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Abstract  

Branched-chain amino acids (BCAAs) have displayed metabolic benefits, and play a role in 

muscle protein synthesis. However, elevated levels of BCAAs and their metabolites have been 

linked to the pathogenesis of insulin resistance and type 2 diabetes mellitus. It has been 

demonstrated in my lab that α-ketoisocaproic acid (KIC), a metabolite of leucine, inhibited insulin-

stimulated glucose uptake, but is converted back to leucine in order to do so. Inflammation, a 

feature of insulin resistance may modulate the effects of amino acids and their metabolites on 

insulin action.  Thus, I analyzed whether or not there was an additive effect of KIC and 

inflammation on insulin-stimulated glucose transport in L6 myotubes. Results emphasize previous 

findings, that even in the presence of inflammation, KIC is converted back to leucine to inhibit 

insulin-stimulated glucose uptake, suggesting that interventions altering BCAA pathway flux may 

help in the management/prevention of insulin resistance.   
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1.0 Introduction 

Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disorder and its prevalence is 

increasing drastically where it is beginning to be regarded as an epidemic in some countries1. An 

estimated 439 million people will have T2DM by 20302. T2DM is characterized by high blood 

glucose levels (hyperglycemia) and insulin resistance. Insulin resistance refers to a suppressed 

response to insulin. T2DM differs from Type 1 Diabetes Mellitus (T1DM), as T2DM refers to an 

issue with the tissue responding to insulin instead of a lack of insulin production due to the 

destruction of b-cells in the pancreas3. Two factors in the onset of T2DM include genetic factors 

and lifestyle choices. Genetics plays a significant role, as having relatives with T2DM significantly 

increases the risk of developing T2DM. Medical conditions like obesity can intensify or give rise 

to T2DM.  

Lifestyle choices can increase the likelihood of developing T2DM. High fat diets are 

extensively studied in their role in the development of T2DM2. This is because high fat diets 

display pro-inflammatory effects both in vitro and in vivo8. Inflammation, a characteristic of 

obesity and insulin resistance has been directly linked to T2DM. Literature shows that pro-

inflammatory cytokines like tumor necrosis factor-a (TNF-a), could have implications in the 

development of insulin resistance. TNF-a activates c-Jun N-terminal kinases (JNK), which 

ultimately leads to phosphorylation of the serine residues of insulin receptor substrate (IRS-1), 

which inhibits insulin signaling9.

Calorie restriction is often suggested for obese individuals for weight loss, but this can lead 

to a loss of muscle mass. High branched-chain amino acid (BCAA; leucine, valine, isoleucine) 

diets have been recommended to counter this loss in muscle mass. These high BCAA diets exhibit 

positive effects such as stimulating muscle protein synthesis, and regulating body weight and 
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glucose homeostasis. BCAAs, like insulin, behave as anabolic signals for growth of tissues through 

the activation of mammalian target of rapamycin complex 1 (mTORC1). This is especially true 

for leucine, which activates mammalian target of rapamycin (mTOR) signalling6. 

Elevated circulating levels of BCAAs have also been associated with an increase risk in 

developing T2DM. BCAA supplementation results in sustained activation of mTORC1 (hyper-

activation) and its substrates. This hyper-activation results in a feedback loop, promoting 

phosphorylation of serine residues of IRS-15. Ultimately, BCAAs have a paradoxical role for obese 

individuals, as although they may increase protein synthesis and maintain muscle mass, they might 

also have implications in the pathogenesis of T2DM by reducing insulin sensitivity. Since leucine 

activates mTORC1, there have been numerous studies trying to elucidate its potential effects on 

insulin signaling and its role in the pathogenesis of insulin resistance. In previous studies in my 

lab, leucine significantly suppressed insulin-stimulated glucose uptake174. Also, incubation of KIC 

(200µM), a metabolite of leucine, in L6 myotubes resulted in a 45% suppression in insulin-

stimulated glucose uptake174.  

As stated earlier, inflammation is a characteristic of both insulin resistance and obesity, 

which can modulate the effect of KIC on insulin sensitivity. Thus, I analyzed the potential additive 

or synergistic effects of KIC in the context of inflammation on insulin-stimulated glucose uptake. 

This was important in order to elucidate potential mechanisms involved in the pathogenesis of 

insulin resistance. This will help in uncovering potential interventions that can help manage or 

treat dysregulations in BCAA metabolism that may have implications on the management of 

insulin resistance in type 2 diabetes and cardiovascular diseases. 
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2.0 Literature Review 

2.1 Insulin Signaling Within Skeletal Muscle  

Skeletal muscle makes up to 30-40% of our body mass, and is important for amino acid 

and glucose metabolism and thermogenesis158. Besides locomotion and storage, skeletal muscle is 

important in the maintenance of systemic glucose metabolism and is the most abundant insulin-

sensitive tissue148. Insulin is one of the main hormones in regulating glucose metabolism. Insulin 

controls a wide variety of biological processes and many aspects of metabolism and growth such 

as glucose transport, glycogen synthesis and protein synthesis148.  

 

2.1.1 Insulin Receptor and Insulin Receptor Substrates 

Insulin and IGF-1 elicits their effects by binding to the insulin receptor (IR) and insulin-

like growth factor 1 receptor (IGF-IR) respectively. Despite the preferential binding to their own 

respective receptors, both insulin and IGF-1 can bind to the others’ receptor with reduced 

affinity10. The IR is a heterotetrameric membrane glycoprotein comprising of two a subunits as 

well as two b subunits that are joined by disulfide bonds11. Insulin binds to the extracellular a 

subunit of the receptor, inducing conformational changes bringing both a subunits together. This 

leads to the auto-phosphorylation of the IR’s Tyr960 residue, allowing for its binding with the 

phospho-tyrosine binding domain of the insulin receptor substrates (IRSs)12.  

Thus far there are 12 substrates of the IR elucidated. These include: IRS-1, IRS-2, IRS-3, 

IRS-4, IRS-5, IRS-6, growth factor receptor-bound protein 2 (Grb2)-associated-binding protein 1 

(Gab-1), three isoforms of SH2 (Src homology 2), p62dok

 

and adaptor protein with a PH and SH2 

domain (APS)13,14. IRS-1 and IRS-2 are widely disturbed within the body, while IRS-3 is only 
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present in adipocytes and the brain, IRS-4 in embryonic tissues or cell lines, IRS-5 in kidney and 

liver, and IRS-6 in skeletal muscle.   

 In muscle, serine phosphorylation of IRS residues, such as Ser307, Ser612 and Ser1101 can 

reduce the ability of Phosphatidylinositol 3-kinase (PI3K) to be activated by IRS itself. Serine 

phosphorylation of IRS-1 results in a negative feed-back control mechanism to uncouple IR-IRS 

complexes178. This impairs tyrosine phosphorylation and thus affecting how the signal is 

transmitted downstream. Serine phosphorylation reduces the ability of IRS-1 to recruit PI3K, 

minimizing PI3K activation207-212. Recent studies have emphasized the importance of these serine 

residues in insulin resistance, as replacing the serine residues of IRS-1 with alanine in vivo has 

prevented high fat diet induced insulin resistance109. On the other hand, in a mice study, where 

they mutated the Ser302 site to alanine, there was no change in insulin action234. 

The first IRS discovered was IRS-1, which has 21-22 tyrosine phosphorylation sites15,16 

and 50 serine/threonine phosphorylation sites245. IRS-1 is expressed in insulin sensitive tissues 

such as skeletal muscle, adipose tissue and liver. Phosphorylation of IRS-1 tyrosine residues is 

crucial in transmitting the signal from the IR to downstream substrates. The insulin receptor and 

IRS tyrosine phosphorylation is transient and is dephosphorylated by protein tyrosine phosphatase 

1B238. Ablation of this phosphatase in muscle239 and liver240 resulted in improved insulin 

sensitivity.  

IRS-1’s importance in insulin signaling has been emphasized with knockout IRS-1 mice 

exhibiting peripheral insulin resistance and decreased growth17. However, IRS-2 compensates for 

this loss and allows for the transduction of the insulin signal. IRS-2, like IRS-1 can engage with 

PI3K, and thus relay the signal downstream18. Tang et al. emphasize the importance of IRS-2, as 

in an IRS-1 knockout mouse model, IRS-2 was upregulated in the liver and skeletal muscle, and 
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this upregulation of IRS-2 prevented an increase in blood glucose associated with insulin 

resistance250. IRS-2’s importance is highlighted with its knockout, resulting in the development of 

T2DM, increased adiposity, and insulin resistance in liver and skeletal muscle19.  

  

2.1.2 IRS-1/PI3K/Akt Pathway 

The IRS-1/PI3K/Akt signaling pathway is central to insulin signaling. Once IRS-1 is 

activated through its phosphorylation by the IR, it relays this signal to PI3K (figure 1). PI3K is a 

heterodimeric lipid kinase with a wide array of functions, such as growth and differentiation, 

synthesis and degradation of lipids, proteins and carbohydrates, and membrane trafficking20. PI3K 

consists of a regulatory and a catalytic subunit. Recruitment and activation of PI3K depends on 

the binding of two SH2 domains in the regulatory subunits of PI3K to the tyrosine-phosphorylated 

IRS-127,28. In skeletal muscle of humans, the regulatory subunit binds to IRS-1 via IRS-1’s SH2 

domains, allowing for PI3K activation.  This activation allows for the catalytic subunit to 

phosphorylate phosphatidylinositol 4,5-biphosphate (PIP2). PI3K phosphorylates PIP2 at position 

3 of the inositol ring to generate a lipid second messenger known as phosphatidylinositol 3,4,5-

trisphosphate (PIP3)21. The importance of PI3K in insulin signaling is emphasized in the inhibition 

of PI3K. Martin et al. demonstrated that PI3K inhibition with wortmannin resulted in a reduced 

translocation of glucose transporter 4 (GLUT4), which is a protein necessary for glucose uptake22. 

 Lipid phosphatases can have negative effects on insulin signaling. Phosphatase and tensin 

homolog (PTEN) dephosphorylates PIP3, thus antagonizing PI3K signaling37,38. PTEN is a tumour 

suppressor that is disrupted in human cancers as well236. PTEN inhibition has increased Akt 

activation, thus not only affecting insulin action237, but also cell growth and survival pathways236. 



 
15 

Studies have also demonstrated that PTEN deletion in skeletal muscle resulted in increased insulin 

sensitivity, highlighting its role in the pathogenesis of insulin resistance39,40.   

Many of the effects of PI3K-derived PIP3 are mediated by a subset of AGC protein kinase 

family members including Akt, p70 ribosomal S6 kinase (S6K), and serum and glucocorticoid-

induced protein kinase (SGK). 3-phosphoinositide-dependent protein kinase 1 (PDK-1) is the 

major upstream kinase responsible for phosphorylating substrates regulated by PI3K30. For 

example, PDK-1 phosphorylates and activates the Thr308 residue of Akt31. Simultaneous binding 

of PDK-1 and Akt to phosphoinosotides like PIP3 facilitates conformational changes, allowing for 

interaction between PDK-1 and Akt251. This makes Akt more prone to be phosphorylated by PDK-

1251. For full Akt activation, the Ser473 residue also needs to be phosphorylated, which is 

accomplished by the mammalian target of rapamycin complex 2 (mTORC2)23,24.  Mutations in 

either Akt or PI3K cause severe insulin resistance highlighting the importance of these two 

proteins in the insulin signaling pathway246.  

There are three different isoforms of Akt: Akt1, Akt2, and Akt3. Akt1 and Akt2 are 

involved in the insulin signaling pathway in both skeletal muscle and adipose tissue. On the 

contrary, Akt3 is not activated by insulin in adipose tissue, skeletal muscle or the liver25. Akt2 

plays an important role in mediating insulin action on metabolism, while Akt1 is more associated 

with growth241. Akt2 has major implications in insulin-stimulated glucose uptake, as it is important 

for the translocation of GLUT4 through the phosphorylation of Akt substrate of 160 kDa (AS160) 

by Akt2159,160. AS160, otherwise known as TCB1D4 and its homolog TCB1D1, are 

phosphorylated by Akt to elicit its effects on contraction-mediated glucose uptake, and insulin-

stimulated glucose uptake233. TBC1D4 activates Rab proteins242 that are responsible for about half 
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of the effect of insulin on GLUT4243. In fat cells Rab10 specifically is known for its role in the 

biogenesis of GLUT4-containing transport vesicles244.  

 

2.1.3 PI3K/Akt/mTOR Pathway 

 In skeletal muscle once Akt is activated by PDK-1 and mTORC2, it results in the 

activation/phosphorylation of downstream substrates. Akt phosphorylates tuberous sclerosis 

complex protein 2 (TSC-2), which is an inhibitor of mTORC1 through Ras homologue enriched 

in brain (Rheb)97. Akt phosphorylation of TSC-2 induces the degradation of the tumour suppressor 

complex consisting of TSC-2 and tuberous sclerosis complex protein 1 (TSC-1). This allows for 

the activation of the mTORC1 complex147 (figure 1). Akt can also activate mTORC1 through 

phosphorylation of proline rich AKT substrate 40 kDa (PRAS40), alleviating PRAS40’s inhibition 

of mTORC133.  

 Another role of Akt includes phosphorylating glycogen synthase kinase 3 (GSK-3), 

resulting in its inactivation, which in turn allows for activation of glycogen synthase for glycogen 

accumulation in the liver and skeletal muscle36. Akt also mediates insulin’s effect on inhibiting 

lipolysis. Akt phosphorylates phosphodiesterase 3B, resulting in a decrease in cyclic AMP levels, 

which then can inhibit lipolysis in adipocytes.233  

 

2.2 Mammalian Target of Rapamycin (mTOR) 

The mammalian/mechanistic target of rapamycin (mTOR) protein is a serine/threonine 

kinase that belongs to the PI3K-related kinases family. mTOR functions as a growth regulator and 

nutrient sensor and controls a wide array of cellular processes such as cell growth, differentiation, 

proliferation and overall metabolic homeostasis89. mTOR with various other protein interactions 
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forms two distinct complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2)90-

91. It is imperative to understand the complexity and features of mTOR signaling as its 

dysregulation has had severe implications on cancer, obesity and T2DM.  

 

2.2.1 Mammalian Target of Rapamycin Complex 1 (mTORC1) 

mTORC1 regulates cell growth through its phosphorylation of downstream substrates. This 

allows for the stimulation of anabolic processes like mRNA translation and the inhibition of 

catabolic processes such as autophagy92.  

mTORC1 consists of six components: mTOR, the catalytic subunit of the complex; 

regulatory-associated protein of mTOR (Raptor), mammalian lethal with Sec13 protein 8 (mLST8, 

also known as GbL), PRAS40, FK506 binding protein (FKBP12) and DEP-domain-containing 

mTOR-interacting protein (Deptor)176,7. Raptor is an important protein in this complex, as it 

functions to regulate the assembly of the complex and recruit substrates for mTOR161. On the other 

hand, the role of mLST8 seems to be unclear, as knockdown in vivo exhibited no difference in 

mTORC1 activity161. PRAS40, FKBP12 and Deptor function as negative regulators of mTORC1, 

and inhibit mTORC1 when recruited to the complex175. When mTORC1 is active, the opposite 

occurs, mTORC1 directly phosphorylates PRAS40 and Deptor, reducing the physical interaction 

and further activating mTORC1 signaling176-177. 
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2.2.2 Mammalian Target of Rapamycin Complex 2 (mTORC2) 

Unlike mTORC1, the regulation of mTORC2 is poorly understood. Only growth factors 

can activate mTORC2. It plays a major role in Akt, serum and glucocorticoid-regulated kinase 

(SGK) and protein kinase C (PKC) activation. 

mTORC2 consists of six different proteins, some that are also in mTORC1. These are: 

mTOR, rapamycin-insensitive companion of mTOR (Rictor), mammalian stress-activated protein 

kinase interacting protein (mSIN1), protein observed with Rictor-1 (Protor-1), mLST8 and Deptor. 

Rictor and mSIN1 are responsible for stabilizing each other in establishing a structural foundation 

for the complex. Deptor, like in mTORC1, is a negative regulator of mTORC2 activity. mLST8 is 

vital for mTORC2 activity, as knockout of this protein results in reduced stability and activity of 

the complex. Poctor-1 interacts with Rictor, although its physiological function is unclear147.  

mTORC2 is responsible for phosphorylating Ser473 of Akt2. mTORC2 indirectly through 

Akt signaling plays an important role in the pathogenesis of diabetes and cancers89.   

 

2.2.3 mTORC1 and Downstream Substrates  

As stated earlier, mTORC1 is a regulator of growth and is responsible for numerous cellular 

processes. mTORC1 mediates these effects by phosphorylating its downstream substrates. The 

two best characterized downstream effectors of mTORC1 are p70 ribosomal S6 kinase 1 (S6K1, 

Figure 1) and eukaryotic translation initiation factor (eIF) 4E-binding protein 1 (4E-BP1)93.  
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Figure 1: Simiplified overview of insulin signaling pathway and proteins involved in 

glucose transport. 

Insulin binds to the insulin receptor, resulting in the activation of the insulin receptor and the 

tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1). Then IRS-1 interacts with PI3K, 

activating it.  Subsequently, PI3K activation allows for the activation of Akt. Akt activation allows 

for the translocation of GLUT4 to the plasma membrane, resulting in the uptake of glucose by the 

cell. Akt also phosphorylates TSC2, removing TSC2’s inhibition on Rheb allowing for the 

subsequent activation of mTORC1. Further downstream substrates of mTORC1 are activated 

allowing for anabolic processes like protein synthesis to take place.  
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2.2.3.1 Ribosomal Protein S6 Kinase-1 (S6K1)  

p70 ribosomal S6 kinase 1 (S6K1), as the name suggests, phosphorylates ribosomal protein 

S6 (rpS6), which is a component of the small ribosomal subunit (40S, figure 1)94,95. It is directly 

phosphorylated by mTORC1 at the Thr389 residue. It is a serine/threonine kinase a part of the 

AGC kinase family. It plays an integral role in translation, as it regulates translation initiation by 

phosphorylating the cap binding complex of eukaryotic initiation factor 4B163. It also 

phosphorylates programmed cell death 4 (PDCD4), which is a tumor suppressor that negatively 

regulates eukaryotic initiation factor 4A163. S6K1 is also important in the elongation step of 

translation, as it inactivates eukaryotic elongation factor-2 kinase (eEF2K), a negative regulator of 

eukaryotic elongation factor 2 (eEF2)164. S6K1 is evidently very important in the regulation of 

translation, allowing for protein synthesis96.  

The mTORC1/S6K1 pathway has a major role in anabolic processes like protein synthesis, 

but has recently been linked to insulin resistance. High levels of BCAAs can maintain mTORC1 

activity, and thus this mTORC1/S6K1 hyper-activation results in a feedback loop phosphorylating 

Ser307 of IRS-1. IRS-1ser307 phosphorylation reduces Akt activation, attenuating insulin responses, 

such as glucose uptake and glycogen synthesis (Figure 2)118.  

 

2.3 Upstream Regulators of mTORC1 

2.3.1 Growth Factors 

As stated earlier, mTORC1 regulates cell growth in response nutrients, mitogens, cellular 

energy status and various stressors. It senses and then transmits these signals onto downstream 

substrates. Yoneyama et al. demonstrated that prolonged mTORC1 activation by insulin-like 
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growth factor in L6 muscle cells resulted in a negative feedback loop phosphorylating the Ser422 

residue of IRS-1. Phosphorylation at this site then recruits SCFb-TRCP E3 ligase complex to degrade 

IRS-1, which can have major implications on insulin sensitivity248. However, Hoehn et al. 

suggested that IRS-1 degradation is a consequence of insulin resistance instead of it causing insulin 

resistance249.  

 

2.3.2 Stress  

mTORC1 respond to numerous stresses related to energy, nutrient and oxygen levels. In 

regards to energy levels, when ATP is low due to glucose deprivation, it results in the inhibition 

of mTORC1. The decrease in ATP levels results in greater AMP/ATP ratio, and thus activation of 

5′AMP-activated protein kinase (AMPK). AMPK phosphorylates TSC2, which ultimately results 

in mTORC1’s suppression. Under low oxygen levels or hypoxia, mTORC1 may be inhibited. 

Hypoxia reduces ATP levels, and thus inhibits mTORC1, as stated above through AMPK. Hypoxia 

can also suppress mTORC1 through regulated in development and DNA damage response 1 

(REDD1). REDD1 inhibits mTORC1 by controlling the release of TSC2 from 14-3-3, and 

stabilizing the interaction of TSC1 and TSC2. DNA damage, glucocorticoids and oxidizing agents 

may also inhibit mTORC1 with the induction of REDD1117.    

 

2.3.3 Amino Acids 

Amino acids, in addition to being building blocks for proteins, also act as nutrient signals 

to induce cell growth. Cells can initiate anabolic processes like protein synthesis based on the 

availability of amino acids. Thus, amino acid sensing is critical for controlling cellular 

metabolism97.  
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In response to amino acid levels the Rag GTPases control the localization of mTORC1 to 

the lysosome. In the presence of nutrients like amino acids, RagA/B is GTP loaded while RagC/D 

is GDP loaded. These are the active conformations of the Rag GTPases and allows for mTORC1 

translocation to the lysosomal surface, where it interacts with its kinase activator, Rheb98-100.  

Two important amino acid sensors for mTORC1 include Sestrin1 and Sestrin2, which are 

both leucine sensors. Sestrins negatively regulate mTORC1 upstream of GATOR2, a positive 

regulator of mTORC1. When deprived of leucine, Sestrin1 and Sestrin2 binds to GATOR2, 

resulting in its inhibition. When leucine is available, Sestrin2 is activated and thus disassociates 

from GATOR2, relieving this inhibitory effect and allowing for the stimulation of mTORC1101.  

Similar to Sestrin1 and Sestrin2, CASTOR1 and CASTOR2, arginine sensors for mTORC1 

behave similarly. Under arginine deprived conditions, the arginine sensors either as a homodimer 

(CASTOR1) or a heterodimer (CASTOR1 and CASTOR2), bind to GATOR2 to inhibit GATOR2. 

Thus, similarly to leucine, when arginine is present, this inhibition is lifted and GATOR2 can 

positively regulate mTORC1102. 

 

2.3.3.1 Branched-chain Amino Acids (BCAAs)  

There are three branched-chain amino acids (BCAAs) and they are vital in stimulating 

protein synthesis. These are leucine, isoleucine and valine. Leucine seems to be the most important 

in stimulating protein synthesis in the skeletal muscle. BCAA-rich diets or BCAA supplementation 

has numerous positive benefits such as muscle protein synthesis, regulating body weight, reducing 

protein breakdown and glucose homeostasis5. BCAAs, like insulin, act as anabolic signals that 

affects the growth of energy consuming tissues. Similar to insulin, they regulate growth through 

the activation of mTORC1. BCAA-rich diets have been proposed for better metabolic health, 
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although with recent advances in this field, this claim might be controversial as BCAA’s might 

have implications in the onset of insulin resistance5.  

 

2.3.3.2 BCAA Catabolic Pathway  

BCAA metabolism happens in a two-step process. In the first step, the mitochondrial 

isoform of branched-chain amino acid transaminase, (BCATm) encoded by the BCAT2 gene 

catalyzes the transamination of the BCAAs into their respective α-keto acids. The α-amino group 

is transferred onto α-ketoglutarate, and thus leucine is converted to α-ketoisocaproic acid (KIC), 

isoleucine to 2-keto-3-methylvaleric acid (KMV), and valine to α-ketoisovaleric acid (KIV). These 

BCAAs are the only amino acids that share a common first step enzyme (BCAT2) in their 

metabolism. BCAT2 has a preferential binding to the BCAAs, as it prefers isoleucine the most, 

then leucine and valine.  

The second step of BCAA catabolism is catalyzed by the enzyme branched-chain α-keto 

acid dehydrogenase (BCKDH) complex. This complex consists of three subunits: a branched-

chain α-keto acid decarboxylase (E1), a dihydrolipoyl transacylase (E2), and a dihydrolipoyl 

dehydrogenase (E3). BCKDH catalyzes the oxidative decarboxylation of the branched-chain α-

keto acid products formed in the BCAT transamination reaction yielding three CoA derivatives. 

Isovaleryl-CoA is produced from KIC, isobutyryl-CoA from KIV, and alpha-methylbutyryl-CoA 

from KMV, with NADH also being produced. After further breakdown acetyl-CoA, succinyl-CoA 

and propionyl-CoA from leucine, valine and isoleucine respectively can be shuttled and used in 

the tricarboxylic acid (TCA) cycle. The activity of BCKDH is regulated by BCKDH Kinase 

(BDK). BDK phosphorylates BCKD at the E1 α subunit at the Ser239 residue to inactivate 

BCKDH5,113,114. In the presence of BCKDH substrates, the mitochondrial phosphatase 2C 
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(PP2Cm) binds to the BCKDH complex and induces dephosphorylation, activating the complex179. 

The BCKDH complex activity is downregulated in obese and diabetic animals resulting in 

increased levels of BCAAs180-182, which is often associated with insulin resistance. This 

downregulation of BCKDH activity is consistent with Lian et al demonstrating a downregulation 

in PP2Cm in liver and adipose tissue of diabetic mice179. 

Leucine is an important BCAA as it can activate mTORC1. There have also been various 

reports of amino acid metabolites activating mTORC1. Moghei et al. demonstrated that KIC in 

leucine starvation conditions can activate mTORC1, but this effect was attenuated once BCAT2 

was knocked down174. In another study with the presence of an amino transaminase inhibitor, KIC 

could not activate mTORC1, implying that leucine was necessary for mTORC1 activation116. This 

suggested KIC is converted back to leucine to elicit its effects on mTORC1 activation, as the 

transamination reaction by BCAT2 is reversible116.   

Another metabolite of leucine that has been extensively studied is beta-hydroxy-beta-

methylbutyrate (HMB). HMB is used as a nutritional supplement to aid in sport performance. 

HMB is known to have an anti-catabolic effect on skeletal muscle187-188. Eley et al. demonstrated 

how HMB supplementation prevented phosphorylation of kinases that inhibit the elongation step 

of mRNA translation189. HMB also increased mRNA translation189. In a study conducted by 

Pinheiro et al., they demonstrated that HMB supplementation increased maximum strength 

production in rat skeletal muscle189. HMB supplementation also increased ATP content and 

glycogen content in red and white portions of gastrocnemius muscle of rats190. Pimental et al. 

demonstrated that HMB induced skeletal muscle hypertrophy and that this was through 

significant increases in mTORC1 activation, with the increased phosphorylation of S6K1 in the 

extensor digitorum longus muscle191.  In fact, Giron et al. demonstrated that HMB was more 
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effective in activating mTORC1 and stimulating protein synthesis than leucine192. In regards to 

insulin sensitivity, one study demonstrated that HMB supplemented to rats with a high fat diet 

improved insulin sensitivity193.  Sharawy et al. claim that HMB decreases GLUT-2 expression, 

which leads to less fructose transported into the liver, and thus the potential mechanism in which 

HMB improves insulin sensitivity193. In another study, metformin, resveratrol and HMB together 

improved insulin sensitivity. These reports are contradictory considering that HMB increases 

mTORC1 and increased mTORC1 activity has been correlated with insulin resistance, while 

Sharawy et al. demonstrated increased insulin sensitivity with HMB193.  Since leucine has 

implications in insulin resistance and it is evident HMB plays a major role in activating 

mTORC1, further research is required to understand HMB’s effect on insulin sensitivity and how 

mTORC1 plays a role in this.  

Leucine often is the culprit in eliciting insulin resistance in regards to BCAAs, but 

recently there has been a study looking at the catabolic intermediate of valine, 3-hydroxy-

isobutyrate (3-HIB) that may play a role. This mechanism differs from the mTORC1 hyper-

activation concept. In the context of 3-HIB, it behaves as a peroxisome proliferator-activated 

receptor gamma coactivator 1-alpha (PGC-1a) paracrine regulator of trans-endothelial FA 

transport. Jang et al. demonstrated in endothelial cells that 3-HIB increased trans-endothelial FA 

uptake by the cells from the media183. Knockdown of upstream enzymes preventing 3-HIB 

formation abrogated this trans-endothelial FA uptake, while knockdown of downstream enzymes 

resulting in 3-HIB accumulation demonstrated an increase in triglyceride levels183. Treatment of 

mice for two weeks with 3-HIB resulted in insulin resistance via hyperinsulinemic euglycemic 

clamp experiments. 3-HIB treatment resulted in an increased lipid signature in the skeletal 

muscle, activating PKC-q, and in turn the phosphorylation of Akt was blunted resulting in 
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reduced glucose tolerance184. Consistent with this study, diabetic subjects have increased serum 

3-HIB levels184-185. Diabetic mice have also displayed a decrease in the downstream enzyme that 

catabolizes 3-HIB186. All of this data emphasizes 3-HIB’s potential role in eliciting insulin 

resistance and requires further investigating.  

 
 
 
 
 
 
 
 
 

Figure 2: General overview of how inflammation and BCAAs induces insulin resistance.  
TNF-a and homocysteine are pro-inflammatory factors that can activate JNK, which in turn 
inhibits IRS-1 and its ability to relay the insulin signal downstream. BCAAs activate mTORC1 
and S6K1 and sustain this activation, creating a feedback loop to inhibit IRS-1 signaling. Thus, 
inflammation and BCAAs may have an additive/synergistic effect toward phosphorylating IRS-1 
serine residues to prevent tyrosine phosphorylation. This results in a reduced activation of Akt, 
and reduced glucose uptake by the cell.  
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2.3.3.3 The link between BCAAs, mTORC1 and Insulin Resistance  

Amino acids are important as building blocks for proteins and as stated earlier can be 

important nutrient signals for cell growth and activating other metabolic processes. BCAAs 

regulate protein synthesis, and leucine in particular, can activate mTORC1. Despite these benefits, 

BCAAs have a paradoxical role, as increased levels of BCAAs are present in insulin resistant states 

like obesity and T2DM103-105. In clinical studies, BCAA levels in the blood positively correlate 

with insulin resistance106,151-153. BCAA levels have also been predictive of future insulin resistance 

or T2DM in several studies104,107. These observations pose the question of whether or not the 

increased levels of BCAAs are correlated with insulin resistance or cause insulin resistance.  

Despite reduced insulin sensitivity, mTORC1 is oddly still activated due to excess 

nutrients. Specifically, the three BCAAs, leucine, isoleucine and valine are potent activators of 

mTORC1. A rat model demonstrated that high levels of BCAAs maintained mTORC1 activity, 

resulting in the phosphorylation of IRS-1 serine residues, leading to insulin resistance103.  

Similar to BCAAs, their metabolites also have been implicated in the development of 

insulin resistance. Metabolomic studies show a positive correlation between BCAA metabolite 

levels in the blood with T2DM and insulin resistance103,151,153. In particular high concentrations of 

KIC has been associated with insulin resistance in humans172 and animals173. It is still unknown if 

these metabolites cause insulin resistance or if their increased levels just happen to be a symptom 

of insulin resistance. 

Many studies have shown a correlation between both BCAA metabolites and insulin 

resistance, but very few have looked at the cause and effect of BCAA metabolites. Moghei et al. 

analyzed the effect of KIC in eliciting insulin resistance. They demonstrated that KIC inhibited 

insulin-stimulated glucose transport with increased mTORC1 activity174. This inhibition was 
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abrogated once BCAT2 was knocked down, suggesting that KIC was converted back to leucine to 

elicit the inhibition in insulin-stimulated glucose transport174.   

 

2.4 Insulin Resistance and T2DM 

Type 2 diabetes mellitus (T2DM) is the most common endocrine disorder affecting over 

170 million individuals, and this number could rise to 365 million by the year 2030108. T2DM can 

also lead to more health complications such as stroke, neuropathy, ischemic heart disease, 

retinopathy and nephropathy108. Type 1 diabetes mellitus (T1DM) differs from T2DM, as T1DM 

solely involves the autoimmune destruction of beta cells of the pancreas, resulting in a deficiency 

in insulin production110. On the other hand, the major pathophysiological event that contributes to 

the pathogenesis of T2DM is the resistance of target tissues, specifically the liver, skeletal muscle 

and adipose tissue to normal circulating levels of insulin.  

 Insulin is an important hormone in our body responsible for allowing skeletal muscle and 

adipose tissue to absorb glucose from our blood, lowering blood glucose levels and preventing 

hyperglycemia. It also acts to store excess glucose and controls glucose production in the liver111. 

Impairment in insulin action results in reduced glucose uptake and metabolism by the targeted 

tissues, thus it is imperative to investigate ways to prevent and manage insulin resistance.  

 

2.5 Causes of Insulin Resistance  

2.5.1 Genetics  

Genetics play a key role in the pathogenesis of insulin resistance. Mutations in the insulin 

receptor gene are implicated in several rare forms of insulin resistance. Leprechaunism Rabson-

Mendenhall syndrome or the Type-A syndrome of insulin resistance patients usually require at 
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least hundred-fold more insulin than a typical diabetic patient41,42. Most of these patients have 

nonsense or missense mutations in either the ligand binding domain or tyrosine kinase domain of 

the IR43,44. Mutations in IRS-1 also can result in insulin resistance. Studies display an association 

between a single-nucleotide polymorphism (SNP) in IRS-1(Gly972Arg) and T2DM45,46.  A T608R 

missense mutation in IRS-1 resulted in decreased insulin signaling, but this appears to be very 

rare47.  

Mutations in Akt2 has also been exhibited in patients with diabetes. A rare missense 

mutation (R274H) in Akt2 leads to a loss of kinase activity48. Tribbles homolog 3 (TRIB3) gene 

located on chromosome 20p13 has been implicated with insulin resistance. Specifically, a Q84R 

polymorphism in TRIB3 gene has been associated with insulin resistance and decreased insulin-

stimulated Akt phosphorylation49,50. A mutation in AS160 at position 363 results in a premature 

stop codon, which was identified in a patient with severe postprandial hyperinsulinemia, thus 

reducing glucose transport51. Thus, mutations in relevant genes is one of the many ways in which 

insulin resistance can arise.  

 

2.5.2 Lack of Physical Activity and Obesity 

Obesity has been linked to T2DM for decades, as a common feature of both is insulin 

resistance. One proposed mechanism observed in obesity is the upregulation of protein tyrosine 

phosphatases, dephosphorylating tyrosine residues on IRS-1 and terminating insulin signaling. 

Also, in both obesity and T2DM there is a reduction in GLUT4 translocation138.  

Physical activity is a preventative strategy employed for both obesity and T2DM. There 

has also been a link between physical inactivity and the onset of diabetes. Physical activity can 

decrease the risk of T2DM by increasing insulin sensitivity. Evidence suggests that exercise allows 
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for greater glucose uptake by the skeletal muscles by increased GLUT4 translocation to the 

membrane. In this case exercise acts similarly to insulin to induce GLUT4 translocation165-168. 

Thus, exercise and insulin can have an additive effect on GLUT4 translocation, resulting in greater 

glucose uptake139,169-171.  

Intracellular signaling mechanisms differ between insulin and exercise. As stated before, 

insulin through a series of steps stimulates PI3K and then Akt for GLUT4 translocation. In exercise 

it differs, as using a PI3K inhibitor, wortmannin, did not inhibit exercise-induced glucose 

uptake140-142. A single bout of exercise can increase whole body glucose disposal. Not only does 

exercise increase translocation of this GLUT4, but consistent exercise results in greater GLUT4 

expression143-145.  

In exercise, increased contraction-stimulated glucose uptake is linked to increases in 

AMPK phosphorylation. AMPK phosphorylates TBC1D1 resulting in its deactivation, which 

allows for GTP to react with Rab proteins on the GLUT4 vesicles, thus allowing for greater 

GLUT4 translocation and glucose uptake into the cell252.  

Epidemiological studies have emphasized these findings, as physical inactivity may be a 

risk factor for T2DM. In a study, exercise training significantly increased skeletal muscle GLUT4 

protein by 23% in men with T2DM and by 39% in nondiabetic men145. This emphasizes the 

importance of physical activity in managing insulin resistant states like obesity and T2DM.  

 

2.5.3 Nutrition 

Nutrition can play a major role in the onset of insulin resistance. Chronic overconsumption 

of energy, especially in the absence of adequate physical activity, leads to weight gain and excess 

abdominal fat, which leads to insulin resistance and development of T2DM146. An appropriate diet 
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can be a preventative strategy or treatment for insulin resistance or T2DM. High lipid, protein and 

carbohydrate diets have been studied for their implications in insulin resistance.  

 

2.5.3.1 High Lipid Intake 

High fat diets have been one of the major contributors to obesity and insulin resistance. 

There is a link between high fat diets and obesity in vivo. Epidemiological studies also mirror what 

is demonstrated in vivo221-224. Most cross-sectional studies display a positive correlation between 

dietary fat intake and obesity225-227. This is further emphasized when formerly obese individuals 

prevent relapse with a lower fat intake and maintain their weight more effectively120.  

Insulin-stimulated glucose uptake by the skeletal muscle depends on the translocation of 

the GLUT4 transporter to the membrane. Zierath et al. found that insulin resistance, induced by 

high fat intake, resulted in a decrease in the translocation of the GLUT4 transporter in muscle of 

mice121. Studies have demonstrated that the ability for GLUT4 to shuttle glucose into the cell is 

sensitive to changes in the membrane lipid bilayer122-123. High fat feeding and obesity can affect 

the composition and structure of this membrane, resulting in a decrease in GLUT4 activity124-125. 

Rosholt et al. demonstrated reduced GLUT4 activity in skeletal muscle of rat as a result of a high 

fat diet126.   

Increased fatty acid concentrations in the blood are often associated with insulin resistant 

states such as obesity and T2DM127-130, even in children insulin resistance correlated with higher 

free fatty acid concentrations in the blood253. A cross sectional study also showed the inverse 

relationship between fatty acid plasma levels and insulin sensitivity131. Randle et al. demonstrated 

how free fatty acids compete with glucose for substrate oxidation, thus they speculated that this 

increase in fatty acid oxidation was linked to insulin resistance. The proposed mechanism was that 
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increased levels of fatty acids resulted in increased levels of intra-mitochondrial acetyl CoA/CoA 

and NADH/NAD+ ratios, and thus inactivation of pyruvate dehydrogenase. This leads to increases 

in citrate levels, leading to phosphofructokinase inhibition, which is an important rate limiting step 

in glycolysis. This leads to an accumulation in glucose-6-phosphate, which inhibits hexokinase II 

activity, resulting in an increase in glucose concentrations in the cell, leading to reduced glucose 

uptake132-134.  

 High fatty acid levels in the blood also resulted in a decrease in insulin-stimulated IRS-1 

tyrosine phosphorylation in skeletal muscle136. Elevations in fatty acids resulted in a decrease in 

IRS-1 associated PI3K activation135. Fatty acid metabolites also affect insulin signaling. 

Metabolites like diacylglycerol (DAG), fatty acyl CoA, and ceramides activate serine/threonine 

kinase cascades, which leads to phosphorylation of serine/threonine residues of IRSs. This leads 

to impaired insulin signaling, as PI3K is not activated, and downstream events like glucose 

transport cannot take place137. DAG can also activate protein kinase Ce, which impairs auto-

phosphorylation of Thr960 of the insulin receptor and thus IRS-1 tyrosine phosphorylation, by 

phosphorylating the Thr1160 site in the insulin receptor activation loop, specifically in the liver235.  

 

2.5.3.2 High Protein Intake  

High protein diets have often been recommended to combat obesity150. High protein diets 

have been associated with increased insulin sensitivity. Dietary proteins have an insulinotropic 

effect, thus promoting insulin release, and glucose uptake by the tissues119.  

Specifically, BCAAs have been often recommended for weight management. BCAAs act 

as anabolic signals to activate protein synthesis, preventing loss of muscle mass in weight 

management programs. BCAAs, particularly leucine, activates mTORC1. mTORC1 then activates 
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its downstream substrates Ribosomal Protein S6 Kinase-1 (S6K1) and Eukaryotic translation 

initiation factor 4E-binding protein 1(4E-BP1) allowing for protein synthesis to occur93.  

Despite these positive benefits, high protein intake for longer periods of time have been 

associated with the development of insulin resistance. High levels of BCAAs are present in insulin 

resistance and T2DM103. Despite positive anti-obesity effects and the stimulation of protein 

synthesis, high levels of BCAAs can result in insulin resistance through the sustained activation 

of the mTORC1-S6K1 pathway, as stated previously. Persistent activation of this pathway results 

in a feedback loop, which phosphorylates IRS-1 at its serine residues such as Ser307, Ser612, 

Ser1101 (figure 2). This results in reduced activation of the tyrosine residues of IRS-1, and 

consequently the signal cannot be transmitted downstream, which would prevent Akt activation. 

With the lack of Akt activation, important processes like glucose uptake and glycogen synthesis 

cannot take place118.  

 

2.5.3.3 High Carbohydrate Intake  

With high fat diets being the main focus of diet induced insulin resistance, studies about 

carbohydrate diets and implications on diseases and mortality have gone under the radar. In a 

recent study, high carbohydrate diet had a positive correlation with total mortality, and non-

cardiovascular disease mortality154. Another study in rats demonstrated that high fructose and 

sucrose (simple carbohydrates) intake produced a decline in insulin sensitivity in liver and 

peripheral tissues155. Although when this is translated to human studies, there is no consistent data 

suggesting these simple sugars reduce insulin sensitivity. When looking at the role of complex 

carbohydrates and their roles on insulin sensitivity, again there is some inconsistencies.  High 

amylose diets increased insulin sensitivity, while high amylopectin diets display the opposite155.  
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In another study Pérez-Jiménez et al. looked at the effect of a high carbohydrate diet in 

comparison to high saturated fat diet, which is known for eliciting insulin resistance. They 

demonstrated significantly reduced plasma insulin levels and steady state plasma glucose levels 

with the high carbohydrate group compared to the high saturated fat diet157.  

 

2.6 Molecular Mechanisms of Insulin Resistance  

2.6.1 Chronic Inflammation 

Inflammation is a key factor in the pathogenesis of obesity-associated insulin resistance52. 

Both adipocytes and macrophages secrete pro-inflammatory cytokines and induce insulin 

resistance. Increased secretion of the chemokine monocyte chemoattractant protein-1 (MCP-1) by 

adipocytes, results in macrophage accumulation into adipose tissues and induce insulin 

resistance53. This is evident, as the deletion of MCP-1 or its receptor CCR2 improves insulin 

sensitivity and actually alleviates inflammation in mice54,55.  

Homocysteine is a pro-inflammatory factor that promotes inflammation in both in vitro 

and in vivo213-214. Li et al. demonstrated that homocysteine impaired glucose uptake in rat 

adipocytes and rats215. Other cytokines released in obesity that induce insulin resistance include 

tumor necrosis factor a (TNF-a), interleukin-1ß (IL-1b) and interleukin-6 (IL-6). Upregulation of 

TNF-a for example results in c-Jun N-terminal kinases (JNK) to be activated, which in turn can 

interact with the Ser307 residue on IRS-1 and thus down regulate IRS-1 tyrosine phosphorylation 

to hinder downstream signaling56. JNK’s importance in mediating insulin resistance is evident, as 

knockdown of JNK protects against obesity-induced insulin resistance247.  

TNF-a role in insulin sensitivity was emphasized when Li et al. demonstrated that TNF-a 

inhibition in 3T3-L1 adipocytes partially improved insulin-stimulated glucose uptake that was 
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originally suppressed with TNF-a. The inhibitions were mediated by inhibiting proteins involved 

in the inflammatory pathways such as JNK and Inhibitor kappa B (IkB) kinase (IKK)-nuclear 

factor kB (Nf-kB)254. This emphasizes the link between these inflammatory pathways and insulin 

sensitivity.  

Another factor in activating inflammation in obesity include the activation of Toll-like 

receptors (TLRs) especially activation of TLR-2 and TLR-4. TLRs, especially TLR-4 are activated 

by fatty acids and endotoxinemia, which are both features of obesity216. They both induce 

inflammation by activating the NF-kB pathway57. Mice with decreased TLR-2 and TLR-4 

signaling proteins are protected from diet-induced obesity and insulin resistance58-60.  

 

2.6.2 Accumulation of Lipid Intermediate 

Accumulation of lipids especially fatty acids are believed to cause insulin resistance 

through multiple mechanisms. This accumulation of lipids in non-adipose tissues like skeletal 

muscle can result in lipotoxicity. Increased hydrolysis of circulating triglycerides can lead to 

skeletal muscle insulin resistance61. Elevated circulating levels of free fatty acids are observed in 

obesity and induce activation of JNK, IκB kinase (IKK) and protein kinase C (PKC), which may 

lead to the phosphorylation of IRS-1 at the ser307 residue62. Palmitate specifically promotes insulin 

resistance by stimulating cytokine production, JNK activation and endoplasmic reticulum (ER) 

stress58,63. Palmitate also activates NF-κB, and studies inhibiting this pathway reverse lipid-

induced insulin resistance64,65.  

Lipid metabolite DAG has shown a key role in the induction of insulin resistance, as 

increased levels results in muscle insulin resistance by activating PKC-q and inducing IRS-1Ser307 
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phosphorylation66. DAG’s role is evident as studies have demonstrated that reducing DAG levels 

in skeletal muscle protects mice from high fat diet induced insulin resistance67-69.  

Ceramides, a type of lipid molecule, also have been shown to induce insulin resistance via 

PKC and JNK activation62,70. This happens with the activation PKC-z, which phosphorylates the 

thr34 residue of the Pleckstrin Homology (PH) domain of Akt. This leads to a loss of PIP3 binding 

to the PH domain, and thus the inhibition of Akt71-73. Thus, inhibiting ceramide synthesis 

ameliorates insulin resistance. Huang et al. analyzed the correlation between ceramides and insulin 

sensitivity. In C2C12 myotubes they demonstrated that dysregulations in lipid metabolism that 

caused an increase in ceramide production, reduced Akt activation and glucose uptake. When 

inhibiting ceramide production by inhibiting ceramide synthase, these reductions in Akt and 

glucose uptake were attenuated, emphasizing the link between ceramide accumulation and insulin 

resistance208.  

 

2.6.3 Oxidative Stress 

Low levels of reactive oxygen species (ROS) can enhance insulin action74,75, conversely a high 

concentration of ROS results in oxidative stress. ROS is often produced due to mitochondrial 

dysfunction and is a by-product of the electron transport chain76. Increased ROS levels have been 

observed in obese and diabetic states in adipose tissue77 and in muscle78. This increased oxidative 

stress leads to the activation of stress kinases, which phosphorylate serine residues of IRS proteins, 

ultimately resulting in insulin resistance77-79.  
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2.6.4 Hyperglycemia  

Hyperglycemia is when glucose concentrations in the blood are abnormally high. This can 

alter insulin sensitivity in muscle and increase insulin secretion from beta cells80,81. Hyperglycemia 

can activate JNK and cause the addition of an N-acetylglucosamine (O-GlcNAcylation) to IRS-1. 

This O-GlcNAcylation to IRS-1 downregulates tyrosine phosphorylation82-85. Hypergylcemia also 

activates the PKC pathway by inducing synthesis of DAG86 and causes insulin resistance by 

increasing IRS-1ser307 phosphorylation87,88. 
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2.7 Rationale 

Recent advances in research demonstrate the potential paradoxical effects of BCAAs. The 

effects of high protein/BCAA diets remain inconclusive in regard to insulin resistance and 

mTORC1 activation. Despite the beneficial roles of BCAAs, including increased protein synthesis, 

and regulating body weight, BCAAs and their metabolites have been implicated in the 

development of insulin resistance and T2DM103-107. From previous work in my lab, KIC, the 

metabolite for leucine inhibited insulin-stimulated glucose uptake under normal conditions. When 

BCAT2 was knocked down, this suppression was attenuated.  

 Thus, I analyzed KIC in the context of inflammation, as inflammatory factors released in 

conditions like insulin resistance and obesity may modulate KIC-induced insulin resistance. 

Furthermore, I confirmed whether or not KIC elicits these effects on insulin-stimulated glucose 

uptake and insulin signaling or if it is converted back to leucine through BCAT2 to elicit these 

effects. This helps to determine the role of BCAA metabolism in the pathogenesis of insulin 

resistance and if interventions affecting BCAA metabolism can help in the management of insulin 

resistance in type 2 diabetes and cardiovascular diseases.  
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2.8 Objectives 

1) Examine the effect of inflammation on insulin-stimulated glucose uptake and its effects on 

insulin signaling in L6 rat skeletal muscle cells.  

2) Examine whether inflammation modifies the effect of KIC on insulin-stimulated glucose 

uptake and how it affects insulin signaling. 

3) Examine whether the effect of KIC and inflammation on insulin-stimulated glucose uptake 

and insulin signaling are independent of BCAT2.  

 

2.9 Hypothesis 
 
I hypothesized that KIC treatment in an inflammatory environment results in an additive 

suppression in insulin-stimulated glucose uptake and insulin signaling in skeletal muscle. I also 

hypothesized that KIC elicits its effects on insulin-stimulated glucose uptake and insulin signaling 

due to its intracellular conversion back to leucine, even in the presence of inflammation.  
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Abstract 

Despite the anabolic benefits of branched-chain amino acids (BCAAs) and their metabolites, they 

have also been implicated in the suppression of insulin sensitivity in skeletal muscle. In our lab we 

have shown that leucine and its metabolite ketoisocaproic acid (KIC) inhibit insulin-stimulated 

glucose uptake. The knockdown of branched-chain aminotransferase 2 (BCAT2) attenuated this 

suppression. In this current study I analyzed the effect of inflammation, a key feature of insulin 

resistance and how it may influence KIC’s effect on insulin-stimulated glucose uptake. Incubating 

cells in KIC did not significantly suppress insulin-stimulated glucose uptake. Co-incubation of L6 

myotubes with pro-inflammatory factors homocysteine, interleukin-6 and tumor necrosis factor-a 

with KIC showed a significant suppression of insulin-stimulated glucose uptake (p<0.05). Once 

again, BCAT2 knockdown attenuated the effect of KIC, even in the presence of inflammation. 

These results suggest that KIC is converted back to leucine to elicit its effects on insulin-stimulated 

glucose uptake.  

Introduction 

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder and its prevalence is growing.1 

The main underlying cause of T2DM is insulin resistance. Insulin resistance is when the tissues 

response to insulin is reduced3. Many factors such as nutrition and lifestyle choices can give rise 

to or worsen insulin resistance.  

This study focuses on the role of nutrition and insulin resistance, specifically, the main 

constituents of high protein diets that have been extensively researched, branched chain amino 

acids (BCAAs).  BCAAs, especially leucine, is known for activating protein synthesis with the 

activation of mammalian target of rapamycin (mTORC1) signaling6. Despite this anabolic benefit, 
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circulating BCAA levels have been positively correlated with insulin resistance106,151-153. It has 

been suggested that leucine maintains mTORC1 activation, creating a feedback loop, which 

phosphorylates the serine residues of insulin substrate receptor-1 (IRS-1), and thus inhibiting 

insulin signaling downstream5.  

Hernandez et al. demonstrated that BCAA catabolic enzyme mRNA are downregulated in 

individuals with T2DM compared to healthy individuals232. He also showed that BCAAs and their 

metabolites were upregulated in individuals with T2DM232. Thus, the question remains, do BCAAs 

cause insulin resistance or are increased BCAA levels a consequence of insulin resistance and 

T2DM.  

Previously, Moghei et al. demonstrated that leucine inhibited insulin-stimulated glucose 

uptake174. They also demonstrated that ketoisocaproic acid (KIC), the metabolite of leucine, 

suppressed insulin-stimulated glucose uptake as well174. When branched-chain aminotransferase 2 

(BCAT2), the enzyme responsible for the reversible catabolism of leucine to KIC was knocked 

down, KIC’s suppressive effect was attenuated. This suggests KIC is converted back to leucine to 

elicit these effects174. Similar to previous reports, Moghei et al. showed that mTORC1 is 

upregulated with leucine and this could be the mechanism in which glucose uptake is suppressed. 

Thus, we built off the previous work of Moghei et al. and examined the potential additive 

effect of KIC and inflammation on insulin-stimulated glucose uptake. This was necessary as 

inflammation is a feature of both obesity and insulin resistance52 that may modulate KIC’s effect 

on insulin signaling. Ultimately, confirming the role of BCAA metabolites on insulin sensitivity 

in the context of inflammation, can help elucidate potential therapeutic strategies in 

treating/managing insulin resistance.  

 



 
43 

Methods and Materials 

Reagents  

The growth medium (GM) used for cell growth was α-Modification of Eagle’s Medium (AMEM) 

purchased from Wisent (#310-010-CL), supplemented with 10% fetal bovine serum (FBS) (Gibco 

#26050-088) and 1% Antibiotic-Antimycotic agents (Wisent #450-115- EL). Phosphate Buffered 

Saline (PBS, #311-010-CL) and Trypsin (#325-043-CL) were also purchased from Wisent. The 

medium used for differentiation of cells (DM) consisted of AMEM, 1% antibiotic- antimycotic 

and 2% horse serum (HS) (Gibco #26050088). RPMI 1640 (a medium free of amino acids and 

serum) was used as the starvation medium and was purchased from United States Biologicals 

(#R8999-12). Tumor Necrosis Factor α was purchased from Shendoah Biotechnology (#300-18) 

and Sodium 4-methyl-2- oxovalerate (KIC) (#K0629) was purchased from Sigma Aldrich. 

Homocysteine was purchased from Sigma Aldrich (#69453). BCAT2 (B7312) and scramble 

(negative control) siRNA (#SIC001) oligosaccharides were purchased from Sigma-Aldrich. 

Glycogen carrier was purchased from Sigma Aldrich (#G8751-5G). Lipofectamine RNAiMAX 

was purchased from Life technologies (#13778-150). Opti- MEM 1X Reduced Serum Medium 

was purchased from Life Technologies (#31985-070). Immobilon Western HRP 

chemiluminescence substrate was obtained from Fischer- Scientific (#WBKLS0500). [3H]-2-

deoxyglucose (NET549) and [U-14C]-D-glucose (NEC042X) was purchased from Perkin Elmer, 

Massachusetts. 
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Cell Culture  

L6 rat skeletal muscle myoblasts were purchased from American Type Culture Collection. Cells 

were cultured in 10 cm plates with growth medium comprised of a-MEM supplemented with 10% 

FBS and 1% Antibiotic-Antimycotic agents and grown at 37°C and 5% CO2

 

in a cell culture 

incubator until they were approximately 70-80% confluent. Next, cells were counted and seeded 

with 2x105 cells/well in 6-well plates for western blot experiments or 105 cells/well for 12-well 

plates for glucose transport experiments. Cells were allowed to proliferate for 48 hours or until 

they became 90-100% confluent to be switched into DM. Cells were replenished with fresh DM 

every 24-48 hours and cells were allowed to differentiate into myotubes until D5 or D6 when the 

experiments were performed (Description below).  

siRNA Gene Silencing  

L6 myoblasts were plated in 6-well plates (for western blotting) and 12 well plates (for glucose 

uptake assay) at a density of 2x105 cells/well and 1x105 cells/well respectively. After 48 hours, 

medium was shifted to DM. On day 3 of differentiation, myotubes were transfected with 10 µM 

of scramble siRNA (negative control) or 10 µM BCAT2 siRNA using Lipofectamine RNAiMAX 

reagent according to the manufacturer’s instructions (Life technologies). Lipofectamine 

RNAiMAX reagent was diluted in Opti-MEM medium. Scramble siRNA and the BCAT2 siRNA 

were diluted in Opti-MEM medium. Next diluted siRNAs were added to diluted Lipofectamine 

RNAiMAX reagent in 1:1 ratio and were allowed to incubate for 5 minutes at room temperature. 

Finally, for 6 well plates, 250 µL of the siRNA-lipid complex was added to wells containing 1mL 

of antibiotic-free a-MEM containing 2% HS. For 12 well plates, 125 µL of the siRNA-lipid 
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complex was added to wells containing 0.5 mL of antibiotic-free  a-MEM with 2% HS.  Twenty-

four hours following transfection, 1mL of a-MEM containing 2% HS, 1% Ab-Am, and the pro-

inflammatory factors (homocysteine, TNF-a and IL-6) were added to each well of the 6 well 

plates, and 0.5mL of a-MEM containing 2% HS, 1% Ab-Am, and the pro-inflammatory factors 

was added to the wells of the 12 well plates. On day 5 of differentiation (48 hours following 

transfection) the media was replenished with differentiation media containing pro-inflammatory 

factors. On day 6 of differentiation 6 well plates were harvested for insulin signaling and to test 

the efficiency of the BCAT2 knockdown using immunoblot analysis (refer to section 4.6). The 12 

well plates were used for glucose transport assay (refer to section 4.5)  

Inflammation and KIC Supplementation 

Homocysteine Experiments 

Homocysteine experiments were done to test the effect of homocysteine a pro-inflammatory factor 

on insulin-stimulated glucose uptake. On D5 of differentiation, fully differentiated myotubes were 

incubated in various concentrations (10, 15, 20, 30, 40, 50, 100, 200, 500, 1000 μM) of 

homocysteine in DM for 24 hours. Normal physiological levels of homocysteine are usually 

around 5-15 μM, but intermediately elevated homocysteine levels are between 31-100 μM, while 

excess of 100 μM is severely elevated levels of homocysteine217. Homocysteine levels elevated 

above 15 μM is characterized as hyperhomocysteinemia217. Following this incubation period, on 

D6 myotubes cells were starved for four hours with RPMI (complete starvation medium, free of 

amino acids and serum). After starvation cells were incubated with the various concentrations of 

homocysteine and 100nM of insulin for 20 minutes. Cells were then subjected to a glucose uptake 

assay (refer to section 4.5) and harvested for western blot analysis (refer to section 4.6). 
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KIC and Homocysteine Experiment 

KIC and homocysteine were incubated together to analyze the effect of inflammation on KIC-

induced insulin resistance and how inflammation may modulate amino acid signaling. On D5 of 

differentiation fully differentiated myotubes were incubated in homocysteine in DM at various 

concentrations (10, 15, 50, and 500 μM) of homocysteine for 24 hours. Following this incubation 

period, on D6, myotubes cells were starved for four hours with RPMI (complete starvation 

medium, free of amino acids and serum). After starvation, cells were incubated with various 

concentrations of homocysteine stated previously with or without 200 μM KIC for 30 minutes. 

Then following these 30 minutes, myotubes were incubated with homocysteine with or without 

200 μM of KIC and with or without 100 nM of insulin for 20 minutes (Appendix A). Cells were 

then subjected to a glucose uptake assay (refer to section 4.5) and harvested for western blot 

analysis (refer to section 4.6). 

TNF-a Test Experiments 

The effect of TNF-a on insulin-stimulated glucose uptake and JNK activation was tested to 

produce a more robust inflammatory response. On D5 of differentiation, fully differentiated 

myotubes were incubated in TNF-a in DM at various concentrations (2, 5, 10ng/ml) for 24 hours. 

For TNF-a, I used values consistent in the literature indicative of inflammatory states218-220. 

Following this incubation period on D6 myotubes cells were starved for four hours with TNF-a in 

RPMI (complete starvation medium, free of amino acids and serum). After starvation, cells were 

incubated with various concentrations of TNF-a stated previously with or without 100 nM of 

insulin for 20 minutes. Cells were then subjected to a glucose uptake assay (refer to section 4.5) 

and harvested for western blot analysis (refer to section 4.6). 
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Pro-Inflammatory Factors and KIC Experiments 

To ensure a robust inflammation response was produced, KIC was incubated with homocysteine, 

TNF-a and IL-6 (pro-inflammatory factors) to analyze the effect of KIC and inflammation on 

insulin-stimulated glucose uptake and insulin signaling. On D4 of differentiation, fully 

differentiated myotubes were incubated in DM with 5 or 10ng/ml of TNF-a, 10ng/ml of IL-6 and 

50μM of homocysteine for 48 hours. This media with the pro-inflammatory factors was 

replenished 24 hours later. Following this incubation period, on D6, myotubes were starved for 

four hours with pro-inflammatory factors in RPMI (complete starvation medium, free of amino 

acids and serum). After starvation, cells were incubated with the pro-inflammatory factors stated 

previously with or without 200 μM of KIC for 30 minutes. Then they were incubated with or 

without pro-inflammatory factors, with or without 200 μM KIC and with or without 100 nM of 

insulin for 20 minutes (Appendix B). Cells were then subjected to a glucose uptake assay (refer to 

section 4.5) and harvested for western blot analysis (refer to section 4.6). 

 

BCAT2 Knockdown with Pro-Inflammatory Factors and KIC Experiments 

On D3 of differentiation BCAT2 was knocked down as explained in section 4.3. On D4 of 

differentiation, fully differentiated myotubes were incubated in DM with 5 or 10ng/ml of TNF-a, 

10ng/ml of IL-6 and 50μM for 48 hours. This media with the pro-inflammatory factors was 

replenished 24 hours later. Following this incubation period, on D6, myotubes were starved for 

four hours with RPMI (complete starvation medium, free of amino acids and serum). After 

starvation, cells were incubated with the pro-inflammatory factors stated previously with or 

without 200 μM of KIC and with or without 100 nM of insulin for 20 minutes. Cells were then 
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subjected to a glucose uptake assay (refer to section 4.5) and harvested for western blot analysis 

(refer to section 4.6). 

 

Glucose Transport Assay  

Glucose uptake assay was performed using radiolabeled 2-deoxyglucose (2-DG). 2-DG was used 

instead of glucose, as 2-DG does not undergo glycolysis in the cell, so it can accumulate and be 

measured accurately255. When 2-DG is taken up by glucose transporters, it is phosphorylated to 2-

DG-6-phosphate (2-DG6P); however, it cannot be further metabolized and therefore accumulates 

in the cell. Radiolabeled 2-DG ([3H]-2-deoxyglucose) is employed as the tracer to 2-DG in the 

transport solution, which allows for the entry of the radiolabeled 2-DG into the cells along with 

unlabelled 2-DG glucose.

 

Therefore, level of glucose uptake is measured by determining the 

amount of radioactivity present in the cell. Following treatments, cells were then rinsed twice with 

37.1oC HEPES (4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid) buffered saline. They were 

then incubated in 300 μL of transport solution (HEPES buffer, 10μM 2-deoxyglucose, 0.5 μCi/mL 

[3H]-2- deoxyglucose) for 5 minutes at 37.1°C. Following the 5-minute incubation period, cells 

were placed on ice where the transport solution was removed, and the cells were immediately 

rinsed with ice-cold stop solution (0.9% Saline) three times to stop the reaction and stop any 

glucose uptake. Next, 1mL of ice-cold 0.05M NaOH was added to each well and the cells were 

scraped and collected. For analysis, 200 μL was collected for a protein assay. These samples were 

stored at -20°C for protein assays. The remaining 800 μL was added to 3.5 mL of Scintillation 

fluid (Ecolite+, MP Biomedicals #01882475) in liquid scintillation vials. The amount of 

radioactivity in each vial was counted using a Liquid Scintillation Counter (Tri-Carb Liquid 
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Scintillation Counter). Rate of glucose uptake in figures 3a, 4, 7, 8, and 9a was expressed as 

picomole per μg of protein per 5 minutes.  

 

Cell Harvesting for Western Blot Analysis  

Following the treatments, cells were rinsed with 1mL of PBS. Then 100 μL of lysis buffer [1mM 

EDTA, 2% sodium dodecyl sulphate (SDS), 25 mM Tris-HCL pH 7.5, 10μL/mL protease inhibitor 

(Sigma Aldrich #P8340), 10μL/mL phosphatase inhibitor cocktail (Sigma Aldrich # P5726) and 

1mM DTT (Research Organics #2190D-A101X) was added to each well of the 6-well plate. The 

cells were then scraped and with the use of a 1mL syringe the lysate was transferred from the 6 

wells into 1.5 mL Eppendorf tubes. Repeated collection and expulsion of the lysate was used to 

ensure breakdown of the cell lysate. Lysates were stored at -20°C for further analysis.  

 

Protein Assay and Western Blot Analysis  

The Pierce BCA Protein Assay Kit (Thermo Scientific #23225) was used to determine protein 

concentration. The KC4 plate reader software (Bio-Tek Instruments Inc.) was used to acquire an 

absorbance reading of each well at a wavelength of 550 nanometers. A standard curve was used to 

estimate the volume needed to load 25+ μg of protein into one well of a polyacrylamide gel. Equal 

amounts of protein were loaded into each well of the gel for figures 3b, 5a-c, and 6. For figures 

9b, 10a-c, 11, and 13 protein assays were not completed, so equal amounts of protein were not 

loaded into the wells of the gel. The proteins were separated on 10% or 15% SDS-polyacrylamide 

gel electrophoresis (SDS-PAGE). Following gel electrophoresis, they were transferred onto 

polyvinylidene difluoride (PVDF) 0.2um pore sized membranes. Transfer efficiency was checked 

with a ponceau dye treatment to the membranes ensuring the protein was transferred. This dye was 
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then washed off with 3 5-minute washes of Tris Buffered Saline with Tween (TBST). Next, 

membranes were incubated for one hour in 5% non-fat milk in TBST at room temperature to block 

non-specific antigen binding. Subsequently, they were quickly rinsed 3 times, 5 minutes each with 

TBST at room temperature and then incubated overnight at 4°C with the primary antibody of 

interest.  

Primary Antibody Dilution Company Purchased From Secondary Antibody Used 
ph-S6K1thr389 1:1000 Cell Signaling #9205 Anti-rabbit (CST #7074) 
ph-S6Ser235/236 1:1000 Cell Signaling #4858 Anti-rabbit (CST #7074) 
ph-AktSer473 1:1000 Cell Signaling #9271 Anti-rabbit (CST #7074) 
Gamma-Tubulin 1:1000 Sigma Aldrich #T6557 Anti-mouse (CST #7076) 
ph-SAPK/JNKThr183/Tyr185 1:1000 Cell Signaling #9255 Anti-mouse (CST #7076) 
BCAT2 1:1000 Sigma Aldrich #B7312 Anti-rabbit (CST #7074) 
ph-IRS-1Ser612 1:1000 Cell Signaling #3203 Anti-rabbit (CST #7074) 
ph-Glycogen Synthase 1:1000 Cell Signaling #47043 Anti-rabbit (CST#7074) 

Following the overnight incubation in primary antibody, membranes were quickly rinsed, and then 

rinsed 3 times for 5 minutes each with TBST and were incubated in a secondary antibody for three 

hours at room temperature. Secondary antibodies were diluted into a 5% milk with TBST solution 

before incubation with the membranes. 

Secondary Antibodies: Anti-rabbit (CST # 7074) or Anti-mouse (CST #7076) antibodies were 

used with the dilution of 1:10000. Subsequently, membranes were rinsed 3 times for 5 minutes 

each with TBST before HRP chemical luminescent substrate (Millipore Sigma #WBKLS0500) 

was applied to them. BioRAD ChemiDoc XRS+ was used for signal visualization and the images 

were quantified with Image Lab software (version 7). 
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Graphical Representations of Glucose Transport, Glycogen Synthesis and 

Western Blots  

Glucose transport data was expressed by dividing the amount of [3H]-2-deoxyglucose (pmol) 

transported into cells each well by the concentration of protein found in each well (µg). This value 

is expressed as the rate of glucose uptake. The glucose transport value (pmol/µg), was the rate of 

glucose uptake per 5 minutes. Rate of glycogen synthesis is measured by CPM per µg of protein 

per one hour. Western blots for ph-S6, ph-S6K1, BCAT2, ph-glycogen synthase, ph-JNK and ph-

Akt were adjusted by the g-tubulin values, and these values were used in the western blot 

expression figures. These values were not normalized. Total proteins were not used, as I did not 

get a satisfactory level of stripping. It is important to note that total protein levels may not change 

under acute supplementation with KIC, but may with inflammation for 24 or 48 hours, which may 

affect the results of the western blotting.   

 

Glycogen Synthesis Assay  

Cells were seeded in a 6 well and treated like in section 4.4.5. Due to excessive cell death, and to 

ensure enough myotubes to carry out glycogen synthesis, 5.5mM of D-glucose was added to 

RPMI for starvation media, and cells were starved two hours at 37.1oC. This starvation media 

was aspirated, and respective wells were supplemented with non-labelled D-glucose (5.5mM) 

and 0.2 µCi/ml of [U-14C]-D-glucose, with or with insulin (100nM), with or without KIC 

(200µM), and with or without the pro-inflammatory factors as explained in 4.4.5 for one hour. 

Then 200 µl of the media with respective conditions in the well was collected and put into 

scintillation vials containing 3.5ml of scintillation fluid to count total radioactivity. The rest of 
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the media in the well was aspirated, and glycogen synthesis reaction was stopped by putting 

plates onto ice and washing wells twice with ice cold PBS. Wells were then treated with 450 μl 

of KOH (1M) and put on a shaker for 15 minutes to lyse the cells. Lysates were then transferred 

from wells into Eppendorf tubes and heated at approximately 65oC for 5 minutes. 50 μl of each 

sample was transferred into a different Eppendorf tube for protein measurement via BCA protein 

assay as explained in section 4.7. Next 100 μl of glycogen carrier, 80 μl of saturated sodium 

sulfate, and 1.2 ml of of ice cold ethanol was added to each sample. The tubes were then 

vortexed and was stored at -20oC overnight for precipitation. The next day samples were 

centrifuged at 10000 rpm for 20 minutes at room temperature forming a pellet. The supernatant 

was discarded, and the pellet was dissolved in 500 μl of double distilled water. 450 μl of this was 

transferred to scintillation vials filled with 3.5ml of scintillation fluid for radioactivity counting.  

 

Statistical Analysis  

Statistical analyses were performed using GraphPad Prism 7 software. Data presented here are 

means ± SEM. One-way analysis of variance (ANOVA) was used and Tukey’s post-hoc tests 

were done to measure statistically significant differences among means. Conditions were not 

normalized; absolute values were used. For glucose uptake assays, rate of glucose uptake is 

expressed as pmole of glucose per µg of protein per 5 minutes. For western blot data, each 

condition is represented as the respective protein or its phosphorylation state over the loading 

control, g-tubulin.  Significance was determined as p <0.05. Bars with * denote significant 

differences.  
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Results 

Effect of Homocysteine and KIC on Insulin-Stimulated Glucose Uptake and Insulin 

Signaling 

Homocysteine did not have a significant effect on insulin-stimulated glucose uptake (Fig 

3a). Homocysteine did not have an effect on insulin action, as there was no significant effect on 

Akt phosphorylation (Fig 3b, Supplementary Fig S1A, S1C, S1E). KIC significantly suppressed 

insulin-stimulated glucose uptake, but co-incubation of homocysteine and KIC did not further 

suppress insulin-stimulated glucose uptake (Fig 4). Also, KIC with or without homocysteine did 

not have a significant effect on Akt phosphorylation (Fig 5a, Supplementary Fig S2A). KIC and 

homocysteine did not exert any significant effect on mTORC1 activation as determined by S6K1 

phosphorylation (Fig 5b, Supplementary Fig S3A). KIC had a significant suppression on the 

phosphorylation of S6 (p <0.05, Fig 5c, Supplementary Fig S3B), which suggests a suppression in 

protein synthesis. There was also a significant suppression of S6 phosphorylation when KIC was 

co-incubated with 15 µM and 50 µM of homocysteine (p <0.05, Fig 5c, Supplementary Fig S3B). 

 

Effect of TNF-α on Insulin-Stimulated Glucose Uptake and JNK Phosphorylation 

Exposure of L6 myotubes to TNF-α did not affect either insulin-stimulated 

phosphorylation of the isoform p46 of JNK (Fig 6, Supplementary Fig S4A) or insulin-stimulated 

glucose uptake (Fig 7).  
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Effect of Homocysteine, IL-6, TNF-a and KIC on Insulin-Stimulated Glucose Uptake and 

Insulin Signaling 

KIC did not have a significant effect on insulin-stimulated glucose uptake (Fig 8); however, 

when KIC was co-incubated with homocysteine (50µM), IL-6 (10ng/ml), and TNF-a (10ng/ml), 

a significant effect on insulin-stimulated glucose uptake was observed (Fig 8). This suggests that 

inflammation may worsen the suppressive effect of KIC on insulin-stimulated glucose uptake.  

 

The Effect of Homocysteine, IL-6, TNF-a and KIC on Insulin-Stimulated Glucose Uptake, 

Insulin Signaling and JNK phosphorylation in the Presence and Absence of BCAT2 

There was a 64% reduction in insulin-stimulated glucose uptake when myotubes were co-

incubated with KIC, homocysteine, IL-6 and TNF-a in the scrambled (SCR) group (p < 0.05, Fig 

9a). When BCAT2 was knocked down, no significant effect of KIC and the pro-inflammatory 

factors was detected (Fig 9a). BCAT2 knockdown resulted in a 39% decrease in BCAT2 

expression comparing the average SCR and BCAT2 conditions, although this was not statistically 

significant (Fig 9b, Supplementary Fig S5A). This suggests the possibility that KIC is converted 

back to leucine, even in the context of inflammation to elicit its effects in suppressing insulin-

stimulated glucose uptake.  

In regards to insulin signaling, there was no significant effect of KIC, homocysteine, IL-6 

and TNF-a on Akt phosphorylation in the SCR or BCAT2 knockdown conditions (Fig 10a, 

Supplementary Fig S6A).  Similarly, there was no significant effect of KIC, homocysteine, IL-6 

and TNF-a on both S6K1 (Fig 10b, Supplementary Fig S7A) and S6 phosphorylation (Fig 10c, 

Supplementary Fig S6B) in the SCR or BCAT2 knockdown conditions. 



 
55 

There was no significant effect of KIC, homocysteine, IL-6 and TNF-a on JNK 

phosphorylation (Fig 11, Supplementary Fig S8A).  

 

Effect of BCAT2 Knockdown on KIC, Homocysteine, IL-6 and TNF-a Induced Glycogen 

Synthesis 

I analyzed the effect of KIC, homocysteine, IL-6 and TNF-a co-incubation on glycogen 

synthesis in the presence and absence of BCAT2 by measuring glycogen synthesis and 

phosphorylated glycogen synthase.  

Since there was only one glycogen synthesis experiment completed, statistics could not be 

completed, and therefore significance could not be determined (Fig 12). There was no significant 

effect of KIC on insulin-stimulated glycogen synthase phosphorylation. There was no significant 

effect of KIC, homocysteine, IL-6 and TNF-a co-incubation on glycogen synthase 

phosphorylation either (Fig 13, Supplementary Fig S9A). 
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Figures  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3a: Effect of homocysteine on insulin-stimulated glucose uptake  
 
n=3 independent experiments with 3 replicates per experiment except for 
[Homocysteine] of 15, 20, 30, 40, n=2 independent experiments with 3 replicates. Data 
presented as Means ± SEM. 
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Figure 3b: Effect of homocysteine on insulin-stimulated Akt phosphorylation 
 
n= 3 independent experiments with 3 replicates except for [Homocysteine] of 15, 30, 40, n=2 
independent experiments with 3 replicates and for [Homocysteine] of 20, n=1 independent 
experiment with 3 replicates. Data presented as Means ± SEM.  
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a)

Figure 4: The effect of KIC and homocysteine on insulin-stimulated 
glucose uptake  
 
n= 4 independent experiments with 3 replicates per experiment. Data presented as Means 
± SEM. * (p<0.05). 
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Figure 5: Effect of KIC and homocysteine on insulin signaling 
 
n=5 independent experiments with 3 replicates per experiment. Data presented as Means ± 
SEM. * (p<0.05). 
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Figure 6: Effect of TNF-a on JNK phosphorylation  
 
n=4 independent experiments with 3 replicates per experiment. Data presented 
as Means ± SEM. 
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Figure 7: Effect of TNF-a on insulin-stimulated glucose uptake 
 
n=3 independent experiments with 3 replicates per experiment. Data presented as 
Means ± SEM. * (p<0.05) 
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Figure 8: Effect of pro-inflammatory factors and KIC on 
insulin-stimulated glucose uptake 
 
n=3 independent experiments with 3 replicates per experiment. Data 
presented as Means ± SEM. * (p<0.05) 
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Figure 9: BCAT2 attenuates reduction of insulin-stimulated 
glucose uptake in the presence of KIC and inflammation 
 

n=3 independent experiments with 3 replicates per experiment. Data 
presented as Means ± SEM. * (p<0.05) 
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Figure 10: The effect of a BCAT2 knockdown with KIC and inflammation 
on insulin signaling 

n=3 independent experiments with 3 replicates per experiment. Data presented as Means ± 
SEM.  
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Figure 11: The effect of KIC and inflammation with and without the 
presence of BCAT2 on JNK phosphorylation 
 
n=3 independent experiments with 3 replicates per experiment. Data presented as Means ± 
SEM. 
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Figure 12: The effect of KIC and inflammation with and without the 
presence of BCAT2 on glycogen synthesis.  
 
n=1 independent experiment with 3 replicates per experiment. Data presented as Means 
± SEM. 
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Figure 13: The effect of KIC and inflammation with and without the 
presence of BCAT2 on glycogen synthase phosphorylation. 
 
n=3 independent experiments with 3 replicates per experiment. Data presented as Means ± 
SEM. 

100 kDa

50 kDa

ph-Glycogen Synthase

!-Tubulin

0

1

2

3

4

5

  -     -     -     -     -    +     -    +     -    +    -     +   
  -    +     -    +     +   +    +    +     -     -    -     -
  -     -     -     -     +   +    +    +    +    +    +    +
  -     -     -     -     +   +    +    +    +    +    +    +
  -     -     -     -     +   +    +    +    +    +    +    +

ph
-G

ly
co

ge
n

 S
yn

th
as

e/
γ-

Tu
bu

lin
(A

rb
itr

ar
y 

U
ni

ts
)

+SCR siRNA

+BCAT2 siRNA

KIC(200µM)
Insulin

IL-6(10ng/ml)
TNF-α(10ng/ml)

Homocysteine(50µM)



 
70 

Discussion 

Despite the role of BCAAs in stimulating protein synthesis, there has been a positive 

correlation between circulating BCAA levels and their metabolites, and insulin resistance103-105. 

This poses the questions of whether high levels of BCAAs and their metabolites are a symptom 

of insulin resistance, or if BCAAs and BCAA metabolites play a causative role in eliciting 

insulin resistance.  

 In previous studies, my lab has demonstrated the effect of leucine supplementation and 

KIC supplementation on insulin-stimulated glucose uptake. Not only has leucine, in the absence 

of other amino acids, reduced insulin-stimulated glucose uptake, its metabolite KIC also 

suppressed insulin-stimulated glucose uptake by 45%174. The literature supports this, as high 

circulating concentrations of KIC has been associated with insulin resistance in humans172 and 

animals173.   

 Building off this previous work, it was important to examine the effect of KIC in the 

presence of inflammation, as inflammation is a feature of insulin resistance204-206. Cytokines 

released in conditions like obesity that may induce insulin resistance include tumor necrosis 

factor a (TNF-a), interleukin-1ß (IL-1b) and interleukin-6 (IL-6). Upregulation of TNF-a for 

example, results in c-Jun N-terminal kinases (JNK) activation, which in turn can phosphorylate 

the Ser307 residue on IRS-1 and thus down regulate IRS-1 tyrosine phosphorylation to hinder 

downstream signaling56.  

  To establish inflammation, I examined the effect of homocysteine a metabolite of 

cysteine, on insulin-stimulated glucose uptake. Hyperhomocysteinemia has been implicated as an 

independent risk factor of coronary heart disease194 and insulin resistance215. 

Hyperhomocysteinemia ranges ~15-50µM in humans195. In epidemiological studies 
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hyperhomocysteinemia has been associated with insulin resistance196-197. Homocysteine is a pro-

inflammatory factor and has also been displayed to promote inflammation both in vitro and in 

vivo198-199. In my studies, there was not a significant suppression of insulin-stimulated glucose 

uptake with the incubation of homocysteine.  

 It was also important to analyze the effect of homocysteine on the phosphorylation of 

Akt(s473), which is a strong marker for insulin signaling, and is important for the translocation 

of GLUT4 in order for insulin-stimulated glucose uptake to take place. There was an increase in 

pAkt at 30µM of Hcy, although this was not significant. Despite not reaching significance, an 

increase in Akt phosphorylation was still surprising. This was not expected as inflammation is 

often linked with insulin resistance and thus reduces insulin signaling, but there has been some 

literature to suggest Akt is activated in the presence of inflammation228-229. Op den Kamp et al. 

demonstrated that increases in Akt in a cachexic state could imply impaired Akt activity, as 

downstream targets of Akt were reduced229, which was consistent with our data displaying a 

further reduction in S6K1 and S6 phosphorylation at 15 and 50 µM of homocysteine (Fig 5b, 5c, 

Supplementary Fig S3A, S3B). 

 Homocysteine, as stated earlier, did not have a significant effect on insulin-stimulated 

glucose uptake, but at a physiological level of 50 µM, there was a slight decrease. This indicated 

that inflammation may have been established and thus lead me into my subsequent studies. Next, 

I examined the effects of KIC on insulin-stimulated glucose uptake in the presence of 

homocysteine (50µM). There was no significant effect on insulin-stimulated glucose uptake with 

the co-incubation of KIC and homocysteine.  

  Previous studies have implicated a role of mTORC1 in the pathogenesis of insulin 

resistance from BCAAs. The hyper-activation of mTORC1/S6K1 is said to create a feedback 
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loop phosphorylating the serine residue of IRS-1 and thus hindering insulin signaling (figure 2) 

5,103,118. I analyzed the effect of KIC and homocysteine on pS6K1 (Thr389). With solely KIC 

there was not an increase in pS6K1. There was also a decrease in pS6K1 with the addition of 

inflammation, although not statistically significant. As displayed in figure 1, when JNK is 

activated in an inflammatory state it can inhibit IRS-1 and insulin signalling, which can allude to 

the reduced pS6K1 signalling. In terms of protein synthesis, a hallmark benefit of BCAAs and 

their metabolites, there was a decrease in insulin-stimulated S6 phosphorylation. There was a 

further decrease with inflammation, but as explained above, inflammation does hinder insulin 

signaling through IRS-1. Failing to reproduce KIC’s effect on S6 phosphorylation is a 

shortcoming of this thesis, as the effect of KIC and BCAAs on S6 phosphorylation has already 

been established174,256.  

I established a more robust inflammatory signal with TNF-a, IL-6 and homocysteine co-

incubation. Both IL-6 and TNF-a are pro-inflammatory cytokines. I incubated the L6 myotubes 

in these pro-inflammatory factors for 48 hours opposed to the 24-hour incubation period I 

implemented previously. During exercise pro-inflammatory cytokines like IL-6 are released 

establishing an acute inflammatory response and thus increasing glucose uptake201-203. My study 

induced a more chronic inflammatory signal not associated with exercise stimulated glucose 

uptake, as longer IL-6 incubation times show reduced insulin-stimulated glucose uptake with 

increased JNK activation in muscle203.   

With a 48-hour incubation period, KIC with multiple pro-inflammatory signals 

suppressed insulin-stimulated glucose uptake (Fig 8). Previous work in my lab showed when 

BCAT2 is knocked down the effect of KIC is ameliorated. Even in the context of inflammation 

that may modulate KIC’s effect on insulin signaling, BCAT2 knockdown attenuated this 



 
73 

suppression (Fig 9a). This emphasizes the notion that KIC’s conversion back to leucine is 

suppressing glucose uptake not KIC. This also highlights the importance of BCAT2 in insulin 

signaling and how increased catabolism of BCAAs may help in the management/prevention of 

insulin resistance. 

 Next, I analyzed how mTORC1 is implicated in the attenuation of suppressed insulin-

stimulated glucose uptake by KIC and the pro-inflammatory factors. Unlike in figure 5, although 

not significant, both S6 and S6K1 phosphorylation was increased with the addition of KIC 

consistent with the notion that mTORC1 is hyper-activated. However, this effect was reduced in 

BCAT2 conditions, suggesting that KIC is converted back to leucine to elicit its effects on 

insulin-stimulated glucose uptake and mTORC1 activation. 

 I analyzed the effect of KIC and inflammation in the absence and presence of BCAT2 

with another pathway of glucose metabolism further validating the development of insulin 

resistance under these conditions. In the SCR condition, inflammation resulted in a 39% greater 

glycogen synthase phosphorylation, and KIC and inflammation together resulted in a 70% 

greater glycogen synthase phosphorylation, although neither of these were statistically 

significant. In the BCAT2 knockdown conditions, inflammation increased glycogen synthase 

phosphorylation by 49%, but it was not statistically significant. KIC did not further this 

phosphorylation like in the SCR condition further emphasizing KIC’s intracellular conversion 

back to leucine.  

To better assess the effects of KIC and inflammation together on insulin-stimulated 

glucose uptake in the presence and absence of BCAT2 it would be necessary to do these 

experiments in vivo. A shortcoming of this thesis is not examining total protein levels of Akt, 

S6K1, S6, IRS-1 and JNK and using g-tubulin as a loading control to normalize protein levels. I 
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attempted to use stripping buffer, but this procedure could not be optimized as it resulted in no 

protein levels on the membrane, therefore g-tubulin was used. An acute supplementation of KIC 

may not change total protein levels, but inflammation for 24 or 48 hours may. Thus, for higher 

accuracy in the future, it would be necessary to look at total protein levels. Another shortcoming 

of this study was not getting a good signal for IRS-1. Showing increased levels of Ser612 

phosphorylated IRS-1 would help emphasize the paradox of BCAAs and the mechanism in 

which they suppress insulin-stimulated glucose uptake. Difficulty in obtaining a signal for the 

phosphorylation of IRS-1 could be due to its degradation by activating inflammatory pathways. 

Both proteins suppressor of cytokine signaling 1 (SOCS1) and suppressor of cytokine signaling 3 

(SOCS3) are induced in inflammation and can cause ubiquitylation and subsequent degradation 

of IRS-1257. Not obtaining significance for many of the figures could be attributed to a lack of 

sample size and is a major shortcoming of this thesis. Lastly, struggling to finish enough 

glycogen synthesis experiments and producing an effect of insulin is also a shortcoming, as an 

alternate pathway of glucose metabolism could further emphasize KIC’s role in inflammation on 

insulin sensitivity.  

One of the future steps in this study includes the ensuring that KIC is converted back to 

leucine in the L6 myotubes, and this could be done with the use of HPLC. Comparing KIC 

supplementation in both SCR and BCAT2 knockdown condition gives insight to whether or not 

KIC is converted back to leucine in these cells, as I would expect a higher leucine level in 

control muscle cells compared to BCAT2 depleted muscle cells. 

 Once KIC’s conversion back to leucine is confirmed, as described above, it is imperative 

to study whether increasing the catabolic flux of the BCAA catabolic pathway can help attenuate 

the suppression in insulin-stimulated glucose uptake. 
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Hernandez-Alvarez et al. have demonstrated a decrease in BCAT2 and BCKD mRNA 

levels in T2DM232. As a result, BCAA metabolism is hindered, and there are higher levels of 

BCAAs and their metabolites as well. Thus, increasing BCAA metabolism may help the in 

reducing the increased levels of BCAAs that are prevalent in insulin resistance. One potential 

method of stimulating greater BCAA metabolism is the use of B-vitamins. Vitamin B6’s active 

form pyridoxal 5’-phosphate (PLP) is a co-factor of transaminases like BCAT2230. Other B-

vitamins like thiamine and riboflavin increase the activity of BCKDH231. Thus B-vitamin 

supplementation with amino acids like leucine may help prevent the dysregulations in the 

catabolic enzymes in this BCAA metabolic pathway, that are often characteristic of T2DM. 

In conclusion, I provide further emphasis that even in the presence of inflammation, 

KIC’s effect on insulin-stimulated glucose uptake is attenuated with the knockdown of BCAT2. 

This emphasizes the importance of leucine and how upregulating the catabolism of leucine can 

be a therapeutic strategy in managing insulin resistance.  
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4.0 Future Directions 

1. Examine the effect of both KIC and leucine in inflammation in vivo as well. 

2. Examine if an anti-inflammatory intervention such as omega-3s can alleviate the 

significant reduction in KIC mediated insulin-stimulated glucose uptake.  

3. Examining the effect of overexpressing BCAT2 to assess whether or not leucine’s 

suppression of insulin-stimulated glucose uptake is attenuated with enhanced BCAA flux.  

4. Examine the effect of branched-chain keto dehydrogenase (BCKD) and how its 

knockdown or overexpression through branched-chain keto dehydrogenase kinase (BDK) 

knockdown can affect insulin sensitivity. 
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6.0 Appendix 

A)  Experimental Outline for Homocysteine Experiments 

 

 

On Day 5 of differentiation myotubes were incubated with or without homocysteine for 24 
hours. Myotubes were starved for 4h in serum and amino acid-free medium. They were then 
incubated in an amino acid-free medium with KIC for 30 minutes. Following this, the cells were 
incubated with or without insulin for 20 minutes and then a glucose uptake assay was conducted 
and cells were harvested for western blot analysis. 
 
 

 

 

 

 

4 hr starvation (serum & 
amino acid-free medium)

Amino acid-
free medium
KIC (30min)

Amino acid-
free medium

No KIC (30min)

Insulin
(20 min)

No Insulin
(20 min)

Insulin
(20 min)

No Insulin
(20 min)

24 hour incubation of L6 myotubes with or without 
homocysteine (differentiation media) 

Western Blotting or 
Glucose Transport
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B) Experimental Outline for Pro-Inflammatory Factors Experiments 

 
 
 
 

 
 
 

 
On Day 5 of differentiation, myotubes were incubated with or without pro-inflammatory factors 
for 48 hours. Media with pro-inflammatory factors was replenished at the 24-hour mark. 
Myotubes were starved for 4h in serum and amino acid-free medium. They were then incubated 
in an amino acid-free medium with KIC for 30 minutes. Following this, the cells were incubated 
with or without insulin for 20 minutes and then a glucose uptake assay was conducted and cells 
were harvested for western blot analysis. 
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amino acid-free medium)

Amino acid-
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No KIC (30min)
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No Insulin
(20 min)

48 hour incubation of L6 myotubes with 
or without homocysteine, Interleukin 6 

and TNF-⍺ (differentiation media) 

Western Blotting or 
Glucose Transport
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C)  Glucose Transport Assay Solutions  

Hepes Buffer Saline: 
• 140 mM NaCl (Wisent #600-082-LG) 
• 20 mM Hepes-Na, pH 7.4 (Research Organics #6003H) 
• 5mM KCl (Fisher Scientific #M-12445) 
• 2.5 mM MgSO4 (Bioshop #10034-99-8) 
• 1.0 mM CaCl2 (Bioshop #10035-04-8) 

 
Stop Solution: 

• 0.9% NaCl (Saline) (Wisent #600-082-LG) 
 

2-DG Stock Solution: 
• 10 mM 2-Deoxy-D-Glucose in Hepes buffer  

 

Transport Solution (TS): 
Prepare in Hepes buffer 
10 uM 2-Deoxy-Glucose 
0.5 uCi/mL H3 2-Deoxy-Glucose (Perkin Elmer #NET549250UCI) 

 

Glucose Uptake Procedures  

1. On the designated radioactive bench in the lab, wash cells two times with 400ul of 37oC 
Hepes Buffered Saline (HBS) at room temperature and aspirate any remaining buffer  

2. Add 300ul of room temperature Transport Solution per well for a 12-well plate.  
3. Incubate the plates for 5 minutes at 37°. Be sure to not exceed this time.  
4. Aspirate away the Transport Solution quickly and wash the wells thoroughly three times 

with 1ml of ice-cold Stop Solution (0.9% Saline) while on ice. Aspirate to dryness.  
5. While on ice, add 1.0 mL of ice-cold 0.05N NaOH to each well in the plate.  
6. Scrape the cells and transfer 0.8 mL of the contents into plastic Scintillation vials already 

filled with 3.5 mL of Scintillation fluid.  
7. Transfer the remaining contents into 1.5 mL Eppendorf tubes (to be used for protein 

assay).  
8.  Count the amount of radioactivity in each vial using the Scintillation counter and 

measure the amount of radioactivity in each sample.  
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D) RNAi Gene Silencing Materials  

• Opti-MEM (Life technologies: cat # 31985-070)  
• Lipofectamine RNAiMAX reagent (Life technologies: cat #13778-150)  
• siRNA scramble and BCAT2 (Sigma Aldrich)  
• Growth Medium (GM) without antibiotics (AMEM (Wisent Inc. Cat # 310-010-CL) 

supplemented with 10% FBS (Cat # 12484-028))  
• Growth Medium (GM) with antibiotics (AMEM (Wisent Inc. Cat # 310-010-CL) 

supplemented with 10% FBS (Cat # 12484-028) and 1% Ab-Am (Wisent Inc. Cat # 450-
115-EL)) 

• 15 ml polypropylene conical tubes (BD Falcon Ref #372096)  
• 6 well plates (Cat#08-772-1B) 
• 12 well plates (Cat#665180) 

 

Procedures:  

1. In the cell culture hood, prepare three 15 ml tubes and label “A”, “B” and “C” and one 50 ml 
tube labelled as “Optimum” 

AàLipofectamine+ Opti-MEM BàBCAT2 siRNA+Opti-MEM CàScramble siRNA+Opti-
MEM  

2. Pour 18ml Optimum solution into the designated 50 ml-Optimum tube (without touching 
the mouth of the bottle).  

3. Add 120 µl of Opti-MEM/well + 5 µl of Lipofectamine/well to tube “A”.  
4. Add 3 µl of BCAT2 siRNA/well and 122 µl of Opti-MEM/well to tube “B”.  
5. Add 3 µl of scramble siRNA/well and 122 µl of Opti-MEM/well to tube “C”.  
6. Add tube “A” to tube “B” and tube “C” in 1:1 ratio. (For example, 125µl of “A” to tube 

“B” and 125µl of tube “A” into tube “C”).  
7. Wait at least 5 minutes.  
8. While waiting, add 1 mL/well and 0.5ml/well of GM without antibiotics into the 6 well 

and 12 well plates respectively, and add 125000 or 250000 cells to each 12 well or 6 well 
respectively.  

9. Add 250 µl or 125µl/well of diluted tube “B” and “C” to 6 well plate wells or 12 well 
plate wells respectively.  

10. Following 24 hours, add 1 mL/well of GM (with antibiotics and pro-inflammatory 
factors) into the 6 well and 0.5mL/well of GM (with antibiotics and pro-inflammatory 
factors) into the 12 wells.  
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E) Glycogen Synthesis Assay  

1) Cells were starved for three hours (2ml/well for 6 well plate) 
a. Prepare test media containing [U14C]-D-Glucose (0.2µCi/ml) – 2 µl of 

[U14C]-D-Glucose (50µCi/0.5ml)/ml of media  
2) Incubate cells with test media (1ml/well) containing respective conditions, 5.5mM 

unlabelled glucose and [U14C]-D-Glucose to wells for one hour. 
3) After 1 hour, collect 200 µl from each well and transferred into scintillation tubes for 

total counting. 
4) Remaining media was aspirated, and wells were washed with ice cold PBS twice. 
5) Subsequently cells were lysed with the addition of 450 µl of KOH (1M) to each well 

and were placed on the rocker for 15 minutes. 
6) Cells were transferred from wells into Eppendorf tubes and put onto heat (65oC) for 5 

minutes.  
7) For protein determination 50 µl was removed and put into different Eppendorf tubes.  
8) Glycogen carrier was added (100 µl) [stock solution is 25mg/ml] 
9) 80 µl of saturated sodium sulfate was added to each tube 
10) 1.2 ml of ice cold 100% ethanol was added to each tube. 
11) Tubes were vortexed and placed in freezer (-20 oC) overnight for precipitation. 
12) After overnight precipitation tubes were centrifuged (20min/10000rpm) at room 

temperature. 
13) Supernatant was discarded, and the pellet was dissolved in 500 µl of double distilled 

water. 
14) Finally, 450 µl of this solution was transferred to scintillation vials containing 3.5 ml 

of scintillation fluid for counting.   
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7.0 Supplementary Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 

b) 

48 kDa g-Tubulin 

60 kDa 
ph-Akt 
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c) 

d) 

g-Tubulin 

Ph-Akt 

50 kDa 

ph-Akt 
60 kDa 

          Insulin             +    +    +   +    +    +  +   +   +   +     +     +   

      Homocysteine(µM)             30  30  30  40  40  40 50 50 50 100 100 100      

          Insulin             +    +   +    +    +    +   +  +   +    +     +     +   

      Homocysteine(µM)             30  30  30  40  40  40 50 50 50 100 100 100      
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f) 

Figure S1) Effect of homocysteine on insulin-stimulated Akt 
phosphorylation 
 
 Original blots for ph-Akt (Supplementary Figure S1A, S1C, S1E) and g-tubulin 
(Supplementary Figure S1B, S1D, S1F) for Figure 3b. 

 

50kDa g-Tubulin 

          Insulin             +      +       +     +     +     +      +      +      +       -      -      -       

      Homocysteine(µM)           200  200   200 500 500 500 1000 1000 1000   0     0      0       

ph-Akt 75 kDa 

          Insulin              +       +      +      +     +     +      +       +       +      -      -      -      
      Homocysteine(µM)       200   200  200  500  500 500 1000 1000 1000   0     0      0       

e) 
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c) 

Figure S2) Effect of homocysteine and KIC on insulin-
stimulated Akt phosphorylation 
 
Original blots for ph-Akt (Supplementary Figure S2A) and g-tubulin 
(Supplementary Figure S2B) for Figure 5a. 

  

b) 

50 kDa 
g-Tubulin 

75 kDa ph-Akt 

          Insulin           -     +   -    +   +   +   +   +     -    -    -    -     
   KIC(200µM)         -      -   +   +    -    -    -    -    +   +   +   +   

      Homocysteine(µM)          0    0   0    0  10  15 50 500 10 15 50 500            

          Insulin           -    +    -    +   +   +   +    +    -    -    -    -     
   KIC(200µM)         -    -    +    +    -   -    -     -    +   +   +   +  

      Homocysteine(µM)          0    0   0    0  10  15 50 500 10 15 50 500            

a) 
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b) 

37 kDa 
ph-S6 

          Insulin         -     +    -    +    +   +   +   +     -    -    -    -     

   KIC(200µM)       -      -    +   +    -    -    -    -     +   +   +   + 

      Homocysteine(µM)        0     0    0   0   10 15 50 500 10  15 50 500            

a) 

          Insulin         -     +    -     +   +   +   +   +     -    -    -    -      
   KIC(200µM)       -     -     +    +    -    -    -    -    +   +   +   +  

      Homocysteine(µM)        0     0    0    0  10  15 50 500 10 15 50 500            

75 kDa 
ph-S6k1 

ph-S6 
37 kDa 
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c) 

Figure S3) Effect of homocysteine and KIC on insulin 
signaling 
 
Original blots for ph-S6K1 (Supplementary Figure S3A) and ph-S6 
(Supplementary Figure S3B) for Figure 5b and 5c. Original blots for g-
tubulin (Supplementary Figure S3C) was used for both Figure 5b and 5c.  

50 kDa 
g-Tubulin 

          Insulin        -     +    -    +   +   +   +   +     -    -     -     -        

   KIC(200µM)      -     -     +   +   -    -    -    -     +    +   +     +   

      Homocysteine(µM)       0     0    0   0   10 15 50 500 10  15  50 500            
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a) 

b) 

Figure S4) Effect of TNF-a on JNK phosphorylation 
 
 Original blots for ph-JNK (Supplementary Figure S4A) and g-tubulin 
(Supplementary Figure S4B) for Figure 6. JNK has two isoforms, 46p and 48p, 
I chose to quantify 46p throughout, as both have similar functions, but just 
different structure.  

 

50 kDa 

50 kDa 

g-Tubulin 

ph-JNK 

              Insulin    -     +       -      +      -     +      -       + 

 [TNF-a](ng/ml)    0     0       2      2      5    5     10     10                

              Insulin    -      +      -       +      -      +      -       + 

 [TNF-a](ng/ml)    0      0      2       2     5      5    10      10                 
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b) 

a) 

Figure S5) BCAT2 attenuates reduction of insulin-stimulated 
glucose uptake in the presence of inflammation and KIC 
 
 Original blots for BCAT2 (Supplementary Figure S5A) and g-tubulin 
(Supplementary Figure S5B) for Figure 9b. 

 

50 kDa g-Tubulin 

BCAT2 siRNA   -    -   +   +   -    -    +    +    -    -     +    + 

              Insulin   -    +   -   +   +   +    +    +    -    -     -     -     
   KIC(200µM)  -    -    -    -    -   +    -     +    -    +    -     +                 

  TNF-a(10ng/ml)   -    -    -    -   +   +    +    +    +   +    +    +                
            IL-6(10ng/ml)   -     -   -    -   +   +    +    +    +   +    +    +             

      Homocysteine(50µM)   -     -   -    -   +   +    +    +    +   +    +    +              

37 kDa BCAT2 

g-Tubulin 50 kDa 

BCAT2 siRNA   -    -   +   +   -    -    +    +    -    -    +     + 

              Insulin   -    +   -   +   +   +    +    +    -    -    -      -     
   KIC(200µM)   -    -    -   -    -    +    -    +    -    +    -     +                 

   TNF-a(10ng/ml)   -    -    -   -   +    +    +   +    +   +    +    +                 
            IL-6(10ng/ml)    -    -    -   -   +    +    +   +    +   +    +    +                

      Homocysteine(50µM)    -    -    -   -   +    +    +    +    +   +    +   +                
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a) 

b) 

37 kDa ph-S6 

75 kDa ph-Akt 

g-Tubulin 

BCAT2 

Ph-S6 

50 kDa 

37 kDa 

BCAT2 siRNA  -     -   +   +   -   -    +    +    -    -     +     +   

              Insulin  -     +   -   +  +   +    +    +    -    -     -      -     
   KIC(200µM)  -    -   -     -   -    +    -     +    -    +    -     +                

  TNF-a(10ng/ml)   -    -    -    -   +   +    +    +    +   +    +    +                
            IL-6(10ng/ml)   -     -   -    -   +   +    +    +    +   +    +    +            

      Homocysteine(50µM)   -     -   -    -   +   +    +    +    +   +    +    +              

BCAT2 siRNA   -    -   +   +    -     -    +   +    -    -    +    + 

              Insulin   -    +   -   +   +     +   +   +    -    -    -     -      
   KIC(200µM)   -    -    -    -    -     +    -   +    -    +   -     +               

  TNF-a(10ng/ml)   -    -    -    -   +     +   +    +   +   +   +    +              
            IL-6(10ng/ml)   -     -   -    -   +     +    +   +   +    +   +    +             

      Homocysteine(50µM)   -     -   -    -   +     +    +   +   +    +   +    +             
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Figure S6) The effect of a BCAT2 knockdown with KIC and 
inflammation on insulin signaling 
 
Original blots for ph-Akt (Supplementary Figure S6A) and ph-S6 
(Supplementary Figure S6B) for Figure 10a and 10c respectively. Original blots 
for g-tubulin (Supplementary Figure S6C) was used in Figure 10a and 10c. 

 

50 kDa g-Tubulin 

BCAT2 siRNA   -    -   +   +   -   -    +    +    -    -    +    + 

              Insulin   -    +   -   +   +  +    +    +    -    -    -     -    
   KIC(200µM)   -    -    -   -    -   +    -    +    -    +    -    +                

  TNF-a(10ng/ml)   -    -    -    -   +  +    +    +    +   +   +    +              
            IL-6(10ng/ml)   -    -    -    -   +  +    +    +    +   +   +    +              

      Homocysteine(50µM)   -    -    -    -   +  +    +    +    +   +   +    +              

c) 
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a) 

Figure S7) The effect of a BCAT2 knockdown with KIC and 
inflammation on insulin signaling 
 
 Original blots for ph-S6K1 (Supplementary Figure S7A), and g-tubulin 
(Supplementary Figure S7B) for Figure 10b.  

 

75 kDa ph-S6K1 

b)  

50 kDa g-Tubulin 

BCAT2 siRNA   -     -     +    +    -    -    +    +    -    -   +   + 

              Insulin   -     +     -    +    +   +   +    +    -    -    -    -   

    KIC(200µM)  -      -      -    -    -    +    -   +     -    +   -   +              
  TNF-a(10ng/ml)   -      -     -     -    +   +   +   +    +   +   +   +             

            IL-6(10ng/ml)   -      -     -     -    +   +   +   +    +   +   +   +               
      Homocysteine(50µM)   -      -     -     -    +   +   +   +    +   +   +   +               

BCAT2 siRNA    -     -     +    +    -    -   +    +    -    -   +    +  

              Insulin   -     +     -     +   +   +   +    +    -    -    -     -  
 KIC(200µM)     -      -     -     -    -    +   -    +     -   +    -    +              

  TNF-a(10ng/ml)   -      -     -     -   +    +  +    +    +   +   +    +              
            IL-6(10ng/ml)    -      -     -     -   +    +  +    +    +   +    +   +               

      Homocysteine(50µM)   -      -     -     -   +    +  +    +    +   +    +   +             
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b)  

BCAT2 siRNA   -     -     +    +    -    -    +    +    -    -   +    + 

              Insulin   -     +     -    +    +   +   +    +    -    -    -    -  

   KIC(200µM)   -      -     -     -    -    +    -    +    -   +    -    +            
  TNF-a(10ng/ml)   -      -     -     -    +   +   +   +    +    +   +   +           

            IL-6(10ng/ml)   -      -     -     -    +   +   +   +    +    +   +   +           
      Homocysteine(50µM)   -      -     -     -    +   +   +   +    +    +   +   +           

Figure S8) The effect of KIC and inflammation with and without 
the presence of BCAT2 on JNK phosphorylation 
 
 Original blots for ph-JNK (Supplementary Figure S8A), and g-tubulin 
(Supplementary Figure S8B) for Figure 11. JNK has two isoforms, 46p and 48p, 
I chose to quantify 46p throughout, due to the fact they have similar functions, 
just different structures.  

 

50 kDa ph-JNK 

50 kDa g-Tubulin 

BCAT2 siRNA   -     -     +    +    -    -    +    +    -    -   +    + 

              Insulin   -     +     -     +   +   +   +    +    -    -    -     -  
       KIC(200µM)   -      -     -     -    -    +   -    +    -    +    -    +                  
  TNF-a(10ng/ml)   -      -     -     -    +   +   +   +    +    +   +   +           

            IL-6(10ng/ml)   -      -     -     -    +   +   +   +    +    +   +   +           
      Homocysteine(50µM)   -      -     -     -    +   +   +   +    +    +   +   +           

a) 
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b) 

Figure S9) The effect of KIC and inflammation with and without 
the presence of BCAT2 on Glycogen Synthase phosphorylation 
 
 Original blots for ph-glycogen synthase (Supplementary Figure S9A), and g-
tubulin (Supplementary Figure S9B) for Figure 13.  

 

BCAT2 siRNA   -     -     +    +    -    -    +    +    -    -   +    + 

              Insulin   -     +     -    +    +   +   +    +    -    -    -     -  
   KIC(200µM)   -      -     -     -    -    +   -    +    -    +    -    +          
=   TNF-a(10ng/ml)   -      -     -     -    +   +   +   +    +   +    +   +            

            IL-6(10ng/ml)   -      -     -     -    +   +   +   +    +   +    +   +            
      Homocysteine(50µM)   -      -     -     -    +   +   +   +    +   +    +   +            

100 kDa 
ph-Glycogen Synthase 

ph-S6K1 75 kDa 

50 kDa g-Tubulin 

BCAT2 siRNA   -     -     +    +    -    -    +   +     -    -   +    + 

              Insulin   -     +     -    +    +   +   +    +    -    -    -     -   
   KIC(200µM)   -      -     -     -    -    +    -   +    -   +     -    +          
=   TNF-a(10ng/ml)   -      -     -     -    +   +   +   +    +   +    +    +            

            IL-6(10ng/ml)   -      -     -     -    +   +   +   +    +   +    +    +           
      Homocysteine(50µM)   -      -     -     -    +   +   +   +    +   +    +    +           

a) 


