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Abstract

Manual segmentation is used in the diagnosis, management and evaluation of clini-

cal trials for Multiple Sclerosis (MS), but human error makes manual segmentation

variable.

Automatic segmentation has been proposed using a Machine Learning algorithm

Dictionary Learning (DL). We explored using different feature spaces to automatically

segment MS lesions from healthy brain tissue. Methods of image texture analysis

quantify the spatial distribution of the voxels in multi-weighted MR scans. We present

the results of using a single voxel, single voxel and standard deviation (σ) of adjacent

voxels and a large spatial patch as feature spaces.

The single voxel method segments the MS lesions with a Dice Similarity Coefficient

(DSC) of 0.985 on simulated Brainweb data, but performed poorly with noise in the

image (0.654). The single voxel and σ performs at a DSC of 0.943 in the presence of

3% noise. The method should be attempted on real patient data.
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Chapter 1

Introduction

Segmentation is the process of dividing information into segments. For image pro-

cessing, segmentation would be the act of drawing out a region of interest by selecting

a collection of pixels that hold some specific characteristic. Once we have a collection

of regions, labeling and classifying them can give more information about what is in

the image. This assists in the comprehension and analysis of the image.

Conventionally, image segmentation has been done manually, by a human oper-

ator. For the operators, this partitioning and labeling is sufficient for their under-

standing, but it is not always apparent to others. Decisions on manual segmentation

suffer from inter-observer variability where two people do not agree on the placement

of segmentation in the same image. Over time an operator’s perception of the image

can change as well. The operator can decide that the segmentation they had once

drawn before is incorrect and find faults in their previous work. This is described as

intra-observer discrepancies. Therefore, manual segmentation can be flawed [17].

Automatic segmentation has been suggested to be a solution to the flaws of manual

segmentation. Automatic segmentation tries to remove the operator variability by

using mathematical methods to segment the regions of interest in a photo. These

techniques analyze pixel data in the image by comparing pixel values and evaluating
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the arrangements. Automatic segmentation has been very beneficial in tasks such as

machine vision, object detection and recognition [28]. There is no better example for

the use of automatic segmentation than finding disease in medical images [30]. So

far, controversies have arisen over the optimal technique for the task and the lack of

accountability for performance errors. This has resulted in an ongoing research topic

to find the most accurate means possible for automatic medical imaging segmentation.

This topic of automatic medical image segmentation could not be more significant

than it is in Multiple Sclerosis (MS) [18]. The autoimmune disease is character-

ized by the immune cells attacking healthy neurons in the central nervous system.

Healthy neurons have a fatty coating along the axonal portion of the cell membrane

called myelin. This myelin sheath has self-attached antigens to identify itself. With

MS, these antigens are considered an enemy to the body and the immune system is

deployed to eradicate the myelin sheath.

Figure 1.1: 1) diagram of a neuron being attacked by the immune system. [35] 2) a 7
Tesla T2 Magnetic Resonance image of MS lesions. [1]

Once a neuron has been attacked, inflammation increases and can result in cell

death. This cell death leads to scar tissue being left behind called a lesion. It is

these sclerotic lesions in the central nervous system that gave MS its name. These

abnormal changes in brain tissue are characteristic to MS and the cause of neurological
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symptoms in the patient. These symptoms range from motor function difficulty to

cognitive delays. [11] Therefore, lesion localization is important in the understanding

of patient symptoms.

As a patient’s disease progresses, these lesions will develop in many parts of their

brain. Some will recover, while others will relapse. The disease progression and

patient status can be described using the calculated volume of lesion load in their

brain [27]. By monitoring its progression, physicians can evaluate the severity of

the patient’s disease. Many different treatment regimens have been developed for

decreasing relapses and development of lesions. Therefore, lesion load is important

in the evaluation of these interventions. [16]

It has become routine to measure MS lesion that appear in a Magnetic Resonance

(MR) scan of the patient’s brain as an indicator to disease severity [16] [27]. MR

imaging is extremely efficient at visualizing soft tissue distribution within the brain.

This is because of its signal quality rendered from atomic distribution as opposed

to radiation attenuation used in computed tomography. MR scanners orchestrate a

sequence of magnetic field pulses to receive a signal from the atoms within the sample.

With MR imaging, the soft tissue quality is determined by the magnetic field pulse

sequence. In the sequence, magnetic fields in different directions are turned on to alter

the nuclear magnetic vector of the localized sample. Then the signal of the sample

is measured after a given set of time. What results is measuring different relaxation

times reflective of the Bloch equations [7]. These relaxation times are different for

different tissues in the human body.

These sequences, notably for MS, are T1 weighted (T1w), T2 weighted (T2w),

Proton Density weighted (PDw), and Fluid attenuation inversion recovery weighted

(FLAIR). In T1w images, MS lesions appear as hypo-intensive regions; a collection

of dark pixel intensities. However, the latter three result in hyper-intensive regions;

pixels closer to white. Healthy tissue has a different coordination of intensities de-
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pending on the weighting. For example, cerebral spinal fluid (CSF) is dark in T1w

and FLAIR images while bright in T2w and PDw. The contrast difference depends

on the tissue [18]. The combination of weighted images having characteristic lesion

traits is essential to cross-validate the lesion position. Therefore, this pattern is useful

in delineating healthy tissue from MS lesions.

There is a distinct pattern of image intensity variation between MR image weight-

ings and physicians have learned to use this to their advantage in manual MS lesion

segmentation. As stated before, manual segmentation is flawed, so the goal is to teach

a computer to recognize the same pattern. Machine learning (ML) has been used for

pattern recognition in many different tasks [22]. To automatically segment the lesion

from the healthy tissue in an MR image, ML is used to recognize the patterns of

healthy and lesion tissue. ML algorithms attempt to learn patterns from large sets

of data, which is suitable for our goal. As an example, from the data set that is used

in this study, the MR scan has 7,109,137 voxels of information for one scan weight-

ing. Voxels are a three-dimensional concept of a pixel, holding an intensity level in

a volumetric space. Therefore, ML is an excellent mathematical tool to understand

the patterns of the MR scan.

In the past, mathematicians have attempted two core types of ML techniques;

supervised and unsupervised [23]. Supervised ML incorporates a principle that what

has been done in the past is applicable to the future and is characterized by a large

database to compare the test subjects to. By learning feature patterns in previous

examples of a task, the model can efficiently predict future tasks. Unsupervised ML

attempts to understand and manipulate the data presently, and not consider previous

examples of success. Both techniques have been proposed for automatic segmentation

with varying efficacy.

Overall, most techniques that have been proposed are dependent on the voxel

intensity in the MR scan. This is logical since the information is so readily available
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and reflective of tissue distribution. The voxel intensities are analyzed by the ML

algorithms and a pattern is found in the data. The pattern is then used to segment

an incoming test. The perception is that the ML algorithm can understand the visual

perception of the images in the same manner as human operators. In the following

chapter, we will discuss some key studies of automatic MS lesion segmentation that

show this is not always the most efficient means for analyzing the data.

The limitation of using voxel intensity is assuming the ML algorithm perceives

the data in the same manner we do, when it can actually perceive more. In image

processing, there are many techniques that are used to analyze the distribution and

pattern in the images described as image texture. Statistically, we can analyze the

gray level pattern in the same manner as a probability distribution. Then the gray

level distribution can be used to calculate mean, standard deviation, etc. Another

technique is using frequency-spatial information to understand the level of change

in the pixels and how often it changes based on frequency [6]. The frequency is

analogous to the cyclical change in a wave and describes how quickly that change

occurs. Therefore, image frequency is how quickly pixels are changing in the two-

dimensional space.

There are recent studies that have shown the worth of texture analysis in MS

lesion diagnosis [24] [37] [38]. Image texture is described as the spatial arrangement

of color or intensity in an image. Texture is described as coarse or blocky when there

are collections of pixels with similar intensity, while it is described as fine if there are

clean lines in the pattern. We can consider the total texture of an entire image or

a small portion of it. Studies have found that different tissues in conventional MR

images have different texture. Specifically, the MS lesions have different texture than

white matter (WM). The texture of the lesion is coarse, which is reflective of scaring,

the collection of immune cells, and inflammation. On the other hand, WM has a fine

texture of crisp healthy axons.
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Two recent publications have shown the diagnostic indication of texture analysis.

Zhang et al. [38] analyzed the image texture of lesions using the Stockwell Transform

(ST). The ST is a Fourier Transform based technique used to find local frequency

information using a frequency scaled Gaussian window. While Loizou et al. [24] found

differences in statistical analysis of lesion texture, remarkably with the gray level co-

occurrence matrix (GLCM). The GLCM is a second order statistic that counts the

frequency of two gray levels appearing within a specified vicinity of each other. These

two studies have found evidence of the texture differences in lesions and WM.

The idea that MR image texture is different between WM and lesions, leads to

two research questions: 1)Is image texture different for other tissue classes? And 2)

Does this information make segmentation more efficient? What we set out to do in

this study was investigate the textural differences between healthy tissue and find a

pattern recognition algorithm to learn these textural differences. We concluded on

using a pattern recognition algorithm called Dictionary Learning (DL), which is based

on regression analysis principles. Regression analysis is one of the most robust and

efficient means of recognizing patterns for classification [25].

DL has the capability of learning a specified feature space, thus we explored what

feature spaces would improve segmentation. The result is an elegant combination of

voxel intensity and statistical analysis, that did not only segment lesions with high

performance but is capable of dealing with minor image distortions such as noise.

The following chapter will be a literature review to give the thesis some context of

the success we wished to further. Then, we will discuss the DL algorithm and the

concept of using different feature spaces in Chapter 3. Sub-sequentially in Chapter 4,

we will propose the methodology and evaluation criterion to test the efficacy of our

proposed method. In Chapter 5, we provide numerical evidence of the method’s per-

formance; on selection of parameter values and performance of our method compared

to the patch based DL in mild, moderate, and severe lesion loads with or without
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the presence of the noise. We include further a discussion of our method and future

initiatives in the field of MS lesion segmentation in Chapter 6, before concluding the

paper.
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Chapter 2

Literature Review

For the context of this thesis, there are three major concepts to consider: MS lesion

Segmentation Algorithms, DL segmentation for MS, and MR image texture. The

following chapter will give a collection of articles depicting these concepts.

2.1 MS Segmentation Algorithms

An article on MS lesions segmentation explains a pipeline of tasks that will fulfill

the goal [18]. The pipeline involves four steps: pre-processing, feature extraction,

classification, and evaluation of performance. Figure 2.1 gives a flowchart giving the

framework of these pipelines. Pre-processing is a set of image processing tasks that

will manipulate or standardize the data in a form that is usable for the ML algorithm.

Then for feature extraction, there have been many techniques used for this step, with

the most popular being voxel intensity. There have been many classifiers used in the

literature many of them being based on ML.

Given that the researcher has a pipeline for the method, they will require a set

of data to test against. There is real patient data and simulated patient data. There

are multiple data sets online that are simulated, most remarkably is the Brainweb

set from McGill University [9]. Brainweb uses an MR imaging simulator that uses

8



Figure 2.1: General flow chart of an MS lesion segmentation algorithm

first principles modeling based on the Bloch equations to recreate a discrete nuclear

magnetic resonance signals. There are many real patient databases such as the 2008

Medical Image Computing and Computer Assisted Intervention (MICCAI) MS lesion

segmentation challenge database [32]. In 2008 the MICCAI Society’s convention held

a challenge for MS lesion segmentation and compiled a database of patient scans with

varying levels of MS lesion loads. Some studies have performed experiments on their

own data set acquired from an affiliated hospital.

Multi-weighted MR scans have shown to be more efficient data sets for segmen-

tation versus single weighted MR scans [18]. With an MR scanner, the image is

reflective of nuclear magnetic resonance signal generated by the Hydrogen protons

of the sample. From the nuclear spin of Hydrogen protons the nuclear magnetic

resonance signal precesses like a spinning top and over time will align to the large

magnetic field within the scanner. The time it takes for the atoms to return to the

magnetic field determines the level of gray scale in the image. As seen from stud-

ies done with one weighting, there is not enough contrasting data for segmentation.
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The use of more than one weighting provides a cross verification of tissue type and

location. Therefore, new research should evaluate more than one weighting.

After the data set has been chosen and pre-processing is complete, the pipeline

requires a feature extraction method to evaluate in order to classify the subjects in

question. In an image, the subjects are the pixels of the two dimensional matrix.

By grouping pixels into a region of interest it can be classified as a defined object.

In the context of automatic MS lesion segmentation the classes are healthy tissue

and lesion, with possible subdivisions of the healthy class to increase discrimination.

Different methods define a pixel’s feature space in different ways, typically catered to

the classifier used to determine which class the pixel belongs to.

When using the pipeline on the data set with a classifier, there must be a sepa-

ration of training data and testing data [22]. It is important that the training data

and test data do not overlap so that there is no bias in the outcome. This is typically

done by cross validation with leaving one scan out from the collection. Then the left

out scan is segmented by the algorithm after training and has its answer compared to

the ground truth. The ground truth are the perceived correct tissue segmentations

in the image.

Once the pipeline is finished identifying the segments we must be able to evaluate

the performance. Given a predicted segmentation and a ground truth segmentation

we can evaluate where the answers are the same (true positives(TP) or negatives(TN))

and the answers that are not the same (false positive(FP) or negatives(FN)). When

establishing ground truth, many techniques have been used. In the case of simu-

lated data, such as Brainweb, the data has a ground truth to generate the images.

Therefore, tissue and lesion segmentation is readily available prior to experimenta-

tion. In the case of real patient data, techniques have been used to segment tissues,

such as voxel-morphometry [5], with the lesions in real patient scans segmented by a

radio-neurologist.
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Once the similarities of the predicted values are compared to the ground truth

we want to be able to understand how well it did with one indicator. The industry

has began following the lead of classical information retrieval systems to quantify this

performance indicator. For automatic segmentation the industry has moved toward

using what is called the Dice Similarity Coefficient (DSC) [39]. The DSC is the

harmonic mean of precision (positive predictive value) and recall (sensitivity) [8].

Precision =
TP

TP + FP
(2.1)

Recall =
TP

TP + FN
(2.2)

Precision is described as the fraction of correct positive answers out of all positive

answers returned by the classifier. Where recall is the fraction of correct positives

out of all the positive values that should be returned by the classifier. Both of these

concepts are important in the evaluation of a mathematical classifier. To combine

both of them in a matter that is unbiased to the larger value, the harmonic mean is

taken to get DSC.

DSC =
2TP

2TP + FP + FN
(2.3)

Historically, the indicators used for testing the similarities of two segmentations

have been specificity, sensitivity, and accuracy. These indicators are less intuitive to

the location differences, as opposed to understanding size differences. By looking at

the Dice Similarity Coefficient (DSC), we can evaluate the efficacy of the segmenta-

tion algorithm which is more location dependent. A DSC score of 0.7 or greater is

considered a good agreement between two segmented images [39]. Therefore, DSC

will be an acceptable means of evaluating studies. More explanation of DSC can be

found in Section 4.4.
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The previous attempts at solving MS lesion segmentation are divided into the

two categories of supervised and unsupervised techniques [21]. Supervised techniques

are considered methods that use a database of information. Previously supervised

techniques have had two kinds of databases made being atlas based and clinical based.

Unsupervised techniques do not require a database of information, instead they have

a mentality that segmentation can be done on the data presently in the image. The

subcategories of unsupervised methods are segmenting based on lesion features or

based on tissue features.

Unsupervised lesion based techniques define MS lesions by the characteristics in

the test image [23]. These techniques tend to be faster than supervised techniques

because they do not have to cross reference with a database or train a classifier.

Datta et al. (2007) [12] developed a pipeline using morphological operators and fuzzy

connectivity to segment MS lesions. Morphological operators refers to concepts of

set theory such as intersection and union. While fuzzy connectivity is the concept

of having the probability of belonging in a set assigned to a point. Datta took a

post-contrast T1w image and subtracted the pre-contrast T1w image then found

the associated voxels with T2w images. Then further delineates lesions using fuzzy

connectivity. The DSC for this study on average was 0.76. Critically this system

would work well if all MS patients were scanned in this process. The procedure of

pre- and post-contrast scans can be quite cumbersome and make the scans more

susceptible to movement.

The last example of unsupervised segmentation methods are the tissue based tech-

niques. In this technique the mentality is that tissue segmentation will guide the MS

lesion segmentation [23]. This technique depends on the quality of tissue segmenta-

tion. Typically, the whole image is segmented for healthy tissues and then large errors

in representation (outliers) are considered voxels of MS lesions. Garcia-Lorenzo et al.

(2008) [19] developed an unsupervised tissue based segmentation algorithm that uses
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two steps. First performing a local segmentation using the mean shift algorithm to

generate local regions in the image. Then using a variant of expectation maximization

was employed to classify the regions as healthy brain tissue or lesion. The result is

an algorithm with a DSC of 0.55 on average.

Critically these unsupervised techniques suffer from the variability of image quality

and artifacts [23]. Artifacts are image distortions caused various factors, such as

patient movement and field of view miscalculation. Since MR imaging is dependent

on the apparatus doing the imaging, acquisition parameters vary between scanners.

The image quality from one scanner may be different from the next. Supervised

techniques have the advantage of having a classifier trained to deal with artifacts

and noise. Unsupervised segmentation algorithms may work for one scanner but

not for another, although the concept of tissue based unsupervised segmentation

is a logical means of delineating lesions. By using the healthy tissue to guide the

lesion segmentation we get a more discriminative method. Therefore, we will use this

concept in the proposed method described later in Chapter 3.

Supervised atlas based techniques use an atlas compiled from previous clinical

scans [23], where a probabilistic model of tissue distribution is tabulated from the

previous scans. The benefit of this is the atlas has good local information and a

probabilistic framework. Mainly statistical atlases are compiled from a large set of

clinical scans, from both MS and non-MS patients. Then, probability of voxel tissue

classification is found from comparing to the atlas. Topological atlases are used as

well, where they encode a specific topology of each structure and group of structures.

These atlases preserve the topological form of the tissue being segmented. Shiee

et al. (2010) [31] developed an automatic lesion segmentation method that used

a combination of statistical and topological atlases. The method uses the fuzzy-C

means algorithm for classification when comparing a test to the two atlases. The

segmentation method was called topology-preserving anatomical segmentation. He
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achieved some very impressive results with an average DSC of 0.789 an a set of real

patient data using T1w, T2w and FLAIR images. This shows that supervised atlas

based techniques are a competitive segmentation technique.

Unfortunately, the disadvantage of supervised atlas based techniques is that the

test scan must be co-registered with the atlas to have the classification system work.

Co-registration has flaws [3], in every attempt at registering photos to the same co-

ordinate system, you have an uncertainty in placement. The amount of computation

time to register images accurately increases the overall time of segmentation. There-

fore, there is benefit in avoiding this registration step.

The alternative supervised technique avoids registration to an atlas. Supervised

clinical based techniques use a database of manually segmented clinical images [23].

The manually segmented images are annotated by a neuro-radiologist. In these meth-

ods registration with the database is not needed. This results in a more robust algo-

rithm because of its comparison to clinical results. This technique requires a classifier

and a training step. These techniques incorporate a training step in their pipeline

to have the classifier become familiar with the previous examples from the database.

The only disadvantage of the technique is the computational time for training the

classifier. Anbeek et al. (2005) [2] is a significant researcher in supervised clinical

based MS lesion segmentation. Anbeek used a k-Nearest Neighbor classifier built on

a feature space of voxel intensities and spatial information. The database used five

different MR weighted scans. The result was a probabilistic mapping of white matter

lesions to which a thresholding results in a binary map that can define the lesions.

The DSC for this study was 0.805.

All of the previous techniques have challenges that should be mentioned before

moving on. For supervised methods, the challenge is to find the proper database.

The number of scans, the weighting and the feature set are important qualities to

be considered. An incoming supervised technique will need to explore the options
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of their database. For unsupervised methods, the main challenge is the variation

of image quality between scanners and patients. The acquisition of MR scans varies

between machines. Therefore, unsupervised methods should find an invariant method

for acquisition differences.

Supervised clinical based techniques are extremely useful and seem to be the best

possible technique for achieving the goal, but it is still not using all the information

from the images. In the studies we evaluated with this technique, no one has evaluated

the use of texture data for classification for MS lesion segmentation. All studies have

focused on the voxel intensity. Studies tended to use large feature spaces of many

voxel intensities increasing computational times. In looking at image texture, smaller

feature sets could be calculated by measuring the voxel distribution in the MR scan.

2.2 Dictionary Learning in MS Lesion Segmenta-

tion

The proposed pipeline of this study is to use a classifier called DL [25] that has been

used in recent years for MS lesion segmentation. DL is a supervised ML technique

using regression analysis for classification. Typically this technique has been used on

clinical based databases.

For a mathematical classifier, we have different objects that we would group to-

gether in a class. If an object is not similar to the given class, then it would be put

into a new class of objects and we can discriminate between different classes. For

the case of MS lesion segmentation it is customary to create classes for the different

tissues visible in the MR image; healthy tissue and MS lesions. Based on clinical

segmented images we can collect examples of each class into a dictionary. Then by

consulting the dictionary, we can classify a new object into healthy tissue or lesion.
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For images we can take the pixel intensities and concatenate them into a vector and

then collect these examples into a matrix as shown in Figure 2.2.

Figure 2.2: Visualization of DL: creating a dictionary for identifying a lion from
examples of various images of a lion

The DL classifier uses the least absolute shrinkage and selection operator (LASSO)

algorithm to calculate the regression coefficients ~α [33]

min
α

1

2
‖~x−D~α‖2

2 + λ‖~α‖1 (2.4)

where ~x would be a test object, D is the dictionary of a given class, and λ is a sparsity

coefficient.

The LASSO finds a sparse solution to ~α because of the nature of the `1-norm

penalization. A sparse solution is desirable because it improves the interpret ability

of the model and lowers the computational time of regression analysis. In the case
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of MS lesions, we can create dictionaries to learn the healthy tissue in the brain and

the lesions to classify image patches of a test image [13].

Weiss et al. (2013) [36] was the first to attempt this process. This study built

one dictionary that was meant to represent the healthy tissue of the brain in T1w

and T2w MR images. By learning the healthy tissue of the brain, any voxels that

had a high representation error meant they were not reflective of healthy tissue. By

thresholding out the high error voxels, Weiss found the lesions in the scan. The DSC

for this study on average was 0.71 for Brainweb, and a DSC of 0.294 for a database

of real patient scans. This first attempt of DL with MS lesion segmentation showed

great potential.

Based on the Weiss’ study, Deshpande et al. (2014) [13] was the next to explore

the uses of DL for MS lesion segmentation. Deshpandes first attempt created two

dictionaries as opposed to one; a dictionary to learn healthy tissue and one to learn

lesions. This study also used more MR image weightings; T1w, T2w, PDw and

FLAIR images. What was found was that if the lesion dictionary was smaller than

the healthy tissue dictionary, the segmentation was more accurate. They found a

sensitivity of 0.5414 on average from a sample of real patient data.

Deshpande et al. (2015) [14] attempted this technique again, but in this study,

they used four dictionaries. The four dictionaries represented the different tissue

classes of the brain; white matter (WM), gray matter (GM), cerebral spinal fluid

(CSF) and lesion (LES). The results showed that having more classes guided the

classification more efficiently in the same way as unsupervised tissue based techniques.

They found that having a smaller dictionary for the lesion class was more beneficial

again. The rationale they had was that the tissue quality of the lesions is less complex

than healthy tissue and thus less examples are needed. The DSC for this study was

0.498 for the same database of patient he had used previously.

17



The use of DL has previously shown promise for the task of MS lesion segmen-

tation. It has a proven robustness given the regression analysis foundation and it

is computationally competitive to other supervised trained systems. A concern with

DL is the choice of feature space. How much information should be used in the cal-

culation of class definition. With voxels, we can take a patch of any size and consider

a lot of information, but the computational time goes up. What we set out to do is

explore image texture analysis to find a more efficient feature space for segmentation.

In the following section, we will review some image texture analysis techniques and

see the contrasting calculations between healthy tissue and lesions.

2.3 MR Image Texture and MS

Some recent studies have shown that voxel intensity may not be the best way to inter-

pret the images. In image processing, texture analysis is a technique that quantifies

the spatial pattern of pixels in the image. Texture analysis has been proven to have

potential in the management of MS lesions [37].

Texture analysis can be described in two main ways, statistical and spatial-

frequency [37]. In the statistical method, we can describe the pattern of gray levels

as a probability distribution and then acquire statistical information from the distri-

bution. Classically, we can plot a histogram of the information in the photo (Figure

2.3) and acquire statistical information (Table 2.2).

Table 2.1: Statistical look at 5x5x5 voxel patches of WM vs. LES of T2w images
used in Figure 2.3

Tissue Mean Standard Deviation

White Matter 0.2637 0.0060
Lesion 0.4754 0.0404

The more insightful method is to use a statistic that describes the amount of

times certain gray levels arise in proximity to each other. We can define a matrix for
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Figure 2.3: Histogram comparison of a WM patch of 5x5x5voxels and LES patch of
5x5x5voxels in T2w MR images

an image that counts co-occurring pixel values at a given offset. This is called the

gray level co-occurrence matrix (GLCM). Loizou et al. (2015) [24] explored many

statistical calculations of T2w MR images. What they found was the GLCM had

significantly different values between MS lesion and healthy WM. The GLCM counts

the frequency of times a voxel intensity appears at a certain distance and angle away

from another voxel intensity (∆x,∆y).

GLCM∆x,∆y(i, j) =
n∑
x=1

m∑
y=1


1, if I(x, y) = i and I(x+ ∆x, y + ∆y) = j

0, otherwise

 (2.5)

In Figure 2.4, we calculated the GLCM for a 5x5x5 voxel patch from T2w WM

and lesion, using a distance of one voxel away at any angle. We then calculated the

joint probability by dividing the matrix by the sum of all of its elements. What results

is a matrix of these joint probabilities, to which the 3D surfaces are graphed from.

We can then see the difference between WM and LES GLCM’s in this manner.
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Figure 2.4: 3D visualization of a GLCM for WM and LES patches of 5x5x5 voxel in
a T2w scan

The second way to explain texture is using spatial-frequency information. By

using the Fourier Transform (FT) we acquire the frequencies observed in the image.

The frequency of an image can be described as the rate of change between pixels. The

FT gives an accurate account for the global frequency information of an image but

when analyzing sections of an image FT is not accurate at finding local frequency.

Therefore, alternate versions of the FT are used instead. Zhang et al. [38] used

the Stockwell Transform to analyze MS lesions. ST is a variation of FT in which a

frequency scaled Gaussian window is used to localize the frequency information in the

image. Zhang et al. then took the polar angular integral of the frequency information

of MS lesions and WM. This resulted in the local radial frequency distributions being

different for the tissues.

By taking these studies of texture analysis with MS lesions, it is possible to define

the examples in our dictionaries using texture quality in the effort to reduce the

feature space. The DL would learn the texture of the image as opposed to the image

intensities, thus resulting in a more effective segmentation algorithm.
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Figure 2.5: A flow chart of Zhang et al. investigation into the local frequency differ-
ence between normal appearing WM and LES [38]

2.4 Literature Review Conclusion

We have reviewed the basis of the current study by looking at previous MS lesion

segmentation algorithms, significantly analyzing DL methods, and introducing MR

image texture analysis. The following chapters will explain the theory and method

used in this study. What was found is a feature space with reduced dimensionality for

a quicker computational time and precise algorithm. The classification is done with

a supervised learning classifier used in a tissue based discrimination framework. The

classifier was taught using the voxel intensity in question from each MR weighting

with the spatial voxel intensity arrangement calculated using the standard deviation

of adjacent voxels.
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Chapter 3

Dictionary Learning in Feature

Space

The classifier in the proposed pipeline is a machine learning theorem resulting from

the work of Tibshirani [33]. The LASSO is constructed on the principles of regression

analysis. Specifically, the mathematical description of linear regression is as

y = βx+ ε (3.1)

where y is the dependent variable being estimated by the independent variable x.

The error of estimating the dependent variable based off the dependent variable is

denoted by ε. If the error is normally distributed with a mean of zero, then the value

of β that is the solution to the convex optimization problem

min
β

1

2
‖y − βx‖2

2 (3.2)

is the maximum likelihood estimate of β. This value of β gives us an estimate of the

linear relationship of x and y.
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In the situation that calls for finding a limited amount of β coefficients to represent

y from the available x, we can limit the number of non-zero components of β set using

an `p-norm. ∥∥∥~β∥∥∥
p

:=
( n∑
i=1

|βi|p
)1/p

(3.3)

When p = 0, the `0-norm counts the amount of coefficients that do not equal zero.

Therefore, if we wish to limit the amount of β used, then we would write the convex

optimization problem as

min
β

1

2
‖y − βx‖2

2 such that ‖β‖0 < k (3.4)

using the `0-norm to limit the amount of β coefficients. The solution to this equation

would be sparse having at most k non zero solutions, thus improving the interpret

ability of which x make up y. Unfortunately, the `0-norm is intractable at this time

and can not be computed efficiently. In 1996, Tibshirani [33] suggested using the

`1-norm instead

min
β

1

2
‖y − βx‖2

2 such that ‖β‖1 < k (3.5)

The `1-norm results in a sparse solution because of the restrictive nature on the

solution set [25]. Figure 3.1 a) is a visual description of the `1-norm ball on a 2

dimensional solution set. We can see that any solution outside of the ball will be

projected onto it in the case of the LASSO. The larger red and green regions will

project to the basis vectors of the space resulting in a sparse solution. Therefore,

the `1-norm penalization gives a solution that is sufficiently sparse compared to using

the `2-norm which results in a curving restricted solution set resulting in non sparse

solutions (Figure 3.1 b) [25]. The regression coefficients are easily calculated using

the Least Angles Regression Algorithm [15].
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Figure 3.1: Visualization of the `p-norm on solution set: a) solution penalization of
the `1-norm, b) solution penalization of the `2-norm. Retrieved from [25]
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Finally, by using Lagrange multiplier theory we can add this limitation into the

original formula to get one full convex optimization problem[25]

min
β

1

2
‖y − βx‖2

2 + λ‖β‖1 (3.6)

where λ is a sparsity parameter. The sparsity parameter λ determines the proportion

of the original `1-norm that will remain after optimization, as opposed to restricting

the numerical amount of the `1-norm. This is the final form needed to understand

the concepts of DL.

Given that we have a vector ~x ∈ Rn we want to determine if it belongs within a

certain class of vectors, possibly quantified from MR images. Therefore, the classes

may be healthy tissue or lesion. Assuming previous examples of the given tissue class

could be combined to recreate ~x perfectly, then ~x would belong to that tissue class.

We take a collection of m examples of the particular tissue class and concatenate

them into a dictionary matrix D ∈ Rn×m. Then by solving the LASSO we would find

an estimate of ~α ∈ Rm that would recreate ~x using a limited amount of the columns

in D

min
~α

1

2
‖~x−D~α‖2

2 + λ‖~α‖1 (3.7)

If ~x does belong to the class represented by the dictionary then the residual of the

~α vector combination of D will be zero.

r(~x) = ‖~x−D~α‖2
2 (3.8)

Now, instead of having one class, we have C number of classes for our classifica-

tion.Then we would have different dictionaries Di for each class i = 1, 2, ..., C. To

classify the test vector properly we would find the minimum residual given each dic-
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tionary and the minimum residual will declare which class that ~x belongs to, namely

Classpred = min
i
‖~x−Di ~αi‖2

2 (3.9)

There is a complication that arises. The LASSO is quite capable of dealing with

large data sets and high dimensional feature spaces n. DL is quite useful in learning

complex high dimensional systems. If the choice of feature space n and the number

of examples m are very large the computational time can be staggering. Therefore,

a minimal amount of m for each dictionary will result in a swift algorithm.

Previously, in [34] [13] [14], DL has been used in a feature space of large n to

create a discriminating feature space for MS lesion segmentation. They would take

a 3x3x3 or 5x5x5 voxel patch for each MR image weighting to describe an example

in the dictionaries giving n = 108 and n = 500 respectively, thus resulting in high

computational times. Their rationale for a large feature space was that the dictionary

is discriminating between the localized texture to classify voxels into a certain tissue

class.

Although their DSC scores were comparable to previous segmenting techniques,

they suffered from high levels of false positives. From an image processing point of

view this could be explained by the lack of precision in large patch sizes. When

segmenting voxels, a localized texture quality is evaluated but the individual voxel

intensity is the main defining factor. Therefore, we propose not using a patch of

localized texture but using only the voxel intensity at one point. The voxel intensity

between each four weightings has a distinct combination of light and dark quality

which is discriminative enough to achieve the goal, thus decreasing the feature space

dramatically to n = 4. Figure 3.2 shows the voxel intensity pattern of different tissues

over each MR image weighting.

26



Figure 3.2: Intensity differences between MR image weightings

This pattern is very distinct, but the fact that it only uses on voxel eliminates the

texture quantification that a larger patch has. Texture is described as the arrangement

of many pixels and is not quantifiable if we are looking at just one pixel. Therefore, we

evaluated many different texture analysis methods to find a texture quantification to

pair with the voxel intensity. These techniques will be elaborated on later in Chapter

6, the discussion, since we believe there is further research to be done on this subject.

What we found to be beneficial in lesion segmentation was pairing the voxel in-

tensity with the standard deviation of adjacent voxels.

σ =

√√√√ 1

N

N∑
i=1

(xi − x)2 (3.10)

By taking into account the variation around the voxel in question, the algorithm

sufficiently segments in the presence of noise and image distortion. We constructed a

feature space of T1w intensity level, σ of T1w 3x3x3 voxel patch, T2w voxel intensity

level, and etc. which we graphed in Figure 3.3 to view the pattern of change between

each feature space coordinate.
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Figure 3.3: Intensity differences and standard deviations between MR image weight-
ings

Proceeding this chapter, we will discuss the simulation methodology used to prove

the efficacy of the given method. There will be a review of the data set chosen and

its benefits, the feature extraction methods that are compared. There will also be a

description of the DL classifier training software that was used and a comprehensive

evaluation of performance indicators before giving the results.
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Chapter 4

Methodology

The pipeline proposed here is a supervised clinical based segmentation algorithm that

takes the concept of unsupervised tissue based methods into consideration. When

performing classification the dictionaries will be learned for three healthy tissues (GM,

WM, and CSF) and the lesion tissue. Based on the characteristic tissue dictionary, we

can quantify the previous examples in different feature spaces to evaluate the optimal

outcome. The process we took is depicted in Figure 4.1 and will be explained in the

following chapter.

4.1 Pre-Processing

For this study, we decided to use Brainweb simulated scans [9]. Brainweb is appro-

priate because it has a known distribution of discretized tissue. The simulator takes

the discretized patient and solves the Bloch equations given a set of relaxation times.

In this sense we can set relaxation times manually to achieve different MR weighted

images. This makes it possible to generate T1w, T2w, PDw, and FLAIR images for

the study (Figure 4.2). The simulator comes available with four levels of lesion load;

no lesions, mild load, moderate load and severe load. We can use three of these lesion

loads in the study.
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Figure 4.1: Proposed pipeline

Brainweb has tissue maps available for each tissue in the simulated brain (Figure

4.3). They include GM, WM, CSF, and lesions, as well as fat tissue, muscles/skin, etc.

that are not needed for the study. We cross referenced these maps with an independent

tissue segmentation technique called voxel-based morphometry (VBM) [4]. VBM is

a tissue segmentation algorithm that uses statistical parametric mapping to locate

the tissues of the brain. It is easy to compute this using the Statistical Parametric

Mapping 12 (SPM12) software. The tissue maps in this study were defined using

SPM12 and the available tissue maps on Brainweb.

The outcome of VBM is a statistical mapping of tissues, so each voxel has a

probability of being in each tissue class. We decided to let the highest probability

of tissue define the voxel tissue and created a binary map showing definite tissue

association. Unless the given voxel was defined by the lesion map, then the voxel was

considered a lesion.

The lesion tissue maps from Brainweb needed some processing before use. Since

they are tissue voxels that are fed into the Bloch equations, the maps include nor-
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Figure 4.2: Different MR image weightings

mal appearing white matter and some invisible lesion activity for authenticity. To

narrow the ground truth of the lesions, we took the voxels only contributing to scan

intensities that were visibly different in all four MR weightings. Then we took the
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Figure 4.3: Tissue maps used in the method

voxel intensities from the lesion scans and transplanted them into the healthy scan.

Therefore, our target has been clearly defined.

Finally, the soft tissue, and bone that is outside the brain tissue was eliminated

from the scan by adding all four tissue maps together and multiplying by the original
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Figure 4.4: Final processing of lesion transplantation

scan. Therefore, sufficiently skull stripping the scans. This is acceptable because most

segmentation pipelines will skull strip using software such as Robust Brain Extraction

tool.

4.2 Feature Extraction

Now that we have the scans prepared, we move onto taking samples of given tissue

classes. For each scan we can find all the voxels that belong to a particular tissue

class and catalog them. These voxels of interest will be different for each lesion load

scan.

What is more important is to find the voxels of interest pertaining to our test

slices. In some previous studies they performed testing on a full scan to see how well

the algorithm works. Unfortunately, with Brainweb, we can only obtain three lesion

scans and leaving out one whole scan is too much information to cross validate the

pipeline on. We decided to segment a collection of fifteen slices for each simulation to

get statistically significant data. Therefore, the cataloged voxels of the test slices will

be put aside as the test group, and then the remaining voxels are used for training

as per the explanation in Section 2.1.
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Then with the training group we take the voxel intensity of each weighting and

create a vector of them for the Single Voxel method. For the Single Voxel and σ

method, we take the voxel intensity and also take the standard deviation of all adja-

cent voxels. The standard deviation was calculated for all 27 voxels of a 3x3x3 voxel

patch centred at the voxel of interest. For the large patch method, we took a 5x5x5

voxel patch centred at the voxel of interest.

4.3 Classification

Once the tissue distributions are defined in their feature space, we can then input

them into the Sparse Modeling Software (SPAMS) package to get a dictionary for each

tissue. SPAMS [26] [11] has a dictionary learning function that uses Online Dictionary

Learning (ODL) to create an optimal dictionary for sparse solutions. ODL is on

optimization algorithm based on stochastic gradient descent. What occurs is that the

algorithm initiates a random collection of examples from a given distribution p(~x).

It takes an extra sample from the distribution and solves the sparse representation

using the LASSO. Then the columns of the dictionary are updated to consider the

error in representation. Ultimately this results in a dictionary that gives the sparsest

solution possible for every example in p(x).

In the test slices, we then classify the voxels using the trained dictionaries. We

will get a voxel classification depending on its feature space for each method. For

each voxel, we take the same quantification and perform the LASSO to find the

representation given each tissue dictionary. Then the dictionary that recreates the

test with the smallest residual will classify the voxel as that tissue. Once the slice

has been fully segmented, we can evaluate the results.
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4.4 Evaluation of Performance

Once we have a segmented slice we compare it to the ground truth of that slice. For

each tissue map we count the number of true positive, true negatives, false positives

and false negatives. Table 4.1 gives a list of performance indicators that we will

evaluate. As described in Chapter 2, the DSC will be our main indicator for evaluating

segmentation because of it’s combination of precision and recall.

Table 4.1: Indicators that are used to evaluate image segmentation [21]
Name Description Formula

Sensitivity True positive rate: measure of
the amount of positive values cor-
rectly identified

SENS = TP
TP+FN

Specificity True negative rate: measure of the
amount of false values correctly
identified

SPEC = TN
TN+FP

Accuracy Overall evaluation of correct an-
swers out of all answers given ACC = TP+TN

TP+TN+FP+FN

Dice Similarity
Coefficient

An indicator that characterizes
precision and recall of a classifier DSC = 2TP

2TP+FP+FN

Figure 4.5, provides a simple segmentation example. Here we would be expecting

to predict the box segmented on the right, but find the result of the left side which

has over segmented the box. If we count the amount of true positive, false positive,

etc. we get the following results and indicators in Table 4.2. We can see how high

the sensitivity , specificity, and accuracy are in this example. Where the DSC is not

as high reflecting the poor performance of this example’s segmentation algorithm.

Table 4.2: Indicators that are used to evaluate image segmentation [21]
Results Indicators

TP=361 SENS = TP
TP+FN

= 1

TN=7192 SPEC = TN
TN+FP

= 0.95

FP=368 ACC = TP+TN
TP+TN+FP+FN

= 0.95

FN=0 DSC = 2TP
2TP+FP+FN

= 0.66
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Figure 4.5: Simple segmentation of a box as an example of indicator performance

We then repeat the testing and the evaluation steps on each slice in the testing

group, thus resulting in average indicators with standard deviations. The proposed

outline will be the process taken to acquire the results in the next chapter. Table 4.3

gives a description of the different methods shown.

Table 4.3: Methods tested in the results
Method Feature Space Description Feature space n

Large Patch size 5x5x5 voxel intensity patch centred
around voxel of interest for all 4 MR
image weightings

500

Single Voxel Voxel intensity of interested for all 4
MR image weightings

4

Single Voxel and σ Voxel intensity and σ for 3x3x3 voxel
patch centred at voxel of interest for
all 4 MR image weightings

8
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Chapter 5

Numerical Results

The results chapter is split into three parts; finding optimal Dictionary Parameters for

the newly proposed methods, segmentation results on images without noise present,

and segmentation results on images with noise present. The method was implemented

on the super computer network at York University. The network has 16 core pro-

cessors with 128 GBytes of RAM. All computational times are based off this server.

The method was programmed in MATLAB using the SPAMS package [26] for the

LASSO and dictionary training.

5.1 Dictionary Parameters

The first result comes from exploring the parameters of dictionary learning. We

questioned which dictionary width (m) and sparsity parameter (λ) would give the

best results for the classifier given the different feature spaces. This was determined

by evaluating the two dimensional domain of dictionary width versus lambda. For

each method we took fifteen slices spread evenly across all three lesion load scans

and evaluated the DSC of the lesion map for each to get an average DSC. Then we

plotted the contour map to observe the parameters that lead to the highest average

DSC.
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Figure 5.1 shows the contour map for the single voxel method. From what we can

see there is a large domain for which the classifier gets a average DSC of 1 for the

lesion map. This is in the range of m = 10 to m = 100 and λ = 0.9 and 0.95. For

the domain, we evaluated the performance of healthy tissue to determine the optimal

parameters for all classes. This resulted in m = 100, and λ = 0.95.

Figure 5.1: Contour map of lesion DSC with variation in dictionary width and λ for
the single voxel method

Figure 5.2 shows the contour map found for the single voxel and σ method. The

experiment was performed in the same manner as the single voxel method. The opti-

mal parameters in this situation are m = 10, and λ = 0.9. This leads to a conclusion

that with including the standard deviation in the feature space, the dictionaries do

not require as many examples to identify incoming test subjects. The smaller λ pa-

rameter also shows that for classification it does not need to use as many examples

as the single voxel method to identify the test subject.
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Figure 5.2: Contour map of lesion DSC with variation in dictionary width and λ for
the single voxel and σ method

5.2 Segmentation without Noise

The following section evaluated the segmentation results on MR images without noise

present. This simulation was performed 3 times; separately on each lesion load. A

collection of fifteen slices were selected for the testing group taken from one lesion

load scan. Then the next scan was evaluated and so on. The results for each lesion

load will be presented and at the end, the final results were combined for an overall

evaluation of the techniques.

5.2.1 Mild Lesion Load

For this simulation, fifteen slices from the mild lesion load Brainweb scans were used

as test subjects. The other two lesion load scans were used for the training set. The

slices were compared to the ground truth to acquire the confusion matrix components

and the indicators listed in Chapter 4 were calculated for each tissue map for each

method. The average of each indicator result is facilitated in Table 5.1.
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For the lesion class, we can observe that the single voxel method out performs

the other two. Table 5.2 gives the average DSC over the 15 test slices, the standard

deviation of DSC. The time it takes to train the system and the average time it takes

to test one slice are provided in the last two columns. The computational times are

contrastingly different. The large patch size as presumed takes the longest amount

of time to train and to test. The single voxel method takes longer to train than the

single voxel and σ method, while testing times are opposite. We could explain this

by observing the dictionary width for single voxel is larger than single voxel and σ,

creating a longer training time. On the other hand, the feature space of single voxel

and σ is larger than the single voxel, causing a longer testing time.

Figures 5.3 and 5.4 give a visual observation of each segmentation technique.

These images show the increased amount of false positives given the larger patch size.

As suggested in Figure 5.4, the larger patch size inaccurately recreates the slice that

has no lesion tissue present.

Table 5.1: Performance indicators for each method with mild lesion load without
Noise

Method Tissue Sens Spec Acc DSC

Large patch size GM 0.906 0.993 0.966 0.943
WM 0.974 0.980 0.980 0.916
CSF 0.969 0.988 0.987 0.902
LES 0.895 0.999 0.999 0.358

Single Voxel GM 0.878 0.976 0.946 0.910
WM 0.901 0.977 0.968 0.869
CSF 0.927 0.981 0.978 0.843
LES 0.947 1.000 0.999 0.956

Single Voxel and σ GM 0.982 0.987 0.935 0.885
WM 0.995 0.951 0.956 0.841
CSF 0.873 0.986 0.978 0.837
LES 0.933 1.000 0.999 0.930

The mild lesion load scans are reflective of patient’s who have early stage disease.

The lesion targets are small, and some slices have no lesions at all. In evaluation of

the large patch method, the larger patches result in a higher amount of false positives.
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Table 5.2: Performance of each method on lesion tissue map and computational time
of each method for mild lesion load with no noise

Method Average
LES DSC

St.Dev.
DSC

Training
Time

Testing
Time

Large patch size 0.358 0.321 3949s 11347s
Single Voxel 0.956 0.172 20.8s 59s
Single Voxel and σ 0.930 0.257 7.3s 79.8s

Therefore, the performance goes down. While the single voxel and single voxel with σ

methods are more precise at detecting the smaller lesions. This leads to the conclusion

that the proposed method would be more accurate at detecting early stage lesions.
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Figure 5.3: Visual look at each method for mild lesion load with no noise example 1:
1) T1w, 2) T2w, 3) PDw, 4) FLAIR, 5) Ground truth lesion segmentation, 6) Large
patch predicted segmentation, 7) Single voxel predicted segmentation, 8) Single voxel
and σ predicted segmentation
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Figure 5.4: Visual look at each method for mild lesion load with no noise example 2:
1) T1w, 2) T2w, 3) PDw, 4) FLAIR, 5) Ground truth lesion segmentation, 6) Large
patch predicted segmentation, 7) Single voxel predicted segmentation, 8) Single voxel
and σ predicted segmentation
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5.2.2 Moderate Lesion Load

Here we present the results of evaluating each method on the moderate lesion load

scan with no noise. The same method as previously was used, taking 15 slices from

the moderate lesion load scan for testing and the rest used for the training set. Then

feature extraction was executed in the three described methods before training and

testing the classifier. Then the performance indicators were calculated. Table 5.3

gives the average calculated indicators for each tissue group and for each method.

Then table 5.4 is a summary of each method’s performance on the lesion maps and

the computational times. Figure 5.5 and 5.6 are two visual examples from these

results.

Table 5.3: Performance indicators for each method for moderate lesion load with no
noise

Method Tissue Sens Spec Acc DSC

Large patch size GM 0.903 0.993 0.965 0.941
WM 0.968 0.979 0.978 0.909
CSF 0.965 0.989 0.987 0.905
LES 0.923 0.998 0.998 0.531

Single Voxel GM 0.829 0.932 0.942 0.897
WM 0.978 0.968 0.970 0.882
CSF 0.951 0.973 0.972 0.813
LES 1.000 1.000 1.0000 1.000

Single Voxel and σ GM 0.812 0.991 0.936 0.887
WM 0.996 0.949 0.955 0.835
CSF 0.913 0.986 0.981 0.862
LES 0.990 1.000 0.999 0.993

Table 5.4: Performance of each method on lesion tissue map and computational time
of each method for moderate lesion load with no noise

Method Average
LES DSC

St.Dev.
DSC

Training
Time

Testing
Time

Large patch size 0.531 0.161 4011s 10941s
Single Voxel 1.000 0.001 20.3s 59s
Single Voxel and σ 0.993 0.020 7.3s 78.1s
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We can observe with these results that each method improved with the increase

in lesion load, leading to a suggestion that all methods perform better with later

stage disease. These results are satisfactory since a physician would also find larger

lesions easier to segment manually. This suggests that the methods would be useful

in analyzing disease progression.
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Figure 5.5: Visual look at each method for moderate lesion load with no noise example
1: 1) T1w, 2) T2w, 3) PDw, 4) FLAIR, 5) Ground truth lesion segmentation, 6) Large
patch predicted segmentation, 7) Single voxel predicted segmentation, 8) Single voxel
and σ predicted segmentation
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Figure 5.6: Visual look at each method for moderate lesion load with no noise example
2: 1) T1w, 2) T2w, 3) PDw, 4) FLAIR, 5) Ground truth lesion segmentation, 6) Large
patch predicted segmentation, 7) Single voxel predicted segmentation, 8) Single voxel
and σ predicted Segmentation
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5.2.3 Severe Lesion Load

For the final simulation of images without noise we used the severe lesion load for

testing and the results were very impressive. The average of indicators for the fifteen

test slices are given in Table 5.5 and a summary of lesion performance in Table 5.6.

We can observe that the performance level has not changed much from the moderate

scans, leading to the idea that the smaller lesions are the most difficult to segment.

Figures 5.7 and 5.8 are two visual examples from the severe lesion loads. By

comparing the predicted maps to the ground truth maps, the larger patch size tends

to over segment the boarders, resulting in increased false positives. This can be

explained by the larger spatial feature space. The large patch size lacks precision to

clearly delineate the lesions from the healthy tissue.

Table 5.5: Calculated performance indicators for each method for severe lesion load
with no noise

Method Tissue Sens Spec Acc DSC

Large patch size GM 0.900 0.994 0.965 0.940
WM 0.943 0.980 0.975 0.896
CSF 0.964 0.988 0.987 0.903
LES 0.996 0.993 0.993 0.513

Single Voxel GM 0.801 0.993 0.934 0.882
WM 0.983 0.960 0.962 0.855
CSF 0.955 0.973 0.972 0.812
LES 1.000 1.000 1.000 1.000

Single Voxel and σ GM 0.809 0.991 0.935 0.885
WM 0.996 0.948 0.954 0.831
CSF 0.915 0.986 0.981 0.863
LES 0.998 1.000 1.000 0.977

Table 5.6: Performance of each method on lesion tissue map and computational time
of each method for severe lesion load with no noise

Method Average
LES DSC

St.Dev.
DSC

Training
Time

Testing
Time

Large patch size 0.513 0.108 4663s 14056s
Single Voxel 1.000 0.0002 23.6s 61.5s
Single Voxel and σ 0.977 0.035 8.2s 83.7s
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Figure 5.7: Visual look at each method for severe lesion load with no noise example 1:
1) T1w, 2) T2w, 3) PDw, 4) FLAIR, 5) Ground truth lesion segmentation, 6) Large
patch predicted segmentation, 7) Single voxel predicted segmentation, 8) Single voxel
and σ predicted segmentation
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Figure 5.8: Visual look at each method for severe lesion load with no noise example 2:
1) T1w, 2) T2w, 3) PDw, 4) FLAIR, 5) Ground truth lesion segmentation, 6) Large
patch predicted segmentation, 7) Single voxel predicted segmentation, 8) Single voxel
and σ predicted segmentation
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5.2.4 Segmentation without Noise Overall Performance

Table 5.7 gives the overall result of the methods used on all 45 slices from the collection

of all lesion load scans. We can see that the proposed method is more efficient

at segmenting the MS lesions compared to using a large patch size, as previously

suggested [13] [14] [36].

Table 5.7: Over all performance of each method on lesion tissue map and computa-
tional time of each method

Method Average
LES DSC

St.Dev.
DSC

Training
Time

Testing
Time

Large patch size 0.467 0.226 4208s 12115s
Single Voxel 0.985 0.099 21.6s 59.8s
Single Voxel and σ 0.967 0.150 7.6s 80.5s

In looking at each lesion load scan individually we have shown a consistent efficacy

of the proposed method. The ability of the algorithm to manage segmentation of

different lesion loads shows a promise for clinical usage. Brainweb is a simulated

patient and is an idealized situation for testing the algorithm. Working with a data

set of real patient data should be evaluated.

The improvement could be attributed to the fact that the dictionary is now learn-

ing the intensity differences between MR image weightings for each class, as opposed

to learning the texture difference between MR image weightings. Therefore, it is

learning the different relaxation times of the lesion tissue and healthy tissue. The

complexity of encompassing the texture difference between tissues seems to confuse

the DL classifier as opposed to clarify the problem. Leading to the idea that learning

texture quality from large patches of voxel intensity and MR multi-weighted values

together, complicates the solution as opposed to aiding it. Although some form of

texture quantification must be used to help in distinguishing tissues in the presence

of noise, we see how evidently this is needed in the next section.
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5.3 Segmentation with Noise

The following section will evaluate the robustness of the methods with varying levels

of noise added to the images. We will look at each lesion load scan individually and

show within each subsection the results of having 3% noise and 9% noise added to the

image. Noise is generated within the real and imaginary parts of the relaxation times

using a pseudo random Gaussian noise field [9]. The noise percentage is relative to

the average brightness values from the phantom. The tissue dictionaries are trained

with the noise level present to show it’s ability to use the noise quality.

5.3.1 Mild Lesion Load with Noise

From looking at fifteen slices from the mild lesion load scan with noise present we

can see the methods break down and are unable to preform as accurately as before.

Table 5.8 gives the indicators for 3% noise added to the images and Table 5.9 gives

the indicators for 9% added to the image. Tables 5.10 and 5.11 give a summary of

each method’s performance on MS lesion segmentation. Figure 5.9 shows a visual

example from the 3% noise images and Figure 5.10 is a visual example of images with

9% noise.

In the terms of the mild lesion load the large patch based method is the most

consistent and appropriate method to use. We observe that the single voxel method

completely fails to delineate any important segmentations from the slice. We pre-

sumed that this would occur given the lack of texture quantification in evaluating a

single voxel. The noise alters the voxel intensity directly and changes the pattern of

relaxation time magnitude between weightings, making it more confusing to delineate

one tissue from another. The different classes will have more overlap of voxel intensity

quality compared to no noise. Therefore, some texture quantification is needed.
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We observe that the standard deviation of neighboring voxels is adequate enough

to compete with the large patch based method. The 3% noise simulation for single

voxel and σ method got a DSC=0.856. Proving the adequacy of this method in the

presence of slightly noisy images. Unfortunately, with a noise increase to 9% the

method falls to a similar DSC of the large patch method of 0.348. We can explain

this by the complexity of finding smaller lesions. A physician will request de-noising

of the MR images before evaluating the scan, and even then smaller lesions would be

more difficult to delineate from healthy tissues. De-noising may be a proper tactic

before using DL for MS lesion segmentation.

Another suggestion to aid in the segmentation of smaller lesions would be to use

post-processing tasks. In Figure 5.10 panel 8 we can observe that the false positives

are a few scattered single voxel segments. Post-processing encompasses taking the

results of the DL classifier and applying image processing methods to ”clean up” the

segmentation. These single voxel segmentations could be considered as inadequate

and we could delete any segmentations that are single voxels, thus leaving behind

clusters of more than one voxel. This would improve the DSC of the single voxel and

σ method in the presence of 9% noise of mild lesion load scans.
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Table 5.8: Performance indicators for each method for mild lesion load with 3% noise
Method Tissue Sens Spec Acc DSC

Large patch size GM 0.901 0.993 0.964 0.940
WM 0.975 0.978 0.978 0.908
CSF 0.967 0.988 0.987 0.904
LES 0.6482 0.999 0.999 0.349

Single Voxel GM 0.948 0.821 0.860 0.804
WM 0.043 0.999 0.883 0.082
CSF 0.869 0.989 0.982 0.858
LES 0.613 0.995 0.995 0.068

Single Voxel and σ GM 0.842 0.977 0.935 0.889
WM 0.951 0.954 0.954 0.827
CSF 0.843 0.990 0.981 0.847
LES 0.854 1.000 1.000 0.856

Table 5.9: Performance indicators for each method for mild lesion load with 9% noise
Method Tissue Sens Spec Acc DSC

Large patch size GM 0.853 0.994 0.950 0.913
WM 0.972 0.966 0.967 0.869
CSF 0.981 0.983 0.983 0.882
LES 0.660 0.999 0.999 0.374

Single Voxel GM 0.760 0.911 0.864 0.773
WM 0.317 0.976 0.896 0.423
CSF 0.917 0.979 0.975 0.823
LES 0.667 0.940 0.940 0.008

Single Voxel and σ GM 0.694 0.952 0.872 0.769
WM 0.793 0.906 0.892 0.633
CSF 0.874 0.987 0.980 0.848
LES 0.653 0.999 0.999 0.348
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Table 5.10: Overall performance of each method on lesion tissue map and computa-
tional time of each method for mild lesion load with 3% noise

Method Average
LES DSC

St.Dev.
DSC

Training
Time

Testing
Time

Large patch size 0.349 0.309 4236s 13517s
Single Voxel 0.068 0.062 21.8s 58.9s
Single Voxel and σ 0.856 0.315 7.8s 84.4s

Table 5.11: Overall performance of each method on lesion tissue map and computa-
tional time of each method for mild lesion load with 9% noise

Method Average
LES DSC

St.Dev.
DSC

Training
Time

Testing
Time

Large patch size 0.374 0.307 4110.1s 16911.0s
Single Voxel 0.008 0.007 29.1s 73.1s
Single Voxel and σ 0.348 0.269 7.5s 85.9s
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Figure 5.9: Visual look at each method for mild lesion load with 3% noise: 1) T1w,
2) T2w, 3) PDw, 4) FLAIR, 5) Ground truth lesion segmentation, 6) Large patch
predicted segmentation, 7) Single voxel predicted segmentation, 8) Single voxel and
σ predicted segmentation
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Figure 5.10: Visual look at each method for mild lesion load with 9% noise: 1) T1w,
2) T2w, 3) PDw, 4) FLAIR, 5) Ground truth lesion segmentation, 6) Large patch
predicted segmentation, 7) Single voxel predicted segmentation, 8) Single voxel and
σ predicted segmentation
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5.3.2 Moderate Lesion Load with Noise

The Moderate lesion load scans with noise had a differing outcome from the mild

lesion load scan. Tables 5.12 to 5.14 gives the same calculated indicators as the

previous sections and then a review of lesion segmentation. Figure 15.11 is a visual

example of 3% noise added to the images and Figure 5.12 is a visual example of 9%

noise added to the images.

Remarkably the 3% noise level images redeemed their efficacy. Showing that with

larger lesions present it is easier to find them in the presence of noise. This could be

explained by the fact that smaller lesions are cloaked by the noise and make them

harder to find, therefore the moderate lesion load will have a better performance.

The 9% noise in the images resulted in inadequate results for the single voxel

method. This further supports the need for noise reduction before segmentation

is performed. This is not an unreasonable requirement since most radiologists will

request noise reduction before manual segmentation.

Table 5.12: Performance indicators for each method for moderate lesion load with
3% noise

Method Tissue Sens Spec Acc DSC

Large patch size GM 0.902 0.993 0.965 0.941
WM 0.966 0.979 0.977 0.906
CSF 0.969 0.988 0.987 0.904
LES 0.914 0.998 0.998 0.521

Single Voxel GM 0.936 0.822 0.856 0.798
WM 0.006 1.000 0.880 0.013
CSF 0.932 0.979 0.976 0.833
LES 0.982 1.000 1.000 0.985

Single Voxel and σ GM 0.817 0.985 0.933 0.884
WM 0.979 0.947 0.950 0.819
CSF 0.882 0.990 0.983 0.867
LES 0.986 1.000 1.000 0.984
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Table 5.13: Performance indicators for each method for moderate lesion load with
9% noise

Method Tissue Sens Spec Acc DSC

Large patch size GM 0.826 0.989 0.938 0.892
WM 0.978 0.945 0.948 0.813
CSF 0.893 0.995 0.988 0.908
LES 0.929 0.997 0.997 0.477

Single Voxel GM 0.800 0.908 0.875 0.796
WM 0.583 0.944 0.900 0.579
CSF 0.785 0.994 0.980 0.825
LES 0.977 0.993 0.993 0.273

Single Voxel and σ GM 0.752 0.9930 0.875 0.787
WM 0.772 0.914 0.897 0.636
CSF 0.670 0.998 0.977 0.789
LES 0.942 1.000 1.000 0.961

Table 5.14: Overall performance of each method on lesion tissue map and computa-
tional time of each method for moderate lesion load with 3% noise

Method Average
LES DSC

St.Dev.
DSC

Training
Time

Testing
Time

Large patch size 0.521 0.175 4890s 13745s
Single Voxel 0.985 0.022 24.7s 64.8s
Single Voxel and σ 0.984 0.021 7.2s 91.5s

Table 5.15: Overall performance of each method on lesion tissue map and computa-
tional time of each method for moderate lesion load with 9% noise

Method Average
LES DSC

St.Dev.
DSC

Training
Time

Testing
Time

Large patch size 0.477 0.166 4037.1s 14593s
Single Voxel 0.273 0.198 29.4s 70.1s
Single Voxel and σ 0.961 0.067 7.7s 81.5s
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Figure 5.11: Visual look at each method for mild lesion load with 3% noise: 1) T1w,
2) T2w, 3) PDw, 4) FLAIR, 5) Ground truth lesion segmentation, 6) Large patch
predicted segmentation, 7) Single voxel predicted segmentation, 8) Single voxel and
σ predicted S]segmentation
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Figure 5.12: Visual look at each method for mild lesion load with 9% noise: 1) T1w,
2) T2w, 3) PDw, 4) FLAIR, 5) Ground truth lesion segmentation, 6) Large patch
predicted segmentation, 7) Single voxel predicted segmentation, 8) Single voxel and
σ predicted S]segmentation
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5.3.3 Severe Lesion Load with Noise

The final simulation is performed using the severe lesion load scan with noise present.

In the same manner as the previous sections Tables 5.16 to 5.19 give the indicator

results for each method under each noise level. The latter two tables give a summary

of performance on lesion load. Figures 5.13 and 5.14 are two visual examples of 3%

and 9% noise images respectively.

As we have evaluated each lesion load progressively in the presence of noise there

has been a pattern, the more abundant and increased size of the lesions the easier it

is to automatically segment them. This simulation on the severe lesion load concretes

that fact. Here we observe the single voxel method competitively keeping up with the

single voxel and σ method contrasting from previous simulations with noise in the

image. This supports the interpretation that the segmentation algorithm would be

adequate for calculating total lesion volume and aiding in the evaluation of disease

progression.

Table 5.16: Performance indicators for each method for severe lesion load with 3%
noise

Method Tissue Sens Spec Acc DSC

Large patch size GM 0.891 0.9995 0.963 0.936
WM 0.947 0.978 0.974 0.890
CSF 0.970 0.987 0.986 0.898
LES 0.996 0.993 0.993 0.521

Single Voxel GM 0.937 0.846 0.873 0.818
WM 0.136 0.996 0.895 0.233
CSF 0.906 0.984 0.979 0.846
LES 0.998 1.000 1.000 0.910

Single Voxel and σ GM 0.789 0.986 0.925 0.867
WM 0.986 0.939 0.944 0.799
CSF 0.869 0.988 0.980 0.849
LES 0.999 1.000 1.000 0.994
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Table 5.17: Performance indicators for each method for severe lesion load with 9%
noise

Method Tissue Sens Spec Acc DSC

Large patch size GM 0.848 0.995 0.949 0.912
WM 0.946 0.968 0.965 0.859
CSF 0.987 0.981 0.981 0.869
LES 0.989 0.995 0.995 0.622

Single Voxel GM 0.768 0.920 0.873 0.787
WM 0.552 0.953 0.906 0.575
CSF 0.967 0.968 0.968 0.792
LES 0.827 1.000 0.999 0.899

Single Voxel and σ GM 0.661 0.957 0.865 0.751
WM 0.839 0.892 0.885 0.626
CSF 0.843 0.989 0.980 0.844
LES 0.869 1.000 0.999 0.929

Table 5.18: Overall performance of each method on lesion tissue map and computa-
tional time of each method for severe lesion load with 3% noise

Method Average
LES DSC

St.Dev.
DSC

Training
Time

Testing
Time

Large patch size 0.521 0.106 5339s 16166s
Single Voxel 0.910 0.082 23.3s 62.9s
Single Voxel and σ 0.994 0.011 7.1s 85.0s

Table 5.19: Overall performance of each method on lesion tissue map and computa-
tional time of each method for severe lesion load with 9% noise

Method Average
LES DSC

St.Dev.
DSC

Training
Time

Testing
Time

Large patch size 0.622 0.080 4593.0s 18714.0s
Single Voxel 0.899 0.051 21.9s 65.7s
Single Voxel and σ 0.929 0.038 7.2s 89.0s
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Figure 5.13: Visual look at each method for severe lesion load with 3% noise: 1) T1w,
2) T2w, 3) PDw, 4) FLAIR, 5) Ground truth lesion segmentation, 6) Large patch
predicted segmentation, 7) Single voxel predicted segmentation, 8) Single voxel and
σ predicted segmentation
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Figure 5.14: Visual look at each method for severe lesion load with 9% noise: 1) T1w,
2) T2w, 3) PDw, 4) FLAIR, 5) Ground truth lesion segmentation, 6) Large patch
predicted segmentation, 7) Single voxel predicted segmentation, 8) Single voxel and
σ predicted segmentation
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5.3.4 Segmentation with Noise Overall Performance

It is in the evaluation of all three lesion loads overall that we can view the performance

of these algorithms in the case of distorted data sets. Table 5.20 gives the average

lesion map performance across the three scan simulations. We can see that the single

voxel and σ method out performs the other two with the most consistent standard

deviation. It is also observed in Table 5.21 that the single voxel and σ method stands

above the rest in the presence of 9% noise. Figure 5.15 is a graphing of the DSC of

each method with respect to noise level added to the images.

Table 5.20: Overall performance of each method on lesion tissue map and computa-
tional time of each method on images with 3% noise present

Method Average
LES DSC

St.Dev.
DSC

Training
Time

Testing
Time

Large patch size 0.464 0.197 4821.7s 14476s
Single Voxel 0.654 0.055 23.2s 62.2s
Single Voxel and σ 0.945 0.011 7.4s 87.0s

Table 5.21: Overall performance of each method on lesion tissue map and computa-
tional time of each method on images with 9% noise present

Method Average
LES DSC

St.Dev.
DSC

Training
Time

Testing
Time

Large patch size 0.491 0.184 4246.7s 16739.3s
Single Voxel 0.393 0.256 26.8s 69.6s
Single Voxel and σ 0.746 0.125 7.5s 85.5s

It is interesting to note that although the larger patch size doesn’t perform as

impressively as the single voxel and σ method, it is consistent across the noise levels

evaluated. This suggested that the larger patch size would be more accurate at gaining

an insight into the scan but not for getting a precisely calculated volume. Therefore,

the larger patch size would need a post-processing check done by a human operator.

In the end, the new proposed method is the most accurate at segmenting MS

lesion from multi-weighted MR imaging. The single voxel and σ feature space has
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Figure 5.15: The effect of noise on DSC of the three presented methods

shown to adequately segment the lesions of the Brainweb simulated phantom. It even

proves to be robust against MR image noise, which in some cases can not be avoided.

The following section of this thesis is a discussion of future research objectives in

critique of the presented method.
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Chapter 6

Discussion

6.1 Healthy Tissue Performance

In examining the results there are two major trends that should be addressed: the

efficacy of lesion segmentation versus healthy tissue and the lesion load variation.

The DSC for the healthy tissues are given depending on the method in Table 6.1 in

the absence of noise.

Table 6.1: Segmentation results of healthy tissues
Method GM WM CSF

Large patch size 0.941 0.907 0.903
Single Voxel 0.896 0.869 0.823
Single Voxel and σ 0.886 0.836 0.854

From these results it becomes apparent that the larger patch size is more efficient

than the single voxel and standard deviation classification at identifying healthy tis-

sue. This could be explained by the localized texture contributing to the healthy

tissue. The dictionary of healthy tissues in compact feature space do not hold enough

texture quality to discriminate the tissues among each other. It could be suggested to

increase standard deviation patch size in the third method or explore other statistical

moments.
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It leads to the suggestion that a varying patch size method may work better for

segmentation of different classes. Deshpande [13] [14] had found that varying the

amount of m-examples between dictionaries increased discrimination, but the pro-

posed method suggests using different feature space for each dictionary may increase

discrimination. Therefore, a future initiative is to evaluate the dictionaries working

in different feature spaces.

The second interpretation is based on the varying slices used for testing and their

outcomes. The singleton intensity feature space was more effective at identifying

small lesions or clarifying that no lesion was present. While the large patch size was

more effective at identifying large sclerotic lesions and could be used to evaluate total

lesion volume of late stage disease. This can be explained by the ability for the patch

size to find a given lesion of a certain size. Large patches find large lesions, small

patches identify small lesions.

This leads to the proposed method being more effective at identifying earlier

lesions. The method should be tested on patient’s with clinically isolated syndrome

(CIS). CIS is a pre-clinical disease to MS. Most patients must show up with two CIS

cases before being diagnosed with MS [11]. This technique could be useful in early

MS diagnosis.

A final interesting idea would be to use both techniques combined in some manner

to achieve a more beneficial segmentation algorithm for lesions as well as healthy

tissue. In considering all dictionaries in each feature space the residual could be

combined in some manner to achieve a more desirable outcome. Future investigations

are still needed to perfect this technique.
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6.2 Image Texture Analysis

The initial directive of this study was to find an adequate texture quality to use for

segmentation [37]. Recent publications have shown an MR image textural differ-

ence between MS lesions and WM [38] [24]. Therefore, we investigated three main

techniques of image texture analysis and their usage as a new feature space used

in DL. We will give a small description of how we used each and give some results

that showed their lack of performance. It was by looking at these feature spaces that

further investigation could result in a more efficient means of automatic segmentation.

We first explored the interpretation of image texture as frequency-spatial infor-

mation. We explored multiple methods such as short time FT, short time FT using

a Gaussian window [10], and local frequency from the Gaussian windowed short time

FT [38]. Unfortunately, the latter two methods were too computationally taxing to

acquire results and took much longer than the large patch method and were there-

fore abandoned. Instead, we evaluated the short time FT by taking a spatial patch of

5x5x5 of the voxel in question and perform the 3D-Fast FT to find the local frequency

information. We then would continue to train the dictionaries on this information for

segmentation. This method of feature extraction became very time consuming. The

intensive computational times for these methods were not beneficial to use given the

resulting segmentation. An example of results are given in table 6.2 at the end of this

section and were abandoned in the process.

The second attempt was to use the texture quality for the GLCM [20]. In this

method we took the 5x5x5 spatial patch and calculated the GLCM at all angles

(26 directions) with a distance of considering adjacent voxels. We used a resolution

of counting ten gray levels across the spectrum resulting in a 10x10 GLCM. Then

this matrix was concatenated into vectors and used for training the dictionary. This

quantification technique was competitively quicker than FFT but also did not result
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in a more beneficial segmentation algorithm. The results of this are included in Table

6.2.

The final attempt that lead to the proposed method was to use a more simpler

method of texture quantification called statistical moments [29]. This method encom-

passes taking a histogram of the gray levels present in a patch and then calculating

statistical moments of the probability distribution in the histogram. We explored

using five statistical moments the mean, standard deviation, skewness, kurtosis, and

entropy. For these methods we used a 3x3x3 patch, only incorporating adjacent vox-

els, and trained the dictionary with the varying levels of each. It was then that we

found the standard deviation the most beneficial and resulted in the proposed method

of this paper.

It is in bringing up these failed attempts that we wish to argue that the texture

quantification that is adequate for segmentation has not yet been found. Further

investigation of these techniques could adequately result in better segmentation. The

method of using dictionaries is robust in that it can handle learning complex systems.

By doing so, learning multiple complex systems in a coordinated method could result

in a powerful segmentation algorithm. Therefore, further investigation into using

texture analysis for segmentation is needed.

Table 6.2 gives some previous results based on different feature spaces that were

evaluated. Each of these methods have m = 1000 examples in their dictionaries with

a sparsity parameter of λ = 0.95. These parameters may not be optimal for each

method, as we have seen in the results Section 5.1 for the proposed methods. For the

evaluation of each of these feature spaces, the parameters are adequate to show their

capability of segmenting MS lesions comparatively to each other.
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Table 6.2: Texture quantification techniques explored for SM lesion segmentation and
their results
Method Average

LES DSC
St.Dev.
DSC

Training
Time

Testing
Time

Short Time FT 0.096 0.146 7359.7s 43.2s
GLCM 0.162 0.174 4794.1s 36605s
Mean 0.311 0.225 1147.5s 17.7s
Standard Deviation 0.231 0.180 1213.6s 30.0s
Skewness 0.060 0.081 1118.6s 28.8s
Kurtosis 0.033 0.047 1157.4s 28.1s
Entropy 0.096 0.146 1160.1s 43.2s
Single voxel and Mean 0.819 0.342 285.8s 23.2s

6.3 Data Sets

The resulting data of the Brainweb set is not normalized to a standard gray scale.

The data is comprised of different relaxation times for the given sample at the local-

ized position. For example, T1w images are the measure of T1 relaxation times of

the localized molecules. T1 relaxation time is the amount of time a nuclear magnetic

vector takes to return to the ground state magnetic field of the MR scanner. There-

fore, in the proposed pipeline all T1 relaxation measurements are standardized to a

uniform gray scale ranging between 0 and 1.

In medical imaging, a common practice is to limit the amount of visible T1 mea-

surements in the photo and to change the level of visible T1 measurements to increase

discrimination of different tissues. This gives rise to choosing the proper gray scale

level. In a sense, not using all the T1 measurements maybe the best way to discrimi-

nate lesions from healthy tissue. The natural case is to set the lowest T1 to zero and

the highest T1 to 1 in the photo, thus taking into consideration all T1 measurements.

Future work could look to the possibility of increasing discrimination by changing

this range from not being the maximum and minimum T1 measurement.

The difficulty of working with the simulated data set was the discretized tissue

maps were not easy to understand. In the lesion maps, there were multiple slices
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with a noise in the background and varying gray levels within each lesion to create a

realistic depiction of the lesion pathology. MS lesions are not entirely all scarred tissue,

but rather a mixture of dead cells, rehabilitating cells, inflammation, and infiltrating

immune cells. Making the voxels in those regions somewhat heterogeneous. As well,

the immune system can begin attacking an axon and not be a fully developed lesion,

this is referred to as normal appearing white matter. Therefore, the Brainweb lesion

maps are created to reflect this nature of MS lesions.

In the lack of knowledge and experience of doing manual MS lesion segmentation

it was decided to use visibly evident lesions and transplant those relaxation times

into a healthy tissue scan, thus eliminating normal appearing white matter and any

fuzzy delineation of lesions from white matter. This choice of lesion definition maybe

troubling, but the previous method’s results were also generated using the same data

set as the new method’s results. The recreated results are also comparable to the

previous papers published using this technique. Future investigation of this method

should make sure lesions are clearly defined by an experienced radio-neurologist. This

would properly proving the robust efficacy of this method.

The main argument over the data set is ideally this method should be tested on real

patient data. This would give more definite understanding of the algorithm efficacy

and will improve the robustness. In previous articles [36], the switch from simulated

to real data decreased DSC by approximately 50%, thus showing that simulated data

results may not be reflective of real world applications.

The difficulty in using real data is to find a set of accurately standardized scans.

MR scanners have different acquisition parameters depending on the machine, re-

sulting in different relaxation times for different tissues. As well having four im-

age weightings of one patient is hard to acquire without the patient moving during

scanning acquisition. Of course, these movement artifacts may be removed using
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de-noising software. Therefore, real data sets need to be meticulously collected for

testing.

Given that acquisition data is found the proposed algorithm would be adaptive

to the scanner the images were taken on. Since the machine learning classifier is

built to learn a set of examples, isolated examples given a certain scanner could be

beneficial to the automatic segmentation. Therefore, the algorithm is adaptive to the

acquisitions variability in MR imaging.
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Chapter 7

Conclusion

This study presents a variation of a supervised MS lesion segmentation algorithm

using dictionary learning. We investigated three methods that used varying feature

spaces, using localized patch texture, using the voxel intensity in question, and using

the voxel intensity with the standard deviation of the adjacent voxels.

We further proved the efficacy of the proposed methods by evaluating the perfor-

mance of the algorithm in the presence of noise (3% and 9%). It has been concluded

that the voxel intensity with local standard deviation is a plausible feature space for

lesion segmentation using DL.

Although results were competitive, testing on real patient data is needed to ex-

amine the full capability of this method. We also suggested further investigations

into the proper texture analysis quantification for segmentation and the variation of

patch size for tissue classes.
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