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Abstract

The goal of this thesis is to develop and analyze mathematical models of respiratory

infection diseases, particularly MERS-CoV and influenza, that affect the Middle East daily,

and through the Hajj Mass Gathering, to aid in understanding of how these diseases can be

spread, and how they may be controlled through public health mitigation. The thesis work

employs deterministic and stochastic models of disease transmission between humans and

between animals and humans in different settings. We also include analysis of disease spread

in a network, and using metapopulation models. We concentrate on the creation and use

of models either as criteria for evaluation or as a way of understanding the epidemiological

processes with theoretical findings using the following considerations:

1) Developing and checking hypotheses; evaluating quantitative assumptions; measuring

sensitivity to changes in model parameters; assessing process conditions from data.

2) Evaluating and contrasting the efficacy of different public health interventions.

3) Interpreting mathematical results to the biological questions.

4) Evaluating the basic reproduction number R0 to provide the early estimates of epi-

demiological thresholds.

5) Investigating the local and global stability for the equilibrium points.
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Chapter 1

Introduction

Our scope of study is on infectious disease models that will aid in understanding disease

spread and infection risk in the Middle East. Specifically, we will focus the thesis on models

to study Middle East Respiratory Syndrome (MERS-COV), and to study respiratory infection

spread during the Hajj mass gathering that can affect exportation risks for different countries.

Middle East Respiratory Syndrome coronavirus (MERS-COV) is a severe respiratory

disease that has caused great burden in Kingdom of Saudi Arabia (KSA), among other

countries, since 2012. Clinical reports have indicated human-to-human transmission of this

virus. Dromedary camels are a significant reservoir for MERS-CoV and an animal vector of

infection in humans as seen in the Figure 1.1. In this thesis, we develop mathematical models

of MERS-COV spread in KSA including the human-camel interface to study the transmission

and persistence of the virus. The models involve animal-animal, animal-environment, human-

animal, and human-human disease transmission studies on different mathematical frameworks,

from systems of ordinary differential equations, to stochastic models, and network models

using pairwise approximations. Global stability analysis on the disease-free and endemic

steady states will be conducted in some of our studies. Our models will be used to quantify

the number of human and animal cases of MERS-COV, and will be used to inform public

1



1.1 Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Introduction

health on MERS-COV public health education programs.

Respiratory diseases can be spread during mass gatherings, including the Hajj gathering.

Many individuals from many different countries travel to the Hajj each year. The gathering,

which is limited in space for the large number of people, a considerable length of time, can

pose risk for transmission of respiratory diseases existing in the pilgrimage population. As

such, the gathering includes importation risk of diseases, transmission spread, potential stress

on the healthcare system of the host country, and the risk of exportation to pilgrim countries.

In this study, we develop a metapopulatoin model to study these considerations. While

the framework will be applicable to many diseases, we will focus our work on 2009 H1N1.

The models dedication be based on extended SIR models to a metapopulation model by

country. Stochastic and deterministic determination be used to study the mean and variance

of infections, including importation and exportation of infected individuals.

1.1 Middle East Respiratory Syndrome Coronavirus

(MERS-CoV)

The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an RNA virus belonging

to a family of Coronaviruses that attack the human respiratory system. MERS-CoV can cause

lethal acute and severe respiratory disease in humans. Dipeptidyl peptidase 4 (DPP4, CD26),

a type II transmembrane ectopeptidase, is the receptor for the Middle Eastern respiratory

syndrome coronavirus (MERS-CoV), which allows the virus to infect cells of humans. This

receptor is present in the epithelia and endothelia of the systemic vasculature, lung, kidney,

small intestine and heart [1, 2]. The appearance of the Middle East respiratory syndrome-

coronavirus (MERS-CoV), in 2017 Ahmed [3], created a STIR in the global population,

worrying about the next pandemic. This disease however has been largely contained in the

2



1.1 Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Introduction

Middle East [4]. It has been reported that MERS-CoV originated from camels, with bats

functioning as an intermediate and secondary host [5]. The interaction frequency between

bats and humans is highly restricted in the Arabian Peninsula, we thus focus our studies on

camels and humans only. The process of transmission of MERS-CoV is shown in Figure 1.1.

There are three routes for the transmission of MERS-CoV as seen in Figure 1.2: animals

to animals, animals to humans, and humans to humans [6]. It has been suggested that

human population mixing and population movement during religious events, closing and

reopening of camel markets, camel racing events, as well as climatic factors, could influence

the transmission of MERS-CoV between camels, from camels to humans and between humans

[1, 7]. Moreover, it has been suggested that patients might be unprotected to MERS-CoV by

ingestion of raw camel products like milk and meat etc. [6]. Meanwhile, human-to-human

transmission occurs in hospital settings and wider society, with the virus being transmitted

among humans during close human-to-human contact by the precipitations and droplets of

respiratory secretions.

There is no effective vaccine or medication for MERS-COV, and it shows high mortality

rate up to 40% [8, 9]. MERS-CoV vaccines are only at the pre-clinical phase, but by enhancing

our consideration of its knowledge and epidemic potential of MERS-CoV a population might

be able to achieve better preparation for forthcoming epidemics [6].

1.1.1 Transmission from camels to humans

The transmission of MERS-CoV from camels to humans has been established by viral RNA

sequencing of samples acquired from asymptomatic or symptomatic patients after exposure to

infected animals. A study of animal mass that are accompanying patients with MERS-CoV

infection found that the nasal swabs of 75 out of 584 dromedary camels were positive for

MERS-CoV for about two weeks [11, 12]. However, the nasal swabs were negative for MERS-

3



1.1 Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Introduction

Figure 1.1: Middle East Respiratory Syndrome-A briefing of the coronavirus transmission
pathway. The solid line specifies the identified transmission path, and the dotted line specifies
the possible transmission path with incomplete or unrestricted support information [10].

CoV in different animals such as cattle, sheep and goats. Notably, more than 70% of camels

were linked with the individuals having MERS-CoV infections and they also had MERS-

CoV anti-bodies as evaluated by ELISA assays. Furthermore, the full genome sequencing

recognized ten MERS-CoV camels that were identified from their corresponding patients.

Although dromedary camels are a well-known host for MERS-CoV, researchers have revealed

that long term evolution of MERS-CoV occurs entirely in camels, while human beings serve

as a transient host [13]. The same study showed that human outbreaks of MERS-CoV were

driven by varying zoonotic transfer (seasonally) of the viruses from camels.
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Figure 1.2: The geographic range of MERS-CoV in dromedary camels is indicated by the
countries highlighted in red and orange. Spillover (camel-to-human) transmission with
subsequent human-to-human transmission has been documented in those in red. Human-
to-human transmission has been recorded in the countries highlighted in blue [7].(Source:
WHO).

1.1.2 Transmission between humans

The primary source of MERS-CoV infection rises in humans is infection acquired in the

community [14], between individuals. Infection can also be transmitted in the hospital setting.

It is reported that the risk of transmission of the MERS-CoV virus in humans is determined by

characteristics including the close contact with the patients, such as touching the respiratory

secretions of patients, sleeping in the same room as patients, or removing and cleaning of the

patients’ waste including sputum, urine and stool with sub-clinical infection [15].
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Before MERS-CoV was identified, the virus was transmitted at health-care facilities in

numerous countries, including from patients to health-care workers and inside a health-care

environment. Since symptoms and other clinical characteristics are often nonspecific, it is not

always easy to identify individuals with MERS-CoV upfront or without testing. Infection

prevention and control strategies are important to preventing the spread of MERSCoV

in healthcare settings. Facilities that care for patients who are identified or consistently

demonstrated to be infected with MERSCoV shall implement necessary precautions to reduce

the risk of the virus spreading from an infected patient to other patients, healthcare staff, or

visitors [16].

In South Korea, on May 20, 2015, the first confirmed case of MERS-CoV was reported in

a man, who had a history of travel through the Middle East. Consequently, there was an

outbreak in South Korea following importation from the Middle East region [17].

The total number of laboratory-confirmed MERS-CoV infection cases reported to WHO

between 2012 and December 2020 is 2566, including 882 deaths, see Figure 1.3. The total

number of laboratory-confirmed cases reported to WHO under the International Health

Regulations (IHR 2005) to date is reflected in the global number [18].

1.1.3 Sustained outbreaks

Continual transmission for MERS-COV has been hard to prove. Studies have shown that there

is no sustained outbreak of MERS-COV and that reseeding of infection in humans through

interaction with the animal reservoir is needed. A substantial proportion of MERS-CoV

cases have been part of clusters, in which non-sustained human-to-human transmission has

ensued. This transmission has occurred in healthcare settings, in work places and in close

family contacts. Persistent transmission in the community apart from these clusters would

represent a major change and has not been observed in the epidemiology of MERS-CoV [19].
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Figure 1.3: MERS situation update between 2012 and December 2020.(Source: WHO).

1.1.4 Public Health Education

Population awareness of an infectious disease can aid in mitigation and control. Awareness

and diligence for control of MERS-CoV is not compulsory. Consequently, increases in death

rates due to MERS-CoV have occurred [20]. According to one study, however, no suggestion

was found for a link between the long time interval before reporting symptoms and patient

outcomes [3]. However, the authors’ findings were based on the time interval between

symptom onset and hospital admission, rather than diagnosis. However, long-term spread of

MERS-COV has not occurred in the Middle East. This could be due to increases in awareness
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as case counts are reported during outbreaks [21, 22, 23].

1.1.5 Disease progression characteristics

The basic reproduction number R0 is the average number of secondary cases created by

infectious persons. MERS R0 value was reported in several investigations. R0 < 1.0 was

found in four investigations that employed data from a variety of sources [13, 24, 25, 26].

R0 < 1.0 was found to be 0.45-0.98 in studies employing Saudi Arabia or Middle East data

[8, 19, 27, 28], however one study showed 1.9-3.9 [29]. Studies using South Korean data

experienced significant values in the early stages, ranging from 2.5 to 8.09 [30, 31, 32, 33],

and lower values in the later stages [33] or with prevention program [32].

The attack rate was measured in eight different investigations. Four of the studies looked

at the general or secondary attack rate, while the other four looked at the attack rate of

specific categories of activities. Secondary attack rates were found to be 0.42% [34] and 4%

[35] in two investigations done in Saudi Arabia. Secondary attack rates in South Korea were

3.7% in one research [36] and 14.3-15.8% in another [37].

The attack rate among healthcare workers (HCWs) was reflected in different investigations.

A 1.5 percent MERS infection rate among HCWs was found in one research in South Korea

[33], while a 13.4-13.5% infection rate among HCWs was reported in another study combining

various region data [24]. In one research, [38] the attacking rate among hospital patients was

4%, while in another [30], it was 22% in the early stages and 1% in the later time-frame.

The incubation period is the time between infection and the onset of symptoms. The

incubation period of MERS was reported in a various of studies. Nine examined data from

South Korea and found an incubation time of 6-7.8 days [17, 38, 39], [36, 37, 40, 41, 42, 43].

A 5.2-day incubation duration was reported in one research using data from Saudi Arabia

[44], while a 5.5-day incubation time was reported in another study using data from several
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places [13]. In a study comparing the incubation periods in the Middle East and South Korea,

Sha et al.[45] found that they were 4.5-5 and 6 days, respectively [45].

The period between the start of symptoms in a main case and the beginning of symptoms

in its subsequent cases is represented by the serial interval of an infected individual. Two

investigations [37, 41], analysed data from South Korea and reported serial MERS intervals

of 12.6 and 14.6 days, correspondingly.

Days from onset to confirmation reported in several studies. One research that looked

at all cases in South Korea found that it took 5 days from earliest stages to confirmation

[17]. For all instances, Park et al. reported 6.5 days, 9 for second generation, and 4 for third

generation [43]. HCWs were given 6 days while non-HCWs have been afforded 10 days in a

Taiwanese research [46]. From onset to confirmation, a Saudi Arabian study reported 4 days

[3].

According to Centers for Disease Control and Prevention (CDC), secondary cases linked

with limited human-to-human transmission have a median incubation time of around 5 days

(range 2-14 days). The mean period from commencement of illness to hospitalization for

MERS-CoV patients is around 4 days. The typical duration from onset to intensive care unit

(ICU) admission in severely sick patients is around 5 days, and the median time from onset

to death is roughly 12 days. The median duration of mechanical ventilation was 16 days, and

the typical length of stay in the ICU was 30 days, with 58 percent death at 90 days in one

group of 12 ICU patients.

The inconsistency in the incubation time period for contamination with Middle East

Respiratory Syndrome coronavirus has been investigated. Early studies did not examine

whether the time of the incubation in a person has any correlation with successive clinical

consequences [40]. One study reviewed the available literature on EMBASE, Web of Science

and MEDLINE that reported seroprevalence and prevalence of active Middle East infection

in dromedary camels, from both longitudinal and cross-sectional studies. The review verified
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that the chances of these syndromes may increase with age from 80 to 100% in adults by

supporting geographical widespread. The endemicity of Middle East respiratory MERS-CoV

in dromedaries in different countries which are exporting dromedaries (Africa) and the

Arabian Peninsula the high incidence of active infection are also measured in juveniles. The

dromedary populations are investigated [47].

Symptoms of the disease may appear at any time, usually within 2-14 days following

infection. Fever, shortness of breath and cough are the main symptoms, but symptoms

including vomiting, diarrhoea, and nausea and muscle pain (myalgia) can also occur. In

some individuals, no symptoms or only slight cold-like symptoms are produced by infections.

Yet in others, predominantly in persons with underlying medical conditions, infections can

produce severe illness [48].

1.1.6 The seasonal trends in transmission and disease pattern

Seasonal variation in infectious disease transmission plays a significant role in defining when

epidemics occur. It is important to understand the transmission of the virus, including any

seasonal variation that has occurred in the transmission between animals and humans [49].

Based on early cases in April 2012, April to May 2013, and May 2014, it was concluded

that there was a notable rise in MERS-CoV activity from March to May of each year. Early

hospital outbreaks have also arisen in April 2012, April to May 2013, and April to May

2014. Therefore, it was assumed that MERS-CoV occurs mainly during the spring [50, 51].

Since sustained outbreaks of MERS-CoV have not occurred, and it is assumed that sporadic

reseeding of outbreaks occurs, this suggests that seasonal transmission between humans and

camels occurs. In this thesis, since sustained transmission does not occur, we have chosen to

ignore seasonality in MERS-CoV thus far. Inclusion of seasonal effects is a course for future
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work.

1.1.7 MERS-CoV immune protection

Antibodies against MERS-CoV have been found in past infected patients 1.5 years after

initial infection. However, the duration of antibody responses beyond 1.5 years has not been

reported [52]. Thus, it is not known what the long-term immune outcomes of infection are

from MERS-CoV. In this thesis we do not consider sustained infection of MERS-CoV in the

population. Additionally, since it is not clear what fraction of the affected populations in the

Middle East have had MERS-CoV, we cannot assume that a large fraction has actually had

this disease. We thus ignore the effects of long-term immunity in the population, as it is not

clear if long-term immunity exists, and if it does, it is not clear that a significant fraction of

the population has acquired it.

1.1.8 MERS-CoV evolutionary and mutational changes

In its evolutionary history, potential recombination events are common in MERS-CoV,

particularly those in its receptor-binding domain, which have allowed for cross-species

transmission from non-human hosts [53]. Since there is no evidence of sustained outbreaks of

MERS-CoV because of human-to-human transmission, we assume that evolutionary changes

in the virus to enhance fitness in human-to-human transmission are minimal. We thus ignore

evolutionary changes of the virus in this thesis.

1.1.9 Pharmaceuticals and Vaccines

There are no FDA-approved treatments or vaccines for MERS-CoV. Only recently have there

been vaccines developed against SARS-COV-2. The research on MERS-CoV immunization is

in the primary stages [54, 55, 56]. However, initial intervention methods such as quarantine
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(with patients in isolation) of suspected cases and fast diagnosis have proven to be the most

effective and prominent control measures for quickly tackling a MERS epidemic. We ignore

the effects of pharmaceuticals and vaccines in this study.

1.2 The Hajj

Mass gatherings (MG) are classified as any festival that gathers a large enough number of

people with putting a burden on the town, city, or nation hosting the event’s preparation

and response resources [57]. MG are used for religious and political events, as well as music

performances, festivals, and athletic contests. MG might have a small number of individuals

or millions. They take happen during a short period of time and in a specific area. They

might be pre-planned or unplanned. They may also be one-time events, like a royal wedding,

or they can be repeated periodically at various sites, like the Olympics, or at the same venue,

as the Hajj [57]. The Hajj is an annual mass gathering in Mecca, Saudi Arabia that has been

taking place for almost 14 centuries [58]. It is a Muslim pilgrimage or spiritual journey that

many Muslims undertake every year. It is the world’s biggest, most diversified, and recurring

mass gathering in existence today [59, 60]. The Hajj journey is required of all Muslims who

are physically and financially capable of doing just that at least once in their lives; it’s among

the five pillars of the Muslim faith [61, 62, 63]. The Islamic calendar, which is based on the

lunar year, determines the date of Hajj that changes every year as seen in the Figure 1.4.

Saudi Arabia is divided into 13 autonomous districts or provinces [65], with the cities

in our research being in the Makkah and Medina provinces. Makkah province is Saudi

Arabia’s most largest province, and the city of Jeddah and Mecca (the province’s headquar-

ters) are the second and third populous cities in the country (after Riyadh, the capital) [65, 66].

For all applicants who applied to participate in Hajj recently, the Ministry of Health
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Figure 1.4: Dates of the Hajj, 2007 - 2035 [64].

created strict qualifying requirements. Participants had to meet the following criteria:

(1) be between the ages of 20 and 65 (with a warning for those over 50),

(2) not have specific high-risk chronic conditions,

(3) not be overweight,

(4) not be pregnant, and

(5) have a negative polymerase chain reaction in certain diseases; for example, (PCR) COVID-

19 tests [67].

Pilgrims engage in religious practices in the holy cities of Mecca and Medina during the

Hajj rites. Most pilgrims also visit Mina, where they remain in tents and spend the majority

of their time reading the Quran. Pilgrims then proceed to Mount Arafat, where they stay in
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tents and pray from sunrise to nightfall. After reaching Muzdalifah after nightfall, pilgrims

gather stones for the Jamarat ritual, which involves throwing them at three stone pillars

(symbols of the devil), before continuing on to Mecca as seen in the figure 1.5 and the studies

that have been done by Memish et al., 2009, and 2014 [68, 69].

Figure 1.5: The Hajj Journey [61].

1.2.1 Respiratory disease transmission at the Hajj gathering

Acute respiratory tract infections are common during the Hajj season. Even though the Hajj

gathering can occur in different times of the year, pilgrims can travel to the Hajj from all

over the world, making it possible for any prevalent respiratory infections to be imported

to the gathering, and transmitted. The close interactions between pilgrims during different

stages of the Hajj, including times of extreme congestion, shared lodging, and excessive air

emissions; for example dust storms, particulate matter and trace gases at a large scale and
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vehicular emissions have a significant impact on the health of pilgrims.[70].

The 2009 H1N1 influenza strain caused a pandemic. The 2009 Hajj took place in November

2009, when the Northern Hemisphere was experiencing high levels of virus activity. There

were therefore concerns that the Hajj gathering could become a hot spot for transmission,

and contribute to global spread of the pandemic through the travelling pilgrims. In this

thesis, I have chosen to focus my work on influenza infections. However, the work can be

extended to other respiratory infection, including coronaviruses. An extension to a study of

COVID-19 in the 2020 and 2021 Hajj gatherings is a course for future work.

Figure 1.6: comparing between Hajj in 2019 (left) and 2020 (right). A maximum of 1,000
pilgrims from 160 countries around the world residing in KSA were randomly assigned to
undertake Hajj rites in 2020 since the outbreak of the COVID-19 pandemic began. [67].

comparing between Hajj in 2019 (right) and 2020 (left). A maximum of 1,000 pilgrims

from 160 countries around the world residing in KSA were randomly assigned to undertake

Hajj rites in 2020 since the outbreak of the COVID-19 pandemic began. [67].

1.2.2 Public health mitigation

Massive crowds of individuals challenge the public health abilities of the hosting communities

and the areas of origin of travellers. The annual pilgrimage of Muslims to Saudi Arabia is

one of the largest, most socially and geographically diverse mass meetings around the globe
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as has been indicated in the Figure 1.7. In June 2009, the Saudi Ministry of Health (MoH)

held a Risk Mitigation Committee meeting for the 2009 Pandemic Influenza A H1N1 and

forthcoming Hajj. Specialists from global public health organisations worked with their Saudi

colleagues in their authorized capacities. The goal of the MoH was to pool and exchange

public health information on mass events and to evaluate the country’s preparedness strategies,

concentrating on the prevention and control of pandemic influenza. This review culminated

in a variety of constructive suggestions [68], half of which were placed into effect before the

beginning of Hajj and the majority during Hajj. Such disaster response strategies as shown in

Figure 1.6 will ensure an adequate availability of health care for pilgrims to Saudi Arabia and

a minimal spread of diseases upon their return home. In this thesis, we include public health

mitigation strategies in our studies of respiratory infection spread at the Hajj gathering.

Mathematical models of disease transmission can be used to assess the effects of different

public health mitigation strategies, and determine the potential for importation and exporta-

tion of infection diseases, as well as the burden of the disease in the host country during the

pilgrimage season. In this thesis, we employ mathematical models to study such aspects of

the Hajj gathering.

1.3 Mathematical Epidemiology

Infectious disease epidemiology has relied on mathematical interpretation and study of

contagious diseases since the discipline’s emergence more than a century ago. Due to

advancements in computers, automated data storage, and the opportunity to exchange and

deposit data over the internet, comprehensive electronic monitoring of infectious diseases has

been popular in recent years.

An infectious disease is described as an infection caused by a pathogen or its lethal product

that spreads from an infected human, infected animal, or contaminated inanimate item to a
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Figure 1.7: The number of Hajj and Umrah pilgrims 2006-2016 [71].

susceptible recipient. Infectious diseases cause a massive worldwide disease burden that has

a widespread impact on the public health systems and economics [72].

Mathematical models have been shown to be powerful tools in elucidating key charac-

teristics of infectious disease transmission that can inform public health mitigation, and

pharmaceutical and vaccine intervention [73]. In this thesis, we have chosen to apply models

in Mathematical Epidemiology to study disease spread and different public health mitigation

strategies using a variety of mathematical frameworks. We now introduce the basic model

of infectious disease dynamics, the SIR model, and introduce the mathematical frameworks

employed here within.

17



1.3 Mathematical Epidemiology Introduction

1.3.1 The SIR model

The basic model of infectious disease spread was first developed by Kermack and McKendrick

(1927) [74]. This model is called the SIR model as it tracks Susceptible, Infected, and

Recovered (or immune) individuals in the population, which are assigned to susceptible,

infected and recovered compartments of the population. The SIR model is thus called a

compartmental model. Generally, a susceptible individual (S: no immunity to the disease) can

be infected through contact with an infectious individual (I: already infected and therefore

will spread the disease) and then the individual can recover (R: has acquired immunity) from

the disease.

Figure 1.8: SIR Model; https://sineadmorris.github.io/post/the-sir-model/ .

Figure 1.8 shows a flow diagram of the basic SIR model. Extensions to the SIR model

to includes other types of compartments are a plenty, including new classes of disease i.e.,

non-infectious periods, asymptomatic infections, different levels of immunity, and different

sub-populations, delineating the population by, for example, age, sex, behaviour, or other

population strata.

The SIR model and extensions can be studied using different types of modelling frameworks.

In this thesis, we use five different modelling frameworks:
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1- Deterministic Models:

Models are written as ordinary differential equations (ODEs) under the principle that

population sizes can be determined with absolute confidence, and hence the solution of an

ODE implements a predefined path or solution trajectory in state space. In many cases, a

population’s conduct is entirely defined by its history and the principles that characterize the

model.

2- Stochastic Models:

Stochastic models are created using probability based frameworks to simulate population

proportions, and therefore the behaviour of the population is not understood with certainty.

A stochastic process solution path reflects only one realization of the process; each realization

is different. The numerical analyses and simulations are based on the Gillespie’s Direct

Method [75].

3- Two-Species Models:

We incorporate connections between different species where we allow for susceptible,

infectious and recovered individuals in each species that interact both directly and indirectly

within a certain geographical region.

4- Network Models:

Networks provide a structured interpretation about both interactions between species or

communities, and are particularly helpful since each individual has only a limited proportion

of population in direct communication with [76, 77, 78, 79, 80].

5- Metapopulation Models:

Different geographic regions are connected. Subpopulations can move between geographic

regions, and importation, transmission, and exportation can be tracked through time [81].
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1.3.2 Deterministic Models:

Consider the SIR model shown in Figure 1.8. Let the maximum size of the population

N = S + I + R at a certain given time. The values S,I, and R are also known as the

model’s system variables. When N is sufficiently high, then S, I, and R can be interpreted as

continuous variables, and the proposed framework can be used to predict the existence and

time rates of independent members of the dominant population moving from one compartment

to the other.

The classical SIR model satisfies the system of differential equations below:

dS

dt
= b− βSI − µS, (1.1)

dI

dt
= βSI − γI − µI, (1.2)

dR

dt
= γI − µR. (1.3)

The birth rate, b = µN , the natural death , µ, and the rate of infection recovery, γ, are the

parameter values.

The SIR model has a disease free equilibrium E∗ = (S∗, I∗, R∗) = (b/µ, 0, 0) and an

infected equilibrium Ē = (S̄, Ī , R̄) = ( b2

µ(β+b) ,
βb

(β+b)+(µ+γ) ,
γβb

µ(β+b)(µ+γ)). The stability condition

of E∗ depends on the basic reproduction number R0 = βN/(µ+ γ). If R0 < 1, E∗ is stable

[82]. However, if R0 > 1, the infected equilibrium Ē exists and is stable. Public health,

pharmaceutical, and vaccine interventions can be implemented to reduce R0 < 1 to prevent

and/or eradicate a disease from the population. However, for various extensions for the SIR

model, reducing R0 < 1 may not always achieve eradication [83]. In this thesis, we derive the

basic reproduction number for our employed models of study. Stability analysis (local and

global stability analysis) is then pursued to determine existence and stability conditions of

the model equilibrium points.
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The SIR system is ideal for contagious diseases that grant lifetime immunity, such as

measles [74, 84, 85, 86]. It is also a model that can be well-applied when studying short

outbreaks whereby immunity gained provides protection from infection in the short term. In

this case, demographics can be ignored, i.e., b = µ = 0 [87, 88, 89] and disease free equilibria

(S∗, 0, R∗) only exist, where S∗ +R∗ give the entire population.

Deterministic models in mathematical epidemiology are essential in that they provide

for quantitative and qualitative understanding of the fundamental processes of infectious

disease transmission. They can also suggest effective control strategies and enable simple

methods for implementation in SIR models (and extensions). Finally, deterministic models

can have complex non-linear dynamics, allow for analytical solutions, and allow for a simple

and systematic study of the biological mechanisms.

We reiterate that, if demographics are included in the SIR model, an infected equilibrium

Ē will always exist if R0 > 1. However, the equilibrium level of infection can be very small,

and unrealistic. In such cases, stochastic models (see next section) will allow for disease

elimination.

The extension of the SIR model in term of study MERS-CoV has been done in various

studies. For example, Lin et al. [90] developed a conceptual model that is based on the

SEIRS structure for camel-to-camel transmission. The model framework S, E,I, and R are

the numbers of susceptible, exposed, infected, and recovered, respectively, while C is their

number of weekly laboratory-based human confirmations. The main implications of there

study were utilizing a simple epidemic model to analyze the prevalence of MERS-CoV in

camels, and the estimations of biological justification.

Al-Asuoad et al. [91] conducted model predictions which are based on data from Riyadh

(Saudi Arabia) outbreaks between 2013 and 2016. Model simulations show that MERS

will eventually be contained in the city. However, the confinement time and severity of the

outbreaks are highly dependent on the contact coefficients and the isolation rate constant.
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The mathematical model developed in [92] is used in this study to investigate the dynamics

of (MERS) in Saudi Arabia. It extends on the study that was conducted in the city of

Riyadh [91], since preliminary data has become available after the paper’s publication. The

model describes the epidemic dynamics of five different population groups: susceptible S(t),

asymptomatic E(t), symptomatic I(t), isolated J(t), and recovered R(t), where t is expressed

in days. The goals of this project are twofold. First, prove the (disease free equilibrium)

DFE’s local stability and the global stability of both the DFE and the (endemic equilibrium)

EE using simply the effective reproduction number or stability control number Rc , which

enhances the theoretical conclusions in [92]. The second and more essential goal is to model

and anticipate a disease epidemic in Saudi Arabia during the following two years [91].

As of June 11, 2014, the Middle East respiratory syndrome coronavirus (MERS-CoV)

epidemic had resulted in 209 fatalities and 699 laboratory-confirmed cases all across the

Arabian Peninsula [19].

1.3.3 Stochastic Models:

A.G. McKendrick suggested an early stochastic disease model in 1926 [93], which predates

his work with Kermack on deterministic models [93]. Greenwood suggested discrete time

stochastic models in 1928 and 1931 [94]. Bartlett [95] investigated a continuous time stochastic

SIR model. Bailey’s [96] book discusses deterministic and stochastic disease models, as well

as the estimation of the parameters [97].

Linda Allen has conducted comprehensive studies in this area, applying stochastic models

in mathematical biology and epidemiology [98, 99, 100, 101].

The asymptotic dynamics of deterministic and stochastic disease models provide a signifi-

cant difference between them. Even if the resulting deterministic solution converges to an

endemic equilibrium, stochastic solutions can converge to the disease-free state. Rather than
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focusing on the mean behaviour captured by deterministic models, stochastic models allow

for the prediction of variance in model outcomes. Stochastic simulations can also be used to

calculate the probability of an epidemic outbreak or the absence of a disease in a community

given public health reduction strategies. The compartments used in deterministic ODEs are

described as disease states in stochastic modelling. Individuals transition through one state

to the next, with their motions dictated by current probabilities.

In a stochastic SIR model, the disease dynamics are identified by events affect the

population size in each model compartment. For instance, in the dynamic described in the

SIR system above, the events correspond to birth, death, disease transmission, and recovery.

The transitions between the states are given in Table 1.1.

State transitions and rates for the CTMC

Description Rate transitions

infection βSI S → S − 1 ⇒ I → I + 1

Recovery γI I → I − 1 ⇒ R→ R + 1

Birth bN S → S + 1

Natural death of susceptible dS S → S − 1

Natural death of infected dI I → I − 1

Natural death of recoverd dR R→ R− 1

Table 1.1: The Stochastic SIR Model

1.4 Two species model: MERS-COV

Lotka [102] and Volterra [103, 104] simultaneously constructed a two species prey-predator

model in 1924 and 1926, concurrently, which is called the ”Lotka-Volterra prey-predator

model”. As a result, there has been a substantial development of prey-predator models since
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Figure 1.9: Two species MERS-COV model.

the pioneer works in the 1920s. Initially, some of these systems were developed in continuous

time; in particular, see that the work of Rosenzweig and MacArthur 1963 [105] and Holling

1965 [106], as well as the investigation of Kolmogorov type equations introduced by Freedman

and Waltman [107].

Predator-prey models provide a basis for two-species disease models. By combining

disease compartments for each species, and coupling the species through transmission, we

can study two-species disease models, and zoonoses. Zoonotic pathogens are those that could

be transmitted from animals to humans. In specific, the animal host acts as the principal

reservoir for the virus, with humans playing a minor impact on overall transmission. In the

case of zoonotic pathogens, a two-species model can be used to study transmission between

the two species, as well as, the transmission between individuals of the same species. Figure

1.9 shows a flow diagram of an SIR model involving two species, in particular, camels and

humans, whereby camels can transmit the virus to humans and other camels, and humans

can transmit the virus to other humans. It is interesting to note that when two species

interact and the disease occurs in both, three different scenarios are possible:

(1) Both species are still afflicted with the disease.
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(2) The disease remains in one species but is eradicated in the other.

(3) The disease is exterminated in all species.

1.4.1 Network Models

Networks are very effective methods for identifying the dissemination of infection in a

population through social connections (for airborne infections), behavioural contacts (for

other respiratory transmitted diseases) [108, 109].

The propagation of any disease can be interpreted as a network operation, with individuals

representing nodes and epidemiologically related connections representing edges between

nodes. Over the years, a variety of network-based methodologies to disease propagation have

been created, varying in scale, functionality, and complexity. Numerous types of networks

are widely used in epidemiological research (and by mathematical biologists); for instance,

Random Networks [110, 111, 112, 113, 114, 115], Lattices [116, 117], Small World Networks

[118, 119, 120, 121, 122], Spatial Networks [123, 124], Scale-Free Networks [125, 126, 127,

128]. In all network models, individuals are defined by nodes in network models of disease

propagation, and the interaction pattern between them is described by network edges shown

in the Figure 1.10. In this thesis, we assume static, unweighted networks that have an SIR

disease that spreads across edges. The following node statuses are possible: susceptible S,

infected I, and recovered R. The network’s state is supplied at any given time t by the

statuses of all N nodes. Therefore, in the case of an SIR model, there are 3N states. In

other words, the state space is made up of N triples of identifiers from the set {S, I} , or

{S, I, R}. The condition varies over time, and the infection and recovery processes determine

the rates at which the nodes’ statuses adjust.

Networks offer a structured viewpoint about interaction between individuals or commu-
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nities, which are highly beneficial where each individual is in direct contact with a small

segment of the population. In addition, networks offer a reliable way of determining the

individual existence of disease transmission. Two agents are connected if they have sufficient

interaction to cause the infection to propagate between them. We will use network models to

study MERS-COV in camel movement throughout different provinces of KSA.

Figure 1.10: At a rate τ an infected node infects its susceptible neighbor. An infected node
recovers at rate γ regardless of the state or number of contacts. Infected nodes are becoming
susceptible after recovered in the SIS model, but immunity occurs in the SIR model [129].

Pairwise approximation Model

Given a network framework, a system of differential equations can be written describing the

different types of states of different types of node connections. There is difficulty, however, in

writing the models given that there smaller order network that will depend on larger order

contact [116]. A way to simplify the model is to use Moment Closure techniques. Pairwise

approximation methods have been shown to be effective in capturing network dynamics by

approximating all higher order connections with pairs only [116, 130].

Figure 1.11 gives an example of a SIR model (and an SIS model) showing pairs in a network

that can be used to approximate higher order connections. We observe that the variables in

the SIR scheme are not independent due to the preservation relation [S] + [I] + [R] = N .

The estimated number of S nodes ([S]) and I nodes ([I]); for instance, singles, dependent on

the number of SI pairs ([SI]); thus, the scheme is dependent on pairs, for which additional
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calculations are needed. Comparably, the number of pairs is related to the number of triples.

The numbers of SS pairs, for instance, reduces caused by infection from outside the pair,

i.e. it varies proportionally to the number of SSI triples ([SSI]) with rate 2τ [SSI] (recall the

SS pair is counted twice). The infected node in a SI or IS pair will recover at rate γ; hence,

in the case of a SIS outbreak, the number of [SS] pairs increases at rate γ([SI] + [IS]). We

will use 2γ[SI] because the quantity of [SI] and [IS] pairs is equal. We come to the following

hypotheses by extending this basic methodology logic to [SI] and [II] pairs and accounting

for all inside as well as outside transitions [129].

We can now conclude that the network is homogeneous, with each node having the same

degree n. There are [I] contaminated nodes, accounting for [I]
N

of the population. Assuming

that infected nodes are uniformly distributed, a typical susceptible node has n[I]
N

infected

neighbours. Since infected nodes are more likely to come into contact with all other infected

nodes, this presumption allows the closed structure inexact. The approximation of the total

number of SI edges can be given by

[SI] ≈ n

N
[S][I]. (1.4)

The cumulative number of edges beginning with susceptible nodes is n[S]. Since the

overall number of SI edges is [SI], a proportion

[SI]
n[S] ,

of the edges beginning from susceptible nodes belong to infected nodes. Likewise, the edge to

susceptible node ratio is
[SS]
n[S] .
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Figure 1.11: Graphs depicting the flux between singles compartments (top) and pairs
compartments (bottom). The left case is showing the SIS model and the right case is
representing the SIR model. In the compartments of pairs, hard lines indicate pathogens
from inside the pair (with a rate dependent on the pair) or from outside the pair (with a rate
dependent on the triple), and wiggle lines indicate recovery [129].

As a result, if we select a susceptible nodex and two neighbours y and z , the probability

that y is susceptible while z is infected is

[SS][SI]
n2[S]2 .

There are n(n− 1) ways to select y and z. As a result, the predicted number of SSI triples is
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[S]n(n− 1)[SS][SI]
n2[S]2 = (n− 1)[SS][SI]

n[S] . (1.5)

Suppose that they are uniformly distributed, we can claim that

[SSI] ≈ n− 1
n

[SS][SI]
[S] . (1.6)

similarly,

[ISI] ≈ n− 1
n

[SI]2
[S] (1.7)

From the graphs that show the flux between the compartments, the singles, pairs, and

triple used to create a self contained structure will be considered using differential equations;

such that the SIR model can be written as

d[S]
dt

=− τ [SI], (1.8a)

d[I]
dt

=τ [SI]− γ[I], (1.8b)

d[R]
dt

=γ[I], (1.8c)

d[SS]
dt

=− 2τ [SSI], (1.8d)

d[SI]
dt

=τ([SSI]− [ISI]− [SI])− γ[SI], (1.8e)

d[SR]
dt

=− τ([ISR] + γ[SI]), (1.8f)

d[II]
dt

=2τ([ISI] + [SI])− 2γ[SI]), (1.8g)

d[IR]
dt

=τ([ISR] + [SI]) + γ([II]− [IR]), (1.8h)
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d[IR]
dt

=2γ[IR]. (1.8i)

where τ is infection rate and γ is recovery rate [129].

We will apply pairwise approximations to simply the network models in our consideration.

This allows for a study of a system using differential equations of individuals and pairs of

individuals. Higher order connections (triples, etc.) are approximated using singles and pairs

so that the system is computationally manageable.

1.4.2 Metapopulation Models

Models are used to track movements of individuals between geographic regions. Metapopu-

lation models can be used to track the movement of susceptible, infectious and recovered

individuals between regions. Figure 1.12 gives the general case of modelling the process of

mobility among discrete geographical regions.

Consider Nij as the number of individuals from country i who are present in country j

at time t. Particularly, Nij denotes the society remaining in the country of residence. The

two parameters, σi and ρi, are specified as the mobility rate of residents in country i leaving

their home country and the proportion of people attempting to return to their country of

origin i from a foreign country j, respectively. Suppose that Nii(t) is the number of people

currently in their home country i at time t, and Nij(t) is the number of individuals who are

from country i and are in region j at time t. The following model represents the patterns of

individuals among regions:

dNii

dt
= ∑

j=1
ρijNij − σiNii, (1.9)

dNij

dt
= σiNii − ρijNij. (1.10)
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Figure 1.12: Diagram of the mobility mechanism connecting three geographic regions, where
σi represents the rate at which people depart region i , νij represents the probability that an
individual who leaves region i moves to region j, and ρij represents the rate of people from
region i who visit region j return to region i [81].

The transmission of an infection in a population of individuals from different regions is

defined by:
n∑
j=1

n∑
k=1

τkκkβijk
IjkSik
N∗k

(1.11)

where, τk is the probability of propagation per interaction in the area k, κk is the region’s

average number of contacts per personk, βijk is the fraction of interacts in region k among

susceptible individuals from region i and Infected individuals from region j (Sik), Ijk is the
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number of infected people who are actually living in region k and are residents of region j

[81].

Now, the number of people currently living in the region k is

N∗k =
∑
m

(Smk + Imk +Rmk), (1.12)

People leaving area i to region k can be grouped by the overall population of region i so

they are not comparable to those returning to region i. Susceptible people of area i who are

currently present in that region are given by:

dSii
dt

=
∑
k

ρikSik − σiSii −
∑
j

τkκiβiji
SiiIji
N∗i

, (1.13)

The change of susceptible citizens of area i who move to another region is defined by

dSik
dt

= σiSii − ρikSik −
∑
j

τkκkβijk
SikIjk
N∗k

. (1.14)

The sum of these equations for all regions yields

dSik
dt

= −
∑
j

τkκkβijk
SikIjk
N∗k

. (1.15)

The last equation shows that the overall number of susceptibles in region i is changed solely

as a result of disease transmission rather than a consequence of the mobility mechanism. This

represents the fact that citizens should not adjust their home area index (they are selected to

a certain region and do not change the assignment). As a result, while any system is included

to implement adjustments in the index relating to a person’s home area, the model would not

include permanent migration. However, as the preceding study demonstrated, the mobility

model does, at the limit of applicable parameters, provide similar findings with permanent
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migration [81].

Differential equations for the number of Iik and Rik individuals in each region can also be

derived. We are thus left with the following system of differential equations:

dSii
dt

=
∑
k

ρikSik − σiSii −
∑
j

τkκiβiji
SiiIji
N∗i

, (1.16a)

dSik
dt

=σiSii − ρikSik −
∑
j

τkκkβijk
SikIjk
N∗k

, (1.16b)

dIii
dt

=
∑
k

ρikIik − σiIii +
∑
j

τkκiβiji
SiiIji
N∗i

− γIii, (1.16c)

dIik
dt

=σiIii − ρikIik +
∑
j

τkκkβijk
SikIjk
N∗k

− γIik, (1.16d)

dRii

dt
=
∑
k

ρikRik − σiRii + γIii, (1.16e)

dRik

dt
=σiRii − ρikRik + γIik. (1.16f)
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Chapter 2

Two Species Population Model

2.1 Introduction

Many infectious diseases (including influenza) are caused by typical person-to-person interac-

tions, and these people are considered homogeneous in terms of contact, and transmission

behaviour [84]. The disease is spreading among heterogeneous populations in numerous

cases [131]. In fact, due to prolonged contact with susceptible people, longer duration of

contamination or precise services as food safety or quality assurance, some people are more

likely to spread the more infectious disease [132]. SARS epidemic in 2003 highlighted as the

high spreaders transmitted the disease to a large number of individuals [131, 133]. Some

studies showed the impact of extensive of heterogeneity in infectiousness depending on large

proportion infectious diseases such as SARS, measles, influenza, Ebola , and other diseases

[134, 135]. Presently, there is no definite strategy to identify spread MERS-CoV within

camels populations, and no control measures to reduce the spread of the disease to human

[14]. However, infectious diseases that are related to certain cultural and wellbeing behaviors

(like Ebola virus and Middle East Respiratory Syndrome) can be traced back to the mode of

contact. In the present study, we will review these epidemic cases in order to describe the
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insight into disease patterns. It is also useful in the course of intervention techniques for a

wide range of population and management strategies for individuals [136].

MERS-CoV was first discovered in 2012, when it arose from an epidemic beginning in

Saudi Arabia. The possible source of transmission has been recognized from dromedary

camels. Though, in effect cases it is not due to human infection by camels, but human to

human conveyance [137]. The interpersonal interactions intensify the outbreak of MERS

among people. This case is mostly observed in medical institutions, where their health

prevention and control measures are inadequate. South Korea’s MERS virus was spread

through three individuals, including a 68-year-old traditional male who took the virus from

overseas visit and continue to travel, went to a number of clinics, and was transferred to a

nursing home with 29 secondary infections. Out of 29 there were two cases that have been

charged for the next infection of 106 cases. The people infected with MERS may have no

symptoms, while others might have developed symptoms, such as: fever, cough, pneumonia

and breath shortness. The fraction of cases resulting in death of MERS-CoV is 35% globally

[14, 138]. So far there are no vaccines for the virus, but some strategies of treatment played

big roles in terms of the reduction of the number of cases. It is highly recommended that

individuals should maintain good hygiene and avoiding contact with sick animals.

Other prevention strategies include the intake of properly cooked and prepared animal

products. Previous mathematical methods have been proposed to check the heterogeneity of

transmission rate, which is exclusive to the environment using the compartmental modelling

by applying various disease stages. These models allow us to better understand the impact

of spreading dynamics of infectious. Presently, Lau et al. [139] combined spatial results to

simulate the disease spread, and Nishiura et al. [26] developed a computational version to

recognize the highly translatability characterize in multiple contacts that led to the outbreak

of MERS.

In this study, mathematical methods are used to investigate the disease dynamics of the
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MERS outbreak in KSA. We proposed a deterministic version based on ordinary differential

equations, and improved it into a stochastic model, which was carried out as Markov linkage

system. The analytical answers have been obtained and validated through model simula-

tions, in order to anticipate the chance of extinction and epidemic by changing the initial

susceptible individuals and model parameters. The main objective is to evaluate the charac-

teristics of the disease dynamics which may affect the adaptability of the public health policy

and vary with characteristics in the populations to help in the reduction of infections [91, 130].

2.1.1 Model Description and Formulation

The model divides the total human and camel populations at any time (t) into six compart-

ments, see the flow chart for two species population Model 2.1. The total camels population

represented by N1(t), is divided into compartments of Susceptible camel (S1), Infectious

camel (I1), and Recovered camel(R1). Therefore,

N1(t) = S1(t) + I1(t) +R1(t).

The human population represented by N2, is divided into compartments of Susceptible

humans (S2), Infected humans (I2), and Recovered humans (R2). This gives,

N2(t) = S2(t) + I2(t) +R2(t).

The rate at which camels become infected is represented by β1S1I1, and the natural death

rate is µ1. The death rate as a result of the disease is δ1, and recovery rate is γ1.

The recruitment rate of the human population is represented by π2. Susceptible humans

acquire disease through human-human contact or by camel-human is given by εβ3S2I1+β2S2I2.
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Since it is challenging (as well as complex and time consuming) to assess infection in the

animal population for many zoonoses, the emergence of human cases is often the prime

index of severe epidemic within the animal population and an elevated risk to humans. The

recovery rate of human from the disease at is γ2. Humans who are infected die at a rate δ2.

The natural death rate of the human is µ2.

The ordinary differential equations of two species population model is represented by,

dS1

dt
=π1 − β1S1I1 − µ1S1, (2.1)

dI1

dt
=β1S1I1 − (µ1 + δ1 + γ1) I1, (2.2)

dR1

dt
=γ1I1 − µ1R1, (2.3)

dS2

dt
=π2 − εβ3S2I1 − β2S2I2 − µ2S2, (2.4)

dI2

dt
=εβ3S2I1 + β2S2I2 − (µ2 + δ2 + γ2) I2, (2.5)

dR2

dt
=γ2I2 − µ2R2. (2.6)

Sufficient factual studies demonstrated that dromedary camels are the major carrier of the

virus. 75 % of reported cases are due to human-to-human transmission, whereas the 25 % of

reported cases are due to camel-to-human transmission [90]. Therefore,

β2S2I2

εβ3S2I1 + β2S2I2
= 0.75, (2.7)

or
β1S1I1

εβ3S2I1 + β1S1I1
= 0.25. (2.8)
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Figure 2.1: Flow chart for Two Species Population Model. The sub-letter c represents camel
population [population(1)] and the sub-letter h represents human population [population(2)].

2.2 Analysis of the model

2.2.1 Positivity and Boundedness of Solutions

Theorem 2.2.1. Let

Π = {(S2 (t) , I2 (t) , R2 (t) , S1 (t) , I1 (t) , R1 (t)) ∈ R6
+ :

(S2 (0) , I2 (0) , R2 (0) , S1 (0) , I1 (0) , R1 (0)) > 0}

then the solution of

{(S2 (t) , I2 (t) , R2 (t) , S1 (t) , I1 (t) , R1 (t)) , }
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are non-negative for all time t ≥ 0 of the system 2.1 (i.e., if

S2 (0) , I2 (0) , R2 (0) , S1 (0) , I1 (0) , R1 (0)

are non-negative, then S2 (t) , I2 (t) , R2 (t) , S1 (t) , I1 (t) , R1 (t) are also non-negative for all

time t > 0).

Proof. The total human population at any time (t) is given by,

N2(t) = S2(t) + I2(t) +R2(t),

and
dN2

dt
= dS2

dt
+ dI2

dt
+ dR2

dt
.

The above equation can be interpreted as,

dN2

dt
= π2 − µ2N2 − δ2I2.

Absence of mortality due to disease gives,

dN2

dt
≤ π2 − µ2N2. (2.9)

Solving the differential equation 2.9 yields,

π2 − µ2N2 ≥ Ae−µ2t,

where A is constant. Thus, applying the initial condition, N2 (0) = N2(0) can be used to show

that,

π2 − µ2N2(0) = A.
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Therefore, π2 − µ2N2 ≥
(
π2 − µ2N2(0)

)
e−µ2t and,

N2 ≤
(
π2 − µ2N2(0)

µ2

)
e−µ2t.

As t −→∞, the population size, N2 −→ π2
µ2

. This implies that,

N2 (t) ≤ π2

µ2
.

Also, if N2(0) ≤ π2
µ2

, then N2 (t) ≤ π2
µ2

. So,

Π2 =
{

(S2, I2, R2) ∈ R3
+ : S2 + I2 +R2 ≤

π2

µ2

}
.

The total camel population at any time (t) is given by,

N1(t) = S1(t) + I1(t) +R1(t),

and,
dN1

dt
= dS1

dt
+ dI1

dt
+ dR1

dt
.

We can rewrite the above equation as,

dN1

dt
= π1 − µ1N1 − δ1I1.

Absence of mortality due to disease gives,

dN1

dt
≤ π1 − µ1N1.

Solving the above differential equation gives π1 − µ1N1 ≥ Ae−µ1t , where A is constant.
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Applying the initial condition yields

π1 − µ1N1 ≥
(
π1 − µ1N1(0)

)
e−µ1t. (2.10)

Then,

N1 ≤
(
π1 − µ1N1(0)

µ1

)
e−µ1t.

As t −→∞, the population size, N1 −→ π1
µ1

. This implies that, N1 ≤ π1
µ1

and, N1 (t) ≤ π1
µ1

Also,

if N1(0) ≤ π1
µ1

, then N1 (t) ≤ π1
µ1

. So,

Π1 =
{

(S1, I1, R1) ∈ R3
+ : S1 + I1 +R1 ≤

π1

µ1

}
. (2.11)

The positively invariant region for the system of ordinary differential equations in 2.1 - 2.6 is

given by,

Π = Π1 × Π2 ⊂= R3
+ ×R3

+, (2.12)

where,

Π1 =
{

(S1, I1, R1) ∈ R3
+ : S1 + I1 +R1 ≤

π1

µ1

}
, (2.13)

Π2 =
{

(S2, I2, R2) ∈ R3
+ : S2 + I2 +R2 ≤

π2

µ2

}
. (2.14)

2.2.2 Disease-free equilibrium for the model

The disease-free equilibrium of the system yields

ξ0 = (S∗2 , I∗2 , R∗2, S∗1 , I∗1 , R∗1) .

41



2.2 Analysis of the model Two Species Population Model

At disease free equilibrium (DFE), there are no infected and recovered individuals in either

species. So,

I∗2 = 0

R∗2 = 0


I∗1 = 0

R∗1 = 0

 .

The change in the human population is givin by:

dS2

dt
= π2 − εβ3S2I1 − β2S2I2 − µ2S2 = 0. (2.15)

Therfore,

S∗2 = π2

µ2
.

Now considering the camels population:

dS1

dt
= π1 − β1S1I1 − µ1S1 = 0. (2.16)

Thus,

S∗1 = π1

µ1
.

The disease-free equilibrium can be interpreted as,

ξ0 =
(
π2

µ2
, 0, 0, π1

µ1
, 0, 0

)
.

2.2.3 The Basic Reproductive Number

The next generation matrix is defined as, K = FV −1 and R12 = ρ (FV −1),

where ρ (FV −1) represents the spectral radius of FV −1.
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The basic reproduction number R12 is known as the spectral radius of the next generation

matrix.

Using the Next Generation Matrix, we consider only the infective classes in the system

(2.1 - 2.6):

dI1

dt
= β1S1I1 − (µ1 + δ1 + γ1) I1, (2.17)

dI2

dt
= εβ3S2I1 + β2S2I2 − (µ2 + δ2 + γ2) I2. (2.18)

Thus,

f =

 β1S1I1

εβ3S2I1 + β2S2I2

 , v =

(µ1 + δ1 + γ1) I1

(µ2 + δ2 + γ2) I2

 ,

where f is the number of potential new infections and v is the number of infections that

leave the system either by death or by birth. The Jacobian matrix of f and v shall be

obtained by F and V as observes:

F =


∂f1
∂I2

∂f1
∂I1

∂f2
∂I2

∂f2
∂I1

 =

 0 β1S1

β2S2 εβ3S2

 , (2.19)

V =

∂v1
∂I2

∂v1
∂I1

∂v2
∂I2

∂v2
∂I1

 =

 0 µ1 + δ1 + γ1

µ2 + δ2 + γ2 0

 . (2.20)

By computing the product of FV −1,
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FV −1 =

 0 β1S
∗
1

β2S
∗
2 εβ3S

∗
2


 0 1

µ2+δ2+γ2

1
µ1+δ1+γ1

0

 ,

FV −1 =


β1S∗1

µ1+δ1+γ1
0

εβ3S∗2
µ1+δ1+γ1

β2S∗2
µ2+δ2+γ2

 . (2.21)

Now, identify the dominant value of FV −1. Let A be the eigenvalue of the matrix, such

as
∣∣∣∣∣∣∣∣

β1S∗1
µ1+δ1+γ1

− A 0
εβ3S∗2

µ1+δ1+γ1

β2S∗2
µ2+δ2+γ2

− A

∣∣∣∣∣∣∣∣ = 0. (2.22)

Thus, (
β1S

∗
1

µ1 + δ1 + γ1
− A

)(
β2S

∗
2

µ2 + δ2 + γ2
− A

)
= 0. (2.23)

Studies [1, 90] show that 75% of the cases were human-to-human transmission. Therefore,

the largest eigenvalue is

A1 = β2S
∗
2

µ2 + δ2 + γ2
.

By substituting the above into the basic reproductive number R12:

R12 = β2π2

µ2 (µ2 + δ2 + γ2) .

Proposition 2.2.1. The disease-free equilibrium (DFE) of model (2.1 - 2.6) is locally

asymptotically stable if R12 < 1, and unstable if R12 > 1 [83].
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2.2.4 Global stability of the disease-free equilibrium

Theorem 2.2.2. If R12 ≤ 1, the disease-free equilibrium is globally asymptotically stable in

the interior of Π.

Proof. Considering the Lyapunov function below,

P (t) = (µ1 + δ1 + γ1) I2 + (µ2 + δ2 + γ2) I1. (2.24)

By calculating the time derivative ofP along the system solutions (2.1-2.6), yields

dP (t)
dt

= (µ1 + δ1 + γ1) dI2

dt
+ (µ2 + δ2 + γ2) dI1

dt
=

(µ1 + δ1 + γ1) (εβ3S2I1 + β2S2I2 − (µ2 + δ2 + γ2) I2) +

(µ2 + δ2 + γ2) (β1S1I1 − (µ1 + δ1 + γ1) I1) ≤

≤ β1I1π1

µ1
(µ2 + δ2 + γ2)− (µ2 + δ2 + γ2) (µ1 + δ1 + γ1) I1+

εβ3I1π2

µ2
(µ1 + δ1 + γ1) + β2I2π2

µ2
(µ1 + δ1 + γ1)−

(µ1 + δ1 + γ1) (µ2 + δ2 + γ2) I2 ≤

≤ −I1 (µ1 + δ1 + γ1) (µ2 + δ2 + γ2) (1−R12)−

I2 (µ1 + δ1 + γ1) (µ2 + δ2 + γ2) (1−R12) =

=− (I1 + I2) (µ1 + δ1 + γ1) (µ2 + δ2 + γ2) (1−R12) .

(2.25)

Then,
(
dP (t)
dt

)
≤ 0, if and only if R12 < 1. Also,

(
dP (t)
dt

)
= 0, if and only if I1 + I2 = 0 or

R12 = 1. Therefore, the largest compact invariant set in S2, I2, I1,∈ Π;
(
dP (t)
dt

)
= 0 if R12 ≤ 1,

is the singleton ξ0. By LaSalle’s invariant principle, ξ0 is globally asymptotically stable in Π

[140, 141].
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2.2 Analysis of the model Two Species Population Model

2.2.5 Global stability of endemic equilibrium

The existence of the Endemic Disease Equilibrium (EDE) for two species population model

exists when infected and recovered populations are not equal to zero:

I∗∗1 6= 0,

R∗∗1 6= 0,


I∗∗2 6= 0,

R∗∗2 6= 0,

 .
Thus,

EDE = Eq+ = (S∗∗1 , I∗∗1 , R
∗∗
1 , S

∗∗
2 , I

∗∗
2 , R

∗∗
2 ).

Setting the system of ordinary differential equations (2.1 - 2.6) = 0 gives,

EDE =(S∗∗1 , I∗∗1 , R
∗∗
1 , S

∗∗
2 , I

∗∗
2 , R

∗∗
2 )

=((µ1 + δ1 + γ1)
β1

,
µ1

β1
[R12 − 1], γ1

β1
[R12 − 1],

π2(µ2 + δ2 + γ2)[εγ2(R12 − 1) + µ2]
µ2

, (2.26)

π2µ2

β1[µ2 + δ2 + γ2)[εγ1(R12 − 1) + µ2] −
εµ1

β1
[R12 − 1]− µ2

β2
,

γ2

µ2
[ π2µ2

β1(µ2 + δ2 + γ2)[εγ1(R12 − 1) + µ2] −
εµ1

β1
[R12 − 1]− µ2

β2
]). (2.27)

Theorem 2.2.3. The system of ordinary differential equations in (2.1-2.6) has an unique

endemic equilibrium point if R12 > 1, and is globally asymptotically stable. The endemic

equilibrium will only occur if and only if R12 > 1.

Proof. Assume the function of Lyapunov is giving by,

L =S∗∗2
(
S2

S∗∗2
− ln S2

S∗∗2

)
+ I∗∗2

(
I2

I∗∗2
− ln I2

I∗∗2

)
+
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2.2 Analysis of the model Two Species Population Model

R∗∗2

(
R2

R∗∗2
− ln R2

R∗∗2

)
+ S∗∗1

(
S1

S∗∗1
− ln S1

S∗∗1

)
+

I∗∗1

(
I1

I∗∗1
− ln I1

I∗∗1

)
+R∗∗1

(
R1

R∗∗1
− ln R1

R∗∗1

)
.

When the above Lyapunov function is differentiated with respect to time; we obtain,

dL

dt
=
(

1− S∗∗2
S2

)
dS2

dt
+
(

1− I∗∗2
I2

)
dI2

dt
+(

1− R∗∗2
R2

)
dR2

dt
+
(

1− S∗∗1
S1

)
dS1

dt
+(

1− I∗∗1
I1

)
dI1

dt
+
(

1− R∗∗1
R1

)
dR1

dt
.

dL

dt
=
(

1− S∗∗2
S2

)
(π2 − εβ3S2I1 − β2S2I2 − µ2S2 − π2 + εβ3S

∗∗
2 I
∗∗
1 + β2S

∗∗
2 I
∗∗
2 + µ2S

∗∗
2 ) +(

1− I∗∗2
I2

)
(εβ3S2I1 + β2S2I2 − f2I2) +(

1− R∗∗2
R2

)
(γ2I2 − µ2R2 − γ2I

∗∗
2 + µ2R

∗∗
2 ) +(

1− S∗∗1
S1

)
(π1 − β1S1I1 − µ1S1 − π1 + β1S

∗∗
1 I
∗∗
1 + µ1S

∗∗
1 ) +(

1− I∗∗1
I1

)
(β1S1I1 − f1I1) +(

1− R∗∗1
R1

)
(γ1I1 − µ1R1 − γ1I

∗∗
1 + µ1R

∗∗
1 ) ,

where,

f1 = (µ1 + δ1 + γ1) , f2 = (µ2 + δ2 + γ2) .
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2.2 Analysis of the model Two Species Population Model

Thus,

dL

dt
=
(

1− S∗∗2
S2

)
(−εβ3 (S2I1 − S∗∗2 I∗∗1 ) + β2 (S∗∗2 I∗∗2 − S2I2) + µ2 (S∗∗2 − S2)) +(

1− I∗∗2
I2

)
(εβ3S2I1 + β2S2I2 − f2I2) +(

1− R∗∗2
R2

)
(γ2I2 − µ2R2) +(

1− S∗∗1
S1

)
(−β1 (S1I1 − S∗∗1 I∗∗1 ) + µ1 (S∗∗1 − S1)) +(

1− I∗∗1
I1

)
(β1S1I1)−

(
1− I∗∗1

I1

)
(f1I1) +(

1− R∗∗1
R1

)
(γ1I1 − µ1R1) .

dL

dt
=µ1S

∗∗
1

(
1− S∗∗1

S1

)(
1− S1

S∗∗1

)
+

β1

((
1− S∗∗1

S1

)
(S∗∗1 I∗∗1 − S1I1) + S1I1

(
1− I∗∗1

I1

))
+

µ1R
∗∗
1

(
1− R1

R∗∗1

)
+ γ1I1

((
1− R∗∗1

R1

)
− f1

γ1

(
1− I∗∗1

I1

))
+

µ2S
∗∗
2

(
1− S∗∗2

S2

)(
1− S2

S∗∗2

)
+

εβ3

((
1− S∗∗2

S2

)
(S∗∗2 I∗∗1 − S2I1) + S2I1

(
1− I∗∗2

I2

))
+

µ2R2

(
1− R∗∗2

R2

)
+ γ2I2

((
1− R∗∗2

R2

)
− f2

γ2

(
1− I∗∗2

I2

))
+

β2

((
1− S∗∗2

S2

)
(S∗∗2 I∗∗2 − S2I2+) + S2I2

(
1− I∗∗2

I2

))
.

Then,

dL

dt
=µ1S

∗∗
1

(
1− S∗∗1

S1
− S1

S∗∗1
+ 1

)
+
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β1S
∗∗
1 I
∗∗
1

((
1− S∗∗1

S1

)(
1− S1

S∗∗1

I1

I∗∗1

)
+ S1

S∗∗1

I1

I∗∗1

(
1− I∗∗1

I1

))
+

µ1R
∗∗
1

(
1− R1

R∗∗1

)
+ γ1I

∗∗
1

(
I1

I∗∗1

)((
1− R∗∗1

R1

)
− f1

γ1

(
1− I∗∗1

I1

))
+

µ2S
∗∗
2

(
1− S∗∗2

S2
− S2

S∗∗2
+ 1

)
+

εβ3 (S∗∗2 I∗∗1 )
((

1− S∗∗2
S2

)(
1− S2

S∗∗2

I1

I∗∗1

)
+ S2

S∗∗2

I1

I∗∗1

(
1− I∗∗2

I2

))
+

µ2R
∗∗
2

(
1− R2

R∗∗2

)
+ γ2I

∗∗
2

(
I2

I∗∗2

)((
1− R∗∗2

R2

)
+ f2

γ2

(
I∗∗2
I2
− 1

))
+

β2S
∗∗
2 I
∗∗
2

((
1− S∗∗2

S2

)(
1− S2

S∗∗2

I2

I∗∗2

)
+ S2

S∗∗2

I2

I∗∗2

(
1− I∗∗2

I2

))
.

dL

dt
=µ1S

∗∗
1

(
1− S∗∗1

S1
− S1

S∗∗1
+ 1

)
+

β1S
∗∗
1 I
∗∗
1

((
1− S∗∗1

S1

)(
1− S1

S∗∗1

I1

I∗∗1

)
+ S1

S∗∗1

I1

I∗∗1

(
1− I∗∗1

I1

))
+

µ1R
∗∗
1

(
1− R1

R∗∗1

)
+ γ1I

∗∗
1

(
I1

I∗∗1

)((
1− R∗∗1

R1

)
− f1

γ1

(
1− I∗∗1

I1

))
+

µ2S
∗∗
2

(
1− S∗∗2

S2
− S2

S∗∗2
+ 1

)
+

εβ3S
∗∗
2 I
∗∗
1

((
1− S∗∗2

S2

)(
1− S2

S∗∗2

I1

I∗∗1

)
+ S2

S∗∗2

I1

I∗∗1

(
1− I∗∗2

I2

))
+

µ2R
∗∗
2

(
1− R2

R∗∗2

)
+ γ2I

∗∗
2

(
I2

I∗∗2

)((
1− R∗∗2

R2

)
+ f2

γ2

(
I∗∗2
I2
− 1

))
+

β2S
∗∗
2 I
∗∗
2

((
1− S∗∗2

S2

)(
1− S2

S∗∗2

I2

I∗∗2

)
S2

S∗∗2

I2

I∗∗2

(
1− I∗∗2

I2

))
.

dL

dt
=µ1S

∗∗
1

(
2− S∗∗1

S1
− S1

S∗∗1

)
+

β1S
∗∗
1 I
∗∗
1

(
1− S∗∗1

S1
+ I1

I∗∗1
− S1

S∗∗1

)
+
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µ1R
∗∗
1

(
1− R1

R∗∗1

)
+ γ1I

∗∗
1

(
I1

I∗∗1
− I1

I∗∗1

R∗∗1
R1

+ f1

γ1
− I1

I∗∗1

f1

γ1

)
+

µ2S
∗∗
2

(
2− S∗∗2

S2
− S2

S∗∗2

)
+

εβ3S
∗∗
2 I
∗∗
1

(
1− S∗∗2

S2
+ I1

I∗∗1
− S2

S∗∗2

)
+

µ2R
∗∗
2

(
1− R2

R∗∗2

)
+ γ2I

∗∗
2

(
I2

I∗∗2
− I2

I∗∗2

R∗∗2
R2

+ f2

γ2
− I2

I∗∗2

f2

γ2

)
+

β2S
∗∗
2 I
∗∗
2

(
1− S∗∗2

S2
+ I2

I∗∗2
− S2

S∗∗2

)
.

The arithmetic mean value exceeds the geometric mean [142]; as a result,

2− S∗∗1
S1
− S1

S∗∗1
≤ 0, (2.28)

1− S∗∗1
S1

+ I1

I∗∗1
− S1

S∗∗1
≤ 0, (2.29)

1− R1

R∗∗1
≤ 0, (2.30)

I1

I∗∗1

(
1− R∗∗1

R1
− f1

γ1

)
+ f1

γ1
≤ 0, (2.31)

2− S∗∗2
S2
− S2

S∗∗2
≤ 0, (2.32)

1− S∗∗2
S2

+ I1

I∗∗1
− S2

S∗∗2
≤ 0, (2.33)

1− R2

R∗∗2
≤ 0, (2.34)

I2

I∗∗2

(
1− R∗∗2

R2
− f2

γ2

)
+ f2

γ2
≤ 0, (2.35)

1− S∗∗2
S2

+ I2

I∗∗2
− S2

S∗∗2
≤ 0. (2.36)

Based on the assumption that the parameters of the model are non-negative, it indicates that
dL
dt
≤ 0; if and only if the basic reproduction number of the system in equation (2.1 - 2.6)
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is R12 > 1. As time t tends to infinity, according to LaSalle’s Invariant Principle [143], all

trajectorys of the model (2.1 - 2.6) approach the endemic equilibrium point if R12 > 1.

2.2.6 Sensitivity Analysis

The goal of sensitivity analysis is to see how sensitive a model is to changes in parameter

values. This is often done to aid in the identification of characteristics that have a significant

influence on the basic reproduction number R12 with the statistical sensitivity measure partial

rank correlation coefficient (PRCC), Latin hypercube sampling (LHS), initially introduced

by McKay et al. [144], conducts a sensitivity analysis that investigates a specific parameter

space of the model. In this epidemiological model, The quantity of the basic reproductive

number influences the disease’s or infection’s opportunity to spread among the population.

The decrease in disease-related infection was calculated by computing the sensitivity indices

of the primary reproduction number R12 with regard to the parameter values in the model.

The sensitivity indices serve as predictors of the importance of each parameter in diseases

dynamics and prevalence. When such parameter is changed, they quantify the change in

model variables. In this study, we will compute the sensitivity indices of R12 to parameter

values for the model, which will be determined from accessible data or previously published

articles in the literature, as shown in table 2.1. Taking into account the various parameters of

the system of differential equations in the model (2.1 - 2.6), we can estimate the sensitivity of

R12 to each of the parameters in the model. The sensitivity indices of the basic reproduction

number of R12 with regard to each parameter of the system of differential equations in model

(2.1 - 2.6) are shown in the table 2.2 below:
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Parameter Description Sensitivity index(+ve/-ve)

π1 camel’s recruitment rate +ve

π2 human recruitment rate +ve

µ1 death rate of camel -ve

µ2 death rate of humans -ve

δ1 camel’s death rate -ve

δ2 human death rate -ve

β1 the rate of the interaction between

susceptible and infectious camel +ve

β2 the rate of the interaction between

susceptible and infectious Human +ve

β3 the rate of the interaction between +ve

susceptible Human and infectious camel

γ1 camel’s recovery rate -ve

γ2 human rate of recovery -ve

Table 2.1: Sensitivity indices of the parameters to R12.
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2.3 Stochastic Epidemic Models Two Species Population Model

parameters List

species

1

Baseline References species

2

Baseline References

β1 0.00025974 [90] β2 0.000034 [91]

β3 0.002304 Assumed

ε 0.000576 Calculated

δ1 0.00001 [90] δ2 0.0336 [91]

γ1 1/14 [90] γ2 1/7 [91]

µ1
1

(28.4)(365) [90] µ2
1

(74.4)(365) [91]

Table 2.2: Parameter values.

2.3 Stochastic Epidemic Models

The significance of host transmissibility of the Middle East respiratory syndrome virus

(MERS-CoV) in disease emergence has been demonstrated in two species (camels and human)

model. Infectious species are able to transmit the virus to a large number of susceptible class.

The chance of outbreaks, as well as disease impulsive mortality will increase with occurrence

of spreaders within the populations. If a highly contagious disease happens quickly, there

may be a biggest threat of transmitting communicable disease in the network. The greater

numbers of initial large spreaders in the population, the earlier the outbreak is likely to occur.

2.3.1 Continuous Time Markov Chain

We numerically simulate the sample path to test the probability for an epidemic of MERS-CoV

using the Continuous Time Markov Chain (CTMC) model by testing some properties such

as (1) the number of deaths, (2) the time of an outbreak, (3) the time of peak infection, and
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(4) the peak number of infected individuals.

The peak number of infected individuals indicates the maximum value of I1 and I2 and the

peak time of infection corresponds to the time t at which this maximum occurs. Besides that,

an outbreak implies that the cumulative number of I1, and I2 classes has nearly reached 50.

In comparison, it is noted that for the CTMC model, the criterion validity (for example, peak

values, and time, also the number of deaths) is determined by the probability distribution

and the trajectory of the sample generates one outcome of the distribution.

2.3.2 Markov chain model

If the number of hosts/pathogens is sufficiently small, an ODE model is not suitable. We

use the CTMC model which is continuous in time and discrete within the space. Table 2.3

summarizes the changes and the accompanying infinitesimal transition rates.
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State transitions and rates for the CTMC

species 1 Rate transitions species 2 Rate transitions

infection β1S1I1 S1 → S1 − 1

I1 → I1 + 1

infection

among

species 2

β2S2I2 S2 → S2 − 1

I2 → I2 + 1

infection

from

species 1

to species

2

εβ3S2I1 S2 → S2 − 1

I2 → I2 + 1

Recovery γ1I1 I1 → I1 − 1

R1 → R1 + 1

Recovery γ2I2 I2 → I2 − 1

R2 → R2 + 1

Birth µ1N1 S1 → S1 + 1 Birth µ2N2 S2 → S2 + 1

Death Sus-

ceptible

µ1S1 S1 → S1 − 1 Death Sus-

ceptible

µ2S2 S2 → S2 − 1

Death of

Infected:

Natural

µ1I1 I1 → I1 − 1 Death of

Infected:

Natural

µ2I2 I2 → I2 − 1

Death of

Infected:

by disease

δ1I1 I1 → I1 − 1 Death of

Infected:

by disease

δ2I2 I2 → I2 − 1

Death of

Recoverd

µ1R1 R1 → R1 − 1 Death of

Recoverd

µ2R2 R2 → R2 − 1

Table 2.3: State of transitions and rates in two species model.
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2.3.3 Sample Paths

Example of pattern path as a result of stochastic model is given below. These sample

trajectories are often closely matched with the population average response indicated by our

ODE model. Nevertheless, the sample pathways of the CTMC model demonstrate the possible

uncertainty in timing of the peak incidence of infection and the peak number of infections.

Some sample paths are not presented since the infection is eradicated in those simulations.

These simulations in (Fig. 2.2a and 2.2b) illustrate an epidemic for a total initial population

of N1 = 1400 and N2 = 2800 with one initial infected individual (I1(0) = I2(0) = 1) and all

individuals are susceptible.

2.3.4 Probability of Outbreak

Outbreak probability was measured by monitoring the numbers of individuals at infection

classes for both species. The probability of an outbreak is determined by tracking the number

of individuals in the I1 and I2 classes, and an outbreak is proclaimed when the total size of

these compartments hits 50. Although 50 tends to be a significant extensive, it is reasonable

considering that we are calculating the total number of individuals in all two species for a

applicable size population of 4200. As predicted, the probability of an epidemic is related

to the proportion of the populations that is initially infected, with the probabilities of an

outbreak increasing as the number of initial affected individuals continues to grow.
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2.3 Stochastic Epidemic Models Two Species Population Model

(a) Stochastic simulations of the model showing the sample paths.

(b) Deterministic simulations of the model showing the sample path.

Figure 2.2: Stochastic and deterministic simulations of the model showing the sample path.
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Fraction of population initially infected N1 Probability of outbreak

0.0007 0.777

0.0014 0.961

0.0021 0.988

0.0028 0.998

0.0035 1.0

0.0042 1.0

0.005 1.0

0.0057 1.0

0.0064 1.0

0.0071 1.0

0.0078 1.0

0.0085 1.0

0.0092 1.0

0.01 1.0

0.0107 1.0

0.0114 1.0

0.0121 1.0

0.0128 1.0

0.0135 1.0

Table 2.4: Fraction of population initially infected N1 with probability of outbreak
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Fraction of Population Initially Infected N2 Probability of Outbreak

0.0007 0.786

0.0014 0.961

0.0021 0.993

0.0028 0.998

0.0035 1.0

0.0042 1.0

0.005 1.0

0.0057 1.0

0.0064 1.0

0.0071 1.0

0.0078 1.0

0.0085 1.0

0.0092 1.0

0.01 1.0

0.0107 1.0

0.0114 1.0

0.0121 1.0

0.0128 1.0

0.0135 1.0

Table 2.5: Fraction of population initially infected N2 with probability of outbreak.

2.3.5 Number of deaths

Apply stochastic version of MERS dynamics within a population of entity, we consequent

required to examine whether or not the occurrence of individuals within the population
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will be re-effected the severity of disease outbreak. We begin by examining the influence of

susceptible camels and humans on the fatality rate that accumulate over a 150 day period

following initial infection. The frequency rate of deaths has been increased as the size of

susceptible class 25% , 50%, and 75% of the total populations see (Fig. 2.4 and 2.5). We

observed a high frequency of outbreaks with reduce number of deaths whereas the small part

of individuals at risk portion was reduced (not shown). For all subsequent simulations we

start the population that comprised of 1400 susceptible camels and a 2800 susceptible human.

Larger significantly, however; there has been a tenfold increase in the frequency of deaths

projected even as the initial infected individuals as what have been shown in (Fig. 2.3a and

2.3b).

2.4 Time to outbreak

We observed that in a simulated MERS infection, the time to outbreak is decreased when

the initial infected individual is minimized. These findings also show that as the proportion

of susceptible increase time to outbreak rises. Each distribution in (Fig. 2.6a) is based on

10,000 sample pathways, whereas the time points in (Fig. 2.6b) are based on 1000 sample

paths for each fraction initially infected.
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(a) Number of deaths N1 vs frequency.

(b) Number of deaths N2 vs frequency.

Figure 2.3: Number of deaths vs frequency.
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(a) Time to outbreak when N1 = 0.25N , where N = N1 +N2

(b) Time to outbreak when N1 = 0.50N , where N = N1+N2

(c) Time to outbreak when N1 = 0.75N , where N = N1 +N2

Figure 2.4: Time to outbreak for Camels population
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(a) Time to outbreak when N2 = 0.25N , where N = N1 +N2

(b) Time to outbreak when N2 = 0.50N , where N = N1+N2

(c) Time to outbreak when N2 = 0.75N , where N = N1 +N2

Figure 2.5: Time to outbreak for Human population
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(a) Scatter plot for the time to outbreak with fraction of population initially
infectious N1.

(b) Scatter plot for the time to outbreak with fraction of population initially
infectious N2.

Figure 2.6: Scatter plot for the time to outbreak with fraction of population initially infectious.
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Chapter 3

Epidemic on Networks

3.1 Probabilistic Epidemic Model

Different network models of epidemics will be discussed in this chapter; for example, SI, SIS,

and SIR. Looking at how these types of epizootic exist and propagate spreads on networks,

and we will see what difference networks will make. When dealing with contagious diseases,

we can write down certain equations by considering propagation within the populations,

similar to agent based modelling.

The mathematical study of infectious diseases started at the beginning of the 20th century.

The application of how epidemics spread on networks is still an active area of research. When

dealing with networks, we investigate an adjacency matrix A that describes the network.

Consider the networks to be undirected and matrix A to be symmetric, but in general, A is

not necessarily symmetric. We have to split the population into different parts of infected

and susceptible, and renormalize them to become fractions. The result of the simulation will

be either susceptible, infected , which include the fractions of the population in (SI/SIS

model); or susceptible, infected, and recovered which include fractions of the population

in(SIR model). As we transition to a much more detailed model, we will introduce one
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variable per node. Variables will carry an index i, which means its own node (node i); these

will describe the node states. For the infected node, we will use x instead of i because i was

used as an index. Furthermore, s and r represent those that are susceptible and recovered,

respectively. The node could be in one of these three states. We purpose also using the

same notations for infection and recovery rates (β and γ, respectively). When dealing with

epidemics on networks, it is interesting when there is a connected component SI, SIS, or

SIR. For example; two nodes s and x of a directed graph are connected if there is a trace

from s to x and a trace from x to s. This relation called strongly connected components

and weak components otherwise. If a network consists of connected components and there

is an infected node in one of the components, the procedure of infected node is similar at

any model (SI/SIS/SIR). In all real-world networks, there is always a gigantic connected

component where most of the nodes are. Infection is assumed to be staged within the

connected component [116].

Table 3.1: Some details of the probabilistic epidemic model.

Potential contacts (adjacency matrix A) of network
probabilistic model (state of a node)
si(t) - probability of node i is susceptible at t .
xi(t) - probability of node i is infected at t .
ri(t) - probability of node i is recovered at t .

β - infection rate ( geting infected by a contact in time δt)
γ - recovery rate (becomes recovered in a unit time δt)
from deterministic model to probabilistic description
connected graph means all nodes reachable

Pinf = si(t)
1−

∏
j∈N (i)

(1− βxj(t)δt)
 ≈ βsi(t)

∑
j∈N (i)

xj(t)δt (3.1)

The equation implies that the probability of the central node becoming infected is

proportional to the probability that it is not infected at this moment multiplied by the
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probability that the infection comes from any other nodes. This linearization or simplification

takes care of the fact that it can be infected from different nodes, and another process is

the node of recovery. This process does not depend on the infection on the neighbouring

nodes, but it is proportional to the recovery rate multiplied by the probability that the node

is infected xi(t) and δt, because recovery rate or infection rate is in per unit time [145];

Prec = γxi(t)δt. (3.2)

Then, calculate the summation of the nearest neighbours. The sum of nearest neighbours

can actually be replaced by the sum over all nodes in the graph. The adjacency matrix Aij is

zero everywhere except for the connections to the nearest node [146].

SI Model

At the beginning,we will start with SI model, and use the mathematical techniques for

SIS and SIR models. si and xi are probabilities and they sum up to 1, so

xi(t) + si(t) = 1. (3.3)

In the SI model, there is a one-way process (nodes can get infected). As a consequence,

the probability that a node at time t+ δt is infected is equal to the probability of infection

at the previous moment of time adding the probability that the node becomes infected from

the neighbours. Thus,

xi(t+ δt) = xi(t) + βsi
∑
j

Aijxjδt. (3.4)

Similar to the non-network model, this equation can be immediately written as a differential

equation. We simply take this expression, move xi(t) to the left-hand side, and divide the

expression by dt to get our differential equation.
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Together with the normalization equation xi + si = 1, we have this simple system:

dxi(t)
dt

= βsi(t)
∑
j

Aijxj(t), (3.5)

xi(t) + si(t) = 1. (3.6)

Accordingly, we express si as,

dxi(t)
dt

= β (1− xi(t))
∑
j

Aijxj. (3.7)

We looked at this type of equation when we deal with the compartmental model or

infections without network.

For every node, there is an equation, so we can find the solution of differential equations by

using the solver for the systems of ODEs. We consider differential equations at early time and

late time by considering what happens at the beginning of the evolution of the process and

at the end of the process when the system stabilize and make certain approximations. Thus,

the idea for early time approximation or when infection just started is that the probability

for the nodes to be infected is much less than one. We have a few nodes infected, but for the

majority of nodes, xi is limited [146, 147],

dxi(t)
dt

= β
∑
j

Aijxj. (3.8)

This will result in a linear system that we can also express through the main matrix

notation; such as,

dx(t)
dt

= βAx(t). (3.9)
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The generic way to solve the linear system is to look for the solution in terms of eigenvectors

and eigenvalues of the matrix. The solution of the system x(t) will be a linear combination

of basis vectors,

Avk = λkvk, (3.10)

x(t) =
∑
k

ak(t)vk, (3.11)

real eigenvalues and orthogonal eigenvectors will definitely form as a basis. ultimately, we

substitute the expression for x into the equations. The results in an equation for time-

dependent coefficients. Solve equation by separating variables to get the exponent. Using this

traditional method, the initial condition is calculated as a dot product between eigenvectors

and the original vector. The solution x, which is a vector, is for every node. This is the

linear combination over all eigenvectors of matrix A. These eigenvectors are multiplied by

this exponent and added together with the coefficients. Hence,

∑
k

dak
dt

vk = β
∑
k

Aak(t)vk = β
∑
k

ak(t)λkvk, (3.12)

dak(t)
dt

= βλkak(t), (3.13)

ak(t) = ak(0)eβλkt, ak(0) = vTk x(0), (3.14)

x(t) =
∑
k

ak(0)eλkβtvk. (3.15)

We now analyze at an early time by considering β; the infection rate, to be greater than
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zero. The largest λ will be the dominating term when time goes to zero because we have a

linear combination. We have different exponents and the fastest-growing exponent is the one

that has the largest λ. Additionally, since we are only doing approximation, we will look at

λ1 which is the maximum λ. In consequence, λ1 controls how fast the infection propagates.

So, the growth rate of infection depends on λ1. For this reason,

x(t) = v1e
λ1βt (t→ 0, λmax = λ1 > λk). (3.16)

The rate of infection or the rate with which infection spreads depends on the β. This is

the intensity of the probability of detection going from one node to another. The depends on

the structure of the graph, λ1 is an eigenvalue which encodes the structure of the network.

That is how networks become involved. The larger λ, the faster growth of infections at the

very beginning. The other narrative is at x(t), which is a vector, that depends strongly on

the first eigenvector. If we have an undirected graph and we consider a random walk on the

undirected graph, recall the values of the probability of a random walk being on a certain

node. The node with the most connections will most likely become infected. If we consider

flu propagation in a society, it is a socialite who will mostly get infected. The first eigenvector

will be the largest element. The first eigenvector will correspond to the highest node degree

[147]. We now look at the dynamics of infection at late times: x→∞,

dxi(t)
dt

= β (1− xi(t))
∑
j

Aijxj = 0, (3.17)

Ax 6= 0 since λmin 6= 0, 1− xi(t) ≈ 0.

There are two solutions: either all x are equal to 1 or all x’s are equal to zero. All x’s

being equal to zero means that there is no infection, where k denotes node degree of the

node. Nodes with high degrees are getting infected faster rate with everything being equal.
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SIS Model

The node in SIS model can be in susceptible mode, then be in infected mode, and then

return to being in susceptible mode. The infection can actually persist for a long time. The

change in infection in the probability of infection of the node comes either from the node

becoming infected from the neighbour or from node recovery. For instance, if

dxi(t)
dt

= βsi(t)
∑
j

Aijxj(t)− γxi, (3.18)

and,

xi(t) + si(t) = 1, (3.19)

the differential equation for the SIS model can be re-expressed as

dxi(t)
dt

= β (1− xi(t))
∑
j

Aijxj − γxi. (3.20)

We consider the early time approximation: xi(t)� 1. Using the same time of the same

type of approximation, we look at times going to 0, where infection rate is low, and linearize

the differential equation. δij is a Kronecker symbol, where δijxj = xi, and rewrite the matrix

form A δij inside the summation . The Kronecker δij is a diagonal matrix. Essentially, when

dxi(t)
dt

= β
∑
j

Aijxj − γxi, (3.21)

dxi(t)
dt

= β
∑
j

(
Aij −

γ

β
δij

)
xj, (3.22)

dx(t)
dt

= β

(
A−

(
γ

β

)
I
)

x(t), (3.23)
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and,
dx(t)
dt

= βMx(t), M = A−
(
γ

β

)
I. (3.24)

Then, take the matrix M, and determine the eigenvectors and eigenvalues. Since matrix

M and matrix A differ on the diagonals, they will have the same eigenvectors the same as

A, but the eigenvalues will be shifted. Note that for matrices A and M, we took the same

matrix and we modified the diagonal and changed the diagonal by subtracting γ
β
. Thus,

Mv′k = λ′kv′k, M = A−
(
γ

β

)
I, Avk = λkvk, (3.25)

and,

v′k = vk, λ′k = λk −
γ

β
, (3.26)

we end up with a getting linear combination. Therefore,

x(t) =
∑
k

ak(t)v′k =
∑
k

ak(0)v′keλ
′
kβt =

∑
k

ak(0)vke(βλk−γ)t. (3.27)

Previously, the exponent was βλt, however, now the exponent is (βλ− γ)t. Depending on

the values β, λ, and γ, the difference can be either greater than zero or less than zero. If the

difference is greater than zero, then the solution will grow with time, otherwise, the solution

will decrease, when the difference is less than zero. The critical point is when βλ1 = γ. λ1 is

the largest eigenvector and has the largest contribution to the solution. If βλ1 > γ, we will

have growth, but if βλ1 < γ, we have decay.

For λ1 ≥ λk, it is critical when βλ1 = γ.Thus,

if βλ1 > γ, x(t)→ v1e
(βλ1−γ)t (growth). (3.28)
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and,

if βλ1 < γ, x(t)→ 0 (decay). (3.29)

We consider the epidemic threshold R0 = β
γ
. If β

γ
< R0, infection dies over time, but if

β
γ
> R0, infection survives and becomes epidemic. For the SIS model, the epidemic threshold

is 1
λ1

. Furthermore, Av1 = λ1v1. Now β
γ

is comparing to 1
λ1

, where λ1 encodes the structure

of the graph. Taking a graph and calculate the eigenvalues and eigenvectors (λ1, the largest

eigenvalue) will control the propagation of infection in this model. If λ1 is large, the barrier

is very small, meaning that the epidemic threshold is small if λ1 is large.

When we have an infection on a graph, and consider long time approximation; time goes

to infinity and xi becomes constant.

If we take the derivative dxi(t)
dt

:

dxi(t)
dt

= β (1− xi)
∑
j

Aijxj − γxi = 0. (3.30)

The solution is as follows,

xi =
∑
j Aijxj

γ
β

+∑
j Aijxj

. (3.31)

Note that with ratios β � γ, xi goes to 1, and if does not, β is in magnitude of γ.

Furthermore, xi becomes approximately as the first eigenvector.

In general, the epidemic threshold (β/γ > R0): if β � γ, xi(t) → 1. If β ∼ γ,

xi
γ
β

= ∑
j Aijxj, then λ1 = γ

β
, and xi(t)→ (v1)i.

SIR Model

The SIR model is differs only by the addition of the ri component. We have three possible

states: the node can be susceptible, infected, or recovered ( removed), this means that it can

no longer be infected. Assume,
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xi(t) + si(t) + ri(t) = 1. (3.32)

Then, the infection equations are given by,

dxi
dt

= βsi
∑
j

Aijxj − γxi, (3.33)

and,
dri
dt

= γxi. (3.34)

As,

xi(t) + si(t) + ri(t) = 1, (3.35)

we can be implemented,

dxi(t)
dt

= β (1− ri − xi)
∑
j

Aijxj − γxi. (3.36)

When time goes to zero or at the very beginning of infection, very few nodes get infected

and less nodes get recovered. As a result,

dxi(t)
dt

= β (1− xi)
∑
j

Aijxj − γxi. (3.37)

We have the same equation as we used for the SIS model; this means that we have the

equivalent with the exponent. And as with SIS model, we also have the critical exponent

where βλ1 is equal to γ. Solutions can either be growing with time or decreasing, as we can

observe in the following,

x(t) ∼ v1e
(βλ1−γ)t. (3.38)
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Looking at the solutions, infections will happen per node, and the rates of infection and

recovery depend on the node degree. We consider the probability that a node becomes

infected, the probability that a node recovers, and the probability that a node is susceptible

as a function of time. Nodes with higher degrees have higher probabilities and faster rates

of infection. Infections propagate quickly for the nodes with high degrees depending on

the ratio β. There may be a situation with a certain number of infected nodes and with

time, everybody (or the majority of the population) becomes infected. The reason to look

at the very beginning of an infection is twofold. First, this informs us whether progression

will explode or die out. Second, we can look at the differential equations which give the

probabilities per node as a function of time. However, to observe the process or changes,

every node can be either in state S or in state I, and initialize a certain number of nodes

to the state infected I. We consider a graph and take a few nodes to be initially infected.

Now, at every time step, the infected node has a nonzero probability to infect its neighbours.

The node stays infected for a certain period of time. Again, we go through several steps in

time when the node stays infected and can infect its neighbouring nodes. It is an exponential

distribution for time of infection. We can calculate the average for node infection, which is 1
γ
.

The node stays infected for several time steps. For every time step, it can infect its neighbours

with some probability. Assume that on one step each week, the node infected these other

nodes but it recovered itself. Then, the node recovered and this state is now infected. With

the SIS model, the node can be reinfected easily because there is no immunity. The two

parameters that control the dynamics of infection are β and γ (or β
γ
). Depending on the

ratio of β to γ, the infection can quickly disappear or the infection can persist through the

system for a long time [116].

To perform the SIR model, add the R state, which denotes the nodes that have been

recovered or removed. For each time step, the node has a probability β to infect the neighbor,
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Table 3.2: Some details of the SIS simulation.

1. The node is in the state S, or I at time t.
2. The node remain infected by τγ =

∫∞
0 τe−τγdτ = 1/γ at each time steps

3. Each node I has a probability β
to infect its nearest neighbors, S → I on each time step.
4. After certain time steps τγ , the node recovers: I → S

then it stays infected for a while. After that, it recovers and goes to the state R; it cannot be

infected anymore.

Table 3.3: Some details of the SIR simulation.

1. The node is in the state S, I, R at time t.
3. The node remain infected by τγ = 1/γ at each time steps
4. Each node I has a probability β to infect
to infect its nearest neighbors, S → I on each time step.
5. After time steps τγ , the node recovers: I → R
6. Nodes R do not participate in further infection propagation.

In the SIR model, the important parameters include the time when the node is infectious

and the time when a recovered node stays recovered forever. When the infection dies out,

there will be some nodes that were never infected. Thus, we can calculate how the fraction

of recovered nodes changes over time. For every time step, the system must make a decision

of whether or not to infect the neighbouring node.

Let us consider one interesting observation for the SIR model. If we are only interested

in the final distribution of the infection, meaning we are interested in a late time or when

the infection is already done, we want to know which nodes eventually get infected. The

node can infect either node x or node v; the edge activates and propagates the infection. In

the next moment of time, the two edges are activated, and at the final moment, notice that

the nodes are infected; these are the activated edges. Only the nodes are on the connected
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component through the activated edges with the originally infected nodes that will become

infected. In summary, we flip the coin each time to go through the activation process. The

idea is to flip all of the coins for every edge upfront, so as not to wait through iterations. At

the very beginning, for every edge we will decide if it will get activated or not. We can look

and see if there is an infected node in the path of active edges. If so, then all nodes in that

connected component will eventually become infected. Instead of tracing every time step,

we determine which edge will transmit the infection. We looked at the gigantic connected

components and the connectivity in that random graph. In an Erdo’s-Renyi graph, there

are nodes and there is a probability that nodes are connected. A graph structure and the

probability that the particular edge will actually be active. Thus, in this case, we will also get

this gigantic connected component. In general case, different graphs have different thresholds

depending on the graph structure. Keeling et al. (2005) tried applying epidemic models on

different graph structures and looking for random graphs as lattice, a regular graph, and a

small-world model [148]. There is a spatial graph where just put nodes on 2D space and

connect the nearest nodes; and there is a traditional scale-free graph like the Barab’asi-Albert

power-law graph. Keeling looked at how infection spreads on the graphs where the larger

the diameter, the longer it takes to reach the edge of the graph. There will be a connection

between the structure, which is the diameter or λ. For the infection to propagate successfully,

if a node has a high degree, it is more likely to become infected. For example, this may occur

if we get a set of nodes and there is one edge that connects [127, 129].

Now we can set up the probabilistic epidemic model for two species:

dS1i

dt
=π1 − β1S1i

∑
j

AijI1j(t)− µ1S1i, (3.39a)

dI1i

dt
=β1S1i

∑
j

AijI1j(t)− (µ1 + δ1 + γ1)I1i, (3.39b)
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dR1i

dt
=γ1I1i − µ1R1i, (3.39c)

dS2i

dt
=π2 − εβ3S2i

∑
j

AijI1j(t)− β2S2i
∑
j

AijI2j(t)− µ2S2i, (3.39d)

dI2i

dt
=εβ3S2i

∑
j

AijI1j(t) + β2S2i
∑
j

AijI2j(t)− (µ2 + δ2 + γ2)I2i, (3.39e)

dR2i

dt
=γ2I2i − µ2R2i. (3.39f)

3.1.1 Parameters

π1, π2: recruitment rate of camel and human respectively.

β1 : contact rate of camel.

β2 : contact rate of human.

µ1, µ2: natural death of camel and human respectively.

δ1, δ2: disease death rate.
1
γ1

: the mean infectious period of infected camel for survivors.
1
γ2

: the mean duration for infected human for surivors.

ε : is generally small and measures the trickle of infection from the camel population into

the human one.
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A =



0 1 1 1 1 1 0 1 1 0 1 0 0

1 0 1 0 0 1 0 0 0 1 0 1 0

1 1 0 1 0 0 1 1 0 0 0 0 0

1 0 1 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 1 0 0

1 1 0 0 0 0 0 0 0 1 1 1 0

0 0 1 0 0 0 0 1 0 0 0 0 1

1 0 1 1 0 0 1 0 1 0 0 0 1

1 0 0 0 1 0 0 1 0 0 0 0 1

0 1 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0 0


A is adjacency matrix of potential contacts in the probabilistic model.

Si(t) : probability that at t node i is susceptible.

Ii(t) : probability that at t node i is infected.

Ri(t) : probability that at t node i is recovered.

β : infection rate (probably to get infected on a contact per unit time δt).

γ : recovery rate (probability to recover per unit time δt).

(Fig. 3.1) shows the simulations of the probabilistic model demonstrate the probability

for all nodes (camel populations) by using the same parameter values in the previous chapter

2.2.
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Figure 3.1: Simulations of the probabilistic model showing the probability for all nodes (camel
populations); blue (susceptible), red (infected) and green (recovered).

3.2 Pairwise Approximation

We used the pairwise approximation model that has been studied by Keeling 2005 [116].

d[S1]
dt

=− τ1[S1I1], (3.40a)

d[I1]
dt

=τ1[S1I1]− σ1[I1], (3.40b)

d[R1]
dt

=σ1[I1], (3.40c)

d[S1S1]
dt

=− 2τ1[S1S1I1], (3.40d)

d[S1I1]
dt

=τ1([S1S1I1]− [I1S1I1]− [S1I1])− σ1[S1I1], (3.40e)
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Figure 3.2: Scheme of the SIR4 pairwise approximation model with two populations.

d[S1R1]
dt

=− τ1([I1S1R1] + σ1[S1I1), (3.40f)

d[I1I1]
dt

=2τ1([I1S1I1] + [S1I1])− 2σ1[S1I1), (3.40g)

d[I1R1]
dt

=τ1([I1S1R1] + [S1I]1) + σ1([I1I1]− [I1R1]), (3.40h)

d[I1R1]
dt

=2σ1[I1R1]. (3.40i)
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3.2.1 Parameters

β1 : contact rate of camel.

β2 : contact rate of human.
1
γ1

: the mean infectious period of infected camel for survivors.
1
γ2

: the mean duration for infected human for survivors.

ε : is generally small and measures the trickle of infection from the camel population into

the human one.

Assume,

N1i := S1i + I1i +R1i = 1, and

N2i := S2i + I2i +R2i = 1.

The following results in (Fig. 3.3, and 3.4) show the prevalence of the camel population

which match with results that have been shown by Kasem et al. 2018 [1] using the same

parameter values of the previous chapter 2.2.

The two species model of pairwise approximation Fig. 3.2 can be written as

d[S1]
dt

=− τ1[S1I1], (3.41a)

d[I1]
dt

=τ1[S1I1]− σ1[I1], (3.41b)

d[R1]
dt

=σ1[I1], (3.41c)

d[S1S1]
dt

=− 2τ1φ1[S1S1I1], (3.41d)

d[S1I1]
dt

=τ1([S1S1I1]− [I1S1I1]− [S1I1])− σ1[S1I1], (3.41e)

d[S1R1]
dt

=− τ1([I1S1R1] + σ1[S1I1), (3.41f)

d[I1I1]
dt

=2τ1([I1S1I1] + [S1I1])− 2σ1[S1I1), (3.41g)

d[I1R1]
dt

=τ1([I1S1R1] + [S1I]1) + σ1([I1I1]− [I1R1]), (3.41h)

d[R1R1]
dt

=2σ2[I2R2]. (3.41i)
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Figure 3.3: Prevalence SIR pairwise approximations (camel population).

d[S2]
dt

=− τ2[S2I2]− ετ2[S2I1], (3.41j)

d[I2]
dt

=τ2[S2I2] + ετ2[S1I1]− σ2[I2], (3.41k)

d[R2]
dt

=σ2[I2], (3.41l)

d[S2S2]
dt

=− 2τ2[S2S2I2]− 2ετ2f [S2S2I1], (3.41m)

d[S2I1]
dt

=τ2ε([S2S2I1]− [I1S2I1]− [S2I1])− σ2[S2I1], (3.41n)

d[S2I2]
dt

=ετ2(f [S2S2I1]− [I2S2I2]− [S2I2])− σ2[S2I2], (3.41o)

d[S2R2]
dt

=− τ2([I2S2R2] + σ2[S2I2), (3.41p)

d[I2I2]
dt

=2τ2([I2S2I2] + [S2I2])− 2σ2[S2I2), (3.41q)

d[I2R2]
dt

=τ2([I2S2R2] + [S2I2) + σ2([I2I2]− [I2R2]), (3.41r)

83



3.2 Pairwise Approximation Epidemic on Networks

Figure 3.4: Prevalence SIR pairwise approximations (camel population).

d[R2R2]
dt

=2σ2[I2R2], (3.41s)

where φi = (n− 1)/n, i = 1, 2.

Consider the system 3.41, which defines modification of the generalized the SIR model

with two populations. Each of these population consists of three groups susceptible, infectious

and recovered compartments. Most of the relations between group sizes [Si], [Ii], [Ri], i = 1, 2

are described by analogies equation 3.40. Notice, that this system describe evolution

of the singletons, [Si], [Ii],[Ri],i = 1, 2 and pairs [SiIi],[SiRi],[IiRi],i = 1, 2. First con-

sider all relations between all subjects of the our system [Si],[Ii],[Ri],i = 1, 2 and pairs

[SiIi],[SiRi],[IiRi], i = 1, 2. Notice, that relation in each population (in the first pop-

ulation between [S1],[I1],[R1],[S1I1],[S1R1],[I1R1] and in the second population between
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[S2],[I2],[R2],[S2I2],[S2R2],[I2R2] is same as in the system 3.40. This model includes ex-

isting on the pairs [XY ] in the system, if the system consists of singleton [X] and [Y ]. In our

case, we assume the existing relations between all singletons in each group. For vanish all

triplets [XY Z], we use the formula at [116]; such as,

[XY Z] = (n− 1)/n[XY ][Y Z]/[Y ], (3.42)

where n is the average number of contacts per individual, which assumes conditional

independence of the infection statuses of neighbours of a given number of individual. The

main assumption is using Markovian property of the system state in time t+ 1 depend only

from the state of the system in time t and do not depend on the state of the system in time

when s < t. Now consider in detail relations between two groups, which define relations

between two populations. For this aim we consider only one relation between two popula-

tions: between infected individuals from population 1 (camel population,I1) and susceptible

individuals from population 2 (human population, S2). This new variable will generate new

dependencies in population 2. Then number of the susceptible individuals in the human

population decrease by ετ2[S2I1], number of the infected individuals in the human population

increase by ετ2[S2I1]. Notice, that this two additional terms do not change general number

of the individuals in the human population: d[S2]/dt+ d[I2]/dt+ d[R2]/dt = (dN2)/dt = 0,

where N2 number of individuals in the second (human) population. So, new system consist

three main parts [125]

1- Subsystem, which describe of the dynamic of the population 1 (camel population) variables

[S1],[I1],[R1],[S1I1],[S1R1],[I1R1];

2- Subsystem, which describe of the dynamic of the population 2 (human population)

variables[S2],[I2],[R2],[S2I2],[S2R2],[I2R2];

3- Subsystem, which describe dynamic of the numerical relations between two populations

85



3.2 Pairwise Approximation Epidemic on Networks

variable [S2I1].

This system is shown in (Fig. 3.2). As we can see, the proposed system with two populations

contains two main subsystems and a third element (state S2I1), which connect these two

populations.

Using all previous descriptions and results of the works [116, 148], we can define dynamic

of the system with two populations as system of differential equations with 19 equations, by

using formula 3.42 to write 3.41 as,

d[S1]
dt

=− τ1[S1I1], (3.43a)

d[I1]
dt

=τ1[S1I1]− σ1[I1], (3.43b)

d[R1]
dt

=σ1[I1], (3.43c)

d[S1S1]
dt

=− 2τ1φ1
[S1S1][S1I1]

[S1] , (3.43d)

d[S1I1]
dt

=τ1(φ1
[S1S1][S1I1]

[S1] − φ1
[S1I1]2

[S1] − [S1I1])− σ1[S1I1], (3.43e)

d[S1R1]
dt

=− τ1φ1
[I1S1][S1R1]

[S1] + σ1[S1I1], (3.43f)

d[I1I1]
dt

=2τ1(φ1
[I1S1][S1R1]

[S1] + [S1I1])− 2σ1[I1I1], (3.43g)

d[I1R1]
dt

=τ1φ1( [I1S1][S1R1]
[S1] + σ1([I1I1]− [I1R1])), (3.43h)

d[R1R1]
dt

=2σ1[I1R1], (3.43i)

d[S2]
dt

=− τ2[S2I2]− ετ2[S2I1], (3.43j)

d[I2]
dt

=τ2[S2I2] + ετ2[S2I1]− σ2[I2], (3.43k)

d[R2]
dt

=σ2[I2], (3.43l)

d[S2S2]
dt

=− 2τ2φ2
[S2S2][S2I2]

[S2] − 2ετ2φ2
[S2S2][S2I2]

[S2] , (3.43m)
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(a)

(b)
Flow diagrams illustrating the fluxes among singles compartments left and pairs
compartments right, where the transmission of infection involve animal-animal,

animal-human, and human-human. The SIS scenario is on the (top), while the SIR case is on
the (bottom). In the compartments of pairs, solid lines represent infections from inside pair
with a rate dependent on the pair or from outside of the pair with a rate dependent on the

triple, while wiggly lines show recovery [129].
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d[S2I1]
dt

=ετ2(φ2
[S2S2][S2I1]

[S2] − φ2
[S2I1]2

[S2] − [S2I1])− σ2[S2I1], (3.43n)

d[S2I2]
dt

=τ2(φ2
[S2S2][S2I1]

[S2] − φ2
[S2I2]
[S2] − [S2I2])− σ2[S2I2], (3.43o)

d[S2R2]
dt

=− τ2φ2
[I2S2][S2R2]

[S2] + σ2[S2I2], (3.43p)

d[I2I2]
dt

=2τ2(φ2
[S2I2]2

[S2] + [S2I2])− 2σ2[I2I2], (3.43q)

d[I2R2]
dt

=τ2(φ2
[I2S2][S2R2]

[S2] + σ2([I2I2]− [I2R2])), (3.43r)

d[R2R2]
dt

=2σ2[I2R2], (3.43s)

which describe the evolution of the singletons and pairs where φi = (n−1)/n, i = 1, 2. If we

use the assumptions of relations in the objects of [Si] , [Ii] , [Ri], [SiIi], [SiRi] + [IiRi],i = 1, 2,

then the next conditions are in hold

d[Si]
dt

+ d[Ii]
dt

+ d[Ri]
dt

= 0, i = 1, 2 (3.44a)
2∑
i=1

(d[SiSi]
dt

+d[SiIi]
dt

+ d[SiRi]
dt

+ d[IiIi]
dt

+ d[IiRi]
dt

+ d[RiRi]
dt

) = 0. (3.44b)

First condition in 3.44 means that number in the each population is constant and satisfy

next relations

[S1] + [I1] + [R1] = N1, (3.45a)

[S2] + [I2] + [R2] = N2, (3.45b)

where N1and N2 – numbers of individuals in first and second population respectively.

Second condition in 3.44 indicates that the number of pairs in the system 3.43 is constant
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and satisfy the following:

2∑
i=1

([SiSi] + [SiIi] + [SiRi] + [IiIi] + [IiRi] + [RiRi]) = n ∗ (N1 +N2) , (3.46a)

where n is the average number of contacts per individual.

The condition 3.44 is also true, so general assumption of the generalized SIR model for

two populations holds. Lets rewrite system 3.43 in more simple form

dx

dt
= f (x) , (3.47a)
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where,

x =



[S1]

[I1]

[R1]

[S1S1]

[S1I1]

[S1R1]

[I1I1]

[I1R1]

[R1R1]

[S2]

[I2]

[R2]

[S2S2]

[S2I2]

[S2R2]

[I2I2]

[I2R2]

[R2R2]

[S2I1]



.

f – function, which define right-hand side of the equation 3.43. Using relations 3.44, we

can reduce the system 3.43 as

d[S1]
dt

=− τ1[S1I1], (3.48a)

d[I1]
dt

=τ1[S1I1]− σ1[I1], (3.48b)
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d[S1S1]
dt

=− 2τ1φ1
[S1S1][S1I1]

[S1] , (3.48c)

d[S1I1]
dt

=τ1(φ1
[S1S1][S1I1]

[S1] − φ1
[S1I1]2

[S1] − [S1I1])− σ1[S1I1], (3.48d)

d[S1R1]
dt

=− τ1φ1
[I1S1][S1R1]

[S1] + σ1[S1I1], (3.48e)

d[I1I1]
dt

=2τ1(φ1
[I1S1][S1R1]

[S1] + [S1I1])− 2σ1[I1I1], (3.48f)

d[I1R1]
dt

=τ1φ1( [I1S1][S1R1]
[S1] + σ1([I1I1]− [I1R1])), (3.48g)

d[R1R1]
dt

=2σ1[I1R1], (3.48h)

d[S2]
dt

=− τ2[S2I2]− ετ2[S2I1], (3.48i)

d[I2]
dt

=τ2[S2I2] + ετ2[S2I1]− σ2[I2], (3.48j)

d[S2S2]
dt

=− 2τ2φ2
[S2S2][S2I2]

[S2] − 2ετ2φ2
[S2S2][S2I2]

[S2] , (3.48k)

d[S2I1]
dt

=ετ2(φ2
[S2S2][S2I1]

[S2] − φ2
[S2I1]2

[S2] − [S2I1])− σ2[S2I1], (3.48l)

d[S2I2]
dt

=τ2(φ2
[S2S2][S2I1]

[S2] − φ2
[S2I2]
[S2] − [S2I2])− σ2[S2I2], (3.48m)

d[S2R2]
dt

=− τ2φ2
[I2S2][S2R2]

[S2] + σ2[S2I2], (3.48n)

d[I2I2]
dt

=2τ2(φ2
[S2I2]2

[S2] + [S2I2])− 2σ2[I2I2], (3.48o)

d[I2R2]
dt

=τ2(φ2
[I2S2][S2R2]

[S2] + σ2([I2I2]− [I2R2])), (3.48p)

(3.48q)

Elements [R1] , [R2] and [R2R2], we define from equations 3.44 and 3.45 as

[R1] =N1 − [S1]− [I1], (3.49a)

[R2] =N2 − [S2]− [I2], (3.49b)
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[R2R2] = n ∗ (N1 +N2)− (
2∑
i=1

([SiSi]+[SiIi] + [SiRi] + [IiIi] + [IiRi]) + [S2I1] + [R1R1]).

(3.49c)

Lets rewrite system 3.48 in the vector form:

dx

dt
= g(x).

Observe that the functions f (x) and g(x) are non-linear by parameters x. This means

that we must to use numerical methods for estimation for the solutions of the system,

g(x) = 0. (3.50)

System 3.50 define all stationary points of the system 3.48. This means that stationary

points depend from initial conditions:

xt=0 = x0,

as what has been shown in the results at the following in ( Fig. 3.6a and Fig. 3.6b).

92



3.2 Pairwise Approximation Epidemic on Networks

(a)

(b)

Figure 3.6: (a) Determinstic pairwise approximation, and (b) Stochasic pairwise approxima-
tion.
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Chapter 4

Environmental Infection Transmission

4.1 Introduction

MERS-COV can be transmitted through a contaminated environment such as air, fumes,

foodstuffs, hands, and fluids. In this chapter we study a model of virus transmission between

hosts, and through the environment. The environmental communication mechanisms need

more objectively comprehensive interaction network formulations than those focused on social

interactions or physical closeness.

Physical and behavioral aspects obtained from empirical investigations as the creation

of transmission parameters that can be independently tested in environmental field trials,

along with the incidence of pathogens in the area, and the transmission factor from fomites

to hands [149]. In addition, Brouwer et. al 2017 formulate a transmission pathways in a

way that enables the estimation of possible environmental regulation consequences and the

analysis of measures of environmental pathogens [150]. We develop an SIRV model, where

V stands for virus in the environment. Model results could be used to inform public health

mitigation strategies at households, groceries and hospitals, including hand washing, and

surface cleaning. Developing a mechanical theory of biological dependent transmission rates
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determined by zoology factors that are easily calculated in the field.

4.2 Model Formulation

S: Susceptible, I: Infected, R: Recovered, V : Virus in the environment,

satisfies the below differential system:

dS

dt
=Λ− ρπSV − βSI − dS, (4.1a)

dI

dt
=ρπSV + βSI − γI − δI − dI, (4.1b)

dR

dt
=γI − dR, (4.1c)

dV

dt
=αI − V [(S + I +R)ρ+ µ+ c] , (4.1d)

see the flow chart of environmental infection transmission model 4.1.

Figure 4.1: Flow chart for the environmental infection transmission model.
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Parameters List
Parameter Description
Λ recruitment rate of humans population.
d natural death of humans .
δ disease death rate of humans.
β contact rate between susceptible individual and infectious individual.
ρ the fraction of V picked up by each individual.
π the probability of a susceptible turn into infectious per pathogen V picked

up.
γ the rate of recovery.
α the number of pathogens that an infectious individual deposits into the

environment.
µ the rate of eliminated pathogens from the environment by naturally dying.
c the rate of pathogens extracted to be degrade by decontamination or to

be cleaned or otherwise eliminated from the environment.

Table 4.1: Parameters description for environmental infection transmission model.

Consider the following system



dS
dt

= Λ− ρπSV − βSI − dS,

dI
dt

= ρπSV + βSI − γI − δI − dI,

dR
dt

= γI − dR

dV
dt

= αI − V {(I +R + S) ρ+ µ+ c} ,

(4.2)

where the parameters are described in the table 4.1.
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4.3 Nonnegativity:

4.3.1 Nonnegativity of S(t):

Assume that,
dS

dt
= Λ− ρπSV − βSI − dS ,

dS

dt
+ (ρπV + βI + d)S = Λ .

Since Λ > 0, then
dS

dt
+ (ρπV + βI + d)S > 0 ,

dS

dt
+ ΦS (t)S > 0 , (4.3)

where,

ΦS (t) = ρπV + βI + d . (4.4)

Then for t > 0 (4.3) can be written as,

dS

dt
exp


t∫

0

ΦS (τ) dτ
+ ΦS (t)S exp


t∫

0

ΦS (τ) dτ
 > 0 ,

d

dt

S (t) exp


t∫
0

ΦS (τ) dτ

 > 0 ,

S (t) exp


t∫
0

ΦS (τ) dτ

∣∣∣∣∣∣
t

0

> 0 ,

S (t) exp


t∫
0

ΦS (τ) dτ
− S (0) > 0 ,

S (t) > S (0) exp
−

t∫
0

ΦS (τ) dτ
 . (4.5)
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Hence, since S(0) ≥ 0, then for any t ≥ 0 we get that S(t) ≥ 0.

4.3.2 Nonnegativity of I(t) and V (t)

Consider the following statements,


dI
dt

= ρπSV + βSI − γI − δI − dI,

dV
dt

= αI − V {(I +R + S) ρ+ µ+ c} ,
(4.6)

we have

dI

dt
V + I

dV

dt
= ρπSV 2 + αI2 + {βS − γ − δ − d− (I +R + S) ρ− µ− c} IV ,

d

dt
(IV ) + {γ + δ + d+ (I +R + S) ρ+ µ+ c− βS} IV = ρπSV 2 + αI2 .

Since S(t) ≥ 0, ρ > 0, π > 0 and α > 0, then for any t ≥ 0: ρπSV 2 + αI2 ≥ 0. Hence,

d

dt
(IV ) + {γ + δ + d+ (I +R + S) ρ+ µ+ c− βS} IV ≥ 0 ,

d

dt
(IV ) + ΦIV (t) IV ≥ 0 , (4.7)

where

ΦIV (t) = γ + δ + d+ (I +R + S) ρ+ µ+ c− βS . (4.8)

Then for t > 0 (4.7) can be written as

d

dt
(IV ) exp


t∫

0

ΦIV (τ) dτ
+ ΦIV (t) IV exp


t∫

0

ΦIV (τ) dτ
 ≥ 0 ,
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d

dt

I (t)V (t) exp


t∫
0

ΦIV (τ) dτ

 ≥ 0 ,

I (t)V (t) exp


t∫
0

ΦIV (τ) dτ

∣∣∣∣∣∣
t

0

≥ 0 ,

I (t)V (t) exp


t∫
0

ΦIV (τ) dτ
− I (0)V (0) ≥ 0 ,

I (t)V (t) ≥ I (0)V (0) exp
−

t∫
0

ΦIV (τ) dτ
 . (4.9)

Since I(0) ≥ 0 and V (0) ≥ 0, then for any t ≥ 0 we get that I(t)V (t) ≥ 0. It is also easy to

detect for some t > 0 we have I(t)V (t) = 0, as a consequence this means that I(t) ≡ 0 and

V (t) ≡ 0. Therefore, if I(t) 6= 0 and V (t) 6= 0 for t > 0: I(t)V (t) > 0, hence, I(t) > 0 and

V (t) > 0 (the case I(t) < 0 and V (t) < 0 is impossible because I(0) ≥ 0 and V (0) ≥ 0). As

a result, we have that if I(0) ≥ 0 and V (0) ≥ 0, then for any t ≥ 0 we obtain I(t) ≥ 0 and

V (t) ≥ 0.

4.3.3 Nonnegativity of R(t)

Looking at
dR

dt
= γI − dR ,

it takes the form
dR

dt
+ dR = γI .

Since I(t) ≥ 0 and γ > 0, then for any t ≥ 0: γI ≥ 0. In this case, we write,

dR

dt
+ dR ≥ 0 . (4.10)
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Thus for t > 0 (4.10) could be generated as

dR

dt
exp {dt}+ dR exp {dt} ≥ 0 ,

d

dt
[R (t) exp {dt}] ≥ 0 ,

R (t) exp {dt}|t0 ≥ 0 ,

R (t) exp {dt} −R (0) ≥ 0 ,

R (t) ≥ R (0) exp {−dt} . (4.11)

Consequently R(0) ≥ 0, then for any t ≥ 0 we get that R(t) ≥ 0.

4.4 Boundedness of N(t)

Effectuate the following



dS
dt

= Λ− ρπSV − βSI − dS,

dI
dt

= ρπSV + βSI − γI − δI − dI,

dR
dt

= γI − dR,

(4.12)

by adding equations (4.12), we obtain

dS

dt
+ dI

dt
+ dR

dt
= Λ− δI − d (S + I +R) ,

d

dt
(S + I +R) = Λ− δI − d (S + I +R) . (4.13)
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Since N = S + I +R, then (4.13) takes the form

dN

dt
= Λ− δI − dN ,

dN

dt
+ dN − Λ = −δI . (4.14)

Since I(t) ≥ 0 and δ > 0, then for any t ≥ 0: δI ≥ 0. Hence,

dN

dt
+ dN − Λ ≤ 0 . (4.15)

Then for t > 0 (4.15) can be written as

dN

dt
exp {dt}+ dN exp {dt} − Λ exp {dt} ≤ 0 ,

d

dt

[(
N (t)− Λ

d

)
exp {dt}

]
≤ 0 ,

(
N (t)− Λ

d

)
exp {dt}

∣∣∣∣∣
t

0
≤ 0 ,

(
N (t)− Λ

d

)
exp {dt} −

(
N (0)− Λ

d

)
≤ 0 ,

(
N (t)− Λ

d

)
exp {dt} ≤ N (0)− Λ

d
,

N (t) ≤ Λ
d

+
(
N (0)− Λ

d

)
exp {−dt} . (4.16)

Hence, if N(0) ≤ Λ
d
, then for any t ≥ 0 we get that N(t) ≤ Λ

d
.

If N(0) > Λ
d
, then it follows that N(t) ≤ N(0). Therefore, in the general case, we arrive

at N(t) ≤ max
(
N(0), Λ

d

)
.
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4.5 Derivation of R0

Consider the system



dS
dt

= Λ− ρπSV − βSI − dS,

dI
dt

= ρπSV + βSI − γI − δI − dI,

dR
dt

= γI − dR,

dV
dt

= αI − V {(I +R + S) ρ+ µ+ c} ,

(4.17)

Let’s transform the second equation of the system (4.17) as follows:

dI

dt
= ρπSV + βSI − εI ,

dI

dt
= εI

(
ρπSV

εI
+ βS

ε
− 1

)
, (4.18)

where

ε = γ + δ + d . (4.19)

From the 4th equation, in the system (4.17) subject to dV
dt

= 0, we obtain

0 = αI − V {Nρ+ ψ} ,

V = αI

Nρ+ ψ
, (4.20)

where

N = I +R + S , (4.21)

ψ = µ+ c . (4.22)
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Substituting (4.20) into (4.18), we attain

ρπS(0)V
εI

+ βS(0)
ε

= βS(0)
ε

(
1 + ρπV

βI

)
= βS(0)

ε

(
1 + ρπα

β (Nρ+ ψ)

)
. (4.23)

Assuming S(0) = N in (4.23), we get

R0 = βN

ε

(
1 + ρπα

β (Nρ+ ψ)

)
. (4.24)

Start with one infected person, we can have
βN
ε

: direct transmission to susceptibles and viral shedding, which then infects susceptibles.
α
ε

: viral shedding from the host to the environment.
ρπβN

β(Nρ+ψ) : infection of a susceptible from the environment.

It can be noted that if we substitute N = Λ
d

(or in other words, taking into account the

parameter values for disease-free equilibrium (S = Λ
d
, I = R = V = 0) in (4.24), then we get

the expression of R0:

R0

(
N = Λ

d

)
= βΛ

εd

(
1 + ρπαd

β (Λρ+ dψ)

)
. (4.25)

4.5.1 Derivation of R0 via next generation matrix

Let’s rewrite the system of equations (4.1) in the following form (using the sequence I, V,R, S):



dI
dt

= ρπSV + βSI − εI,

dV
dt

= αI − V {(I +R + S) ρ+ ψ} ,

dR
dt

= γI − dR,

dS
dt

= Λ− ρπSV − βSI − dS.

(4.26)
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Consider the following matrices:

x =



I

V

R

S


, (4.27)

f =



(ρπV + βI)S

0

0

0


, (4.28)

w =



−εI

αI − V {(I +R + S) ρ+ ψ}

γI − dR

Λ− ρπSV − βSI − dS


. (4.29)

Further, considering only the variables (I, V ), we construct the following matrices:

F =
(
∂fi
∂xj

)
=

 βS ρπS

0 0

 , (4.30)

W =
(
∂wi
∂xj

)
=

 −ε 0

α− ρV −{(I +R + S) ρ+ ψ}

 , (4.31)

where i, j = 1, 2, hence, x1 = I, x2 = V . Then

det W = ε {(I +R + S) ρ+ ψ} , (4.32)
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and

W−1 = 1
det W

 W22 −W12

−W21 W11

 =

= 1
ε {(I +R + S) ρ+ ψ}

 −{(I +R + S) ρ+ ψ} 0

− (α− ρV ) −ε

 . (4.33)

Accordingly,

FW−1 =

 −
βS{(I+R+S)ρ+ψ}+ρπS(α−ρV )

ε{(I+R+S)ρ+ψ} − ρπS
(I+R+S)ρ+ψ

0 0

 . (4.34)

Now let’s find the eigenvalues of the matrix FW−1:

∣∣∣∣∣∣∣∣
−βS{(I+R+S)ρ+ψ}+ρπS(α−ρV )

ε{(I+R+S)ρ+ψ} − λ − ρπS
(I+R+S)ρ+ψ

0 −λ

∣∣∣∣∣∣∣∣ = 0 ,

λ

(
λ+ βS {(I +R + S) ρ+ ψ}+ ρπS (α− ρV )

ε {(I +R + S) ρ+ ψ}

)
= 0 . (4.35)

Subsequently, we have two solutions

λ1 = 0 , (4.36)

and

λ2 = −βS
ε

(
1 + ρπ (α− ρV )

β {(I +R + S) ρ+ ψ}

)
, (4.37)

Then, taking into account the parameter values for disease-free equilibrium (S = Λ
d
,

I = R = V = 0), we get

R0 = |λ|max = βΛ
εd

(
1 + ρπαd

β {Λρ+ dψ}

)
. (4.38)
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The basic reproduction number is the same at( 4.38) as in the previous section in the form

(4.25).

4.6 Stability Analysis:

4.6.1 Existence of the disease-free equilibrium

The equilibrium points are determined by the following system of equations



Λ− ρπSV − βSI − dS = 0

ρπSV + βSI − γI − δI − dI = 0,

γI − dR = 0

αI − V {(I +R + S) ρ+ µ+ c} = 0.

(4.39)

Adding the 1st and 2nd equations in (4.39), we obtain

Λ− dS − (γ + δ + d) I = 0 ,

S = Λ− (γ + δ + d) I
d

,

S = Λ− εI
d

, (4.40)

where

ε = γ + δ + d . (4.41)

From the 3rd equation in the system (4.39) we have

R = γ

d
I . (4.42)
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Substituting (4.40) and (4.42) in the 4th equation (4.39), we obtain

αI − V
{(

I + γ

d
I + Λ− εI

d

)
ρ+ µ+ c

}
= 0 ,

αI − V
{

Λ− δI
d

ρ+ µ+ c

}
= 0 ,

V = αdI

(Λ− δI) ρ+ dψ
, (4.43)

where

ψ = µ+ c . (4.44)

Then from the 2nd equation (4.39) we obtain

(ρπV + βI)S − εI = 0 ,

(
ρπ

αdI

(Λ− δI) ρ+ dψ
+ βI

)
Λ− εI
d

− εI = 0 ,

or

I

[(
απρd

(Λ− δI) ρ+ dψ
+ β

)
Λ− εI
d

− ε
]

= 0 . (4.45)

From equation (4.45) it follows that one of the roots is

I = 0 . (4.46)

Then from (4.40), (4.42) and (4.43) we obtain

S = Λ
d
, (4.47)

R = 0 , (4.48)
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V = 0 . (4.49)

Formulas (4.46), (4.47),(4.48), and (4.49) correspond to the disease-free equilibrium

(Λ
d
, 0, 0, 0). (4.50)

4.6.2 Local stability of the disease-free equilibrium

Let’s consider the Jacobian of the system (4.39)

J =



−ρπV − βI − d −βS 0 −ρπS

ρπV + βI βS − ε 0 ρπS

0 γ −d 0

−ρV α− ρV −ρV −{(I +R + S) ρ+ ψ}


. (4.51)

Substituting (4.50) into (4.51) yields

J0 =



−d −βΛ
d

0 −ρπΛ
d

0 βΛ
d
− ε 0 ρπΛ

d

0 γ −d 0

0 α 0 −
(

Λρ
d

+ ψ
)


. (4.52)

Next, we solve the characteristic equation

|J0 − λE| = 0 ,
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−d− λ −βΛ
d

0 −ρπΛ
d

0 βΛ
d
− ε− λ 0 ρπΛ

d

0 γ −d− λ 0

0 α 0 −
(

Λρ
d

+ ψ
)
− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

or

(λ+ d)2
[
λ2 +

{
ε+ ψ + Λ

d
(ρ− β)

}
λ+

(
ε− βΛ

d

)(
Λρ
d

+ ψ

)
− ρπΛ

d
α

]
= 0. (4.53)

Equation (4.53) has the following solutions

λ1 = −d , (4.54)

λ2 = −d , (4.55)

λ3 = 1
2

Λ
d

(β − ρ)− ε− ψ +

√√√√{ε− ψ − Λ
d

(β + ρ)
}2

+ 4ρπΛ
d
α

 , (4.56)

λ4 = 1
2

Λ
d

(β − ρ)− ε− ψ −

√√√√{ε− ψ − Λ
d

(β + ρ)
}2

+ 4ρπΛ
d
α

 . (4.57)

From (4.54), (4.55) and (4.57) it is clear that λ1 < 0, λ2 < 0, since d > 0.

Let’s find when λ3 = 0:

1
2

Λ
d

(β − ρ)− ε− ψ +

√√√√{ε− ψ − Λ
d

(β + ρ)
}2

+ 4ρπΛ
d
α

 = 0 ,

{
ε− ψ − Λ

d
(β + ρ)

}2

+ 4ρπΛ
d
α =

{
ε+ ψ − Λ

d
(β − ρ)

}2

,

4ρπΛ
d
α = 4

(
ε− βΛ

d

)(
Λρ
d

+ ψ

)
,
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ρπαd

β (Λρ+ dψ) = εd

Λβ − 1 ,

βΛ
εd

(
1 + ρπαd

β (Λρ+ dψ)

)
= 1 ,

Then,

R0 = βΛ
εd

(
1 + ρπαd

β (Λρ+ dψ)

)
. (4.58)

Hence, if R0 > 1, then λ3 > 0 and if R0 < 1, thus λ3 < 0. Therefore, the disease-free

equilibrium (DFE) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Furthermore, the fact that λ4 < 0 is seen from formula (4.57). There are two cases:

The first case - suppose that ε− ψ − Λ
d

(β + ρ) ≥ 0, then λ4 can be written as:

λ4 = 1
2

[
−
{
ε− ψ − Λ

d
(β + ρ)

}
− 2Λ

d
ρ− 2ψ−

−

√√√√{ε− ψ − Λ
d

(β + ρ)
}2

+ 4ρπΛ
d
α

 .

The first term is ≤ 0, and the other three are < 0, so we can get that λ4 < 0.

The second case - suppose that ε− ψ − Λ
d

(β + ρ) < 0, then

√√√√{ε− ψ − Λ
d

(β + ρ)
}2

+ 4ρπΛ
d
α >

∣∣∣∣∣ε− ψ − Λ
d

(β + ρ)
∣∣∣∣∣ ,

that is, √√√√{ε− ψ − Λ
d

(β + ρ)
}2

+ 4ρπΛ
d
α > −ε+ ψ + Λ

d
(β + ρ) .

Then, λ4 can be written as:

λ4 <
1
2

[
Λ
d

(β − ρ)− ε− ψ −
(
−ε+ ψ + Λ

d
(β + ρ)

)]
= −ψ − Λ

d
ρ < 0 .
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Hence, λ4 < 0.

4.6.3 Global stability of the disease-free equilibrium

Assume that Γ =
{

(S, I, R, V ) : S ≥ 0, I ≥ 0, R ≥ 0, V ≥ 0, N ≤ Λ
d

}
. From item 4.6.2 we

know that if 0 < R0 < 1, the DFE is locally asymptotically stable. According to Perko [151],

any solution of model system (4.1) starting in Γ must approach either an equilibrium or a

closed orbit in Γ. With reference to Kelley and Peterson [152], if the solution path approaches

a closed orbit, then this closed orbit must enclose equilibrium. Since at 0 < R0 < 1, DFE

(4.50) is located in the boundary of Γ, therefore there is no closed orbit in Γ. Hence, any

solution of system (4.1) with initial condition in Γ must approach the point DFE as t→∞.

Thus, the DFE is globally asymptotically stable in Γ when 0 < R0 < 1. When R0 > 1 the

DFE is globally asymptotically unstable.

4.6.4 Existence of the endemic disease equilibrium

In part 4.6.1, we considered one of the possible solutions to equation (4.45). Now consider

the second solution, which is found from the equation

(
απρd

(Λ− δI) ρ+ dψ
+ β

)
Λ− εI
d

− ε = 0 . (4.59)

Solving the equation (4.59), we obtain

[
απρ+ β

d
{(Λ− δI) ρ+ dψ}

]
(Λ− εI)− ε {(Λ− δI) ρ+ dψ} = 0 ,

βεδρI2 + {(εd− Λβ) δρ− βε (Λρ+ dψ)− απρεd} I+
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+ {(Λβ − εd) (Λρ+ dψ) + απρΛd} = 0 . (4.60)

We got the quadratic equation. The discriminant of the equation (4.60) has the form:

D = [(εd− Λβ) δρ− βε (Λρ+ dψ)− απρεd]2−

− 4βεδρ {(Λβ − εd) (Λρ+ dψ) + απρΛd} =

= [(εd− Λβ) δρ+ βε (Λρ+ dψ)− απρεd]2 +

+ 4βεαπρd {Λρ (γ + d) + εdψ} (4.61)

From the expression (4.61) it is clear that D > 0, therefore, equation (4.60) has two solutions:

I = 1
2βεδρ

{
− [(εd− Λβ) δρ− βε (Λρ+ dψ)− απρεd]±

√
D
}
. (4.62)

Since we need I > 0, S > 0, R > 0 and V > 0, then in (4.62) we select the the negative root.

As a result, we get a solution

I = −

√√√√[εd− Λβ
2βε + Λρ+ dψ

2δρ − απd

2βδ

]2

+ απd

βεδ2ρ
{Λρ (γ + d) + εdψ}+

+
[

Λρ+ dψ

2δρ − εd− Λβ
2βε + απd

2βδ

]
. (4.63)

The remaining parameters S, R, V corresponding to the new equilibrium can be found by

formulas (4.40), (4.42) and (4.43).

Then, endemic disease equilibrium can be written as

EDE = Eq+ = (S∗∗, I∗∗, R∗∗, V ∗∗).
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Thus,

EDE =(
Λ− ε( 1

2βεδρ

{
− [(εd− Λβ) δρ− βε (Λρ+ dψ)− απρεd]±

√
D
}

)
d

,

1
2βεδρ

{
− [(εd− Λβ) δρ− βε (Λρ+ dψ)− απρεd]±

√
D
}
,

γ

d
[ 1
2βεδρ

{
− [(εd− Λβ) δρ− βε (Λρ+ dψ)− απρεd]±

√
D
}

],

αd( 1
2βεδρ

{
− [(εd− Λβ) δρ− βε (Λρ+ dψ)− απρεd]±

√
D
}

)(
Λ− δ( 1

2βεδρ

{
− [(εd− Λβ) δρ− βε (Λρ+ dψ)− απρεd]±

√
D
}

)
)
ρ+ dψ

). (4.64)

4.7 Conclusion

An environmental infection transmission system framework SIRV has been analyzed to

understand the impact of human interaction with pathogens in the environment. It is

described as a step forward into enhanced evaluation of environmental intervention strategies,

interpretation of active network, and improved utilisation environmental composites to

investigate transmission.

The environment factors are the infection elimination rate, µ, the rate at which people

pick up ρ, and deposit infectious agents, α. They show whether spread of the pathogens, is

density dependent (orienting), frequency dependent (high proportion), or a combination of

the two.

The increasing environmental proportion, α
γ
, indicates cumulative agent deposition for

every infection and the probability of an epidemic, where γ is specified as the recovery rate.

These findings give theoretical frameworks for investigating the role of the environment in

disease transmission, as well as a methodology for interpreting environmental evidence to

guide environmental interventions.
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Chapter 5

Public Health Education

Mathematical Model

5.1 Introduction

The aim of this study is demonstrating the successful public awareness campaigns which

minimizing the incidence of infection. Making individuals aware of the preventative measures

as early as necessary is an effective way of slowing the spread of the disease. We establish and

analyze a mathematical model for the dynamics of the MERS-CoV infection, including public

health education. The basic reproduction number RE is derived and used to assess once

the epidemic breaks out in the community which occurs in an endemic equilibrium or dies

out of a disease-free state. Numerical analyses are provided to demonstrate our theoretical

predictions. Analytical and empirical findings indicate that public health awareness is a very

successful prevention mechanism for the eradication of a MERS-CoV infestation in large

endemic populations. This study investigates the effectiveness of public health strategies on

the dynamics of disease spread among a population.

In KSA, the public health used a variety of novel treatments including immunosuppressants
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and antivirals for MERS-CoV patients. For example, many patients received broad-spectrum

antibiotics and hydrocortisone , and others were treated with interferon beta or alpha,

also another patients got treated by anti-viral combinations as mycophenolate mofetil, or

extracorporeal membrane oxygenationc for those patients who required intensive care unit

(ICU) care [153].

During 2014, the evaluation of this suggestion among a large cohort of MERS-CoV patients

was assessed in the Jeddah region of KSA [154]. The researchers identified that, according to

the responders, the most significant reproductive-disorder is uterine infection (60.2%) followed

by obesity (22.3%) biological conditions adhesions (3.9%), hormonal disturbances (7.8%),

and repeat breeders (2.9)%. Of the camel herders, 46% described cases in the last season

between 2015 and 2016, while 78.6% reported that preceding occurrence of abortion in their

herds and incidence of no history of absorption is 21.4% [155]. Therefore, applying health

education strategies are very important to reduce the disease cases. Another study designated

the medical and clinical features of all 186 patients with confirmed cases of MERS-CoV

infection during the epidemic in the Republic of Korea. The researchers compared the medical

features of the deceased and clinical characteristics of survivors for 28 days at the beginning

of the epidemic. The intermediate ages of the patients were 55 years and male patients were

predominant over female patients. The total patients had a co-existing medical condition

including diabetes and solid organ malignancy [156] 39 patients (approximately 21.0%) were

healthcare workers were most shared is 38.6% and these two cases approximately 1.1% were

asymptomatic. The comparison with the deceased and survivors was more frequent and older

had a co-existing medical conditions.

Researchers also reported involvement with (MERS-CoV) infection in Saudi Arabia at a

single centre. Seventy successive patients were analysed, with patients mostly being older

(having a median age of 62 years), while the male is 46, 65.7% that had the health-care

achievement of infection of 39, and 55.7%. They included, the patient with dyspnea are 42,
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60%, with cough 38, 54.3% and fever (43, 61.4%), and all these symptoms are concluded

in the most common symptoms. The number who developed pneumonia is 63 (90%) and

those that may require intensive care is 49 (70%). The infections occurred commonly in

clusters. The liberated risk factors for severe infection that may demand intensive care

(which included associated infections, including odds ratio (OR)) is 14.13, (95%) with low

albumin (Odd Ratio-6.31, 95% confidence of interval 1.24 to 31.90; p = 0.026 and also has

different confidence interval (CI) 1.58 to 126.09, p = 0.018). The mortality was high at 42,

(60%), with an age of 65 years or older linked with greater mortality; The Odds Ratio is

4.39, 95% with the confidence of Interval 2.13-9.05; p = 0.001. By this, researchers conclude

that the MERS-CoV can form the basis for severe infection that has high mortality and

requires concentrated care. The low albumin and the related infections were established to be

interpreters. The simple infection at the age of 65 years was the only forecaster of increased

mortality [157]. The epidemiological studies recognized diabetes as the main comorbidity

connected with lethal and severe MERS-CoV infection.

Public health initiatives are crucial in identifying health concerns because they operate

as a key source of knowledge and impact changes in people’s behaviour. As a result, it is

important to investigate epidemic transmission and devise effective prevention, control, and

containment measures. Individuals’ reactions to a disease threat are primarily determined by

risk perception, which is obtained essentially from information given to the public by the

authorities, such as the number of infections, hospitalizations, and fatalities recorded by the

public health department [158, 159]. The guidelines for infection prevention, control, and

public health education program for (MERS-CoV) Infection was adopted from the ministry

of health in KSA [160].

116



5.2 Model Formulation Public Health Education Mathematical Model

Figure 5.1: Flow chart for Public Health Education Mathematical Model.

5.2 Model Formulation

To model the dynamics of the population, we split the population into a number of distinct

compartments. At time t each compartment is defined as S(t): Susceptible, E(t): Educated,

I(t): Infected, T (t): Treated, and R(t): Recovered. The population satisfies the system of

differential equations
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dS

dt
= π − βSI − (e+ µ)S ,

dE

dt
= eS − αβEI − µE ,

dI

dt
= βSI + αβEI − (m+ dI + rI + µ)I ,

dT

dt
= mI − (dT + rT + µ)T ,

dR

dt
= rII + rTT − µR .



(5.1)

The parameters be defined in the table 5.1 as

Parameters List

Parameter Description

π Recruitment rate.

µ The rate of the natural death.

e Intervention program of public health and disseminate strategies educa-

tion.

α The effect of reducing the infection due to public health education.

β Disease transmission contact rate.

m The rate of movement from being infected to be in treated.

dI The death rate from infected individuals.

dT The death rate from treated individuals.

rI The recovery rate from infected individuals.

rT The recovery rate from treated individuals.

Table 5.1: Parameters description for public health education mathematical model

The awareness techniques of public health propagate to susceptible individuals is given by

118



5.2 Model Formulation Public Health Education Mathematical Model

the parameter e. As the may not be permanent or the techniques used may not be particularly

successful, the experience of taking control measures slowly wears off, and so on through this

process. The impact of instructional approaches will be decreased, and then informed people

infected at a lower rate αβEI, where 0 < α < 1 . Community health awareness decreases

individual infection by fraction α . So, in this work, 0 < α < 1 because α = 0 means public

health education is completely effective in preventing MERS − CoV infection, and α = 1

implies education is not sufficient [161].

where the total population is denoted as

N(t) = S(t) + E(t) + I(t) + T (t) +R(t). (5.2)

In order to simplify some of the equations in the subsequent linear stability analysis, we

define
D1 = e+ µ,

D2 = m+ dI + rI + µ,

D3 = dT + rT + µ ,


(5.3)

so that the model 5.1 can be written as

dS

dt
= π − βSI −D1S,

dE

dt
= eS − αβEI − µE,

dI

dt
= βSI + αβEI −D2I,

dT

dt
= mI −D3T ,

dR

dt
= rII + rTT − µR .



(5.4)

Since the system (5.4) demonstrate a human population, it is important that all its state
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variables and associated parameters are non-negative for all time, t. Hence, the following

non-negativity result holds for the state variables in the model (5.4).

5.3 Positivity and Boundedness

Theorem 5.3.1. Let the initial conditions for the model (5.4) be S(0) > 0, E(0) > 0,

I(0) > 0, T (0) > 0, and R(0) > 0. Solutions (S(t), E(t), I(t), T (t), R(t)) of the model (5.4),

with positive initial conditions, will remain positive for all time t > 0 .

Proof. Let

t1 = sup{t > 0 : S > 0, E > 0, I > 0, T > 0, R > 0} > 0.

That is, since we are dealing with humans, all the sub populations must be non negative and

the positivity must not fail in order to for the model to be realistic. The first equation of

system (5.4) is

dS

dt
=π − βSI −D1S ,

which we rewrite it as

dS

dt
+D1S + φS = π, (5.5)

where φ = βI. We solve equation (5.5) by using the integrating factor

ψ = exp
(
D1t+

∫ t

0
φ(τ)dτ

)
. (5.6)
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Multiplying through by ψ, and after some simplification, we have

d

dt

[
S(t)exp

(
D1t+

∫ t

0
φ(τ)dτ

)]
= π

[
exp

(
D1t+

∫ t

0
φ(τ)dτ

)]
. (5.7)

Therefor, integrating from t = 0 to t1 yields

S(t1) = S(0) exp
(
−D1t1 −

∫ t1

0
φ(τ)dτ

)
+ π exp

(
−D1t1 −

∫ t1

0
φ(τ)dτ

) ∫ t1

0
exp

(
D1s+

∫ s

0
φ(τ)dτ

)
ds > 0. (5.8)

In particular, the trivial cases are expressed in the following:

Ė(t) ≥ −µE =⇒ E(t) > 0,

İ(t) ≥ −D2I =⇒ I(t) > 0,

Ṫ (t) ≥ −D3T =⇒ T (t) > 0,

Ṙ(t) ≥ −µR =⇒ R(t) > 0,

provided that the initial conditions E(0) > 0, I(0) > 0, T (0) >,R(0) > 0.

The dynamics of the model (5.4) are analyzed in the following invariant region:

D1 =
{

(S,E, I, T,R) ∈ R5
+ :

{
N ≤ π

µ

}}
. (5.9)

We claim that

Lemma 5.3.1. The domain D1 is positively invariant and an attractor of all positive solutions

of the system (5.4).
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Proof. The total population N satisfies

dN

dt
= dS

dt
+ dE

dt
+ dI

dt
+ dT

dt
+ dR

dt
. (5.10)

Substituting each term in (5.4) into (5.10), the rate of change of the total population, at

(5.10) give

dN

dt
= π − µN − dII − dTT,

≤ π − µN.

Since the right hand side of the above inequality is bounded by π − µN , a standard theorem

(see, e.g., [162]) establishes that

dN

dt
≤ π

µ
+
(
N0 −

π

µ

)
exp(−µt).

If N(0) ≤ π
µ
, this implies that NH(t) ≤ π

µ
for all time t > 0. Furthermore, if N(0) > π

µ
, then

the solution will either enter the domain D1 in finite time, or N(t)→ π
µ

as time t tends to

infinity. Thus, D1 attracts all the solutions in R5
+. Since the domain D1 is positively-invariant,

it is sufficient to consider the dynamics of model (5.4) in D1. In this region, the model (5.4)

can be considered as being both epidemiologically and mathematically well posed [163].

5.4 Disease free equilibrium

In this section we establish the disease free dynamics of the system. This can be obtained by

setting dI = dT = 0, and thus
dN

dt
= π − µN, (5.11)
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which we rearrange, and multiple by the integrating factor eµt to yield

d

dt

(
Neµt

)
= πeµt . (5.12)

Setting the initial population to be N(0) = N0, we integrate to an arbitrary positive time t

to obtain the solution

N(t)eµt −N(0)eµ0 = π

µ

(
eµt − eµ0

)
. (5.13)

Solving for N(t), we get

N(t) = π

µ
+ (N0 −

π

µ
)e−µt . (5.14)

Taking the limit as t→∞, we see that

N → π

µ
, (5.15)

which is also known as the carrying capacity of the population. Indeed this may also be

computed by setting dN
dt

= 0 in (5.11) and solving for N .

Case 1: Since S is bounded by N (that is, S ≤ N), then the DFE, E0 (when e = 0), can be

expressed as

E0 : (S,E, I, T,R) =
(
π

µ
, 0, 0, 0, 0

)
.

Case 2: Where E∗ 6= 0 and I∗ = 0. We do this by setting the equations in system (5.4) to zero.

0 = π − βS∗I∗ −D1S
∗, (5.16)
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0 = eS∗ − µE∗, (5.17)

0 = βS∗I∗ −D2I
∗, (5.18)

0 = mI∗ −D3T
∗, (5.19)

0 = rII
∗ + rTT

∗ − µR∗. (5.20)

Solving equations (5.16), (5.17), (5.18), and (5.20) in terms of I, we have

S∗ = π

βI∗ +D1
,

E∗ = πe

(βI∗ +D1)µ,

T ∗ = mI∗

D3
,

R∗ = D3rII
∗ +mrT I

∗

µD3
.



(5.21)
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When I∗ = 0 in (5.21), we have

S∗ = π

D1
,

E∗ = πe

µD1
,

I∗ = 0,

T ∗ = 0,

R∗ = 0.



(5.22)

Hence, the second case of the DFE, is given by

EI : (S∗, E∗, I∗, T ∗, R∗) =
(
π

D1
,
πe

µD1
, 0, 0, 0

)
. (5.23)

5.5 Basic reproduction number

The basic reproduction number of the model, R0, is determined using the next generation

matrix approach of Driessche and Watmough [164] at the DFE, E0 and EI . This is given by

R0 = ρ(FV −1) ,

where ρ(A) denotes the spectral radius of the matrix A. The basic reproduction number is the

average number of infected individuals that contract infection from one infected individual

during the period of infection in a susceptible population Driessche and Watmough [164].

From the system (5.4), we do the following computations. We then respectively find F , V
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and V −1:

F =


0

(βS + αβE)I

mI

 , V =


µE

D2I

D3T

 .

or,

F =


0 0 0

αβI βS + αβE 0

0 m 0

 , V =


µ 0 0

0 D2 0

0 0 D3

 .

Thus,

V −1 =



1
µ

0 0

0 1
D2

0

0 0 1
D3

 .

Finally we have,

FV −1 =


0 0 0

αβI
βS + αβE

D2
0

0 m

D2
0

 .

Thus, the basic reproduction number R0 for the DFE, E0, in the absence of education

intervention or public health intervention is

R0 = πβ

µD2
. (5.24)
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While the basic reproduction number RE for the DFE, EI , in the presence of education

intervention and public health intervention is

RE = βπ [µ+ αe]
µD1D2

. (5.25)

The threshold quantities, R0 and RE, are the effective reproduction number for the system

(5.4). More importantly, R0 measures the average number of newly recruited susceptible

individuals into the infected classes generated by a single infected member in the population

in the absence of education intervention or public health intervention, although RE applies

in the presence of education intervention and public health intervention.

5.6 Local stability of the DFE

In this section, the Jacobian matrix of the model described by (5.4) is given by

J =



−βI −D1 0 −βS 0 0

e −αβI − µ −αβE 0 0

βI αβI βS + αβE −D2 0 0

0 0 m −D3 0

0 0 rI rT −µ


. (5.26)
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Evaluating (5.26) at E0, and expressing in the form J(E0)−λI, where I is the identity matrix

yields

J(E0)− λI =



−D1 − λ 0 −πβ
µ

0 0

e −µ− λ 0 0 0

0 0 −(D2 − πβ
µ

)− λ 0 0

0 0 m −D3 − λ 0

0 0 rI rT −µ− λ


. (5.27)

We take the determinant of the system (5.27), expressed as |J(E0)− λI| to yield

| J(E0)− λI | = (−D1 − λ)(−µ− λ)(−D3 − λ)(−µ− λ)
[
−(D2 −

πβ

µ
)− λ

]
,

= (D1 + λ)(µ+ λ)(D3 + λ)(µ+ λ)
[
D2

(
1− πβ

µD2

)
+ λ

]
,

= (D1 + λ)(µ+ λ)(D3 + λ)(µ+ λ) [D2 (1−R0) + λ] .

When R0 < 1, then the eigenvalues values λi < 0 for i = 1, 2, 3, 4, 5. Hence, the model (5.4)

at E0 is locally asymptotically stable (LAS) when all the zeros of | J(E0)−λI | have negative

real parts, and this occurs if and only if R0 < 1. Note also that if R0 > 1, then exactly one

of the zeros of | J(E0)− λl | has positive real part. Similarly, evaluating (5.26) at EI , and

expressing in the form J(EI)− λI, we have

J =



−D1 0 −βS 0 0

e −µ −αβE 0 0

0 0 βS + αβE −D2 0 0

0 0 m −D3 0

0 0 rI rT −µ


. (5.28)
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| J(EI)− λI | = (−D1 − λ)(−µ− λ)(−D3 − λ)(−µ− λ) [−(D2 − βS∗ − αβE∗)− λ]

= (D1 + λ)(µ+ λ)(D3 + λ)(µ+ λ)
[
D2

(
1− βS∗ + αβE∗

D2

)
+ λ

]

= (D1 + λ)(µ+ λ)(D3 + λ)(µ+ λ) [D2 (1−RE) + λ] .

Hence, we claim the following:

Lemma 5.6.1. The DFE, E0 of the model (5.4) is locally asymptotically stable (LAS) if

R0 < 1 and unstable if R0 > 1, when e = 0.

Lemma 5.6.2. The DFE, EI of the model (5.4) is locally asymptotically stable (LAS) if

RE < 1 and unstable if RE > 1.

5.7 Global Stability of the DFE, E0

Lemma 5.7.1. The DFE, E0, of the model is globally asymptotically stable (GAS) (with

e = α = 0) if R0 ≤ 1.

Proof. We prove the global asymptotic stability of the DFE, E0, with the special case

e = α = 0 by employing the approach of Castillo-Chavez et al. [87, 165, 166]. We set up an

additional system derived from the model under consideration as

Ẋ1 = F (X1, X2) X1 = (S) ∈ R,

Ẋ2 = G(X1, X2), G(X1, 0) = 0, X2 = (E, I, T,R) ∈ R4.

Here, X1 and X2 are the uninfected individuals and corresponding infected individuals; we
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then redefine E0 = (X0, 0) as the DFE given by

(S,E(0), I(0), T (0), R(0)) =
(
π

µ
, 0, 0, 0, 0

)
.

Hence, the equilibrium point E0 of the model is GAS if the following conditions hold for

R0 < 1:

1. Ẋ1 = F (X1, 0), X0 is GAS,

2. Ĝ(X1, X2) = DX2G(X0, 0)X2 −G(X1, X2) for (X0, 0) ∈ D1.

We define another set

D2 = {(S,E, I, T,R) ∈ D1 : S ≤ S(0)} ,

which is also positively invariant and attracts all solutions in D1 for all time t ≥ 0 . The

uninfected system and infected systems are given by

Ẋ1 = F (X1, X2) =
(
π − βSI − µS

)
, (5.29)

and

Ẋ2 = G(X1, X2) =



−µE

βSI −D2I

mI −D3T

rII + rTT − µR


, (5.30)

where D2 = m+ dI + rI + µ, and D3 = dT + rT + µ. By rewriting (5.29) (at E0, i.e., I = 0),

we have

dS

dt
− µS = π (5.31)
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Solving this by integration factor yields

S = S(0) exp(−µt) + π

µ
(1− exp(−µt)) , (5.32)

at S0 = S(0), t = 0. Taking the limit of S in (5.32) as t→∞, ([ noting E0]), S = π
µ
. Hence,

the condition number one has been satisfied as S → S(0), t→∞, for R0 < 1. Going further,

we set up the system

DX2G(X0, Z
0) ·X2 =



−µ 0 0 0

0 βS(0)−D2 0 0

0 m −D3 0

0 r1 rT −µ


·



E(0)

I(0)

T (0)

R(0)


(5.33)

=



−µE(0)

βS(0) · I(0)−D2I(0)

mI(0)−D3T (0)

rII(0) + rTT (0)− µR(0)


. (5.34)

Hence, the condition two is satisfied given that

Ĝ(X1, X2) =



−µE(0)

βS(0)I(0)−D2I(0)

mI(0)−D3T (0)

rII(0) + rTT (0)− µR(0)


−



−µE

βS · I −D2I

mI −D3T

rII + rTT − µR


. (5.35)

Since S(0) ≥ S =⇒ S(0)− S ≥ 0, then Ĝ(X1, X2) ≥ 0.

Thus, (S,E, I, T,R)→ (S(0), E(0), I(0), T (0), R(0)) as t→∞ for R0 < 1 and this completes

the proof.
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5.8 Existence of the DEE

Consider a special case of the disease endemic equilibrium (DEE), EII , with α = 0 (when the

impact of the public health is ineffective). We then solve these equations with dS
dt

= dE
dt

=
dI
dt

= dT
dt

= dR
dt

= 0 for the endemic equilibrium solutions. We can proceed by setting the

equations in system (5.4) to zero. We process this as

0 = π − βS∗∗I∗∗ −D1S
∗∗, (5.36)

0 = eS∗∗ − µE∗∗, (5.37)

0 = βS∗∗I∗∗ −D2I
∗∗, (5.38)

0 = mI∗∗ −D3T
∗∗, (5.39)

0 = rII
∗∗ + rTT

∗∗ − µR∗∗. (5.40)
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When I∗∗ > 0 in (5.36), (5.37), (5.38), (5.39), and (5.40), we obtain the following

S∗∗ = D2

β
,

E∗∗ = eD2

µβ
,

I∗∗ = πβ −D1D2

βD2
,

T ∗∗ = mI∗∗

D3

R∗∗ = eD2rT + µrIβI
∗∗

µ2β
.



(5.41)

The system (5.41) can be related to the reproduction number R0 such that

S∗∗ = D2

β
,

E∗∗ = eD2

µβ
,

I∗∗ =
D1D2

[
R0
D1
− 1

]
βD2

,

T ∗∗ = mI∗∗

D3
,

R∗∗ = eD2rT + µrIβI
∗∗

µ2β
.



(5.42)

The positivity of I∗∗ is ensured when D1 < R0 since R0 > 1. Consequently, if R0 > 1,

then I∗∗ > 0. Hence, there exists unique endemic equilibrium (EII) point for the model

(5.4) whenever R0 > 1. Furthermore, we can consider the general case when the disease

endemic equilibrium (DEE), EII , when there is the presence of the impact of the public

health intervention. We then solve these equations with dS
dt

= dE
dt

= dI
dt

= dT
dt

= dR
dt

= 0 for the

endemic equilibrium solutions. We do this by setting the equations in system (5.4) to zero.
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Therfore,
S∗∗ = π

βI∗∗ +D1
,

E∗∗ = πe

(αβI∗∗ + µ)(βI∗∗ +D1) ,

T ∗∗ = I∗∗m

D3
,

R∗∗ = D3I
∗∗rI +mI∗∗rT
µD3

.



(5.43)

So that when I∗∗ 6= 0 (that is, I∗∗ > 0) in (5.43), we obtain the following.

I∗∗ = [αβE∗∗ + βS∗∗ −D2] ,

=D2

[
αβE∗∗ + βS∗∗

D2
− 1

]
,

=D2

β
α πe

µD1
+ 1

D1

D2

− 1
 ,

=D2

[
πβ

(
αe+ µ

µD1D2

)
− 1

]
,

=D2[RE − 1],

where RE is as defined in (5.25). The positivity of I∗∗ is ensured since RE > 1. Consequently,

if RE > 1, then I∗∗ > 0. Hence, there exists a unique endemic equilibrium (EII) point for

the model (5.4) whenever RE > 1.

5.9 Global Stability of the DEE

Let

D3 = {(S,E, I, T,R) ∈ D1 : E = T = I = R = 0}.
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Lemma 5.9.1. The DEE, EII , of the model is globally asymptotically stable (GAS) in D1|D3

whenever RE > 1.

Proof. Consider model (5.4) with RE > 1, so that the associated unique endemic equilibrium

exists. Also, consider the nonlinear Lyapunov function of the Goh-Volterra type

F = S − S∗∗ − S∗∗ln
(
S

S∗∗

)
+ E − E∗∗ − E∗∗ln

(
E

E∗∗

)
+
[
I − I∗∗ − I∗∗ln

(
I

I∗∗

)]
. (5.44)

The Lyapunov equation (5.44) can be differentiated with respect to time as

Ḟ = Ṡ −
(
S∗∗

S

)
Ṡ + Ė −

(
E∗∗

E

)
Ė + İ −

(
I∗∗

I

)
İ . (5.45)

Substituting the time derivatives of S,E and I in (5.4) into (5.45) gives

Ḟ = (π − βSI −D1S)−
(
S∗∗

S

)
(π − βSI −D1S) + (eS − αβEI − µE)

−
(
E∗∗

E

)
(eS − αβEI − µE) + (βSI + αβEI −D2I)−

(
I∗∗

I

)
(βSI + αβEI −D2I)

 .
(5.46)

At the steady state solution, we obtain the following

π = βI∗∗ +D1S
∗∗,

e = αβI∗∗E∗∗ + µE∗∗

S∗∗
,

D2 = αβE∗∗ + βS∗∗.


(5.47)

Applying the steady state expression in (5.47), after several algebraic calculations, we have

that
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Ḟ = µS
(

2− S

S∗∗
− S∗∗

S

)
+ eES

E∗∗

(
1− E∗∗

E

)
+µE

(
1− E

E∗∗

)
+ βI2S

I∗∗

(
1− S∗∗

S

)

+βI∗∗S
(

1− IS

I∗∗S∗∗

)
+ βI

(
1− I∗∗

I

)
S∗∗

+αβIE∗∗
(

1− I

I∗∗

)
+ αβI2E

I∗∗

(
1− I∗∗E

IE∗∗

)


. (5.48)

The following inequalities from (5.48) hold:

2− S

S∗∗
− S∗∗

S
≤ 0; 1− E∗∗

E
≤ 0; 1− E

E∗∗
≤ 0;

1− S∗∗

S
≤ 0; 1− IS

I∗∗S∗∗
≤ 0; 1− I∗∗

I
≤ 0; 1− I

I∗∗
≤ 0; 1− I∗∗E

IE∗∗
≤ 0,

when, E ≤ E∗∗ and I ≤ I∗∗. Thus, Ḟ ≤ 0 for RE > 1. The classes T,R as t → ∞ tends

toward their respective endemic equilibrium points in EII , i.e.,

T (t)→ T ∗∗ as t→∞,

R(t)→ R∗∗ as t→∞.

Hence, Ḟ is a Lyapunov function in D1|D3 and it follows from the LaSalle’s invariance

principle , that every solution to the equations of the model (5.4) approaches the associated

unique endemic equilibria EII , of the model (5.4) as t→∞ for RE > 1.
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5.10 Computational Analysis

Parameters List

Parameters Baseline Range References

α 0 < α < 1 [0,1] varies with scenario

e 1.431 ∗ 10−2 1.231 ∗ 10−2 − 1.631 ∗ 10−2 [161]

β 0.0001 0.00001− 0.001 [91]

m 0.6937 0.59-0.79 [91]

dI 0.0191 0.010− 0.029 [91]

dT 0.1260 0.1060− 0.1360 [91]

rI 0.0336 0.02-0.04 [91]

rT 0.2472 0.14-0.34 [91]

µ 1
(74.4)(365)

1
(64.56)(365) −

1
(80.56)(365) [91]

Table 5.2: Parameter values for public health education mathematical model.
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Figure 5.2: (a): population S(t), E(t), I(t), T (t) and E(t), when R0 = 0.1612, RE = 0.1654;
(b): population S(t) and E(t), and I(t) with π varied, when R0 < 1, RE < 1.
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Figure 5.3: Population S(t), E(t), and I(t), e = 0.0500 when RE = 0.5526 < 1.
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Figure 5.4: (a) Population S(t) and E(t), when RE = 1.2332 > 1 and I(t) (b) when
RE = 1.7773 > 1.
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Figure 5.5: Population S(t), E(t), and I(t) with multiple initial conditions, e = 0.0500 when
RE = 0.5526 < 1.
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Figure 5.6: (a) and (b): population S(t) and E(t), when RE = 1.2332 > 1 , and (c):
population I(t) when RE = 3.5547 > 1.
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Figure 5.7: (a) Population I(t), when RE < 1, α = (0.90, 0.95, 1) , and (b) RE > 1 ,
α = (0.1, 0.2, 0.3).
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5.11 Discussion and Conclusion

The dynamics of susceptible (a), educated (b), and infected (c) populations in model system

5.1 shows in (Fig. 5.2 ) using parameter values in Table 5.2 when R0 < 1, RE < 1 with

different values of π.

(Fig. 5.3 ) depicts the local stability of disease free equilibrium when e = 0.0500 and

RE = 0.5526 < 1 as t → ∞ for susceptible (a), educated (b), and MERS-Cov infected (c)

populations. We observe that the total number of educated individuals is less than the

number of MERS-CoV susceptible individuals. This is possibly a product of illiteracy in

public health caused by the education’s nonessential nature due to the lack of infections in

the population at the early stage of MERS-CoV propagation. We note that the population

of MERS-Cov infected individuals declines drastically as the number of educated individuals

grows. The theoretical and Computational finding indicate that public health education is a

very competent regulatory measure.

When RE > 1 as t → ∞ (Fig. 5.4) illustrates that the disease endemic equilibrium

is locally asymptotically stable for susceptible, educated (a), and infected populations (b).

(Fig. 5.4 ) also displays a substantial growth in the number of infected individuals at the

initial outbreak of infection before reaching stability. This considerable increase in infected

individuals can be associated with the fall in the educated population and the increase in the

number of susceptible individuals.

An increasing number of educated individuals leads to a decreasing number of susceptible

individuals, therefore producing a decreased number of infected individuals see (Fig. 5.5) (a),

(b), and (c). We also observed that MERS-CoV can be effectively removed from a population

following a certain period through public health education, disregarding the initial number of

infected individuals.

(Fig. 5.6) (a), (b), and (c), confirm when RE > 1, the data obtained demonstrate that
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model system 5.1 has one unique positive endemic equilibrium point. This indicates that there

is no bifurcation, thus resulting in a continuation of disease spread through the population if

control measures are not implemented.

We recognize when α approaches one, the disease spread rate approaches an equilibrium

point at (Fig. 5.7). When RE > 1, The edification of public health does not ultimately

change the value of the epidemic threshold R0, but reduces the final density of the number of

MERS-CoV infected individuals. Due to this observation, we recommend measures are taken

to reduce R0 thus helping combat the spread of the disease.

This research is confirmation that extensive public health education is necessary for

controlling the transmission of this disease. This also lends credence to our theoretical

analysis, where we demonstrate that public health education significantly decreases the basic

reproduction number of the model.
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Chapter 6

KSA Human population Modeling

Healthcare associated infections contribute significant consequences to the health-care system

and society, as well as avoidable suffering and deaths among patients. Therefore, the quality

of care, treatment, and prevention against adverse occurrences all contribute in the hospitals

to the patient safety, and the safety of healthcare workers. In this chapter, we devolved

a mathematical model that is tailored to the extent of infection prevention to deal with

the transmission dynamics of MERS-CoV infections. Emergency preparation in the work-

place which provides existing knowledge on infection control as a foundation for establishing

rules and practices to prevent hospital infections will also be induced in the study. It is

reported that the risk of transmission of the MERS-CoV virus in humans is determined by

characteristics including the close contact with the patients, such as touching the respiratory

secretions of patients, sleeping in the same room as patients, or removing and cleaning of the

patients’ waste [167] with sub-clinical infection[168]. The positive PCR results of MERS-CoV

have been prominent in some patients with having the negative viral cultures of MERS-CoV

who are recovering from the infection. It has been recognized that healthcare workers could

transmit the virus (MERS-CoV) to other health care workers, in spite of being asymptomatic

[19].
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The proposed study’s goal is to give a systematic comprehensive research of a deterministic

model for quarantine and isolation of the hospitalized individuals in order to get a better

understanding of the effect of these control measures on the propagation of an arbitrary

infection that is controlled through confinement and isolation. The model to be developed

builds on some of the existing assessment scheme that have been published in the literature

[169]. Furthermore, the commitment extends to a comprehensive qualitative analysis of a

quarantine and isolation strategy.

Coherence and accordance with standard contact relating to airborne precautions are

vital to reducing the risk of infection, and thus should be ensured. This following of rules is

especially important in hospital settings, where rates of transmission are high. The following

precautions contain practices and equipment to guarantee optimization of transmissions

between hospital workers and patients with (or presumed to have) MERS-CoV. For example,

one common practice is proper hand hygiene, which begins to become necessary as it should

be done at all times in contact with the patients, and when putting on or removing personal

protective equipment (PPE). Hand hygiene should not only be used by hospital staff but

practically all within the hospital. Additionally, such hospital facilities for proper hand

hygiene must corroborate within all personnel. Another procedure that must be ensured to

follow is patient placement in which a patient who might be infected with MERS-CoV must

be put in an Airborne Infection Isolation Room, also known as an AIIR. AIIRs should be

strictly regulated to facilitate methods in combating transmission; these include negative

pressure in comparison to the outside room and at least 6 air changes an hour. Furthermore,

following OSHA’s PPE standards, employers must provide the necessary PPEs for hospital

workers, as well as provide the appropriate training on how to wear, use, and remove such

equipment. After and between usage, all reusable PPE must be cleaned, sanitized, and

maintained correctly. Different types of PPEs are also used in conjunction with one another
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to maximize various transmission methods. These PPEs are the subsequent following: gloves,

gowns, respiratory protections, and eye protections. Non-sterile gloves are to be worn and

disposed of at the appropriate times such as upon entering the patient’s room or when

they become contaminated; these guidelines also apply to disposable gowns. Respiratory

protections such as disposable N95 masks and respirators are to be used when visiting the

patient’s room. In addition, hospital workers should ensure that respiratory protections

are the last part of a PPE uniform to be removed and follow the Occupational Safety and

Health Administration (OSHA) guidelines for Respiratory Protection. Eye protections such

as disposable face shields or reusable goggles should be removed when leaving the patient’s

room or, if reusable, should be sanitized and cleaned after use [170, 171].

6.1 Model Formulation

Let N(t) denote the total population at time t which sub-divided into six compartments;

susceptible (S(t)), exposed (E(t)), asymptomatic (A(t)), infectious (I(t)), hospitalized (H(t))

and recovered (R(t)) individuals, thus

N(t) = S(t) + E(t) + A(t) + I(t) +H(t) +R(t).

Recruitment individuals will increase the susceptible population by rate π. Susceptible

people can get infected after making effective contact with infectious people at a rate of

λ = β
(A+ I + ζH)

N
.

Now that, the 0 ≤ ζ < 1 indicates the predicted decrease in disease transmission by

hospitalized individuals relative to non-hospitalized infectious individuals in the I class. As a

result, ζ tests the effectiveness of isolation or care provided to hospitalized association. The
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number of susceptible is diminished by natural death (at a rate of µ). Then, the susceptible

population is given by
dS

dt
= π − (λ+ µ)S.

The number of persons exposed is caused by contamination of susceptible people (at a

rate of λ). It is presumed that exposed persons (classes E ) do not spread infection (i.e.,

only infected individuals capable of transmitting the disease to susceptible individuals) The

population is diminished by the occurrence of disease signs (at a rate of κ) and natural

mortality (at a rate of µ), so that

dE

dt
= λS − (κ+ µ)E.

Asymptomatic people are monitored at the rate of (1− p)κ. The symptomatic individuals

is limited by the recovery rate of γ1 and natural mortality (at the rate of µ). So,

dA

dt
= (1− p)κE − (γ1 + µ)A.

The infectious individuals are produced at a rate of pκ, recovered (at a rate of γ2), and

hospitalized (at a rate of Φ). The rate of mortality is µ) and disease-induced death (at a rate

of δ1). So,

dI

dt
= pκE − (γ2 + Φ + µ+ δ1) I.

The number of hospitalized individuals is created by the hospitalization of infected patients

(at a rate of Φ). This number of people is limited by recovery (at the rate of γ3), natural

death (at the rate of µ) and disease-induced death (at the rate of δ2). As a result, the rate of

change in the population of hospitalized persons is determined by
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Variable Description
S Susceptible
E Exposed
A Asymptomatic
I Infected
H Hospitalized
R Recovered

Parameter Description
π Recruitment rate
µ The rate of the natural death
β Contact rate
κ Rate of the growth from exposed to infectious.
Φ Rate of symptomatic individuals proceed to hospitalization
γ1 Recovery rate for asymptomatic infected person
γ2 Rate of recovery for infection individuals
γ3 Rate of recovery for hospitalized individuals
δ1 Death rate for infectious individuals
δ2 Death rate for hospitalized individuals

λ β
(A+ I + ζH)

N

Table 6.1: The model variables and parameters for KSA human population modeling.

dH

dt
= ΦI − (γ3 + µ+ δ2)H.

Ultimately, the number of recovered individuals is created by the recovery of asymptomatic,

infected and hospitalized infectious members (γ1, γ2 and γ3, respectively). The natural death

is given by ( the rate of µ), so that

dR

dt
= γ1A+ γ2I + γ3H − µR.
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Figure 6.1: Flow chart for KSA Human Population Mathematical Model

Thus, the model equations are

dS

dt
= π − (λ+ µ)S,

dE

dt
= λS − (κ+ µ)E,

dA

dt
= (1− p)κE − (γ1 + µ)A,

dI

dt
= pκE − (γ2 + Φ + µ+ δ1) I,

dH

dt
= ΦI − (γ3 + µ+ δ2)H,

dR

dt
= γ1A+ γ2I + γ3H − µR,

(6.1)

where

λ = β
A+ I + ζH

N
.
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We are going to apply a prominent control measure in the hospitalized compartment since

the health care comprised 1/3 of all Saudi Middle East Respiratory Syndrome cases [172].

Here, we prove the following assertion following the theory and findings of Mohammad et

al. [169].

Theorem 6.1.1. With the positive initial data, the solutions of the model system (6.1) will

remain positive for all t > 0.

Proof. Let t1 = sup {t > 0 : S > 0, E > 0, I > 0, A > 0, H > 0 ∈ [0, t]}; therefore, t1 > 0.

The first equation of the system 6.1 yeilds,

dS

dt
= π − λ(t)S(t)− µS(t) > −(λ+ µ)S(t), (6.2)

which can be re-written as,

d

dt

[
S(t) exp

{
µt+

∫ t

0
λ(τ)dτ

}]
> exp

{
µt+

∫ t

0
λ(τ)dτ

}
. (6.3)

Accordingly,

S(t1) exp
{
µt+

∫ t

0
λ(τ)dτ

}
− S(0) >

∫ t1

0
exp

{
µy +

∫ y

0
λ(τ)d(τ)

}
dy. (6.4)

Hence,

S(t) >S(0) exp
{
−µt1 −

∫ t1

0
λ(τ)dτ

}
[

exp
{
−µt1 −

∫ t1

0
λ(τ)dτ

}] ∫ t1

0
exp

{
µy +

∫ y

0
λ(τ)dτ

}
dy > 0.

Similarly, it can be shown that E > 0, I > 0, A > 0, H > 0 and R > 0 for all time t > 0.
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Lemma 6.1.1. The closed set

D =
{

(S,E,A, I,H,R) ∈ R6
+ : S + E + A+ I +H +R ≤ π

µ

}

is positively-invariant for the model (6.1).

Proof. Adding all the equations of the model (6.1) gives,

dN

dt
= π − µN − (δ1I + δ2H) .

Because dN/dt ≤ π − µN , it implies that dN/dt ≤ 0 if N ≥ π/µ. The standard comparison

theorem will also be used to illustrate that N(t) ≤ N(0)e−µt + π/µ (1− e−µt). In fact,

N(t) ≤ π/µ if N(0) ≤ π/µ. The domain D is thus positive-invariant.

If N(0) > π/µ is used, then the solution reaches D in finite time, or N(t) tends π/µ

asymptotically. The D area then attracts all solutions in R+6.

Since the domain D is positive-invariant, it is possible to evaluate the dynamics of the flow

model output (6.1) in D, where the existence, uniqueness, continuity outcomes are preserved

by the system.

6.2 Disease free equilibrium

The task is to perform stability analysis for the above system of ODEs. Let

E0 = (S∗, E∗, A∗, I∗, H∗, R∗) =
(
π

µ
, 0, 0, 0, 0, 0

)
.
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6.2.1 Local stability analysis

The local stability of E0 will be studied by means of the next generation operator method

[164]. We obtain

F =



0 β 0 ζβ

0 0 0 0

0 0 0 0

0 0 0 0


,

and

V =



κ+ µ 0 0 0

−pκ γ2 + Φ + µ+ δ1 0 0

−(1− p)κ 0 γ1 + µ 0

0 −Φ 0 γ3 + µ+ δ2


,

with inverse

V −1 =



1
κ+µ 0 0 0
κp

(κ+µ)(γ2+δ1+µ+Φ)
1

γ2+δ1+µ+Φ 0 0

− κ(p−1)
(α+µ)(κ+µ) 0 1

γ1+µ 0
κpΦ

(κ+µ)(γ3+δ2+µ)(γ2+δ1+µ+Φ)
Φ

(γ3+δ2+µ)(γ2+δ1+µ+Φ) 0 1
γ3+δ2+µ


.

Recall that the control reproduction parameter is defined in terms of these matrices as follows:

Rc = ρ
(
FV −1

)
= βpκ(γ3 + µ+ δ2 + ζΦ)

(κ+ µ)(γ2 + Φ + µ+ δ1)(γ3 + µ+ δ2) .

Then, the following assertion holds.

Theorem 6.2.1 ([164], Theorem 2). The disease free equilibrium of (6.1), E0, is locally-

asymptotically stable if Rc < 1, and unstable if Rc > 1.
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The interpretation of Rc directly follows from its following term-wise representation:

Rc = βpκ

(κ+ µ)(γ2 + Φ + µ+ δ1) + βζpκΦ
(κ+ µ)(γ2 + Φ + µ+ δ1)(γ3 + µ+ δ2) .

In the above expression, the first term is the number of new infections induced by non-

hospitalized infected persons, and the second term is the number of infections caused by

hospitalized individuals.

6.2.2 Global stability analysis

In order to study the global stability of the disease free equilibrium E0, we are going to use

the well-known Lyapunov function method.

Theorem 6.2.2. The disease free equilibrium E0 of (6.1) is globally-asymptotically stable if

Rc ≤ 1.

Proof. Let us denote

r1 = κ+ µ, r2 = γ2 + Φ + µ+ δ1, r3 = γ1 + µ, r4 = γ3 + µ+ δ2.

Then,

Rc = βpκ(r4 + ζΦ)
r1r2r4

.

Consider the following Lyapunov function

L = r4Rc

ζβ
· E + r4 + ζΦ

r2ζ
· I + r4

r3ζ
· A+H
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with the first order time derivative

∂L
∂t

= r4Rc

ζβ
· dE
dt

+ r4 + ζΦ
r2ζ

· dI
dt

+ dH

dt
+ r4

r3ζ
· dA
dt

=

= r4Rc

ζβ
·
(
β
A+ I + ζH

N
S − r1E

)
+ r4 + ζΦ

r2ζ
· (pκE − r2I) + ΦI−

− r4H + r4

r3ζ
(1− p)κE − r4

ζ
A ≤

≤ r4Rc

ζβ
· (β (A+ I + ζH)− r1E) + r4 + ζΦ

r2ζ
· (pκE − r2I) + ΦI−

− r4H + r4

r3ζ
(1− p)κE − r4

ζ
A

= r4Rc

ζ
· (A+ I + ζH)− r1r4Rc

ζβ
· E + r4 + ζΦ

r2ζ
pκ · E − r4 + ζΦ

r2ζ
· r2I + ΦI−

− r4H + r4

r3ζ
(1− p)κE − r4

ζ
A =

= r4Rc

ζ
· (A+ I + ζH) +

[
−r1r4Rc

ζβ
+ r4 + ζΦ

r2ζ
pκ+ r4

r3ζ
(1− p)κ

]
· E−

− r4 + ζΦ
ζ

· I + ΦI − r4H −
r4

ζ
A =

= r4Rc

ζ
· (A+ I + ζH) +

[
−r1r4Rc

ζβ
+ r4 + ζΦ

r2ζ
pκ+ r4

r3ζ
(1− p)κ

]
· E−

− r4

ζ
· I − ΦI + ΦI − r4H −

r4

ζ
A =

= r4Rc

ζ
· (A+ I + ζH)− r4

ζ
· (A+ I + ζH) +

+
[
−r1r4Rc

ζβ
+ r4 + ζΦ

r2ζ
pκ+ r4

r3ζ
(1− p)κ

]
· E =

= −r4

ζ
· (1−Rc) (A+ I + ζH) ≤ 0,

if and only if 1−Rc ≥ 0. Here, we have taken into account that S ≤ N .

Thus,
∂L
∂t
≤ 0 for Rc ≤ 1.
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Then, it follows from the LaSalle invariance principle that

(E, I, A,H)→ (0, 0, 0, 0) as t→∞.

Now, let us consider other quantities of (6.1); such that, in view of positivity of µ, from

the sixth equation of (6.1), we obtain that

lim
t→∞

R = 0.

Finally, from the first equation of (6.1), we similarly obtain

lim
t→∞

S = π

µ
.

This relation finalizes the proof.

6.3 Existence and stability of endemic equilibria

6.3.1 Existence and Stability

We denote by

E1 (λ∗∗) = (S∗∗ (λ∗∗) , E∗∗ (λ∗∗) , A∗∗ (λ∗∗) , I∗∗ (λ∗∗) , H∗∗ (λ∗∗) , R∗∗ (λ∗∗)) ,

the endemic equilibrium of (6.1) such that

S∗∗ + E∗∗ + A∗∗ + I∗∗ +H∗∗ +R∗∗ = N∗∗.
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At the steady-state, (6.1) provides

S∗∗ = π

λ∗∗ + µ
, E∗∗ = λ∗∗S∗∗

r1
,

A∗∗ = (1− p)κ
γ1 + µ

E∗∗ = (1− p)κ
r1(γ1 + µ)λ

∗∗S∗∗ := c1λ
∗∗S∗∗,

I∗∗ = pκ

r2
E∗∗ = pκ

r2

(1− p)κ
r1(γ1 + µ)λ

∗∗S∗∗ = (1− p)pκ2

r1r2(γ1 + µ)λ
∗∗S∗∗ := c2λ

∗∗S∗∗,

H∗∗ = Φ
r4
I∗∗ = Φ(1− p)pκ2

r1r2r4(γ1 + µ)λ
∗∗S∗∗ := c3λ

∗∗S∗∗,

R∗∗ = γ1

µ
A∗∗ + γ2

µ
I∗∗ + γ3

µ
H∗∗ = γ1c1

µ
λ∗∗S∗∗ + γ2c2

µ
λ∗∗S∗∗ + γ3c3

µ
λ∗∗S∗∗ =

= γ1c1 + γ2c2 + γ3c3

µ
λ∗∗S∗∗ := c4λ

∗∗S∗∗,

where

λ∗∗ = β
A∗∗ + I∗∗ + ζH∗∗

N∗∗
.

Therefore,

λ∗∗N∗∗ = β(A∗∗ + I∗∗ + ζH∗∗).

or

λ∗∗S∗∗
[
1 +

( 1
r1

+ c1 + c2 + c3 + c4

)
λ∗∗

]
= βλ∗∗S∗∗(c1 + c2 + ζc3).

Since λ∗∗S∗∗ 6= 0,

1 + c5λ
∗∗ = β(c1 + c2 + ζc3) = Rc,

where

c5 = 1
r1

+ c1 + c2 + c3 + c4.

Therefore,

λ∗∗ = Rc − 1
c5

,
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and the endemic equilibrium is defined as

E1 =
(Rc − 1

c5

)
.

Thus, the following statement holds.

Lemma 6.3.1. Main model (6.1) has a unique endemic equilibrium
(
Rc−1
c5

)
if Rc > 1 [169].

6.3.2 Local stability

In this section, we are going to examine the local stability of E1. Then, the following holds.

Theorem 6.3.1. The unique endemic equilibrium of (6.1) with N = N∗ is locally asymptoti-

cally stable if Rc > 1.

Proof. We start the proof by assuming that Rc > 1, and that N = N∗ to ensure the existence

of E1. Then, the substitution

S = N∗ − E − A− I −H −R,

into (6.1), leads to

dE

dt
= β

A+ I + ζH

N∗
(N∗ − E − A− I −H −R)− (κ+ µ)E,

dA

dt
= (1− p)κE − (γ1 + µ)A,

dI

dt
= pκE − (γ2 + Φ + µ+ δ1) I,

dH

dt
= ΦI − (γ3 + µ+ δ2)H,

dR

dt
= γ1A+ γ2I + γ3H − µR.

(6.5)
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Linearizing the system (6.5) around the endemic equilibrium E1, gives

dE

dt
= [−a1 − (κ+ µ)]E + (a2 − a1)I − a1A+ (ζa2 − a1)H − a1R

dA

dt
= (1− p)κE − (γ1 + µ)A,

dI

dt
= pκE − (γ2 + Φ + µ+ δ1) I,

dH

dt
= ΦI − (γ3 + µ+ δ2)H,

dR

dt
= γ1A+ γ2I + γ3H − µR,

(6.6)

where

a1 = β
A∗∗ + I∗∗ + ζH∗∗

N∗
, a2 = β

S∗∗

N∗
.

Then, the Jacobian of (6.6) evaluated at E1, will describe as

J(E1) =



−a1 − r1 a2 − a1 −a1 ζa2 − a1 −a1

pκ −r2 0 0 0

(1− p)κ 0 −r3 0 0

0 Φ 0 −r4 0

0 γ2 γ1 γ3 µ


.

Due to linearity, (6.6) admits an exponential solution

x(t) = x(0) exp(ωt),

where x = (E A I H R)T is the vector of unknowns, x(0) is the positive vector of

initial conditions, ω is some complex (constant) frequency. Our aim is to show that under

assumptions of Theorem 6.3.1, it holds Re ω < 0.
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Assume the opposite, i.e., Re ω ≥ 0 and split this into two distinct cases.

1) ω = 0. Then, we have the constant solution

x(t) = x(0),

for all t. Obviously, it satisfies (6.6) if and only if x(0) = 0 which is not always the case.

Therefore, ω = 0 does not make sense.

2) Re ω > 0. Then,

x(t) = x(0) exp(Re ωt) exp(iIm ωt) =

= x(0) exp(Re ωt) cos(Im ωt) + ix(0) exp(Re ωt) sin(Im ωt).

Since according to our assumption Rc > 1, then Lemma 6.3.1 implies that

lim
t→∞

x(t) = 0,

which is possible if and only if x(0) = 0 leading to a trivial solution.

Therefore, indeed, Re ω < 0 and the statement of the theorem holds.

6.3.3 Global stability for special case

Let us now examine the global asymptotic stability of (6.1) in the particular case when

1. Hospitalized people should not spread infection,

2. The related disease-induced death is negligible.

These assumptions are expressed in terms of parameters of (6.1) as follows:

δ1 = δ2 = ζ = 0, λ = β
A+ I

N
.
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Then, the model is reduced to

dS

dt
= π − (λ+ µ)S,

dE

dt
= λS − (κ+ µ)E,

dA

dt
= (1− p)κE − (γ1 + µ)A,

dI

dt
= pκE − (γ2 + Φ + µ) I,

dH

dt
= ΦI − (γ3 + µ)H

dR

dt
= γ1A+ γ2I + γ3H − µR.

(6.7)

Add equations of (6.7) together to obtain

dN

dt
= π − µN,

which implies

lim
t→∞

N = π

µ
.

Therefore, when N(0) ≤ π
µ

(or > π
µ
), then π

µ
is an upper (resp. lower) bound for N . In the

limiting case,

λ = βµ

π
(A+ I),

and the reproduction number of (6.7) interprets as

Rcr = βpκ

c1c2
,

where

c1 = κ+ µ, c2 = γ2 + Φ + µ.

Repeating the steps of Section 6.3.1, we will obtain the following statement.
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Lemma 6.3.2. The reduced model (6.7) has an unique positive endemic equilibrium when

Rcr > 1.

Then, the following result is proved.

Theorem 6.3.2. The unique endemic equilibrium of the reduced model (6.7) is globally-

asymptotically stable in D \ D0 if Rcr > 1. Here,

D0 = {(S,E,A, I,H,R) ∈ D : E = A = I = H = R = 0} .

Proof. Assume that Rcr > 1, so that by Lemma 6.3.2, (6.7) has a unique positive endemic

equilibrium.

Further, considering the nonlinear Lyapunov function

L = S − S∗∗ − S∗∗ ln S

S∗∗
+ E − E∗∗ − E∗∗ ln E

E∗∗
+ c1

pκ

[
I − I∗∗ − I∗∗ ln I

I∗∗

]
+

+ c1c2

pκc3

[
A− A∗∗ − A∗∗ ln A

A∗∗

]
,

where

c3 = γ1 + µ,

and its Lyapunov derivative

∂L
∂t

= dS

dt
− S∗∗

S

dS

dt
+ dE

dt
− E∗∗

E

dE

dt
+ c1

pκ

[
dI

dt
− I∗∗

I

dI

dt

]
+ c1c2

pκc3

[
dA

dt
− A∗∗

A

dA

dt

]
=

=
[
1− S∗∗

S

]
dS

dt
+
[
1− E∗∗

E

]
dE

dt
+ c1

pκ

[
1− I∗∗

I

]
dI

dt
+ c1c2

pκc3

[
1− A∗∗

A

]
dA

dt
=

=
[
1− S∗∗

S

]
[π − (λ+ µ)S] +

[
1− E∗∗

E

]
[λS − c1E] +

+ c1

pκ

[
1− I∗∗

I

]
[pκE − c2I] + c1c2

pκc3

[
1− A∗∗

A

]
[(1− p)κE − c3A] .
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After some simplifications, we obtain

∂L
∂t

= π
[
1− S∗∗

S

]
− µS

[
1− S∗∗

S

]
+ c1α1E

[
1− A∗∗

A

]
+
(
β1S

∗∗ − c1c2

pκ

)
(A+ I)−

− β1
E∗∗S(A+ I)

E
+ c1E

∗∗ − c1
EI∗∗

I
+ c1c2

pκ
(A∗∗ + I∗∗),

with

α1 = c2(1− p)
pc3

.

Note that the endemic equilibrium E1,

π = β1S
∗∗(A∗∗ + I∗∗) + µS∗∗,

β1S
∗∗ = c1c2

pκ
,

and

c1E
∗∗ = β1S

∗∗(A∗∗ + I∗∗).

Therefore,

∂L
∂t

= β1S
∗∗(A∗∗ + I∗∗)− β1S

∗∗S
∗∗(A∗∗ + I∗∗)

S
+ µS∗∗ − µS∗∗S

∗∗

S
− µS+

+ µS1 − c1α1E
[
1− A∗∗

A

]
− β1

E∗∗S(A+ I)
E

+ β1S
∗∗(A∗∗ + I∗∗)−

− c1
EI∗∗

I
+ β1S

∗∗(A∗∗ + I∗∗) =

= µS∗∗
[
2− S∗∗

S
− S

S∗∗

]
+

+ β1S
∗∗(A∗∗ + I∗∗)

[
3− S∗∗

S
− EI∗∗

E∗∗I
− E∗∗S(A+ I)
ES∗∗(A∗∗ + I∗∗) − α1

E

E∗∗

[
1− A∗∗

A

]]
.

Now, taking into account that

2− S∗∗

S
− S

S∗∗
= −(S − S∗∗)2

SS∗∗
≤ 0,
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3− S∗∗

S
− EI∗∗

E∗∗I
− E∗∗S(A+ I)
ES∗∗(A∗∗ + I∗∗) ≤ 0.

As all model parameters are non-negative, and the arithmetic mean exceeds the geometric

mean,

α1
E

E∗∗

[
1− A∗∗

A

]
≤ 0.

Hence,
∂L
∂t
≤ 0,

meaning that L is the Lyapunov function of the first three equations of the reduced model

(6.7). Therefore, LaSalle’s Invariance Principle provides

lim
t→∞

(S,E,A, I) = (S∗∗, E∗∗, A∗∗, I∗∗).

Then, since all parameters of (6.7) are positive, from its fifth equation, we obtain

lim
t→∞

H = ΦI∗∗
γ3 + µ

:= H∗∗.

Similarly,

lim
t→∞

R = γ1A
∗∗ + γ2I

∗∗ + γ3H
∗∗

µ
:= R∗∗.

Thus,

lim
t→∞

(S,E, I, A,H,R) = (S∗∗, E∗∗, I∗∗, A∗∗, H∗∗, R∗∗),

proving the statement of the theorem.
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6.4 Discussion and Conclusion

The objective of this chapter is to conduct a thorough qualitative approach of a deterministic

model for exclusion and segregation in order to gain a better understanding of the influence

among these control measures on the propagation of MERS-CoV. This study utilizes a

mathematical model to configure and examine the mechanisms of the MERS-CoV infection

in Saudi Arabia . The goal of this model is to provide the health care sector and relevant

authority with a predictive methodology to evaluate the various MERS-CoV circumstances

and the efficiency of various intervention activities. Healthcare practitioners should be aware

of the need to discover individuals who should be assessed for MERS-CoV infection. This

needs clinical decision making as information on MERS-CoV transmission routes and clinical

manifestations evolve.

We assessed the global stability of the disease free and endemic equilibria using the

stability of the control reproduction number Rc.

First, we consider the impact of reduction in disease transmission by hospitalized individ-

uals on Rc. For this purpose, compute the derivative

∂Rc

∂ζ
= ∂

∂ζ

[
βpκ

(κ+ µ)(γ2 + Φ + µ+ δ1) + βζpκΦ
(κ+ µ)(γ2 + Φ + µ+ δ1)(γ3 + µ+ δ2)

]
=

= βpκΦ
(κ+ µ)(γ2 + Φ + µ+ δ1)(γ3 + µ+ δ2) .

Evidently, for any set of values of model parameters,

∂Rc

∂ζ
> 0,

i.e., Rc is an increasing function of ζ. This leads to the following result.

Lemma 6.4.1. The use of isolation of the hospitalized individuals will always have positive

(negative) population-level impact if ζ < (>)b1, where b1 = γ2+2Φ+µ+δ1
γ3+µ+δ2

.
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Then, the impact of the isolation of infectious individuals is monitored by computing the

partial derivative of Rc with respect to the parameter Φ given by

∂RC

∂Φ = ∂

∂Φ

[
βpκ

(κ+ µ)(γ2 + Φ + µ+ δ1) + βζpκΦ
(κ+ µ)(γ2 + Φ + µ+ δ1)(γ3 + µ+ δ2)

]
=

= βpκ

(κ+ µ)
∂

∂Φ

[
1

γ2 + Φ + µ+ δ1

]
+

+ βζpκ

(κ+ µ)(γ3 + µ+ δ2)
∂

∂Φ

[
Φ

(γ2 + Φ + µ+ δ1)

]
=

= − βpκ

(κ+ µ)
1

(γ2 + Φ + µ+ δ1)2 +

+ βζpκ

(κ+ µ)(γ3 + µ+ δ2)
γ2 + 2Φ + µ+ δ1

(γ2 + Φ + µ+ δ1)2 =

= βpκ

(γ2 + Φ + µ+ δ1)2

[
ζ(γ2 + 2Φ + µ+ δ1)
(κ+ µ)(γ3 + µ+ δ2) −

1
κ+ µ

]
:=

:= βpκ

(κ+ µ)(γ2 + Φ + µ+ δ1)2 [b1ζ − 1] ,

where,

b1 = γ2 + 2Φ + µ+ δ1

γ3 + µ+ δ2
> 0.

Therefore,
∂R
∂Φ < 0 (> 0) iff b1ζ − 1 < 0 (> 0).

As a result, if the corresponding infectiousness of hospitalized patients ζ does not exceed

the threshold b1, the use of isolation of individuals with illness symptoms will be helpful to

the community. The objective of this model is to offer the health-care industry and related

authorities with a prediction approach for evaluating diverse MERS-CoV situations and

the efficacy of various intervention efforts regard to the parameters above. For example,

the hospital administration should guarantee that all staff working in the hospital get the

appropriate personal protection against infection and are not exposed to infectious pathogens

improperly. Employees who are infected or in a carrier condition must be managed properly
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to prevent infection from spreading to patients, employees, or the environment. District

management has to ensure that patients follow infection prevention and control policy and

protocols, that they have access to adequate personal protection against infection, and that

they follow protocols for infection notification and response in the hospital.

Isolated patient care is essential for infectious disease prevention in hospitals. There should

exist protocols and measures dedicated to maximize the overall health and well-being of the

patient while also reducing the spread of MERS-CoV. For instance, health-care professionals

should make brief frequent visits to the patient rather than long ones as this method minimizes

the potential spread of infectious bacteria and viruses. Health-care professionals should also

close all doors behind them attentively and cautiously while entering and exiting the room to

avoid creating adverse air circulation. Moreover, there are many considerations regarding

the mental health of the patient. The potential decrease in the patient’s mental health

upon admission should not be consequent to isolation. Entertainments such as TV, radios,

smartphones, and newspapers/magazines that are acceptable for the patient are excellent to

maintain mental health during isolation. Large windows for appropriate daylight may also be

a component for maintaining mental health during isolation. Furthermore, in addition to the

health of the patient, it is necessary for the patient that they receive periodic updates and

information with regards to their illness and general health.

The prevention of infectious spread of disease and bacteria is often a factor of hospital

clothing attire. Replacing private uniforms to hospital owned ones that are used in hospital

services can minimize the spread of cross contamination between patients and health-care

professionals alike. In direct patient contact, for example, medical and personal protective

equipment such as yellow infection gowns are often contaminated, and therefore should

be frequently monitored, cleaned, and/or replaced. Moreover, hospital protocols regarding

clothing attire for infectious disease prevention include the following: hospital shoes and socks

should strictly be used in hospital settings, all forms of jewellery including wrist watches are
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not permitted in work with patients or equipment , nails should be clean and short, synthetic

nails are not permitted, long hair should be in a form that is controlled and secured since

there can often be substantial amounts of bacteria in the hair, work clothing should be made

of a strong and thick material that can withstand washing at 85 degrees celsius for at least

10 minutes, and work clothes/other textiles must be cleaned in hospital-approved laundries

[173].
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Chapter 7

General Mobility Process

7.1 Introduction

We are shifting to the influenza study now, so first focus on mobility processes. The classical

SIR model with S: susceptible population, I: infected population and R: recovered population,

satisfies the below differential equation:

dS

dt
=− βSI, (7.1a)

dI

dt
=βSI − γI, (7.1b)

dR

dt
=γI. (7.1c)

Here β is the infection rate of the disease and γ is the recovery rate. Usually β is assumed

as equal to everybody in the population who is susceptible to the disease, and also does

not vary along the time. An infected individual could contact and infect persons, where

N = S + I +R , among which the percent of susceptible individuals is S
N

. Hence the number

of new infections in unit time per infective is Nβ × S
N

, resulting in the total new infections

given by all infective are Nβ × S
N
× I = βSI. It is noteworthy that, the whole population is
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static without increase and decrease, i.e. the population birth and death and migrations are

not considered in the model, implying that

dN

dt
= dS

dt
+ dI

dt
+ dR

dt
= 0. (7.2)

Several contemporary models for the transmission of infectious diseases in human societies

contain non-random patterns of mixing among subgroups, as well as a factor for interaction

among group that is dependent on the home population groups of susceptible and infectious

people [174, 175]. This parameter simply indicates the end result of the mixing process leaving

the method by which contact happens between people from various subgroups implicit. Little

thought has been given to the process through which the pathogen spreads over space. There

might be heterogeneity in the frequencies at which transition individual interact, but there is

homogeneity among people for any specific transition. Individual variations in the natural

tendency to relocate to certain places cause the second type of population heterogeneity.

Each individual in this population follows a Markov chain, however the chains differ between

individuals.

Predicting the behaviour of the infection diseases with geographic discrete distance

requires a mobility process model to study the spread of infectious diseases among regions,

incorporating it with an SIR model to understand the global dynamics of diseases. Therefore,

we applied SIR model incorporating with geographic mobility among regions to determine

how the dynamics of diseases will be changed among individual classes (susceptible, infectious,

and recovered) in specific time frame[81].

Millions of pilgrims gather annually to participate in religious rites at Saudi Arabia’s

Mecca. These pilgrims potentially carry diseases from diverse geographic regions. Saudi

Arabia’s government has tackled to control diseases that are spread during specific time

frames. According to research, disease transmission results from epidemics by the mobility
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process among geographic regions with population structures. This study incorporates a

transmission model with a mobility process and applies SIR model to study the prevalence of

diseases among mass gatherings in Hajj. Infectious diseases are transmitted among pilgrims

at Mecca and also transported to their home countries.

7.2 Deterministic system of the General Mobility Pro-

cess

Various factors, including involvement in the community, social activities, ethnic diversity,

and social norms, impact the probability of interaction between susceptible and infected

individuals. Now we introduce another model in the population migration. We modify the

model for the geographic spread of the people that was created by Sattenspiel and Dietz [81].

Define Nij the number of citizens of country i who are in country j at time t. Exclusively,

Nii is the population staying in the home country. Another two parameters, σi and ρi, are

defined as the mobility rate of citizens in the country i leaving their home country, and as

the proportion of people returning to their home country i from foreign country j separately.

With these notations, a geographic mobility model may establish and it is accessible to be

structured. The individual traveler among the regions is illustrated by

dNii

dt
= ∑

j=1
ρijNij − σiNii, (7.3)

dNij

dt
= σiNii − ρijNij. (7.4)

To find equilibrium points, we set

dNij

dt
= σiNii − ρijNij = 0. (7.5)
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Then by re-ranging for Nii, equation 7.5 yields

Nij = σi
ρij
Nii. (7.6)

Adding sum in both side of equation when i 6= j leads to

∑
j 6=i

Nij =
∑
j 6=i

σi
ρij
Nii. (7.7)

Since σiNii is constant, then the term in right hand side in equation 7.7 yields,

∑
j 6=i

σi
ρij
Nii = σiNii

∑
j 6=i

1
ρij
. (7.8)

Suppose Ni represent the number of citizens of country i, then

Ni =
∑
s 6=i

Nis +Nii, (7.9)

where the index j from Equation 7.5 is replaced with s. Thus,

Ni = σiNii

∑
s 6=i

1
ρis

+Nii, (7.10a)

Ni = Nii(1 + σi
∑
s 6=i

1
ρis

), (7.10b)

and finally

Nii = Ni(1 + σi
∑
s 6=i

1
ρis

)−1. (7.10c)

The spread of a disease in the pilgrimage have a high probability with massive crowed
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movement. The transmission term for the infection process is represented by:

n∑
j=1

n∑
k=1

τkκkβijk
IjkSik
N∗k

(7.11)

where,

τk is the probability of transmission per contact in region k.

κk is the average number of contacts per person in region k.

βijk is the proportion of the contacts in country k between susceptible individuals from

country i and infected individuals from country j.

Ijk is the number of infected individuals currently in country k who are citizens of country j.

Sik is the number susceptible individuals currently in country k who are citizens of country i.

Furthermore, the number of individuals currently in country k is represented by

N∗k =
∑
m

(Smk + Imk +Rmk). (7.12)

Susceptible citizens of region i who are currently at that region given by:

dsii
dt

= Number of citizens returning home country

- Number of citizens leaving their home as travellers - transmission term,

or,
dSii
dt

=
∑
k

ρikSik − σiSii −
∑
j

τkκiβiji
SiiIji
N∗i

. (7.13)

The changing of susceptible citizens of region i who are travelling to other region is represented

by
dSik
dt

= σiSii − ρikSik −
∑
j

τkκkβijk
SikIjk
N∗k

. (7.14)
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7.3 SIR Model:

The complete SIR epidemic model with the mobility process is given by:

dSii
dt

=
∑
k

ρikSik − σiSii −
∑
j

τkκiβiji
SiiIji
N∗i

, (7.15a)

dSik
dt

=σiSii − ρikSik −
∑
j

τkκkβijk
SikIjk
N∗k

, (7.15b)

dIii
dt

=
∑
k

ρikIik − σiIii +
∑
j

τkκiβiji
SiiIji
N∗i

− γIii, (7.15c)

dIik
dt

=σiIii − ρikIik +
∑
j

τkκkβijk
SikIjk
N∗k

− γIik, (7.15d)

dRii

dt
=
∑
k

ρikRik − σiRii + γIii, (7.15e)

dRik

dt
=σiRii − ρikRik + γIik. (7.15f)

where γ is the recovery rate from the diseases.

We assume three countries, Saudi Arabia [Mecca] region(1), Egypt region(2), Iran region(3).

These three are chosen since Saudi Arabia is the host country, Egypt and Iran have comparable

populations with the largest number of pilgrims that attended. The model that represents

the number of susceptible, infected, and recovered individuals in Mecca at Saudi Arabia is

given by

dS11

dt
=
∑
k

ρikS1k − σ1S11 −
∑
j

τkκ1β1j1
S11Ij1
N∗1

, (7.16a)

dS1k

dt
=σ1S11 − ρ1kS1k −

∑
j

τkκkβ1jk
S1kIjk
N∗k

, (7.16b)

dI11

dt
=
∑
k

ρ1kI1k − σ1I11 +
∑
j

τkκ1β1j1
S11Ij1
N∗1

− γI11, (7.16c)

dI1k

dt
=σ1I11 − ρ1kI1k +

∑
j

τkκkβ1jk
S1kIjk
N∗k

− γI1k, (7.16d)
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dR11

dt
=
∑
k

ρ1kR1k − σ1R11 + γI11, (7.16e)

dR1k

dt
=σiR11 − ρ1kR1k + γI1k. (7.16f)

The model that represent the number of susceptible, infected, and recovered at Egypt is

represented by

dS22

dt
=
∑
k

ρ2kS2k − σ2S22 −
∑
j

τkκ2β2j2
S22Ij2
N∗2

, (7.17a)

dS2k

dt
=σ2S22 − ρ2kS2k −

∑
j

τkκkβ2jk
S2kIjk
N∗k

, (7.17b)

dI22

dt
=
∑
k

ρ2kI2k − σ2I22 +
∑
j

τkκ2β2j2
S22Ij2
N∗2

− γI22, (7.17c)

dI2k

dt
=σ2I22 − ρ2kI2k +

∑
j

τkκkβ2jk
S2kIjk
N∗k

− γI2k, (7.17d)

dR22

dt
=
∑
k

ρ2kR2k − σ2R22 + γI22, (7.17e)

dR2k

dt
=σ2R22 − ρ2kR2k + γI2k. (7.17f)

The model that represent the number of susceptible, infective, and recover individuals at

Iran is represented by:

dS33

dt
=
∑
k

ρ3kS3k − σ3S33 −
∑
j

τkκ3β3j3
S33Ij3
N∗3

, (7.18a)

dS3k

dt
=σ3S33 − ρ3kS3k −

∑
j

τkκkβ3jk
S3kIjk
N∗k

, (7.18b)

dI33

dt
=
∑
k

ρ3kI3k − σ3I33 +
∑
j

τkκ3β3j3
S33Ij3
N∗3

− γI33, (7.18c)

dI3k

dt
=σ3I33 − ρ3kI3k +

∑
j

τkκkβ3jk
S3kIjk
N∗k

− γI3k, (7.18d)
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dR33

dt
=
∑
k

ρ3kR3k − σ3R33 + γI33, (7.18e)

dR3k

dt
=σ3R33 − ρ3kR3k + γI3k. (7.18f)

Table 7.1: Parameter values country 1 (Saudi Arabai)

Parameter values

Parameters Description References

σ1 = 0 people leaving the host country [64]

ρ12, ρ13 = 0.001, 0.002 people returning to the host country [64]

β = 0.32; contact rate Assumed

τ1 = 0.30 probability transmission per contact [58]

Table 7.2: Parameter values country 2 (Egypt)

Parameter Values

Parameters Description References

σ2 = 0.001 people leaving Egypt [64]

ρ21, ρ23 = 0.009, 0.004 people returning to Egypt [64]

β = 0.211 contact rate Assumed

τ2 = 0.21 probability transmission per contact [176]
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Table 7.3: Parameter values country 3 (Iran)

Parameter Values

Parameters Description References

σ3 = 0.002 people leaving Iran [64]

ρ31, ρ32 = 0.019, 0.005 people returning to Iran [64]

β = 0.311 proportion of the contacts Assumed

τ3 = 0.15 probability transmission per contact [177]

7.4 Methods and Results

We solved the models numerically using ode45, and the results show; in Figure 7.1, the

rate of susceptible people S11 at region (1) (Mecca) got very quick decreases and they finish

within 5 days , so we see a decline in the results of the mass gatherings and pilgrims who

became infected very quickly. However, the susceptible people S22, and S33 at region (2)

(Egypt) and region (3) (Iran) got slower decreases than the people at region (1) because of

less contact. In addition, the people who were travelling from region (1) to region (2) S12 or

region (3) S13 were at the same rate as in region (2) S22 and region (3) S33. The pilgrims

who were susceptible and travelled to region (1) rapidly became infected and we can realize

the decreases of the rate of susceptibility; however, the visitors who were travelling between

region (2) S23 and region (3) S32 became infected gradually.

In Figure 7.2, the infection rate increases promptly (see I11 which is the pilgrims in Mecca

at the beginning); the peak of the infection occurred on the 5th day of the mass gathering

with 1,700 cases, showing a sharp increase and then decreasing slowly after 6 days. This is

due to fewer activities after the 5-to 6-day Hajj period, decreasing to 73 cases at the end of

30 days. Similarly, in infected pilgrims performing the Hajj from Egypt I21 and from Iran
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I31, the change of the rate of infection is the same as I11 since they are in the same scenario.

In contrast, the visitors who were moved between Saudi Arabia, Egypt, and Iran, got slight

infections and appear as normal distributions with the maximum number of infections being

1,250 cases. In the simulation, we estimated the initial condition of the susceptible class to be

2000 with infections in 10 people since we needed to start with a small aggregate of infectious

numbers and investigate through the models how the dynamic of diseases changed between

the different classes.

Finally, as we see in Figures 7.1, 7.2, and 7.3 , increasing the contact of people enables

the growth of infection especially in region (1) with massive crowd movement and 5 persons

per m2 attendant decreasing of susceptibles. On the other hand, the recovery rate from the

disease moved slowly in the first 5 days, but after that it increased sharply, particularly with

R11, R21, and R31; the recovery rate stayed at around 2000 cases which matches our initial

guess for susceptibles. Increases and decreases of infection depend on how the dynamics of

the infectious class spread among regions, so this hypothesis is clearly tested during the Hajj

with more activity at the beginning of the month of the mass gathering and fewer activities

after the period of the Hajj. Pilgrims may have less contact between them as compared to

the first 4 days, the influenza immune system kicks in and they begin to recover regard to

the parameter values in the tables 7.1, 7.2, and 7.3.

7.5 Discussion

Professional management of the Hajj is required to avoid health disasters. Collaboration

between the saudi arabian health authorities and other national health organizations reduced

the panic of an epidemic spread. In addition, new regulations from the Ministry of Health

(MOH) helped to control a rapid outbreak of A (H1N1) during the 30 days of the Hajj [59].

In order to avoid infection, pilgrims were required to obtain vaccinations against the virus
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Figure 7.1: The number of susceptible individuals by H1N1 at different regions in 30 days

well in advance of performing the Hajj. However, pilgrims also had access to free medical

and health care during that time, courtesy of the Saudi MOH. Health care professionals

were faced with some confusion when attempting to differentiate between the symptoms

of seasonal flu and A (H1N1); for example, headache, fever, cough, and sore throat are all

symptoms of influenza, although they may not herald the onset of Swine flu. There makes

difficulty to know the true number of cases of disease which lead to loss real data. Extreme

weather conditions played a part, with temperatures rising to 45◦C. Also, it is challenging to

check every patient when one is dealing with three million pilgrims, so we cannot get the

exact count of the number of infected cases of A (H1N1). The real data that we found was

that 80,000 pilgrims from Egypt performed the Hajj in 2009; we expect that 95% of them
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Figure 7.2: The number of infected individuals by H1N1 at different regions in 30 days

returned to their homes while the rest remained in Saudi Arabia. In addition, 65,000 were

from Iran and 99% of them returned home since the agreement between Saudi Arabia and

Iran concerning pilgrims leaving after the Hajj.

7.6 Conclusion

During the 2009 Hajj, 2.5 million pilgrims from 160 countries came to Mecca, coinciding

with the outbreak of the worldwide Swine flu epidemic A(H1N1) [68]. A low incidence of the

disease was unexpected during that time. However, the preventive measures that were taken

prior to the pilgrims obtaining their visas, the thermal cameras they passed through at the
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Figure 7.3: The number of recovered individuals by H1N1 at different regions in 30 days

point of entry, as well as temporary quarantines all contributed to the lack of an epidemic

outbreak, especially at region (1). The short duration of the Hajj could also have contributed

to the lower incidence of the disease though the reproductive number was 1.5. A survey of

Egyptian pilgrims who returned home found that (98.1%) were vaccinated against A (H1N1)

2009, which was strongly recommended, and none of them returned with the pandemic H1N1

virus [176]. Likewise, in Iran, health authorities collected pharyngeal swabs of 305 pilgrims;

132 men (43.3%) and 173 women (56.7%) between the ages of 24 and 65. The result for

A (H1N1) virus was positive in five pilgrims (1.6%) [177]. All of this evidence supports

our findings. In addition, a mobility process model is a powerful tool to study the spread

of infectious diseases among different geographic regions. Indeed, it becomes more useful
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when an SIR model is incorporated to describe how contact occurs between individuals from

different regions. Furthermore, simulation with non-constant parameters in the models can

be used to better understand system dynamics not only with deterministic parameter profiles

but also with stochastic parameters [69].
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7.7 Stochastic Model of the General Mobility Process

7.7.1 Stochastic SIR Model:

It is very natural that we combine the deterministic and stochastic models to give an enhanced

disease spread dynamic with population migration.

Suppose there is one host country and M − 1 other home countries. For simplicity,

populations can only migrate from their home countries to the host country (for host country,

its citizen do not migrate) rather than other countries. hen we can show that the system of

geographic mobility SIR system is static since there is no birth and death and population

can only migrate within the system, i.e. the system is closed.

7.7.2 Methods: Probabilistic Solutions, Migration Probability

Obviously, the above geographic mobility SIR system (7.16) is an Ordinary Differential

Equations (ODE) which can be solved in deterministic procedure. On the other hand, in

the real world, the parameters, such as migration rate, infectious spread rate and recovery

rate, are not constants, either varying along with the time, or affected by a noise. With the

result that it is quite meaningful considering the stochastic behaviour in the parameters when

solving the equation system. In the probabilistic problems, markov property is quite common

and helpful for solving the stochastic systems [98]. Below we try to use markov property

[101] to estimate the system evolution. Suppose one person in home country has such three

statuses in migration: staying in home country, leaving for foreign country and returning

home country. We use to define the migration, and 0, 1, 2 to present three different statuses

at time t. Then the below probability equation is rational:

P (Ut = k | Ut−1, Ut−2, ...) = P (Ut = k | Ut−1), (7.19)
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where k = 0, 1, 2. Hence the migration randomness is said to have the markov property. The

markov matrix for Ut is


λ11 λ12 0

0 λ22 λ23

0 0 1

 ,

where

(P t,t−1)mn = P (Ut = m | Ut−1 = n).

The zero-element in the matrix is obvious. If a person is in the home country, then in the

next moment he can only be either in the home country, or be in foreign country, but cannot

be in returning status. Similarly, if a person is in the foreign country, he can never be in

stay in home country any longer. Besides, if a person returns to his home country, his status

can only be in returning in the future moments. One should note that, the migration status

is independent of his SIR status, but only dependent on the time. To give the transition

probability, we consider the transition in a small time interval :

P (Ut+∆t = k | Ut+∆t = j).

Here we suppose the probability of leaving for foreign country is 0.01 to the whole time span

and uniformly distributed in every interval, which means within the whole time span (30

days, saying) the probability of leaving is 1%, and within 1 day, the probability is 0.033%.

While for the probability of returning home country from host country, we do not use

uniform distribution on the time span. From the actual situation of Hajj, foreign people

are more likely leave at the end of the Hajj period. Hence the uniform distribution is not

suitable here and we need to use a “skewed”distribution. We find that a distribution having
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the following format satisfies our requirement, which is skewed to the tail:

P (X < x) = exp(ax+ b)
exp(cx+ d) + 1 . (7.20)

That is the logistic function. However, in the logistic function the variable x can be

positive and negative infinite, which is not the actual case in Hajj. Notwithstanding, we still

apply the format by the following:

p = exp((t− timespan/2)/20)
exp((t− timespan/2)/20) + 1 . (7.21)

Here 20 is a scale factor used in our study, which determines the slope of the probability

curve. Thus, we have completed the markov transition matrix used to determine the status

of population geographic mobility in the below form:

P t+∆t,t =


1− 0.01×∆t

T
0.01×∆t

T
0

0 1− exp((t−timespan/2)/20)
exp((t−timespan/2)/20)+1

exp((t−timespan/2)/20)
exp((t−timespan/2)/20)+1

0 0 1

 ,

where 0.01 and 20 are adjustable.

Susceptible Status:

Similar to the markov matrix used in geographic mobility, we can also build a markov matrix

for SIR movement. A gain we study the change in the time interval of t, t + ∆t. The

population may suffer a susceptible → infected → recovered process, which is not reversible.
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Indeterminately, the desired markov matrix should have the below format:

Qt+∆t,t =


ω11 ω12 0

0 ω22 ω23

0 0 1

 ,

where the 1st column (row) stands for S, 2nd column (row) for I and 3rd column (row)

for R. In the discretized-time problem, we need to determine the sequence of two or more

occurrences, which would occur simultaneously in the real world. In our model, we conduct

the migration status first and then classify the SIR status. Besides, at beginning of the

model cycle, a person may be in S status or in I status. In our study, we assign a S or I

status to a person randomly with probability:

P (W 0 = S) = 0.99,

and

P (W 0 = I) = 1− P (W 0 = S) = 1− 0.99 = 0.01.

Here W t is the variable used for denote SIR status at moment of t. Again the initial

probability 0.99 is adjustable to the actual position. In the program, for each person we

generate a random variable rr following uniform distribution on [0,1]. If rr < 0.99, then the

person is assigned with S status, else with I status [100].

From S to I:

After SIR status initialization, we should determine the infected process of a susceptible

person. Without considering migration, the increase of I status is only due to the S person

being infected, which is totally determined by the contact rate and infective density in a
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person’s environment. In our study, we assume that there is an inherent contact rate and a

population migration growth rate jointly determining the contact rate, denoted as βijk in the

above. Hence βijk can be calculates as

βijk = β0 ×
N t+∆t
k

Nk

, (7.22)

where β0 is a constant, playing a role of inherent contact rate, where N t+∆t
k is the population

of country k in the moment t + ∆t. Another factor in the S − I process is the infective

density in the country of a person, which is given by:

Infective(density) = I t+∆t
k

N t+∆t
k

.

Hence the real contact rate and infective density will jointly determine the infected rate in a

population. Here we try to map βijk × Infective(density) to the infected probability. Note

that, if βijk = 0, meaning no contact among population or, Infective(density)=0, meaning no

infective person in the population, will cause the extinction of the disease. On the contrary,

if βijk = is very large, or Infective(density) ≈ 1, a person is more likely to be infected. Based

on this assumption, we try to build a probability function on βijk× Infective(density) , which

is 0 when βijk × Infective(density) = 0 and is 1 when βijk × Infective(density) is very large.

The below function satisfies the above requirement and is used in the model:

P (W t+∆t = I | W t = S) = exp(βijk × Infective(density))− 1
exp(βijk × Infective(density))× 10 . (7.23)

Once again, 10 is a adjustable factor which ensures the probability of being infected a

reasonable value [99, 101].
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From I to R:

Now we are studying the probability that a infected person getting recovered. Therefore, we

are looking for the probability P (W t+∆t = R | W t = I); how it look like. In the classical SIR

model, γ is the recovery rate, which means that the large γ will result a shorter time period

of being infected. Hence, we believe that the days of being infected can be a random variable

of which the distribution function is related to γ . Moreover, the days of being infective is

non-negative and can be any positive number. Based on these assumptions, we find that

the exponential distribution satisfies the requirement. Accordingly, we may assume the days

of being infected follows an exponential distribution of 1
γ
. Once we fix the problem of days

being infective, we can determine the probability P (W t+∆t = R | W t = I), which has the

below property:

P (W t+∆t = R | W t = I) = P (∆t ≤ texp), (7.24)

where texp follows the exponential distribution of parameter 1
γ
. In the programming, for each

person we mark the moment that a person is infected (the moment is 0 if he is infected

initially). With the time increase, we generate a random variable following the exponential

distribution of parameter 1
γ
. If the increased time interval ∆t is larger than texp, we regard

the person is recovered. Now we have completed built the Markov matrix for SIR status

transition. The matrix is:

Qt+∆t,t =


1− exp(βijk×Infective(density))−1

exp(βijk×Infective(density))×10
exp(βijk×Infective(density))−1
exp(βijk×Infective(density))×10

0

0 1− exp
(

1
γ

)
exp

(
1
γ

)
0 0 1

 .
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The meaning of exp
(

1
γ

)
is given as above. One should note that, the contact rate βijk and

infective(density) reply on the country that a person is in, so the probability of

P (W t+∆t = I | W t = S),

depends on the geographic mobility, while the recovery probability

P (W t+∆t = R | W t = I),

does not [97, 98].

7.7.3 Results and Discussions

In this study we use Matlab as simulation platform to simulate Monte Carlo Method. As

introduced in the above, some probability, such as recovery probability

P (W t+∆t = R | W t = I)

is decided from exponential distribution. So, we need to generate some random variables to

determine status transition. Table 7.4 summarizes the generated random variables in the

program and their usage.
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Table 7.4: Generated random variables.

Table 1: Generate Random Variables

Random Variables Purpose How to use

rr: uniform on [0,1] Determine whether a person

is susceptible at the begin-

ning

If rr ≤ 0.99 then the per-

son is susceptible, otherwise

infected at beginning

rr: exponential with 1
γ

For an infected person, gen-

erate his expected recovery

date

If the days of being infected

is larger than rr, then he is

recovered

rr: uniform on [0,1] Determine whether a person

would be migrate to foreign

country

If rr ≤ σ, then he is leav-

ing for host country. Here σ

is 0.01/N , N is precision of

simulation.

rr: uniform on [0,1] Determine whether a person

should leave foreign country

and return

p= exp(βijk×Infective(density))−1
exp(βijk×Infective(density))×10

It is note that, in our simulation, each individual in every time unit is checked for

their geographic mobility migration and SIR status, so the simulation involve huge steps,

depending on time span (days of simulation times N) and population size of each country.

Hence, if we assign a large population to a country, then the computation will be quite time

consuming. We choose population sizes of the three countries, and choose time span as 4000

hours. The plot of Monte Carlo simulation is in Figures below. In all the three countries,

the susceptible population decreases while the infected population increases rapidly, which

means at the beginning, the epidemic explored. But after some time, the infected population

slows down the increase and then decreases. Meanwhile, the recovered population grows.
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Moreover, the infected population in country 2 decreases faster than that in other countries,

and recovered population grow faster than other two countries, see figures 7.5 and 7.6. This

may be caused by the larger recovery rate (0.02 v.s 0.01 and 0.005).

Figure 7.4: Stochastic SIR Model for country 1: Domestic Situation

If we think about Saudi Arabia as a host country for any diseases, then according to our

simulation the infection rate increases promptly at the beginning of mass gathering among

pilgrims since the contact rate is very high see figure 7.4; therefore, professional management

during Hajj is required to avoid health disasters. The collaboration between health authorities

in Saudi Arabia and other national health organizations worked effectively in reducing the

panic of an epidemic spread. The new regulations from MoH (Ministry of Health; at Saudi

Arabia) contributed to controlling the rapid outbreak of any disease for instance (H1N1)
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Figure 7.5: Stochastic SIR Model for country 2

during the period of Hajj or Umrah. The people who got infected up to now of (H1N1) are

299 resulting 87 death. During the period of Hajj or Umrah the number of infection will

be high since large probability of contacts with massive crowd movement. Therefore, first,

pilgrims should be vaccinated against the viruses well in advance of performing Hajj to avoid

infection. Additionally, pilgrims have access to free medical and health care during the Hajj

and Umrah time of MoH which would reduce the number of infectious. The pilgrims who

get infected during Hajj and Umrah should stay there till get immune; otherwise, they will

transfer diseases to their home country. Finally, we successfully combine the geographic

mobility model and SIR model to derive the epidemic spread in connected countries, and use

Monte Carlo simulation based on markov property of the model to simulate the spread. On
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Figure 7.6: Stochastic SIR Model for country 3

the whole the simulated result is in line with what we expected before. The mobility process

model is more capable of studying the transmission of infectious diseases across distinct

geographic areas. Indeed, a mobility process model becomes more effective when used with

the SIR model to describe how individuals from various places come into interact. However,

simulation of non-constant parameters in the models may be utilized to better understand

system dynamics with deterministic parameter characteristics as well as stochastic parameter

features.
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Chapter 8

General Discussion and Conclusion

8.1 Discussion and Conclusion

This thesis has focused on the development and analysis of mathematical models of issues

affecting Saudi Arabia and the Middle East, specifically MERS-CoV and disease spread at

the Hajj mass gathering. The models consider questions in public health, prevention, control

of infection, health education, and transmission between humans and animal reservoirs.

Middle East Respiratory infection caused by Coronavirus (MERS-CoV) was reported

in 2012 in Saudi Arabia [1, 3, 15, 90, 91, 153]. It has also been confirmed to have been

transported to a variety of countries, 27 countries reported cases globally and 12 countries

reported cases in the Eastern Mediterranean Region [23].

In Chapter 2, we formulated a mathematical model for two species to investigate the

interactions between camel and human, and capture the dynamics of MERS epidemics by

applying both deterministic and stochastic structure. Stability analysis has been done in the

deterministic model; for example, global stability for the disease-free equilibrium and the

endemic disease equilibrium using Lyapunov function. We discussed the probability of an

outbreak as well as the number of deaths in the stochastic framework. Also, time to outbreak
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and time to peak level of infection have been shown. We can conclude that the stochastic

model simulations concede with the deterministic analytical results. The finding of our model

agreed with the published results done by Allen et all. [178].

For further study in two species models as what was accomplished in chapter 3, we

applied a network model in the previous model to have a better understanding of the

epidemiological findings on superspreading scenarios. Probabilistic epidemic model and

pairwise approximation examine the probability for all nodes and the prevalence of the

disease. The findings showed that networks modelling address a significant role in influencing

our comprehension of epidemic processes. For example, the confinement of contacts among

individuals inside a network, rather than the overall population, slows and limits the spread of

infection; hence, if we are seeking to predict species patterns from individual-level observations,

network structure must be considered which is agreed with prior epidemiological studies by

[116, 129].

Environmental infection transmission often plays a major role in transmission of infectious

diseases. In Chapter 4, we formulated a mathematical model to understand the reflecting

pathogen characteristics and the mechanisms of transmission through the environment. The

framework provides a theoretical basis for understanding disease control for the environment.

Here, we showed, non-negativity, boundedness, existence of the disease-free equilibrium, the

local stability of the disease-free equilibrium, the existence and stability of equilibrium points

of the model, the global stability of the disease-free equilibrium, and the existence of the

endemic disease equilibrium. We also derived the basic reproduction number R0 by two

different methods, and showed how environmental transmission can contribute to disease

spread.

In Chapter 5, the environmental model was followed by the mathematical modelling of

the effects of public health education, to study the benefits of education and understanding
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in disease control. The basic reproduction number R0 and the effective reproduction number

RE were determined. We also showed the existence and local stability of the disease-free

equilibrium, the global stability of the disease-free equilibrium, and the existence and global

stability of the endemic equilibrium. The analytical results were supported by numerical

simulations. Simultaneously, we investigated how different values of α influenced the overall

density of MERS-infected individuals, concluding that public health education is an effective

method of controlling the virus potential risk since it decreases the spreading of the threshold.

The result supported the previous epidemiological findings by Rachel et al. 2018 [161].

In Chapter 6, we used a mathematical model to study disease control, including hospital-

ization and isolation/quarantine. Mathematical modelling of a single population was used to

tackle questions surrounding respiratory diseases in Saudi Arabia. When the corresponding

reproduction number of the model is smaller than one, the model (6.1) exhibited a globally

stable disease-free equilibrium. When Rc > 1 , the model possessed a unique endemic equilib-

rium. For special cases, the unique endemic equilibrium is proven to be locally asymptotically

stable and globally asymptotically stable. The efficacy of isolation for symptomatic patients

is proportional to the magnitude of the modification parameter for reducing infectiousness in

hospitalized individuals ζ. Our model results of the study agree with previous findings of

Mohammad et al. [169].

Mass gatherings can provide optimal environments for disease spread. Umrah and Hajj

are two annual pious and religious festivals that are huge mass gatherings of more than 10

million travellers from different countries (approximately 184) to Saudi Arabia. Each year

Hajj is considered as a chief pilgrimage and involves a mass crowd that continues for six

days during the 12th month of the Islamic calendar, however Umrah is a minor pilgrimage

which could be highly personalized that is made mostly during Ramadan, during the (9th

month of the Islamic calendar) period of 29 and 30 days. In Chapter 7, we formulated the

deterministic system of the General Mobility Process, and we followed this work with a
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stochastic model to investigate probabilities of transmission of infectious diseases at mass

gathering events. In this regard we focused on influenza infection and spread, as this is a

disease that organizers must consider every year. The model results suggested that human

mixing and population movement, which were common in Umrah and Hajj, play a prominent

role in disease transmission, and that the risk of exportation of infectious diseases back to

pilgrim home countries can be reduced if mixing is controlled.

8.2 FutureWork

There are many important questions surrounding MERS-CoV and mass gatherings that

remain. Therefore, I will extend the work to a study of MERS-CoV transmission in a hospital

setting. This will include models of personal protective equipment use and procurement, and

models of airborne transmission in closed environments. Finally, I am interested in adapting

the model of the Hajj mass gathering to a study of COVID-19 transmission, and to other

mass gatherings worldwide.
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