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Abstract—Shimmy damper is a passive solution for 

undesirable oscillations in landing gears. Although it mitigates 

shimmy to an allowable degree, it can introduce weight, cost, 

and reliability penalties especially when retrofitted to existing 

gears. In this report, early investigations into a novel shimmy 

damper are presented. This damper is suitable for existing and 

new landing gears and is based on replacing a torque link 

member with a combination of springs and dampers to 

suppress the shimmy. The damper is then optimized for a 

given geometry to deliver the maximum damping force. 
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I. INTRODUCTION 

Nose Landing Gear (NLG) shimmy is known as self-
induced simultaneous torsional and lateral vibrations arising 
from the coupling of gear structure, elastic tire(s), and the 
fuselage structure during ground operations. The oscillations 
are typically in the range of 10-30Hz. Shimmy impairs the 
pilot’s visibility and control and causes passenger discomfort, 
structural damage, as well as sudden failure of the gear [1]. 
This phenomenon can occur during landing, take-off, and 
taxying operations. Worn parts contribute to shimmy; however, 
it also happens in new aircrafts due to the resonance between 
the gear and the airframe [2]. It is understood that shimmy 
mode is excited due to transfer of kinetic energy from the 
moving aircraft to the wheels [3], acting as the energy source 
for the undesired oscillations. Close to 60% of aircraft failures 
are related to the landing gear systems with fatigue due to 
multi-axial loads (e.g. case of shimmy) playing the number-one 
role in these accidents [4]. Examples of accidents due to 
shimmy can be found in [5] and [6]. The latter involved failure 
of the shimmy damper in addition to the landing gear. 

Shimmy needs to be prevented through adequate design 
during the aircraft development. In practice, shimmy is not 
discovered until the aircraft is flown and shimmy tests are 
performed on the ground. In the event of observing shimmy, it 
is often too late to alter the well-established gear and aircraft 
design, hence a damper may be designed and prescribed to 
remedy it. The UTAS (Goodrich) shimmy damper was 
presented in 2012 [7] which consisted of a damper on one side 
and a beam with adequate stiffness and strength on the other, 

the combination of which makes the shimmy damper. Early 
studies on the UTAS damper revealed a major issue due to its 
unsymmetrical design [3]. Although performing better than the 
flagship Boeing damper [8] in most of the cases, the UTAS 
damper led to unsymmetrical oscillations which degrades the 
lifespan of components and tires due to imbalanced loading and 
uneven wear. The Boeing damper has drawbacks such as 
adding extra freeplay and weight to the system. Both existing 
dampers are shown in Fig. 1 along the NLG schematic. 

 

 

Figure 1.  Schematic of the Nose Landing Gear (top), side and front views of 

Boeing damper (middle) and UTAS damper (bottom) 
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Inspired by the UTAS damper and aiming to address its 
shortcomings, the idea of the present design is to replace one of 
the torque links (here the upper one) by a flexible beam and 
accompanying dampers to help stabilize the NLG, while no 
unsymmetrical behavior is induced in the system. 

II. THE SYMMETRIC BEAM-BASED SHIMMY DAMPER 

As shown in Fig. 2, the upper torque link in the proposed 
design includes a beam (shaded) at the center and two identical 
damping devices (here pure dampers) symmetrically arranged 
on either side. The lower torque link is assumed to be rigid. 
The beam is the load-bearing element of the upper torque link 
which acts as a spring in parallel to the side dampers as well. 

In the event of shimmy, the lower part of the landing gear 
(tire and lower strut) tends to vibrate rotationally, hence 
deflecting the upper torque link. The dampers on either side 
experience a displacement as a result of the beam deflection. 
Fig. 3 depicts this effect in which the deflection of the beam at 

the torque link apex and its rate are designated as   and  . The 

beam deflection and its rate at the damper attachment location 

are shown as a  and a  respectively. Displacement of the 

right and left damping devices (measured along the device 

axis) are 1  and 2  with rates of 1  and 2  respectively.  

 

Figure 2.  Schematic of the novel shimmy damper and lower torque link. 

Left: front view, Right: side view 

 

Figure 3.  Schematic of the damper beam deflection and damper 

displacements 

Here, the goal is to express the net damping force as a 

function of the system inputs which are   and  . These two 

inputs are a function of the landing gear dynamics but here are 
treated as knowns. From the geometry of the design one can 
write: 

 2 2 2 2

1 2 aa b b a b = + −  − +  () 

 2

2

2 2 22 aa b b a b = + +  − +  () 

and hence: 

 2 2

1 / 2a ab a b b = −  + −   () 

 2 2

2 / 2a ab a b b =  + +   () 

The dampers generate forces along the damper axis which 

are proportional to 1  and 2 . However, only the components 

of these forces which are perpendicular to the beam are going 
to resist the beam deflection and hence alleviate shimmy. 

Therefore, we need to isolate the components of 1  and 2  

which are perpendicular to the beam. These are designated as 

1  and 2 . To find them we can write: 

 ( )
22

1 1 )( /a ab a b = − −  + −   () 

 ( )
22

2 2 ( )a ab a b =  +  + +   () 

After taking derivatives and simplifying: 
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Assuming a viscous damper with the coefficient of dC  on 

each side, the total damping force can the expressed as: 

 ( )1 2dQ C=  +   () 
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The L  and b  dimensions are dictated by the geometry and 

strength of the torque links and existing gear design. However, 
a  needs to be decided by the damper designer in a way to 

ensure maximum efficiency during the ground operations. 
Smaller a  means the damping devices will be more 

perpendicular to the beam, but they will experience a smaller 
beam deflection. The opposite holds for a bigger a . Therefore, 

the optimal value of this parameter need to be determined for 
the range of inputs generated from the operation of the landing 
gear, which is the focus of the current study. 

It is important to note that the beam deflection is affected 
by the damper force as well, as depicted in Fig. 4. Hence, the 

relationship between   and a  (and their rates) is a function of 

both P  and Q  forces, where P  is the force applied by the 

lower torque link. Through governing relationships of a beam 
with modulus of E  and area moment I  and assuming small 
deflections we can write: 

 ( )
3 2

3
3 6

PL Qa
EI L a = − −  () 

 ( )
2 3

3
6 3

a

Pa Qa
EI L a = − −  () 

Defining 1 /aR =    and 2 /R Q P=  we will have: 
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R
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− −
=
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 () 

Hence, the relationship between the beam deflection at the 
torque link apex and damper attachment location can be 

expressed through 1a R =  . For simplicity of the analysis, it is 

assumed here that the deflection rates are also related through 

the same ratio, i.e. 1a R =  , which is to assume that 2R  does 

not vary significantly with time. Introducing 1R  and 2R  

parameters allows us to optimize the performance while 
considering the effect of the damping force on the beam 
deflection, and without the need to directly estimate P , which 
is dictated by the NLG dynamics. 

 

Figure 4.  The forces applied to the beam 

III. PERFORMANCE ANALYSIS 

The analysis is commenced by looking at the simpler case 
when the influence of damping force on the beam deflection is 

neglected, i.e. 2 0R = . Later, we quantify the effect of this 

simplifying assumption. The geometry features of 0.4mL =  

and 0.25b L=  are assumed as our demonstration case and will 

be used throughout the paper unless otherwise stated. The net 

damping force is depicted as a function of /a L  in Fig. 5 with 

the optimal location (corresponding to the maximum damping 
force) marked as a star on each curve. For all cases that follow, 

unit damper coefficient and apex displacement rate ( 1dC = , 

1 = ) are used since the net damping force is a linear function 

of these parameters. From Fig. 5 one observes that the optimal 
damper location is a function of  . However, for the practical 

range of 0 0.05m    the optimal /a L  only changes from 

0.63 to 0.58. Therefore, one may choose / 0.6a L   for this 

case as a value which provides near-optimal performance for 
the intended range of operation. 

Next, the effect of b  parameter is demonstrated for a fixed 

apex deflection of 0.01m = . Again, 2 0R =  and damping 

force is shown in Fig. 6. Typically, b  is not a design variable 

since it is dictated by the design of the gear to which the 
shimmy damper will be retrofitted. Nevertheless, it is beneficial 

to understand that a bigger b  leads to a bigger optimal /a L  

and a larger damping force as shown in Fig. 6. 

 

Figure 5.  Damping force versus damper location for 
2

0R =  and various   

 

Figure 6.  Damping force versus damper location for 
2

0R =  and various b  
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A. Effect of 2 0R =  Assumption 

To account for the effect of damping force on the beam 

deflection we need to understand the influence of 2R  

parameter on the predicted response. In practice, this value is 
non-zero due to presence of the damping force Q . In fact, we 

are dealing with a loop here: the calculation of damping force 
needs the accurate beam deformation and the beam 
deformation can be obtained by knowing the damping force. 
Hence, one may go through an iterative scheme to get the 
solution. Instead, here we calculate the solution for different 

values of 2R  parameter which indicates how sensitive to the 

damping force the exact solution is.  

In Fig. 7, the damping force and optimal damper location 

are depicted for various values of 2R  for both small 

( 0.01m = ) and large ( 0.1m = ) apex displacement values. 

As expected, it is observed that a non-zero 2R  alters the 

estimated damping force curve and the optimal damper 
location. Hence, the optimal damper location is underpredicted 

when assuming 2 0R = . However, for small values of 2R  the 

difference is negligible, and one can proceed with the 2 0R =  

assumption for initial concept design studies. Furthermore, the 

influence of 2R  on the optimal damper location decreases as   

grows. This is key since performance at larger   values should 

drive the design as it corresponds to severe shimmy situations. 

 

 

Figure 7.  Damping force versus damper location for various 
2

R . Top: 

0.01m = , bottom: 0.1m =  

IV. OPTIMIZATION 

Using the analyses presented so far, we can arrive at a more 
complete picture of the optimal damper location for a given 
geometry and range of operation. Here the torque link 

dimensions are given as 0.4mL =  and 0.25b L= . The torque 

link apex displacement   is assumed to be in the 0 0.1m    

range. Fig. 8-top shows the optimal location versus   for 

different values of 2R . Assuming 2 0R =  results in a smaller 

opt /a L  but the error can be acceptable considering the curves 

are converging as   grows. For instance, in the case of a given 

shimmy-prone landing gear with maximum apex displacement 

of 0.04m =  one can choose opt / 0.6a L =  (assuming 2 0R = ) 

according to Fig. 8-top to ensure the damper performance is 
optimal for the maximum   and near optimal (since the lines 

are not steep) for smaller values. Similar curves are plotted for 

different b  values in Fig. 8-bottom. The predicted trend is that 

the /opta L  is a function of   but may be fixed at the value 

corresponding to the maximum   in the operation range to 

ensure effective shimmy suppression. This embodies a worst-
case scenario design strategy where the performance of the 
system is optimal for the severe shimmy case and near optimal 
for other cases. Although this decision is adequate for the 
initial concept design, one needs to perform more thorough 
analysis involving real inputs from the NLG to ensure shimmy 
is suppressed effectively.  

 

 

Figure 8.  Optimal damper location versus   for various 
2

R  values (top) and 

various b  values (bottom) 
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V. CONCLUSIONS 

A novel shimmy damper concept is featured in the current 
work and initial optimization studies are presented to ensure 
maximum efficiency of the damper for the most critical 
shimmy scenario. This damper is superior to the Boeing one in 
that it does not add freeplay and is easily retrofitted to existing 
gears. It also addresses the unsymmetrical response issue of the 
UTAS damper. The evidence of symmetric response of the 
damper based on dynamic simulation of the NLG equipped 
with the damper remains to be obtained, although the 
symmetric design of the device promises such performance. 

The detail design of the beam and damping devices, as well as 

multi-disciplinary optimization studies require a 

computational dynamic model of the NLG such as [9] and 

[10]. The exact damping force can be estimated by adding the 

present damper model to the landing gear dynamic model 

which can provide the inputs in real-time. The damping force 

should also be fed back to the NLG system and the 

performance of the damper needs to be evaluated in ground 

operation simulations such as a landing scenario. Furthermore, 

more advanced combinations of springs, dampers, and inerters 

will be considered as damping devices to arrive at a more 

efficient and compact design. These ideas are under 

investigation by the authors and comprise the next steps of the 

present work. 
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