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Abstract

This dissertation extends the parametric sampling method and area-based statistics for differential

test functioning (DTF) proposed by Chalmers, Counsell, and Flora (2016). Measures for differen-

tial item and bundle functioning are first introduced as a special case of the DTF statistics. Next,

these extensions are presented in concert with the original DTF measures as a unified framework

for quantifying differential response functioning (DRF) of items, bundles, and tests. To evaluate

the utility of the new family of measures, the DRF framework is compared to the previously es-

tablished simultaneous item bias test (SIBTEST) and differential functioning of items and tests

(DFIT) frameworks. A series of Monte Carlo simulation conditions were designed to estimate the

power to detect differential effects when compensatory and non-compensatory differential effects

are present, as well as to evaluate Type I error control. Benefits inherent to the DRF framework

are discussed, extensions are suggested, and alternative methods for generating composite-level

sampling variability are presented. Finally, it is argued that the area-based measures in the DRF

framework provide an intuitive and meaningful quantification of marginal and conditional response

bias over and above what has been offered by the previously established statistical frameworks.
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1 Introduction

Psychological traits, attributes, abilities, pathologies, and so on are often understood through mod-

eling behavioral response data from educational and psychological tests. The most popular method

for collecting test data in psychology and education is to administer a test or questionnaire whereby

individuals are ‘scored’ according to their responses to the item-level stimuli. These responses to

individual items are then simplified by forming some meaningful composite value (or set of values)

that summarizes the overall response behavior, often to serve as an approximate quantification of

the underlying construct which the test purports to measure.

Numerous methods have been proposed to create summary scores of test performance. The

simplest and most popular method of scoring a test is to simply tally the number of correct (or

positively endorsed) item responses and interpret this sum score as a representation of the overall

performance on the test. This approach is commonly used in popular psychological assessment

tools (e.g., Beck Depression Invetory-II; Beck, Steer, & Brown, 1996) and in aptitude measure-

ment situations, such as when grading course examination material. However, this simple scoring

method rests on a set of important and strong assumptions. Namely, that the items are internally

1



reliable; the items are exchangeable and of equal importance; the test is unidimensional (i.e., the

items measure only one construct or latent trait); every item has the same functional relationship

with the unobserved trait (e.g., linear); the test is valid (i.e., items measure what they are intended

to measure); and the test items are not unfairly influenced by cultural or personal demographic

information (e.g., content does not favor female participants over equally abled male participants).

Psychometricians have long recognized the measurement limitations associated with unweighted

composite scoring procedures such as the previously described sum-score method (e.g., Lord &

Novick, 1968). These early objections are one reason why the true-score test-analysis paradigm

was developed to form what is now considered ‘classical test theory’ (CTT; Crocker & Algina,

1986; Lord & Novick, 1968). Very soon after CTT was realized, psychometricians turned their

focus towards understanding item response phenomena directly at the item level by utilizing sta-

tistical modeling methods such as linear factor analysis (McDonald, 1999) and item response the-

ory (Lord, 1980). Factor analysis and item response theory generally belong to same family of

latent variable statistical models used to model the relationship between latent variables and re-

sponse stimuli. Compared to CTT, latent trait methods offer a more rigorous and testable statistical

paradigm for understanding the relationships between latent variables and items (Borsboom, 2005).

By and large, the latent variable conceptualization and statistical modeling framework of item

response data dominates the current zeitgeist in psychometric research. The methods themselves

include powerful techniques for determining the underlying structure and goodness-of-fit of the

tests and their respective item response models, while also providing helpful techniques to deter-
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mine whether items are biased across different populations. Detecting response bias in individual

items, item bundles, and tests as a whole using methods from the item response theory paradigm

will be the primary theme of this dissertation.

1.1 Background Information

Item response theory (IRT) is a general framework of probabilistic models which provide specific

structures to explain variation in observed item-response data. The framework postulates two

distinct and separable entities which, when considered jointly, are responsible for the manifest

pattern of responses in a given psychological test. The first entity is the set of unobserved values (or

relative standing) on the latent traits, or abilities, which each individual test taker possesses denoted

by θ. These latent traits provide a rank ordering of respondents along one or more unobserved

continua and represent meaningful constructs which the test attempts to quantify (Reckase, 2009).

For example, the locations along a continuum may indicate a level of proficiency in educational

settings, such as having some mastery of a mathematical subject matter, or may represent the

psychological intensity in the context of measuring psychopathologies (e.g., depression).

The second and often more technical entity from the IRT paradigm is the set of characteristics

inherent in the item-level stimuli. Such properties may reflect how difficult or extreme the items

are, how well they discriminate individuals along the unobserved continua, whether the item re-

sponse probability is monotonically related to the latent trait, and so on. Given some functional

relationship specifying how these two entities interact, a probabilistic response model can often be

3



constructed to model or explain an individual’s overt response behavior.

Expressing the above ideas more concisely, let θ represent an m-dimensional vector of latent

trait values, and let ψ represent a p-dimensional vector of item parameters. The probability of

responding with category k for a single item, where k = 0, 1, . . . ,K − 1 and K is the total number

of response categories, is P(y = k|θ,ψ). The probability mapping from θ to P(y = k|θ,ψ) is often

taken to be some parametric model with a monotonically increasing function given θ. Depending

on the parameters modeled, items can be organized to include more than one latent trait (i.e.,

have different discrimination properties), can include background information about the population

distributions (e.g., latent regression models; Adams, Wilson, & Wu, 1997), can be constructed to

have non-monotonic relationships with the latent traits, and so on.

Although IRT conceptualizes response behavior in terms of probabilistic models alone, several

ancillary functions can be specified for capturing other useful properties of the items. One such

function is the expected item score,

S (c|θ,ψ) =

K−1∑
k=0

k · P(y = k|θ,ψ), (1.1)

which transforms the K probability functions for a given item into a single function denoting which

observed response (c) is expected given the respective item parameters and ability values. In the

case where the item response function contains only two categories (e.g., true or false, correct or

incorrect; scored as y = 1 and y = 0, respectively), the expected score function is equivalent to

P(y = 1|θ,ψ).

To demonstrate the joint behavior of multiple items in a test, the expected score function in

4



Equation 1.1 can be extended to include a bundle of items by summing over the J possible items

in the test, indexing the desired items with a binary indicator function I( j):

TB(C|θ,Ψ) =

J∑
j=1

S (c|θ,ψ = Ψ j) · I( j), (1.2)

where C =
∑J

j=1(K j − 1) · I( j) and Ψ represents the vector of item parameters for the full model.

If item j should be included in the composite response function above then I( j) = 1, otherwise

I( j) = 0. When I( j) = 1 for only one item then (1.2) necessarily reduces to (1.1); hence, (1.1) can

be understood as an item bundle of length one. Additionally, when all J items are included in (1.2)

then this equation will represent the expected test score function (Embretson & Reise, 2000). As

we will see in the next sections, as well as in subsequent chapters, these simple functions are of

pivotal importance investigating response bias between different populations of respondents.

1.2 Item Response Theory

IRT methods consist of a wide array of probabilistic models for representing the structure of re-

sponse patterns by using quantitative item-level properties and latent trait values. One such para-

metric model often used to model binary response data (where the number of categories K = 2) is

the multidimensional two parameter logistic model, or M2PL (Reckase, 1997). For a binary item

with only two potential empirical realizations (y = 0 or y = 1), the M2PL model has the form

P(y = 1|θ,ψ) = P(y = 1|θ,α, δ) =
exp (α′θ + δ)

1 + exp (α′θ + δ)
, (1.3)
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where α is an m × 1 vector of discrimination or slope parameters that combine with the commen-

surate latent trait scores θ and δ is the overall item intercept representing how ‘easy’ an item is to

answer. Because binary items have only two empirical realizations (y = 1 or y = 0), the comple-

mentary probability for y = 0 is P(y = 0|θ,ψ) = 1 − P(y = 1|θ,ψ). When additional parameter

constraints are added to the M2PL model other popular IRT models can be obtained. For instance,

when α and θ contain only one element (i.e., are scalar values) the M2PL model reduces to the

unidimensional 2PL model, and when α = 1 the 2PL model further reduces to the Rasch or 1PL

model (Rasch, 1960). Although there are many additional item response models for dichotomous

and polytomous items, we need only focus on the M2PL to grasp the subsequent methodological

developments for the purpose of this body of work.

To better understand the effect of the parameters in (1.3), Figure 1.1 was constructed to visual-

ize prototypical probability response curves. These figures depict the isolated effects of the slope

and intercept for a unidimensional IRT model. In practice, however, response models may contain

any combination of these parameters. As demonstrated in Figure 1.1, increasing the slope param-

eters has the effect of increasing the probability of positive endorsement rate given θ, where the

rate of change is greatest at the function’s inflection point. Items with larger slope parameters tend

to discriminate between individuals with different latent trait values better than items with smaller

slopes, especially near the inflection point. Items with differing intercepts, on the other hand, have

systematically shifted response curves, and therefore resemble the effect of item ‘easiness’. Easier

items are associated with large positive intercept values and indicate that all individuals have a
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higher probability to answer positively (i.e., respond with y = 1) compared to more difficult items.
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Figure 1.1: Expected probability functions with differing parameters for unidimensional IRT mod-

els. The left figure demonstrates the effect of modifying the slope (α), while the right figure

demonstrates the effect of modifying the intercepts (δ).

1.2.1 Estimation

In practice, item parameters must be estimated using available response data by optimizing some

discrepancy function. One extremely popular approach which currently is the de facto standard

is maximum-likelihood estimation (Reckase, 2009). Maximum-likelihood estimates are obtained

after maximizing the likelihood function

L(Y|Ψ,θ) =

N∏
i=1

J∏
j=1

P(y = 1|θ,ψ = Ψ j)yi j P(y = 0|θ,ψ = Ψ j)(1−yi j), (1.4)

where yi j represents the observed response to the jth item by person i, Y is an N × J a matrix

containing all binary response patterns for each respective individual and item combination, and
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Ψ j is the subset of parameters relevant to the jth item. Because the θ and ψ parameters are not

sufficiently estimable from the data alone, the θ terms are often treated as random effects to be

integrated out of the likelihood function (Bock & Lieberman, 1970). The marginal likelihood

after integrating across θ, given the probability density function g(θ) (typically understood to be

multivariate normal density function), is

L(Y|Ψ) =

N∏
i=1

∫ ∞

−∞

∫ ∞

−∞

· · ·

∫ ∞

−∞

J∏
j=1

P(y = 1|θ,ψ = Ψ j)yi j P(y = 0|θ,ψ = Ψ j)(1−yi j)g(θ)dθ

 .
(1.5)

Equation 1.5 (or its more numerically manageable logarithmic counterpart) is the objective func-

tion to be optimized to obtain P maximum-likelihood parameter estimates; however, its form is

restricted by two main computational issues.

The first issue with optimizing Equation 1.5 directly is that the dimensionality of the parameter

space grows exponentially as more items are included, where numerically evaluating the inte-

grals becomes overwhelmingly computationally demanding (Bock & Lieberman, 1970). As Bock

and Aitkin (1981) demonstrated, however, a powerful solution to this optimization problem is to

decompose the likelihood function into a more manageable complete-data likelihood form by es-

timating the parameters with an expectation-maximization (EM) algorithm (Dempster, Laird, &

Rubin, 1977). The EM algorithm effectively solves the issue of estimating parameters in longer

tests because maximization can be performed independently over the J items using the more man-

ageable complete data-table rather than over the problematic P-dimensional parameter space. The

second issue relates to the dimensionality of θ in that as the number of latent dimensions m in-
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creases, the complexity of the integration grid increases exponentially (Cai, 2010; Chalmers &

Flora, 2014). This issue will be discussed in more detail in Chapter 4 where the topic of multidi-

mensional differential response functioning is discussed.

1.2.2 Multiple-Group IRT and Linking

Test developers are often interested in whether their tests behave the same in different populations.

Ideally, the expected response equations expressed in (1.1) and (1.2) should be identical in all pop-

ulations so that response differences can be explained solely in terms of distributional differences

with respect to θ. However, before comparing the behavior of expected response functions across

different populations it is important to first place the groups on a similar metric; this process is

generally termed linking or equating. The purpose of linking is to take into account population

differences in the form of latent trait distributions so that item parameters and observed responses

are on a comparable metric. For instance, when an aptitude test is administered to two different age

groups in a high-school setting (e.g., seniors versus freshman), we would naturally expect the older

group to perform better overall on the test than the younger group. Therefore, composite measures

will naturally reflect that the older individuals perform better on the test compared to the younger

population. However, overt differences in performance do not necessarily imply that the test items

are biased. In this example, group differences in observed sum scores, for instance, might only re-

flect that the older group has higher ability on average than in the younger group. Linking methods

take into account the latent distribution effects by re-scaling the item parameters in each respective
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group, thereby accounting for the effect of latent trait distributional differences (Kolen & Brennan,

2004).

Suppose now that there are G = 2 groups under investigation. The process of linking parame-

ters between two populations often starts by estimating separate sets of IRT models for each popu-

lation. After applying a linking method which specifies how differences in latent trait values affect

the observed responses, item parameters from one group are then scaled according to the metric

of the other group. Numerous linking methods have been proposed (e.g., see Kolen & Brennan,

2004), but these generally fall into two distinct classes: complete-item methods and anchor-based

methods. Complete-item linking methods attempt to rescale all of the test items using all available

item information simultaneously, while anchor-based methods attempt to rescale the items by us-

ing only a subset of items which are assumed to have no bias. Linking tests using complete-item

methods is generally not recommended for investigating response bias primarily because the bias

in the item response functions will generally contaminate the linking process (Millsap, 2011).

A model fitting approach based on multiple-group estimation techniques is one possible ap-

proach to linking the G groups. When multiple groups are included in the model, the following

likelihood equation is maximized instead of (1.5):

L(Y|Ψ) = L(Y|Ψ, g = 1)L(Y|Ψ, g = 2) · · · L(Y|Ψ, g = G). (1.6)

In this equation a selection of parameters can be constrained to be equal across groups while other

parameters can freely vary. Thissen, Steinberg, and Wainer (1993) demonstrated that the respective

group parameters can be equated by setting a small selection of item parameters to be equal across
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groups during estimation so that one groups’ hyper-parameters can be freely estimated. The hyper-

parameters which are freely estimated typically include the mean and variance of the latent trait

distributions. By selecting a set of anchor items and freely estimating these hyper-parameters all

other item parameters will be naturally expressed in the same scale within the respective groups. In

this sense, likelihood-based parameter linking is built into the multiple-group maximum likelihood

estimation framework of IRT models. Consequently, multiple-group estimation methodology can

be used to investigate response bias directly by comparing nested models via likelihood-based

statistics such as the likelihood-ratio test, information criteria statistics (e.g., AIC), and so on.

Another benefit of the likelihood-based linking approach is that parameter sampling variability

can be approximated by forming a second-order Taylor series estimate of the log-likelihood func-

tion. After computing an estimate for the parameter covariance matrix Σ̂(Ψ̂|Y), standard errors

and associated large sample Wald (1943) tests can be obtained to evaluate the reliability (i.e., sam-

pling variability) of the estimated parameters. Under mild regularity conditions and large sample

sizes, Σ̂(Ψ̂|Y) will provide a sufficient approximation to the shape of the log-likelihood function

at the ML estimates, thereby providing a more manageable form of the likelihood function’s be-

havior (Fisher, 1925). As is demonstrated below, as well as in subsequent chapters, the Σ̂(Ψ̂|Y)

matrix has important applications when studying differential item functioning.
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1.3 Differential Item Functioning

IRT has an intuitive and meaningful conceptualization regarding how unbiased items should be-

have. For simplicity, I will focus only on models for two groups of interest in the following

descriptions; however, comparing more than two groups is possible. Groups are often selected

based on prior demographic information, such as gender or education level, but groups may also

be formed artificially by combining other sources of information (such as categorizing individu-

als above or below some threshold from an auxiliary test or survey). When comparing response

functions between groups, one group is generally denoted as the reference group while the other

groups are considered focal groups. The reference group hyper-parameters are typically assumed

to form a standard Gaussian distribution, while the Gaussian distribution hyper-parameters in the

focal group are freely estimated to allow for proper item parameter linking.

Using the subscripts R and F to indicate which response function is from the reference or focal

groups, respectively, items are considered unbiased when

∀θ : S (c|θ,ψR) = S (c|θ,ψF). (1.7)

Expressing Equation 1.7 in words, an item is considered unbiased when all individuals in different

groups, with equivalent latent trait values, receive equivalent expected scores. When (1.7) is not

true then the item will favor one of the groups at one or more levels of θ; hence, the item contains

bias.

Numerous statistical techniques have been proposed to assess the veracity of (1.7) through the
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use of null hypothesis significance tests (NHST). These techniques have generally appeared in the

literature under the umbrella term differential item functioning (DIF). The study of DIF has a long

history in the psychometrics literature, and numerous statistical methods have been proposed to

test different types of DIF. Primarily, DIF detection methods have been broken into two distinct

classes which are based on whether the response curves have potential uniform or non-uniform

effects (Millsap, 2011). Uniform differences occur when item response curves only differ by a con-

stant arising from differences in intercept terms, thereby shifting the response probability function

systematically in one direction1. Non-uniform DIF, on the other hand, occurs when the response

functions are allowed to differ by more than an intercept term, allowing the probability functions

to (potentially) cross at one or more locations. Consequently, with respect to non-uniform DIF, the

overall difference between the response curves may vary dramatically depending on the level of θ;

therefore, some latent trait levels will be affected more than others. These DIF effects can be seen

in Figure 1.2, which depicts two types of parametric IRT models demonstrating uniform (DIF Item

1 and 2) and non-uniform (DIF Item 3 and 4) DIF effects.

1For readers already familiar with Rasch or 1PL models, note that near the tails of the expected probability func-
tions the difference between the respective groups approaches 0 due to the non-linearity in the functions (the difference
in the logit of the response functions will be constant, however). Therefore, even for these simple IRT models the re-
sponse bias is technically non-uniform and varies along θ.
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Figure 1.2: Probability functions for uniform (left two images) and non-uniform (right two images)

DIF, where the latent trait values are organized along the x-axis. In these graphics the solid lines

following a sinusoidal pattern refer to the response function of the reference group, while the

dashed line represents the response function of the focal group.
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1.4 Differential Bundle and Test Functioning

Much like DIF, differential bundle functioning (DBF) and differential test functioning (DTF) can

be understood as a type of response bias between the expected scoring functions (cf. Equation 1.7).

More formally, DBF or DTF are said to occur when the following equation does not hold,

∀θ : TB(C|θ,ΨR) = TB(C|θ,ΨF). (1.8)

In the equation above, C is a composite score and TB is a scoring function containing B item

response functions (where 1 < B ≤ J) indexed from the I( j) indicator function in (1.2). When

DBF or DTF is present then TB(C|θ,ΨR) , TB(C|θ,ΨF) at one or more locations onθ. Note that

DTF and DIF are in fact special cases of DBF: DTF is realized when the composite functions

in (1.8) contain all J items, and DIF is realized when only a single item is indexed to form the

required single item bundle.

Unfortunately, constructing statistical tests for DTF and DBF is not as straightforward as it is

for DIF. When inferring population-level DIF from sample data, any differences in the expected

item scoring functions can be understood primarily as population differences in the ψ parameter

sets across groups for each respective item in isolation because population parameter differences

will necessarily result in unequal expected item response curves. Methods for detecting DTF and

DBF, on the other hand, are more complicated because they necessarily require the evaluation

of nonlinear aggregate functions implied by the estimated Ψ vectors. The composite functions

consist of a mixture of nonlinear response functions which are implied rather than estimated. As
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such, differences in population parameters with respect to particular items do not easily translate

to population differences in the composite response functions. In other words, the presence of

DIF is necessary for DBF and DTF to occur but DIF is not sufficient to establish their existence,

particularly at any given θ location. Depending on the direction and magnitude of DIF within each

item, DTF or DBF may manifest in different ways, such as being present across the entire range of

θ (analogous to uniform DIF), present at only specific levels of θ (analogous to non-uniform DIF),

or, in the case of no DTF and DBF, not present at all across any level of θ (complete cancellation).

The last scenario is equivalent to a situation in which there is no DIF in any items, thus indicating

that the test is truly unbiased across groups regardless of the θ level. Tests with no DTF are the

gold standard which practitioners developing psychometric instruments should strive for.

1.4.1 Compensatory and Non-Compensatory DTF

Another important topic to consider when measuring DTF and DBF effects is how differences

across response functions should be aggregated given the θ parameters. Integrating (or marginal-

izing) over the latent trait distributions is often done to help automate the detection of differential

item, bundle, and test effects rather than focusing on particular θ locations. In the case where the

response functions between the groups intersect at one or more locations of θ, practitioners must

decide whether the total differential effects should be allowed to compensate across the response

functions or whether a definition based on the total magnitude of the difference should be adopted.

16



These ideas can be formally expressed as∫
[TB(C|θ,ΨR) − TB(C|θ,ΨF)] g(θ)dθ (1.9)

and (∫
[TB(C|θ,ΨR) − TB(C|θ,ΨF)]2 g(θ)dθ

)1/2

(1.10)

for the respective bundle scoring functions. Equation 1.9 represents an overall compensatory effect

across the latent trait distributions, where differences across the latent trait values may cancel out

if the functions cross at one or more locations. For example, positive differences at a higher θ

level may combine with negative differences in a lower θ level to create a small bias effect overall.

Equation 1.10, on the other hand, represents the average discrepancy between response functions

in absolute terms and therefore is non-compensatory in nature. The g(θ) term is a weight function

used to obtain the weighted average across the difference in the response functions given θ. For

simplicity, all values of g(θ) can be set to a constant value with the property that
∫

g(θ) = 1,

although other weighting functions can be used if different θ regions are deemed to be of greater

or lesser importance (additional information on this topic is presented in Chapter 4). Finally, an

alternative definition for non-compensatory effects may be expressed as∫
|TB(C|θ,ΨR) − TB(C|θ,ΨF)|g(θ)dθ, (1.11)

which represents the absolute difference between the scoring functions instead of the deviation

form presented in Equation 1.10. Within the literature, non-compensatory item bias has been the

primary target for differential functioning statistics because practitioners are often interested in
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whether any differences exist between response functions rather than if response functions have

cancellation effects (Millsap, 2011).

Figure 1.3 presents three possible response curve combinations which can arise when investi-

gating DBF and DTF (including DIF, as a special case of DBF). Each of these images contain the

expected total score functions for the focal and reference group to help determine where the bias

occurs given θ. For example, if the dotted line were treated as the reference group in the middle

graphic of Figure 1.3 then at θ = −2 we would expect the reference group to obtain a total score

around 2.5, while the focal group only obtains a total score of 1.5. Therefore, at θ = −2 the refer-

ence group has a favorable bias at this θ location because individuals with equal latent trait values

are more like to obtain a higher total score simply because they belong to the reference group.

Alternatively, it is easy to use these figures to compare the θ locations when both groups expected

total scores are equal to 2.5 which, for example, occurs at approximately −2 for the reference group

and −1 for the focal group.

The images in Figure 1.3 can also be used to demonstrate compensatory and non-compensatory

DTF for the above equations. Within the left image there does not appear to be any significant com-

pensatory or non-compensatory DTF effects because the response curves essentially overlap across

every θ location; hence, whether Equation 1.9, 1.10, or 1.11 is used the values would all be rel-

atively close to 0. The middle image, on the other hand, demonstrates a non-compensatory DTF

effect but potentially little compensatory DTF effect depending on the range of integration. For

example, if the integration range in Equation 1.9 were between [−4, 4] then the positive and nega-
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Figure 1.3: Three possible compensatory and non-compensatory expected score plots within the

range θ = [−4, 4]. Left image suggests little to no compensatory and non-compensatory effects,

middle suggests no compensatory effect but a substantial non-compensatory effect, and the right

indicates both compensatory and non-compensatory effects.

tive differences between the response functions would result in an aggregate very close to the value

0. Finally, the rightmost image largely demonstrates compensatory and non-compensatory DTF;

however, if the integration range were set within, say, [−1, 4] then there may be little compensatory

DTF present.

1.4.2 DIF Amplification and Cancellation

As previously mentioned, a necessary but insufficient requirement for DTF or DBF to occur is the

presence of DIF in one or more items2. Furthermore, the manner in which the DIF effects propagate

2When only one item contains DIF, then non-compensatory DBF and DTF will necessarily occur; however, com-
pensatory DTF and DBF may not.
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across multiple items determines the magnitude of the DTF and DBF effects. For example, when

the DIF effects combine to cause greater separation between the expected response curves then

this combination leads to a phenomenon that has been termed “DIF amplification” (Shealy &

Stout, 1993). DIF amplification is akin to the description of DTF and DBF above, but amplification

generally implies that the expected response functions become more disparate within the aggregate

functions. In turn, the larger the DIF amplification the easier it becomes to detect bias in the

composite response functions (in other words, relevant hypothesis tests become more powerful).

DIF cancellation, on the other hand, occurs when multiple items with DIF demonstrate oppo-

site directional effects between the groups, resulting in more subtle and minute differences in the

aggregate response functions. In the extreme case when item response functions have perfectly bal-

anced DIF effects, no DTF or DBF may be present (i.e., complete cancellation). This phenomenon

is what led Chalmers, Counsell, and Flora (2016) to assert that differential item effects ‘might not

make a big DIF’ in the test as a whole. Namely, if the number of items in the test is large compared

to the number of items with DIF, or the DIF effects are small and do not form a large composite

difference at any given θ level (possibly due to DIF cancellation), then the DIF effects may be of

little consequence to the test developer because the overall response bias when scoring the test will

be negligible. Hence, DBF and DTF should be studied separately in tests which contain known

DIF effects. DBF will be more effective at detecting bias in bundles of items that contain DIF,

while DTF will quantify the overall impact of the items containing DIF at the test level at the cost

of decreased power and increased sampling variability.
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The reason why DIF cancellation is important ultimately relates to how θ̂ estimates are built

for each group. When forming secondary estimates for individuals (i.e., assigning them suitable

scores) the presence of DIF, DBF, and ultimately DTF will cause the secondary estimates to be

either be systematically too high or too low, given where the associated population θ value is.

When cancellation occurs, however, neither the focal nor the reference group will have systematic

bias in the θ̂ estimates because the values in the population contains no bias. Therefore, each group

may be scored separately given the associated fixed item parameters and the resulting θ̂ values may

be interpreted as free from differential effects.

More realistically, however, DTF and DBF are more likely to be substantial in clustered lo-

cations rather than across the complete θ range. Hence, the presence of DBF and DTF may not

necessarily invalidate a test if the effects occur within locations that are of lesser importance, or in

θ locations that individuals rarely populate (i.e., the extreme tails of the θ distribution). Therefore,

test analysts should consider the implications for differential functioning in their tests with respect

to θ rather than making a global — and often largely overly simplistic — binary decision as to

whether DTF, DBF, or even DIF are present. A more useful approach is to supplement statistical

tests with graphical representations and effect sizes to describe the conditional and marginal effects

of DIF, DBF, and DTF in a metric or form that is meaningful to the test developer. This topic is

discussed further in Chapter 4.
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1.5 Statement of the Problem

While there has been a wealth of methods for detecting and quantifying DIF using techniques

from CTT, IRT, and regression theory, there are considerably fewer methods for detecting DTF and

DBF. The most prominent framework for detecting compensatory and non-compensatory DIF and

compensatory DTF with IRT methods was proposed by Raju, van der Linden, and Fleer (1995), and

later extended to include non-compensatory DBF by Oshima, Raju, Flowers, and Slinde (1998).

An alternative framework based on methods from CTT was also presented for compensatory DIF,

DBF, and DTF by Shealy and Stout (1993). Shealy and Stout’s approach was later generalized

to include non-compensatory DIF for 2PL models by Li and Stout (1996). The two frameworks

approach the problem very differently, where the latter is derived from a CTT perspective using a

regression adjustment technique to account for latent group differences and the former was based

on a two-stage IRT approximation with which latent trait estimates are computed and compared

across groups.

1.5.1 IRT Perspective of Differential Functioning: DFIT

In their first article regarding IRT methods for differential response functioning, Raju et al. (1995)

proposed a statistical testing framework which they termed “differential functioning of items and

tests” (DFIT) which appeared, on the surface at least, to be a potentially effective paradigm for

detecting compensatory and non-compensatory DIF and DTF. Unfortunately, the authors’ ini-

22



tial findings were that their statistics detected DIF and DTF too often when no such effects were

present in the population (i.e., had liberal Type I error rates). With respect to the DIF statistics,

an ad-hoc cutoff value was proposed to improve Type I error rates under the conditions that they

studied. Follow-up work by Oshima et al. (1998) extended the DFIT framework to incorporate

DBF, which unfortunately did not present the theoretical or empirical sampling behavior of the

proposed non-compensatory DBF statistics. Instead, the authors only provided a demonstration of

how researchers could use DFIT to diagnose non-compensatory DBF. The DFIT framework has

since been amended to improve the ad-hoc cut-off values for the DIF statistics through computer

intensive subroutines (Oshima, Raju, & Nanda, 2006). Around the same time of the original pub-

lication the methodology was also generalized to multidimensional IRT models (Oshima, Raju, &

Flowers, 1997). More information regarding this framework will be presented in the Chapter 2.

Since the early work of Raju et al. (1995), a handful of articles purportedly extended the DFIT

framework for investigating DTF and DBF. However, no published work — including the original

methodological articles previously mentioned — has demonstrated the sampling behavior of the

proposed DTF or DBF statistics from the DFIT framework. Following the statistical justification

of the compensatory DTF statistics in Raju et al. (1995), later work by Oshima et al. (1997, 1998,

2006) rarely discussed the application of the DTF and DBF statistics. Several of the more recent

articles, which purportedly extend the DFIT framework for DTF (e.g., Oshima et al., 2006), often

focused exclusively on DIF with minimal discussion of DTF and DBF in the introduction and

discussion sections; otherwise, these articles only present example analyses using their variants of
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the DFIT framework. Hence, the majority of the authors who have advocated for the use of the

DTF statistics from the DFIT framework have provided little to no information about the sampling

properties of the respective DBF and DTF statistics. Hitherto, the sampling distribution, Type

I error rates, and power to detect true DTF and DBF from the DFIT framework remain largely

undocumented.

1.5.2 Non-Parametric Perspective of Differential Functioning: SIBTEST

The second framework intended for testing individual and composite differential response effects

was proposed by Shealy and Stout (1993), who termed their approach the simultaneous item bias

test (SIBTEST). Their proposed framework did not rely on methods or information from IRT

models but instead used a regression adjustment technique, derived from methods in CTT (e.g., use

of coefficient α; Guttman, 1945), to scale latent group differences after a suitable set of matched

items was selected. Matched items serve the same purpose as anchor items in the IRT modeling

approach in that the items are used to equate the groups, and are presumed not to contain DIF.

The SIBTEST framework was investigated by Shealy and Stout for detecting DIF. The authors

found that SIBTEST performed favorably in controlling Type I error rates under the conditions

chosen, and demonstrated reasonable detection behavior when true DIF was present. However,

much like the DFIT framework, very little research has focused on how SIBTEST behaves when

investigating DBF and DTF, especially with respect to important issues such as: determining the

optimal number of anchor items to select to ensure that the latent traits of the groups are properly

24



equated, whether the length of the test or bundle influences the detection rates, or the effects of

including sub-optimal anchor items affect the detection of DBF and DTF.

Because the SIBTEST framework does not rely on fitting IRT models, and instead arguably

adopts a non- or semi-parametric approach to DIF detection, the required computations are often

reasonably efficient and easy to obtain without specialized software. However, as I describe in

subsequent chapters, there are many less attractive issues which make the application of SIBTEST

less than ideal for DTF, DBF, and potentially even DIF detection. Additionally, because SIBTEST

is generally based on methods from CTT, the inherent benefits obtained from fitting IRT models

are, by and large, not capitalized upon. These and other issues will be elaborated upon in the

subsequent chapters after further background information on the technique is presented.

The SIBTEST and DFIT frameworks have existed for at least twenty years now, yet little is

known about the performance of either framework with respect to DBF and DTF. To help de-

termine how well these frameworks behave with respect to DBF and DTF, this dissertation will

employ Monte Carlo simulations under a variety of conditions commonly encountered in real-

world applications. Additionally, as will be more apparent after the more in-depth presentation

of these frameworks in Chapter 2, both frameworks have their own apparent strengths and weak-

nesses which make their general application to empirical data difficult. For instance, the DFIT

framework does not inherently account for sampling variability in the respective IRT models, and

therefore lacks proper asymptotic properties for the proposed hypothesis tests. SIBTEST, on the

other hand, has not been extended to include non-compensatory testing for polytomous items or
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for non-compensatory DBF and DTF more generally. Ideally, these frameworks should be further

developed to address these and other issues; otherwise, a new framework should be developed

which is not hampered by these limitations. The differential response functioning (DRF) frame-

work developed in the next chapter provides one such potential methodology.

1.6 Purpose

A more recent approach for detecting DTF using IRT methods was developed by Chalmers et

al. (2016). In their article, a parametric sampling framework which used information from the

parameter covariance matrix was presented for multiple-group IRT models that were fit using full-

information maximum-likelihood estimation. Under the conditions investigated in their Monte

Carlo simulation studies, the authors demonstrated consistent Type I error rates for their compen-

satory DTF statistic that were either at or slightly below the nominal α level. The authors presented

several power tables to demonstrate how effective their proposed statistics were at capturing DTF

effects, and provide multiple justifications as to why their sampling framework should behave bet-

ter than the DFIT framework. In the work to be presented, further evaluations and extensions of

the framework proposed by Chalmers et al. (2016) will be explored.

One focus of this dissertation will be comparing the methods proposed by Chalmers et al.

(2016), Raju et al. (1995), and Shealy and Stout (1993) by simulating data from models with

known IRT parameters and comparing results across distinct Monte Carlo simulation conditions.

Conditions based on test length, sample sizes (equal and unequal between groups), latent variable
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distributions (e.g., Gaussian distributions with different mean and variance-covariance combina-

tions), number of anchor items, and various types of DIF effects will be investigated to determine

the Type I error and power rates for all three frameworks. These simulation conditions will help

demonstrate how effective SIBTEST and DFIT are when testing DIF, DBF, and DTF, and will also

illustrate how the newly proposed framework in this dissertation behaves under the same condi-

tions. This dissertation will also explore additional, more advanced methods which extend and

improve upon the work of Chalmers et al. (2016), including the use of alternative test scoring

functions, non-parametric estimation of parameter variability, DIF and DBF detection methods,

hypothesis testing for non-compensatory effects, extensions for multidimensional test structures,

and applications for equivalence testing paradigms. A unified approach to detecting and under-

standing differential response functioning will be developed and presented, and the collection of

the measures proposed in this dissertation will ultimately be framed as a new statistical approach

for detecting response bias termed the differential response functioning (DRF) framework.

Based on the parametric sampling methodology presented in Chalmers et al. (2016), it is an-

ticipated that the statistics from the DRF framework will outperform the DFIT and SIBTEST

frameworks both in terms of Type I error rates and power rates for DIF, DBF, and DTF. Overall,

I argue that this newly proposed framework will provide a more useful set of statistical tools for

studying DTF, DBF, and DIF in different testing applications. For example, the DRF framework

methods can be used to build graphical realizations of differential functioning to visually depict

response bias across θ while simultaneously accounting for sampling variability; this aspect of
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the DRF framework is invaluable to test analysts and is a property not easily attainable with the

DFIT or SIBTEST frameworks. Finally, the goal of this dissertation is to acquire a more inti-

mate understanding of these newly proposed measures, ultimately helping test developers properly

understand, interpret, and capitalize on these improved bias detection methods in their own psy-

chometric research.
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2 Differential Functioning Frameworks

This chapter provides the theory underlying the DFIT and SIBTEST frameworks and introduces a

new set of methods for testing DIF, DBF, and DTF, called the DRF framework. For simplicity, the

following exposition will focus only on the unidimensional 2PL model for dichotomous response

data. For extensions regarding polytomous item response models for the DFIT, SIBTEST (ex-

cluding the non-compensatory SIBTEST), and DRF frameworks, see Flowers, Oshima, and Raju

(1999), Chang, Mazzeo, and Roussos (1996), and Chalmers et al. (2016), respectively.

2.1 SIBTEST Framework

The SIBTEST framework was introduced by Shealy and Stout (1993) as a methodology to test for

compensatory DIF, DBF, and DTF effects in unidimensional tests. SIBTEST requires the items in

the dataset to be partitioned into a set of matched items, which are analogous to anchor items that

are used to equate the groups, and focal items which are suspected to contain compensatory DIF

effects. Note that not all non-focal items are required to be used in the matched set of items and

instead can be completely removed from the analysis. However, excluding items from the matched
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set has the effect of reducing the overall length of the test, and therefore will result in a loss of

information and possibly less effective equating.

The general strategy for the SIBTEST family of statistics is to first select a set of matched

items and use information from this set to adjust the differences on a separate composite measure

(obtained from the sum score across items). Let Y represent the unweighted composite score

computed using only the focal items, and let X represent the unweighted composite score using

items only from the matched set. The SIBTEST procedure begins by computing the proportion of

individuals p̂c who obtained the composite score X = c in the focal group. These proportions are

then used as weights to be combined with the average composite score difference in Y , which is

obtained at each unique value of the composite in X. In equation form,

β̂ =

CX∑
c=0

p̂c(ȲRc − ȲFc), (2.1)

where CX is the maximum composite score in X. The sampling error of (2.1) is approximated by

σ̂(β̂) =

 C∑
c=0

p̂2
c

(
σ̂2(YR|c)

NRc
+
σ̂2(YF |c)

NFc

)1/2

. (2.2)

The σ̂2(YR|c) and σ̂2(YF |c) terms in (2.2) are the sample variances of the collection of YRc and

YFc, respectively, while the NRc and NFc terms represent the frequency of the selected composite

X when X = c within the reference and focal groups, respectively. Following the computation of

these two values, the test statistic B̂ is formed from the ratio

B̂ =
β̂

σ̂(β̂)
. (2.3)
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Under the null hypothesis H0 : B = 0, Equation (2.3) follows a standard normal distribution if and

only if the focal and reference groups have similar population distributions of the latent trait scores

(i.e., equal hyper-parameters).

Shealy and Stout (1993) recognized that (2.3) is not a useful statistical test if the latent trait

distributions for each group are unequal. Therefore, the authors’ major contribution was to form

a true-score regression technique to lessen the effect of the latent trait distributional differences.

Shealy and Stout suggested using a Taylor series adjustment for the Ȳ composite terms by regress-

ing the values towards the CTT true-score information determined from the matched item-set3.

After the KR-20 reliability formula (Kuder & Richardson, 1937) is used to obtain the regression

weights in the focal and reference group these weights are then used to compute adjusted compos-

ite scores Ȳ∗Rc and Ȳ∗Fc. The adjusted composite scores are then substituted into (2.1) to form the

improved weighted difference estimate

β̂uni =

C∑
c=0

p̂c(Ȳ∗Rc − Ȳ∗Fc), (2.4)

which is in turn used to evaluate B̂ in (2.3) instead of (2.1); note, however, that Equation 2.2

remains unchanged. For more specific details regarding the implementation of SIBTEST readers

should refer to Shealy and Stout (1993).

The SIBTEST procedure has several attractive properties. To start, the statistic is easy to im-

plement and efficient to compute. Because the procedure is based on methods from CTT it does

3In situations where a Taylor series approximation is known to be poor, such as in 3PL models or when the item
slope parameters are large, see the piecewise regression method proposed by Jiang and Stout (1998).
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not rely on estimating IRT models; therefore, it does not have issues such as non-convergence in

smaller sample sizes or longer computations in larger samples and tests. Next, the statistic can

be organized to test compensatory DIF, DBF, and DTF by selecting different sets of focal items

(i.e., compensatory DIF is tested when only one item is included in the focal set, DBF is tested

when some but not all of the non-matched items are included in the focal set, and DTF is tested

when all non-matched items are included in the focal set). Third, although Shealy and Stout (1993)

presented SIBTEST for dichotomous items the procedure naturally extends to ordered polytomous

items by replacing the KR-20 reliability formula with coefficient α (Chang et al., 1996; Guttman,

1945). Finally, given the recommendations proposed by the authors when forming the pc values,

the inferences become invariant to the selection of the focal and reference group; in other words,

switching the reference and focal groups will only flip the sign of B̂. Invariance with respect to the

selection of the focal group is important because the test statistics will not be affected by different

focal and reference group sizes or the decision regarding which group should be considered the

reference group.

Further generalizations of SIBTEST have been proposed but have seen little use due to their

limited scope and ad-hoc nature. For instance, Stout, Li, Nandakumar, and Bolt (1997) general-

ized SIBTEST to accommodate tests which have a specific type of two-dimensional latent struc-

ture. This extension requires two distinct sets of unidimensional items to be used as the matching

criteria for identifying each dimension separately so that the remaining items with cross-loadings

can be properly equated. After organizing these two matched sets, a two-dimensional Taylor se-
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ries approximation is used to correct for latent differences between the conditioned composite

terms. Following these initial adjustments, the bivariate SIBTEST procedure followed the same

steps described above for unidimensional models. However, generalizations to other structures,

such as three or more dimensions, which are commonly found in tests with second-order or bi-

factor structures (see Yung, Thissen, & McLeod, 1999), do not appear feasible under the SIBTEST

framework. Additionally, the requirement that the matched items are strictly unidimensional may

be viewed as a strong limitation in empirical studies. Further limitations regarding the SIBTEST

framework in general will be discussed in the subsequent section.

An alternative approach for quantifying DIF with the SIBTEST method was proposed by Li

and Stout (1996), who presented a modified version of SIBTEST which could be used for detecting

simple non-compensatory DIF effects for dichotomous data. The authors argued that when DIF is

present in response models such as the 2PL model the expected probability functions may cross,

thereby decreasing the magnitude of SIBTEST (compare the left and right graphics in Figure 1.2).

Hence, the compensatory nature of the original SIBTEST procedure would result in a reduction

in power to detect these effects because the differences above and below the crossing location will

cancel out. Li and Stout therefore recommended using a crossed-SIBTEST (CSIBTEST) variant

which combines the information above and below the response curve crossing location with

β̂cross =

kc−1∑
c=0

p̂c(Ȳ∗Rc − Ȳ∗Fc) +

CX∑
c=kc

p̂c(Ȳ∗Fc − Ȳ∗Rc). (2.5)

In this equation, kc represents the score on X where the response curves are believed to cross. In

situations with no crossing in the item, β̂cross reduces to the original SIBTEST statistic. Finally, the
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B̂cross ratio is obtained by dividing β̂cross by the unadjusted σ̂(β̂) term from the original SIBTEST

procedure.

2.1.1 Limitations

Unfortunately, there is a number of limitations with the SIBTEST framework when testing for dif-

ferential response functioning. Beginning with CSIBTEST, there are two serious limitations in the

computations which Li and Stout (1996) made note of and attempted to address. The first issue

is that (2.5) requires the specification of a crossing location prior to beginning the computations.

By first assuming the crossing location is linear with respect to the sub-scores X = c, the authors

suggested using a weighted least squares regression approach to approximate an intercept location

and rounding the kc = −β0/β1 intercept estimate to the nearest integer value. Li and Stout stated

that, in their experience, this approach worked well as long as the selected frequency weights con-

tained more than 1% of the total sample size. The second limitation to CSIBTEST is that the Bcross

test does not have a known sampling distribution; therefore, the asymptotic properties relevant to

SIBTEST are not applicable. To circumvent this issue, the authors proposed a signed permutation

approach for stochastically building a suitable sampling distribution to obtain empirical p-value

estimates. Combining both these techniques appeared to be an effective strategy for testing non-

compensatory DIF, and Li and Stout report reasonable Type I error rates which were comparable

to the original SIBTEST procedure, as well as improved power estimates under the DIF conditions

studied. However, generalizing this procedure to DBF and DTF, as well as to polytomous items
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and multidimensional tests, appears problematic due to the potential for multiple crossing loca-

tions. This concern may be one reason that additional non-compensatory SIBTEST developments

have not appeared in the literature.

In addition to the aforementioned limitations of CSIBTEST, several other practical problems

often arise in empirical applications which the SIBTEST family of statistics is not well equipped to

manage. One such issue is the selection of which items to include in the matched set. Ideally, the

matched set should have the same properties as the previously described anchor items when equat-

ing groups in IRT applications; therefore, these matched items ought to contain no DIF. Including

items with DIF effects as anchor items naturally contaminates the linking process, which is why

this approach is generally not recommended (Millsap, 2011). Unfortunately, the general consen-

sus when using SIBTEST for DIF testing is to include all non-focal items as anchors, regardless of

whether the items contain DIF4. Fortunately, the contamination issue can be remedied by includ-

ing only a smaller number of matched items, where non-focal items which potentially contain DIF

are forced to have no influence on the current focal items under investigation; however, doing so

comes at the cost of discarding auxiliary information, thereby reducing the total length of the test.

The performance of SIBTEST when only a few matched items are selected as suitable anchors has

not been thoroughly investigated in the literature. This issue is extremely important for DBF and

DTF in particular because the size of the focal bundle relative to the number of available anchor

4Shealy and Stout (1993) report that the Type I error rates when detecting DIF were largely unaffected in the pres-
ence of contaminated anchors. This result seems implausible though, and therefore is investigated in the subsequent
Monte Carlo simulations.

35



items may negatively affect the behavior of the test statistics. Therefore, one important factor in-

vestigated in the Monte Carlo simulations presented in the next chapter is the number of anchor or

matched items used when testing for DIF, DBF, and DTF.

Another potentially problematic issue with the SIBTEST framework is that it cannot inherently

handle missing response data. If item responses are missing in either the focal or matched set then

the entire response pattern associated with the missing items must be removed before applying

the procedure5. This problem is viewed as a major limitation for test designs where missing re-

sponses are due to design effects, often caused by administering multiple testing forms; planned

missingness is one area where IRT-based methods are superior because of their full-information

ML nature (Bock, Gibbons, & Muraki, 1988).

Finally, more specific limitations of the SIBTEST framework are that: 1) the statistics are typ-

ically limited to ordinal data for the match set; hence, unordered models (e.g., Thissen, Cai, &

Bock, 2010), ideal point models (e.g., Maydeu-Olivares, Hernández, & McDonald, 2006), non-

monotonic response functions (e.g., Bock & Aitkin, 1981), and so on cannot be included in the

matched item set; 2) the inclusion of a lower-bound parameter to account for guessing is problem-

atic because negative reliability estimates can arise (cf. the ad-hoc adjustment in step 5 of Shealy &

Stout, 1993, p. 192); 3) the effect size measure (Equation 2.4) is somewhat difficult to interpret due

to the regression adjustment effects, and established DIF effect size cutoffs only exist because of

their approximate relationship to the popular Mantel-Haenszel log-odds ratio procedure (Holland

5Alternatively, multiple imputation methodology could be implemented to amend the problem; however, this pro-
cedure may introduce other challenges and does not appear to be a feasible strategy for the CSIBTEST procedure.
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& Thayer, 1988, more on this topic is in Chapter 4); 4) the procedures provide little to no graphical

means of plotting the data to depict the magnitude or location of the differential functioning (cf.

the methods in TestGraph by Ramsay, 2000; however, these plots do not include the regression

correction for latent distribution differences, and are therefore not directly related to SIBTEST);

and 5) the statistics are exclusively marginal estimates of the overall bias present in an item or

bundle in that they offer little insight to conditional differential effects given θ (i.e., they provide

little insight as to whether the response bias is larger for examinees with lower or higher latent

trait values). SIBTEST has been modified to asses the fifth limitation for DIF; however, similar to

CSIBTEST, this modification requires a substantial change to the original SIBTEST methodology

and does not appear to behave optimally (see Douglas, Stout, & DiBello, 1996).

2.2 DFIT Framework

Instead of focusing on methods derived from CTT, Raju et al. (1995) and Oshima et al. (1997)

approached the detection of response bias using a two-step approximation technique. Their differ-

ential functioning of items and test procedure, or DFIT, begins by estimating two separate single-

group IRT models which are subsequently equated using some parameter linking method. Follow-

ing this initial setup, predicted values of the latent traits (θ̂) within the focal group are computed

by treating the obtained item parameter estimates as stand-in values for the true population pa-

rameters. Predicted values for θ̂ (e.g., expected a posteriori, maximum a posteriori, maximum

likelihood, etc) are then computed using the information from the focal (θ̂iF) and reference groups
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(θ̂iR) separately: once using the linked parameter estimates in the focal group with the response

data from the focal group, and again using the parameters from the reference group given the re-

sponse data from the focal group. This process ensures that response patterns are exactly equal

across groups when computing the θ̂ values; therefore, only information that would indicate DIF

or DTF can be attributed to differences in the item parameter estimates (i.e., not due to different

response patterns).

After θ̂iR and θ̂iF values are formed for NF response patterns from the focal group, Raju et

al. (1995) suggested using these predictions to form compensatory and non-compensatory DIF, as

well as a compensatory DTF, statistics. Their proposed non-compensatory DIF statistic for the jth

item was

̂NCDIF =
1

NF

NF∑
i=1

[P(y = k|θ = θ̂iF ,ψ = Ψ̂ jF) − P(y = k|θ = θ̂iR,ψ = Ψ̂ jR)]2, (2.6)

while their compensatory DIF and DTF statistics were

ĈDIF =

 1
NF

NF∑
i=1

P(y = k|θ = θ̂iF ,ψ = Ψ̂ jF) − P(y = k|θ = θ̂iR,ψ = Ψ̂ jR)

2

, (2.7)

and

D̂T F =

 1
NF

NF∑
i=1

[T (y = C|θ = θ̂iF ,ψ = Ψ̂ jF) − T (y = C|θ = θ̂iR,ψ = Ψ̂ jR)]

2

, (2.8)

respectively. For hypothesis test-based inferences regarding DIF and DTF the authors proposed

different variations of χ2 and t distributions for their proposed statistics; however, they recom-

mended using the χ2 distribution over the t distribution because the statistical conclusions are
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essentially equivalent in larger samples. The χ2 tests are built as follows. Let D̂i = T (y = C|θ =

θ̂iF ,ψ = Ψ̂ jF) − T (y = C|θ = θ̂iR,ψ = Ψ̂ jR) and d̂i = P(y = k|θ = θ̂iF ,ψ = Ψ̂ jF) − P(y = k|θ =

θ̂iR,ψ = Ψ̂ jR) represent the difference between the conditional test and item response functions,

respectively. Using these difference estimates Raju et al. proposed that a test for H0 : NCDIF = 0

is

χ2
NCDIF =

∑NF
i=1 d̂2

i

σ̂2(d̂)
, (2.9)

with degrees of freedom equal to NF . Analogously, the authors suggested that a test for H0 : DT F =

0 is

χ2
DT F =

∑NF
i=1 D̂2

i

σ̂2(D̂)
, (2.10)

again with degrees of freedom equal to NF . The authors did not propose a statistical test for

H0 : CDIF = 0, and instead use the statistic only as a post-hoc diagnostic tool when significant

DTF is detected6.

2.2.1 Limitations

After simulating data with no population DIF effects, Raju et al. (1995) discovered that their test

statistics reported positive signs for DIF and DTF far too often. For the ̂NCDIF statistic, Raju et

al. suggested using the cut-off value of ̂NCDIF = .006 as an approximate significance flag when

the nominal detection rate was set to α = .01. This criterion appeared to behave relatively well

6Using the same line of reasoning that the authors followed, it appears that CDIF should have the same sampling
distribution as NCDIF.
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under the conditions they studied (though the cuttoff did not generalize well outside the conditions

studied; see Oshima et al., 2006). Unfortunately, however, the authors offered no such cutoff for

the ĈDIF or D̂T F statistics. Therefore, it is unclear how practitioners should use the proposed

compensatory statistics in their own work because the behavior of these statistics is unclear.

Generalizations of the DFIT framework have suffered similar limitations in terms of expected

sampling behavior. For instance, although the DFIT framework was originally proposed only for

non-compensatory DIF and compensatory DTF detection a simple generalization of ĈDIF was

presented by Oshima et al. (1998) for compensatory and non-compensatory DBF, as well as for

non-compensatory DTF. The procedure they presented was to replace the test scoring function

in (2.8) with a response function which contained fewer than J items. Using a smaller number

of items led to the bundled ĈDBF statistic, and for non-compensatory DBF and DTF, the authors

simply summed across more than one item in (2.6) to form

̂NCDT F =
1

NF

NF∑
i=1

 J∑
j=1

[P(y = k|θ = θ̂iF ,ψ = Ψ̂ jF) − P(y = k|θ = θ̂iR,ψ = Ψ̂ jR)]2

 , (2.11)

where the J number of items included was defined based on whether DTF or DBF was being

investigated. Unfortunately, the definitions presented were only conceptual. After presenting these

extensions the authors offered no information regarding the statistical sampling characteristics or

interpretation of effect sizes, and only presented an empirical case study demonstrating the use of

these heuristic methods. From the definitions, however, the D̂BF statistic would have the same

sampling properties as the D̂T F statistic; therefore, the proposed theoretical sampling distribution

for D̂T F was adapted for D̂BF in the Monte Carlo simulation study contained in the following
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chapter, as well as for the ĈDIF statistic.

In later published work, Oshima et al. (2006) attempted to address the problematic Type I

error behavior of the ̂NCDIF statistic by adopting a simulation-based cutoff procedure. Using a

parametric bootstrap-type approach, the authors demonstrated that their procedure worked well to

determine better cutoff values for the conditions under study (at the cost of being computationally

intensive). However, the authors did not propose a similar solution for the ĈDIF or D̂T F statistics.

Another potential limitation and complication to the approach described by Raju et al. occurs

when items contain DIF effects but a complete-item linking method is adopted (rather than linking

by a set of anchor items). To my knowledge, all articles which have attempted to extend the

DFIT framework have used the complete-item linking method, thereby creating contamination in

the linking process (Millsap, 2011). This renders the results of these published works difficult

to interpret, and largely inconclusive with regards to the expected behavior of these extensions.

Contaminated linking can, however, be avoided if models are estimated using a multiple group

estimation method whereby only a pre-determined set of anchor items are modeled. This potential

solution to the linking issue will be explored in the subsequent Monte Carlo simulation studies in

Chapter 3.

In addition to the aforementioned technical limitations of the DFIT framework, Chalmers et al.

(2016) have argued that there are numerous fundamental limitations with the DFIT framework for

detecting DIF and DTF. The authors argue that the primary concern with the DFIT framework is

that the sampling variability of the item parameter estimates is not taken into account, and instead
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point estimates for the θ values are used as a proxy for obtaining the person and item variability.

This assumption leads to the well known problem of shrunken estimates that are influenced by

numerous factors such as sample size, test length, type of prediction method (e.g., expected a pos-

teriori, maximum a posteriori, maximum-likelihood, etc, see see Chalmers, 2016a, for examples),

linking methods, unequal group sizes, selection of focal group, and so on (Mislevy, 1991), while

also ignoring the inherent reliability of the item parameter estimates themselves (see Chalmers &

Ng, in press).

Additionally, due to the use of response data from only the focal group (i.e., ignoring the re-

sponse patterns from the reference group entirely) a loss of information from the sample data nec-

essarily occurs. Therefore, despite the inflated Type I error rates that have been previously reported

— and even if the Type I error behavior were somehow amended — the detection rates for these

statistics will still be less powerful than other frameworks which use the sampling information

from all groups.

Finally, similar to the SIBTEST framework, the DFIT framework offers no generalizable in-

terpretation of effect sizes for differential effects, does not handle missing data efficiently (i.e., the

point estimates do not consider the decrease in measurement precision for the θ̂ predictions or

in the item parameter estimates), and provides no additional means of graphically depicting the

detected differential effects. Many of the practical implications of these limitations are empirically

examined in Chapter 3, however it is clear that there are numerous fundamental issues present in

the DFIT framework; hence, readers should be skeptical about the framework’s overall usefulness
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in detecting and quantifying response bias.

2.3 Differential Response Functioning Framework

Prior to 2016, the SIBTEST and DFIT frameworks were the only statistical methods designed

to detect DTF effects; however, these methods were also capable of estimating DIF and DBF.

As outlined above, each of the previous frameworks has unique strengths and limitations. While

the SIBTEST framework takes into account sampling variability, as demonstrated by its ability to

control Type I error rates across a number of simulated conditions, it is not based on a parametric

model fitting approach; hence, it cannot deal with real-world issues such as the presence of missing

data, items with unordered categories, non-monotonic response functions, and so on. On the other

hand, while the DFIT framework focuses exclusively on IRT methods it does not account for

sampling variability due to its ad-hoc two-stage approximation approach. This approach leaves

the DFIT framework with its own unique statistical limitations which currently appear difficult to

overcome.

Instead of attempting to amend the two aforementioned frameworks, Chalmers et al. (2016)

proposed an alternative statistical approach for detecting DTF that is rooted in IRT methods and

maximum-likelihood estimation theory (e.g., see Fisher, 1925). Chalmers et al. presented a para-

metric sampling method to the capture variability in IRT composite functions for measuring DTF

by using the estimated sampling information present in the IRT parameters. The method draws

from the graphical concept of Thissen and Wainer (1990), who demonstrated how to generate
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confidence envelopes in single-group IRT models for individual item response functions.

Thissen and Wainer (1990) proposed the following scheme for generating confidence envelopes

for non-linear response functions, which also may be used to generate parametric confidence in-

tervals given the same sampled parameter set at some desired θ level. The steps required for the

parameter sampling method are:

• Estimate the IRT model using maximum-likelihood. Following convergence, compute an

estimate of the parameter covariance matrix Σ̂(Ψ̂|Y).

• Using Σ̂(Ψ̂|Y), create a subset of the matrix containing only the estimated sampling variabil-

ity of a single isolated item; call this sub-matrix Σ̂(ψ̂ j|Y). For example, if the item selected

follows a 2PL model, then Σ̂(ψ̂ j|Y) is a 2 × 2 matrix consisting of the variance of the slope

and intercept parameters with the covariance between these parameters in the off-diagonal.

• Generate a set of plausible population realizations (i.e., samples) for the desired ψ̂ j parame-

ters by randomly sampling from the distribution ψ∗j ∼ N(ψ̂ j, Σ̂(ψ̂ j|Y)). Here, ψ∗j is a single

plausible set of population parameters ψ j drawn stochastically around the ML estimates ψ̂ j.

Repeat this process until M plausible sets have been obtained.

• Using the M plausible sets of values, generate non-linear confidence envelopes or intervals

by substituting the ψ∗j values into the desired response functions using a predetermined grid

of θ values. After these functions have been evaluated, the complete set of sampled param-

eters (Ψ∗) that fall within the joint 1 − α confidence envelope can be selected and used for
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understanding the joint parameter distribution for the selected item. Alternatively, the set of

plausible samples can be rank ordered to locate suitable α/2 and 1−α/2 confidence interval

limits given each element in the θ grid (cf. Efron & Tibshirani, 1998).

The above scheme follows from the fact that, for unbounded and continuous parameter spaces, the

sampling distribution of the total set of ML parameter estimates is multivariate normal in large

samples (Fisher, 1925). Therefore, subsets of the complete Σ̂(Ψ̂|Y) matrix will themselves be

multivariate normal (Johnson & Wichern, 2007), and the implied variability of each item can be

generated within the associated parameter space and subsequently mapped onto probability space.

Finally, the parametric sampling scheme is generally not too computationally demanding and, if

desired, each sampled set may be distributed across different computing cores because the draws

are completely independent.

The inspiration behind the parametric sampling method is simple and straightforward: to gen-

erate variability in the non-linear response functions, one need only sample values from a well

behaved parameter space and use these sampled values to construct a set of plausible values by

plugging the parameter sets into the respective non-linear response functions. What is meant by

well behaved parameter space is that Σ̂(Ψ̂|Y) represents a reasonable approximation of the sam-

pling variability, and therefore should only be used for unbounded parameters. Bounded param-

eters, such as the lower bound term in the 3PL model (see Lord & Novick, 1968), should be re-

parameterized so that Σ̂(Ψ̂|Y) will better approximate the quadratic curvature of the log-likelihood
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function7.

The parametric sampling approach described above can be useful for augmenting statistical

interpretations when a large amount of sampling variability is present in the estimates of single-

group models (Yang, Hansen, & Cai, 2012). However, there are other uses of the plausible pa-

rameter sets outside of plotting functions and generating sampling uncertainty in single-group IRT

models. When random draws are obtained from the complete parameter covariance matrix then

these respective values represent the sampling variability of the entire fitted model; this property

holds even in multiple-group IRT models.

As demonstrated in Chalmers et al. (2016), using the complete Σ̂(Ψ̂|Y) matrix to create sam-

pled parameter sets captures a large degree of the joint parameter variability in the estimated IRT

models. Subsequently, the full set of sampled values can be used for hypothesis testing with com-

posite functions. For instance, Chalmers et al. proposed two area-based statistics for detecting

DTF and referred to these as ‘signed’ and ‘unsigned’ differential test functioning measures (sDT F

and uDT F, respectively). These marginal DTF measures were defined as

sDT F =

∫
(T (C|θ,ΨR) − T (C|θ,ΨF)) g(θ)dθ (2.12)

and

uDT F =

∫
|T (C|θ,ΨR) − T (C|θ,ΨF)|g(θ)dθ, (2.13)

respectively, to capture compensatory and non-compensatory response behavior by integrating

7In the case of the 3PL model, the lower-bound parameter can be transformed using γ′ = log
(

γ
1−γ

)
, where γ′ is

estimated in place of γ. Compared to γ which is constrained to fall between 0 and 1, −∞ ≤ γ′ ≤ ∞.
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over a range of θ values, where
∫

g(θ)dθ = 1 and all values of g(θ) are constant (i.e., a uni-

form distribution). Note that these definitions are essentially identical to Equations 1.9 and 1.11,

respectively, if the item bundle contains all items in the test. The detection of DTF at individual θ

locations was also developed by computing a measure called sDT Fθ (c.f., Equation 1.8), which is

evaluated at isolated θ values instead of integrating across a range of θ. Computing sDT Fθ across

a set of independent θ values provides conditional estimates of DTF, as well as their associated

variability when combined with the parametric sampling method, which is useful for visually ap-

proximating where DTF is most prominent in the test. Chalmers et al. (2016) further argued that

because sDT F and uDT F represent more realistic and meaningful population definitions of DTF

than are available in DFIT, and because the measures contain no reference to the observed data,

their measures should be adopted when evaluating DTF in IRT applications.

Utilize the above measures effectively a small set of anchor items must be modeled so that the

required latent variable hyper-parameters can be freely estimated in a multiple-group IRT model.

Properly linking the groups allows a suitable estimate of Σ̂(Ψ̂|Y) to be obtained for the complete

set of parameter estimates. After the multiple group model has been estimated by ML methods

the Σ̂(Ψ̂|Y) matrix and vector of parameter estimates can then be used in the parametric sampling

scheme to form point-wise confidence intervals and hypothesis tests for the DTF statistics.

The sampling of M sets of ψ∗ can be organized to form a M × P matrix of plausible parameter

values, Ψ∗. The full set of sampled parameters can then be used to form a null hypothesis test

to evaluate H0 : sDT F = 0. More specifically, to perform this test one need only apply a slight
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variation of the aggregation strategy proposed by Rubin (1987). After obtaining M independent

ψ∗ sets the collected values can be used to evaluate the equation for sDT F, the results of which

can be stored in a vector msDT F . Given the values in msDT F , the sampling variability of ŝDT F is

obtained by computing the sample variance estimate σ̂2(msDT F). This variance estimate serves as

the marginal sampling variance for ŝDT F, and the value
√
σ̂2(msDT F) may be used as the Monte

Carlo approximated standard error of the statistic. Next, the ratio

z =
ŝDT F√
σ̂2(msDT F)

(2.14)

is formed, where z is distributed N(0, 1) when the number of parametric samples is large (say,

greater than 200). When the number of samples is small, Rubin (1987) recommended using a t

distribution with d f = M − 1. Chalmers et al. (2016) investigated the performance of this statistic

under various simulated conditions and found Type I error rates which were consistently close to

the nominal α level in larger sample sizes.

2.3.1 Extension of the Parametric Sampling Framework: Hypothesis Test for Non-Compensatory

Response Functions

Although the hypothesis test in (2.14) can be used to evaluate the sDT F measure, a hypothesis test

for uDT F should not be evaluated using the same approach because a closed-form version of the

sampling distribution does not exist. However, in that (2.14) can be viewed as a z statistic, which

is formally equivalent to a
√
χ2 with d f = 1, we may generalize the hypothesis testing method-

ology for unsigned DTF by adopting the alternative definition of non-compensatory DTF from
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Equation 1.10. This definition is applicable within the parametric sampling framework because

the χ2 distribution is a distribution for squared random deviates. Hence, the quantity defined in the

following equation also follows an approximate χ2 distribution in large samples. Let the following

measure represent the average deviation between two response functions:

dDT F =

(∫
(T (C|θ,ΨR) − T (C|θ,ΨF))2 g(θ)dθ

)1/2

. (2.15)

Assuming an analogous process to what was used to construct the sampled variability in (2.14), a

statistical test of H0 : dDT F = 0 can be expressed as

X2 =
d̂DT F

2

σ̂2(mdDT F)
. (2.16)

As was the case for the distribution of sDT F, after a large number of samples have been ob-

tained Equation 2.16 will have an approximate χ2 distribution. Preliminary simulation work stud-

ied across a wide variety of conditions (including, but not limited to, sample size, test length,

different latent trait distributions, number of anchors, equal/unequal group sizes, number of re-

sponse categories, and IRT models) suggested that X2 is approximately χ2 distributed with d f = 2

instead of the theoretical d f = 1. Therefore, in all subsequent simulation work d f = 2 was used to

construct p-values and confidence intervals for this measure.

Given this new hypothesis test both signed and unsigned DTF hypothesis tests and confidence

intervals can now be constructed within the parametric sampling framework. This statistical exten-

sion is important because neither the SIBTEST nor the DFIT frameworks has presented compelling

statistics for detecting non-compensatory effects in bundles or tests. Hence, a formal hypothesis
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test for non-compensatory DTF is unique across all previously presented frameworks. Because the

Monte Carlo simulation study presented by Chalmers et al. (2016) did not evaluate this statistic it

will therefore be investigated in the Monte Carlo simulation study in the next chapter.

2.3.2 Extension of the Parametric Sampling Framework for DIF and DBF Testing

Testing DIF and DBF is another important area where SIBTEST and DFIT have been developed

but the previously discussed parametric sampling framework has not. Extending the parametric

sampling framework is straightforward because DIF and DTF can be understood as special cases of

DBF. Hence, (2.12), (2.13), and (2.15) can be generalized by modifying the indexing function I( j),

as demonstrated in Chapter 1. For instance, to focus only on a bundle of items (where 1 < B < J),

the definition for signed DBF is

sDBF =

∫
(TB(C|θ,ΨR) − TB(C|θ,ΨF)) g(θ)dθ. (2.17)

In the same spirit, the definition of signed differential item functioning is

sDIF =

∫
(S (c|θ,ψR) − S (c|θ,ψF)) g(θ)dθ =

∫
(TB(C|θ,ΨR) − TB(C|θ,ΨF)) g(θ)dθ, (2.18)

where the bundle size is B = 1. The same reasoning can be applied to the remaining unsigned DTF

statistics to form uDBF, dDBF, uDIF, and dDIF. Furthermore, the sampling distributions for the

differential item and bundle statistics are the same as for the DTF statistics: for signed tests, the

statistics follow an approximate z distribution, and for the squared difference measures the statistics

follow an approximate χ2 distribution. Hence, compensatory and non-compensatory DIF, DBF, and
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DTF can be well defined within this parametric sampling framework and have similar asymptotic,

intepretational, conditional, and graphical properties. Henceforth, the set of statistics that has

been described above will collectively be referred to as statistics from the differential response

functioning framework, or DRF, and the family of signed, unsigned, and deviation measures can

be referenced using the letter R in place of the I, B, and T (e.g., sDRF refers to the measures sDIF,

sDBF, and sDT F).

The extensions presented above for DIF and DBF appear straightforward and simple; however,

some added benefits arise with respect to the parametric sampling method for DIF. For example,

when drawing the parameters to evaluate the DIF statistics, it is easy to evaluate all items simul-

taneously using the same sampled parameter set; hence, new draws which focus on independent

items are not required. This property holds because Ψ∗ is a joint realization from the complete

parameter distribution space and therefore represents a suitable set for each item independently.

This is a very attractive feature because, unlike DIF tests which require independent evaluations

(such as the likelihood-ratio approach to testing for DIF, where models must be re-estimated to

form nested counterparts), only one model with an estimated parameter covariance matrix need be

computed, and only one complete set of Ψ∗ need be obtained. This approach has an additional

benefit over the CSIBTEST procedure because it need only be computed once, while the required

re-sampling technique for CSIBTEST must be applied independently for each item, thereby in-

creasing computational times proportional to the number of items under investigation.
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2.3.3 Commonalities with the Wald Test for DIF

The parametric sampling approach in the DRF framework shares many commonalities with the

setup for the popular Wald test (Wald, 1943) for DIF in that both approaches can be performed

after obtaining suitable Ψ̂ and Σ̂(Ψ̂|Y) terms following ML estimation of multiple-group IRT

models. The Wald test can be used for detecting DIF effects by forming suitable contrast matrices

to construct linear hypothesis tests with one or more degrees of freedom. Depending on which

parameters are tested across groups, the Wald test may be used to detect either uniform DIF (e.g.,

when only intercepts are tested) or non-uniform DIF (e.g., when slopes are tested, or slopes and

intercepts are tested simultaneously). The Wald test statistic has the form

W2 = L(Ψ̂ − c)
(
LΣ̂(Ψ̂|Y)L′

)−1
(Ψ̂ − c)′L′, (2.19)

where L is a Q × P contrast matrix of design-based constants used to index the suitable parame-

ter estimates from the P × 1 matrix of parameter estimates, and c is a vector of fixed parameter

values defined under H0 to be tested against (often consisting only of 0s). Under mild regularity

conditions, W2 is approximately χ2 distributed in large samples with Q degrees of freedom.

When using the Wald test for DIF, the matrix L need only consist of the values 1 and -1 to

test whether the respective slopes and intercepts are equal across groups. For example, say that

a researcher is interested in testing non-uniform DIF for a three item multiple-group IRT model

consisting of only 2PL models for each item. After estimating the model by treating the first item

as an anchor item, the vector of parameter estimates is
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Ψ̂ = (α1, β1, αR2, βR2, αF2, βF2, αR3, βR3, αF3, βF3, µF , σ
2
F).

The elements α1 and β1 are the slope and intercept for the first item which are constrained to be

equal across groups, the next eight elements are the parameter estimates for each item indexed by

groups (reference or focal), and finally the last two elements are the estimated hyper-parameters for

the focal group (the corresponding hyper-parameters in the reference group are fixed to µR = 0 and

σ2
R = 1). To test whether the second item contains non-uniform DIF, the L matrix is constructed as

L =

 0 0 1 0 −1 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0

 ,
which is substituted into Equation 2.19, along with Ψ̂ and Σ̂(Ψ̂|Y), to form a test statistic with

d f = 2. A non-significant Wald tests implies that there is insufficient evidence to conclude that

the parameter sets are unequal across groups; hence, there is no evidence that DIF exists in the

respective item.

The parametric sampling approach for the DRF statistics and the Wald test both require that the

groups are properly equated and that a suitable Σ̂(Ψ̂|Y) matrix has been obtained. In fact, the initial

conditions and prior computations for both tests are identical. In situations where it is possible to

conduct a Wald test for DIF, it is also appropriate to use the parametric sampling approach with

the DRF statistics. The converse, however, is not true because the Wald test requires the parameter

sets to be equivalent in both groups so that differences in parameter estimates can be meaningfully

tested. For instance, it does not makes sense to compare a 2PL model in one group with an IRT
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model fit by a polynomial model in a different group because it is not clear which parameters

should be tested for equality.

The DRF approach to DIF does not require the item parameter sets to be commensurate across

groups because the measures do not directly relate to the sets of parameters. Instead, the DRF

measures focus on the differences between the model-implied response functions, where the item

parameter estimates are only used to build these expected response functions. Hence, any class

of IRT model may be compared across groups regardless of whether they have commensurate

parameter sets. It is anticipated, however, that the Wald test will have more power to detect true

DIF effects compared to the DRF framework because it constructs the hypothesis test using more

efficient parametric information. For these reasons I anticipate that the Wald test will generally

outperform the comparable statistics from the DRF framework across a range of conditions.

2.4 Improvements of the DRF Framework Over the SIBTEST and DFIT

Frameworks

Before comparing the performance of the DRF framework to the SIBTEST and DFIT frameworks

it is worthwhile first to highlight some of the attractive characteristics of the DRF framework com-

pared to DFIT and SIBTEST. To start, unlike DFIT and SIBTEST, which use auxiliary data-driven

properties from the observed sample data, the DRF statistics use the expected scoring functions

directly (e.g., Equations 1.1 and 1.2) and therefore remain in the metric of the test. The three
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proposed DRF measures roughly form statistical analogs of a mean difference (cf. Equation 2.12),

mean absolute difference (cf. Equation 2.13), and mean squared deviation (i.e., standard deviation;

cf. Equation 2.15) of the difference between response functions across the desired latent trait range.

Hence, the statistics are in effect size metrics associated with the scale of the item, bundle, or test,

which are readily interpretable by the test developer. For example, if sDT F = 1, the researcher

could conclude that, on average, the reference group scored 1 full point higher than the focal group

across the selected range of θ. In addition, if dDT F = 2, then the researcher could conclude that,

on average, the response curves deviated by 2 points over the selected integration range. Note that

these example effect sizes may not be serious if the test were out of 100 total points, but may be

substantial if the test were out of 20. An identical relationship holds for the DIF and DBF statistics;

hence, effects sizes with meaningful metrics are available at all levels of the response bias analysis.

Because the parametric sampling method required for the DRF statistics shares a clear lineage

with the graphical methods presented by Thissen and Wainer (1990), the DRF statistics naturally

have graphical counterparts which are very useful for visually diagnosing the θ locations with

which the bias is greatest. Specifically, visualization is one area where the sDT Fθ family of mea-

sures is useful. For example, after creating a range of desired θ values, each ŝDRFθ estimate

can be evaluated, along with its respective sampling variability, to form sets of point-wise confi-

dence intervals. Subsequently, these intervals can be depicted graphically to indicate locations of

higher or lower sampling variability in the expected difference between the test, bundle, or item

response functions. Figure 2.1 demonstrates the use of this diagnostic process after a significant

55



signed or unsigned DTF effect is detected (or non-significant, in the case of the image on the left),

and is a simple remapping of Figure 1.3 using obtained 95% confidence interval estimates for

ŝDT Fθ. Compared to non-parametric approaches for constructing expected score plots for bias

detection (e.g., Bolt & Gierl, 2006; Ramsay, 2000) these plots implicitly adjust for the differences

in the latent trait distributions because of the anchoring technique, thereby demonstrating more

appropriate conditional bias effects.

To demonstrate the use of sDIFθ for interpreting DIF, a small example with six focal items

is depicted in Figure 2.2. In this figure, items 1 and 2 (bottom row) have non-significant sDIF

and dDIF, while item 3 (second row) has non-significant sDIF but significant dDT F. After the

sampling variability is constructed for the figures on the right, the difference between the two

probability functions for items 1 and 2 clearly fall within the 95% confidence intervals across all

levels of θ (i.e., the confidence interval contains the solid horizontal reference line). Items 4, 5,

and 6, however, all have significant sDIF and dDIF effects, which is clear in both the expected

probability functions as well as the sDIFθ plots containing the respective sampling variability.

Furthermore, although item 3 appears to have a large difference in the upper end of the θ axis,

the associated figure on the right makes it clear that this observed difference is not reliable when

considering the sampling variability. Therefore, researchers should be less inclined to interpret

such a difference between functions at extreme levels of θ where sampling variability is clearly

larger. Without the parametric sampling approach, researchers may prematurely conclude that
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Figure 2.1: A remapping of functions from Figure 1.3 (top row) using the sDT Fθ measure across

a range of θ values. Bottom row of images represent the sampled 95% confidence intervals at each

θ location shaded in gray while the observed ŝDT Fθ estimates are indicated with the solid black

line. The solid horizontal red line is a reference line where sDT Fθ = 0.
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item 3 contains a large amount of bias at the positive end of θ when in fact this effect is largely

attributed to sampling uncertainty.

There are many other important properties that make the DRF statistics appealing and more

flexible than the SIBTEST and DFIT frameworks. For example, because the estimation of the item

parameters and Σ̂(Ψ̂|Y) are carried out by FIML estimation, and because the statistics themselves

do not require reference to any particular aspects of the data, missing values (which are missing

at random or missing completely at random; Rubin, 1987) do not negatively impact the validity or

consistency of the statistics. Similarly, the FIML-based multiple-group model estimation approach

provides optimal results when the sample sizes are unequal, the distributions for θ are different in

each group, and when test-specific properties such as the length of the test, number of response

categories, selection of the focal group, and so on are modified. With respect to testing DIF, DBF,

and DTF, the DRF framework has a computational advantage in that all the relevant statistical

variability can be obtained using the same sampled parameter set. Therefore, computing DIF for

larger tests is no more computationally demanding than smaller tests, and the same fitted model

can be used for DIF, DBF, and DTF testing without having to fit further IRT models and asymptotic

covariance matrices.

Finally, the DRF framework has the capability to measure compensatory and non-compensatory

differential functioning for numerous IRT models, where the nature of the measures is not limited

by the shape of the response functions (unlike CSIBTEST, for example, which requires monoton-

ically increasing response functions). Furthermore, the measures from the DRF framework are
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Figure 2.2: Example of six items under DIF investigation. The left block represents the probability

response functions for the focal and reference group, while the right block of figures represents the

sDIFθ plots with 95% confidence intervals (shaded in gray) evaluated across 1000 equally spaced

θ locations.
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able to accommodate any mix of dichotomous or polytomous IRT models, do not require the use

of monotonic or even parametric statistical forms, can be approximated using non-parametric es-

timation methods (such as bootstrapping), and will naturally accommodate multidimensional IRT

tests with complex structures. These and other advanced topics are discussed in greater detail in

Chapter 4.

2.5 Summary

Two previously proposed statistical frameworks for detecting differential item, bundle, and test

functioning are described in this chapter, and a new approach termed the differential response

functioning (DRF) framework is proposed as a solution to many of the limitations inherent in the

first two frameworks. The DRF framework extends and improves upon many of the less attractive

features of the SIBTEST and DFIT frameworks, and presents a unified approach to investigat-

ing differential functioning. DRF provides both compensatory and non-compensatory marginal

statistics when testing DIF, DBF, and DTF, and provides an effective approach to diagnose con-

ditional differential functioning (i.e., at specific θ values) which are straightforward for isolated

hypothesis testing as well as for presenting the range of differences between the response functions

graphically. Refer to Table 2.1 for a summary of the statistics available for detecting differential

functioning via marginal statistics.

On the surface, the DRF framework appears more flexible and promising than either the SIBTEST

or DFIT frameworks for computing compensatory and non-compensatory differential functioning
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Compensatory Non-Compensatory
Framework Model-Based Full-Informationa DIF DBF DTF DIF DBF DTF
Wald Yes Yes — — — W2 — —
SIBTEST No No SIBTEST SIBTEST SIBTEST CSIBTEST — —
DFIT Yes No CDIF CDBF DT F NCDIF NCDBF NCDT F
DRF Yes Yes sDIF sDBF sDT F uDIF/dDIF uDBF/dDBF uDT F/dDT F

Table 2.1: Breakdown of the SIBTEST, DFIT, and DRF framework statistics by type of test and

compensatory nature for unidimensional tests consisting only of dichotomous items.

aRefers to whether missing response data are handled efficiently and effectively.

statistics. However, the DRF framework may be limited by a number of properties; namely: the

quality of the maximum-likelihood solution (e.g., local minima solutions will not behave cor-

rectly), the quality and number of the selected anchor items, the number of samples to draw, the

range of the θ integration, and the quality of the parameter covariance matrix estimate. Clearly, if

there are too few anchors used, or the anchors selected contain DIF, then the maximum-likelihood

scaling of the hyper-parameters may not represent the most optimal scaling of the expected re-

sponse functions. Note, however, that several of these limitations are present in the DFIT and

SIBTEST frameworks, as well as the Wald and likelihood-ratio tests, and may in fact be less

problematic in the DRF framework. To investigate the overall performance under comparable con-

ditions, the three frameworks (as well as the Wald test for DIF) are compared in the next chapter

using Monte Carlo simulations to evaluate their respective Type I error control and power to detect

true differential functioning effects.
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3 Monte Carlo Simulations Comparing the Differential

Testing Frameworks

This chapter presents a set of extensive Monte Carlo simulation studies which evaluate the per-

formance of the SIBTEST, DFIT, and DRF frameworks with respect to detecting compensatory

and non-compensatory DIF, DBF, and DTF. Empirical Type I error rates are obtained in conditions

where no DIF is present and in tests for DTF and DBF when DIF is present but the DIF effects

completely cancel. Power rates for detecting population-level DIF, DBF, and DTF effects are also

investigated using sets of predefined DIF items that are held constant across sections. Additional

properties with respect to the newly developed DRF framework will also be investigated to deter-

mine the general properties of the parametric sampling scheme not investigated by Chalmers et al.

(2016).
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3.1 Selecting Conditions for Direct Comparison Between Frameworks

Although the three frameworks have the same general purpose of identifying differential effects,

prior Monte Carlo simulation work has generally not been comparable across published studies.

This inconsistency is mainly because a) the number of anchor items used in previous simulations

has not been commensurate; b) the method of equating the parameters across groups has not been

consistent; c) the types of DIF investigated has been discrepant; and d) the variety of simulation

conditions investigated has generally been non-overlapping (e.g., different sample sizes, group

sizes, latent trait distributions, and so on).

The following is an example of why comparing the DFIT frameworks to the SIBTEST or DRF

framework is problematic. Most, if not all, applications of the statistics from the DFIT framework

have used a sub-optimal linking method when DIF was present. The linking approaches adopted

were based on statistical techniques whereby all the items — including those with known DIF

— were used to equate the parameters across the groups. Hence, it was known a priori that the

group parameters were not optimally equated and instead were confounded by the magnitude of

DIF, the number of items containing DIF, and so on. Because this linking method has generally

not been optimal, the statistics from the DFIT framework are re-evaluated after the parameters are

equated using the more optimal likelihood-based multiple-group estimation approach. This linking

approach should provide a more realistic application of detecting response bias, particularly when

DIF is present.
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With respect to the SIBTEST procedure, several authors (including Shealy & Stout, 1993)

have used — and indeed recommend using — all non-focal items as anchor items regardless of

whether DIF is suspected. In these situations there are varying degrees of contamination in the

linking process which may not behave as optimally as what Shealy and Stout (1993) had previously

witnessed8. To avoid this problem in the following simulations, the use of a small number of

uncontaminated anchor items (five or ten) is selected so that each framework can be compared

given identical information regarding group equivalence. That being said, the use of contaminated

anchor items is also investigated for the SIBTEST procedures to determine whether Shealy and

Stout’s recommendation is appropriate for the DIF, DBF, and DTF detection given the predefined

DIF items under investigation.

3.2 Global Simulation Details

There is a number of conditions which ultimately affect the ability to detect differential effects,

including, but not limited to, the number of test items, sample size, whether the group sizes are

equal, latent trait distribution characteristics, number of anchor items used, and, particularly for the

DFIT framework, which group is selected as the focal group. Power rates are further influenced

by the population DIF characteristics as well, which may include the type of DIF present (uniform

8Shealy and Stout (1993) acknowledge the possibility of contaminated anchor items but demonstrated in their
simulation study that contaminated anchor items are generally a non-issue. However, this finding is suspicious given
the current understanding of contaminated anchor items (e.g., see Millsap, 2011), and therefore will be re-investigated
in this chapter.
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versus non-uniform), the magnitude of the parameter differences (and consequently the expected

response functions), and whether optimal statistics for examining DIF are selected (e.g., using

statistics for non-uniform DIF when uniform DIF is present).

In addition, the detection of DBF and DTF is further affected by the number of items containing

DIF and their respective propagation effects at different θ levels. For example, items containing

DIF may cause larger (i.e., amplification) or smaller (i.e., cancellation) degrees of separation be-

tween the composite response functions across different θ levels. Furthermore, in the extreme

case where the DIF effects completely cancel, nominal Type I error rates should obtained when

testing DBF and DTF. Empirical Type I error rates arising from complete cancellation have never

been studied directly in any of the literature concerning the frameworks, although the cancellation

effect appears to be indirectly present in some studies (e.g., see Chalmers et al., 2016; Nandaku-

mar, 1993; Oshima et al., 1998). Therefore, this chapter also investigates the performance of the

detection frameworks in the presence of complete cancellation.

The following Monte Carlo simulations are organized into sections which focus solely on em-

pirical DIF and DBF or DTF detection behavior when investigating unidimensional 2PL models

for dichotomous response data. In the first section simulations pertaining to DIF detection are

constructed to obtain empirical Type I error rates when no DIF is present, and power rates are

investigated when compensatory and non-compensatory DIF effects were present. In the next sec-

tion regarding DBF and DTF detection, Type I error rates are evaluated in conditions where no

DIF is present as well as in situations where there was DIF but the effects were perfectly balanced
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(i.e., completely cancel across the item bundles). Power rates are also investigated to determine

the effects of compensatory and non-compensatory DIF propagation in the respective bundle and

test response functions.

3.2.1 Computational Considerations

Before beginning the simulations, the initial setup for the DFIT and DRF frameworks, as well

as the Wald testing approach, requires some special considerations. Because these approaches

involve the estimation of IRT models, the question of whether non-focal items should be included

or omitted from the fitted models must be considered. Non-focal items are items which are included

in the modeling process but are neither focal nor anchor items; hence, they are included in the full

model because they may include DIF, though the test analysis is unclear whether they do or not.

Omitting the non-focal items so that only the anchor and focal items are used results in fewer

parameters to estimate because fewer items are required. From a computational standpoint, the

DRF and DFIT frameworks, as well as the Wald approach for DIF testing, may benefit when using

fewer items because the number of parameters to estimate is considerably smaller. With respect

to the DRF framework and Wald test, computing the information matrix also takes considerably

fewer computational resources because fewer terms are required to build Σ̂(Ψ̂|Y). On the other

hand, omitting non-focal items also discards valuable statistical information, therefore the quality

of the θ̂ estimates for the DFIT framework may suffer, the ML parameter estimates may not be as

precise, or the variability in the Σ̂(Ψ̂|Y) matrix may unintentionally grow to be too large.

66



Investigating the performance of the detection frameworks when only the anchor and focal

items are modeled (i.e., leaving the non-focal items unmodeled) is of interest because it may be

beneficial to use a smaller yet more reliable subset of items to detect differential response effects.

Omitting non-focal items will demonstrate how well the statistics perform in very short tests; how-

ever, doing so generally decreases the power of the statistics which are able to use the axillary

information from the non-focal items. Furthermore, because the SIBTEST framework is not able

to accommodate non-focal items, it is important to include these item subsets so that the properties

can be directly compared given the same amount of empirical information. Therefore, where ap-

propriate the inclusion and omission of the non-focal items in the fitted IRT models are investigated

for the DFIT, DRF, and Wald test statistics.

3.3 Specific Details of the Simulations

Throughout the following Monte Carlo simulations a number of auxiliary characteristics were

kept constant to ensure that the results were comparable, consistent, and easier to interpret across

sections. The Monte Carlo simulation factors under investigation within each simulation design

were:

• the number of anchors used to equate the groups (5 versus 10),

• test length (20, 30 and 40 items),

• total sample size (900, 1800, and 2700),
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• latent trait distribution (N(0, 1) was used for the reference group while the focal group was

either N(0, 1) or N(1/2, 2/3)), and

• the effect of equal and unequal sample sizes across groups (where the size of focal group

either equaled or was half the size of the reference group).

With respect to the statistics within the DFIT framework, the sizes of the reference and focal groups

were also switched in each condition to determine the complementary effect of unequal sample

sizes when the focal group was larger or smaller than the reference group. Each combination was

investigated using 1000 independent Monte Carlo replications.

The simulated datasets were generated and analyzed using estimation functions from the mirt

package in R (Chalmers, 2012) while the Monte Carlo simulation work-flow was controlled by the

SimDesign package (Chalmers, 2016b; Sigal & Chalmers, 2016). Models were fitted using mirt’s

multiple-group estimation engine with the EM algorithm. Model estimation was terminated when

all the parameter estimates changed less than |.0001| across successive EM cycles. The reference

and focal groups were equated using the likelihood-based procedure described in the previous

chapter whereby all parameters within each select anchor item were constrained to be equal across

groups.

The Σ̂(Ψ̂|Y) matrix required for the DRF statistics and Wald test was estimated using the com-

putationally efficient cross-product approximation approach (Pawitan, 2001). The cross-product

approximation is known to be asymptotically equivalent to the Σ̂(Ψ̂|Y) matrix based on the ob-
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served information. Therefore, given the somewhat larger sample sizes under investigation, it was

appropriate to use this variant as a proxy to the exact observed information matrix. Expected a pos-

teriori (EAP) estimates obtained from the fitted multiple-group models were used as the required

θ̂ values for the DFIT statistics. Using the same fitted multiple-group IRT models that were used

to compute the DFIT statistics, the sampling variability for the DRF statistics was obtained after

sampling M = 500 parameter sets and numerically integrating across the response functions using

rectangular quadrature in the range [−6, 6] for θ.

The implementation of the original SIBTEST procedure was identical to Shealy and Stout’s

(1993) description (e.g., minimum matched score frequency of 2, excluded lowest and highest

matched scores, etc.). Where applicable, the SIBTEST was also compared to the uncorrected

counterpart (SIBTESTUC; cf. Equation 2.1) to determine the effect of the regression adjustment

in conditions where the latent trait distributions were identical. When the latent trait distributions

are identical the uncorrected SIBTEST procedure should return nominal Type I error rates. As

well, the CSIBTEST statistic followed the same details presented by Li and Stout (1996) for non-

compensatory DIF with only one crossing location in the response functions.

Unless otherwise specified, all detection rates were calculated using a nominal α rate of .05.

To visualize aberrant empirical detection rates, tables containing Type I errors that were outside

of Bradley’s (1978) so-called ‘liberal’ robustness interval definition [.025 .075] (or in specific sit-

uations where α = .01, [.005, .015]) are emphasized with bold font. Detection rates for statistics

which were potentially influenced by the use of non-focal items are presented in separate appen-
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dices to help conserve space. If the statistics did not contain indirect information from the non-focal

items (such as SIBTEST and CSIBTEST with a predetermined number of anchor items and the

subset version for the DRF, DFIT, and Wald statistics) then these are displayed in-text. Finally,

power rates from the appendices were averaged across the overall test length so that the marginal

results could be more easily compared to the detection rates that did not use information from the

non-focal items; this process was repeated for Type I error rates as well, but only when the test

length was deemed to be an irrelevant condition which could be averaged across.

3.3.1 Stability of the Parametric Sampling Method for the DRF Statistics

3.3.1.1 Number of Imputation Sets

Before performing the simulation studies it is first important to determine whether M = 500 draws

is sufficient for obtaining stable p-values for the DRF statistics. To determine if the precision of

the p-values was adequate, three separate IRT models containing no differential effects were gen-

erated and investigated using 500, 1000, 2000, 4000, and 8000, and 16000 draws. In preliminary

simulation work, when the average simulated p-values were closer to 0 or 1 the variability tended

to decrease, therefore models were selected such that all the observed p-values were within the

range of .3 to .7.

Multiple-group IRT models containing 2PL items were generated for tests of length 20, 30,

and 40. The latent distribution for the focal group was N(1/2, 2/3) and the reference group was
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Signed Measures Deviation Measures
Type Number of Draws 20 Items 30 Items 40 Items 20 Items 30 Items 40 Items
DIF 500 .012 (.544) .013 (.473) .016 (.404) .021 (.621) .019 (.707) .026 (.602)

1000 .010 (.544) .009 (.473) .010 (.403) .016 (.624) .015 (.707) .017 (.600)
2000 .006 (.544) .007 (.473) .007 (.403) .011 (.624) .010 (.708) .013 (.601)
4000 .004 (.544) .004 (.473) .005 (.402) .008 (.624) .007 (.709) .009 (.602)
8000 .003 (.544) .003 (.473) .004 (.402) .005 (.624) .005 (.709) .006 (.601)
16000 .002 (.544) .002 (.473) .002 (.403) .004 (.624) .003 (.709) .004 (.602)

DBF 500 .010 (.629) .012 (.526) .009 (.654) .024 (.522) .026 (.351) .024 (.448)
1000 .007 (.629) .010 (.526) .006 (.655) .016 (.521) .019 (.350) .018 (.449)
2000 .005 (.630) .006 (.526) .005 (.655) .012 (.522) .013 (.349) .012 (.449)
4000 .004 (.629) .004 (.526) .003 (.655) .008 (.522) .009 (.349) .008 (.448)
8000 .002 (.629) .003 (.526) .002 (.655) .005 (.521) .006 (.350) .006 (.448)
16000 .001 (.629) .002 (.526) .001 (.655) .004 (.521) .004 (.349) .004 (.448)

DTF 500 .012 (.577) .011 (.604) .012 (.600) .022 (.638) .022 (.548) .021 (.669)
1000 .008 (.576) .007 (.605) .008 (.599) .015 (.639) .016 (.549) .015 (.669)
2000 .006 (.577) .005 (.604) .006 (.599) .010 (.640) .011 (.549) .010 (.669)
4000 .004 (.577) .004 (.604) .004 (.599) .008 (.639) .008 (.548) .007 (.670)
8000 .003 (.577) .002 (.604) .003 (.599) .005 (.639) .005 (.549) .005 (.670)
16000 .002 (.577) .002 (.604) .002 (.599) .004 (.640) .004 (.549) .003 (.670)

Table 3.1: Standard deviation of the parametrically sampled p-values (with the average p-value

across 500 independent draws in brackets) for the DRF statistics when increasing the number of

draws and test length.

N(0, 1). The multiple-group IRT models contained five anchor items; thus, a total of ten parameters

were constrained to be equal across groups. Each simulation condition was replicated 500 times

to determine the relative variability across independent sampled sets. All DTF, DBF (with eight

focal items), and DIF statistics from the DRF framework were investigated. Table 3.1 contains the

results from this brief simulation study.

As is clear in Table 3.1, increasing the number of draws systematically decreased the variability

of the obtained p-values. Furthermore, this appeared to be the only major effect that contributed

to the consistency of the observed p-values. For example, the most extreme collapsing of second-
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order information appeared in the condition where the test contained 40 items with a total of 152

(40·2·2−5·2+2) freely estimated parameters. However, even with 152 freely estimated parameters

the joint variability used to obtain the sampling variability of the DRF statistics did not appear to

be any different than the DIF conditions where only four parameters contributed to the variability.

The deviation-based DRF statistics appeared to have slightly more variability compared to the

signed statistics, but this effect was not dramatic enough to affect any of the subsequent simulation

(or empirical analysis) results. This brief simulation suggests that the standard error estimates for

DRF statistics will be sufficiently stable with as few as 500 sampled parameter sets.

3.3.1.2 Integration Range

Another important area worth investigating for the parametric sampling approach is whether the

integration range has any effect on the Type I error detection rates. Naturally, modifying the inte-

gration range to focus on particular θ regions of interest will affect the power to detect DRF when

it exists; for instance, focusing on a wide θ range when bias only occurs within a small θ range

will be less powerful because the magnitude of the true effect will be lessened due to averaging

across a wider function. However, the use of different integration ranges is only justifiable if the

Type I error rates are not affected by the integration range. To investigate this effect, integration

ranges between [−2, 2], [−4, 4], [−6, 6], [−8, 8], and [−10, 10] across θ were investigated in tests of

length 20, 30, and 40. To remove the likelihood of non-convergent solutions or inaccurate Σ̂(Ψ̂|Y)

matrices when using the cross-product approximation, N was set to 20,000.
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DRF Measure Test Length [−2, 2] [−4, 4] [−6, 6] [−8, 8] [−10, 10]
sDIF 20 .032 .036 .032 .036 .034

30 .062 .054 .052 .054 .052
40 .054 .054 .056 .054 .048

sDBF 20 .054 .052 .050 .054 .054
30 .044 .036 .034 .034 .032
40 .036 .040 .052 .044 .048

sDT F 20 .066 .050 .060 .058 .054
30 .044 .050 .042 .040 .044
40 .054 .048 .048 .044 .040

dDIF 20 .038 .038 .034 .038 .034
30 .070 .054 .060 .064 .058
40 .064 .052 .046 .048 .052

dDBF 20 .054 .056 .056 .052 .060
30 .064 .056 .054 .054 .048
40 .052 .054 .056 .060 .052

dDT F 20 .062 .060 .064 .062 .058
30 .068 .058 .054 .058 .052
40 .062 .054 .062 .058 .060

Table 3.2: Type I error rates for the DRF statistics when modifying the integration range across θ.

Each simulation condition was repeated 500 times to obtain reasonable stability in the empirical

Type I error rate estimates. Empirical Type I error rates were collected at α = .05 for DIF, DBF

(where five focal items were selected), and DTF; these results are results are displayed in Table 3.2.

The results generally suggest that the Type I error rates were not influenced by the integration range

selected for any of the DRF measures. Therefore, the integration range selected when detecting

differential effects only appears to affect the power to detect DRF and not the Type I error rates.
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3.4 Differential Item Functioning

There are many characteristics that can influence the detection of DIF. For example, with respect

to the 2PL model any difference in intercept parameters (δ) will cause a systematic shift in the

probability response functions so that one group will systematically have a greater probability of

answering correctly. Consequently, statistics such as SIBTEST and sDIF should be effective at

detecting this type of DIF because the probability functions will, by definition, have no compen-

satory effects (i.e., will never cross). However, when the difference in slope parameters (α) is the

cause of DIF then the response probability function of one group will be lower than the other at

some levels of θ and higher at other levels of θ. Non-compensatory statistics are more useful for

this type of DIF, such as NCDIF, CSIBTEST, dDIF, and W2, because these are less affected by

non-uniform differences in the response functions. When both of these parameters are different

across groups then various compensatory and non-compensatory effects can arise. The following

study will focus on testing for DIF by generating differences in the α and δ parameters sets simul-

taneously for the 2PL model to construct varying degrees of compensatory and non-compensatory

effects.

Unless otherwise specified, all slope parameters were drawn from a log-normal distribution,

α ∼ logN(0.2, 0.2), and the intercept parameters were drawn from a normal distributionN(0, 1/2).

The statistics under investigation in the following simulation study were: SIBTEST and SIBTESTUC,

where the focal set contained only one item, CSIBTEST, NCDIF from the DFIT framework with
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subscripts to indicate whether the focal group was larger (NCDIFLF) or smaller (NCDIFS F) than

the reference group, sDIF and dDIF from the DRF framework, and the Wald test (with two de-

grees of freedom). In the Type I error section all items were constructed to contain no DIF.

3.4.1 Type I Error Rates

Tables 3.3 and 3.4 contain the empirical Type I error rates when only the anchor and focal items

were modeled, while the tables in Appendix A contain the Type I error rates for statistics which

are capable of including information from non-focal items. Beginning with the NCDIF statistic

from the DFIT framework, it was apparent that its Type I error rates were extremely inflated across

all simulation conditions. When including the non-focal items in the fitted models (Appendix A),

the χ2 test for NCDIF had an average empirical Type I error rate of .838 (S D = .032) when

the focal group was equal to or larger than the reference group, and .815 (S D = .024) when

the focal group was equal to or smaller than the reference group. Omitting the non-focal items

from the fitted models (Tables 3.3 and 3.4) resulted in similar detection rates. NCDIF’s detection

rates increased when lager sample sizes and test lengths were studied, when the group sizes were

unequal, and when the latent trait distributions were unequal. Using only a subset of the test items

to compute the θ̂ estimates resulted in comparably high Type I error rates which demonstrated

similar detection rate patterns; hence, using item subsets does not appear to be a helpful strategy

for the DFIT framework.
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Anchors Focal Distribution Sample Sizes dDIF dDIFM Wald WaldM CSIBTEST NCDIFLF NCDIFS F P(NCDIFLF > .006) P(NCDIFS F > .006)
5 N(0, 1) 450/450 .023 .025 .034 .033 .000 .757 .754 .189 .194

900/900 .035 .040 .042 .041 .000 .787 .785 .036 .041
1350/1350 .033 .047 .055 .047 .000 .822 .814 .007 .006
600/300 .035 .039 .042 .040 .000 .810 .775 .056 .055

1200/600 .024 .047 .035 .042 .000 .833 .803 .000 .002
1800/900 .044 .051 .050 .049 .000 .853 .825 .000 .000

N(1/2, 2/3) 450/450 .021 .023 .036 .032 .000 .809 .737 .290 .218
900/900 .029 .039 .047 .043 .000 .827 .817 .087 .032

1350/1350 .029 .039 .056 .049 .000 .872 .831 .030 .009
600/300 .028 .034 .035 .042 .000 .862 .783 .094 .054

1200/600 .036 .041 .057 .039 .000 .886 .809 .010 .007
1800/900 .026 .049 .043 .045 .000 .889 .824 .001 .000

10 N(0, 1) 450/450 .033 .026 .033 .035 .064 .773 .778 .085 .081
900/900 .037 .041 .042 .040 .054 .814 .801 .011 .012

1350/1350 .046 .045 .050 .043 .063 .836 .829 .000 .000
600/300 .050 .037 .056 .039 .061 .804 .775 .016 .015

1200/600 .042 .049 .044 .047 .065 .846 .821 .001 .001
1800/900 .039 .051 .040 .048 .054 .865 .841 .000 .000

N(1/2, 2/3) 450/450 .020 .022 .034 .038 .056 .793 .776 .138 .085
900/900 .034 .034 .042 .040 .043 .856 .843 .024 .013

1350/1350 .049 .039 .054 .042 .066 .863 .848 .011 .003
600/300 .034 .033 .049 .036 .054 .843 .806 .036 .021

1200/600 .031 .042 .041 .046 .070 .887 .829 .000 .000
1800/900 .049 .048 .062 .048 .062 .893 .855 .000 .001

Table 3.3: Type I error rates for non-compensatory statistics when testing DIF. dDIFM and WaldM represent the marginal

detection rates after averaging over the number of test items in Appendix A, while the remainder of the statistics used

only the information provided by the anchor items and a single focal item. Type I error rates greater than .075 and less

than .025 are highlighted in bold.



Focusing on Raju et al.’s (1995) rule-of-thumb approach of using the cutoff of .006 for the

observed NCDIF values, the simulation results revealed that the distribution of this cutoff ap-

proach was primarily influenced by sample size and the number of anchors selected. As sample

size increased, the proportion of NCDIF values greater than the cutoff began to approach zero,

experiencing floor and positive skewness effects, while in smaller sample sizes the variability of

the NCDIF values was considerably larger. These effects occurred regardless of the test length and

number of non-focal items included in the model. When using more anchor items the proportion

of values above the cutoff tended more rapidly towards zero as well, further indicating that the

magnitude of NCDIF was affected by model fitting properties. The marginal effects in Figure 3.1

demonstrate that this rule-of-thumb is liberal in smaller sample sizes and conservative in larger

sample sizes regardless of the nominal α level selected.
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Anchors Focal Distribution Sample Sizes sDIF sDIFM SIBTEST SIBTESTUC
5 N(0, 1) 450/450 .034 .029 .058 .055

900/900 .038 .039 .043 .040
1350/1350 .050 .045 .061 .049
600/300 .035 .036 .048 .042

1200/600 .040 .044 .063 .048
1800/900 .047 .045 .052 .046

N(1/2, 2/3) 450/450 .020 .025 .077 –
900/900 .036 .036 .084 –

1350/1350 .056 .040 .088 –
600/300 .029 .033 .074 –

1200/600 .044 .041 .084 –
1800/900 .045 .048 .069 –

10 N(0, 1) 450/450 .023 .028 .045 .045
900/900 .032 .039 .046 .034

1350/1350 .055 .040 .049 .056
600/300 .048 .035 .059 .061

1200/600 .037 .043 .046 .042
1800/900 .044 .046 .045 .039

N(1/2, 2/3) 450/450 .022 .023 .049 –
900/900 .045 .035 .057 –

1350/1350 .061 .042 .076 –
600/300 .040 .037 .063 –

1200/600 .034 .043 .057 –
1800/900 .053 .047 .079 –

Table 3.4: Type I error rates for compensatory statistics testing DIF. sDIFM represents the marginal

detection rates after averaging over the number of test items in Appendix A, while the remainder

of the statistics used only the information provided by the anchor items and a single focal item.

Type I error rates greater than .075 and less than .025 are highlighted in bold.

SIBTEST, on the other hand, performed considerably better than the DFIT framework. SIBTEST

achieved an average empirical detection rate of .066 (S D = .014) and .055 (S D = .011) when us-

ing five and ten anchors, respectively, and .047, (S D = .006) when using all non-focal items as
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Figure 3.1: Proportion of NCDIF values less than the cutoff of .006 for different sample sizes

and number of anchors. The dotted red line indicates the nominal rate of α = .01, and the darker

distributions indicate that 10 anchors were used (lighter distribution has 5 anchor items).

anchors (Appendix A). However, SIBTEST was strongly influenced by the number of anchor items

selected and whether the latent distributions were equal. SIBTEST generally demonstrated more

liberal Type I error rates when the latent distributions were unequal, and this effect was worse when

only five anchor items were selected. For the uncorrected SIBTEST in the conditions where the la-

tent trait distributions were equal, the detection rates were .046 (S D = .005) and .046 (S D = .010)

when five and ten anchors were used, respectively, and .046 (S D = .004) when all non-focal items

in the test were used as anchors. These results generally indicated that the uncorrected SIBTEST
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procedure behaved appropriately and that the regression adjustment used for SIBTEST did not

affect the results when the latent trait distributions were equal.

CSIBTEST’s Type I error rates unfortunately did not behave as well as SIBTEST’s for investi-

gating non-compensatory DIF. In the conditions where only five anchors were used, the CSIBTEST

statistic never rejected the true null hypothesis; therefore, all the Type I error rate estimates were

exactly equal to 0. This indicates an important limitation in the CSIBTEST statistic when only a

small number of anchors are known a priori. When ten anchor items were used the CSIBTEST

Type I error rates were more reasonable (.057, S D = .007), and when using all non-focal items as

anchors (see Appendix A) the rates appeared to be closer to the nominal level (.058, S D = .005).

Though not studied herein, an improved approach for the CSIBTEST statistic has recently been

proposed (Chalmers, in review) to amend many of the inherent issues with Li and Stout’s (1996)

version of the statistic, including an approach which provides more optimal Type I error control.

Finally, the DIF statistics from the DRF framework, as well as the Wald test, both provided

Type I error rates consistently close to the nominal α across all studied conditions when all non-

focal items were included in the models (see Appendix A). When omitting the non-focal items

from the fitted models, the Wald test continued to behave optimally; however, the DRF statistics

occasionally had slightly conservative Type I error rates. Primarily, the DRF statistics become

more conservative in smaller sample sizes and when only five anchor items were used, generally

indicating that the quality of the Σ̂(Ψ̂|Y) estimate, as well as the precision of the ML parameter

estimates, negatively affected the results. Therefore, using the cross-product approximation to
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compute Σ̂(Ψ̂|Y) in very short tests, or when small subsets of items are used instead of the full

item set, the DRF statistics should be regarded as slightly conservative9.

3.4.2 Power Rates

To study the detection rates from the three differential response frameworks when DIF is present, a

small selection of items was generated with a predetermined amount of response bias. The Monte

Carlo simulation results presented below pertain to the power to detect DIF when five separate

items contained DIF within each test. The simulation factors under investigation were carried over

from the previous section on Type I error rates to determine how these properties affect power

rates. However, because of the extremely poor Type I error control and lack of unconditional

interpretability of the NCDIF statistics the DFIT framework was not included in the following

Monte Carlo simulations.

The five items containing DIF were generated from the parameter sets δ = [1, 0.5, 0,−.5,−1]

and α = [1, 1.25, 1.5, 1.75, 2] in the reference group while the sets δ = [0.7, 0.2,−0.3,−0.8,−1.3]

and α = [0.5, 0.75, 1, 1.25, 1.5] were used for the focal group. The expected probability functions

for these parameter sets can be seen in Figure 3.2, where the dashed lines indicate the expected

probability functions of the focal group. These DIF items were organized to elicit different mag-

nitudes of compensatory and non-compensatory DIF effects across the range of θ. As is apparent

from Figure 3.2, DIF Item 1 demonstrates a relatively large amount of cancellation across the full

9The use of alternative Σ̂(Ψ̂|Y) estimates was investigated but is not included in this chapter. See Chapter 4 for
further discussion.
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range of θ, while DIF Item 5 contains very little cancellation. Therefore, it is anticipated that com-

pensatory detection statistics such as sDIF and SIBTEST will be less effective at detecting DIF

for Item’s 1 and 2 compared to the other DIF items.

Tables containing the power rates when the number of non-focal items in the test was a factor

are included in Appendix B, while the remaining rates are included in Tables 3.5 through 3.7. The

general trend across all statistics was that, as should be expected, increasing the sample size and

number of anchor items resulted in higher rejection rates. As well, when the group sizes were

unequal, or the latent trait distributions differed across groups, all statistics resulted in higher re-

jection rates. In the designs where non-focal items were included in the fitted models the rejection

rates for sDIF, dDIF, and Wald tests were generally higher than the related designs where the

non-focal items were excluded. This result indicated that the non-focal items added extra infor-

mation for determining the ML parameter estimates and provided a less variable Σ̂(Ψ̂|Y) matrix.

Furthermore, the compensatory statistics were more powerful for the DIF items that demonstrated

smaller cancellation effects across the θ range (e.g., DIF items 3, 4, and 5) and less powerful for

the items with larger cancellation effects (e.g., DIF item 1 and 2). Finally, the non-compensatory

statistics generally displayed more power than the compensatory statistics across all DIF items

studied.
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Figure 3.2: Probability functions for population-level DIF. DIF items are organized to have pro-

gressively smaller cancellation effects, where Item 1 has the most cancellation and Item 5 the least.
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Compensatory Non-compensatory
Anchors DIF Item Focal Distribution Equal Sample Sizes sDIF sDIFM SIBTEST dDIF dDIFM Wald WaldM CSIBTEST

5 1 N(0, 1) Yes .099 .104 .238 .190 .292 .529 .995 .000
No .194 .218 .394 .584 .855 .785 1.000 .000

N(1/2, 2/3) Yes .087 .068 .407 .073 .091 .629 .998 .000
No .103 .104 .683 .303 .615 .843 1.000 .000

2 N(0, 1) Yes .110 .096 .339 .225 .451 .560 .993 .000
No .152 .178 .513 .682 .921 .789 1.000 .000

N(1/2, 2/3) Yes .082 .079 .500 .069 .238 .625 .998 .000
No .132 .140 .749 .554 .894 .862 1.000 .000

3 N(0, 1) Yes .427 .439 .427 .317 .555 .537 .984 .000
No .791 .803 .627 .770 .938 .806 1.000 .000

N(1/2, 2/3) Yes .443 .477 .585 .269 .578 .646 .993 .000
No .783 .803 .835 .792 .956 .870 1.000 .000

4 N(0, 1) Yes .503 .601 .490 .320 .561 .540 .935 .000
No .873 .922 .736 .772 .918 .836 .997 .000

N(1/2, 2/3) Yes .659 .709 .676 .358 .668 .647 .962 .000
No .933 .951 .895 .823 .944 .876 1.000 .000

5 N(0, 1) Yes .413 .600 .567 .316 .510 .536 .682 .000
No .841 .921 .792 .737 .881 .838 .934 .000

N(1/2, 2/3) Yes .577 .728 .713 .319 .629 .613 .750 .000
No .890 .956 .918 .776 .928 .860 .939 .000

10 1 N(0, 1) Yes .117 .099 .242 .301 .332 .656 .999 .279
No .220 .217 .424 .799 .883 .910 1.000 .435

N(1/2, 2/3) Yes .080 .056 .473 .092 .083 .696 1.000 .301
No .145 .118 .769 .563 .674 .931 1.000 .435

2 N(0, 1) Yes .107 .105 .342 .449 .515 .670 1.000 .335
No .178 .183 .564 .891 .946 .895 1.000 .468

N(1/2, 2/3) Yes .098 .094 .558 .217 .293 .769 1.000 .330
No .148 .154 .841 .854 .922 .938 1.000 .474

3 N(0, 1) Yes .535 .515 .506 .575 .658 .666 .992 .358
No .841 .847 .738 .911 .959 .890 1.000 .497

N(1/2, 2/3) Yes .509 .507 .653 .577 .673 .764 .998 .401
No .839 .833 .924 .957 .973 .951 1.000 .514

4 N(0, 1) Yes .677 .684 .604 .580 .670 .662 .955 .359
No .957 .950 .858 .924 .952 .917 .999 .489

N(1/2, 2/3) Yes .782 .806 .744 .682 .780 .757 .974 .381
No .978 .980 .959 .961 .978 .946 .999 .539

5 N(0, 1) Yes .721 .699 .689 .606 .617 .703 .718 .357
No .955 .965 .895 .904 .949 .903 .938 .497

N(1/2, 2/3) Yes .805 .821 .781 .700 .752 .759 .743 .363
No .971 .981 .963 .947 .967 .941 .954 .576

Table 3.5: DIF Power rates when N = 900. Statistics either used information from anchor and focal

items only (SIBTEST, CSIBTEST, sDIF, dDIF, Wald) or were marginalized over the complete

test length (sDIFM, dDIFM, WaldM).
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Compensatory Non-compensatory
Anchors DIF Item Focal Distribution Equal Sample Sizes sDIF sDIFM SIBTEST dDIF dDIFM Wald WaldM CSIBTEST

5 1 N(0, 1) Yes .169 .202 .437 .530 .813 .877 1.000 .000
No .332 .408 .637 .930 .996 .988 1.000 .000

N(1/2, 2/3) Yes .088 .087 .678 .181 .465 .922 1.000 .000
No .158 .212 .896 .753 .981 .991 1.000 .000

2 N(0, 1) Yes .188 .187 .555 .648 .913 .872 1.000 .000
No .320 .340 .801 .972 .999 .986 1.000 .000

N(1/2, 2/3) Yes .135 .137 .760 .423 .870 .919 1.000 .000
No .230 .266 .966 .957 .999 .998 1.000 .000

3 N(0, 1) Yes .814 .813 .714 .775 .937 .869 1.000 .000
No .988 .984 .897 .977 .999 .984 1.000 .000

N(1/2, 2/3) Yes .763 .811 .864 .775 .971 .945 1.000 .000
No .976 .984 .983 .990 .999 .997 1.000 .000

4 N(0, 1) Yes .887 .942 .804 .765 .924 .877 1.000 .000
No .994 .999 .953 .981 .998 .991 1.000 .000

N(1/2, 2/3) Yes .966 .971 .913 .857 .976 .947 1.000 .000
No 1.000 .999 .991 .995 .999 .999 1.000 .000

5 N(0, 1) Yes .850 .941 .836 .711 .903 .869 .962 .000
No .987 .998 .972 .970 .996 .982 1.000 .000

N(1/2, 2/3) Yes .927 .979 .942 .817 .958 .912 .975 .000
No .998 1.000 .995 .984 1.000 .992 .999 .000

10 1 N(0, 1) Yes .231 .198 .428 .752 .856 .939 1.000 .456
No .417 .428 .679 .986 .998 .999 1.000 .664

N(1/2, 2/3) Yes .098 .084 .752 .365 .503 .975 1.000 .513
No .209 .233 .976 .958 .987 .999 1.000 .583

2 N(0, 1) Yes .208 .205 .630 .897 .940 .947 1.000 .509
No .344 .363 .860 .997 1.000 .997 1.000 .680

N(1/2, 2/3) Yes .157 .162 .823 .771 .908 .973 1.000 .514
No .271 .287 .989 .995 .999 1.000 1.000 .621

3 N(0, 1) Yes .866 .853 .787 .931 .966 .950 1.000 .545
No .991 .991 .958 .999 1.000 .999 1.000 .697

N(1/2, 2/3) Yes .859 .821 .939 .960 .985 .985 1.000 .589
No .987 .992 1.000 1.000 1.000 1.000 1.000 .668

4 N(0, 1) Yes .953 .963 .888 .932 .964 .943 .999 .513
No 1.000 .999 .986 1.000 1.000 1.000 1.000 .695

N(1/2, 2/3) Yes .984 .984 .957 .974 .986 .977 1.000 .618
No 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .727

5 N(0, 1) Yes .965 .972 .913 .920 .958 .947 .970 .539
No .999 1.000 .995 .997 .999 .999 .999 .686

N(1/2, 2/3) Yes .989 .992 .983 .968 .987 .978 .976 .634
No 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .738

Table 3.6: DIF Power rates when N = 1800. Statistics either used information from anchor

and focal items only (SIBTEST, CSIBTEST, sDIF, dDIF, Wald) or were marginalized over the

complete test length (sDIFM, dDIFM, WaldM).

With respect to the compensatory statistics, SIBTEST was more powerful for DIF Items 1

and 2 than both the marginalized version of sDIF (sDIFM) and the version of sDIF which did not

include the non-focal items. However, for DIF items 4 and 5, the sDIF statistics were more compa-
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Compensatory Non-compensatory
Anchors DIF Item Focal Distribution Equal Sample Sizes sDIF sDIFM SIBTEST dDIF dDIFM Wald WaldM CSIBTEST

5 1 N(0, 1) Yes .244 .296 .575 .797 .976 .969 1.000 .000
No .478 .577 .811 .991 1.000 .998 1.000 .000

N(1/2, 2/3) Yes .129 .135 .856 .407 .847 .989 1.000 .000
No .235 .321 .983 .964 .999 1.000 1.000 .000

2 N(0, 1) Yes .265 .269 .734 .888 .994 .965 1.000 .000
No .468 .474 .932 .997 1.000 1.000 1.000 .000

N(1/2, 2/3) Yes .187 .200 .918 .822 .989 .994 1.000 .000
No .290 .369 .993 .998 1.000 1.000 1.000 .000

3 N(0, 1) Yes .943 .947 .851 .945 .993 .971 1.000 .000
No .998 1.000 .986 .998 1.000 .998 1.000 .000

N(1/2, 2/3) Yes .910 .932 .960 .960 .996 .990 1.000 .000
No .998 1.000 .999 .999 1.000 .999 1.000 .000

4 N(0, 1) Yes .988 .993 .913 .936 .992 .979 1.000 .000
No 1.000 1.000 .997 .998 1.000 1.000 1.000 .000

N(1/2, 2/3) Yes .998 .996 .980 .970 .999 .990 1.000 .000
No 1.000 1.000 .997 1.000 1.000 1.000 1.000 .000

5 N(0, 1) Yes .980 .993 .945 .915 .985 .979 .997 .000
No .999 1.000 .998 .999 1.000 1.000 1.000 .000

N(1/2, 2/3) Yes .987 .998 .982 .964 .995 .985 .997 .000
No .999 1.000 1.000 .999 1.000 1.000 1.000 .000

10 1 N(0, 1) Yes .277 .306 .620 .951 .981 .995 1.000 .598
No .539 .619 .835 1.000 1.000 1.000 1.000 .745

N(1/2, 2/3) Yes .110 .137 .894 .706 .879 .995 1.000 .591
No .290 .329 .998 .999 1.000 1.000 1.000 .667

2 N(0, 1) Yes .273 .274 .780 .984 .995 .993 1.000 .605
No .493 .494 .968 1.000 1.000 1.000 1.000 .749

N(1/2, 2/3) Yes .221 .221 .959 .978 .992 .998 1.000 .667
No .352 .393 1.000 1.000 1.000 1.000 1.000 .679

3 N(0, 1) Yes .967 .966 .945 .991 .997 .993 1.000 .641
No .999 1.000 .996 1.000 1.000 1.000 1.000 .781

N(1/2, 2/3) Yes .954 .943 .981 .996 .999 .999 1.000 .710
No 1.000 .999 1.000 1.000 1.000 1.000 1.000 .760

4 N(0, 1) Yes .995 .996 .974 .989 .996 .992 1.000 .641
No 1.000 1.000 1.000 .999 1.000 .999 1.000 .768

N(1/2, 2/3) Yes 1.000 .999 1.000 .999 1.000 .999 1.000 .735
No 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .790

5 N(0, 1) Yes .995 .999 .982 .991 .997 .994 .996 .628
No 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .776

N(1/2, 2/3) Yes 1.000 1.000 .999 1.000 1.000 1.000 .999 .750
No 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .833

Table 3.7: DIF Power rates when N = 2700. Statistics either used information from anchor

and focal items only (SIBTEST, CSIBTEST, sDIF, dDIF, Wald) or were marginalized over the

complete test length (sDIFM, dDIFM, WaldM).
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rable in terms of power, and sDIF often displayed higher rejection rates than the SIBTEST proce-

dure. Furthermore, the DRF statistics tended to become more powerful than SIBTEST when group

sizes were unequal, and generally acquired power rates closer to 1 more quickly than SIBTEST

when ten anchor items were selected. DIF item 3 did not favor any particular compensatory statistic

and seems to represent the approximate parameter transition combination when the DRF frame-

work began to outperform SIBTEST. Coupled with the fact that SIBTEST tended to display nom-

inal to liberal detection rates, while the sDIF tended to display nominal to conservative rates, it

is clear that overall sDIF performed better than SIBTEST for items which had little cancellation

effects.

The non-compensatory statistics, on the other hand, demonstrated a different trend than the

compensatory statistics. CSIBTEST continued to have difficulty obtaining p-values less than the

nominal α when only five anchors were used, indicating a severe limitation to CSIBTEST when

the number of anchor items selected is too small. Furthermore, both variants of the dDIF statistics

performed much better than the CSIBTEST statistics when five or ten anchor items were selected

regardless of whether the non-focal items were included. This result demonstrates that the DRF

family of non-compensatory statistics clearly performed better than CSIBTEST with respect to

both Type I error control and statistical power when the same number of anchors were used. As

well, contrary to the results presented by Li and Stout (1996), CSIBTEST did not perform better

than SIBTEST for detecting DIF for these particular non-uniform DIF items studied.

Finally, the Wald test was the most powerful of all non-compensatory tests investigated, though
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dDIFM did outperform the item subsetted version of the Wald test in many of the conditions stud-

ied. Nevertheless it was clear that the Wald test had the most power of all the statistics investigated,

especially when non-focal items were included in the model. Combined with the consistent Type I

error rates in the previous section the Wald test was clearly the most optimal DIF detection statistic

studied in these Monte Carlo simulation conditions. This finding also implies that likelihood-ratio

variants for detecting DIF should demonstrate similar properties because the Wald test is asymp-

totically equivalent to the likelihood ratio test.

3.4.3 Anchor Contamination in the SIBTEST Statistics

The following simulation investigated the effects of using anchor items that contained compen-

satory and non-compensatory DIF effects with the SIBTEST and CSIBTEST statistics. The pur-

pose was to emulate the ‘all non-focal items as anchors’ approach that Li and Stout (1996) and

Shealy and Stout (1993) recommended, even when DIF is present, to determine whether nominal

Type I error rates could be achieved. Using the same five DIF item combinations from the previous

section on DIF power rates all non-focal items were included as anchor items. Similar simulation

factors were investigated as before, including sample size, whether the group sample sizes were

equal, test length (and incidentally the number of anchor items), and whether the latent distribu-

tions were identical. Table 3.8 contains the Type I error detection rates for SIBTEST, SIBTESTUC

(when the latent trait distributions were equal), and CSIBTEST.

Table 3.8 demonstrates that the Type I error rates for SIBTEST, the uncorrected version of
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N(0, 1) N(1/2, 2/3)
Sample Sizes Test Length SIBTEST SIBTESTUC CSIBTEST SIBTEST CSIBTEST

450/450 20 .075 .069 .087 .102 .099
30 .052 .048 .063 .063 .073
40 .041 .041 .057 .049 .063

600/300 20 .106 .086 .138 .152 .135
30 .070 .064 .090 .093 .088
40 .053 .050 .095 .079 .085

900/900 20 .109 .087 .132 .171 .137
30 .076 .071 .080 .090 .089
40 .062 .058 .073 .061 .077

1200/600 20 .171 .132 .198 .248 .200
30 .095 .087 .118 .134 .111
40 .078 .072 .101 .097 .094

1350/1350 20 .148 .118 .172 .217 .172
30 .086 .077 .094 .114 .109
40 .068 .064 .076 .073 .084

1800/900 20 .230 .174 .263 .341 .271
30 .116 .102 .145 .181 .147
40 .091 .085 .114 .116 .110

Table 3.8: Type I error rates under contamination effects for the SIBTEST procedures when five

anchor items contained DIF. Type I error rates greater than .075 and less than .025 are highlighted

in bold.

SIBTEST, and CSIBTEST were negatively affected by the inclusion of contaminated anchor items.

Although the contamination occurred across a number of the simulation conditions it was largest

in the conditions where the total test length was only 20 (which is where the proportion of an-

chor items that contained DIF was the highest). The error rates rose as high as .341 and .271 for

SIBTEST and CSIBTEST, respectively, and became progressively worse as the sample sizes in-

creased. Furthermore, because the uncorrected SIBTEST statistic became inflated when the latent

trait distributions were equal, it was clear that anchor contamination did not solely influence the
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regression correction for the SIBTEST and instead fundamentally influenced the procedure itself.

Finally, the Type I error rates tended to be even more liberal when the latent distributions were not

equal.

From this brief simulation study, it is clear that the SIBTEST family of statistics do not always

perform well when adopting the ‘all non-focal items as anchors’ strategy. When including con-

taminated items in the linking process, the Type I error rates become more akin to the behavior of

power rates in that increasing sample size results in higher rejection rates. Therefore, the use of

the SIBTEST family of statistics with this anchor selection strategy should be avoided.

The IRT analogue of considering all non-focal items as anchor items was not considered for

computational and theoretical reasons. To achieve the same number of anchor items in the IRT

frameworks the fitted IRT models would have to be estimated such that all the IRT parameters —

excluding those from the focal item — are constrained to be equal across groups. Following the

estimation of these models, the DRF framework would then require a parameter covariance matrix

to be estimated for each respective model, and the parametric sampling procedure would then be

required. Although this approach is certainly possible, and indeed may result in much higher power

due to the reduced sampling variability, it was considered too computationally intensive to explore.

Furthermore, this anchoring strategy generally does not reflect good practice in the presence of

known contamination effects (Millsap, 2011). Use of the likelihood-ratio approach to DIF would

follow the same line of reasoning (although computation of Σ̂(Ψ̂|Y) for each model would not

be required); however, again this approach would result in including contaminated anchor items,
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which is a practice that should be avoided.

3.4.4 Summary of DIF Simulations

After examining the differential functioning frameworks across a range of conditions that varied

sample size, equal and unequal group sizes, test lengths, latent distributions, number of anchor

items, inclusion of non-focal items, and various DIF effects, a few trends are apparent:

• The DFIT framework was unable to obtain Type I error rates close to nominal α rate and

was influenced by several design factors. Hence, based on these results the DFIT detection

statistics should not be used to detect DIF. Furthermore, the observed NCDIF values do not

demonstrate behavior which would be useful for quantifying the magnitude of DIF effects;

therefore, use of NCDIF as an effect size is also not recommended. This combination of

findings renders the DFIT framework largely unsuitable for detecting or quantifying DIF.

• SIBTEST, sDIF, dDIF, and the Wald test provided reasonable Type I error control across

the conditions studied, including whether non-focal items were fitted (where applicable).

Therefore, the simulation results suggest that these statistics are justifiable for detecting DIF

effects.

• SIBTEST demonstrated slightly liberal Type I error rates when too few anchor items were se-

lected and the latent trait distributions were unequal. sDIF and dDIF demonstrated slightly

conservative Type I error rates when the non-focal items were omitted from the fitted models
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and when the sample sizes were smaller.

• Of the compensatory statistics, SIBTEST appeared to be effective for the DIF items 1 and

2 (see Figure 3.2). However, the sDIF family of statistics performed better for DIF items 4

and 5. This finding suggests that sDIF generally performs better than SIBTEST when DIF

is more uniform, while SIBTEST performs better when the DIF is more non-uniform.

• Of the non-compensatory statistics, the Wald test demonstrated the highest power rates and

best Type I error control across the conditions studied. Of the three frameworks studied,

however, dDIF performed the best in terms of Type I error control and DIF detection rates.

CSIBTEST appeared to be of no use when only five anchor items were selected and only

obtained nominal Type I error rates when 10 or more anchors were selected. Overall,

CSIBTEST did not show an improvement in power over the standard SIBTEST procedure.

• With respect to SIBTEST and CSIBTEST, when non-focal items containing DIF were used

as anchor items, the Type I error rates increased to unacceptably liberal levels. Therefore,

the routine use of using all non-focal items as anchors is generally not recommended.

In addition to these general conclusions from the Monte Carlo simulations, it was apparent that

SIBTEST was not consistently the most well performing of the compensatory statistics, even when

nominal Type I errors were achieved. In fact, simulation results show that sDIF generally outper-

forms SIBTEST when studying items with little to no cancellation effects. For simpler IRT models

which necessarily have no cancellation effect (such as models from the Rasch (1960) family where
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only intercepts are fitted), the sDIF measures are likely to outperform SIBTEST across a wide va-

riety of empirical settings. For Rasch models in particular, sDIF has the additional benefit that it

will contain less sampling variability compared to 2PL models because the estimation of the slope

parameters is not required; hence, even higher detection rates will occur, further suggesting that

sDIF will outperform SIBTEST in simpler IRT models. Because the DRF framework explicitly

capitalizes on the type of item response models that have been fitted it will have greater detec-

tion rates and stability as the sampling variability decreases. This particular property is not shared

with SIBTEST, for example, because no model-implied information about the respective items is

included in the formulation of the statistics.

The DFIT statistics greatly lacked fidelity for detecting DIF. As well, it also appears to be

the case that the observed NCDIF values should not be used as effect size measures. Because

the NCDIF values are highly influenced by sample size and the number of anchors its usefulness

as an effect size measure is problematic. Varying sample size and the number of anchor items

should generally not affect the NCDIF values if they are to be used as an effect size measure. For

example, in smaller sample sizes it is clear that the likelihood of obtaining a large NCDIF value

is very high, even when no DIF is present. Therefore, it is difficult to ascertain whether a value of

̂NCDIF = .1 is truly ‘large’ when this value is obtained in smaller samples.

In light of the simulation results presented, it appears that the DFIT framework is of very

limited use in both detecting and quantifying DIF in large and small sample sizes. Although the

Type I error rates for the NCDIF allegedly can be corrected by simulating ad-hoc null hypothesis
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distributions (e.g., see Oshima et al., 2006) the problem of interpretation the observed NCDIF

values remains because they must be interpreted in concert with other empirical characteristics;

namely, sample size, number of anchor items, estimator used to obtain latent trait values, the size

of the focal group relative to the reference group, and so on.

Finally, of the three frameworks investigated this simulation study suggested that the DRF

framework provided the most consistent Type I error control and demonstrated the greatest po-

tential for detecting compensatory and non-compensatory DIF effects. In situations where it is

apparent that non-uniform DIF is present, the dDIF statistics will be of the most effective of the

three frameworks at detecting DIF. In situations where items demonstrate uniform DIF in their ex-

pected response curves, the sDIF statistics will become useful (and should be more powerful than

dDIF for completely uniform DIF because the test has fewer degrees of freedom). Couple this

advantage with the ability to investigate DIF at particular integration ranges along θ, the ability

to represent variability in the response curves at independent θ levels graphically, the flexibility

to include information about non-focal items, support for any class of IRT model (whether these

be for polytomous or dichotomous data), and so on, and it is clear that, of the three frameworks

studied, the DRF framework offers the most comprehensive and effective set of tools for studying

DIF.
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3.5 Differential Bundle and Test Functioning

The statistics investigated in this section pertaining to DBF and DTF were SIBTEST, DT F and

DBF from the DFIT framework (again, with the subscripts LF and S F to indicate whether the

focal group was larger or smaller than the reference group), and sDT F, sDBF, dDT F, and dDBF

from the DRF framework. The CSIBTEST statistic was not studied because it is unable to account

for multiple crossing locations that are likely to occur in composite response functions. As was the

case with the previous simulation regarding DIF, to ensure that the SIBTEST procedure behaved

correctly, and to determine the effect of the regression adjustment, SIBTEST was compared to the

unadjusted variant of the statistic and the Type I error behavior was investigated when the DIF

items were included in the matched set of items.

The data were again generated from a multiple-group IRT model where each item had a

2PL structure. The slope parameters were drawn from a log-normal distribution, where α ∼

logN(0.2, 0.2), and the intercept parameters were drawn from a normal distribution, δ ∼ N(0, 1/2).

In the conditions where no DIF was present these parameters were set to be equal across groups.

When investigating DBF, the sizes of the focal item bundles were organized into sets of three

and five items. DTF was tested by treating all non-anchor items as a complete focal item bundle;

therefore, the size of the bundle used to compute the DTF statistics is obtained by subtracting the

number of anchor items from the length of the test.

95



3.5.1 Type I Error Rates

Tables 3.9 and 3.10 contain the Type I error rates for DBF when three and five focal items were

investigated, respectively. These tables pertain to the false detection rates when information about

the non-focal items was omitted from the fitted models. Appendix C contains the Type I error rates

for DTF and DBF when including the non-focal items in the fitted IRT models.

Anchors Focal Distribution Sample Sizes sDBF dDBF SIBTEST SIBTESTUC DBFLF DBFS F
5 N(0, 1) 450/450 .039 .037 .076 .046 .732 .743

900/900 .047 .050 .067 .060 .798 .809
1350/1350 .045 .060 .072 .049 .813 .812
600/300 .040 .040 .073 .059 .807 .764

1200/600 .034 .047 .063 .055 .799 .771
1800/900 .048 .056 .077 .055 .853 .824

N(1/2, 2/3) 450/450 .025 .040 .100 – .780 .749
900/900 .031 .027 .090 – .809 .792

1350/1350 .039 .049 .094 – .835 .813
600/300 .047 .043 .085 – .847 .765

1200/600 .041 .048 .088 – .883 .801
1800/900 .053 .049 .100 – .889 .823

10 N(0, 1) 450/450 .046 .055 .066 .063 .755 .753
900/900 .038 .054 .046 .037 .781 .789

1350/1350 .044 .063 .063 .049 .807 .807
600/300 .038 .041 .063 .053 .831 .790

1200/600 .038 .052 .053 .050 .857 .837
1800/900 .048 .066 .061 .053 .878 .851

N(1/2, 2/3) 450/450 .034 .035 .070 – .819 .759
900/900 .040 .037 .079 – .809 .811

1350/1350 .028 .047 .077 – .826 .824
600/300 .043 .043 .077 – .857 .809

1200/600 .046 .048 .066 – .883 .806
1800/900 .056 .055 .063 – .884 .839

Table 3.9: Type I error rates for DBF testing with three focal items when all non-focal items

are omitted from the fitted models. Type I error rates greater than .075 and less than .025 are

highlighted in bold.

Beginning with the DBF and DT F statistics from the DFIT framework, it is apparent that
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Anchors Focal Distribution Sample Sizes sDBF dDBF SIBTEST SIBTESTUC DBFLF DBFS F
5 N(0, 1) 450/450 .043 .048 .079 .050 .744 .740

900/900 .045 .046 .075 .062 .772 .778
1350/1350 .038 .048 .078 .045 .805 .803
600/300 .027 .049 .048 .042 .753 .711

1200/600 .061 .062 .083 .050 .814 .786
1800/900 .050 .058 .074 .043 .853 .826

N(1/2, 2/3) 450/450 .028 .037 .114 – .783 .754
900/900 .049 .048 .107 – .814 .781

1350/1350 .041 .041 .119 – .813 .810
600/300 .045 .051 .106 – .855 .786

1200/600 .056 .043 .112 – .872 .800
1800/900 .041 .044 .104 – .878 .807

10 N(0, 1) 450/450 .031 .046 .064 .048 .757 .756
900/900 .041 .065 .057 .045 .770 .771

1350/1350 .038 .063 .058 .047 .812 .811
600/300 .040 .052 .069 .055 .811 .778

1200/600 .051 .055 .068 .063 .873 .834
1800/900 .045 .062 .060 .048 .860 .835

N(1/2, 2/3) 450/450 .029 .042 .076 – .786 .756
900/900 .031 .039 .067 – .818 .787

1350/1350 .042 .046 .067 – .837 .782
600/300 .033 .043 .070 – .824 .764

1200/600 .045 .043 .060 – .838 .815
1800/900 .052 .059 .080 – .885 .827

Table 3.10: Type I error rates for DBF testing with five focal items when all non-focal items

are omitted from the fitted models. Type I error rates greater than .075 and less than .025 are

highlighted in bold.

the Type I error rates were again extremely inflated across all conditions, regardless of whether

DTF or DBF was tested. Overall, the empirical Type I error rate for the DTF simulation was

.800 (S D = .048) when the focal group size was equal to or larger than the reference group, and

.778 (S D = .038) when the focal group was equal to or less than the reference group. As sample

size and the number of items increased the Type I error rate also steadily increased. Increasing

the number of anchors had the effect of decreasing the error rate, while differences in the latent
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distributions caused the Type I error rates to increase. There was a similar pattern of inflation in the

DBF simulations when using item bundles of size three and five, and when omitting the non-focal

items to compute the statistics. A full discussion of these effects is unnecessary given that the error

rates were so poor; therefore, the DT F statistics and DBF are not discussed further.

The SIBTEST framework, on the other hand, had more promising results than the DFIT frame-

work. However, SIBTEST also demonstrated inflated error rates that were primarily influenced

by the size of the focal bundle and number of anchor items selected, consequently causing a large

majority of rates for falsely detecting compensatory DTF (as well as compensatory DBF, though

to a lesser extant) to be unacceptably liberal. Overall, SIBTEST demonstrated a mean Type I error

rate of .073 (S D = .013) when investigating DBF with three focal items, .078 (S D = .020) when

investigating DBF with five focal items, and .102 (S D = .027) when investigating DTF (with false

detection rates reaching as high as .165). The results also suggest that SIBTEST was negatively

influenced by the latent trait distributions. When unequal latent traits were combined with five

anchors, the false detection rates become more inflated, especially when investigating DTF. In-

creasing the total number of anchor items generally appeared to help reduce the Type I error rates;

however, more anchor items would be required before the rates could reach the nominal α level.

SIBTEST’s Type I error rates demonstrated other interesting features as well, especially when

compared to the uncorrected variant (SIBTESTUC). As anticipated for the uncorrected SIBTEST,

when the latent trait distributions were exactly equal the error rates were close to the nominal α

rate regardless of the size of the focal item bundle or number of anchors used (see Tables 3.9
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and 3.10, as well as Appendix C). This result suggests that the regression correction procedure for

SIBTEST requires a larger amount of linking information from the anchor items when testing item

bundles for compensatory DBF and DTF effects. In general, it appears that Shealy and Stout’s

(1993) statistics for DBF and DTF require a larger matched set of items for the Type I error rates

to behave close to the nominal level; otherwise, the regression adjustment results in inflated error

rates, even when the latent trait distributions are equal.

Finally, the DRF statistics all demonstrated reasonable Type I error rates regardless of the

simulation conditions investigated and size of the focal bundles. When all non-focal items were

included in the fitted models the DTF and DBF statistics were slightly conservative when the

sample size was only 900. However, error rates became closer to the nominal α level as sample

size increased, which is the same observation reported by Chalmers et al. (2016) (see the associated

on-line appendix for more specific details). When non-focal items were omitted from the analyses

the rates all demonstrated effective Type I error control. Hence, compared to DFIT and SIBTEST

only the DRF framework provided sufficient Type I error control when studying DTF and DBF.

3.5.2 Power Rates From DIF Amplification

DTF and DBF share a number of detection properties with DIF in that their rates are all influenced

by empirical characteristics such as sample size, test length, number of anchor items, as so on.

However, DTF and DBF are also influenced by the magnitude of the individual DIF effects and

how these effects propagate at different θ levels. Generally speaking, the more items which display
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DIF, and the larger these DIF effects are, the more likely their effects will propagate within the

composite response functions, thereby causing larger DBF and DTF effects.

The power analysis in this section was organized to determine the effect of so-called ‘DIF am-

plification’, or the compound effects of DIF which combine to form larger response differences in

the composite response function (Shealy & Stout, 1993). Two different sets of DIF effects were

included: DIF items 1, 3, and 5 from the previous power analysis section relating to DIF were

used when three of the test items contained DIF, and DIF items 1 through 5 were used when five

of the test items contained DIF. The composite effects at the respective bundle and test levels can

be seen in Figure 3.3. The left images in Figure 3.3 indicate the DTF effect in a 20 item test, while

the right graphics demonstrate the respective bundles of size three and five. The expected differ-

ences between the test and bundle response functions are in fact identical because the response

differences are only caused by the items containing DIF, not by the items which do not contain

DIF. For instance, at θ = 1 the expected difference between both response curves is 0.17 (i.e.,

14.02 − 13.85 ≡ 2.11 − 1.94). Therefore, if the IRT parameters were known a priori the DTF and

DBF measures from the DRF framework (when the DBF bundle contains all the items with DIF)

will provide the exactly same effect size values. However, in practice these estimates will slightly

differ because the DTF statistics contain more sampling variability than the DBF measures.

To conserve space, tables containing the simulation results where the non-focal items were

included in the fitted models are in Appendix D. Appendix D also contains the results for DTF

detection because these rates varied as a function of the length of the tests. DBF rejection rates

100



θ

T
(θ

)

0

5

10

15

20

−4 −2 0 2 4

θ
T

B
(θ

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

−4 −2 0 2 4

θ

T
(θ

)

0

5

10

15

20

−4 −2 0 2 4

θ

T
B
(θ

)

0

1

2

3

4

5

−4 −2 0 2 4

Figure 3.3: DTF and DBF response functions generated from the DIF response curves. Leftmost

graphs pertain to the test response function for a 20 item test, while the rightmost graphs contain

only the items demonstrating DIF (i.e., a bundle). The function in the top two figures are based on

three DIF items while the bottom two figures are based on five DIF items.
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when the non-focal items were omitted from the fitted models can be seen in Table 3.11. For

convenience, Table 3.11 also includes the marginalized results from the DBF rates in Appendix D

to help gauge the effect of including information when modeling non-focal items. Finally, because

of the extremely ineffective Type I error control from the DFIT framework the compensatory DT F

and DBF statistics were omitted from the following power analysis.
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103

Three DIF Items Five DIF Items
Sample Size Anchors Focal Distribution Equal Group Sizes sDBF sDBFM SIBTEST dDBF dDBFM sDBF sDBFM SIBTEST dDBF dDBFM

900 5 N(0, 1) Yes .149 .150 .763 .780 .915 .393 .366 .882 .928 .981
No .253 .301 .936 .993 1.000 .700 .693 .981 1.000 1.000

N(1/2, 2/3) Yes .131 .123 .905 .654 .850 .271 .267 .975 .918 .978
No .219 .208 .991 .990 .998 .515 .540 .999 1.000 1.000

10 N(0, 1) Yes .175 .157 .843 .950 .973 .464 .462 .964 .998 .997
No .349 .321 .983 .999 1.000 .778 .792 .999 1.000 1.000

N(1/2, 2/3) Yes .157 .134 .964 .885 .932 .312 .308 .995 .995 .998
No .234 .229 1.000 1.000 1.000 .607 .631 1.000 1.000 1.000

1800 5 N(0, 1) Yes .293 .305 .955 .987 .998 .696 .706 .995 .999 1.000
No .514 .563 .998 1.000 1.000 .936 .954 .999 1.000 1.000

N(1/2, 2/3) Yes .218 .207 .992 .992 .999 .470 .529 .998 1.000 1.000
No .335 .402 1.000 1.000 1.000 .818 .863 1.000 1.000 1.000

10 N(0, 1) Yes .328 .336 .989 1.000 1.000 .797 .803 1.000 1.000 1.000
No .593 .614 1.000 1.000 1.000 .977 .984 1.000 1.000 1.000

N(1/2, 2/3) Yes .240 .239 .999 1.000 1.000 .550 .586 1.000 1.000 1.000
No .384 .425 1.000 1.000 1.000 .885 .903 1.000 1.000 1.000

2700 5 N(0, 1) Yes .404 .444 .992 1.000 1.000 .855 .873 .998 1.000 1.000
No .694 .742 1.000 1.000 1.000 .993 .991 1.000 1.000 1.000

N(1/2, 2/3) Yes .274 .291 1.000 1.000 1.000 .644 .692 1.000 1.000 1.000
No .493 .547 1.000 1.000 1.000 .931 .966 1.000 1.000 1.000

10 N(0, 1) Yes .469 .479 .999 1.000 1.000 .927 .925 1.000 1.000 1.000
No .767 .783 1.000 1.000 1.000 .998 .998 1.000 1.000 1.000

N(1/2, 2/3) Yes .294 .330 1.000 1.000 1.000 .735 .745 1.000 1.000 1.000
No .567 .585 1.000 1.000 1.000 .978 .976 1.000 1.000 1.000

Table 3.11: Power rates for DBF testing with three and five focal items. Marginalized rates represented by sDBFM and

dDBFM were obtained by averaging the detection rates across the total number of items from Appendix C.



As was the case with the prior DIF simulation, a number of systematic trends occurred across

all the statistics investigated. For example, increasing the sample size led to higher detection rates,

unequal group conditions resulted in higher rejection rates than equal group conditions, models

with five DIF items contained more power than models with three DIF items, and increasing the

number of anchor items led to higher detection rates. Furthermore, including information about

the non-focal items in the fitted models led to higher rejection rates than when these items were

omitted; a result that also was observed when studying DIF. Finally, the effect of DIF amplification

when investigating more than one item with DIF simultaneously is clear. When only DIF items

were included in the bundle of focal items, the power rates were considerably larger than the DTF

detection rates as well as the rates based on the individual DIF items found in the previous section.

With respect to the DTF statistics in Appendix D, the power rates for sDT F, dDT F, and

SIBTEST decreased as the length of the test increased. This effect was expected because including

items without DIF in the composite response functions will necessarily add additional sampling

variability to the respective statistical estimates, thereby making it more difficult to detect true

DTF effects (cf., Chalmers et al., 2016). Although the magnitude of the DTF measures in the

DRF framework are asymptotically equivalent to the respective DBF counterparts when the focal

bundles contain only the items with DIF, the sampling variability will necessarily be smaller when

the focal bundle includes only items that contain DIF (i.e., including non-DIF items in the focal

bundle only adds additional sampling variability to the test statistics).

Among the compensatory statistics, SIBTEST had the most power to detect DTF and DBF for
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the select DIF items compared to the signed statistics from the DRF framework. Unfortunately,

however, the inflated Type I error rates complicates the interpretation of the SIBTEST power rates

in that the majority of the rates were systematically inflated. Moreover, because SIBTEST was

negatively influenced by the size of the focal bundle, the power rates for DTF were especially diffi-

cult to interpret. Therefore, there is a trade-off when using SIBTEST for DBF and DTF detection.

If liberal Type I error rates can be tolerated, and the size of the focal bundle can be kept as small

as possible, then SIBTEST may be a useful tool for detecting DBF effects.

The non-compensatory dDBF statistics, on the other hand, generally demonstrated the most

power across the conditions studied. This advantage was especially apparent when non-focal items

were included in the fitted models, where the smallest power rate was in the N = 900, three focal

item conditions. These rates were .840 and .923 when five and ten anchor items were investigated,

respectively, generally indicating that detecting non-compensatory DBF was very effective across

all conditions. The reason these statistics demonstrated such large power compared to the compen-

satory statistics was because of the cancellation effects in the composite response functions. While

the cancellation in the response functions generally diminished the magnitude of the signed DRF

statistics and SIBTEST, the non-compensatory nature of the deviation left the non-compensatory

family of the DRF statistics largely unaffected. This is also the reason that the dDT F statistic

was the most powerful of all the relevant DTF statistics. Given that the deviation statistics from

the DRF framework also demonstrated reasonable Type I error rates, it is clear that this family of

detection statistics is optimal for detecting DBF or DTF effects, especially in settings where the
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composite response functions contain cancellation effects across the range of the latent trait.

3.5.3 Anchor Contamination in the SIBTEST Procedures

Similar to Section 3.4.3, the following simulation investigated the effect of including contaminated

anchor items with compensatory and non-compensatory DIF for SIBTEST when testing for DBF10.

The purpose of this section was to evaluate whether the ‘all non-focal items as anchors’ approach

that Shealy and Stout (1993) recommended for DIF would also be problematic when studying

DBF. Therefore, in the following simulation all non-focal items are included as anchor items and

the same five DIF item combinations from the previous section on DIF power rates are included

as the contaminated items. The simulation investigated the effects of varying sample sizes, equal

or unequal sample sizes, test lengths, focal bundle sizes, and whether the latent trait distributions

were equal. Table 3.12 contains the results of this Type I error study.

Similar to the results from the anchor contamination simulation when investigating DIF, SIBTEST

became more liberal when contaminated anchors were used. However, DBF Type I error control

was much worse than when testing DIF. Type I error rates climbed to extremely liberal levels, as

high as .761 when three focal items were investigated, and .949 when five focal items were inves-

tigated. Furthermore, the uncorrected SIBTEST procedure was negatively affected by the contam-

inated anchors because the error rates in the designs where the latent distributions were equal also

demonstrated inflated error rates. This effect largely suggests that the contamination was indepen-

10Investigating the effect of contaminated anchors for DTF was not relevant because all non-anchor items are, by
definition, already included in the focal bundle.
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Three Focal Items Five Focal Items
N(0, 1) N(1/2, 2/3) N(0, 1) N(1/2, 2/3)

Sample Sizes Test Length SIBTEST SIBTESTUC SIBTEST SIBTEST SIBTESTUC SIBTEST
450/450 20 .153 .121 .206 .263 .179 .350

30 .069 .067 .067 .122 .102 .107
40 .064 .057 .044 .066 .066 .047

600/300 20 .232 .170 .358 .390 .266 .611
30 .108 .082 .165 .172 .146 .275
40 .082 .077 .077 .120 .112 .103

900/900 20 .265 .203 .362 .422 .276 .599
30 .141 .119 .138 .201 .155 .227
40 .090 .084 .056 .118 .104 .069

1200/600 20 .427 .316 .613 .671 .501 .871
30 .198 .157 .305 .334 .269 .491
40 .133 .114 .135 .190 .171 .232

1350/1350 20 .368 .271 .506 .620 .456 .752
30 .185 .156 .214 .293 .234 .360
40 .128 .116 .085 .190 .169 .120

1800/900 20 .524 .387 .761 .803 .648 .949
30 .268 .225 .452 .450 .376 .683
40 .166 .152 .232 .292 .249 .361

Table 3.12: Contamination effects for the SIBTEST procedures when five anchor items contained

DIF. Type I error rates greater than .075 and less than .025 are highlighted in bold.

dent of the SIBTEST regression correction. Finally, as was the case when investigating DIF with

contaminated anchor items it is clear that including all non-focal items as anchors is a suboptimal

strategy when using SIBTEST; moreover, this strategy is especially bad when SIBTEST is used

for testing bundles of focal items of nearly any size.

3.5.4 Type I Error Rates From DIF Cancellation

This section presents a Monte Carlo simulation to demonstrate how effective the three statistical

frameworks were able to achieve consistent Type I error rates in the presence of complete DIF

cancellation effects. Conditions under investigation were identical to the conditions in the previous
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section on Type I errors when no DIF was present, however one additional condition relating to the

number of items containing completely balanced DIF effects (two versus four) was included. The

results were expected to be similar to the previous DTF and DBF Type I error rate simulations.

Finally, to conserve space the simulation tables which included axillary information from the non-

focal items, as well as the results relating to DTF, are available in Appendix E.

The item parameters used to generate the DIF effects were constructed as follows: For the

reference group, the slope parameters for the items containing DIF were evenly spaced between

0.5 and 1, while the intercept parameters were evenly spaced between 0.5 and -0.5; the opposite

trend was used for the focal group, where slopes were evenly spaced between 1 and 0.5 and the

intercepts were evenly spaced between -0.5 and 0.5. The expected probability plots for these DIF

effects are in Figures 3.4. DIF items 1 and 4 were used in the simulation where two items contained

DIF, and all four DIF items were used in the investigation where four DIF items were included.

When the expected test and bundle scoring functions are generated the contribution of the DIF

effects completely cancels out; hence, the reference and focal groups generate identical expected

response functions across all levels of θ.

The results from Tables 3.13 and 3.14, as well as the tables in Appendix E, indicate that the

Type I error rates for the sDT F and dDT F were very similar to the detection rates when there were

no items containing DIF. Overall, it was clear that the DRF framework demonstrated nominal

to slightly conservative Type I error rates, where the dDBF measures appeared to be the most

conservative. The SIBTEST procedure, on the other hand, was again negatively affected by the
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Figure 3.4: Probability response functions in the Monte Carlo cancellation-effect design when the

number of items containing DIF is four. Notice the mirroring effect across the response functions,

where the item pairs 1-4 and 2-3 are identical but exactly opposite within each group.

109



size of the focal bundles and demonstrated nearly identical behavior as the previous DTF and DBF

Type I error simulation. Therefore, it is clear that both frameworks were generally not substantially

affected by the presence of DIF cancellation.

Anchors Focal Distribution Sample Sizes sDBF dDBF SIBTEST SIBTESTUC DBFLF DBFS F
5 N(0, 1) 450/450 .035 .020 .053 .053 .658 .677

900/900 .045 .017 .040 .037 .700 .710
1350/1350 .047 .023 .053 .050 .690 .703
600/300 .037 .025 .063 .060 .732 .658

1200/600 .048 .038 .052 .045 .743 .707
1800/900 .047 .027 .076 .068 .725 .725

N(1/2, 2/3) 450/450 .028 .025 .073 – .760 .715
900/900 .032 .035 .075 – .777 .738

1350/1350 .053 .023 .077 – .765 .705
600/300 .040 .015 .087 – .810 .678

1200/600 .040 .025 .055 – .822 .683
1800/900 .047 .025 .083 – .810 .727

10 N(0, 1) 450/450 .047 .020 .047 .043 .705 .705
900/900 .047 .015 .038 .042 .772 .730

1350/1350 .037 .022 .050 .047 .768 .742
600/300 .047 .023 .062 .052 .772 .733

1200/600 .043 .032 .048 .045 .775 .733
1800/900 .043 .040 .038 .042 .773 .740

N(1/2, 2/3) 450/450 .027 .013 .057 – .788 .733
900/900 .045 .028 .063 – .777 .747

1350/1350 .048 .037 .063 – .830 .757
600/300 .050 .015 .063 – .818 .728

1200/600 .053 .023 .058 – .807 .763
1800/900 .040 .020 .047 – .825 .755

Table 3.13: Type I error rates for DBF testing with two completely balanced focal items containing

DIF when all non-focal items were omitted from the fitted models. Type I error rates greater than

.075 and less than .025 are highlighted in bold.

The DFIT framework, on the other hand, continued to display extremely inflated Type I error

rates across every condition. Furthermore, the DFIT framework was influenced by the number of

items demonstrating DIF, suggesting that the cancellation effect was not captured at all. In general,
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Anchors Focal Distribution Sample Sizes sDBF dDBF SIBTEST SIBTESTUC DBFLF DBFS F
5 N(0, 1) 450/450 .035 .017 .072 .040 .655 .670

900/900 .047 .027 .037 .035 .652 .670
1350/1350 .052 .028 .062 .052 .675 .697
600/300 .040 .023 .068 .048 .702 .665

1200/600 .055 .033 .073 .055 .732 .632
1800/900 .040 .017 .067 .052 .723 .647

N(1/2, 2/3) 450/450 .053 .028 .097 – .740 .685
900/900 .048 .023 .090 – .785 .698

1350/1350 .045 .027 .080 – .760 .702
600/300 .038 .018 .067 – .802 .630

1200/600 .047 .030 .068 – .767 .663
1800/900 .050 .038 .078 – .805 .667

10 N(0, 1) 450/450 .035 .020 .045 .042 .690 .695
900/900 .030 .023 .043 .040 .702 .700

1350/1350 .045 .037 .065 .047 .718 .753
600/300 .030 .030 .060 .062 .710 .715

1200/600 .055 .043 .060 .055 .723 .698
1800/900 .052 .038 .045 .045 .740 .723

N(1/2, 2/3) 450/450 .023 .015 .052 – .725 .737
900/900 .048 .037 .078 – .775 .733

1350/1350 .028 .030 .053 – .773 .712
600/300 .045 .017 .062 – .825 .710

1200/600 .047 .037 .063 – .828 .703
1800/900 .038 .033 .077 – .808 .733

Table 3.14: Type I error rates for DBF testing with four completely balanced focal items containing

DIF when all non-focal items were omitted from the fitted models. Type I error rates greater than

.075 and less than .025 are highlighted in bold.

when more items contained DIF the tests resulted in higher Type I error rates, and in turn this was

complicated by a large number of interaction effects with the other simulation design conditions.

Given the large Type I error rates, and the influence of the number of items containing DIF, it is

clear that the DFIT framework is not suitable for any type of DTF or DBF detection analyses, even

when the DIF items create a complete cancellation effects.
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3.5.5 Summary of DTF and DBF Simulations

A few general patterns were observed after examining the differential functioning frameworks

across a wide range of conditions, varying sample size, equal and unequal group sizes, test lengths,

latent distributions, number of anchor items, use of non-focal items, bundle sizes, and various DIF

amplification and cancellation effects:

• The DFIT framework demonstrated extremely liberal Type I error rates, even in the cancel-

lation simulation study, and was influenced by all the simulation conditions under investiga-

tion. From these results it appears that the DFIT statistics should not be used for detecting

DBF or DTF.

• SIBTEST often demonstrated liberal Type I error rates and was influenced by factors such

as the latent distribution, number of anchors, and size of the focal item bundles. In order for

SIBTEST to obtain acceptable Type I error rates, more than 10 anchor items are required,

especially when investigating larger focal bundles (e.g., DTF).

• The inclusion of contaminated anchor items caused the SIBTEST Type I error control to be-

come unacceptably liberal. Therefore, based on the Monte Carlo results presented above, the

general strategy to use all non-focal items as anchors is not recommended. This conclusion

is the same conclusion which was reached in previous section on DIF. However, in concert

with the inflated error rates caused by the size of the focal bundle, the observed inflation

effect appeared to be considerably more severe when testing for DBF and DTF.
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• The sign and deviation-based statistics from the DRF framework consistently demonstrated

Type I error rates that were at, or slightly below, the nominal α level across all simulation

conditions studied. Hence, of the three frameworks investigated only the DRF framework

provided a consistent set of tools for detecting DBF and DTF.

• Power rates improved with increasing sample size, groups had unequal sample sizes (com-

pared to equal sample sizes), increasing the number of anchor items, increasing the number

of DIF items in the focal bundle, decreasing the number of items without DIF in the focal

bundle, and, with respect to the DRF statistics, increasing number of non-focal items in the

fitted models.

• The empirical power rates showed that the dDRF family of statistics provided the highest

power in the item bundles studied, while SIBTEST closely followed. However, in light of its

inflated Type I error rates the interpretation of the SIBTEST power rates is more problematic.

Of all the compensatory statistics studied, the sDRF family demonstrated the lowest power

rates for the type of composite response bias generated.

• Type I error rates from the complete cancellation analysis mirrored the error rates in the

previous Type I error study, thereby validating the use of SIBTEST and DRF when DIF

items display complete cancellation effects. The DFIT framework again failed to provide

sufficient Type I error rates, and therefore its use as a detection tool should be discouraged.

Although the results from the DIF Monte Carlo simulations were mixed when comparing SIBTEST
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to the DRF framework, the results from the DBF and DTF simulations clearly demonstrate that the

DRF framework is superior in terms of Type I error control and power to detect DTF and DBF. Type

I error rates were controlled considerably better than SIBTEST and DFIT, the DRF statistics were

minimally influenced by the factors investigated, and the respective rejection rates were the highest

when studying non-compensatory differential response functioning. As was the case with the DIF

analyses, I conjecture that sDBF and sDT F would outperform the SIBTEST framework when the

response functions contain little to no cancellation effects. However, because this simulation study

did not investigate this effect, future simulations should attempt to test this assertion. Nevertheless,

given the control, flexibility, reliability, and post-hoc tools provided by the DRF framework it was

evident the DRF family of statistics is the optimal choice for investigating DBF or DTF effects.
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4 Further Topics Regarding the Differential Response

Functioning Framework

This chapter focuses on extensions and special considerations for the DRF framework. Primarily,

the topics addressed relate to the sampling variability of the DRF statistics, the relationship of the

DRF measures with effect size measures that have been proposed in the response bias detection

literature, and more general extensions of the framework for equivalence testing, multidimensional

differential response functioning, and conditional tests for DRF.

4.1 DRF Measures as Effect Size Estimates

Regardless of the statistics chosen for investigating differential functioning, the process of detect-

ing DIF, DBF, or DTF though the use of p-values will rarely inform the investigator about the

magnitude or severity of the response bias. Instead, detection methods typically provide evidence

about the likelihood that the associated null hypothesis is true, largely as a function of how much

empirical information is available. In order to express the magnitude and practical consequences

115



of the differential effects, an investigator instead must adopt measures that reflect how and where

along the θ continuum the differential effects have occurred. In this respect, after detecting DIF,

DBF, or DTF the use of effect sizes are important because their general goal is to express the

magnitude of the response bias in a metric which is practically and substantively meaningful.

To be useful in practice, effect sizes generally have two properties: 1) the measures should gen-

erally be unaffected by varying the sample size, and 2) they should be in a metric that is meaningful

to the investigator (Kelley & Preacher, 2012). This is one of the reasons that standardized effect

sizes have become popular in the social science literature (e.g., see Cohen, 1990). However, the

routine use of standardized effect sizes is not required, and in some cases not recommended (Bag-

uley, 2009). In particular, unstandardized effect sizes can be used when the selected measure

provides meaningful values to researchers familiar with the subject matter. For example, following

a significant p-value in an independent t-test an estimate as simple as the observed mean differ-

ence corresponds to one type of unstandardized effect size because 1) it is not generally affected by

changes in sample size (the observed difference does not systematically increase or decrease with

N) and 2) it is in a meaningful metric to the investigator.

With respect to IRT models, additional considerations are required to express the response bias

in a meaningful metric. Because differences between response curves generally vary across dif-

ferent θ levels, even in the very simple Rasch family of IRT models, effect size measures should

be either a) expressed in terms which are conditioned on specific values of θ, or b) expressed

as marginalized estimates across some desired range of θ. Marginal and conditional effect size
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estimates have different strengths and weaknesses for expressing the type and magnitude of bias

present. More specifically, marginal estimates attempt to summarize response bias in terms of sim-

ple scalar values for each item separately, whereas conditional estimates provide a more fine-tuned

level of inspection because they relate to how the bias affects particular θ locations. However,

the conditional estimates may in fact provide too much information, particularly for multidimen-

sional IRT models (see below). Both marginal and conditional effect size applications for the DRF

framework, as well as their relationship to existing approaches for quantifying response bias, are

discussed in this section.

4.1.1 Comparison of Marginal Effect Sizes

Compared to conditional effect size estimates marginal effect sizes help conceptualize the mag-

nitude of bias in much simpler terms, which may be easier to compare across items, scales, and

populations. However, marginal effect size measures are complicated by several additional char-

acteristics and therefore require additional discussion. Each of the measures explored in the Chap-

ter 3 simulations from the three detection frameworks (excluding the W2 test) can be considered

a marginal effect size for differential functioning. The measures are marginal effect size estimates

because they collapse all available information (either implicitly or explicitly) across different val-

ues of θ into scalar measures based on compensatory or non-compensatory rules. Therefore, the

respective measures found in these three frameworks may serve as useful effect size measures if

they are both interpretable and unaffected by sample size.
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Unfortunately, as was clear in Chapter 3, the compensatory and non-compensatory measures

from the DFIT framework were highly affected by sample size, suggesting that they are not op-

timal measures for quantifying marginal bias. In fact, a wide variety of ad-hoc IRT-based effect

sizes which rely on θ̂ estimates are inherently adversely affected by sample size and testing prop-

erties (e.g., see Meade, 2010). This limitation is generally not surprising because the use of θ̂

estimates is known to be influenced by several sampling characteristics (Mislevy, Beaton, Ka-

plan, & Sheehan, 1992). As was clear in Chapter 3, relying on secondary point estimates for θ̂ is

problematic in that the associated statistics may not behave in the way that practitioners expect.

Moreover, the statistics based on secondary estimates rarely lend themselves to rigorous statistical

theory due to the problem of shrunken or overly variable estimates (Bollen, 1989; Mislevy et al.,

1992). While statistics based on θ̂ may be useful for diagnostics within a given sample of individ-

uals (indeed, their relative contributions in the respective sample likely are important; see Meade,

2010), their generalization and interpretation outside the sample from which they are obtained is

highly problematic and generally should be avoided (Chalmers et al., 2016).

On the other hand, the SIBTEST and DRF frameworks did behave well according to the sim-

ulation results in Chapter 3, therefore it is plausible that these frameworks could be used as effect

size measures provided that their metrics are interpretable. Shealy and Stout (1993) note that the

observed SIBTEST values (see Equation 2.3) have an approximate relationship to the Mantel-

Haenszel (MH) statistic (Mantel & Haenszel, 1959) when testing for DIF (Holland & Thayer,

1988). The MH DIF statistic is a simple log-linear detection test based on examining the interac-
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tion between the 2×2 contingency table containing frequencies about the group and item responses

after controlling for stratification effects based on the unweighted sum score. Shealy and Stout note

that the SIBTEST values are approximately −15 times smaller than the MH statistics; therefore,

the classification schemes previously proposed for the MH statistics may be relevant for SIBTEST

as well (e.g., Dorans & Holland, 1993).

Considering the DRF framework now, all the defined measures in Chapter 2 have a clear effect

size interpretation regardless of whether DIF, DBF, or DTF is under investigation. If the signed

statistics are used then these represent the average difference between the expected response func-

tions over some specified range of θ, where cancellation effects are possible if the functions happen

to cross at one or more locations. With respect to the unsigned or deviation based statistics, these

represent the average area-difference or deviation between the response curves across the desired

θ range. Furthermore, the signed and unsigned measures are always in the metric of the expected

item, bundle, or test scores; hence, they are always in a form that is familiar to the test analyst.

This property makes the interpretation of the DRF measures as marginal effect size estimates very

appealing, especially after significant differential effects have been detected. Given that the DRF

measures are also not positively or negatively influenced by different sample sizes it is clear that

the DRF measures qualify as useful marginal effect size estimates. Note that the underlying den-

sity of the latent trait values are omitted from these area-based statistics; however, research which

extends these DRF statistics to include this missing component is already underway (Chalmers,

submitted).
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4.1.2 Relationship to Area-based Effect Size Measures

The DRF measures are intimately related to the topic which Millsap (2011) referred to as area-

based effect size measures. Millsap notes that there are three important considerations when using

area-based measures: 1) the range of θ over which to construct the measures, 2) whether numerical

integration or closed-form integration solutions should be adopted, and 3) whether signed or un-

signed measures should be formed. Millsap’s second consideration primarily relates to issues when

computing integrals for IRT models which do not offer a closed-form solution over the complete θ

space (such as the difference between 3PL probability functions when the lower bound parameters

are unequal); however, this problem is not relevant when definite integration bounds are utilized.

The DRF framework avoids many problems associated with closed-form integration solutions

by using numerical integration across a specified θ range, which addresses Millsap’s (2011) first

and second points. The DRF framework also includes different measures for signed and unsigned

differential response functioning; therefore, Millsap’s third point is also addressed. The metric of

the DRF measure’s is always interpreted as the average difference between the response curves

rather than the observed area obtained through direct integration (cf. Raju, 1988); hence, the DRF

weighted approach has a more natural interpretation (e.g., it is difficult to conceptualize what

an absolute area-between-the-curves integral of 1 would look like in a 2PL model, but easier to

understand a value of uDIF = 0.1 over the range θ = [0, 2]). Finally, the DRF measures are not

limited to DIF analyses for dichotomous items (unlike the methods area proposed by Raju, 1988)
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and are conceptually equivalent regardless of the size of the focal bundle or use of polytomous

items.

The application of a weighting function g(θ) is the only important difference between the ob-

served and average area effect size approaches. That being said, the DRF measures are not unique

in their use of a weighting function to construct marginal effect size measures from expected re-

sponse functions. When focusing only on DIF, the DRF measures are closely related to the impact

measures proposed by Wainer (1993). Wainer’s T (1) and T (3) measures of impact are in fact

identical to sDIF and the squared version of dDIF. However, the impact measures differ in their

application because they use a Gaussian distribution for g(θ) instead of a uniform distribution with

weights determined by N(µF , σ
2
F) over the integration range −∞ and ∞.11 The purpose of using

a Gaussian-based weighting function, as Millsap (2011) notes, is because “area measure[s] should

focus on regions in which most examinees appear.” (p. 217). This is the same reasoning applied by

Raju et al. (1995) when constructing the DFIT framework, which is not overly surprising because

the DFIT measures are in fact two-step approximations of Wainer’s impact measures wherein θ̂

estimates are used instead of the hypothetical θ values.

11Wainer’s (1993) T (2) and T (4) measures are not included in this discussion because they include information
about the size of the focal group. Therefore, these measures are sample dependent in that they are influenced by
increasing sample sizes, and therefore do not qualify as effect sizes in the general sense. Because T (2) and T (4)
can be obtained by simply multiplying T (1) and T (3) by NF , respectively, the discussion of these statistics is largely
redundant.
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4.1.3 Correcting the Impact Measures Density Function

With respect to the proposed DRF measures, whether to apply g(θ) to create a non-uniform weight

function across the latent trait distribution to more heavily weight the areas in which most individ-

uals propagate in the θ space is an important consideration for constructing marginal effect size

measures. However, I do not believe that this approach should be the default when constructing

marginal effect sizes for reasons that I elaborate on below. Furthermore, I demonstrate that the

current density proposed by Wainer (1993) (and later adopted by Raju et al. (1995) in the DFIT

framework) does not effectively achieve the goal of weighting by the expected density of θ. Fi-

nally, I close by arguing that the inclusion of an unequally-weighted g(θ) function is prone to

several empirical problems and potentially unrealistic assumptions which generally do not arise

when g(θ) is given equal weight across the response functions.

The question as to why Wainer (1993) and Raju et al. (1995) set g(θ) to be the density provided

by the focal group is the topic that should be investigated first. Allegedly, the purpose of includ-

ing this particular density function was to weight the differences in the response functions by the

underlying density of the latent trait. However, this particular density function only weights the

difference by the density of the focal group and entirely ignores the density in the reference group;

hence, the measures potentially down-weight important differences which would affect the refer-

ence group population at a rate proportional to how far the µF parameters are from µR (typically,

µR = 0 by convention). This down-weighting becomes exceptionally problematic if the reference
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group has a larger sample size than the focal group because the majority of the true underlying

density of θ is masked — largely negating the purpose of using weights to capture the DIF in the

most dense θ regions. Furthermore, the current form of Wainer’s impact measures is not invariant

to the selection of the focal and reference groups in that changing which group is considered the

focal group can dramatically change the value of the impact measures, despite the model fit being

the same. For further discussion on this topic and improvements for the empirical density function

based on model-implied elements from the EM algorithm see Chalmers (submitted).

Instead of including only information from the focal group to construct the density function

for the latent trait distribution a more appropriate density in the multiple-group IRT model is to

combine the expected focal and reference group densities as a mixture distribution proportional to

their respective sample sizes (Bock & Zimowski, 1997). Generally, this goal can be achieved by

creating a mixture density function

g(θ) =
NR · g(θ|µR, σ

2
R) + NF · g(θ|µF , σ

2
F)∫ [

NR · g(θ|µR, σ
2
R) + NF · g(θ|µF , σ

2
F)

] , (4.1)

where in practice (4.1) can be evaluated using quadrature nodes in place of θ. This particular

density function forms a (potentially bimodal) mixture distribution by combining two Gaussian

distributions, which then displays higher density in areas where larger sample sizes are present.

Therefore, this weighting scheme achieves the original goal that Wainer (1993) attempted to ex-

press.

Equation 4.1 has the added property of being invariant to the selection of the focal group be-

cause it appropriately weights the underlying theoretical density in a manner which is proportional
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to the sample sizes. If the goal is to weight the differential response function by the underlying

latent trait densities, and assuming that both groups are in fact Gaussian distributed, then Equa-

tion 4.1 should be adopted instead of simply weighting by a Gaussian distribution based on infor-

mation only from the focal group. Alternatively, and perhaps more realistically if the assumption

of Gaussian distributions is less plausible, g(θ) can be selected such that it reflects the underlying

density of θ by empirically estimating the density from sample information (Bock & Aitkin, 1981;

Mislevy, 1984). In this case, these integration-based measures (including those from DRF) become

closely related to the metric depicted by the SIBTEST family of statistics; in other words, these

statistics will reflect the difference between the response functions weighted by an estimate of the

density of θ. However, estimating g(θ) adds additional uncertainty to the process of determining

reasonable weights because there are many ways to approximate this density function (e.g., empir-

ical histograms, splines, Monte Carlo sampling, etc), and generally loses the more natural metric

compared to using a uniform distribution for g(θ).

4.1.4 Current Limitations of the Impact Measures

Although the above amendments address the original intentions of the impact measures there are

still other issues present which make their general use problematic. The impact measures can

be viewed as a special case of the DRF measures for DIF when the item responses are dichoto-

mous and there is a need to systematically weight the response function differences based on some

type of prior importance. By default, the DRF measures assume that differences in the response
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functions are of equal importance across the entire θ range because an item displaying DIF will

ultimately affect some individuals, even if these individuals are unlikely to be included in the given

sample. This is the general philosophy used in numerous well-established statistical technique

used to detect DIF, especially those from which belong to the likelihood family (i.e., the score test,

likelihood ratio, and Wald test).

According to the original presentation, Wainer’s (1993) impact measures place the greatest

importance around the mean of the focal distribution while symmetrically generating less impor-

tance around the differences in the response curves as θ deviates from µF . Hence, extremely large

response differences in latent trait areas which are less likely (e.g., θ = −3) are viewed as of lit-

tle consequence to the impact measures, regardless of their magnitude (i.e., compare the weights

g(0) = .5 and g(−3) = .001). These non-uniform weights have benefits in tests that must make

accurate inferences at specific θ ranges, particularly where the inferences around the mean of

the focal group are the most important. However, outside this type of application this weighting

scheme is generally not a reasonable strategy. If the entire θ distribution is of interest to the test

analyst then the use of a non-uniform g(θ) is highly questionable and potentially very misleading.

An alternative view of g(θ), as was previously alluded to, is to treat the integration density as a

weighted measure of importance rather than as a quasi-correction for the latent trait densities. This

type of interpretation has a type of “Bayesian prior” flavor, whereby investigators define g(θ) based

on where they believe the difference between the response functions along θ are most important.

For instance, if the test requires accurate inferences to be made between a particular range of θ,
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perhaps for classification-based inferences, then applying a suitable weight function which focuses

on the area of interest may be justified. The use of a Gaussian density then may not be required or

even recommended, where clearly the function certainly has little to do with the distribution of the

focal group. Only when the area of interest is coincidentally at the mean of the focal distribution

should the weights implied by the impact measures be considered, and only when the dispersion

happens to coincide with the variability of Gaussian distribution (with variance equal to σ2
F) should

the focal distribution variability be adopted. From this perspective, the default weights used in the

impact measures are quite arbitrary and rarely results in the weighting scheme which test analysts

find optimal for their specific applications. Note that a similar interpretation was made for the extra

weight function included in Douglas et al.’s (1996) smoothed SIBTEST extension (cf. Equation 8,

p. 338).

The g(θ) used in the impact measures is also closely related to restricting the integration range

of the DRF statistics by focusing on smaller areas. Restricting the integration range is equivalent

to supplying weights of 0 to areas outside the range of interest (Chalmers et al., 2016); therefore,

restricting the integration range of θ achieves nearly the same goal as the impact measures. Hence,

interpreting weighted composites can (and in my opinion, should) be avoided in favor of specifying

a different integration range of interest. Fortunately, it turns out that the impact measures have the

same definition for conditional effect sizes as the DRF framework in that as the integration range

tends to 0 at some θ location then sDRFθ and the conditional impact measures will become equiv-

alent. Hence, the conditional DRF figures in Chapter 2, along with their associated variability due
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to the parametric sampling procedure, apply equally well when inspecting conditional differential

effects with the impact measures.

4.1.5 Conditional Effect Sizes for Observed Response Patterns

As indicated in Chalmers et al. (2016) and in Chapter 2, conditional effect size estimates, and

their respective sampling variability, are built into the DRF framework because they are evaluated

by forming the expected difference in the desired response functions given isolated θ locations.

This approach lends itself naturally to graphical depictions of the conditional bias effect, visually

demonstrating the expected point-wise differences between the respective response functions and

their associated sampling variability (see Figures 2.2, for example). However, test analysts will

often be interested in how these conditional DRF effect size measures relate to particular response

patterns in their data so that the response bias can be quantified for each participant.

The presentation of the DRF framework explicitly relates to population level θ values rather

than the predicted θ̂ values for each response pattern. This is because the imprecision borne from

the θ̂ estimates is entirely avoided, thereby allowing the respective DRF statistics to achieve more

desirable sampling characteristics. However, in order to relate the expected bias given the condi-

tional sampling information from the DRF measures to any given response pattern two forms of

sampling variability must be considered: the variability of the expected difference between the re-

sponse curves at some θ level (characterized by the family of sDRF measures), and the associated

sampling variability of the θ̂ estimates.
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Considering both sources of sampling information in practice is easy to present as a simple

example. Note that although the following example uses DTF to demonstrate how to consider

multiple sources of sampling variability the example is equally applicable to DIF and DBF appli-

cations. Suppose that a test with 20 dichotomous items is administered to two groups with N = 500

participants in each group. After equating the groups via the estimation approach required for the

DRF framework (Chapter 2) a conditional DTF plot can be constructed to resemble Figure 4.1.

The graphic on the left depicts the expected total scores for both groups and (näively) appears to

demonstrate response bias at different θ levels. The graphic on the right of Figure 4.1, on the other

hand, demonstrates the expected differences between the response functions while also including

95% CIs to better account for the sampling variability of the item parameter estimates. As well, in

this figure vertical lines are included to demonstrate a specific estimate of θ, as well as its associ-

ated CIs, given a specific response pattern under investigation; in this example θ̂ = 1.25 with an

associated 95% CI of [0.75, 1.75].

Beginning with the left plot in Figure 4.1, if an analyst were to assume that the expected total

scores were exactly equal to the population response functions (i.e., Ψ = Ψ̂) then they could claim

the population generating θ value is affected by the observed response bias. More specifically,

because all θ values within the entire 95% CI range (vertical bars) demonstrate a non-zero sDRFθ

value (solid line on the right graphic) it is likely that, whatever the true θ value is, the participant is

affected by the known response bias. Unfortunately, as is clear from the right image in Figure 4.1,

the uncertainty about θ and the item parameters in concert makes it more difficult to conclude
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Figure 4.1: Expected total score function (left) and the associated sDT Fθ values with 95% CIs

(right) for a hypothetical 20 item test. Vertical lines are included to denote a particular θ̂ estimate

(solid) and its respective CIs (dotted).

whether the given individual is influenced by the observed response bias.

After considering both forms of sampling variability, the prediction estimate, as well as the

lower bound estimate suggest that the generating θ value is influenced by the test bias. This is seen

visually because the first two vertical lines from the left do not contain either the red horizontal line

or the gray 95% CI around the sDRFθ function. However, at the upper CI of θ.975 = 1.75 there is

insufficient evidence that bias exists because values within the last two vertical lines include gray

areas which overlap with the red horizontal line. Therefore, given the uncertainty in both the item

parameter estimates and θ there is insufficient evidence to conclude that the given response pattern
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is influenced by the observed response bias.

To help determine whether a given respondent is affected by the presence of response bias

either the measurement precision of the θ̂ estimate, or the precision of the item parameters, can

be improved. Improving the measurement precision of θ̂ will only be achieved by administering

more items to the given individual, while improving the precision of the item parameter estimates

will primarily be improved by obtaining larger sample sizes (see Chapter 3 for other characteris-

tics which influence parameter estimate uncertainty). Continuing again with the visual example

in Figure 4.1, the former approach to improving the power to detect bias will result in vertical

lines which are closer together, indicating less uncertainty about the location of θ, while the latter

approach will result in the gray shaded 95% confidence intervals which are closer to the sDRFθ

function.

4.2 Computational Considerations when Obtaining Sampling Variability

This section discusses specific computational considerations when investigating the statistical vari-

ability of the DRF measures. Primarily, use of alternative Σ̂(Ψ̂|Y) estimators is discussed, and al-

ternative forms of obtaining sampling variability are reviewed; namely, the bootstrap method (Efron

& Tibshirani, 1998) and Markov chain Monte Carlo estimation (Metropolis, Rosenbluth, Teller, &

Teller, 1953).
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4.2.1 Alternative Estimates of the Parameter Covariance Matrix

In Chapter 3, and in the work by Chalmers et al. (2016), the cross-product method for comput-

ing Σ̂(Ψ̂|Y) was adopted primarily because this approximation requires very few CPU cycles and

RAM. This feature makes the cross-product approximation very appealing for longer tests, in IRT

models which contain a large number of parameters, or in samples with a large number of partic-

ipants. The cross-product estimate of Σ̂(Ψ̂|Y) is asymptotically equivalent to the inverse of the

observed-data information matrix, and in IRT models generally performs well in larger sample

sizes (Paek & Cai, 2014; Pawitan, 2001). However, several other estimators are possible following

convergence with the EM algorithm, and a small selection of these estimators were explored in

pilot studies for Chapter 3. This section summarizes the pilot studies which adopted alternative

Σ̂(Ψ̂|Y) estimators.

4.2.1.1 Numerical Approximations

To begin, the use of numerical approximations based on evaluating the observed-data log-likelihood

may be useful following the convergence of the multiple-group IRT model. Numerical methods

only require the objective function (i.e., observed-data log-likelihood) to be evaluated after slight

perturbations have been made to the parameter estimates, thereby allowing finite approximations

of the gradient and Hessian terms. Simple numerical methods such as the forward or central differ-

ence are possible and generally are not too expensive to compute. However, if more accurate nu-
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merical approximations are required then the use of Richardson’s (1911) extrapolation will become

important. Using numerical approximations following convergence of the EM algorithm is gener-

ally considered a good strategy primarily because of the complicated nature of the observed-data

log-likelihood, but also because computation of the analytical Hessian is often infeasible (which is

why the EM was adopted in the first place; Pawitan, 2001).

Unfortunately, there is a small number of concerns about using numerical derivatives for

multiple-group IRT models. First, the numerical approximations may not contain enough precision

to support the DRF statistics when a larger number of parameters is modeled. Inaccuracies in the

Σ̂(Ψ̂|Y) elements may propagate in the sampling process required to evaluate the DRF measures,

especially when sampling a large number of parameters for the focal bundles (as is required when

testing DTF).12 Second, and perhaps more practically important, accurate numerical approxima-

tions may be too computationally demanding due to the difficulty of evaluating the observed-data

log-likelihood and the sheer number of elements in Σ̂(Ψ̂|Y). In preliminary simulation results,

Σ̂(Ψ̂|Y) was obtainable using Richardson extrapolation in the simulations where no focal items

were modeled because these contained fewer items and parameters. In the simulations where non-

focal items were included, the computations via Richardson’s extrapolation were simply infeasible,

often taking hours to compute for each model.

In the pilot study simulations where non-focal items were omitted, the detection rates obtained

when adopting the Richardson extrapolation were very similar to the cross-product approximation.

12In light of the performance with the supplemented-EM algorithm when studying DBF and DTF this concern
certainly appears warranted. See below for further details.
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However, the DRF Type I error rates were on average slightly less conservative and closer to

the nominal α level when using the Richardson extrapolation in comparison to the cross-product

approximation in smaller sample sizes. As well, the Wald test for DIF was always within the

tolerable Type I error interval, generally indicating that the numerical approximation was well

behaved. Therefore, whenever feasible I would recommend using the Richardson extrapolation

method (or the analytical Louis (1982) approach, which contains analogous computational issues

for larger tests) because the error rates will be slightly closer to the nominal α rate for the DRF

statistics. However, when the computations become too burdensome, as they were when non-focal

items were included in the simulation, other estimators should be adopted instead.

4.2.1.2 Supplemented EM Algorithm

Another Σ̂(Ψ̂|Y) estimator that has become more popular in the IRT literature is the supplemented-

EM algorithm (S-EM) because it can be formed using only code from the EM algorithm (Cai, 2008;

Meng & Rubin, 1991). The S-EM algorithm uses information from the EM parameter history by

applying ‘forced’ EM updates at different locations along the iteration history to numerically ap-

proximate the proportion of missing information. The estimated proportion of missing information

is then combined with the complete-data information matrix, which is readily available from the

EM algorithm, to remove the effect of the missing data, leaving only the observed information ma-

trix estimate. When inverted, the observed information matrix provides an estimate of the Σ̂(Ψ̂|Y)

matrix which is based upon differentiating the observed-data log-likelihood.
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The S-EM algorithm was also investigated in a pilot study for Chapter 3 to determine its over-

all performance for estimating Σ̂(Ψ̂|Y). When studying DIF, the S-EM algorithm behaved well

and returned nominal Type I error rates for the DRF and Wald tests. Hence, the S-EM estimator

is a good candidate for investigating DIF effects in empirical work when using the Wald test or

DRF measures. However, for the DBF and DTF measures a less optimistic pattern arose. In these

scenarios, the DRF statistics had progressively inflated Type I error rates as the size of the focal

bundle increased, climbing as high as .15 when detecting DTF in a 40 item test. This result likely

occurred because of the imprecision borne from the numerical approximations when building the

Jacobian for the missing data information. The error rates improved when more anchors were

used, as well as when the sample size increased. However, even for the N = 2700 conditions, the

error rates were still mainly inflated. The instability of the S-EM algorithm in high-parameter set-

tings, as is the case in the studied multiple-group IRT models, has been previously noted by other

researchers (e.g., see Baker, 1992; Segal, Bacchetti, & Jewell, 1994); therefore, this result should

not be overly surprising. Finally, the S-EM algorithm was considerably more demanding com-

putationally than the cross-product approach, so again it appears that the cross-product estimator

should be the preferred default estimator in larger sample sizes and tests.

In the future, I recommend investigating the method proposed by Oakes’ (1999) for multiple-

group IRT models because it may provide a more accurate estimate of Σ̂(Ψ̂|Y), and the more

computationally efficient forward and central difference approaches should also be investigated to

determine their overall performance. When investigating shorter tests with a smaller number of pa-
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rameters, the use of accurate numerical approximations via Richardson extrapolation, or the exact

method proposed by Louis (1982), should be adopted if the computations are not too demanding.

However, based on the simulation results in Chapter 3, as well as the pilot simulation studies, it

appears that the cross-product approximation may be considered a reasonable default estimator for

Σ̂(Ψ̂|Y), especially if slightly conservative detection rates can be tolerated in smaller sample sizes.

4.2.2 Alternative Forms of Sampling Variability

The parametric sampling procedure previously described in Chapter 2 and by Chalmers et al.

(2016) provides a relatively efficient mechanism to generate sampling variability for the DRF

measures using only information from the estimated parameter variance-covariance matrix. How-

ever, there are other statistical mechanisms to estimate sampling variability of the DRF measures,

the most well-known being the bootstrap (Efron & Tibshirani, 1998) and Markov-Chain Monte

Carlo (Metropolis et al., 1953) estimation approaches. This section briefly describes how these

approaches can be used to obtain the sampling variability for the DRF estimates.

4.2.2.1 Bootstrap Sampling

The bootstrap technique is a general computer-driven approach to obtaining empirical sampling

variability. The bootstrap typically obtains sampling variability non-parametrically by re-sampling

available data (with replacement) and reanalyzing each of the newly sampled datasets. Hence,

the non-parametric bootstrap builds an empirical sampling distribution by generating M indepen-
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dently re-sampled datasets and computing the statistics of interest in each respective sample. The

justification for this approach is relatively intuitive: because a given sample is assumed to be a

random sample from a given population of interest, replacement sampling from a given dataset can

be considered a quasi-random sample from the same population (Efron & Gong, 1983).

Although not as common in IRT applications, bootstrapping is nevertheless a viable option

for obtaining suitable sampling variability for respective IRT parameter estimates. Given a ran-

dom sample of response patterns Y, where Y is an N × J matrix of responses, we could obtain

independent subsamples by randomly selecting N row vectors with replacement from Y to form a

new dataset Y∗. Given Y∗, the IRT model would then be re-estimated to obtain a new set of IRT

parameter estimates Ψ′, and this set would be stored for later use. Repeating this re-sampling and

re-estimating procedure over M independent occasions and collecting the independent Ψ′ sets into

a complete row-stacked M × P matrix, Ψ∗, allows us to form empirical variability characteristics

for each value in the original Ψ̂. Given each column in Ψ∗, computing the standard deviation of

the respective elements provides a computationally-derived standard error estimate of the original

Ψ̂ estimates. Additionally, empirical confidence intervals can be obtained from Ψ∗ by sorting the

respective column elements and locating the approximate α/2 and 1 − α/2 values in each vec-

tor (Efron & Tibshirani, 1998).

Building and storing the matrix Ψ∗ has another benefit with respect to the DRF framework in

that the sampling characteristics of each measure of DIF, DBF, and DTF can be obtained directly

from the row vectors stored in Ψ∗. The parallel between the parametric sampling methodology in
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Chapter 2 and the bootstrap approach should now be clear. Instead of drawing Ψ∗ from the Σ̂(Ψ̂|Y)

matrix the parameters can be obtained via the non-parametric bootstrap re-sampling methodology.

These two methods share the important property that each row in Ψ∗ can be obtained indepen-

dently; hence, forming the full Ψ∗ matrix can be efficiently built in pieces after distributing the

computations across a number of independent computing resources.

Unfortunately, obtaining Ψ∗ using the bootstrap approach has a number of disadvantages com-

pared to the parametric Monte Carlo sampling approach. First, the bootstrap technique takes con-

siderably more CPU and RAM resources to obtain the complete parameter set because M inde-

pendent IRT models have to be refit to the re-sampled data. The refitting also can, and often will,

suffer other estimation-based issues. For instance, when response categories are rarely endorsed it

is likely that they will be completely omitted in the new subsample (in which case a new dataset

would have to be redrawn), models may fail to converge in the re-sampled datasets and must be fit-

ted again to a different drawn samples (requiring even more CPU cycles), or worse yet the models

may converge to local minimum locations, thereby biasing the overall bootstrap estimates. Similar

problems can occur when investigating the parametric bootstrap method as well (Hope, 1968).

Nevertheless, bootstrapping has a number of implicit advantages over the parametric sampling

method in that it does not require the computation of any Σ̂(Ψ̂|Y) matrices, can be used when the

parameter estimates are bounded (where Σ̂(Ψ̂|Y) would be less appropriate due to violations of

the regularity conditions), is effective when the expected score functions are complex and unpre-

dictable (e.g., Kernel-smoothing IRT models; Mazza, Punzo, & McGuire, 2014), often performs
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better than large-sample approximations in smaller samples (Efron & Tibshirani, 1998), and, unlike

some estimation approaches to obtain Σ̂(Ψ̂|Y) (e.g., estimates based on Louis’s (1982) methodol-

ogy, including the cross-product and sandwich covariances estimates), implicitly supports the use

of Bayesian prior parameter distributions when estimating the IRT models. Therefore, bootstrap-

ping may be a preferred option compared to the parametric sampling approach in situations where

the computations are not overly demanding or when the use of Σ̂(Ψ̂|Y) is not appropriate.

4.2.2.2 Markov Chain Monte Carlo Sampling

Another alternative to obtaining parameter estimates and their associated variability is Markov

Chain Monte Carlo (MCMC) estimation (Metropolis et al., 1953). MCMC is a general purpose

computer-driven estimation methodology whereby model estimates and their associated sampling

variability are formed using sequential Markov Chains based on comparing different probability

distribution states, typically using a random walk method. MCMC methodology has been adopted

by researchers invested in Bayesian approaches to fitting models where prior information regarding

the distribution of parameters is incorporated into the parameter estimation process; however, in-

cluding prior distributions is not required because MCMC can be used for obtaining ML estimates

as well. Recently, MCMC estimation has become a popular estimation method in IRT applications,

due in part by the early work of Albert (1992; see also Patz & Junker, 1999a, 1999b).

The simplest and arguably most intuitive of the MCMC algorithms has been termed the Metropolis-

Hasting sampler, named after the seminal work by Metropolis et al. (1953) and Hastings (1970).
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For ease of exposition I will only present the Metropolis-Hasting sampler for a single scalar param-

eter; however, the technique generalizes to vectors of parameters as well. The Metropolis-Hasting

sampler begins with some parameter value, ψ0, and some ‘proposal’ parameter, ψ1, which has

been obtained through a random sampling process (often simply by jittering the value ψ0 accord-

ing to some probability sampling distribution). The Metropolis-Hasting sampler then evaluates

these two parameters by comparing whether ψ1 fits the data better than ψ0 according to the model-

implied probability density function. The sampler does this by finding the ratio of the respective

posterior distributions (or likelihood distributions, if no priors were defined), and using this ratio

determines whether ψ1 is a more likely value than ψ0. If ψ1 provides a better fit to the data then

it is selected, stored, and used in the next iteration of the chain; otherwise, it is rejected at a rate

of Q(ψ1)/Q(ψ0), where Q is the posterior distribution function13. After accepting or rejecting ψ1,

the process is repeated using a new proposal value, ψ2, and again the Metropolis-Hasting sampler

evaluates whether this value should be accepted or rejected. This process is repeated many times

until a sufficient number of iterations has been completed.

Once the MCMC sampler has been terminated, the history of the parameter values can be used

to obtain estimates of the respective parameters through statistical techniques such as finding the

respective mean of each freely estimated parameter chain. Furthermore, variability of these param-

eter estimates in the form of ‘posterior standard errors’ can be obtained by computing the standard

13This rejection ratio is technically only true when the proposal distributions are symmetric, which is the result
determined by Metropolis et al. (1953). Hastings (1970) generalized the sampler to support asymmetric proposal
distributions.
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deviation of the parameter iteration history, and indeed more intricate analyses of the distribution

of the parameter estimates are possible because the iteration history provides an estimate of the

entire posterior parameter space (Albert, 2009).

It is clear from the description of the Metropolis-Hasting sampler that MCMC has a sequential

dependency issue. Because each new proposal set of estimates is evaluated relative to the previ-

ously accepted set, the MCMC iteration history has an inherent auto-correlation between each adja-

cent estimate. Therefore, the MCMC history is often ‘thinned’ to help remove this auto-correlation

effect by selecting a smaller subset of the complete iteration history by selecting samples which

are farther apart in the chain (e.g., selecting every 10th estimate in the chain). However, even

after thinning has been performed, MCMC diagnostics are still used to determine whether the

auto-correlation remains too high for each estimate, and whether the chain has reached a stable

equilibrium (Albert, 2009). Convergence can be inspected by plotting the iteration history of each

respective estimate, which also helps evaluate whether further iterations are required.

Focusing now on applications of the DRF framework, after estimating a multiple-group IRT

model via MCMC the parameter iteration history will, in fact, provide a suitable stand-in for the Ψ∗

matrix. The MCMC iteration history contains all relevant information about sampling variability of

each respective estimate. In turn, the MCMC history can be used to represent sampling variability

of the DRF measures in a manner which is analogous to the bootstrap and parametric sampling

methodologies. MCMC is potentially useful for the DRF framework because Ψ∗ is obtained as a

necessary consequence of the MCMC estimation process.
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Unfortunately, however, MCMC estimation has a large disadvantage compared to the para-

metric sampling and bootstrap methods in that the thinned MCMC history often takes consider-

ably longer to obtain than both methods. Furthermore, the bootstrap and parametric sampling ap-

proaches naturally lend themselves to completely parallelized computational frameworks, thereby

potentially decreasing the amount of time it takes to build Ψ∗ by a factor proportional to the num-

ber of independent computing cores available. MCMC estimation, on the other hand, typically

must be performed in serial on a single core. Given that modern computing resources often have

multiple cores, even in most personal computers and laptops, the ability to distribute computations

across independent resources is becoming increasingly important to help reduce computational

demands of modern statistical methods. On the other hand, MCMC estimation has an advantage

over the bootstrap and parametric sampling approaches in that it completely characterizes the pos-

terior distribution of the model parameters (including the posterior for the DRF measures), Ψ∗ is

available immediately after the chain has converged, and MCMC estimation naturally supports a

wide array of prior parameter distributions for including subjective beliefs about the distribution

of population parameters.

The MCMC, bootstrap, and parametric sampling approaches for obtaining Ψ∗ clearly have

their own strengths and weaknesses. On one hand, the parametric sampling approach is typically

the most readily available for a number of simpler IRT models; however, it is problematic when

a suitable Σ̂(Ψ̂|Y) is difficult to compute, or when estimation of the model becomes less accurate

(e.g., multidimensional IRT models where numerical integration becomes a concern). The boot-
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strap approach, on the other hand, is a non-parametric approach which does not require Σ̂(Ψ̂|Y) to

be computed. However, the bootstrap is more computationally intensive than the sampling method,

is similarly limited to the family of IRT models where the EM algorithm is effective, and is prone

to non-convergence and other sampling-based issues. Finally, MCMC has the advantage that Ψ∗ is

readily available upon completion, is generally very flexible and generalizable, and behaves well

for multidimensional IRT models due to the inherent sampling approach for numerical integration.

However, the Markov chain itself may be very computationally demanding and generally does not

benefit from computational parallelization. Nevertheless, each approach may be useful depending

on the research context and datasets sampled; therefore, these methods should be explored in future

empirical studies and simulation work.

4.3 General Extensions of the DRF Framework

This section presents three extensions for the DRF framework: the use of conditional tests at

different levels of θ, applications in equivalence testing, and extensions for multidimensional IRT

models.

4.3.1 Conditional Testing Approach to Detecting Differential Response Functioning

The differential response functioning measures that were examined in Chapter 3 were all based

on marginal estimates for detecting response bias, specifically between the θ range [−6, 6]. How-

ever, an alternative approach could have been used to detect differential effects which relate to the
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individual or conditional θ components. The conditional approach is what is used to build the

respective sDRFθ measures that previously were manipulated to construct post-hoc graphics, such

as those seen in Figure 2.2. However, this approach has the potential to be used for more formal

testing of bias in the response functions and, unlike the marginal estimates previously explored,

relates to the exact definitions of DIF, DBF, and DTF presented in Chapter 2.

Testing statistical significance of any given θ location is in fact no different than testing any

of the marginal sDRF measures because sDRFθ is simply the sDRF measures evaluated at some

precise θ location14. Therefore, obtaining suitable p-values for a given θi value is no more com-

plex than evaluating any of the sDRF measures. Practitioners may evaluate sDRFθ over a wide

range of θ values (say, Q = 1000 or more) to determine whether any DRF effects are statistically

present instead of using visual inspection after constructing plots. However, one of the issues with

this approach is that independently evaluating a moderate to large number of sDRFθ values will

potentially lead to inflated family-wise Type I error rates due to repeated significance testing.

The general correction when investigating a large number of statistical tests which supply p-

values is to employ some false-discovery rate control mechanism, such as the approach proposed

by Benjamini and Hochberg (1995). Unfortunately, however, even these false-discovery techniques

may be too conservative for the sDRFθ tests due to the fact that closely related θ locations gener-

ally contain a large amount of correlated information. This concern may be more apparent with a

14To ensure that the sDRFθ measures have appropriate coverage rates, the simulation conditions in Subsec-
tion 3.3.1.2 were evaluated at 21 equally spaced θ points between −10 and 10. The results are presented in Ap-
pendix F. The estimated coverage rates suggest that sDRFθ provides appropriate coverage when testing DIF, DBF,
and DTF across a number of simulation conditions.
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simple example: if a value of θ = 1 is significant with p < .0001, then adjacent values of θ = 1.01

and θ = 0.99 are likely to have p-values nearly as small because it is unlikely that the response

functions have deviated much from the expected values at θ = 1. The issue of correlated p-values

also appears to be prevalent in other empirical testing applications based on spatial detection appli-

cations (Bennett, Baird, Miller, & Wolford, 2010). Therefore, spatial detection research may offer

greater insights into how to deal with this issue of correlated hypothesis tests.

If it were possible to assume that the θ locations were independent, perhaps by choosing a wide

separation between the values of interest, then an alternative approach to investigating all individual

p-values for the sDRFθ test is to form a composite detection statistic whereby all Q conditional θ

tests are combined. This approach is similar to the non-compensatory DRF equations (cf. 1.10),

however instead of averaging across the response function (thereby providing an intuitive effect

size measure) the individual components are summed to form a more obvious χ2 variate. The

following evaluates the hypothesis H0 : sDRFθ1 = sDRFθ2 = · · · = sDRFθQ = 0 using the form

X2
sDRF =

Q∑
q=1

 sDRFθ=θq

σ̂(msDRFθ=θq
)

2

, (4.2)

where X2
sDRF has a χ2 distribution with Q degrees of freedom. This hypothesis test would require Q

distinct θ values to be evaluated across the integration range of interest to obtain the Q independent

sDRFθ values. As well, the Q standard error terms required in the denominator can be approxi-

mated using one of the three stochastic sampling methods discussed above (where the parametric

sampling approach should be the most efficient when the likelihood function is well approximated).

However, it is clear that if the θ values are too close together then d f = Q may result in an overly
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conservative test due to the amount of correlated information present.

Future work should investigate these conditional hypothesis testing approach for their empirical

performance, particularly in comparison to the proposed methods for detecting marginal response

bias as well as other methods for testing conditional response bias (e.g., see Moses, Miao, &

Dorans, 2010). Furthermore, the anticipated conservative nature of Equation 4.2 when Q > 1

should be amended by determining a lower d f value based on the amount of correlated information

among the sDRFθ values, though at the present it is not clear what the most optimal strategy

to adjusting the d f is. Alternatively, ubiquitous corrections may be possible through the use of

confidence envelopes (Pek & Chalmers, 2015; Pek, Chalmers, Kok, & Losardo, 2015) or Scheffé

corrections (Scheffé, 1959) to all conditional values simultaneously.

4.3.2 Testing for DRF Equivalence

Due to the natural and intuitive interpretation of marginal effect sizes for DRF measures, and be-

cause the framework has been organized within a general null hypothesis testing paradigm, the

DRF hypothesis testing framework can be modified to investigate group equivalence rather than

differences. In order to test equivalence, a researcher must first establish a window of tolerance be-

tween the response curves, such as allowing for average unsigned difference of .1 over the desired

integration area. This tolerance window is used to establish some practically non-significant differ-

ence between the response curves, implying that a small amount of bias can be tolerated between

the focal and reference group. In what follows, the topic of equivalence testing is introduced using
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large sample statistical theory to establish equivalence between the desired response curves when

DIF, DBF, or DTF is present but practically inconsequential. Before that, however, the concepts

required for equivalence testing are first introduced.

We begin with one of the simplest contexts in which equivalence tests have been popular:

testing mean equivalence between two independent samples. In a typical two-sided independent

t-test scenario the null hypothesis is expressed as H0 : µ1 − µ2 = D, where D is typically taken

to be 0. The alternative hypothesis which can be concluded when H0 is rejected is H1 : µ1 −

µ2 , D, indicating that the mean difference is not exactly equal to the constant D. The empirical

information for the independent t-test information is constructed by forming the ratio

T =
(x̄1 − x̄2) − D

sx̄1−x̄2

, (4.3)

where x̄1 and x̄2 are the means of groups 1 and 2, respectively, and sx̄1−x̄2 is the pooled standard

error (where N = n1 + n2)

sx̄1−x̄2 =

√∑n1
i=1(x1i − x̄1)2 +

∑n2
i=1(x2i − x̄2)2

n1 + n2 − 2

(
1
n1

+
1
n2

)
.

Following the computation of Equation 4.3, the value T is compared to a hypothetical t-distribution

with degrees of freedom N − 2 to determine whether the observed ratio provides evidence against

the null hypothesis.

The issue with testing against the constant D in Equation 4.3 is that any deviations from D,

however minute, will ultimately be detected when the sample sizes are large enough. Hence, even

trivial differences will result in the rejection of the null hypothesis, which is generally unfavorable

146



when researchers are interested in establishing that between-group differences are negligible. To

circumvent this issue, while still remaining in a statistical testing framework, equivalence tests

have been proposed to invert the null and alternative hypotheses so that increasing the sample size

does not bias towards rejecting some exact value in D. This objective is achieved by defining

an equivalence region, which is established by setting minimum and maximum thresholds on the

statistic of interest, and then testing whether the observed results jointly reject two one-sided null

hypothesis tests. This is the basic setup for the two one-sided test proposed by Schuirmann (1987).

Schuirmann (1987) argued that to establish equivalence between two means the use of two uni-

directional t-tests should be inspected instead. These directional tests correspond to the threshold

values by which a meaningful equivalence region can be established. For instance, in the previous

example if the mean difference could be tolerated within the values DU and DL then the associated

null hypotheses are expressed as H0 : µ1 − µ2 ≥ DU and H0 : µ1 − µ2 ≤ DL, where the alternative

hypothesis after rejecting both null hypotheses is then H1 : DL < µ1 − µ2 < DU . Hence, rejecting

both null hypotheses ultimately leads to the conclusion that the means are within the defined tol-

erance interval. Notice that to organize an equivalence test there must be some meaningful metric

by which equivalence can be expressed; in this case, the tolerance is expressed in the metric of the

observed mean difference.

The setup for the independent t-test is akin to how the signed DRF statistics behave in that they

test against the constant of 0. However, the DRF tests implement large sample z and χ2 distributions

instead of the sample-size adjusted t and F distributions. The use of the t and F distributions for
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the DRF tests is typically only beneficial when the number of parameter samples is small. Given

the relative ease of obtaining parametric samples though, the use of 500 or more parameter sets

appears to be well approximated by the large sample analogues (see Chapter 3). That said, the

reliance of the large sample asymptotic parameter covariance matrix likely limits the statistics to

large sample approximations only; hence, even when a small number of parametric samples are

obtained these statistics should still be treated as large sample approximations. For these reasons,

large sample based equivalence measures are developed below.

Recall from Chapter 2 that for any signed DRF test

z =
ŝDRF − D√
σ̂2(msDRF)

, (4.4)

where ŝDRF is used in place of ŝDIF, ŝDBF, or ŝDT F. However, in Equation 2.14 we have in-

corporated the constant D into the numerator term; previously, D was assumed to be 0. Modifying

D to some value other than 0 allows the DRF framework to adopt the two one-sided hypothesis

testing strategy, where H0 : sDRF ≥ DU and H0 : sDRF ≤ DL with the alternative hypothesis

H1 : DL < sDRF < DU . Hence, given reasonable upper and lower bounds to indicate the tolerance

interval, a large sample test of equivalence is available for all signed-based DRF measures.

The dDRF statistics have a slightly different form than the two one-sided test because this

family of statistics is based on the χ2 distribution. However, because the χ2 distribution already is

a one-sided test, this generalization is also straightforward. Analogous to the generalization for the

sDT F to dDT F statistics in Chapter 2, we can use the squared version of (4.4) to form a suitable

χ2 test
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X2 =
(d̂DRF − D)2

σ̂2(mdDRF)
(4.5)

to achieve the same goal. We now wish to test the null hypothesis H0 : dDRF ≥ D with the

associated alternative hypothesis H1 : dDRF < D to determine whether the population dDRF

measures fall within the desired tolerance. Measures based on the dDRF family of statistics are

likely more desirable for test analysts because they are based on the overall response differences

without the possibility of cancellation effects; however, (4.4) can be useful in response curves

which theoretically have no cancellation effects (such as the Rasch model) or when the θ interval

has been modified to include a smaller range.

Finally, the DRF statistics could be adopted within more modern equivalence testing frame-

works other than the two one-sided testing methodology; however, the formal development of this

area is outside the scope of this dissertation. Nevertheless, it is clear that the measures outlined

above provide meaningful and important statistical tools which link equivalence testing method-

ology to differential response functioning techniques. This link is largely due to the fact that the

DRF measures offer effect size interpretations which can be used to establish reasonable tolerance

criteria. This topic appears to be an important avenue of research to explore for test analysts who

are willing to tolerate certain amounts of differential response effects in their items, bundles, and

tests.
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4.3.3 Multidimensional Differential Functioning

Throughout this dissertation, the IRT models investigated were assumed to be unidimensional.

However, multidimensional IRT (MIRT) models may be more appropriate in a number of empirical

testing situations because items may be influenced by more than one latent trait. Due in part to

computational and methodological advances, MIRT models have been becoming more popular

in applied settings and generally offer a more flexible model fitting methodology compared to

unidimensional IRT models (Wirth & Edwards, 2007).

Similar to unidimensional IRT, multidimensional DIF effects can be tested using similar likelihood-

based techniques (e.g., Wald, LR, and Lagrange tests). However, due to the complexity and diffi-

culty of estimating multidimensional IRT models the area of multidimensional differential response

functioning in general has been highly under-represented in the psychometrics literature (Reck-

ase, 2009). This section provides a brief overview of how the DRF measures can be adopted for

multidimensional differential response functioning, although some important caveats about their

application will be noted along the way.

The definition of bias for MIRT models is very similar to the definition of bias for unidimen-

sional IRT models (i.e., Equation 1.8) in that it has the form

∀θ : TB(C|θ,ΨR) = TB(C|θ,ΨF), (4.6)

where changing the bundle size results in the definitions for DIF, DBF, and DTF. The difference

between Equation 4.6 and 1.8 is simply that the expected score function is based on a θ vector
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which has more than one element; therefore, the expected scores become multidimensional sur-

faces rather than simple one-dimensional response curves. See Figure 4.2 for an example of the

expected test scoring functions, with respect to each group, and the difference between these func-

tions which is used to compute DTF. Finally, MIRT models have an additional consideration in

that interdependencies among the latent traits can also be defined, most commonly assuming that

the traits are related via a multivariate Gaussian distribution (Bock et al., 1988).

Multiple-group IRT estimation can again be used to equate the groups after a sufficient number

of anchor items has been chosen. However, it is important to note that each respective latent trait

must contain a sufficient number of anchor items to uniquely identify the model. Following the

estimation of this IRT model, Σ̂(Ψ̂|Y) can again be obtained to perform Wald tests; otherwise,

LR tests can be obtained by comparing suitable nested models with constrained parameter sets.

Because the Wald configuration allows for the possibility to perform DIF testing, the DRF frame-

work may also be used by obtaining parametric sampling set for Ψ∗ (alternatively, bootstrapped

or MCMC sets may also be obtained; see above). Therefore, the DRF framework follows exactly

the same setup for MIRT models as it did for standard IRT models, and properties for conditional

differential functions are still applicable (cf. Equation 2.1). However, the conditional and marginal

DRF measures relate to joint locations in the θ space, which may make interpretations slightly

more difficult due to the multidimensional nature of the models.

One of the main difficulties in estimating MIRT models occurs because the numerical inte-

gration methods required to evaluate the observed-data log-likelihood (or the E-step in the EM
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Figure 4.2: Expected test scoring surfaces for a two-dimensional 40 item test (top), generated from

a ‘complete simple structure’ factor loading pattern, and the difference between these functions in

the form of the sDT Fθ measure (bottom).
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algorithm) become increasingly less tractable as the number of latent traits increases (Bock et al.,

1988). Unsurprisingly, the DRF framework shares a similar integration-based issue when evaluat-

ing the respective response bias; however, the following examples demonstrate that this integration

problem is situation specific. Consider the following pattern of multidimensional slopes in a par-

ticular four-dimensional test, where each row corresponds to an item and each column is associated

with a unique latent trait:

Abi f actor =



α1 αa1 0 0
α2 αa2 0 0
α3 αa3 0 0
α4 0 αb1 0
α5 0 αb2 0
α6 0 αb3 0
α7 0 0 αc1

α8 0 0 αc2

α9 0 0 αc3



.

For this particular test structure there are nine items that are influenced by the first latent trait

and three additional latent traits which each affect three distinct items. This particular pattern

of slopes has been termed a bifactor model because each respective item is only affected by two

latent traits (Gibbons et al., 2007; Gibbons & Hedeker, 1992). In order to evaluate DIF for any

given item using the DRF framework, an integration grid with two dimensions will be required.

However, when more than one item is included in the focal bundle (such as when testing for DTF)

an integration grid which uses up to four dimensions will be necessary to capture the joint variation

contributed by each distinct trait. This type of complex integration often requires special high-

dimensional integration techniques such as Monte Carlo or quasi-Monte Carlo integration because
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these integrals are generally difficult to compute effectively and efficiently (Caflisch, 1998).

On the other hand, if the test’s slope configuration follows what Thurstone (1947) termed a

‘complete simple structure’ (Gibbons & Hedeker, 1992), whereby each latent trait has only one

slope

Asimple =



αa1 0 0
αa2 0 0
αa3 0 0
0 αb1 0
0 αb2 0
0 αb3 0
0 0 αc1

0 0 αc2

0 0 αc3



,

then tests for DIF only require one-dimensional integration. Furthermore, bundle-based DRF tests

can also be simplified for the unidimensional item bundles by using isolated one-dimensional in-

tegrals. This type of structure may be extremely cost effective for computing the required integrals

numerically, and should result in more accurate numerical results than when using multidimen-

sional integration techniques. That being said, there likely is little reason to test DTF in such

configurations because a single composite score is generally inappropriate to interpret; therefore,

distinct DBF bundles should be explored instead.

Finally, it is likely clear to the reader at this point that including a weighted density function

(such as those used in the impact measures of Wainer, 1993) will be even more difficult to inter-

pret. Generally speaking, it is not entirely clear how multidimensional generalizations of Wainer’s

(1993) impact measures, whereby the focal group generalization provides all the information about
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the weighting function, should be interpreted. This confusion arises because the focal group con-

tains a multivariate prior density function focused around the centroid of the focal group as an

m-dimensional Gaussian distribution. Interpreting the difference between multidimensional ex-

pected surface functions is difficult enough for practitioners to comprehend, and the inclusion of

a multidimensional weighting function based on theoretical density distributions again largely ob-

scures the psychological meaning of the response surface differences. As before, however, the

inclusion of weights can be used to create regions of ad-hoc importance around particular ranges

of θ, and the majority of the properties and amendments discussed in Section 4.1.2 still apply,

but the meaningfulness of the resulting measures become even more difficult to interpret. With

respect to MIRT models, the default density approach used in the DRF framework likely should

be preferred for investigating differential effects, and the use of weights should be introduced only

when ad-hoc weighting is desired and justified.

4.4 Summary

This chapter discussed several important areas related to the DRF framework including the inter-

pretation of the DRF measures as effect sizes compared to existing approaches, the generation of

different sets of Ψ∗ via bootstrapping and MCMC methodology, and provided information about

optimally selecting a suitable Σ̂(Ψ̂|Y) estimator. Various extensions of the DRF framework were

presented relating to conditional detection of DRF given different levels of θ, equivalence test-

ing methods for establishing tolerable levels of bias, and multidimensional differential response
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functioning for DIF, DBF, and DTF. This chapter conveyed the generality of the DRF measures,

suggesting that there is a number of important applications and extensions of the framework which

remain to be explored. The topics reviewed in this chapter, as well as other areas not presented,

should be further investigated to determine the overall usefulness of the DRF framework in a much

wider variety of contexts than were explored in Chapters 2 and 3.
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5 Discussion

This dissertation presented a new detection and quantification methodology termed the differential

response functioning (DRF) framework to investigate response bias in items, bundles, and tests.

The framework was developed in Chapter 2, and further elaborated and extended in Chapter 4,

while Chapter 3 evaluated the detection properties of the new measures to analogous statistics

from the SIBTEST (Shealy & Stout, 1993) and DFIT (Raju et al., 1995) frameworks through

Monte Carlo simulations. The general conclusion from the Monte Carlo simulations in Chapter 3

was that the DRF framework performed as well or often considerably better than the previously

proposed statistical frameworks. Given the arguments and extensions in Chapters 2 and 4, the

DRF framework is also able to avoid many of the statistical and conceptual pitfalls present in the

SIBTEST and DFIT frameworks. Overall, it was argued that the DRF framework is not only a

useful tool for studying DRF, but in fact is conceptually, theoretically, and empirically superior to

the two competing frameworks.

Although the sampling variability of the DRF measures can be obtained using bootstrapping

or MCMC methodology, the presentation and simulations investigated in this dissertation used
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a parametric sampling approach that capitalized on information from the estimated parameter

variance-covariance matrix. This particular approach demonstrates a rather attractive feature of

the DRF statistics with respect to currently available IRT software; namely, any software package

capable of estimating multiple-group IRT models with a suitable Σ̂(Ψ̂|Y) matrix can be used as a

basis for constructing the DRF measures and their respective sampling variability. This property

is beneficial because most of the high-quality software available also include Wald-based tests for

DIF which, as discussed in Chapter 2, are the only tools required to setup the parametric sampling

method. Because the Wald test and DRF statistics have the same basic setup the results from any

software package capable of performing Wald tests for DIF can be used to construct the associated

estimates and respective variability of the DRF measures from the exported parameter estimates

and Σ̂(Ψ̂|Y) matrix.

As a rule of thumb, the DRF measures and their associated parametric sampling variability

are valid in situations where the Wald test is theoretically reasonable. This implies that the DRF

framework may even be suitable under varying degrees of misspecification because the traditional

Σ̂(Ψ̂|Y) estimates may be replaced with more robust variance such as the sandwich covariance

estimator (White, 1982; Yuan, Cheng, & Patton, 2013). However, when the sampling mechanism

used to build a reasonable sample from the posterior distribution of the estimated parameters (Ψ∗)

is not appropriate, then more appropriate sampling techniques should be adopted instead. In par-

ticular, I conjecture that the bootstrap approach will perform better than the parametric sampling

approach in datasets with smaller sample sizes, particularly at maintaining nominal Type I error
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rates, because the implicit assumption that the likelihood function can be sufficiently approximated

by a quadratic function is not required by the bootstrap (this assumption is the basis for using the

Σ̂(Ψ̂|Y) matrix to form standard errors as well; Chalmers, Pek, & Liu, accepted; Pawitan, 2001).

Modifying various IRT models through transformations may help to make Σ̂(Ψ̂|Y) behave better

(such as after applying a logit transformation to the lower-bound parameter of the 3PL model).

However, if the parameter estimates are too unstable, then this strategy may not completely fix the

problem.

In addition to the topics presented in Chapter 4, the DRF measures may also be useful under

numerous other IRT models not studied in this body of work, including, but not limited to, poly-

tomous IRT models for items with unordered response categories, non-linear or less-predictable

a priori response functions (such as those derived from Kernel-smoothing or spline techniques),

models which include latent regression effects (e.g., Adams et al., 1997), and models where test de-

sign characteristics are constructed (e.g., Chalmers, 2015). Because the only components required

to build the DRF measures are the expected score functions and a reasonable set of plausible pa-

rameter estimates to compute the sampling variability, the framework lends itself to a wide variety

of IRT modeling applications. This level of generality cannot be overstated because focusing on

expected response functions is the reason for using probabilistic response models for categorical

data in the first place.
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5.1 Conclusion

The DRF framework provides a promising, powerful, and flexible analysis framework for inves-

tigating item, bundle, and test bias effects. The area-based DRF measures offer natural interpre-

tations of bias in meaningful metrics which are intimately related to the theoretical definitions of

response bias, and these measures can be adopted to a very wide variety of test analysis contexts.

The framework promises a number of additional application areas which were not directly stud-

ied in this body of work but have important implications for quantifying and controlling test bias.

Finally, the measures presented and examined in this dissertation will hopefully be an important

contribution to the field of psychometrics, and I hope that future researchers will see the utility and

flexibility of the DRF framework in their bias quantification applications.
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Appendix A Type I Error Rates for DIF Simulations

N(0, 1) N(1/2, 2/3)
Sample Sizes Test Length SIBTEST SIBTESTUC CSIBTEST SIBTEST CSIBTEST

450/450 20 .047 .047 .055 .048 .051
30 .049 .050 .068 .055 .057
40 .049 .046 .065 .059 .058

600/300 20 .045 .046 .060 .051 .060
30 .055 .054 .067 .057 .060
40 .050 .049 .068 .057 .057

900/900 20 .046 .047 .057 .039 .053
30 .045 .045 .058 .040 .060
40 .046 .046 .055 .044 .055

1200/600 20 .054 .051 .064 .047 .053
30 .047 .045 .059 .045 .050
40 .046 .045 .058 .050 .055

1350/1350 20 .039 .038 .053 .032 .048
30 .043 .042 .051 .038 .061
40 .050 .049 .061 .039 .056

1800/900 20 .042 .042 .065 .045 .060
30 .056 .056 .068 .051 .058
40 .049 .050 .060 .049 .057

Table 1: Type I error rates for SIBTEST procedures for detecting DIF when all non-focal items are

included as anchor items.
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Anchors Focal Distribution Sample Sizes Test Length sDIF dDIF Wald NCDIFLF NCDIFS F P(NCDIFLF > .006) P(NCDIFS F > .006)
5 N(0, 1) 450/450 20 .033 .032 .039 .767 .770 .140 .137

30 .030 .022 .036 .779 .779 .123 .124
40 .025 .020 .025 .793 .794 .132 .133

600/300 20 .039 .041 .047 .816 .782 .032 .031
30 .037 .040 .039 .824 .788 .029 .030
40 .032 .035 .033 .831 .802 .028 .026

N(1/2, 2/3) 450/450 20 .026 .027 .035 .793 .766 .182 .139
30 .024 .023 .031 .799 .787 .174 .132
40 .024 .018 .030 .809 .801 .178 .138

600/300 20 .038 .038 .045 .852 .790 .047 .038
30 .029 .033 .043 .856 .797 .043 .032
40 .031 .030 .037 .856 .803 .042 .035

10 N(0, 1) 450/450 20 .031 .031 .044 .768 .764 .079 .079
30 .030 .025 .033 .775 .778 .076 .076
40 .024 .021 .027 .775 .774 .070 .069

600/300 20 .038 .038 .038 .819 .783 .010 .010
30 .033 .039 .040 .819 .786 .010 .009
40 .035 .034 .038 .834 .803 .011 .011

N(1/2, 2/3) 450/450 20 .026 .026 .045 .794 .767 .116 .087
30 .022 .019 .040 .800 .782 .106 .073
40 .019 .021 .030 .798 .794 .113 .082

600/300 20 .040 .036 .041 .849 .780 .022 .020
30 .034 .032 .040 .857 .790 .018 .013
40 .037 .032 .028 .852 .808 .020 .015

Table 2: Empirical Type I error rates for detecting DIF when N = 900 and all items are included in the fitted model.

Type I error rates greater than .075 and less than .025 are highlighted in bold.
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Anchors Focal Distribution Sample Sizes Test Length sDIF dDIF Wald NCDIFLF NCDIFS F P(NCDIFLF > .006) P(NCDIFS F > .006)
5 N(0, 1) 900/900 20 .045 .043 .044 .803 .798 .023 .022

30 .035 .039 .037 .816 .812 .016 .017
40 .037 .037 .041 .827 .824 .023 .023

1200/600 20 .046 .050 .047 .856 .823 .001 .001
30 .041 .044 .043 .863 .835 .000 .000
40 .047 .048 .035 .860 .837 .001 .001

N(1/2, 2/3) 900/900 20 .040 .042 .045 .833 .818 .045 .024
30 .039 .037 .048 .830 .817 .038 .025
40 .029 .037 .036 .837 .831 .035 .019

1200/600 20 .043 .042 .045 .870 .826 .002 .002
30 .039 .042 .036 .880 .820 .003 .001
40 .040 .040 .036 .872 .834 .003 .002

10 N(0, 1) 900/900 20 .041 .035 .043 .795 .797 .007 .006
30 .039 .047 .038 .810 .813 .007 .006
40 .038 .040 .037 .810 .814 .007 .007

1200/600 20 .043 .046 .049 .845 .817 .000 .000
30 .044 .048 .046 .849 .819 .000 .000
40 .042 .054 .046 .857 .829 .000 .000

N(1/2, 2/3) 900/900 20 .039 .034 .041 .827 .813 .018 .008
30 .035 .034 .043 .833 .820 .018 .009
40 .031 .033 .036 .843 .825 .012 .007

1200/600 20 .046 .044 .050 .869 .825 .001 .001
30 .041 .038 .045 .872 .834 .001 .001
40 .043 .043 .044 .877 .828 .000 .000

Table 3: Empirical Type I error rates for detecting DIF when N = 1800 and all items are included in the fitted model.

Type I error rates greater than .075 and less than .025 are highlighted in bold.
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Anchors Focal Distribution Sample Sizes Test Length sDIF dDIF Wald NCDIFLF NCDIFS F P(NCDIFLF > .006) P(NCDIFS F > .006)
5 N(0, 1) 1350/1350 20 .046 .049 .054 .824 .826 .004 .004

30 .044 .048 .044 .838 .836 .002 .002
40 .044 .043 .044 .841 .843 .003 .003

1800/900 20 .046 .048 .050 .863 .837 .000 .000
30 .040 .052 .046 .870 .846 .000 .000
40 .048 .053 .050 .881 .855 .000 .000

N(1/2, 2/3) 1350/1350 20 .044 .041 .054 .849 .827 .010 .005
30 .037 .037 .047 .853 .840 .008 .003
40 .040 .040 .046 .848 .845 .006 .004

1800/900 20 .047 .047 .050 .882 .841 .000 .001
30 .050 .053 .047 .896 .848 .001 .000
40 .046 .047 .039 .900 .855 .000 .000

10 N(0, 1) 1350/1350 20 .043 .045 .050 .827 .828 .001 .001
30 .041 .047 .043 .840 .839 .001 .001
40 .035 .042 .035 .841 .840 .000 .000

1800/900 20 .047 .052 .049 .861 .836 .000 .000
30 .046 .050 .047 .872 .845 .000 .000
40 .044 .051 .048 .869 .845 .000 .000

N(1/2, 2/3) 1350/1350 20 .042 .036 .041 .841 .834 .003 .001
30 .041 .044 .044 .842 .838 .005 .001
40 .042 .039 .040 .854 .835 .003 .001

1800/900 20 .048 .044 .057 .882 .837 .000 .000
30 .048 .053 .052 .891 .836 .000 .000
40 .045 .047 .034 .889 .843 .000 .000

Table 4: Empirical Type I error rates for detecting DIF when N = 2700 and all items are included in the fitted model.

Type I error rates greater than .075 and less than .025 are highlighted in bold.



Appendix B Empirical Power Rates for DIF Simulations

5 Anchors 10 Anchors
Groups Equal Groups Unequal Groups Equal Groups Unequal

DIF Item Focal Distribution Test Length sDIF dDIF Wald sDIF dDIF Wald sDIF dDIF Wald sDIF dDIF Wald
1 N(0, 1) 20 .102 .286 .994 .221 .827 1.000 .108 .316 .998 .215 .864 1.000

30 .106 .304 .996 .216 .846 1.000 .107 .344 1.000 .202 .882 1.000
40 .104 .285 .995 .218 .893 .999 .081 .336 1.000 .233 .904 1.000

N(1/2, 2/3) 20 .093 .109 .996 .103 .603 1.000 .061 .092 1.000 .134 .629 1.000
30 .054 .079 1.000 .098 .629 1.000 .059 .084 1.000 .106 .694 1.000
40 .057 .086 .998 .110 .614 1.000 .049 .072 1.000 .115 .698 1.000

2 N(0, 1) 20 .101 .475 .994 .190 .917 1.000 .112 .511 .999 .197 .932 1.000
30 .106 .461 .993 .183 .902 1.000 .107 .527 1.000 .180 .952 1.000
40 .081 .418 .992 .161 .943 .999 .096 .507 1.000 .173 .953 1.000

N(1/2, 2/3) 20 .085 .229 .995 .137 .883 1.000 .102 .290 1.000 .152 .906 1.000
30 .077 .253 .999 .144 .906 1.000 .107 .312 1.000 .151 .926 1.000
40 .076 .233 .999 .139 .893 1.000 .074 .277 .999 .160 .935 1.000

3 N(0, 1) 20 .485 .546 .985 .811 .937 1.000 .527 .658 .990 .855 .950 1.000
30 .456 .599 .986 .801 .937 .999 .498 .662 .991 .837 .961 1.000
40 .375 .521 .980 .796 .941 1.000 .520 .655 .996 .850 .965 1.000

N(1/2, 2/3) 20 .482 .567 .992 .814 .949 1.000 .507 .658 .998 .846 .973 1.000
30 .473 .583 .996 .798 .956 1.000 .539 .682 .998 .829 .969 1.000
40 .475 .585 .992 .798 .962 1.000 .475 .680 .997 .824 .978 1.000

4 N(0, 1) 20 .630 .569 .932 .938 .921 1.000 .692 .681 .951 .944 .948 .998
30 .606 .582 .951 .898 .896 .995 .688 .671 .955 .950 .949 1.000
40 .566 .531 .923 .931 .938 .997 .671 .659 .959 .955 .960 .999

N(1/2, 2/3) 20 .727 .661 .950 .948 .936 1.000 .816 .791 .977 .972 .971 1.000
30 .699 .669 .964 .960 .956 .999 .806 .778 .971 .984 .981 1.000
40 .700 .673 .971 .945 .941 1.000 .797 .770 .974 .983 .983 .998

5 N(0, 1) 20 .617 .527 .671 .928 .880 .918 .708 .621 .714 .969 .943 .930
30 .640 .536 .706 .906 .868 .932 .707 .639 .704 .969 .962 .937
40 .542 .467 .669 .929 .896 .952 .682 .592 .736 .958 .942 .946

N(1/2, 2/3) 20 .738 .620 .766 .961 .935 .940 .819 .740 .760 .983 .972 .953
30 .729 .641 .742 .948 .912 .940 .824 .764 .722 .976 .958 .956
40 .717 .625 .742 .960 .937 .937 .819 .751 .748 .985 .970 .954

Table 5: DIF Power rates for N = 900.
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5 Anchors 10 Anchors
Groups Equal Groups Unequal Groups Equal Groups Unequal

DIF Item Focal Distribution Test Length sDIF dDIF Wald sDIF dDIF Wald sDIF dDIF Wald sDIF dDIF Wald
1 N(0, 1) 20 .214 .787 1.000 .425 .993 1.000 .204 .838 1.000 .409 .995 1.000

30 .191 .817 1.000 .387 .997 1.000 .195 .857 1.000 .429 .999 1.000
40 .200 .836 1.000 .413 .999 1.000 .196 .874 1.000 .446 .999 1.000

N(1/2, 2/3) 20 .079 .439 1.000 .204 .971 1.000 .082 .478 1.000 .223 .977 1.000
30 .084 .496 1.000 .213 .984 1.000 .092 .538 1.000 .209 .990 1.000
40 .099 .460 1.000 .218 .989 1.000 .079 .494 1.000 .268 .995 1.000

2 N(0, 1) 20 .186 .894 1.000 .341 .997 1.000 .200 .923 1.000 .366 1.000 1.000
30 .186 .910 1.000 .331 1.000 1.000 .209 .942 1.000 .353 1.000 1.000
40 .188 .934 1.000 .349 1.000 1.000 .206 .954 1.000 .371 1.000 1.000

N(1/2, 2/3) 20 .145 .857 1.000 .273 .999 1.000 .152 .880 1.000 .285 .999 1.000
30 .139 .886 1.000 .258 .998 1.000 .159 .925 1.000 .293 .999 1.000
40 .128 .867 1.000 .266 .999 1.000 .176 .918 1.000 .282 1.000 1.000

3 N(0, 1) 20 .836 .923 1.000 .986 .999 1.000 .859 .960 1.000 .988 1.000 1.000
30 .816 .939 1.000 .985 1.000 1.000 .856 .971 1.000 .993 1.000 1.000
40 .786 .948 1.000 .980 .999 1.000 .844 .966 1.000 .991 1.000 1.000

N(1/2, 2/3) 20 .808 .964 1.000 .980 .997 1.000 .818 .986 1.000 .996 1.000 1.000
30 .829 .978 1.000 .987 1.000 1.000 .808 .985 1.000 .992 1.000 1.000
40 .796 .970 1.000 .986 1.000 1.000 .836 .984 1.000 .987 1.000 1.000

4 N(0, 1) 20 .940 .912 1.000 .997 .995 1.000 .962 .952 .999 .999 .999 1.000
30 .936 .924 1.000 1.000 1.000 1.000 .967 .971 1.000 .999 1.000 1.000
40 .950 .935 1.000 .999 .999 1.000 .961 .969 .999 .998 1.000 1.000

N(1/2, 2/3) 20 .971 .967 1.000 .998 .998 1.000 .985 .983 1.000 1.000 1.000 1.000
30 .980 .989 1.000 .999 1.000 1.000 .984 .987 1.000 1.000 1.000 1.000
40 .963 .971 1.000 1.000 1.000 1.000 .984 .989 1.000 1.000 1.000 1.000

5 N(0, 1) 20 .938 .898 .963 .997 .995 1.000 .971 .952 .967 1.000 .998 .999
30 .941 .905 .956 .997 .995 1.000 .970 .959 .968 1.000 .999 .999
40 .943 .906 .966 .999 .999 1.000 .975 .962 .975 1.000 1.000 1.000

N(1/2, 2/3) 20 .977 .958 .973 1.000 .999 .999 .994 .987 .974 1.000 1.000 1.000
30 .981 .959 .979 1.000 1.000 .998 .992 .986 .981 1.000 1.000 1.000
40 .978 .958 .972 1.000 1.000 1.000 .991 .989 .973 1.000 1.000 1.000

Table 6: DIF Power rates for N = 1800.
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5 Anchors 10 Anchors
Groups Equal Groups Unequal Groups Equal Groups Unequal

DIF Item Focal Distribution Test Length sDIF dDIF Wald sDIF dDIF Wald sDIF dDIF Wald sDIF dDIF Wald
1 N(0, 1) 20 .279 .964 1.000 .578 1.000 1.000 .293 .978 1.000 .621 1.000 1.000

30 .315 .983 1.000 .581 1.000 1.000 .321 .983 1.000 .612 1.000 1.000
40 .293 .982 1.000 .573 1.000 1.000 .305 .983 1.000 .624 1.000 1.000

N(1/2, 2/3) 20 .122 .815 1.000 .299 .999 1.000 .137 .862 1.000 .308 1.000 1.000
30 .146 .862 1.000 .331 1.000 1.000 .142 .880 1.000 .342 1.000 1.000
40 .136 .864 1.000 .332 .999 1.000 .133 .894 1.000 .337 1.000 1.000

2 N(0, 1) 20 .264 .993 1.000 .482 1.000 1.000 .303 .993 1.000 .506 1.000 1.000
30 .276 .993 1.000 .457 1.000 1.000 .260 .993 1.000 .488 1.000 1.000
40 .267 .996 1.000 .482 1.000 1.000 .260 .999 1.000 .489 1.000 1.000

N(1/2, 2/3) 20 .219 .988 1.000 .371 1.000 1.000 .234 .989 1.000 .399 1.000 1.000
30 .191 .993 1.000 .379 1.000 1.000 .213 .989 1.000 .383 1.000 1.000
40 .189 .987 1.000 .358 1.000 1.000 .217 .997 1.000 .397 1.000 1.000

3 N(0, 1) 20 .940 .992 1.000 1.000 1.000 1.000 .960 .994 1.000 1.000 1.000 1.000
30 .939 .993 1.000 1.000 1.000 1.000 .965 1.000 1.000 1.000 1.000 1.000
40 .963 .994 1.000 1.000 1.000 1.000 .972 .998 1.000 .999 1.000 1.000

N(1/2, 2/3) 20 .936 .998 1.000 1.000 1.000 1.000 .941 1.000 1.000 .999 1.000 1.000
30 .932 .994 1.000 1.000 1.000 1.000 .948 .997 1.000 .999 1.000 1.000
40 .927 .996 1.000 1.000 1.000 1.000 .940 1.000 1.000 .999 1.000 1.000

4 N(0, 1) 20 .992 .987 1.000 1.000 1.000 1.000 .995 .996 1.000 1.000 1.000 1.000
30 .993 .995 1.000 1.000 1.000 1.000 .994 .994 1.000 1.000 1.000 1.000
40 .994 .994 1.000 1.000 1.000 1.000 .998 .999 1.000 1.000 1.000 1.000

N(1/2, 2/3) 20 .998 1.000 1.000 1.000 1.000 1.000 1.000 .999 1.000 1.000 1.000 1.000
30 .996 .997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 .995 .999 1.000 1.000 1.000 1.000 .997 1.000 1.000 1.000 1.000 1.000

5 N(0, 1) 20 .994 .984 .995 1.000 1.000 1.000 .999 .995 .995 1.000 1.000 1.000
30 .991 .983 .999 1.000 1.000 1.000 .999 .998 .996 1.000 1.000 1.000
40 .995 .987 .997 1.000 1.000 1.000 .998 .997 .996 1.000 1.000 1.000

N(1/2, 2/3) 20 .999 .998 .997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
30 .999 .994 .999 1.000 1.000 1.000 .999 .999 .998 1.000 1.000 1.000
40 .996 .993 .996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 7: DIF Power rates for N = 2700.
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Appendix C Type I Error Rates for DBF and DTF Simulations

Three Focal Items Five Focal Items
Anchors Focal Distribution Sample Sizes Test Length sDBF dDBF DBFLF DBFS F sDBF dDBF DBFLF DBFS F

5 N(0, 1) 450/450 20 .039 .041 .762 .765 .033 .048 .757 .764
30 .030 .041 .776 .767 .031 .045 .770 .768
40 .025 .025 .765 .772 .023 .044 .760 .759

600/300 20 .034 .041 .788 .818 .027 .053 .814 .787
30 .025 .041 .792 .825 .027 .045 .840 .795
40 .032 .038 .803 .829 .030 .043 .834 .801

N(1/2, 2/3) 450/450 20 .035 .039 .765 .756 .032 .038 .785 .754
30 .022 .029 .790 .788 .023 .034 .782 .762
40 .018 .023 .796 .789 .014 .020 .802 .784

600/300 20 .040 .059 .793 .854 .039 .052 .848 .789
30 .039 .047 .799 .831 .036 .045 .836 .779
40 .034 .044 .798 .854 .043 .041 .831 .790

10 N(0, 1) 450/450 20 .030 .048 .750 .757 .030 .046 .721 .728
30 .032 .036 .755 .754 .027 .049 .770 .770
40 .024 .027 .763 .761 .022 .041 .742 .759

600/300 20 .036 .055 .763 .799 .033 .058 .814 .771
30 .036 .045 .759 .803 .031 .045 .800 .753
40 .032 .039 .779 .817 .035 .054 .812 .768

N(1/2, 2/3) 450/450 20 .029 .033 .755 .783 .032 .035 .782 .764
30 .020 .018 .764 .786 .017 .027 .753 .745
40 .016 .024 .753 .779 .016 .024 .781 .756

600/300 20 .049 .063 .777 .828 .049 .061 .817 .762
30 .045 .052 .798 .853 .043 .041 .857 .794
40 .037 .046 .774 .845 .034 .048 .836 .778

Table 8: Empirical Type I error rates for detecting DBF when N = 900. Type I error rates greater

than .075 and less than .025 are highlighted in bold.
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Three Focal Items Five Focal Items
Anchors Focal Distribution Sample Sizes Test Length sDBF dDBF DBFLF DBFS F sDBF dDBF DBFLF DBFS F

5 N(0, 1) 900/900 20 .053 .058 .826 .827 .060 .066 .816 .813
30 .032 .045 .810 .806 .031 .052 .790 .794
40 .039 .042 .798 .807 .040 .048 .821 .817

1200/600 20 .037 .053 .822 .842 .048 .059 .849 .820
30 .043 .050 .830 .862 .038 .058 .852 .823
40 .040 .061 .823 .851 .044 .066 .847 .815

N(1/2, 2/3) 900/900 20 .035 .044 .791 .817 .032 .050 .801 .820
30 .023 .035 .817 .846 .026 .041 .824 .806
40 .038 .041 .807 .831 .035 .051 .845 .822

1200/600 20 .040 .049 .815 .872 .043 .043 .882 .788
30 .045 .046 .816 .875 .038 .044 .870 .808
40 .035 .042 .818 .888 .038 .056 .884 .808

10 N(0, 1) 900/900 20 .041 .055 .793 .790 .040 .052 .792 .794
30 .044 .051 .807 .814 .043 .057 .805 .808
40 .029 .046 .797 .802 .049 .067 .794 .801

1200/600 20 .049 .061 .823 .853 .051 .070 .848 .807
30 .032 .063 .813 .838 .040 .066 .818 .795
40 .038 .052 .809 .836 .047 .062 .858 .831

N(1/2, 2/3) 900/900 20 .041 .047 .817 .828 .049 .058 .811 .805
30 .029 .049 .803 .828 .035 .051 .826 .789
40 .035 .038 .809 .795 .034 .040 .811 .777

1200/600 20 .042 .055 .798 .880 .049 .070 .855 .805
30 .035 .051 .808 .857 .030 .059 .866 .798
40 .044 .055 .834 .869 .040 .056 .856 .808

Table 9: Empirical Type I error rates for detecting DBF when N = 1800. Type I error rates greater

than .075 and less than .025 are highlighted in bold.
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Three Focal Items Five Focal Items
Anchors Focal Distribution Sample Sizes Test Length sDBF dDBF DBFLF DBFS F sDBF dDBF DBFLF DBFS F

5 N(0, 1) 1350/1350 20 .036 .047 .802 .801 .036 .061 .781 .776
30 .036 .056 .837 .831 .044 .059 .820 .827
40 .040 .050 .827 .828 .046 .043 .831 .838

1800/900 20 .048 .057 .844 .874 .042 .058 .853 .817
30 .045 .066 .836 .861 .041 .061 .871 .846
40 .049 .053 .826 .851 .056 .064 .870 .833

N(1/2, 2/3) 1350/1350 20 .049 .065 .815 .830 .047 .059 .838 .810
30 .040 .059 .840 .837 .030 .048 .850 .842
40 .030 .042 .822 .846 .033 .043 .853 .834

1800/900 20 .043 .055 .828 .883 .054 .050 .869 .838
30 .038 .062 .841 .901 .048 .062 .884 .839
40 .052 .055 .852 .875 .047 .053 .895 .842

10 N(0, 1) 1350/1350 20 .046 .043 .804 .803 .037 .057 .803 .810
30 .058 .052 .805 .816 .044 .055 .811 .811
40 .046 .063 .839 .835 .045 .060 .853 .842

1800/900 20 .052 .057 .829 .860 .054 .072 .847 .817
30 .038 .059 .834 .852 .038 .054 .850 .822
40 .045 .072 .830 .853 .044 .068 .857 .834

N(1/2, 2/3) 1350/1350 20 .051 .042 .790 .829 .047 .056 .805 .800
30 .043 .052 .807 .810 .038 .050 .812 .809
40 .043 .054 .821 .842 .048 .054 .844 .824

1800/900 20 .051 .055 .807 .877 .040 .055 .862 .815
30 .051 .066 .826 .890 .047 .053 .868 .822
40 .025 .046 .825 .852 .025 .051 .875 .841

Table 10: Empirical Type I error rates for detecting DBF when N = 2700. Type I error rates greater

than .075 and less than .025 are highlighted in bold.
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5 Anchor Items 10 Anchor Items
Sample Size Focal Distribution Sample Sizes Test Length sDT F dDT F SIBTEST SIBTESTUC DT FLF DT FS F sDT F dDT F SIBTEST SIBTESTUC DT FLF DT FS F

900 N(0, 1) 450/450 20 .030 .045 .092 .052 .747 .754 .034 .057 .050 .047 .675 .667
30 .025 .045 .102 .059 .759 .764 .029 .051 .074 .055 .731 .729
40 .022 .032 .111 .058 .779 .775 .025 .031 .076 .043 .710 .715

600/300 20 .041 .055 .091 .047 .811 .775 .042 .063 .061 .053 .759 .725
30 .034 .049 .123 .050 .820 .786 .039 .066 .082 .054 .757 .714
40 .038 .045 .106 .055 .854 .827 .031 .047 .075 .046 .774 .737

N(1/2, 2/3) 450/450 20 .027 .040 .132 – .760 .746 .038 .037 .100 – .726 .687
30 .030 .039 .143 – .800 .753 .022 .030 .092 – .723 .701
40 .022 .031 .142 – .773 .780 .025 .030 .109 – .748 .737

600/300 20 .039 .051 .132 – .840 .764 .051 .056 .080 – .770 .704
30 .037 .051 .148 – .840 .780 .048 .050 .101 – .816 .748
40 .038 .048 .164 – .850 .778 .035 .040 .104 – .800 .749

1800 N(0, 1) 450/450 20 .061 .066 .111 .053 .784 .784 .040 .069 .067 .049 .738 .736
30 .037 .053 .107 .048 .780 .781 .047 .053 .083 .055 .780 .766
40 .039 .050 .110 .069 .813 .811 .041 .067 .086 .061 .794 .783

600/300 20 .047 .062 .094 .042 .847 .811 .049 .062 .073 .059 .809 .777
30 .049 .065 .106 .049 .855 .816 .043 .069 .083 .052 .809 .770
40 .029 .054 .098 .048 .847 .816 .042 .052 .082 .058 .840 .811

N(1/2, 2/3) 450/450 20 .041 .048 .116 – .774 .789 .051 .055 .092 – .748 .745
30 .033 .040 .132 – .816 .791 .036 .049 .098 – .781 .784
40 .044 .037 .165 – .843 .811 .033 .043 .085 – .771 .770

600/300 20 .043 .038 .133 – .846 .772 .055 .072 .077 – .816 .755
30 .037 .045 .141 – .874 .831 .047 .064 .077 – .832 .798
40 .041 .056 .147 – .856 .807 .049 .063 .123 – .845 .804

2700 N(0, 1) 450/450 20 .043 .062 .107 .071 .801 .801 .047 .064 .062 .048 .778 .776
30 .049 .065 .095 .052 .806 .798 .050 .067 .074 .049 .793 .800
40 .038 .047 .092 .045 .830 .817 .034 .054 .074 .045 .812 .815

600/300 20 .046 .067 .091 .051 .841 .824 .049 .066 .071 .053 .802 .771
30 .049 .067 .101 .046 .873 .841 .042 .067 .064 .055 .836 .806
40 .038 .045 .111 .041 .870 .851 .043 .067 .081 .057 .833 .811

N(1/2, 2/3) 450/450 20 .040 .058 .126 – .799 .807 .049 .058 .088 – .763 .768
30 .024 .029 .145 – .828 .812 .040 .056 .102 – .804 .787
40 .039 .042 .156 – .827 .838 .037 .038 .084 – .810 .788

600/300 20 .049 .051 .130 – .885 .831 .042 .056 .082 – .835 .771
30 .040 .040 .159 – .879 .816 .047 .055 .105 – .837 .792
40 .046 .053 .140 – .862 .843 .040 .052 .091 – .868 .830

Table 11: Empirical Type I error rates for detecting DTF. Type I error rates greater than .075 and less than .025 are

highlighted in bold.
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Appendix D Empirical Power Rates for DTF and DBF Simulations

5 Anchors 10 Anchors
DIF Items Focal Distribution Sample Sizes Equal Test Length sDT F SIBTEST dDT F sDBF dDBF sDT F SIBTEST dDT F sDBF dDBF

1,3,5 N(0, 1) Yes 20 .052 .173 .155 .159 .915 .062 .280 .455 .166 .967
30 .040 .150 .074 .161 .912 .045 .148 .139 .146 .975
40 .031 .119 .038 .130 .918 .034 .106 .064 .158 .978

No 20 .063 .243 .303 .313 1.000 .109 .445 .811 .319 1.000
30 .059 .160 .155 .308 1.000 .077 .215 .355 .338 1.000
40 .054 .141 .089 .282 .999 .062 .156 .179 .306 1.000

N(1/2, 2/3) Yes 20 .041 .303 .131 .132 .842 .043 .449 .387 .134 .923
30 .038 .201 .051 .125 .867 .031 .251 .166 .138 .946
40 .022 .218 .034 .111 .840 .022 .172 .059 .129 .928

No 20 .059 .367 .315 .217 .998 .081 .645 .775 .221 1.000
30 .045 .265 .119 .216 .998 .057 .346 .343 .245 1.000
40 .031 .214 .068 .190 .999 .038 .244 .166 .220 1.000

1,2,3,4,5 N(0, 1) Yes 20 .111 .321 .338 .399 .981 .227 .638 .864 .478 .996
30 .058 .187 .127 .374 .983 .090 .299 .362 .453 .997
40 .028 .150 .061 .324 .978 .063 .195 .187 .454 .997

No 20 .176 .447 .677 .716 1.000 .429 .848 .996 .804 1.000
30 .090 .248 .304 .681 1.000 .192 .448 .738 .794 1.000
40 .058 .176 .155 .681 1.000 .102 .294 .443 .777 1.000

N(1/2, 2/3) Yes 20 .073 .464 .322 .295 .972 .166 .834 .843 .314 .998
30 .039 .319 .141 .244 .979 .065 .491 .386 .319 .999
40 .019 .246 .043 .261 .983 .047 .316 .188 .292 .997

No 20 .172 .672 .716 .546 1.000 .353 .979 .997 .651 1.000
30 .077 .436 .314 .536 1.000 .141 .676 .765 .610 1.000
40 .055 .302 .158 .537 1.000 .100 .449 .447 .633 1.000

Table 12: DBF and DTF Power rates when N = 900 when all items are included.
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5 Anchors 10 Anchors
DIF Items Focal Distribution Sample Sizes Equal Test Length sDT F SIBTEST dDT F sDBF dDBF sDT F SIBTEST dDT F sDBF dDBF

1,3,5 N(0, 1) Yes 20 .065 .233 .369 .307 .995 .157 .540 .834 .364 1.000
30 .052 .164 .133 .298 .999 .067 .224 .407 .320 1.000
40 .039 .141 .092 .311 1.000 .064 .167 .186 .324 1.000

No 20 .096 .372 .616 .549 1.000 .228 .734 .986 .606 1.000
30 .068 .230 .287 .566 1.000 .123 .363 .705 .601 1.000
40 .054 .169 .164 .575 1.000 .084 .236 .397 .634 1.000

N(1/2, 2/3) Yes 20 .062 .361 .369 .214 .999 .086 .710 .809 .206 1.000
30 .040 .256 .138 .199 .997 .060 .369 .389 .261 1.000
40 .037 .235 .075 .207 1.000 .059 .263 .238 .251 1.000

No 20 .083 .582 .681 .395 1.000 .166 .930 .989 .400 1.000
30 .056 .354 .293 .395 1.000 .074 .573 .715 .433 1.000
40 .048 .290 .166 .417 1.000 .065 .374 .393 .441 1.000

1,2,3,4,5 N(0, 1) Yes 20 .184 .471 .698 .710 1.000 .490 .909 .997 .812 1.000
30 .096 .257 .357 .708 1.000 .222 .491 .793 .815 1.000
40 .069 .200 .179 .701 1.000 .121 .296 .453 .782 1.000

No 20 .361 .715 .959 .956 1.000 .770 .993 1.000 .981 1.000
30 .183 .414 .659 .952 1.000 .342 .702 .980 .987 1.000
40 .108 .272 .388 .955 1.000 .200 .458 .790 .983 1.000

N(1/2, 2/3) Yes 20 .191 .682 .755 .528 1.000 .340 .980 .999 .562 1.000
30 .071 .443 .385 .523 1.000 .136 .693 .806 .610 1.000
40 .068 .331 .196 .535 1.000 .084 .477 .520 .586 1.000

No 20 .287 .886 .963 .852 1.000 .636 .999 1.000 .904 1.000
30 .139 .617 .688 .866 1.000 .300 .919 .987 .898 1.000
40 .111 .432 .396 .870 1.000 .196 .727 .827 .907 1.000

Table 13: DBF and DTF Power rates when N = 1800 when all items are included.
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5 Anchors 10 Anchors
DIF Items Focal Distribution Sample Sizes Equal Test Length sDT F SIBTEST dDT F sDBF dDBF sDT F SIBTEST dDT F sDBF dDBF

1,3,5 N(0, 1) Yes 20 .089 .326 .527 .452 1.000 .169 .635 .956 .469 1.000
30 .073 .233 .254 .444 1.000 .098 .311 .584 .486 1.000
40 .052 .166 .139 .437 1.000 .054 .202 .307 .482 1.000

No 20 .130 .462 .839 .715 1.000 .287 .881 1.000 .773 1.000
30 .092 .276 .440 .755 1.000 .142 .468 .892 .787 1.000
40 .070 .210 .257 .756 1.000 .086 .303 .597 .790 1.000

N(1/2, 2/3) Yes 20 .070 .456 .523 .277 1.000 .146 .862 .958 .331 1.000
30 .049 .332 .228 .294 1.000 .097 .498 .615 .332 1.000
40 .058 .274 .156 .302 1.000 .060 .340 .352 .326 1.000

No 20 .127 .684 .862 .544 1.000 .278 .978 .999 .568 1.000
30 .070 .465 .468 .546 1.000 .109 .745 .893 .576 1.000
40 .048 .265 .217 .552 1.000 .082 .472 .588 .612 1.000

1,2,3,4,5 N(0, 1) Yes 20 .310 .663 .898 .899 1.000 .655 .977 1.000 .919 1.000
30 .141 .356 .573 .852 1.000 .293 .666 .945 .930 1.000
40 .093 .277 .325 .869 1.000 .167 .399 .656 .926 1.000

No 20 .491 .853 1.000 .986 1.000 .904 .999 1.000 .996 1.000
30 .232 .544 .870 .995 1.000 .509 .866 .998 1.000 1.000
40 .158 .365 .579 .991 1.000 .291 .596 .935 .998 1.000

N(1/2, 2/3) Yes 20 .243 .823 .929 .671 1.000 .488 .998 1.000 .737 1.000
30 .110 .528 .549 .698 1.000 .201 .849 .957 .740 1.000
40 .069 .403 .328 .708 1.000 .125 .602 .709 .757 1.000

No 20 .442 .969 .998 .949 1.000 .795 1.000 1.000 .971 1.000
30 .236 .746 .876 .974 1.000 .415 .988 .999 .981 1.000
40 .122 .556 .606 .976 1.000 .252 .833 .936 .975 1.000

Table 14: DBF and DTF Power rates when N = 2700 when all items are included.
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Appendix E Type I Errors for Complete DTF and DBF Cancellation Simulations

Bundle Test
Anchors Focal Distribution Sample Sizes Test Length sDBF dDBF DT FLF DT FS F sDT F dDT F SIBTEST SIBTESTUC DT FLF DT FS F

5 N(0, 1) 450/450 20 .041 .025 .741 .754 .035 .049 .074 .036 .671 .692
30 .034 .010 .736 .735 .029 .050 .095 .056 .751 .761
40 .031 .011 .764 .763 .039 .038 .120 .049 .765 .771

600/300 20 .045 .030 .796 .748 .048 .039 .101 .046 .769 .687
30 .036 .024 .828 .781 .033 .053 .104 .048 .790 .731
40 .022 .022 .825 .782 .033 .048 .087 .045 .796 .771

N(1/2, 2/3) 450/450 20 .027 .016 .793 .754 .026 .044 .140 – .719 .698
30 .027 .013 .794 .774 .037 .040 .159 – .777 .744
40 .019 .010 .789 .767 .022 .028 .166 – .773 .771

600/300 20 .042 .024 .814 .774 .036 .056 .128 – .781 .714
30 .039 .030 .837 .788 .033 .047 .139 – .805 .738
40 .035 .013 .836 .767 .026 .032 .126 – .820 .749

10 N(0, 1) 450/450 20 .035 .014 .725 .752 .033 .053 .068 .053 .633 .607
30 .035 .016 .778 .769 .033 .056 .080 .054 .676 .704
40 .030 .006 .773 .779 .028 .040 .081 .053 .709 .722

600/300 20 .042 .027 .793 .751 .036 .054 .064 .057 .665 .619
30 .043 .023 .816 .765 .042 .057 .096 .061 .719 .686
40 .037 .021 .789 .758 .035 .049 .078 .048 .730 .691

N(1/2, 2/3) 450/450 20 .024 .010 .787 .755 .026 .046 .076 – .650 .590
30 .025 .013 .778 .725 .024 .040 .107 – .712 .680
40 .021 .011 .802 .772 .016 .035 .106 – .744 .732

600/300 20 .033 .017 .834 .734 .047 .047 .073 – .719 .628
30 .043 .027 .861 .782 .041 .046 .092 – .764 .688
40 .037 .019 .832 .778 .041 .066 .090 – .798 .715

Table 15: Cancellation Type I error rates when N = 900 with two focal items containing balanced DIF. Type I error rates

greater than .075 and less than .025 are highlighted in bold.
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Bundle Test
Anchors Focal Distribution Sample Sizes Test Length sDBF dDBF DT FLF DT FS F sDT F dDT F SIBTEST SIBTESTUC DT FLF DT FS F

5 N(0, 1) 450/450 20 .031 .025 .699 .727 .029 .044 .087 .047 .674 .695
30 .028 .018 .757 .758 .032 .050 .112 .059 .719 .746
40 .024 .014 .780 .776 .030 .029 .104 .055 .752 .754

600/300 20 .027 .029 .761 .719 .035 .052 .083 .046 .745 .688
30 .044 .030 .766 .739 .032 .044 .095 .044 .770 .721
40 .037 .018 .804 .775 .031 .047 .105 .050 .814 .763

N(1/2, 2/3) 450/450 20 .030 .025 .740 .750 .024 .034 .134 – .741 .673
30 .030 .016 .769 .745 .026 .037 .147 – .738 .763
40 .017 .017 .815 .738 .029 .033 .173 – .789 .729

600/300 20 .035 .030 .813 .756 .041 .042 .118 – .783 .688
30 .030 .019 .840 .754 .031 .042 .127 – .797 .739
40 .039 .017 .841 .776 .028 .035 .154 – .859 .768

10 N(0, 1) 450/450 20 .039 .016 .707 .727 .034 .037 .072 .053 .608 .603
30 .032 .017 .753 .745 .034 .048 .076 .063 .695 .707
40 .030 .012 .761 .764 .021 .038 .074 .051 .715 .727

600/300 20 .044 .032 .755 .714 .043 .046 .067 .055 .640 .619
30 .033 .025 .811 .748 .044 .066 .076 .056 .742 .695
40 .032 .024 .809 .774 .025 .046 .074 .048 .765 .726

N(1/2, 2/3) 450/450 20 .030 .018 .753 .732 .035 .038 .093 – .644 .625
30 .028 .020 .772 .773 .035 .030 .123 – .699 .680
40 .027 .017 .769 .789 .024 .035 .097 – .705 .713

600/300 20 .039 .028 .829 .707 .037 .042 .060 – .672 .623
30 .037 .026 .835 .742 .029 .040 .084 – .718 .669
40 .031 .017 .807 .780 .033 .038 .088 – .767 .717

Table 16: Cancellation Type I error rates when N = 900 with four focal items containing balanced DIF. Type I error rates

greater than .075 and less than .025 are highlighted in bold.
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Bundle Test
Anchors Focal Distribution Sample Sizes Test Length sDBF dDBF DT FLF DT FS F sDT F dDT F SIBTEST SIBTESTUC DT FLF DT FS F

5 N(0, 1) 900/900 20 .049 .034 .798 .788 .042 .060 .090 .052 .722 .706
30 .032 .030 .789 .792 .046 .068 .104 .046 .780 .743
40 .037 .033 .793 .779 .047 .061 .093 .040 .784 .772

1200/600 20 .063 .032 .811 .787 .052 .065 .097 .053 .771 .692
30 .047 .034 .834 .808 .040 .057 .107 .060 .807 .770
40 .044 .030 .831 .792 .038 .042 .105 .050 .802 .799

N(1/2, 2/3) 900/900 20 .029 .027 .800 .769 .035 .046 .143 – .770 .717
30 .037 .025 .849 .810 .029 .042 .173 – .790 .787
40 .039 .024 .827 .816 .036 .049 .157 – .791 .803

1200/600 20 .053 .050 .847 .761 .042 .065 .129 – .771 .739
30 .049 .036 .862 .789 .040 .061 .128 – .819 .783
40 .051 .024 .856 .823 .039 .044 .157 – .830 .801

10 N(0, 1) 900/900 20 .030 .023 .769 .775 .035 .070 .061 .049 .633 .649
30 .033 .024 .771 .777 .046 .065 .080 .064 .692 .710
40 .025 .017 .801 .806 .036 .047 .077 .044 .740 .728

1200/600 20 .040 .027 .823 .767 .040 .067 .057 .039 .688 .592
30 .037 .037 .822 .795 .048 .066 .087 .060 .776 .684
40 .049 .025 .853 .804 .037 .058 .073 .054 .778 .730

N(1/2, 2/3) 900/900 20 .037 .019 .797 .780 .039 .054 .094 – .663 .656
30 .038 .018 .832 .793 .031 .059 .089 – .760 .721
40 .038 .018 .824 .808 .029 .046 .088 – .765 .728

1200/600 20 .051 .037 .854 .774 .044 .071 .067 – .738 .624
30 .053 .041 .854 .804 .049 .067 .102 – .790 .704
40 .037 .024 .871 .812 .034 .053 .084 – .811 .763

Table 17: Cancellation Type I error rates when N = 1800 with two focal items containing balanced DIF. Type I error

rates greater than .075 and less than .025 are highlighted in bold.
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Bundle Test
Anchors Focal Distribution Sample Sizes Test Length sDBF dDBF DT FLF DT FS F sDT F dDT F SIBTEST SIBTESTUC DT FLF DT FS F

5 N(0, 1) 900/900 20 .038 .029 .750 .728 .041 .056 .079 .044 .710 .693
30 .038 .029 .778 .780 .039 .037 .100 .043 .756 .734
40 .034 .026 .775 .785 .031 .043 .107 .046 .782 .782

1200/600 20 .046 .036 .797 .746 .049 .067 .097 .052 .743 .707
30 .045 .040 .812 .777 .048 .056 .093 .058 .791 .737
40 .043 .032 .812 .803 .036 .046 .107 .055 .838 .768

N(1/2, 2/3) 900/900 20 .034 .035 .804 .761 .052 .054 .154 – .759 .718
30 .036 .022 .782 .789 .033 .039 .124 – .771 .742
40 .039 .033 .796 .778 .025 .029 .149 – .781 .763

1200/600 20 .048 .037 .823 .751 .046 .057 .127 – .803 .728
30 .037 .033 .848 .800 .040 .035 .142 – .808 .751
40 .040 .034 .857 .803 .030 .050 .136 – .850 .787

10 N(0, 1) 900/900 20 .034 .025 .754 .721 .048 .055 .072 .064 .627 .628
30 .049 .029 .786 .765 .041 .061 .069 .049 .695 .686
40 .035 .037 .799 .787 .038 .054 .085 .062 .739 .750

1200/600 20 .039 .025 .779 .722 .046 .058 .055 .048 .655 .623
30 .048 .040 .812 .750 .039 .060 .058 .044 .735 .705
40 .041 .043 .821 .788 .041 .059 .072 .049 .790 .729

N(1/2, 2/3) 900/900 20 .034 .027 .781 .753 .032 .043 .078 – .685 .620
30 .043 .026 .800 .758 .032 .048 .084 – .721 .672
40 .038 .026 .793 .787 .047 .047 .105 – .764 .761

1200/600 20 .043 .036 .827 .738 .051 .050 .079 – .738 .632
30 .040 .039 .829 .765 .034 .058 .074 – .774 .681
40 .038 .034 .835 .784 .038 .046 .088 – .812 .704

Table 18: Cancellation Type I error rates when N = 1800 with four focal items containing balanced DIF. Type I error

rates greater than .075 and less than .025 are highlighted in bold.
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Bundle Test
Anchors Focal Distribution Sample Sizes Test Length sDBF dDBF DT FLF DT FS F sDT F dDT F SIBTEST SIBTESTUC DT FLF DT FS F

5 N(0, 1) 1350/1350 20 .045 .020 .783 .793 .040 .055 .083 .045 .708 .725
30 .042 .022 .801 .808 .055 .072 .101 .063 .767 .761
40 .042 .031 .825 .803 .040 .059 .099 .047 .780 .775

1800/900 20 .058 .042 .824 .789 .052 .083 .096 .062 .777 .709
30 .057 .033 .863 .826 .035 .058 .097 .054 .811 .770
40 .040 .033 .858 .834 .035 .057 .101 .049 .844 .777

N(1/2, 2/3) 1350/1350 20 .048 .037 .822 .801 .043 .052 .145 – .773 .740
30 .050 .029 .840 .825 .039 .043 .146 – .818 .771
40 .035 .027 .838 .830 .031 .043 .143 – .806 .791

1800/900 20 .053 .030 .859 .795 .045 .077 .126 – .791 .728
30 .045 .033 .877 .806 .047 .055 .138 – .843 .778
40 .044 .032 .866 .838 .046 .051 .157 – .850 .808

10 N(0, 1) 1350/1350 20 .034 .024 .795 .778 .052 .075 .076 .057 .651 .660
30 .046 .027 .793 .787 .032 .060 .062 .041 .720 .730
40 .034 .025 .815 .813 .037 .050 .070 .046 .753 .758

1800/900 20 .043 .031 .815 .787 .055 .072 .064 .047 .698 .650
30 .048 .039 .823 .796 .055 .074 .080 .062 .741 .723
40 .050 .035 .866 .834 .056 .068 .079 .059 .807 .730

N(1/2, 2/3) 1350/1350 20 .040 .032 .816 .793 .041 .061 .071 – .693 .635
30 .033 .032 .827 .830 .048 .058 .102 – .762 .720
40 .044 .036 .824 .818 .039 .056 .086 – .781 .748

1800/900 20 .044 .035 .845 .806 .048 .066 .082 – .764 .656
30 .058 .036 .886 .825 .050 .073 .099 – .779 .700
40 .041 .041 .872 .812 .034 .064 .096 – .798 .740

Table 19: Cancellation Type I error rates when N = 2700 with two focal items containing balanced DIF. Type I error

rates greater than .075 and less than .025 are highlighted in bold.
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Bundle Test
Anchors Focal Distribution Sample Sizes Test Length sDBF dDBF DT FLF DT FS F sDT F dDT F SIBTEST SIBTESTUC DT FLF DT FS F

5 N(0, 1) 1350/1350 20 .043 .036 .762 .771 .045 .054 .095 .061 .712 .711
30 .046 .040 .783 .795 .042 .064 .117 .053 .778 .772
40 .039 .043 .812 .802 .035 .054 .101 .056 .787 .792

1800/900 20 .060 .027 .816 .757 .042 .050 .089 .041 .763 .689
30 .042 .038 .831 .801 .053 .063 .094 .048 .779 .764
40 .049 .044 .829 .808 .033 .049 .093 .047 .840 .797

N(1/2, 2/3) 1350/1350 20 .045 .036 .813 .787 .043 .050 .133 – .757 .702
30 .048 .024 .819 .800 .038 .044 .142 – .794 .778
40 .025 .027 .797 .812 .035 .041 .145 – .802 .798

1800/900 20 .042 .031 .831 .761 .047 .052 .136 – .782 .730
30 .050 .042 .852 .788 .036 .051 .127 – .828 .793
40 .044 .035 .873 .825 .044 .052 .144 – .839 .792

10 N(0, 1) 1350/1350 20 .044 .038 .751 .766 .039 .058 .057 .049 .643 .615
30 .047 .033 .786 .807 .060 .058 .087 .065 .727 .698
40 .044 .032 .794 .812 .040 .056 .073 .048 .732 .744

1800/900 20 .050 .040 .794 .733 .051 .065 .065 .051 .691 .631
30 .042 .045 .814 .771 .050 .076 .079 .061 .772 .700
40 .049 .044 .840 .813 .047 .071 .076 .045 .765 .734

N(1/2, 2/3) 1350/1350 20 .052 .030 .783 .765 .056 .051 .092 – .720 .647
30 .040 .040 .823 .787 .048 .055 .098 – .737 .711
40 .030 .031 .808 .824 .035 .047 .097 – .788 .754

1800/900 20 .052 .041 .838 .752 .046 .059 .086 – .763 .626
30 .035 .033 .866 .777 .045 .057 .098 – .770 .716
40 .048 .029 .871 .827 .048 .052 .101 – .822 .786

Table 20: Cancellation Type I error rates when N = 2700 with four focal items containing balanced DIF. Type I error

rates greater than .075 and less than .025 are highlighted in bold.



Appendix F Empirical Coverage Rates for Conditional DRF Measures

θ Sign Test Length DRF Measure 10 9 8 7 6 5 4 3 2 1 0
Negative (−) 20 sDIFθ .947 .946 .946 .945 .944 .943 .940 .940 .944 .942 .956

sDBFθ .942 .942 .941 .943 .942 .942 .937 .939 .939 .939 .938
sDT Fθ .953 .953 .955 .955 .954 .957 .957 .961 .959 .958 .954

30 sDIFθ .959 .960 .961 .962 .958 .955 .952 .950 .950 .948 .954
sDBFθ .950 .951 .950 .950 .951 .952 .950 .951 .952 .963 .953
sDT Fθ .960 .962 .960 .958 .955 .955 .956 .957 .955 .961 .955

40 sDIFθ .942 .939 .940 .944 .944 .946 .950 .947 .947 .954 .957
sDBFθ .956 .956 .957 .955 .956 .952 .953 .953 .964 .955 .951
sDT Fθ .946 .948 .947 .950 .956 .955 .951 .952 .965 .960 .955

Positive (+) 20 sDIFθ .948 .949 .946 .946 .946 .944 .943 .943 .944 .951 –
sDBFθ .941 .941 .940 .942 .943 .944 .939 .934 .941 .948 –
sDT Fθ .957 .956 .956 .955 .955 .955 .953 .954 .949 .947 –

30 sDIFθ .953 .955 .954 .949 .947 .948 .946 .950 .951 .953 –
sDBFθ .951 .950 .951 .950 .948 .950 .954 .956 .960 .958 –
sDT Fθ .960 .956 .959 .959 .959 .957 .950 .955 .956 .941 –

40 sDIFθ .940 .939 .938 .938 .935 .942 .937 .941 .947 .945 –
sDBFθ .951 .949 .950 .950 .946 .948 .947 .949 .954 .956 –
sDT Fθ .946 .950 .951 .950 .950 .952 .954 .955 .953 .953 –

Table 21: Empirical 95% coverage rates for conditional DRF measures at various θ locations.
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