practice. j is greater than or equal to 1. When Xj is 0, i.e., 

when the user is able to complete the task by direct recall or does not encounter any 

distractor at jth practice, the decay rate equation degenerates to dj = h. This implies 

that, in the absence of the impact of distractors, loss of memory strength occurs only 

with the passage of time, as in classic ACT-R. 

The product term 0.5 ∗  𝑋𝑗 𝑁⁄  transforms the number of distractors Xj to a decay 

value. The ratio 𝑋𝑗 𝑁⁄  ranges from 0 to 1. Consequently, the product term 0.5 ∗  𝑋𝑗 𝑁⁄  

yields a value in the interval, 0 to 0.5. The case of 0.5 ∗  𝑋𝑗 𝑁⁄  = 0.5 refers to a 

situation where the maximum possible number of distractors is encountered (i.e. 

when Xj = N), leading to the highest possible level of proactive interference. This, in 

turn, reduces the term to the maximum value of 0.5. On the other hand, 0.5 ∗

 𝑋𝑗 𝑁⁄  = 0 implies an absence of impact from distractors, and therefore no proactive 

interference. This occurs when the user is able to complete the task by direct recall or 
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when the user has not encountered any distractor at jth practice. I choose 0.5 to be 

the upper bound of the product term 0.5 ∗  𝑋𝑗 𝑁⁄ . Although my choice of 0.5 is an ad-

hoc one, yet the values of 0.5 or 0.6 have been used earlier for the decay constant d 

in different applications (Anderson et al., 2004, p. 1042; Halverson et al., 2010, p. 

83). 

My rationale behind replacing the decay constant d with a mathematical function dj 

is motivated by the mathematical constructs for decay rate by Pavlik and Anderson 

(2005) and Pavlik et al. (2007) for the spacing effect, and that of Cochran, Lee and 

Chown (2006) for the arousal effect. Each of these works use decay rate functions 

instead of a decay constant for their respective memory models. All replace the decay 

constant with decay rate function in the base-level activation equation. I assume my 

decay rate function to be linear. 

4.2.4 Modelling the Mental Effort  
Fu and Gray (2001, 2004) conjecture that combinations of four effort components—

perceptual-motor search effort, perceptual-motor access effort, memory encoding 

effort, and memory retrieval effort—get expended to select an item on an user 

interface. They suggest that a particular combination—the perceptual-motor search 

effort + the related memory encoding effort + the related memory retrieval effort—gets 

expended predominantly in the non-expert phase of the learning curve (Fu & Gray, 

2001, p. 112; Fu & Gray, 2004, p. 366). Earlier, I referred to this combination as 

mental effort.  
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To account for mental effort in my model, I introduce a new parameter k as a 

coefficient of the 𝑡𝑗  term in the base-level activation equation 𝐵𝑛 = 𝑙𝑛�∑ 𝑡𝑗−𝑑𝑛
𝑗=1 �. The 

introduction of this parameter is motivated by Anderson (1983), Stewart and West 

(2007) and Pavlik et al. (2007). Unlike the work of Pavlik et al. (2007), but similar to 

the works of Anderson (1983, p. 277) and Stewart et al. (2007, p. 235), the value of 

this parameter is to stay the same across all practice sessions for a given access 

condition. It may however differ across different access conditions. I call the new 

parameter k the effort factor. I hypothesize to use k for comparing access conditions 

among layouts.  

I describe my modified base-level activation equation next. It accounts for both 

proactive interference and mental effort.  

4.2.5 Modified Base-Level Activation Equation 
With the decay rate dj and the effort factor k conceptualized, I modify the base-level 

activation equation to 

𝐵𝑛′ = 𝑙𝑛 �𝑘 ∑ 𝑡𝑗
−𝑑𝑗𝑛

𝑗=1 �     Modified Base-Level Activation Equation 

The modified base-level activation equation 𝐵𝑛′  above is obtained by including two 

new elements dj and k to the original base-level activation equation. I explain the 

new elements in more detail below. 
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The element dj is the decay rate equation. I introduced dj in detail earlier. It consists 

of the sum of two terms—one representing the traditional time-based decay constant 

and the other representing the loss of activation due to proactive interference.  

The element k in the equation is the aforementioned effort factor parameter. Later 

in this chapter, I explain k in the context of learning layouts that differ in terms of 

label representativeness (access condition) of their items. 

4.2.6 Modified ACT-R Reaction Time Equation 
Finally, the closed-form model is the modified ACT-R Reaction Time Equation given 

by 

𝑅𝑇𝑛+1′ = 𝐼 +  𝐹𝑒�−𝑓∗𝐵𝑛′ �          Modified Reaction Time Equation 

where  𝐵𝑛′ = 𝑙𝑛 �𝑘 ∑ 𝑡𝑗
−𝑑𝑗𝑛

𝑗=1 � is the Modified Base-Level Activation Equation; n is 

number of practice sessions completed so far, 𝑛 ≥ 1; j refers to the jth practice 

session; tj is the age of the j-th practice; k is the effort factor; 𝑑𝑗 = ℎ +  0.5 ∗  𝑋𝑗 𝑁⁄  is 

the Decay Rate Equation; h is the time-based decay constant; 𝑋𝑗  is the mean number 

of distractors encountered at jth practice session; N is the number of items on a 

layout under scrutiny; F is the latency factor; f is the latency exponent; I is the fixed 

time cost of visual encoding and motor response.   

In the Modified Reaction Time Equation, F, f, h and k are the free parameters. The 

rest of the parameters are input parameters. 
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Given a set of layouts to be compared in terms of their mental effort, the free 

parameters F, f and h are to be held constant. The free parameter k is to vary across 

the layouts that differ in terms of access conditions. 

I hypothesize a few properties related to k below. I assume that the layouts differ in 

terms of their access conditions. I further assume that the layouts are to be 

compared in terms of their modelled reaction time, as obtained from the modified 

ACT-R reaction time equation, 𝑅𝑇𝑛+1′ = 𝐼 +  𝐹𝑒�−𝑓∗𝐵𝑛′ � : 

(i) The effort factor k quantifies the mental effort which refers to the combination— 

the perceptual-motor search effort + the related memory encoding effort + the related 

memory retrieval effort. This combination gets expended predominantly in the non-

expert phase of the learning curve (Fu & Gray, 2001, p. 112; Fu & Gray, 2004, p. 

366). This effort is consumed in finding a pre-cued target item on a layout. 

(ii) A value of k corresponds to one particular layout, i.e., one particular access 

condition. 

(iii) A lower value of k corresponds to a layout that would require higher mental 

effort, whereas a higher value of k corresponds to a layout that would require lower 

mental effort5.   

5 A lower k would result from a higher RT. In contrast, a higher k would result from a lower RT. Given 
a practice session in the early stages of practice, a higher value of RT is typically evident for layouts 
with higher access cost whereas a lower value of RT is typically evident for layouts with lower access 
cost (as noticeable from the empirical data in Ehret (2002) and Cockburn et al. (2007b), for example). 
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4.3 Model Validation 
I validate my model against two sets of empirical data previously collected by other 

researchers. Specifically, I use empirical data from two different experiments, one 

involving a circle of buttons on a computer screen (Ehret, 1999, 2002) and the other 

involving a graphical keyboard on a computer screen (Cockburn et al, 2007b). I 

obtained this empirical data by digitizing the screenshots of the graphs provided in 

Ehret (2002) and Cockburn et al. (2007b). I consider the novice-to-expert transition 

phase of the empirical data to validate my model. 

The task I model here involve searching and selecting a pre-cued item on a 

structured layout of graphical buttons presented on a computer screen. Guided by 

Gray et al. (2006), I base the movement times on Fitts’ law (MacKenzie, 1992), 

which predicts how long it takes a mouse cursor to move a given distance to an item 

of a given size. 

To simplify the model development process, I predict the average movement time 

using Fitts’ law to be 360 ms for the circle of buttons and 230 ms for the graphical 

keyboard. The reason I predict the movement time data using Fitts’ law is due to the 

absence of such data in the reports of the empirical studies I validate against.  

I now show how I arrived at the average movement times for the circle of buttons 

and the graphical keyboard mentioned above using Fitts' law (MacKenzie, 1992). I 

already explained Fitts' law earlier in the chapter on Literature Review, section 2.9. 

Fitts' law predicts the Movement Time MT it takes a pointing device to move a given 
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distance to an item of a given size. I use MacKenzie's formulation of the law. It is 

expressed as follows. 

𝑀𝑇 = 𝑎 + 𝑏 ∗  log2 �
𝐴
𝑊

+  1� = 𝑎 + 𝑏 ∗ 𝐼𝐷        Fitts' Law (MacKenzie's formulation) 

In the above equation of Fitts' Law, A is the amplitude of the movement (e.g. the 

distance between two keys on a keyboard—a source key where the movement begins 

from and a target key where the movement ends), and W is the width of the target 

item. The log term in the equation is called the index of difficulty ID. The reason 

behind the choice to use MacKenzie's formulation is to avoid a negative ID when the 

A/W ratio drops below 0.5. 

I use the Fitts’ law coefficients a = 0.05 sec; b = 0.10 sec/bit. The values of these 

coefficients are based on Card, English, and Burr (1978) and have been shown to 

provide a good fit for moving a mouse cursor around a computer screen (Gray et al., 

2006). 

It is to be noted that in the early and intermediate stages of learning, the movement 

time is only a small fraction of the total time needed to perform a target acquisition 

(Salthouse, 1986; John, 1996; Pavlovych & Stuerzlinger, 2004; Ahlstrom et al., 2010; 

Kim, Ritter & Koubek, 2013; Kim & Ritter, in press). Since I consider the novice-to-

expert transition phase of the empirical data to validate my model, taking the 

average movement time for each of the interfaces, the circle of buttons and the 

graphical keyboard, is an acceptable compromise. 
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Average movement time prediction for circle of buttons 

I digitize the screenshot of the circle of buttons reported by Ehret (1999). The 

screenshot is shown in Figure 4.1. I use Engauge Digitizer6 version 4.1 for the 

digitization. Each button on the circumference of the circle is square shaped (Ehret, 

1999). Using the digitizer, I set the width of a button as 1 unit. Then, in terms of the 

width of a button as one unit, I obtain an approximation of the maximum distance 

between the centers of two buttons, that is, the buttons that are at diametrically 

opposite locations and the minimum distance between the centers of two buttons, 

that is, the buttons that are adjacent to each other horizontally.  These approximate 

distances are taken to be the maximum and minimum amplitudes respectively. In 

case of the circle of buttons, the maximum amplitude is 16.1 unit and the minimum 

amplitude is 3.32 unit.  

 

6 see http://digitizer.sourceforge.net 
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Figure 4.1  The circle of buttons layout. The figure is taken from Ehret 
(1999, p. 27, Figure 2d). 

Next, using Fitts law (MacKenzie's formulation) equation above, I obtain the 

maximum 𝑀𝑇 = 𝑎 + 𝑏 ∗  log2(𝐴/𝑊 +  1) =     0.05 + 0.10 ∗  log2(16.1/1 +  1)  ≈ 0.4596   

and minimum MT = 𝑎 + 𝑏 ∗  log2(𝐴/𝑊 +  1)   =   0.05 + 0.10 ∗  log2(3.32/1 +  1)  ≈

0.2611.  Therefore the average is MT = (maximum MT + minimum MT) / 2  ≈ 0.360 

sec. Thus the average movement time for the circle of buttons layout is predicted to 

be around 360 ms. 

Average movement time prediction for graphical keyboard 

I digitize the screenshot of the graphical keyboard reported by Cockburn et al. 

(2007b). The screenshot is shown in Figure 4.2. I again use the Engauge Digitizer 

version 4.1 for digitization. Each key on the graphical keyboard is assumed to be 

square shaped. Using the digitizer, I set the width of a key as 1 unit. Then, in terms 

of the width of a key as one unit, I obtain an approximation of the maximum 
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distance between the centers of two keys, that is, the keys that are at maximum 

distance from one another (top-left key and bottom-right key) and the minimum 

distance between the centers of two key, that is, the buttons that are adjacent to 

each other horizontally (e.g. two adjacent keys at the top row).  These approximate 

distances are taken to be the maximum and minimum amplitudes respectively. In 

this case, the maximum amplitude is 5.1 unit and the minimum amplitude is 1 unit.  

 

Figure 4.2  The graphical keyboard layout. The figure is adapted from 
Cockburn et al. (2007b, p. 1573, Figure 1). 

Next, using Fitts law (MacKenzie's formulation) equation above, I obtain the 

maximum 𝑀𝑇 = 𝑎 + 𝑏 ∗  log2(𝐴/𝑊 +  1) = 0.05 + 0.10 ∗  log2(5.1/1 +  1)  ≈ 0.31  and 

minimum 𝑀𝑇 = 𝑎 + 𝑏 ∗  log2(𝐴/𝑊 +  1) = 0.05 + 0.10 ∗  log2(1/1 +  1)  ≈ 0.15. 

Therefore, the average is MT =  (maximum MT +  minimum MT) / 2 ≈ 0.230 sec. Thus 

the average movement time for the graphical keyboard layout is predicted to be 

around 230 ms. 
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4.3.1 Choosing the model parameter values 
I now explain the rationale behind setting the model parameters to their relevant 

values. The time-based decay constant h in the decay rate equation was fixed at h = 

0.058. I am motivated here by Pavlik and Anderson (2005, p. 572), who used it as a 

decay intercept, albeit in a different modelling context. Since the focus of my decay 

rate equation is to model the effect of proactive interference, I place greater 

emphasis on the role of distracting information. In this regard, I am motivated by 

the discourse of Altmann and Gray (2008, p. 628) who argue for the influential role 

of proactive interference in forgetting compared to the role of decay in the domain of 

distractor-affected learning. My choice of a very small value of the time-based decay 

constant is therefore appropriate. 

The latency factor F in the reaction time equation is left at its default value of F = 1, 

as per classic ACT-R theory. 

The latency exponent f in the modified reaction time equation 𝑅𝑇𝑛+1′ = 𝐼 +

 𝐹𝑒�−𝑓∗𝐵𝑛′ � is fixed to a constant value for a given set of layouts being compared. To 

compare the access conditions of Ehret's (2002) circle of buttons experiment, I 

determined f to be 0.68. To compare the access conditions of Cockburn et al.'s 

(2007b) graphical keyboard experiment, I determined f to be 0.26. During the process 

of finding a fixed value of f, I also find the values of k for the given access conditions 

of the layouts. Next, I discuss a procedure to find both the f and k values.  
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4.3.2 Procedure to determine the f value and the k 
values 

Given a set of layouts to be ranked in terms of k, a value of f needs to be determined 

that should stay fixed across all the layouts. 

For each layout, I set up an MS Excel spreadsheet to determine the R2 and RMSE 

values of fitting the model reaction times against human reaction times across 

several sessions. The human reaction time here is an empirical reaction time to find 

a pre-cued target item at a given session. The model reaction time for a given session 

is computed using the modified reaction time equation 𝑅𝑇𝑛+1′ = 𝐼 +  𝐹𝑒�−𝑓∗𝐵𝑛′ �, with 

the number of sessions being 𝑛 ≥ 1. The first session is assumed to be the one that 

does not involve any recall of the item location. 

Given the modified reaction time equation 𝑅𝑇𝑛+1′ = 𝐼 +  𝐹𝑒�−𝑓∗𝐵𝑛′ �, the range of f is 

0 < 𝑓 ≤ 1. I use the following steps to determine a fixed value of f and the value of k 

for each layout. 

 (i) A finite set 𝐹′ of f values is chosen from the range 0 < 𝑓 ≤ 1. Let 𝑛(𝐹′) denote the 

cardinality of set 𝐹′. 

(ii) A finite set K of k values is chosen such that 0 < 𝑘. Let 𝑛(𝐾) denote the 

cardinality of set K. 
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(iii) For each layout, a 𝑛(𝐹′)  ×  𝑛(𝐾) matrix of R2 values of the data-fit is determined. 

Each element of the matrix is the R2 value corresponding to a given pair 〈𝑓,𝑘〉6F

7. From 

the 𝑛(𝐹′)  ×  𝑛(𝐾)  matrix, I could see that, for a given k, the effect of f on R2 is 

notable. In contrast, for a given f, the effect of k on R2 is negligible. 

(iv) For a layout, if a cut-off minimum value of R2 is not provided, then retain the 

original set of f values. Otherwise, use the cut-off minimum value of R2 to determine 

a set of f values that meets or exceeds the said cut-off. Then repeat this step for all 

the layouts. 

(v) Determine the set  𝐹′′ of f values common across all the layouts that meet the 

minimum R2 criterion for every layout. 

(vi) I now use the set 𝐹′′ determined in the previous step. For each layout, a 𝑛(𝐹′′) ×

𝑛(𝐾) matrix of RMSEs of the data-fit is determined. Each element of the matrix is 

the RMSE corresponding to a given pair 〈𝑓,𝑘〉7F

8.  

(vii) For each layout, determine the minimum RMSE corresponding to each f value 

in the set 𝐹′′. 

(viii) For a layout, if a tolerable maximum RMSE is not provided, then retain the set 

𝐹′′. Otherwise, a tolerable maximum RMSE is provided—In that case, if the 

minimum RMSE obtained for a given f in the previous step is not less than or equal 

7 I have used the What-If Analysis → Data Table tool in MS Excel to determine the R2 values of the 
𝑓 ×  𝑘 matrix. 
8 I have used the What-If Analysis → Data Table tool in MS Excel to determine the RMSE values of the 
𝑓 ×  𝑘 matrix. 
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to the tolerable maximum RMSE, then remove that f value from the set 𝐹′′. This 

step results in an updated set 𝐹′′′ of f values. 

(ix) Corresponding to each f value in 𝐹′′′, determine the sum of the minimum RMSEs 

across all the layouts. 

 (x) Determine the minimum among the sum of minimum RMSEs obtained in the 

previous step. Let this be called the grand minimum RMSE.  

(xi) Finally, determine the value of f corresponding to the grand minimum RMSE 

obtained in the previous step. This is the fixed f value to be used for the set of 

layouts being compared.  

(xii) Given a layout, determine the minimum RMSE corresponding to the fixed f 

value from the layout's 𝑛(𝐹′′′) × 𝑛(𝐾) matrix of RMSEs. Then corresponding to that 

minimum RMSE, determine the k value. This is the value of the effort factor k of the 

layout under scrutiny. Then, repeat this step to determine the k values for all the 

layouts. 

I use the procedure outlined above to compute the values for f and k later. 

4.3.3 Circle of Buttons (Ehret 1999, 2002) 
Knowing an item’s location can reduce a user’s task time and errors. As the number 

of screen items increases, so does the utility of location knowledge. Ehret (2002) 

carried out an experiment that tests how the time to find a pre-cued item varies with 
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the varying degree of label representativeness (i.e. access conditions) of items across 

layouts. 

4.3.3.1 Ehret's task 

Ehret used a search and select task. In a given instance of the task (i.e. in a trial), a 

participant was first presented with a particular colour in a rectangle positioned at 

the centre of the circle. At the start of the task, the colour in the rectangle was its 

background colour. There were 12 such colours—red, blue, light blue, green, light 

green, tan, brown, gray, orange, yellow, pink, and purple. The foreground of the 

rectangle contained seven white lower-case 'x' letters (e.g. see Figure 4.3). First, the 

subject would click on the central rectangle to display 12 square buttons arranged in 

a circle around it. Each square button was already mapped to one of the 12 colours. 

Next, the subject's goal was to find, point to, and click on a square button using a 

computer mouse that would make the seven white 'x' letters the same colour as that 

of rectangle's background colour, thereby making the rectangle appear solid. For a 

given subject, the square buttons and their respective labels appeared in the same 

locations along the circumference of the circle throughout the experiment (Ehret, 

1999, p. 23). The contour and shape of every button was always visible across all 

conditions (Ehret, 1999, p. 27). To discourage errors, the computer would beep five 

times when participants clicked the wrong button, a dialog box would then appear, 

and the trial would have to be repeated (Ehret, 2002; p. 212). Figure 4.3, 4.4 and 4.5 

shows the layout for the three access conditions textual, arbitrary, or invisible (later 

we explain the meaning of these access conditions) respectively. 

 111 



 

Figure 4.3  The circle of buttons layout in the textual access condition. The 
button labels are 12 colour names in English. The figure is 
taken from Ehret (1999, p. 27, Figure 2b). 
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Figure 4.4  The circle of buttons layout in the arbitrary access condition. 
The button labels are icons bearing no particular relationship 
to any of the 12 colours. The figure is taken from Ehret (1999, p. 
27, Figure 2c). 
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Figure 4.5  The circle of buttons layout in the invisible access condition. 
The buttons have no labels on them. The figure is taken from 
Ehret (1999, p. 27, Figure 2d). 

4.3.3.2 Ehret's participants and design 

There were sixteen subjects in the study. They were undergraduates participating in 

the study for course credit. They were randomly assigned to different access 

conditions textual, arbitrary, or invisible. They completed the task for 16 sessions of 

12 trials each. 

Subject's point-of-gaze data was measured as they performed the task. The point of 

gaze data was collected via an ASL 5000 eye-tracker. Two key measures were 

derived from the eye-tracking data: Search cost, operationalized as the mean 
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number of square buttons attended in a given practice session, and evaluation cost, 

operationalized as the mean amount of time spent attending to a button in a given 

practice session. Mean evaluation cost per button for a given practice session was 

calculated as follows: The total time taken to complete all the trials by all the 

subjects in the session minus the total time spent in the central rectangle zone 

during all the trials by all the subjects in the session, and then divide the result of 

the subtraction by the total number of square buttons visited during all the trials by 

all the subjects in the session. The mean evaluation cost per button thus includes the 

mouse-cursor movement time as well as the mouse-click time. 

4.3.3.3 Model Validation using human data from Ehret (2002) 

In order to validate my model I extracted three data sets from Ehret's observations 

(Ehret, 2002; p. 214; Figure 2a and 3a). The three data sets correspond to three 

different access conditions. I did this by digitizing Figure 2a and 3a of Ehret's (2002) 

work. The data sets that I derived from the digitized information are the mean 

search and select time per item (i.e. mean task completion time per item) for the 

three access conditions. I next explain how I derived the empirical mean task 

completion time per item for a given session from the data of Figure 2a and 3a of 

Ehret (2002). 

In his study, Ehret (2002, p. 214; Figure 2a and 3a) reported two empirical costs for 

a given practice session that I repeat here for the convenience of the reader. One is 

the mean search cost per target item for a given session (Ehret, 2002; p. 214; Figure 

2a). It is the mean number of square buttons evaluated in the given session. It thus 

includes all the distractors and the target item in a given session. The other cost is 
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the mean evaluation cost per item in a given session (Ehret, 2002; p. 214; Figure 3a). 

It is the mean amount of time spent attending to a square button in a given session. 

Ehret (2002) reported these two empirical costs for each of the three access 

conditions. For a given session, I arrive at an empirical mean task completion time 

per button in a session by multiplying the mean search cost with the mean 

evaluation cost corresponding to that session. I do this computation for every access 

condition. 

The three data sets differed in the level of representativeness of labels (i.e. access 

condition) associated with the buttons.  

The first data set corresponded to the textual access condition (see Figure 4.3). This 

data set was acquired while the subjects searched for a pre-cued colour in the 

buttons, each labelled with the name of a colour written in English. The aim was to 

have a high level of representativeness of the colours.  

The second data set corresponded to the arbitrary access condition (see Figure 4.4). 

This data set was acquired while the subjects searched for a pre-cued colour in the 

buttons, each labelled with an arbitrary icon. The aim was to have a lower level of 

representativeness of the colours compared to the textual condition. 

The third data set corresponded to the invisible access condition (see Figure 4.5). 

This data set was acquired while the subjects searched for a pre-cued colour among 

buttons with no labels on them. The aim was to have a lower level of 
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representativeness of the colours compared to the textual as well as the arbitrary 

conditions. 

In summary, each set of data consisted of mean task completion times per item (i.e. 

square button) for 16 sessions. Each set corresponded to one of the three levels of 

difficulty in accessing information: the textual, arbitrary or invisible access 

condition. Each condition represents a certain level of access cost, the textual 

condition featuring the lowest and the invisible condition the highest. The total 

practice time was held constant across all access conditions. For the arbitrary and 

invisible conditions a tooltip was provided for each button to aid the subject, if 

memory failed. Accessing the tooltip for a button revealed a small rectangle 

containing the colour associated with it. The cost of accessing this tip was a one-

second delay between moving the mouse cursor to the button and the appearance of 

the tooltip. 

My choice of data sets aligns with my modelling objective. I aim to model the 

combined effect of Distractor Cost (my surrogate of proactive interference) as well as 

mental effort on the task completion time, over the practice sessions. Since Distractor 

Cost is incurred due to distractors, it should not include the target item. Hence the 

Distractor Cost (i.e. the number of distractors) 𝑋𝑗 at jth session is one less than the 

search cost (i.e. total number of items examined) 𝐸𝑗 at jth session. Formally, 

𝑋𝑗 = 𝐸𝑗 − 1,  where  𝑗 ≥ 1        Distractor Cost Equation 
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Ehret’s data shows that given an access condition, the search cost has a decreasing 

trend over the practice sessions implying that proactive interference (reflected by 

Distractor Cost) tends to decrease with practice. 

Ehret’s data further shows that in the early stages of practice, when the access 

condition increased from textual to arbitrary to invisible label conditions of buttons, 

so did the time to evaluate if a button currently under scrutiny is indeed the target 

or not, at any given session. This evaluation cost was observed to be the lowest for 

the textual label condition and highest for the invisible label condition. In other 

words, the layouts with higher access cost featured higher evaluation cost, implying 

also a higher mental effort to learn those layouts compared to the ones with lower 

access cost. In summary, a higher access cost condition would require higher mental 

effort compared to that required for a lower access cost condition. 

Assumptions for the data fitting exercise 

For the validation of my model against the data sets, I had to make a few 

assumptions, as certain information was not mentioned explicitly in the work of 

Ehret (2002). The assumptions are with respect to a given access condition, and with 

respect to a pre-cued target item to be found.  

To find a pre-cued target item, (i) I assume that the first session occurs at time 0. (ii) 

I assume that the first session is equivalent to a study practice session implying that 

a subject searches a layout for the target item in the first session. No item can be 

recalled in the first session since the subject is scanning the layout for the very first 

time in that session. (iii) I assume that recall happens from the second session 
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onwards. Recall at a given session is affected by the number of distractors 

encountered in the previous sessions. (iv) In the absence of any inter-session data 

(i.e. inter-trial data) in the study, I assume that the consecutive sessions were 

equally spaced.  

Ehret (1999, p. 136) had expressed that 16 sessions took 10 minutes or 600 seconds. 

I therefore assume that the sequence of practice from session 1 to session 16 

occurred at time 0, 37.5, 75, 112.5, 150, 187.5, 225, 262.5, 300, 337.5, 375, 412.5, 450, 

487.5, 525, and 562.5, respectively.   

Taking the above assumptions into account, the activation of an item 𝐵𝑛′   at the 

completion of its n practices is applied to compute the model reaction time for the 

(n+1)th practice using the ACT-R reaction time equation 𝑅𝑇𝑛+1′ = 𝐼 +  𝐹𝑒�−𝑓∗𝐵𝑛′ � , given 

𝑛 ≥ 1. In this equation, 𝐵𝑛′ = 𝑙𝑛 �𝑘 ∑ 𝑡𝑗
−𝑑𝑗𝑛

𝑗=1 �. 

Effect of Proactive Interference  

I now discuss a scenario on how the effect of proactive interference on spatial 

learning in Ehret's study is modelled using my model. As an example, I take the 

arbitrary label condition of Ehret's study where the buttons in the circle are labelled 

with icons (Figure 4.4). Each icon is arbitrarily associated with a colour.  

The mean search costs measured by Ehret in the arbitrary label condition were 5.27, 

2.93, 2.58, 2.34, 2.31, 1.61, 1.49, 1.31, 1.36, 1.14, 1.37, 1.15, 1.14, 1.15, and 1.08 

corresponding to the sessions 1 to 15, respectively. I extracted these mean values by 

digitizing the graph in Figure 3a of Ehret (2002). Using the Distractor Cost equation 
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𝑋𝑗 = 𝐸𝑗 − 1, for jth session, 1 ≤ 𝑗 ≤ 15, I find the mean Distractor Cost (i.e. mean 

number of distractors) 𝑋𝑗 at jth session to be 4.27, 1.93, 1.58, 1.34, 1.31, 0.61, 0.49, 

0.31, 0.36, 0.14, 0.37, 0.15, 0.14, 0.15, and 0.08 for the first 15 sessions. The mean 

number of distractors encountered in the first session is 4.27. This value of 4.27 

affects the recall of the item in the second session. Next, the mean number of 

distractors encountered in the second session is 1.93. This value of 1.93 affects the 

recall of the item in the third session, and so on. In summary, distractors 

encountered in jth practice session affects the recall of the item in the (j+1)th practice 

session. Finally, the mean number of distractors encountered in the 15th session is 

0.08, which affects the recall of the item in the 16th session. I conjecture that this 

decreasing mean number of distractors from session to session reflects the 

decreasing effect of proactive interference on recall in the subsequent session. 

Prediction of mean decay rate 

The effect of proactive interference is evident across all three access conditions—

textual, arbitrary, and invisible. I show an example of computing the mean decay 

rate for the first 3 sessions in the arbitrary label condition. Once session 1 is 

complete, the mean decay rate is 𝑑1 = ℎ +  0.5 ∗  𝑋1 𝑁⁄  ⇒  𝑑1 = 0.058 +  0.5 ∗

4.27 12 ≈  0.236⁄ . Similarly, at the end of session 2 the mean decay rate is 𝑑2 = ℎ +

 0.5 ∗  𝑋2 𝑁⁄  ⇒  𝑑2 = 0.058 +  0.5 ∗ 1.93 12⁄ ≈ 0.139 and at the end of session 3 the 

mean decay rate is 𝑑3 = ℎ +  0.5 ∗  𝑋3 𝑁  ⇒⁄   𝑑3 = 0.058 +  0.5 ∗ 1.58 12⁄ ≈ 0.124. In the 

same way, the decay rates corresponding to the other practice sessions, i.e. session 4 

to 15, are computed for the arbitrary label condition.  
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Using the same method, decay rates corresponding to each of the first 15 sessions 

are computed for textual and invisible label conditions as well. 

As apparent from the decay rate equation, a change in the number of distractors 

changes the decay rate. While modelling the proactive interference, I noticed that 

the mean number of distractors per item Xj in the decay rate equation influences the 

model reaction time at each session-point along the abscissa. A small change in the 

decay rate dj (at the level of 0.1) has impact on the reaction time predictions. This is 

particularly true for the first few sessions of practice—for example, second and third 

sessions in the present case. 

Comparison of Mental Effort 

First the equations 𝐵𝑛′ = 𝑙𝑛 �𝑘∑ 𝑡𝑗
−𝑑𝑗𝑛

𝑗=1 � and 𝑅𝑇𝑛+1′ = 𝐼 +  𝐹𝑒�−𝑓∗𝐵𝑛′ � are set up in an 

MS Excel spreadsheet. Next, I assume that a cut-off minimum value of R2 is not 

provided for any of the three access conditions. I also assume that a tolerable 

maximum RMSE is not provided for any of the three access conditions. Given this 

constraint, I took the values of f at an increment of 0.01 in the range 0 < 𝑓 ≤ 1. 

Furthermore, I took the values of k at an increment of 0.01 in the range 0 < 𝑘 ≤ 1. 

The fixed value of f is then determined following the steps in the section titled 

Procedure to determine the f value and the k values described earlier. Figure 

4.6 shows the graph of the sum of minimum RMSEs of the data-fit versus f. For a set 

of chosen values of f in the range 0 < 𝑓 ≤ 1, the sum of minimum RMSEs for an f 

value is obtained by adding the minimum RMSE of each of the three access 

conditions textual, arbitrary and invisible corresponding to that f value. Finally, the 
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value of f that corresponds to the minimum value of the sum of minimum RMSEs of 

the data-fit is found to be 0.68. The f = 0.68 is therefore fixed across all the three 

access conditions. 

 

 

Figure 4.6  The sum of minimum RMSEs of the data-fit versus the latency 
exponent f for Ehret's (2002) study. For a set of chosen values of 
f in the range 𝟎 < 𝑓 ≤ 1, the sum of minimum RMSEs of the data-
fit at f value is obtained by adding the minimum RMSE of each 
of the three access conditions textual, arbitrary and invisible 
corresponding to that f value. The value of f = 0.68 that 
corresponds to the minimum value of the sum of minimum 
RMSEs of the data-fit is fixed across all the three access 
conditions. 

Once f = 0.68 is fixed, the k values corresponding to the three access conditions are 

then determined. Figure 4.7, 4.8 and 4.9 shows the graph of the RMSEs versus effort 
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factor k for textual, arbitrary and invisible label conditions respectively. At each 

access condition, there is a value of k that corresponds to the minimum value of 

RMSE at f = 0.68.  This value of k is taken to be the effort factor for that condition.  

The k values for the three access conditions are as follows. k = 0.74 for the textual 

label, k = 0.25 for the arbitrary label and, k = 0.09 for the invisible label. 

 

Figure 4.7  RMSE of the data-fit versus the effort factor k for the textual 
condition in Ehret's (2002) study. k = 0.74 corresponds to the 
minimum RMSE value at f = 0.68 for the textual condition. k = 
0.74 is therefore the effort factor for this condition. 
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Figure 4.8  RMSE of the data-fit versus the effort factor k for the arbitrary 
condition in Ehret's (2002) study. k = 0.25 corresponds to the 
minimum RMSE value at f = 0.68 for the arbitrary condition. k = 
0.25 is therefore the effort factor for this condition. 

 

 124 



 

Figure 4.9  RMSE of the data-fit versus the effort factor k for the invisible 
condition in Ehret's (2002) study. k = 0.09 corresponds to the 
minimum RMSE value at f = 0.68 for the invisible condition. k = 
0.09 is therefore the effort factor for this condition. 

Figure 4.10 shows the fit of our model to the human data in terms of the mean 

reaction time to find and select a pre-cued target item (colour) in three different 

access conditions textual, arbitrary, and invisible. We compare the effort factor k for 

the invisible label condition against the textual label condition. We find k = 0.09 for 

the difficult to access invisible labels, compared to k = 0.74 for the easily accessible 

textual labels.  

Furthermore, k is 0.25 for the difficult to access arbitrary labels, compared to k being 

0.74 for the easy to access textual labels. Both instances thus point to lower values of 
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k for access conditions of higher costs (i.e. lower label representativeness), compared 

to the access conditions where relevant information is easily available in the 

environment. The higher k value of the arbitrary access condition compared to that 

of the invisible access condition also suggest that the layout in arbitrary condition 

would need less mental effort to learn compared to the effort required to learn a 

layout with no labels.  
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Figure 4.10 Mean reaction time per item (button) across different practice 
sessions for textual, arbitrary and invisible label conditions. 
Solid lines show experimental data from Ehret (2002). Dashed 
lines show model data predicted from the model developed in 
this chapter. 

Table 4.1 shows the R2, RMSE and k values for the three access conditions. With R2 

= 0.866, RMSE = 0.269 for the textual, R2 = 0.948, RMSE = 0.509 for the arbitrary 

and R2 = 0.937, RMSE = 0.535 for the invisible conditions, the correlation between 

the human and model data were good. 
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Table 4.1    R2, RMSE and k values for the three access conditions of Ehret 
(2002). The latency exponent f is fixed at 0.68. 

Access condition R2 RMSE k 

textual 0.866 0.269 0.74 

arbitrary 0.948 0.509 0.25  

invisible 0.937 0.535 0.09 

 

Overall, the decreasing sequence of k values 0.74 > 0.25 > 0.09 is linked to the 

gradual increase in mental effort from the highly meaningful textual condition (k = 

0.74), to the less meaningful arbitrary condition (k = 0.25), and to the least 

meaningful invisible condition (k = 0.09). 

Given the values f = 0.68 and k = 0.25 for the arbitrary label condition of Ehret 

(2002), a sample set of model reaction times for item acquisition has been computed 

in Appendix C using the modified ACT-R reaction time equation 𝑅𝑇𝑛+1′ = 𝐼 +

 𝐹𝑒�−𝑓∗𝐵𝑛′ �. The sample set consists of the predicted task completion times of the 

second, third and fourth practice sessions. 
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4.3.4 Graphical Keyboard (Cockburn et al., 2007b) 
I now test my model against the empirical data of Cockburn et al. (2007b). 

4.3.4.1 Cockburn et al.'s task 

Cockburn et al. (2007b, Figure 2, p. 1574) used a search and select task. In a given 

instance of the task (i.e. in a trial), a participant was first presented with a graphical 

keyboard with 18 keys. There were two access conditions for the keyboard; labelled 

and unlabelled. In the labelled condition, the keyboard had every key labelled with a 

unique iconic symbol from the Microsoft Webdings font. In the unlabelled condition, 

the keys on the keyboard had no labels on them. Each key in the unlabelled 

condition was covered with frost which could be brushed off by waving the mouse 

cursor over the key to reveal its label. If left alone, the key gradually fades back to 

its original frosted state. The outline of every key was always visible across both the 

conditions (Cockburn et al. 2007b, p. 1572). In the absence of a labelled layout of the 

keyboard in Cockburn et al.'s paper, I show in Figure 4.11 how Webdings symbols 

would look if used as key labels. The structure of the keyboard in Figure 4.11 is a 

possible replica of the one in Cockburn et al. (Cockburn et al., 2007b; Figure 1, p. 

1573) that I have assumed. 
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   

       

  
    

      

  
    

      

  
    

      

   
   

      

 

Figure 4.11 A graphical keyboard labelled with Webdings symbols. The 
structure of the keyboard is a possible replica of the one in 
Cockburn et al. (Cockburn et al., 2007b; Figure 1, p. 1573) that I 
have assumed. 

All subjects practiced on both labelled and unlabelled conditions of the keyboard. 

Half of the subjects (Group 1) used the unlabelled keyboard first; the other half 

(Group 2) used the labelled keyboard first. The practice proceeded with one set of 18 

symbols. The groups were then switched; and the practice proceeded again with 

another set of 18 symbols. Each symbol was shown in the same keyboard location for 

all subjects. 

During the practice period, the subjects used their assigned interface (labelled or 

unlabelled) for 5 minutes. They were instructed that the objective was to become as 

efficient with the keypad as possible, and that memorising item locations would help 

them achieve this. There were 18 symbols displayed in a separate target-cueing 

region, with the next target item highlighted in green. A trial involved visually 

searching and selecting a pre-cued target on either layout with a computer mouse. 

Search for the target on keyboard was done either by brushing (i.e. by moving the 
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cursor across each key under scrutiny) in case of the unlabelled condition or by 

visually searching in case of the labelled condition. Each successful acquisition 

caused a confirmation beep, and the next randomly selected symbol was highlighted 

green. An incorrect selection caused an error tone to be played. Subjects continued to 

search for the same symbol until correctly selected. The total practice time was held 

constant across both conditions (Cockburn et al., 2007b, p. 1578). 

4.3.4.2 Cockburn et al.'s subjects and design 

There were fourteen volunteer subjects in the study. They were all post-graduate 

computer science students or staff at the local university. The set of subjects 

included two females. In the labelled condition, the subjects completed the task for 

10 sessions of 18 trials each. In the unlabelled condition, they completed the task for 

5 sessions of 18 trials each. 

The graphical keyboard ran in a window of fixed dimensions at 1000 ×  600  pixels 

on a 15 inch 1400 ×  1050 pixel display. The keyboard actually consisted of 60 keys (5 

rows and 12 columns of keys). Out of the 60 keys, 18 were active and had a white 

background. The rest of the keys were inactive and were blue. A target-cuing region 

above the virtual keyboard showed the next target symbol, highlighted in green. It 

also contained a timer that showed the remaining practice time. Input was received 

through a high quality optical mouse. The software controlled the subject's exposure 

to the experimental conditions and logged all user actions. 
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4.3.4.3 Model Validation using human data from Cockburn et al. 
(2007b) 

In order to validate my model I extracted two data sets from Cockburn et al.'s 

observations (Cockburn et al., 2007b, Figure 2, p. 1574). The two data sets 

correspond to the two different access conditions, labelled and unlabelled. I did this 

by digitizing Figure 2 of Cockburn et al.'s (2007b) work. The data sets that I derived 

from the digitized information are the mean search and select time per item (i.e. 

mean task completion time per item) for the two access conditions. 

Assumptions for the data fitting exercise 

For the validation of my model against the data sets, I had to make a few 

assumptions, as certain information was not mentioned explicitly in the work of 

Cockburn et al. (2007b, pp. 1573-1574). The assumptions are with respect to a given 

access condition, and with respect to a pre-cued target item to be found. 

To find a pre-cued target item, (i) I assume that the first session occurs at time 0. (ii) 

I assume that the first session is equivalent to a study practice implying that a 

subject searches a layout for the target item in the first session. No item can be 

recalled in the first session since the subject is scanning the layout for the very first 

time in that session. (iii) I assume that recall happens from the second session 

onwards. Recall at a given session is affected by the number of distractors 

encountered in the previous session. (iv) In absence of explicit information, I assume 

that the acquisition of a pre-cued target item on the keyboard is accomplished by a 

single click of the mouse. (v) In the absence of any inter-session data (i.e. inter-trial 

data) in the study, I assume that the consecutive sessions were equally spaced. 
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Cockburn et al. (2007b, pp. 1573-1574) stated that 10 sessions took 5 minutes or 300 

seconds. Therefore 5 sessions took 150 seconds. I therefore assume that the sequence 

of practice from session 1 to session 5 occurred at time 0, 30, 60, 90, and 120 

respectively. 

Taking the above assumptions into account, the activation of an item 𝐵𝑛′   at the 

completion of its n practices is applied to compute the model reaction time for the 

(n+1)th practice using the modified ACT-R reaction time equation 𝑅𝑇𝑛+1′ = 𝐼 +

 𝐹𝑒�−𝑓∗𝐵𝑛′ � , given 𝑛 ≥ 1. In this equation, 𝐵𝑛′ = 𝑙𝑛 �𝑘 ∑ 𝑡𝑗
−𝑑𝑗𝑛

𝑗=1 �. This is the same set of 

equations I had used earlier to model the task completion time for Ehret (2002). 

Effect of Proactive Interference 

I now discuss a scenario on how the effect of proactive interference on spatial 

learning in Cockburn et al.’s study is modelled using my model. In my decay rate 

equation, the decay rates depend on the actual distractor costs across practice 

sessions. However, actual distractor costs across practice sessions are not provided 

in Cockburn et al.’s (2007b) work. For my modelling purposes, therefore, I coarsely 

predict the distractor costs across sessions from the human reaction time data 

reported across sessions. The objective in making this prediction is to have a 

reference distractor cost for each given session, so that a reference decay rate for 

each session can be predicted. This in turn helps me to reflect the relative effect of 

proactive interference across sessions.  
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A model to predict Distractor Cost 

To obtain coarse predictions of the distractor costs across practice sessions, I assume 

the following: (i) Target items are not easy to discriminate from distractors. (ii) I 

assume serial search to be the visual search model for a target item. This search 

model proposes that attention can process only one item at a time (Horowitz & 

Wolfe, 1998). (iii) As per the serial search model, a successful search for a target will 

require subjects to examine, on average, only half of the items in the layout 

(Horowitz & Wolfe, 1998). (iv) For a given access condition, the average time spent 

per item during a visual search is assumed to be constant at every session.   

Let the number of distractors encountered, i.e. the distractor cost at a given practice 

session j, 𝑗 ≥ 1 be Xj. I then predict Xj as follows: 

(i) At a given practice session j, let 𝑅𝑇𝑗ℎ is the human reaction time to search and 

select a pre-cued target item in the layout, Ej is the number of items examined 

during the search, and 𝜏 is the time spent per item during a search, then 

      𝐸𝑗 =  𝑅𝑇𝑗ℎ/𝜏       Number of Items Examined Equation 

As per my discussions earlier, 𝜏 is assumed to be a constant for a given access 

condition for my modelling purpose. 

(ii) At the end of completion of the first practice session, the mean number of items 

examined E1 is 𝑁/2. Here, N is the total number of items on the layout. The value 

𝑁/2 follows from the assumption that in the serial search model, a successful search 

 134 



for a target will require subjects to examine, on average, only half of the items in the 

layout (Horowitz & Wolfe, 1998). The value of 𝜏 is therefore 𝜏 = (2 ∗  𝑅𝑇1ℎ) 𝑁⁄ . 

(iii) The number of distractors encountered, i.e. the distractor cost 𝑋𝑗 in practice 

session j, excludes the target item from the total number of items examined during 

the search. Therefore,  

𝑋𝑗 = 𝐸𝑗 − 1,  where  𝑗 ≥ 1        Distractor Cost Equation 

This equation is an ad hoc tool to predict the distractor cost in a session. It just 

provides a rough estimate of the number of distractors at each session to 

differentially reflect PI across sessions in a given access condition. Next, I detail the 

prediction of Xj   for the labelled and unlabelled conditions using my distractor cost 

equation. Note that Cockburn et al. (2007b, pp. 1573−1575) analysed only the first 

five practice sessions for the unlabelled keyboard. So, to compare the two access 

conditions using my model, I utilize human data only from the first five practice 

sessions. 

Prediction of distractor cost in labelled condition 

The total number of keys in the keyboard is N = 18. Therefore in the first session of 

the labelled condition, the mean number of items examined E1 is 𝑁
2

= 18
2

 = 9. From 

the measured data I see that 𝑅𝑇1ℎ is 2.4 sec. Consequently the time spent per item 

during a search in the labelled condition is about 𝜏 = (2 ∗  𝑅𝑇1ℎ) 𝑁⁄ =  (2 ∗  2.4) 18⁄ =

 0.267 sec. This 𝜏 value is assumed to be a constant across all the practice sessions in 

the labelled condition.  
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Subsequently, using the human reaction times 𝑅𝑇𝑗ℎ for sessions j = 2, 3 and 4, I 

predict the number of keys examined Ej at those sessions. I use the number of items 

examined equation 𝐸𝑗 =  𝑅𝑇𝑗ℎ/𝜏 for this purpose. For example, the number of keys 

examined at the second session is 𝐸2 =  𝑅𝑇2ℎ  𝜏⁄ =  2.031 0.267 ⁄ ≈ 7.62. Thus, in the 

first four sessions, the mean number of keys examined Ej are determined as 9.00, 

7.62, 7.10 and 6.41. Then I use the distractor cost equation  𝑋𝑗 = 𝐸𝑗 − 1 for j = 1, 2, 3 

and 4. Consequently, the mean number of distractors Xj encountered in the first four 

sessions is 8, 6.62, 6.10, and 5.41. 

The mean number of distractors encountered in the first session is 8. This value of 8 

affects the recall of the item in the second session. Next, the mean number of 

distractors encountered in the second session is 6.62. This value of 6.62 affects the 

recall of the item in the third session, and so on. In summary, distractors 

encountered in jth practice session affects the recall of the item in the (j+1)th practice 

session. Finally, the mean number of distractors encountered in the 4th session is 

5.41, which affects the recall of the item in the 5th session. I conjecture that this 

decreasing mean number of distractors from session to session reflects the 

decreasing effect of proactive interference on recall in the subsequent session. 

Prediction of distractor cost in unlabelled condition 

The total number of keys in the keyboard is N = 18. Therefore in the first session of 

the unlabelled condition, the mean number of items examined E1 is 𝑁
2

= 18
2

 = 9. From 

the measured data I see that 𝑅𝑇1ℎ = 4.599 sec. Consequently the time spent per item 

during a search in the unlabelled condition is about 
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𝜏 = (2 ∗  𝑅𝑇1ℎ) 𝑁⁄ =  (2 ∗  4.599) 18⁄ =  0.511 sec. This 𝜏 value is assumed to be a 

constant across all the practice sessions in the unlabelled condition. Subsequently, 

using the human reaction times 𝑅𝑇𝑗ℎ for the sessions j = 2, 3 and 4, I predict the 

number of keys Ej examined at those sessions. I use the number of items examined 

equation 𝐸𝑗 =  𝑅𝑇𝑗ℎ/𝜏 for this purpose. For example, the number of keys examined in 

the second session is 𝐸2 =  𝑅𝑇2ℎ 𝜏⁄ =  3.171 0.511 ⁄ ≈ 6.21. Thus, in the first four 

sessions, the mean number of keys examined Ej are determined as 9.00, 6.21, 5.39 

and 4.67. Then I again use the distractor cost equation  𝑋𝑗 = 𝐸𝑗 − 1 for j = 1, 2, 3 and 

4. Consequently, the mean number of distractors Xj encountered in the first four 

sessions is 8, 5.21, 4.39 and 3.67. 

Similar to the scenario of labelled condition, the decreasing number of distractors 

from session to session reflects the decreasing effect of proactive interference on 

recall in the subsequent session in this unlabelled condition as well. 

Prediction of mean decay rate 

The effect of proactive interference is evident across the two access conditions— 

labelled and unlabelled. I show an example of computing the mean decay rate for the 

first 3 sessions in the labelled condition. Once session 1 is complete, the mean decay 

rate is 𝑑1 = ℎ +  0.5 ∗  𝑋1 𝑁⁄  ⇒  𝑑1 = 0.058 +  0.5 ∗ 8 18 ≈ ⁄ 0.280. Similarly, at the end 

of session 2 the mean decay rate is 𝑑2 = ℎ +  0.5 ∗  𝑋2 𝑁⁄  ⇒  𝑑2 = 0.058 +  0.5 ∗

6.62 18⁄ ≈ 0.242 and at the end of session 3, 𝑑3 = ℎ +  0.5 ∗  𝑋3 𝑁  ⇒⁄   𝑑3 = 0.058 +

 0.5 ∗ 6.10 18⁄ ≈ 0.227. In the same way, the decay rate corresponding to session 4 is 

computed for the labelled condition.  
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Using the same method, decay rates corresponding to each of the first 4 sessions are 

computed for unlabelled condition. 

Comparison of Mental Effort 

First the equations 𝐵𝑛′ = 𝑙𝑛 �𝑘∑ 𝑡𝑗
−𝑑𝑗𝑛

𝑗=1 � and 𝑅𝑇𝑛+1′ = 𝐼 +  𝐹𝑒�−𝑓∗𝐵𝑛′ � are set up in an 

MS Excel spreadsheet. Next, I assume that a cut-off minimum value of R2 is not 

provided for any of the two access conditions. I also assume that a tolerable 

maximum RMSE is not provided for any of the two access conditions. Given this 

constraint, I took the values of f at an increment of 0.01 in the range 0 < 𝑓 ≤ 1. 

Furthermore, I took the values of k at an increment of 0.01 in the range 0 < 𝑘 ≤ 1 . 

The fixed value of f is then determined following the steps in the section titled 

Procedure to determine the f value and the k values described earlier. Figure 

4.12 shows the graph of the sum of minimum RMSEs of the data-fit versus f. For a 

set of chosen values of f in the range 0 < 𝑓 ≤ 1, the sum of minimum RMSEs for an 

f value is obtained by adding the minimum RMSE of each of the two access 

conditions labelled and unlabelled corresponding to that f value. Finally, the value of 

f that corresponds to the minimum value of the sum of minimum RMSEs of the 

data-fit is found to be 0.26. The f = 0.26 is therefore fixed across the two access 

conditions. 
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 Figure 4.12 The sum of minimum RMSEs of the data-fit versus the latency 
exponent f for Cockburn et al.'s (2007b, pp. 1573-1575) graphical 
keyboard study. For a set of chosen values of f in the range 
𝟎 < 𝑓 ≤ 1, the sum of minimum RMSEs of the data-fit at f value 
is obtained by adding the minimum RMSE of each of the two 
access conditions labelled and unlabelled corresponding to that 
f value. The value of f = 0.26 that corresponds to the minimum 
value of the sum of minimum RMSEs of the data-fit is fixed 
across the two access conditions. 

Once f = 0.26 is fixed, the k values corresponding to the two access conditions are 

then determined. Figure 4.13 and 4.14 shows the graph of the RMSEs versus effort 

 139 



factor k for the labelled and unlabelled conditions of the keyboard respectively. For 

each access condition, there is a value of k that corresponds to the minimum value of 

RMSE at f = 0.26.  This value of k is taken to be the effort factor for that condition.  

The k values for the two access conditions are as follows. k = 0.39 for the labelled 

keyboard, and k = 0.06 for unlabelled keyboard. 

 

Figure 4.13 RMSE of the data-fit versus the effort factor k for the labelled 
condition in Cockburn et al.'s (2007b, pp. 1573-1575) graphical 
keyboard study. k = 0.39 corresponds to the minimum RMSE 
value at f = 0.26 for the labelled condition. k = 0.39 is therefore 
the effort factor for this condition. 
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Figure 4.14 RMSE of the data-fit versus the effort factor k for the 
unlabelled condition in Cockburn et al.'s (2007b, pp. 1573-1575) 
graphical keyboard study. k = 0.06 corresponds to the minimum 
RMSE value at f = 0.26 for the unlabelled condition. k = 0.06 is 
therefore the effort factor for this condition. 

 
Figure 4.15 shows the fit of our model to the human data in terms of the mean 

reaction time to find and select a pre-cued target item (symbol) in two different 

access conditions labelled and unlabelled. We compare the effort factor k for the 

unlabelled condition against the labelled condition. We find k = 0.06 for the difficult 

to access unlabelled keyboard, compared to k = 0.39 for the easily accessible labelled 

keyboard. 
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Figure 4.15 Mean reaction time per item (symbol) across different practice 
sessions for the labelled and unlabelled conditions of the 
graphical keyboard. Solid lines show experimental data from 
Cockburn et al. (2007b, pp. 1573-1575). Dashed lines show model 
data predicted from the model developed in this chapter. 

The lower value of k reflects an access condition of higher cost (higher perceptual 

cost) compared to a condition, where relevant information is easily available in the 

environment. The higher k value of the labelled condition compared to that of the 

unlabelled condition also suggest that a layout with labels would need less mental 
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effort to learn compared to the one with no labels. This is similar to my model's 

validation against Ehret's (2002) human data performed earlier. 

Table 4.2 shows the R2, RMSE and k values for the two access conditions. With R2 = 

0.955, RMSE = 0.052 for the labelled and R2 = 0.975, RMSE = 0.085 for the 

unlabelled conditions, the correlation between the human and model data were good. 

Table 4.2    R2, RMSE and k values for the two access conditions in 
Cockburn et al.'s (2007b, pp. 1573-1575) graphical keyboard 
study. The latency exponent f is fixed at 0.26. 

Access condition R2 RMSE k 

labelled 0.955 0.052 0.39 

unlabelled 0.975 0.085 0.06  

 

4.4 Discussion and Conclusions 
In this chapter, I proposed a closed-form model of spatial learning that is able to 

quantitatively distinguish between different levels of effortful conditions due to 

different label representativeness of layouts. The model combines the effect of 

practice in terms of age of practice, the effect of mental effort in terms of an effort 

factor, the effect of proactive interference in terms of distractor cost (i.e. number of 

distractors), and the effect of decay in terms of a numeric constant—all together into 

a single equation of memory activation.  
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Similar to my first model, this model can also predict the future reaction times of a 

given layout. The prediction of the reaction time at a given session is possible 

provided that a mechanism to obtain the number of distractors of prior sessions is 

available. 

I extended the existing base-level activation equation of ACT-R theory for my 

purpose. I validated my model against previous empirical data sets. Others collected 

these data sets by observing the process of learning stable graphical layouts whose 

item configurations were initially unfamiliar to the participants. The tasks involved 

searching and selecting pre-cued items on the layouts using a mouse. I found good 

agreement of my model with the empirically gathered data for comparing access 

conditions that differed from each other. 

My work in this chapter introduces two mathematical constructs. One is the decay 

rate equation to account for the effect of proactive interference and the other is the 

effort factor to account for the effect of mental effort. I include them in an existing 

memory activation equation of ACT-R theory that hitherto accounted only for the 

effects of practice and decay.  

While comparing a given set of layouts in terms of their mental effort, all the free 

model parameters h, f and F are kept the same except the effort factor k. The effort 

factor k was the only free parameter that varies to reflect the differences in the 

mental effort across different effortful conditions (i.e. access conditions) in the given 

set. 
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As part of my model validation process, I separately compared two sets of layouts. 

The first set consisted of three circular layouts that differed in their label 

representativeness (Ehret, 2002). The second set consisted of two rectangular 

keyboard layouts that also differed in their label representativeness (Cockburn et 

al., 2007b). For each of the two data sets, I used What-If analysis of MS Excel to find 

the f value per data set and the k values. My model predictions matched the human 

data with high R2 values (greater than 0.85 for the first data set and greater than 

0.95 for the second data set), and low RMSE values (less than 0.55 for the first data 

set and less than 0.09 for the second data set)—see Table 4.1 and 4.2.  

 I used my model to compare different layouts that contain the same number of 

items. However my model is general enough to compare different types of layouts 

containing different number of items. 

My closed-form model based on ACT-R declarative memory equations has its 

limitations. (i) Unlike a simulation model, it is unable to express the progression of 

interaction between cognitive modules over time. (ii) Unlike a simulation model, it is 

unable to account for the noise in the activation levels. (iii) At any given trial for 

searching a target location on a layout, if the number of distractors Xj encountered is 

much less than the total number of items N on the layout, I assume that proactive 

interference in that trial has been negligible. This situation may arise when N is 

very large. Further investigation is warranted to identify a practical upper limit on 

N. (iv) My model does not account for the effect of visual similarity between the 

distractors and the target on proactive interference. (v) ACT-R theory has a 

threshold parameter that specifies a minimum activation below which an item is not 
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retrievable by the cognitive system.  Similar to Altmann & Schunn (2002), I assume 

no such threshold. As the threshold parameter is not a variable in the equations I 

use, this assumption does not impact my work directly. 

Overall, my closed-form model saves substantial expertise, labour and time that may 

have been spent in developing a low-level description of a simulation model (e.g. 

Freed & Remington, 2000; Paik, Kim, Ritter et al., 2010). Yet, it enables me to 

obtain a coarse but quick prediction of the relative differences in mental effort 

required to learn different layouts. 

Kim and Ritter (in press) suggest that a high effort condition promotes short-term 

retention whereas a low effort condition promotes long-term retention. They also 

suggest that a low effort condition promotes quick relearning. Since the effort factor 

k of my second model can quantitatively distinguish between a high and a low effort 

interface, it can help identify interfaces that would promote short-term retention, 

long-term retention or quick relearning. 
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Chapter 5 Conclusions 
 

The goal of this thesis was to develop simulative and closed-form cognitive models of 

learning interactive layouts. I developed two models.  

The first model is a simulation model of text copying on a traditional phone keypad. 

It leverages a mathematical equation to model visual exploration instead of 

implementing a low-level simulation custom search module. The mathematical 

equation expresses the transition from search to choice. The transition is governed 

by the level of recall accuracy of a learner. The second model is a closed-form model 

that synthesizes the effect of practice, memory decay, proactive interference, and 

mental effort on task completion time.  

5.1 My first model 
My first model is a simulation model. It predicts the learning of a traditional phone 

keypad layout (Figure 3.3) through a text copying task. I choose a text copying task 

because text copying is a skill that requires a great deal of learning or training 

(Cockburn et al., 2007b; p. 1571). Such a task substantially consumes one's cognitive 

and perceptual time, especially in the early stages of learning (see for example, 

Salthouse, 1986; John, 1996; Kim, Ritter & Koubek, 2013; Kim & Ritter, in press).  

I tested the novice part of my model's prediction against human data. The human 

data contained considerable oscillations. Therefore I tested the difference between 

the slopes of the regression lines of novice human and model data. For α = 0.05 (two-
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tailed), I concluded I have no reason to doubt that the mean non-Fitts time decreases 

as a function of practice sessions at the same rate for human as for model. 

My first model could be useful to predict a learning curve of any given layout 

constrained with a maximum number of items. A learning curve prediction can 

provide answers to several important questions related to the design of layouts. For 

example, it can provide insight into how fast item acquisition can be at a given stage 

of learning, which stage a learner is in, and how much practice is needed by a 

learner to reach the expert level. These answers may save valuable training time 

and cost and help to allocate resources effectively. 

Considering letter frequency in learning curve prediction for text entry 

Currently my model executes the task of copying a group of 5 distinct English letters 

in a given session. These 5 letters are randomly chosen out of 26 letters. Here, it is 

assumed that the frequency for each of the 26 letters is the same. In reality, the 

occurrence frequencies for letters are different in human languages. To 

accommodate this difference in letter frequencies in English, the driver that controls 

the simulated experiment needs to change. The change should be such that the 

letters are chosen depending on their frequency. As a consequence, higher frequency 

letters will be chosen more often than the lower frequency letters in a given session. 

This will impact the Non Exploration Time (NET) and Recall Accuracy (RA) per 

session. Consequently the predicted learning curve will be different than the same 

frequency case. 
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In the ensuing discussion, I assume that only one label is mapped to one interactive 

item. This is to simplify my explanation. 

Predicting a learning curve of another layout using the first model 

My model could be generalized to predict a learning curve of an item acquisition task 

on other layouts. Such layouts can be different from the traditional phone keypad. 

For example, the layout can be a graphical layout. In this regard, the following 

information should be provided: the practice schedule; the number of items on a 

layout; the human Visual Search Time (VST), that is, the human Visual Exploration 

Time (VET) for the first session to find an item; and the human non-Fitts time (NFT) 

for first few sessions. Moreover, the layout configuration itself is necessary to 

develop the simulative sub-model. 

First, the simulative sub-model based on classic ACT-R should be constructed to 

account for visual encoding and memory retrieval. This sub-model will predict NET 

and RA for each session. Second, the choice reaction time (CRT) time should be 

predicted by substituting the number of items in Hick's Law assuming that the 

Hick's Law constants are known. Third, the NFT for each session is to be predicted 

using the equation NFT = NET + VET, where VET = (1 – RA) * VST  +  RA * CRT. 

Note that an equation similar to this VET equation has been used earlier by 

Cockburn et al. (2007a) to predict the visual exploration time for different linear 

menu layouts, and by Ahlstrom et al. (2010) to predict the visual exploration time for 

spatially stable layouts such as matrix menu layouts, pie menu layouts and 

traditional linear menu layouts. Their equation, however, is not based on any 

cognitive principles (Cockburn & Gutwin, 2010, p. 13:5). In contrast, the recall 
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accuracy RA is one term in my VET equation that accounts for cognition. Fourth, the 

two ACT-R parameters, the retrieval threshold and the latency factor are tuned to 

match the human data of a first few sessions. Subsequently, the future reaction 

times can be predicted. My model needs to be tested in this regard. 

Predicting a learning curve of a hierarchical layout using the first model  

My first model can be generalized to predict the performance of item acquisition in a 

hierarchical layout. For each layout in the hierarchy, a single level learning curve 

can be predicted following the approach described earlier in the section titled 

Predicting a learning curve of another layout using the first model. 

Finally, the total non-Fitts time spent to find a target at a given level of hierarchy, in 

a given session, can be predicted by summing two components at that session: the 

non-Fitts time at that level and the non-Fitts times of all prior levels. This idea of 

summing for hierarchical layouts is guided by the work of Ahlstrom et al. (2010, p. 

1374). Investigation is recommended in this regard to test model predictions. 

Limitations of my first model 

Here, I list the limitations of my first model. 

I tested the novice part of my model's prediction against the human data. However, 

the progression along the learning curve from novice to expert level is yet to be 

validated. 

My model does not account for the effect of potential errors that may be committed 

by entering unexpected characters while copying text. Modification of the current 
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model to accommodate the effect of such errors is not a straightforward task. Future 

investigation is warranted in this regard. 

In my model, the minimum VET is represented by the choice reaction time (CRT) for 

a button in the phone keypad. This is to model the VET of an expert user. In a key-

pressing task on a keyboard, Seibel (1963) observed that the choice reaction time 

increased for 2 to approximately 8 alternatives, and showed trivial further increase 

no matter how many additional alternatives were added to the task. Thus, being 

dependent on the choice reaction time, my model becomes constrained by the 

limitation of a maximum of 8 alternative items. 

Although the aforementioned restriction related to the choice reaction time may be a 

disadvantage for modelling and analyzing location learning on large screens, such as 

laptops where more than 8 items are not uncommon, it may be appropriate for 

analysis of small-screen layouts, such as those found in cell phones and PDAs. 

Besides, in recent years Cockburn and associates (Cockburn et al., 2007a; Ahlstrom 

et al., 2010; Cockburn & Gutwin 2010) observed and modelled the choice reaction 

time for interaction with up to 12 alternative graphical buttons using mouse on 

computer screens. Similar to my first model, they used Hick's Law for modelling the 

choice reaction time. Thus, I speculate that if my model is generalized for graphical 

layouts, it will get constrained by the limitation of a maximum of 12 alternative 

graphical buttons. 

My simulation sub-model is limited in that it does not incorporate the repeated key 

presses required to arrive at a letter on a traditional phone keypad (see Figure 3.3 
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for the layout). For example, to copy the character sequence cei, the user needs to 

press the key containing c only once instead of pressing it thrice, and so on. I do this 

to stay compatible with the specific user study of Pavlovych and Stuerzlinger (2004) 

that I validated my model against.  

My first model focuses purely on the cognitive aspects of interaction; it does not 

model the motor control complexities involved in spatial search and selection 

processes on user interfaces. In reality though, these are all important factors that 

influence the overall user experience. 

5.2 My second model 
My second model is a closed-form model. It accounts for the combined effect of 

practice, mental effort, proactive interference and decay along the three stages of 

learning. The primary reason to develop this model is to quantitatively compare 

multiple interactive layouts in terms of the mental effort required to learn them. The 

layouts differ in their label representativeness. 

I validated my model against previous empirical data sets of learning graphical 

layouts. The tasks involved searching and selecting pre-cued items on the layouts 

using a mouse.  

My model predictions matched human data with high R2 values (greater than 0.85 

for the first data set and greater than 0.95 for the second data set), and low RMSE 

values (less than 0.55 for the first data set and less than 0.09 for the second data 

set). 
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For the same layout, the effort factor k may differ depending on the set of layouts 

being compared. This is due to the restriction on the latency exponent f that is 

constant for the set. f is selected to minimize the sum of RMSEs across all layouts.  

I used my model to compare different layouts that contain the same number of 

items. However my model is general enough to compare different types of layouts 

containing different numbers of items. 

Being a closed form model, my second model has some advantages—it simplifies the 

model description in comparison to a simulation model that is normally specified in 

the unwieldy low-level notation of a contemporary cognitive architecture (e.g. Paik, 

Kim, Ritter et al., 2010). It is computationally inexpensive, less complex and more 

straightforward to apply than a simulation model. Developing an analogous 

simulation model could require substantial time and expertise (Freed & Remington, 

2000). 

My second model can differentiate between a low effort interface versus a high effort 

one. The effort factor k for a layout provides insight into the relative mental effort 

expended to learn—the higher the value of k, the lower is the mental effort; the lower 

the value of k, the higher is the mental effort. Such comparison may be applicable in 

different situations. Some examples are as follows. 

Effortfulness, Retention and Relearning 

The Soft Constraint Hypothesis postulates that a high effort learning condition 

(knowledge in-the-head) promotes memory-intensive strategies (Gray et al., 2006). 
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Kim and Ritter (in press) suggest that a memory-intensive strategy may be forgotten 

more with longer retention intervals unless the knowledge is proceduralized. In 

contrast, a low effort learning condition (knowledge in-the-world) promotes 

interaction-intensive strategies (Gray et al., 2006). Kim and Ritter (in press) suggest 

that an interaction-intensive strategy promotes long-term retention as well as quick 

relearning. 

Kim and Ritter (in press) suggest that the above conclusions are applicable in 

choosing user interfaces in areas that involve learning by human operators. For 

example, the learning of surgical task knowledge by medical students. The students 

progress through a learning curve to reach expertise. During this progression, they 

might forget some task knowledge they had learned and they might want to 

conserve memory. As a result, they may resort to an interaction-intensive strategy 

instead of a memory-intensive strategy. On the other hand, if they interact often and 

interaction time is important, supporting a memory-intensive strategy or both 

strategies simultaneously would become important.  

Since the effort factor k of my second model can quantitatively distinguish between a 

high and a low effort interface, it can help choose interfaces that would be useful in 

the scenario explained above. 

Effort and Ego Depletion 

Baumeister, Bratslavsky, Muraven, & Tice (1998) suggest that an effortful condition 

may lead to ego depletion. Ego depletion refers to the depletion of self-control. Self-

control draws from a limited resource. When one consumes energy from this limited 
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resource, subsequent acts of self-control become impaired (Baumeister et al., 1998). 

In a recent work, Subramanium (2011) observed that execution of a difficult task led 

to a reduced ability to forgo immediate small rewards for delayed larger rewards 

compared to the execution of an easy task.  

The aforementioned suggestion and observation allow me to speculate that learning 

an interface in a higher effort condition (difficult condition) may result in higher ego 

depletion, which in turn may result in higher performance degradation in a 

subsequent difficult task. In contrast, learning an interface in a lower effort condition 

(easy condition) may result in lower ego depletion, which in turn may result in lower 

performance degradation in a subsequent difficult task.  

Given the learning curves of multiple interfaces for a given task, my second model 

can be used to rank the effort required to accomplish the task on each interface. This 

ranking can be done in terms of the effort factor values. Thus, effort factor values 

could inform which interface would deplete more self-control and which one would 

deplete less. 

Factors affecting effortful conditions 

In my second model, I considered label representativeness as a factor for different 

effortful conditions. My model can be generalized to distinguish the effortfulness 

caused by different input modalities (e.g. Kim & Ritter, in press).  
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System delay is another factor that may cause different effortful conditions 

(Golightly et al., 1999). Further investigation is necessary to generalize my second 

model in this regard. 

Different spacings of practice events may also cause different effortful conditions 

(Pavlik & Anderson, 2005, as cited in Pavlik 2007). Differentiating such effortful 

conditions may be necessary to answer questions such as for a given layout, which 

spacing—mass, distributed, or a combination of both—would require higher effort to 

learn. To reflect the effortfulness due to differences in spacing, further investigation 

of my second model is recommended. 

Effect of visual similarity on proactive interference 

Underwood (1957) suggests that the lower the visual similarity9 between the 

distractors and the target item, the lower is the proactive interference. My second 

model does not account for the effect of visual similarity between the distractors and 

the target on proactive interference (PI). One way to account for the effect of visual 

similarity on PI could be through an optional mechanism in ACT-R declarative 

memory known as partial matching.  

In the partial matching mechanism, the values of attributes of an item to be recalled 

are attempted for a "close enough" match with the values of corresponding attributes 

of items in the memory—for example, the colour attribute value orange could be 

considered to be somewhat close to the colour attribute value red. The modeller can 

9 Here, I mean similarity with respect to the basic attributes (Wolfe & Horowitz, 2004; p. 6), such as 
colour, shape, size and orientation. 
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also specify a numerical penalty for such matches, on a case-by-case basis—the 

closer the match, the higher is the penalty. This penalty value is subtracted from the 

base-level activation of the item. In ACT-R, these penalties must be manually 

specified (Stewart et al., 2007, p. 231). These penalties can be used to reflect the PI 

due to similarities—the closer the match, the higher is the penalty, and the lower is 

the activation of the item in question. Therefore the difficulty to recall the item is 

higher, reflecting a higher PI. To leverage the benefit of the partial matching 

mechanism, my modified base-level activation equation needs to be merged in the 

ACT-R simulation framework. Further investigation is recommended in this regard. 

Limitations of my second model 

A limitation of my second model arises due to the fact that it is not a simulation 

model. It is unable to express the progression of interaction between the cognitive 

modules over time. Further, it is unable to account for a recall failure. Unlike a 

simulation model, it is also unable to account for noise in the activation levels.  

Another limitation of my second model is as follows: At any given trial for searching 

a target location on a layout, if the number of distractors Xj encountered is much less 

than the total number of items N on the layout, I assume that proactive interference 

in that trial has been negligible. This situation may arise when N is very large. 

Further investigation is warranted to identify a practical upper limit on N.  
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Appendix B  
The rules of the simulation model of Chapter 3 
 
 

I assume that there are three main areas on the frontal surface of the cell phone 

handset: display area, text output area and keypad area from top to bottom 

respectively. See Figure 3.2. Text displayed in the display area is copied to the text 

output area by pressing relevant keys present in the keypad area. 

The simulation model of Chapter 3 uses a single modeller-defined ACT-R chunk-

type. The chunks created from the chunk-type help the model to keep track of (i) its 

state; (ii) the location of the current letter on the display area; (iii) the last letter 

keyed in; (iv) the current letter to be keyed in; and (v) the location of the current 

letter on the keypad. 

I represent the procedural knowledge of the simulation model of Chapter 3 using the 

following nineteen production rules: 

• seek-location-of-first-char-on-phrase finds the position of the first letter of the displayed 

phrase in the field of view. 

• switch-attention-on-phrase shifts the visual attention to the position of the current letter that 

has been found on the displayed phrase. 

• extract-stimulus-on-phrase encodes the attended letter on the displayed phrase so that the letter 

becomes accessible to the model. 
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• char-does-not-equal-last-char-on-phrase matches if the current letter found is not same as the 

last letter. If a match occurs, it attempts to retrieve the keypad position of the current letter 

from the declarative memory. If the retrieval is successful, the retrieval buffer (associated with 

declarative memory) is filled up with the chunk containing the letter and its coordinates on 

keypad. If the retrieval is not successful, the retrieval buffer becomes empty. This rule is tried 

only for the retrieval of the keypad position of the first letter of each letter-group. 

• recall-location-on-keypad matches if the keypad coordinates of the current letter (that has just 

been encoded from the displayed phrase) is same as the information present in the retrieval 

buffer and fails to match if it doesn’t. If the match occurs, the model will execute a motor 

action directly, without any attention shift, to enter the letter. 

• cannot-recall-location-on-keypad matches if the keypad coordinates of the current letter (that 

has just been encoded from the displayed phrase) is not same as the information present in the 

retrieval buffer (more specifically when the retrieval buffer is empty). If the match occurs, it 

will lead to the shift of visual attention, to the keypad area, for the current letter. 

• char-equals-last-char-on-phrase matches when the current letter found is same as the last 

letter. If the match occurs, a motor action is carried out. 

• seek-location-of-char-on-keypad finds the position of the current letter (that has just been 

encoded from the displayed phrase) on the keypad when the letter’s position on the keypad 

cannot be recalled from declarative memory. 

• switch-attention-on-keypad shifts the visual attention to the position of the current letter that 

has been found on the keypad. 

• extract-stimulus-on-keypad encodes the attended letter on keypad so that the letter becomes 

accessible to the model. 
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• do-peck-for-first-char-of-the-phrase executes a peck movement for the first letter of the 

phrase. 

• prepare-for-thumb-recoil gets the model ready for recoiling the right thumb. 

• do-thumb-recoil-before-peck-for-next-char enables the model to recoil its right thumb to the 

recoil home location (3, 2) shown in Figure 3.3. 

• do-peck-for-next-char-of-the-phrase-after-thumb-recoil enables the model to execute a peck 

movement for the relevant letter of the phrase (except the first letter of the phrase). In our case, 

this rule will apply to the first letter of every letter-group (except for the first group). 

• do-punch-when-char-equals-last-char enables the model to execute a punch movement when 

the letter to be entered is same as the last letter entered. 

• get-location-of-current-char-on-phrase retrieves the location of the current letter in the 

displayed phrase from declarative memory. Note that this production only helps in getting the 

thread of control back to the phrase from the keypad after each letter is entered. This 

production/transfer between foci of attention cannot be avoided and adds an overhead of 50 ms 

for every letter entered. 

• seek-location-of-next-char-on-phrase attempts to find the position of the next letter of the 

phrase. 

• end-of-phrase-not-reached-yet is fired when the position of a new letter in the phrase has been 

found. In that case, the visual attention is shifted to the position of the newly found letter. At 

this point, the execution continues. 

• end-of-phrase-reached is fired when there are no more letters left to be read in the phrase. At 

this point, the execution stops. 
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Appendix C  
A sample computation of the predicted task 
completion time related to Chapter 4 
 
 

This appendix is related to the closed-form model of Chapter 4. Here, I show a 

sample computation of the predicted task completion time for the second, third and 

fourth practice sessions in case of the arbitrary label condition in circle of buttons 

(Ehret, 2002). 

Total number of buttons on the circle N = 12. The model parameters are fixed as 

follows.  F = 1, h = 0.058, f = 0.68, k = 0.25, I = 0.595 (that is, visual encoding time 

for the item + movement time to the location of the item + time to click on the item = 

0.085 sec + 0.360 sec + 0.150 sec = 0.595 sec). 

Ehret (2000, p. 136) had expressed that 16 sessions took 10 minutes or 600 seconds. 

I therefore assume that the sequence of practice from session 1 to session 4 occurred 

at time 0, 37.5, 75 and 112.5. 

The first practice occurs at session 1. The mean number of distractors encountered is 

𝑋1 =  4.27.  Due to the first practice, the mean decay rate is 𝑑1 = ℎ +  0.5 ∗  𝑋1 𝑁⁄  ⇒

 𝑑1 = 0.058 +  0.5 ∗ 4.27 12 ≈  0.236⁄ . The second practice is to occur at session 2. The 

second practice is to be impacted by the base-level activation of the item just before 

the second practice starts. The base-level activation of the item just before the 

second practice starts is computed using the modified base-level activation equation  
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𝐵1′ = 𝑙𝑛 �𝑘 ∑ 𝑡𝑗
−𝑑𝑗1

𝑗=1 �  as follows. ∑ 𝑡𝑗
−𝑑𝑗1

𝑗=1  = 37.5−0.236. Therefore, 𝐵1′ = 𝑙𝑛 �𝑘 ∑ 𝑡𝑗
−𝑑𝑗1

𝑗=1 � 

= ln( 0.25 * 37.5−0.236) = -2.241. Next, I use the modified ACT-R reaction time 

equation, 𝑅𝑇𝑛+1′ = 𝐼 +  𝐹 ∗ 𝑒�−𝑓∗𝐵𝑛′ � to predict the task completion time at the end of 

second practice as follows. 𝑅𝑇2′ = 𝐼 +  𝐹 ∗ 𝑒�−𝑓∗𝐵1′� =  0.595 +  1 ∗  𝑒(−0.68 ∗  −2.241)  = 

5.186 sec. 

The second practice occurs at session 2. The mean number of distractors 

encountered is 𝑋2 =  1.93.  Due to second practice, the mean decay rate is 𝑑2 = ℎ +

 0.5 ∗  𝑋2 𝑁⁄  ⇒  𝑑2 = 0.058 +  0.5 ∗ 1.93 12⁄ ≈ 0.139. The third practice is to occur at 

session 3. The third practice is to be impacted by the base-level activation of the item 

just before the third practice starts. The base-level activation of the item just before 

the third practice starts is computed using the modified base-level activation 

equation  𝐵2′ = 𝑙𝑛 �𝑘∑ 𝑡𝑗
−𝑑𝑗2

𝑗=1 �  as follows. ∑ 𝑡𝑗
−𝑑𝑗2

𝑗=1  = 75−0.236 +  37.5−0.139. This is 

because just before the third practice starts at session 3, the age of the first practice 

is 75 and the age of second practice is 37.5. Therefore, 𝐵2′ = 𝑙𝑛 �𝑘 ∑ 𝑡𝑗
−𝑑𝑗2

𝑗=1 � = ln( 0.25 

* [75−0.236 +  37.5−0.139 ]) = -1.420. Next, I predict the task completion time at the 

end of third practice as follows. 𝑅𝑇3′ = 𝐼 +  𝐹 ∗ 𝑒�−𝑓∗𝐵2′� =  0.595 +  1 ∗  𝑒(−0.68 ∗  −1.420)  = 

3.222 sec. 

The third practice occurs at session 3. The mean number of distractors encountered 

is 𝑋3 =  1.58.   Due to third practice, the mean decay rate is 𝑑3 = ℎ +  0.5 ∗

 𝑋3 𝑁  ⇒⁄   𝑑3 = 0.058 +  0.5 ∗ 1.58 12⁄ ≈ 0.124. The fourth practice is to occur at 

session 4. The fourth practice is to be impacted by the base-level activation of the 

item just before the fourth practice starts. The base-level activation of the item just 
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before the fourth practice starts is computed using the modified base-level activation 

equation  𝐵3′ = 𝑙𝑛 �𝑘∑ 𝑡𝑗
−𝑑𝑗3

𝑗=1 �  as follows. ∑ 𝑡𝑗
−𝑑𝑗3

𝑗=1  = 112.5−0.236 +  75−0.139 +

 37.5−0.124. This is because just before the fourth practice starts at session 4, the age 

of the first practice is 112.5, the age of second practice is 75 and the age of third 

practice is 37.5. Therefore, 𝐵3′ = 𝑙𝑛 �𝑘∑ 𝑡𝑗
−𝑑𝑗3

𝑗=1 � = ln( 0.25 * [ 112.5−0.236 +  75−0.139 +

 37.5−0.124 ] ) = -0.970. Next, I predict the task completion time at the end of fourth 

practice as follows. 𝑅𝑇4′ = 𝐼 +  𝐹 ∗ 𝑒�−𝑓∗𝐵3′� =  0.595 +  1 ∗  𝑒(−0.68 ∗  −0.970)  = 2.529 sec.  
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