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Abstract

We classify irreducible Whittaker modules for generalized Heisenberg Lie algebra
t and irreducible Whittaker modules for Lie algebra t obtained by adjoining m
degree derivations di,ds, . ..,d, to t. Using these results, we construct imaginary
Whittaker modules for non-twisted extended affine Lie algebras and prove that the

imaginary Whittaker modules of Z-independent level are always irreducible.
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Introduction

In Block’s classification [Bl] of all irreducible modules for the three-dimensional
simple Lie algebra sly, they fall into two families: highest (lowest) weight modules
and a family which are irreducible modules over a Borel subalgebra of sl; including
Whittaker modules. This result illustrates the prominent role played by Whittaker
modules.

The class of Whittaker modules for an arbitrary finite-dimensional complex semi-
simple Lie Algebra g was defined by Kostant. Kostant defined and systemati-
cally studied in [Ko] Whittaker modules for an arbitrary finite-dimensional complex
semisimple Lie algebra g. He showed that these modules with a fixed regular Whit-
taker function (Lie homomorphism) on a nilpotent radical are (up to isomorphism)
in bijective correspondence with central characters of U(g). Specifically, irreducible
Whittaker modules correspond to the maximal ideals of the center Z(g). In [Wal,
N.Wallach gave new proofs of Kostant’s results in the case that g is the product

of complex Lie algebras isomorphic to sl,. E.McDowell [Mc|, and D.Milicic and



W.Soegbel [MS] studied a category of modules for an arbitrary finite-dimensional
complex semisimple Lie algebra g which includes the Bernstein-Gelfand-Gelfand
category O as well as those Whittaker modules where the Whittaker function on
a nilpotent radical may be irregular (degenerate). The irreducible objects in this
category are constructed by inducing over a parabolic subalgebra p of g from an
irreducible Whittaker module or from a highest weight module for the reductive
Levi factor of p (when the Whittaker function is zero).

Naturally, the next important task is to study Whittaker modules over infinite-
dimensional Lie algebras. Affine Lie algebras are the most extensively studied
and most useful ones among infinite-dimensional Kac-Moody algebras. The in-
tegrable highest weight modules were the first class of representations over affine
Kac-Moody algebras being extensively studied, see [Ka] for detailed discussion of
results. In [Ch], Chari classified all irreducible integrable weight modules with
finite-dimensional weight spaces over the untwisted affine Lie algebras. Chari and
Pressley [CP1], then extended this classification to all affine Lie algebras. The re-
sults of [Ch] and [CP1] state that every irreducible integrable weight module with
finite-dimensional weight spaces is either a highest weight module or a loop module.
Very recently, a complete classification for all irreducible weight modules with finite-
dimensional weight spaces over affine Lie algebras were obtained in [FT, DG]. As for

irreducible weight modules with infinite-dimensional weight spaces and irreducible



non-weight modules, the first examples were given by Chari and Pressley in [CP2| by
taking the tensor product of some irreducible integrable highest weight modules and
integrable loop modules over affine Lie algebras. Besides the irreducible modules
constructed in [CP2], a class of irreducible weight modules over affine Lie algebras
with infinite-dimensional weight spaces were constructed in [BBFK]. A complete
classification for all irreducible (weight and non-weight) modules over affine Lie al-
gebras with locally nilpotent action of the nilpotent radical were obtained in [MZ].
All irreducible modules over untwisted affine Lie algebras with locally finite action
of the nilpotent radical were classified in [GZ].

A class of irreducible non-weight modules for untwisted affine Lie algebras from
irreducible Whittaker modules over the subalgebra generated by imaginary root
spaces were constructed in [Chr]. These modules are called imaginary Whittaker
modules since they are different from the above Whittaker modules in nature.
Extended affine Lie algebras, first introduced by mathematical physicists [H-KT],
are a higher-dimensional generalization of affine Kac-Moody Lie algebras. Roughly
speaking, extended affine Lie algebras are complex Lie algebras characterized by a
symmetric non-degenerate invariant bilinear form, a finite-dimensional ad-diagonalizable
abelian subalgebra (i.e, a Cartan subalgebra), a discrete irreducible root system and
ad-nilpotency of the root spaces attached to non-isotropic roots. It turns out the

root systems of such Lie algebras are precisely the extended affine root systems



introduced by Saito [Sa] in the study of elliptic singularities. Those Lie algebras
and root systems have been further studied in [AABGP], [BGK] and [ABGP], and
among others. Our purpose in this thesis to investigate the properties of imaginary
Whittaker modules over non-twisted extended affine Lie algebras.

The organization of the thesis is as follows: Some basic definitions and notations
are given in Chapter 1; in Chapter 2, we classify the irreducible Whittaker modules
for generalized Heisenberg Lie algebras t; in Chapter 3, we classify the irreducible
Whittaker modules for Lie algebras t obtained by adjoining m degree derivations
di,ds, ..., d, tot; while in Chapter 4, we use our results from Chapter 3 to con-
struct imaginary Whittaker modules for non-twisted extended affine Lie algebras

and investigate their properties.



1 Preliminaries

A Lie algebra g is a vector space over a field F with a product [-,-], called Lie

bracket, which is bilinear and satisfies two additional conditions:
1. [z,z] =0 for all z in g,
2. [z, [y, 2]] + [y, [z, x]] + [, [z, y]] = 0 for all z,y, z € g. (Jacobi identity)

For any algebra A we denote its center by Z(.A). Let n be a positive integer and

let t be a Lie algebra over C with the following properties:
1. t has a one-dimensional center, Z(t) = Cc,
2. tis Z-graded, t = ®;czt;,
3. dimct; =n for all i € Z,i # 0, and t; = Ce.

Set t7 = @isoti, t = @;<ot;. We assume that there is a basis {z,;}1<,<, of t; and

a basis {yri}lﬁrﬁn of t_;,1 € Z>0 such that

[Cy Iri} - [Cv ym] = 0, [:L'riy xsj] = [ym'a ysj] = 07 [937‘1'7 ysj] = 67"861“6
5



foralll < r, s <n,i € Zsg. It follows that degree z,; = degree x5 = i, degree y,; =
degree yy; = —i for all 1 <r,s < n,1 € Zvy.

The algebra t is an infinite-dimensional Heisenberg Lie algebra [Chr]. We extend
the above definition to a generalized Heisenberg Lie algebra t with three similar

properties as infinite-dimensional Heisenberg Lie algebras:
1. t has a m-dimensional center, Z(t) = Cc; @ Cea & ... & Ccyp,
2. tis Z™-graded, t = B ezmta,
3. dimcty, =nforalla € Z™ a # 0, and tg = Cc; ® Cea @ ... ® Ceyy,

for some positive integers m and n.

We can order the elements of Z™ lexicographically, that is, for a, 3 € Z™ a =
(1,9, ...,00,) and B = (B1, 52y, 0m), @ < B if and only if, for some i =
1,2,...,m,o; < f3;, and for all j > i,a; = f;. Set Z"+ = {a € Z™|a < 0}, where
we denote 0 = (0,0,...,0). Set t7 = Bpezmita,t” = Baczmit_o. We assume that

there is a basis {xmhgrgn of t, and a basis {ymhgrgn of t_,,a € Z™+ such that

[Ci,x,«a] = [Ciayra] =0, [xraaxsﬁ] = [ymmysﬁ] =0,

[Irom ysﬁ] - 6Ts5a,3(alcl + aoco + ...+ amcm)

forall 1 <r,s <n,a,p € Z™+. It follows that degree z,, = degree x,, = «, and

degree y,., = degree yso, = —a forall 1 <r ;s <n,a € Zm+.
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2 Whittaker modules for Heisenberg Lie

algebras t

2.1 Whittaker modules for t

In this section we describe the irreducible Whittaker modules for t. All the results
of this section are valid for generalized Heisenberg Lie subalgebras of any extended

affine Lie algebras.

Definition 2.1 Letn : U(t") — C be an algebra homomorphism such that n|+ # 0,

and let V' be a U(t)-module.

1. A non-zero vector v € V' is called a Whittaker vector of type 7 if zv = n(x)v

for all x € U(t")

2. V is called a Whittaker module for t if V' contains a cyclic Whittaker vector

v (i.e. v € V is a Whittaker vector and V = U(t)v).

Notation 2.2 Let V' be a Whittaker module of type n for t with cyclic Whittaker
7



vector v. Letn' : U(tt) — C be an algebra homomorphism and assume that x,,v =

0 (zra)v for some 1 <r <n,a € Z™+. Then n(Tq) = 17 (Tra)-

Next we will construct Whittaker modules for t. Set b =t @ Cc; ®Cer @ ... D
Cey,. Let @ = (a1, a2, ... ,a,) € C™ and let C, ; = C0 be a one-dimensional vector

space viewed as a b-module by

¢ =a;0, x0=n(x)d (2.1)

M,; =U{t) Quw) Cpa, v=1170. (2.2)

Define an action of U(t) on M, z by left multiplication (on the first tensor factor).
Note that M, ; = U(t)v and that M, z is a Whittake module for t.

Since Z™+ is totally ordered and enumerated as

(0,0,...,0,1) < (0,0,...,0,2) < ...,

we can denote that k; = (kiq, kig, . .. ), where o = (0,0,...,0,1),8 = (0,0,...,0,2),
forall i =1,2,...,n. Let k = (ki1,ko,...,k,) and only finitely many k,, are non
zero. Denote I be the set of all such k. Then we can order the elements of [
lexicograpically and denote this total order by <.

Let £ : U(t") — C be an algebra homomorphism. For any k € I, since there

are only finitely many k,, # 0, we may define:
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. |E| - ZaEZm-i- krou
1<r<n

k —_ k"‘a
2. y- = Hanm+ Yra s

1<r<n

3. E‘ - HaEZm-‘r kra!7

1<r<n

4. (l’ — T])E = HaEZm-i-(xra - U(SCm))km,

1<r<n

ot

(y—&k= H?E%Z,T<ym — E(Yra))Fre.

Proposition 2.3 Let @ = (ay,aq,...,a,) € C™ and assume M,z and v are as

defined in Definition 2.1. Then the following hold:

1. The set {y®v|k € I} is a basis of M, ; as a C-vector space.
2. As a U(t")-module, M, ; is isomorphic to U(t™).

3. M,z is free as a U(t)-module.
Proof.

1. Since U(t) = U(t7) ®c U(b) by Poincaré-Birkoff-Witt theorem in section
17.3 [Hu], U(t) is a free right U(b)-module with basis {y%/k € I}. Hence
M,z =U(t) @ue) Chpa = (U(T) @c U(b)) @up) Chpa = UtT) @c (U(b) @u e

C,a) 2 U(t") ®c C, 7 is a C-vector space with basis {y%|k € I}.

2. This is obvious from the proof of Proposition 2.3(1).

9



3. Since U(t7) is a domain, it follows that M, ; is torsion-free as a U (t™)-module.

Hence M, ; is free as a U(t™)-module since M, ; is cyclic as a U(t™)-module.

O

Lemma 2.4 Letd = (a,as,...,a,) € C™ and v € M, ; be defined as in Definition

2.1, we have the following:
1. if d = (ay,a9,...,a,) # 0, then

(z —n)fyfv = { H (a1 + asag + ..., + anay) e Ykl (2.3)

1<r<n,a€Z™+

for any k € I.
2. if @ = (ay,as,...,a,) # 0 and k,l € I with k < [, then (z — n)kv = 0.

3. if @ = (a1,as,...,a,) = 0, then z,,y%0 = n(x,o)ykv for all 1 <r < n,a €

Z"+ kel
Proof.

1. Since [Tra, Tsp] = [YrasYsp] = 0 and [T,q,Ysp] = drsdap(rcr + anco + ... +
QmCm), we have the following calculation:
(xroz - n(xra))yra = ym(llfra - n(xra)) + a1 + (0516} + -+ O Cmys
(Tra — N(Tra))Von = YralYra(Tra — N(Tra)) + 2(c1e1 + Qs + -+ - + Q)]

(xm - U(me))yfa = y?a [ym(a?m - U(iﬂm)) + 3(&161 + aocy + -0+ amcm)]a
10



and by induction we may have

('Ira - n(ifm))yf&a = yf&a_l [yra (Ira - n(xroz)) + kroa(alcl + 0516)] +-- -+ amcm)]~

Hence,
(Tra — ﬁ(xm))yfé‘*v = yf&ailkm<alal + Qaay + -+ Qi )V

(Tra = nzra))roybnow = yire kg (nar 4+ oty + -+ - + Qg v
= kra(01a1 + 202 4+ + ) (T — N(@ra)) Ykl
= k?“ozkroc - l(alal + a9 + -+ -+ amam)Q

'(xra - n(xra))kra—nyga_2v

= kol + asag + -+ apan ).

Since [ra, Tsp] = [Yras Yss] = 0, we have

kT‘Oé

(z — U)Ey% = Elﬂlgrgn,aezm+(@1a1 + agag + -+ apay) v

for any k € I.

11



2. k<l=3d1<r<n,a € Z™+ such that k., < l,o, SO

(Tra — N(Tra)) ™ yrev = kpol(rar + agag + -+ + apag, )

kro

(Lo — U(iﬁm))lm_ v

= (z—n)ltv = 0.

3. Ifd = (a1,a2,...,a4m) =0 = [T, ysp) =0foralll <r s<napecZ"+=

Ty = n(zpe )yt for all 1 <r <n,a € Z™+,k € 1.

2.2 Whittaker modules for t with aq, ao, ..., a,, Z-independent
In this section, we classify all irreducible Whittaker modules for t with aq, as, . .., a,,

Z-independent.

Proposition 2.5 Let @ = (a1,as,...,a,) be Z-independent, then M,z is irre-

ducible as a U(t)-module.

Proof. Let N be a nonzero U(t)-submodule of M, z and let 0 # u € N. Then, u

has a unique expression

U= Z )\Eyﬁv,
k

12



where only finitely many A, # 0. Let [ = maxz{k € I|\; #0}. If [ =0, then v € N
and so N = M, ;.

Assume that [ # 0, then

(z —n)u = { H (nay + agas + ..., +ana,) ! \v € N.

1<r<n,a€Z™+
Since Ay # 0 and [],_, -, pezms(1a1 + a2az + ..., +anay)™ # 0, we have that

v e N, so N=M,zand M, is irreducible as a U(t)-module. O

Proposition 2.6 Letd = (a1, as,...,an) be Z-independent, then M, z is the unique
(up to isomorphism) irreducible Whittaker module of type n on which ¢y, co, ..., Cm

acts on the Whittaker vector v by aq,as, ..., a,, respectively.

Proof. Let M’ be a Whittaker t-module of type n with cyclic Whittaker vector v’
such that ;v = a1v’, cov” = ag?’, ..., ¢’ = a,,v', then we only need to show that

M'" = M, ;. Let C, z be defined the same as in Definition 2.1. Then the map
[U)®Cha— M

defined by

(u,rv) = rur’,

13



where 7 € C,u € U(t), is bilinear. Moreover if w € U(b), then

fuw,rv) = r(uw)’

= f(u,w(rv)).

Hence there exists an induced linear map

f:iM,a=U(®t) ®umw) Cpa — M’

defined by

U@ ro = ruv,

which is a homomorphism of (left) U(t)-modules, and it is obviously surjective as
M' = U(t)v'. Since M, z is irreducible, f is then one-to-one. Thus, M’ = M, z as

desired.

Corollary 2.7 Let @ = (ay,as,...,ay) be Z-independent. Let M’ be a Whittaker
t-module of type n with cyclic Whittaker vector v’ such that c;v' = a;v" for all

1<i<m. Then M' = M,

ma-

Proposition 2.8 Let @ = (ay,as,...,a,) be Z-independent. Then the space of

Whittaker vectors (of type n) for M, z is one-dimensional.

14



Proof. Let i/ : U(t) — C be an algebra homomorphism. Suppose that w € M, z
is a Whittaker vector of type n’. We show that n = 1’ and that w € Cv. By

Proposition 2.3(1), w has a unique expression

w = Z /\Eyﬁv,
k

where only finitely many A, # 0. We may assume that \; # 0 for some £ # 0,
otherwise we would have w € Cv and the proof is done. Let 0 # [ = maxz{k|\; # 0}.

By Lemma 2.4(1), we have

(x — n)Lw = N < <pnaczm (@rar + aoas + -+ - + &mam)lmv.

Since t* is abelian and w is a Whittaker vector of type 77/,

(Tra — 1 (Tra))(z — U)Lw = (z-— ﬂ)é(l"m — 1 (Tra))w

forall 1 <r <n,a € Z™+. Thus
(Tra — 7' (Tra))v = NlMicranaezmi(@rar + agag + - + Qmay,)™) ™

*(Tpo — n/(wm))<$ - W)Lw

forall 1 <r <n,a € Z™+. Which is to say 1/ (2,q) = n(2,e) forall 1 <r <n,a €

Z™+. so we have n = 1. This implies that

(:v—n)iw:O:>)\E:0,
15



which is a contradiction to our choice of [. Therefore, w = Av for some A € C as

desired.

~Y

Proposition 2.9 Let @ = (ay,a9,...,a,,) be Z-independent. Then M, z = M, z

as U(t)-modules if and only if n =n" and d = d'.

=/

Proof. 'We only need to prove that if M, ; = M, &, then n = n’ and @ = @',
because the other direction is obviuos. Since M, z = M,y &, let f : M,z — My &
be an isomorphism of U(t)-modules and choose v € M, z as a Whittaker vector.
Then a,f(v) = ¢;f(v) = f(ev) = flav) = av for i = 1,2,...,m. So, a, = a; for

1=1,2,...,m and @ = a@'. Moreover,

(u=n(w)fv) = f((u=mn(u)v)

for all u € U(t"), which implies that f(v) is a Whittaker vector of type n in M, z.

By Proposition 2.8 , it follows that n = 7. O

16



2.3 Whittaker modules for t with aq,ao,...,a, Z-dependent

In this chapter, we assume that @ = (a1, as,...,a,) € C™ # 0 and aq,as, ..., an
are Z-dependent. Let Q = {k € I| there exists at least one entry k., # 0 such that
ajoq + asas + ... + apay, = 0}. For any k € I, denote [k],, the same as k € [

except that, if k., # 0 for k, then the (r, oz)th position is k., — 1 instead of k..

Proposition 2.10 Letd = (ay,as, ..., ay) be Z-dependent. Then N, = spanc{y*v|k €

Q} is a mazimal submodule of M, z

Proof. First we show that N, is a proper submodule of M, ;. For any w € N,, w

has a unique expression

w = Z /\Eyﬁv,

keQ

where only finitely many A, € €2 are not zero.
1. Forany r=1,2,...,m,a € Z"+. If ayay + asas + ... + apa,, = 0, then

TpaW = Z M) (Zra)YE0 € N,
k€O

If aqa; + agas + ... + apa,, # 0, then we can rewrite w as

w = Z Ayt + Z Ay,

Eegykra>0 EEQJC’V‘Q—O

17



and we have

TraW = Z )‘&yeroﬂ} + Z )\Eyerav

keQkra>0 k€ kra=0

+ Z /\Ekrmy[k]’“"(alcl + .t amen)v
ke, kra>0

= Z M) (@0 )0 + Z Aekray®re (aqay + ... + Qnam )v.
ke k€Q,kra>0

Since aja; + asas + . .. + ey, # 0, it must be [k, , € €2 given that k € Q.
Thus z,qw € N,,. So, for any r = 1,2,...,n,a € Z™+, we have z,,w € N,,

which shows that N, is stable under U(t").
2. Forany k' € I, y¥w = ZEGQ )‘EZIEZ/EU = ZEGQ )‘&Z/EJFEU € Ny.

The above implies that N, is stable under U(t) and N, # M, z, so N, is a proper
submodule of M, ;. Consider V = {y®v|k € I\Q}. It is easy to see that V is a C-
basis of M, z/N,. Next we will show that M, z/N, is irreducible as a U(t)-module.
Similar as the proof of Proposition 2.5, let K be a U(t)-submodule of M, ;/N,.

Then for any 0 # w € K, w has a unique expression

where only finitely many k£ € I\ are not zero. Let | = maz{k € I\Q|\, #

0} If ] =0, then v € K and so K = M, 3/N,. Assume that [ # 0. Then
18



(z —n)tw = {HlSTSn,anmjL(Ozﬂl + gy + ..., FQmay) e HI\v € N. Since \; # 0
and H1grgn,aezm+(0‘1a1 + anay + . .., +apa,) # 0, this implies that v € K, and
so K = M, /N, and thus M, z/N, is irreducible as a U(t)-module. So, N, is a

maximal submodule of M, 5.

For every 1 <r <n and a € Z™+, let €ra be the element of 2 which has 1 in

the (1, a)™ position and zeros elsewhere.

Proposition 2.11 N\"* = spanc{ytv|k € Q, k # €,o} 15 a mazimal U (t)-submodule

of Ny, for every e, , € €.

Proof. First we show that Nér’a) is a proper submodule of N,,. For any w & Nqsr’a),

w has a unique expression

w = Z Ay,

ke\e,

where A # 0 for only finitely many k£ € Q\ e, .

Obviously, N is stable under U(t") since for any k' € I, we have

yEw = Z )\Ey“kf/v € Nn-
ke\e, ,

For any i =1,2,...,m,

cw = E )\Eyﬁciv
ke\e,

19



= Z Aaytv € Né’"’a).

keQ\e, ,

So, Nér’a) is stable under Cc; @ Cey...C @ ¢

Now we claim that N is also stable under U(t*). By induction we have
ko ok k—1
TraYss = YspTra + kors0a,pYs 5 (e + agea + .o+ apc),

where 1 <r,s <n,a,B € Z™+,k € Z>o.
Foranyr =1,2,...,n,and ay, s, ..., q, € Z+, if aya+asas+. . .+ap,an, =0,
then

LraW = Z My o = Z AEn(xm)yEveNy’a).

keQ\e, , keQ\e, ,

If a0 + asag + ... + apay, # 0, denote [k],, the same as k except that, if
k.o > 0, the element at (r,a)™ position is k., — 1 instead of k,.,. Then, we can

rewrite w as

w = Z /\&Byﬁv + Z )\Evgyﬁv.

EEQ\gryaakTa>0 EEQ\QT,OUI?TQ =0

So we have

k
TpqW = E )\&pyum (ay + agag + ... + Qpay,)v
EEQ\QT-’aakTQ>O

+ Z )\&Byﬁxmv + Z )\&Byﬁxmv.

Eeﬂ\gr’a 7kra>0 EEQ\QT@U’CT&:O

Since ayo1 + axap + ... + oy, # 0 and k € Q\ e, ,, we have [k],o € Q\ ¢, and
20



TraW € N,§’“’a).

@)

For any r = 1,2,...,n,a € Z™+, we have z,,w € Nér’a) , SO ngr’ is stable
under U (t). Thus, N\ is a proper submodule of N,).

Moreover, Nn/Nér’a) = spanc{y®-=v}, which is a one-dimensional C-vector
space, SO N,Y’“) is a maximal U (t)-submodule of N, O

Proposition 2.12 Every mazimal U(t)-submodule of N, is of the form NI for

some e, ,, € (1.

Proof. Assume that there exists a maximal submodule M of N, such that M #
Ném) forall 1 < r < n and o € Z™+ such that aja; + asas + ... + apan, = 0.
Then by the maximality of M and N{"® in N,, we have M + N\"® = N,. So,
(M + N /M = NS /M AN and it follows that N, /M 22 N\™® /M AN,
Since Ny’a) is not irreducible, we have M N Ném) # 0. Let N, = spanc{y,av}.
Note that N\ N N,o = 0, hence (M N N{"™) N (M A N,o) = 0. Thus, as
vector spaces, (M N NY™) + (M N N,o,) = (M N NS @ (M N N,,). Since
N,/M = N /M A NS N, /NS 22 MM A NS s irreducible and we must
have

M = (MNON) @ (M N N,).
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Suppose that M NN, , # 0 forall 1 <r <n and o € Z™+ such that aja; + asas +
oo+ ama, =0, then w = y.qv € M for all 1 < r < n and a € Z™+ such that
ajay + agas + ... + apa, = 0. Since {yov|l < r < n,a € 2"+, c1a1 + azas +
...+ apa, = 0} generates N,), we get that IV,, € M, which can not happen because
we assumed that M is a maximal submodule of N,. So, M N N, , = 0 for some
1 <r <nandae€ Z"+ such that ayay + asas + ... + ayua, = 0. Then we get
M = MnN Nér’a) and by the maximality of M we have M = Nr(f’a). But this is
a contradiction as we assumed that M # Nér’a) forall 1 <r <mnand a € Z"+
such that aja; + agas + ... + apma,, = 0. We conclude that M = NT(,T’O‘) for some

1<r<nand o€ Zm+ such that aja; + asas + ... + apa, = 0. O

Proposition 2.13 The space of Whittaker vectors (of type n) for M, /N, is one-

dimensional.

Proof. Let w # 0 be a Whittaker vector for M, /N, then (z —n)fw € N, for all

k € 1. We can write w as

w= Z My + N,
keI\Q

where only finitely many Ay are not zero. Let | = maz{k € I\Q, A\ # 0}. If [ =0,
then w = Av+ N, for some nonzero A € C. Assume that [ # 0, then we can see that

(x — nw = {IL<r<naczmi(@rar + azag + ..., +apan ) Hlv + N,. Since [ ¢ ,,
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we have aya; + agas + . .., +aya, # 0 for every [, > 0. But this is a contradiction
because (z —n)w € N,. Thus, we have w = Av+ N, for some A € C, which implies

that the space of Whittaker vectors (of type n) for M, /N, is one-dimensional. [

Theorem 2.14 N, is the unique maximal submodule of M, z.

Proof. Let K be a maximal U(t)-submodule of M, ; and suppose that K # N,.
Then K N N, is a maximal U(t)-submodule of N,. Since K + N, = M, z, so
N,/(KNN,) = M, z/K and then we must have K NN, = ngr’a) for some e, , € §2.
Hence N\ C K. Since K/(K N N,) = M, ;/N, and M, z/N, has a Whittaker
vector, there exists w € K, w ¢ N, such that w+ (K NN,) is a Whittaker vector in
K/(K N N,). Thus, by Proposition 2.13, we may assume that w = v+, .o Asy*v
after by multiplying a scalar. Then 0 # y,.qw = Y00 + ZEGQ MeYray®v € KON, =
Nér’a). Since D cq MeYral®v € ngr’a), we get YpqU € Nér’a), which is a contradiction
with the defnition of Ni\"*. Hence K = N, and we get that N, is the unique

maximal submodule of M, z. O
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2.4 Whittaker modules for t with a1 =ay=---=a,, =0

In this chapter we will investigate the maximal U(t)-submodules for M, ; with

a; = as = --- = ay, = 0. We denote M, z as Mnﬁ‘

Notation 2.15 Let ¢ : U(t™) — C be an algebra homomorphism, and let J¢ be the

ideal in U(t7) generated by yro — E(Yra) for all 1 <r <n,a € Z™+.

Lemma 2.16 Let Mfé = Jev in M, 5. Then Mfg is a mazimal U (t)-submodule of

M, -

Proof. Since J¢ is an ideal of U(t7), it follows that Mfg is stable under U(t™).
By Lemma 2.4(3), Mfé is stable under U(t"), and it is obviously stable under t,.

£

Hence, Mfﬁ) is a U(t)-submodule of M, 5 and is proper because v ¢ Mé,@‘ Since

Mfg = spanc{(y — &)kv|k € I,k # 0} and the set spanc{(y — €)kv|k € I} is a C-

basis of M, 5, we get that Mn,G/M,(fg = Cv. So, Mfg is a maximal U(t)-submodule

Of M’]f)' ]

Lemma 2.17 Every mazimal ideal of U(t™) is of the form J¢ for some algebra

homomorphism & : U(t~) — C.

Proof. Let M be a maximal ideal of U(t™), then U(t")/M is a field extension of

C. Since every proper field extension of C must contain a copy of C(z), where
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z is algebraically independent over C, hence it must have uncountable dimension.
Since dimcU(t7)/M is countable, U(t)/M is not a proper field extension and
U(t")/M = C. So, for every 1 <r < n,a € Z"+, there exists ., € C such that
Yra = Era+ M = Ypo —&ra € M. Let £: U(t7) — C be the algebra homomorphism
defined by &(yra) = & forall 1 < r < n,a € Z™+. Then Je C M, and by the

maximality of J¢, we have M = J,. U

Set P = U(t"). By the PBW theorem, we may view P as a polynomial ring
in the variables y,,1 < r < n,a € Z™+. For any u € P, define the action
of U(t) on u by: .o acts on u as multiplication by Y., Trot = 1(zqo)u and

au =cou=---=cpuu=0.

Lemma 2.18 Every mazimal U(t)-submodule of P has the form J¢ for some alge-

bra homomorphism & : U(t™) — C.

Proof. Let K be a maximal U(t)-submodule of P. Then K is a proper U(t)-
submodule of P with the action of U(t") defined above. Clearly, K is an ideal of
P. Hence K must be contained in some maximal ideal of P = U(t7). By Lemma
2.16, K C J. for some algebra homomorphism & : U(t”) — C. However, Je is a
U(t)-submodule of P, so it is stable under the action of U(t") and ¢y, ca,..., ¢

defined above. Hence K = J; by the maximality of K as a U(t)-submodule of P. [
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Theorem 2.19 FEvery mazimal U(t)-submodule of M, 5 has the form Mfg for some

algebra homomorphism & : U(t~) — C.

Proof. Define f: P — M, 5 by u uv for all u € P. As in Proposition 2.3(2), we
know that f is an isomorphism of (left) U(t~)-modules, where the action of U(t™)
on P is by left multiplication. It is easy to see that f is actually an isomorphism of
(left) U(t)-modules. Let M be a maximal U(t)-submodule of M, 5. Then f~(M)
is a maximal U(t)-submodule of P. By Lemma 2.18, it follows that f~!'(M) = J;
for some algebra homomorphism £ : U(t7) — C. So M = (J¢) = Jev = M) as

desired. O

2.5 The center of U(t) and annihilator ideals

In this section, we describe the center of the enveloping algebra U(t). Then we
show how the annihilator in U(t) of an irreducible Whittaker module for t of Z-
independent levels is generated. Let Z = Z(U(t)) be the center of the enveloping

algebra U(t) of t.

Proposition 2.20 Z = Clcy, ca, ..., ¢n).
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Proof. Since it is obvious that Cley, ¢, ..., ¢n] € Z, we only need to prove Z C
Cler, ca, ..y em]. Let u = 32 Apyatet € Z, where & = b'el> .. cbm and only
finitely many non-zero Ap;; occur in the sum. Assume that there exists m €

I,m # 0, such that Ag,,, # 0 for some k € I,b € Z™,by,by,...,b,, > 0. Let

a € Zm+,1 <r <n be such that m,, # 0. Then the set
Lo = {(k,[,b)| Ao # 0 for some k,l € 1,b € Z™ with l,, # 0}

is non-empty and we can write

kE L b kE Lb
u = E Ak, 1pY T + E ALy Tic.

(kLb)ELr o (kLb)ELr o
Now for any k € 1,1 < s < n, 8 € Z™+, let k7 be defined as: k'&” = ko if
r, o s, 3) and &8 — ke — 1. Note that if k,[ € I and k% = 19 for some
(r,a) # (s, B) 50 8

1<s<n,peZm+, then k =1[. Since
[xrom ysﬁ] = 6r36a5(a101 +agco+ ...+ OémCm),
we have

l lra—1 l
Tﬁjyroz = lrocx ra (04161 + a9cy + ...+ amcm) -+ y',«al',,fg,

UYre = Z Aklbyx&+yra Z )\klbyxﬁ
klb)e[m (kLb)E Ly o

+ Z Mot plral™ kyplira) (a101 + agCo + ... Q).
(kLb)EL o
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Since Yo = Yralt, it follows that

k L b kE L b
§ Ak by T + Yra E Ak bl T C”
(kLb)ELra (kL) E ]y o

= Yra Z Aklbyx&+yra Z Aklbyx&
(Eiab)el’r % (E’Lb)ng @

+ Z M iblraly™ kylra) (a161 + aocs + .o Q).
(k,Lb)ELr o

This implies
Z )\Elblmykxl ma) (a101 + ages + ..+ ape,) = 0.
(kLb)EL o

We have

k. 1lra) b,
g A1 pQilra Y= )&ci—O,
(kLb)EL o

for every 1 < i < m. Since a € Z™+, there exists at least one 1 < j < m such that

a; # 0. So we have

Z Ak Lblray™ 371 ek =,

(k,Lb)EIr,a
Note that if (&, /" V) = (k,1"*%,b) in the above sum, then k' = k, 1"
1798 = b. So Ayplratfal™ck = 0 for all (k,1,b) € I,.q, which implies A\, = 0
for all (k,1,b) € I,, and this is a contradiction. Hence such m does not exist and u

can be written asu = Y, , AepyEct € Z. Now, assume that there exists k € I,k # 0,

such that A\, # 0 for some b € Z™, by, b, ...,by, > 0. Let a € Z™+,1 <17 < n be
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such that k., # 0. Then the set
Jra ={(k,0)|[\ep # 0 for some k € 1,b € Z™ with k., # 0}

is non-empty and we can write

Z )\kby 6+ Z )‘Eb

(k b)GJra kb)%(]ra
we have
kra — k: kra—1
:L‘TOéyra - T()éyra (alcl _I_ QZCQ + _I_ amcm) + y'/‘a 'Irom
k b k b
Trall = E N by TraC + E N by TroC”
(k,b)€Jr,a (kD) Jr o

+ Z Ak bk;myk ma) b(a101 + agCy F ..+ WpC).

Since T,ou = ux,., it follows that

Z Nesl Trac® + Z Ay rac?
(kb)ETr (kb)E v

+ Z A bkmyf ) Aoner + agcy + .. F amey)
(k,b)EJr,a

Z bl rac” + Z Ak byl

(k,b)EJr, (k,0)E

This implies

Z Ak bkmyk re) b<alcl + QoCy + ...+ ozmcm) = 0.
(k,b)EIr
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We have

k(o) p
Aepikroy™ e =0,
(k,b)EJr,a

for every 1 < i < m. Since a € Z™+, there exists at least one 1 < j < m such that

a; # 0. So we have

(k,bD)EJr,a

S0, Appkray®"" & for all (k,b) € Jyq, which implies Ay, = 0 for all (k,b) € Jyq
and this is a contradiction. Hence such k does not exist and u can be written as

u:deZm )\QCQE Cler, ey vyl ]

Now, for any @ = (a1, as,...,a,) € C™, let Zz be the ideal in Z generated by
€1 — Q1,03 — A, ..., Cpy — Q. We will show that the annihilator ideal in U(t) of
an irreducible Whittaker module for t with aq,as, ..., a, Z-independent is gener-
ated by Zz. In the setting of Whittaker modules for finite dimensional complex
semisimple Lie algebra g, Kostant showed that the annihilator in the envelop-
ing algebra U(g) of an irreducible Whittaker module for g is centrally generated
[Kos]. In [On], M.Ondrus showed that the annihilator of any Whittaker module
for the quantum enveloping algebra U,(sly) of sly is centrally generated. In [Chr],
Christodoulopoulou showed that the annihilator ideal in U(t) of an irreducible

Whittaker module for t is centrally generated when m = 1 and a; # 0.
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Proposition 2.21 Ifd = (ay,as,. .., a,) € C™ is Z-independent, then Anny M, a

U(t)Za.

Proof. 1t is obvious that U(t)Z; C Anny M, s, we only need to show that for any

u € Anny M, a, we have u € U(t)Zz. By the PBW theorem, u can be written as

where (¢—a@)? = [[.Z}"(¢;—a;)" and there are only finitely many nonzero terms in the
sum. If 03 +03+...+b% > 0and [,k € I, we have y(z —n)E(c—a)* € Anny M,z

We may assume that

Lke

~

For the Whittaker vector v, since uv = 0, we get that \;y = 0 for all [ by Proposition
2.3(1). Since u # 0, we may assume that there exist [, k € I, k # 0 such that A\, ; # 0.

Let &' = min{k € I|\jx # 0 for some [ € I} and k' # 0. Then by Lemma 2.4, we

have
0= uyv = Z Al,&’ﬁl!{n(alal o Q) Y
lel o
Since aq,as,...,a,, are Z-independent, [[, (a1 + ... + U )72 # 0. So we

have A\ = 0 for all such [ and this is a contradiction by our choice of £’. Thus,

u € U(t)Zz as desired. O
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3  Whittaker modules for t

3.1 Extending t by m derivations

Let t be the Heisenberg algebra defined in Chapter 2. Set t =t®Cdy @ Cdo @ ... P

Cd,,, and extend the Lie bracket on t to t by

[Ci7 dg] = O, [dz; xra] = O Trq, [d'u yra] = —QYra, [dzu dj] = 07

forall 1 <i,5 <m,1<r<n,acZ"+.
Set t+ = t*+ :@aezmtaa%_ ={ = @aEZ”H—tOé and%o =t,®Cd1pCdy®... D

Cd,,.

Definition 3.1 Letn : U(tY) — C be an algebra homomorphism such that nj # 0,

and let V be a U(t)-module.

1. A non-zero vector v € V' is called a Whittaker vector of type 7 if zv = n(x)v

for all z € U(t).
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2. V is called a Whittaker module for t if V contains a cyclic Whittaker vector

v (i.e. v € V is a Whittaker vector and V = U(t)v).

Next we will construct Whittaker modules for f. Set b = t+ @ Cei®Cer®...
Cep,. Let @ = (a1, a2, ...,a,) € C™ and let C, ; = C0 be a one-dimensional vector

space viewed as a b-module by

Define an action of U(t) on Mnﬁ by left multiplication (on the first tensor factor).

Note that Mn@ = U(t)v and that Mnﬁ is a Whittaker module for t.

Proposition 3.2 Let @ = (ay,aq,...,a,) € C™, and d2 = di*dy* ... dPm, where

m 7

D= (P1,D2y -+, Pm) € Z7Z,. Then we have
1. The set {y*d’|k € I,p € ZZ,} is a basis of Mn,d as a C-vector space.

2. As a Ut ® Cd, ® Cdy @ - - - @ Cd,y,)-module, Mnﬁ is isomorphic to U(t~ @

Cd; ®Cdy @ ... ® Cdyy).

3. M,z is free as a Ut @ Cd, ©Cdy@ ... ®Cd,,)-module.

Proof.
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1. Since U(t) = Ut @ Cdy ®Cdy @ - - - @ Cd,,) ¢ U(b) by PBW theorem, U (f)
is a free right U(E)—module with basis of U(t- ®Cd; ©Cdy @ - -- @ Cd,,). And
since {y*d2|k € I,p € ZZ,}, we have]T/I/nﬁ =U(Y) i) Cna = (Ut @ Cd, @
Cdy ® -+ ® Cdy,) ®¢ U(b)) ®y5) Cpa = Ut @ Cdy & Cdy @ - - & Cdl,y) @
(U(b) i) Cna) = Ut ®Cdy®Cdy®---®Cd,,) @c C, 7 is a C-vector space

with basis {yfd®|k € I,p € ZZ}.
2. This is obvious from the proof of Proposition 3.2(1).

3. Since U(t™ @ Cdy; @ Cdy @ --- @ Cd,,) is a domain, it follows that Mnﬁ is
torsion-free as a U(t™ @ Cd; @ Cdy @ --- @ Cd,,)-module. Hence ]f\\/[/n@ is
free as a U(t~ @ Cdy @ Cdy @ - -- @ Cd,y,)-module since ]\A/[/n@ is cyclic as a

Ut~ & Cdy ®Cdy @ - - - @ Cd,,)-module.

Proposition 3.3 Let d = (a1, az,...,a,) € C™ be Z-independent and M, ; be the
irreducible Whittaker U(t) module (of type n) constructed in Chapter 2. Then M, z

is isomorphic to a proper U(t)-submodule of Mm—i

Proof. In Mn@, set V = U(t)v. By Corollary 2.7, V' = M, ; and V is a proper
subspace of Mnﬁ by Propositions 2.3(1) and 3.2(1). O
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For any k € Z+o,1 <i <k € Z,let (k); =k(k—1)(k—2)...(k—1i+1) be the

falling factorial. Set (k); =0if i <0 ori >k, and (k)p = 1.

Lemma 3.4 Let 1 < 1,5 < n,o,8 € Z™+,a # f,q,¢ € Lxo,p € 72,,C) =

q'/j'(q — j)!, then we have

1 (%ra — n(2ra))?dP = Zﬁig CZ(—l)q_jﬁ(l’m)q_j Hizgn(di — jaq)Pial,.

i=

2. (ra=(ra)) e = 20D Ci(e) s (et -+ (B —1(10) ).
8. (ra = 1(w,)) s = ylp(ra = 1(z,0))".
Proof.
L. Forany 1 <i <m,1 <r <n,e,q € Zzo,p = (p1,02,---,Pm) € ZZy,a €
Z™+, by induction, we have:
[di,!Em] = Q;Trq,
Trad; = (di—ai)xrm

xiadi = (dl—laz)xl

ra?

ot = (d; — loy)Piat (3.1)

ot

35



So, by induction we have

.
Il
s

(Tra — n(xm))ngfl =

—

(— 1)q—ngn($m)quxmj]dzln

.
Il
=)

.
Il
<

- (=179 CIn(2,0) " (dy — joun )P o]

ra?

<
Il
o

<.
Il
)

(Tra — n(xra))dy dy" =

—

(~D)* O (ra) " (dr — jon )Pl db?

.
Il
=)

<.
I
<

= Y ()OI a) ™ (A — o) (dy — o)

ro

=0
Jj=q i=m

(Tra = (Tra))?dE = (=D CIn(z,a) " [ [ (di = jou)? ],
=0 i—0

2‘ [xra, ysﬁ] - 67"550[“8(0[161 + ct + amcm) lmpheS that

(l'roz - n(xro))yra = yroz(xroc - n(xroc)) + (04101 +---+ amcm)7

(Tra — U(Im))yfa = yfa(%"a —n(Tra)) + 2(1c1 + -+ + WnCm)Yra-
By induction on e, we can show that
(Tra = N(@ra) Wra = Yra(Tra — N(Tra)) + e(rcr + - + amcm)yfgla

which proves (2) for ¢ = 1,e > 1. Now for all ¢ < e, suppose that (2) is true
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,...,q— 1. Then we have

— 1(Tra)) Yra

-1

Z ]yra (1’161 + -+ amcm)j
=0

*(xroz - n(xTa))q_l_ja

i
L

CI_1(€)j(2ra — 1(wra)) Y’

<.
Il
=)

*(oner + -+ Oémcm)j(xra - n(xra))q_l_j

Z Cg (e)j(y;?;j(xm - U(Im)) + (6 - j)<05101 +.

+amCM)yﬁ;j71)(alcl +oeeet Oémcm)j(xm - n(xra»qilij

qg—1

S (@) (a6 + -+ GV (Tra — (7))

=0

q—1

+3°07 (@) — f)aaes + - + ey
j=0

Z ) (0101 + -+ ) (v — ra))T7
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q
+3 i (e)jae — j+ Darer + - + o) 1o
=0

q
- Z Cg(e)jy:f;j(@lﬁ +---+ amcm)j(xm — U(ﬁfm))q*j.
j=0

Since that C7_; = 0,C,; = 0 and C’g C’g 1= CJ, (2) is true for all ¢ < e.

Now, for g > e,

(Tra = 1(Tra)Wra = (Tra = N(Tra))" (Tra — 1(Tra)) Yra

*(06161 + -+ Oémcm>j ('rTa - n(l’m))eij'

So by induction, we have that

(:L'ra - xra ym Z C] gym alcl +---+ amcm)j(xra - n(xra))q_j~

All the above show that

min(e,q)
(xra - n(xra yra - Z CJ qu«a 04101 +---F O‘mcm)j<xra - U(ﬂﬁm))q_j-
3. The relation [2,q,yss] = 0 for a # B implies (2,4 — n(xra))qygﬁ = ygﬁ(xm —

n(zya))?.
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Next, we will discuss some standard facts for further use. For any m,k € Zxo,

let

m

A™(2*) =Y (=105 (e + ) (3:2)

J=0

be the m-th forward difference of the monomial 2*. When m = 1, we will omit the

superscript and just write A. Let

m

ok, m) = A"(H) oo = 37 (1) ICh " (33)

J=0

o(k,m) is sometimes referred to as the ordered Stirling number and is equal to
the number of set compositions of {1,2,...,k} of length m. If 0 < m < k, then
Lo (k, m) is the Stirling number of the second kind. It is easy to see that o(k, 1) = 1
and o(k, k) = k! for all K > 1. Note that A(z*) is a polynomial in x of degree k — 1
for every k > 1. By induction on m, we can show that A™(z*) is a polynomial in
x of degree at most kK — m for every 1 < m < k. Hence Ak(xk) is constant for all
z, and in fact AF(zF) = k! for all k > 0, since A¥(z%) = o(k, k) = k! for all k > 0.
From this, it follows that A™(z*) = 0if 0 < k < m. As o(k,m) = A™(2"), we get

that o(k,m)=0if 0 <k <m.

Lemma 3.5 Assume that Mn,z‘i and v are defined as in Definition 3.1. Let 1 < i <

m’]_ < T, S < n,q € ZZO?]_): (pl,pg,...,pm) S ZTZYLO,OZ € Z"+. Then
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m

1. (e — N(2ra))?dPv = (=1)UT] &™)g'n(2ra) 0 if ¢ = pr+p2+ - + P
=1

2. (ra = N(Tra))1dPv =0 if ¢ > p1+p2+ -+ P

3. Ifd=(ay,aq,...,a,) #0, then

(Im - U(ﬁ ))‘pHsyiade
m

= (D)l + 9)larer + -+ amen) nlana) o,

and (Trq — n(xre)) T 5ys, d2v = 0 if [p| + s < q.

Proof.
1.
J=q i=m .
(Tra — N(@ra))?dPv = (1) JC] N(@ra)®” [H(d — jou)" ]zl v

3=0 i—0

j=q i=m
= (Tra)? )4~ JOJ H d; — jay)Pv
j:O 1—0
For the convenience of typesetting, we denote i = (i1,149,...,%,) € Z™ and

set A={i|0<i <p1,0<idy<ps,...,0 <y <py}. Since

H (d; — ja;)P' = Z( 1)irtiat +sz;110;§ 'C;:i
1—0

icA
im JP1=0 gP2—l2  Jpm—im i1t tim
mdy' T dy dbm—m g )

*a?‘llaéz RN
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So, by the fact that o(k, k) = k! and o(k,m) = 0 for all 0 < k < m, we have

(xra - n(xra))ngv

J=q
_ QE _1\a—J g E ’ i1+io+- i i1 Y | Y
- T](x’ra) ( ]‘) Cq( ( 1) melcpg Op:z
j=0 i€A
a2, imdPrTi g2l | Pm—im i tia e
ko g’ s ogndyt T dy dy g ™o

_ U(fra)q(Z( 1)@1—&-%24— Him i iz L (Cfim allla’522 Cgtm

P17 P2 Pm
i€A

*d1171—i1d12’2—i2 .. .dﬁlm_ima(il +ig 4 Fim, Q)

= <_1)q77(5’7m) q'a“ ZQQ e '&%nv-

2. This part is obvious from the proof of Lemma 3.5(1).

3. It follows from Lemma 3.4(2) that

(Tra — n(w, ))‘pHsyjadpv
- Z C|p\+s Jyra (04101 + o + amcm)j(xroz - U(xra))lglﬂ_jdﬂv.
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By Lemma 3.5(2), we have that
(xra - n(xra))\BHS—jdﬂ,U = 07

forall ) =0,1,2,...,s—1 and
(tra = 1(a)) P20 = (1) ([T a2 pltn(ora) o

i=1

Hence,

(mra - n(xra)) ‘BH_Syicdev

m

= Cyrsllanes + -+ anen) (=) ([T ™) pltn(zra) Vo
=1

m

= (~D)2(s + \13!)!(1_[ af™)(arer + -+ Q) (@ ra) P

as desired. This implies that (2., — n(z.q))ys,d2v = 0 if |p| + s < q.

For any E € [7 let HZEH = Zlgrgn,aEZm+ aik?"a'
Lemma 3.6 Letp = (p1,p2,...,Pm) € ZZ5,k € I. Then

1. 2k = (TT" (d; — |Jik]])Pe) k.
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2.yl = ([T (di + [Jik|[)P)y*.

3. dlak = 22T, (d; + |)ik|

)Pi)'

4. diyr = yE(TT0 o (ds — ||ik]

)pi )
Proof.

1. By equation 3.1 we have

wped; = (di — ko)l
= atd; = (d; — ||ik]])2"
= atd]' = (d; — |[ik]])"a"
= b = ([~ )t
=0

2. By equation 3.1 we have

yf(;a d; = (di + km&i)yf&"
= yid; = (d; + ||ZEH)?JE
ki — (d. ikl )Piq %
= yd; (di + |[ik[])"*y

m

= yrd? = ([](di+llikl)P ).

1=0
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3. By induction, we have

dixkre = gFro(d; 4+ ko)

= dia = aH(d; + ikl

N dfilﬁ = :Lﬁ(dz‘ + ||ik|])?

m

= Pat = :105(1_1(dZ + ||ik|])P?).
=0
4. By induction, we have
diyf;a = yf&a (dz - kraai)

= diyE = yﬁ(di - ||ZE||)

= dyE = 5 (d; — ||ik]|)P

= dﬂyﬁ = y&(H(di — ||2k|])P?).

=0

3.2 Whittaker modules for t with a,, as, . . ., a,, Z-independent

Definition 3.7 Let n : U(tt) — C be an algebra homomorphism and T be the
collection of all n such that: if given o € Z™+ with cis ..., # 0, for each
1 <@ <m, we can fiz all o, for j = 1,2,...,i — 1,0+ 1,...,m, and still have

infinitely many o; such that nl;, # 0.
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From this chapter to the end of the article, if not specifically noticed, we assume

that n e I.

Proposition 3.8 Let @ = (ay,as,...,a,) € C™ be Z-independent. If n € I', then

M,

. 18 irreducible as a U(t)-module.

Proof. Let K be a non-zero U(t)-submodule of ]\7,7@. Since Mn@:U(ﬂ{)v and U (t)v
is irreducible as U(t)-module, we only need to show that K N U(t)v # 0. Let
0 # w € K and w has a unique expression

w = Z )\&Byﬁd’iv,

k,p

where Ag, # 0 for only finitely many k € I,p € ZZ,,. Let | = maz{|p| = p1 + p2 +
oo+ Pm|Arp # 0 for some k € I}. If [ =0, then w € U(t)v and so K NU(t)v # 0.
Now, consider the case [ > 0, we will show that there exists u € U(t) such that
0#uw € KNU(t)v. Since n € ', there must exist 1 < r < n,« € Z™+ such that

a1y ...y £ 0, n(x.e) # 0 and k., = 0 for all k£ with Akp # 0 for some p. Then

(xmé - 77(33m))l’w = (-Tra - n(l'ra))l Z )\E,Byhdﬂv.
k.p

By Lemma 3.5, we have

(Iroa - n(xra))lw = Z )xggyﬁ(xm — n(xra))ldgv



— Z(—l)ll!n(xm)l(z Akpofhtadh’ - - Py,
k |p|=l

If E@:l )\E,Baﬁ’lag”--a%ﬂ # 0 for some k with Mgy # 0, then 0 # (7,4 —

N(21a))'w € K NU(t)v and the proof is done. If Z@:z /\E,Eoffloﬂf co-aPm = () for

all k& with Ay jp= # 0. Since ajay ...y # 0, for fixed k, we have p’ # p and

Ip'| = |p| = I. Since p’ # p, there must exsits 1 < j < m such that p; # p/;.

Consider

p1 D2 D
E :)‘E,Qal Q™ e Qg

Ip|=t

— D1 Pj—1 Pi+1  pm\,Pi
= g ()\E’EO./I oo el abr )ozj

Ip|=t

as a finite term polynomial f(cq;) for a;.

Since n € I';we may keep all o;,7 = 1,2,...,m,7 # j fixed and have infinitely
many «; such that n(z, ) # 0. f(c;) = 0 has only finite solutions in Z, so we may
choose a; € Z such that f(a;) # 0. Then for this a € ZZ,

p1 D2 D
E )‘E,gal ag’ - abm £ Q).

lp|=t

Since {y%|k € I} is the C basis for U(t)v, we have that

0+# Z(—l)ll!n(xm)l(z Ak poftadh” - - Pk € KNU(tw
k

Ip|=1

and the proof is done. ([l
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Proposition 3.9 Let @ = (ay,as,...,qy) € C™ be Z-independent. If n € T, then

the space of Whittaker vectors for Mn,a‘ 15 one dimensional.

Proof. Let ' : U(t) — C be an algebra homomorphism. Suppose that w € Mn,z‘i
is a Whittaker vector of type . We show that n = 1 and that w € Cv. By
Proposition 3.2(1), w has a unique expression

w = Z )\&Bykdﬂv,

k,p

where only finitely many Ay, # 0. Let | = maz{|p| = p1 +p2+- -+ pm|Arp # 0 for
some k € I}. If I =0, then w € U(t)v, hence w € Cv by Proposition 2.5. Suppose
that [ > 0. We will show that this lead to a contradiction. By our assumption on
1, we may choose o € Z™+,1 < r < n such that n(z,,) # 0 and k,, = 0 for all k&

such that A, # 0 for some p. By Lemma 3.4(3) and 3.5(1), we have that

(l'roz - n(mra»lw = Z A&QyE(xm - n(xra))ldgv
klpl=l
= > (D) hgafial el iyt
kilpl=l
— Z(—l)ll!n(xm)l(z Appoftah’ - - - aPm)yky,
k Ip|=!

Let ker(n) be the kernel of 1 in U(t). We claim that there exist 0 # u, € ker(n)

such that uyw = v. Let ¢ = max{k|\y,p=1 # 0} (with respect to the lexicographic
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order in I). If ¢ = 0, then by the formula above, we get

(Tra — N(Tra))w = (—1)ll!n(xm)l(z Appaftay?® - -ahm)v € Cu,

lp|=l

Thus, the claim holds in this case with uy = (274 — 7(%,q))". Suppose that g # 0,

then by the formula above and Lemma 2.4(1) we have

(. —n)"™(Tra — U(fm))lw

— (—1)ll!7](xm)l(z Appotah® - abm v

=t

and this is an element of

C{ H (ray + ..., + 0y }mlv.
1<r<n,a€Z™+

Multiplying (z — 7)2(2,q — 7(2,«))! by an appropriate scalar, we get an element
uy € U(t") such that uyw = v. This proves the claim. Since U(t") is abelian and

w is a Whittaker vector of type ', we have

(zep — 1 (25p))v = (w55 — 0/ (2p) )urw = uy (245 — 1 (245))w = 0

forall 1 < s < n,B € Z™+. Therefore n = 1. Since uy € ker(n), this implies

v =usw = n(uy)w = 0, which is a contradiction. O

Proposition 3.10 Let @ = (a1, as,...,a,) € C™ be Z-independent. If n € T,
and M’ is a Whittaker t-module of type n with cyclic Whittaker vector v’ such that

av' = a, v = at', ... et = ant’, then M' = M,z and so M’ is irreducible.
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Proof. Let C, z = Cv. Then the map
fUH)®C,z— M,

defined by (u,r7v) — ruv’ for r € C,u € U(%), is bilinear. Moreover if w € U(b),
then

f(uw, rv) = r(uw)v’ = f(u,w(rv)).

Hence there exists an induced linear map

defined by u®rv — ruv’, which is a homomorphism of (left) U (t)-modules, and it is
obviously surjective as M’ = U(t)v'. Since Mnﬁ is irreducible, f is then one-to-one.

Thus, M’ = ]TJW; as desired. O

Corollary 3.11 Let @ = (a1, as9,...,ay,) € C™ be Z-independent. If n € T, then
Mnﬁ is the unique (up to isomorphism) irreducible Whittaker t-module of type n on

which ¢; acts on the Whittaker vector v by a; fori=1,2,...,m.

Proposition 3.12 Let ' : U(tY) — C be a nonzero algebra homomorphism and
nel. Leta,a € C™ and both Z-independent. Then M, 5 = Mnlax as U(t)-modules

n7a -

if and only ifn=mn"and d = d’.
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Proof. This follows from the proof of Proposition 3.9. U

Now we describe a filtration of ]T/[/n@ by U(t) modules. For s =0,1,2,3,..., let

M = spanc{y*dolk € I, |p| < s}.

n?a

Note that M%) = spanc{ytv|k € I} = M,z and that Mé% is a U(t)-module for

na

each s by Lemma 3.4.

Proposition 3.13 The sequence

—~n —~

170 1) (s)
Mnﬁ ;Mnﬁ ; ;Mnﬁ;
is a filtration ofJT/[/n@ by U(t)-modules. Moreover, if ai,as, ..., ay, are Z-independent,

then ]f\\/_/:(zsg/ﬂ(s Y'is an irreducible Whittaker U (t)-module.

n,d

Proof. Since Mésg. is stable under U(t) for all s = 0,1,2,..., the sequence is a

filtration by U(t)-modules. Since ]f\\fé% / Mésa_ = M, s as U(t)-modules, we have

]f\\/[/ésg / ]\77%_ Y irreducible as a whittaker U (t)-module. O

3.3 Whittaker modules for t with a;, as, ..., a, Z-dependent

Proposition 3.14 Let @ = (a1, as,...,a,) € C™ # 0 and ay,a9,...,a,, be Z-

dependent, n € I'. Then f\?n = spanc{yEdv|k € Q) is a mazimal submodule of
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Proof. First we show that ]VT, is a proper submodule of Mnﬁ. For any w € Nn, w

has a unique expression

w = Z )\E,Byhdﬂv,

EEQvBEZgo

where Mg, # 0 for only finitely many k € Q,p € ZZ,.
Obviously, Nn is stable under t~ since for any &’ € I, we have

Y = Z )\E’Eyh'kfldgv € Nn‘

EEQ,QGZTZ”O

cw = Z )\&Bykdﬂciv

EGQ,QEZ’E’LO

= Z ai)\&gy@dﬂveﬁn.

EEQ,BGZ?()

So Nn is stable under Cc¢; @ Cesy ... & Cc,,. Now, for any 11’ € Z%,, by Lemma 3.6

we have
o= Y )\wyk(ﬁ(di — ||ik|["))d2v € N,,.
kEQ,peLT, i=0
So Nn is stable under Cd; ® Cdy ... ® Cd,,.
Now we claim that Nn is also stable under tt. For any r = 1,2,...,n,a =
(o, 0, .. ) € ZM + . If a1 + asas + . .. + apay, = 0, by induction we have

a:myfﬂ = yfﬁzm + k5r785a,5y§?(a101 + aocs + .o Q).
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Denote [k],, the same as k except that, if k., > 0, the element at (r, )™

position is k,, — 1 instead of k,,. Then, we can rewrite w as

w = Z )\E,Byﬁdﬂv + Z )\&Bykdﬂv.
EGQ,kra7£07£€ZTZ”O EGQ,km:O,BGZ’Z"O
SO,
Tral) = Z km)\&gy[k]m d2(anay + asag + ... + Qpa,)v

keQ ko 7#0,peZT,

+ Z /\E,Bybxmdgv + Z )\E,Bykxmdﬂv

kEQ ko #0,pELT, kEQ kya=0,pEZT,

= Z AE,ByExmdﬂv

EGQ,BEZTE”O

%

Il
3

= > @) My (][ (di — ai)P)v € N,

EEQ,QEZQO 1

.
Il

If ay0 + agas + . .. + @y, # 0. Then for any k € Q, we have [k}, € 2, so

k
A I— g km)\&gyum d2(anay + asas + ... + Qpa,)v
keQ ko #0,peZT,

+ Z /\E,Byﬁxmdgv + Z A E,Bykxmdﬂv

keQ,kra#0,peZ? keQ,kra=0,peZ?
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= Z )\E,Byhxmdgv + Z km)\k,gy[k]mdﬂ(alal + oo Qv

keQ,peZl, k€Q,kra#0,peZT,
i=m

= Z n(xra)AE,gyE(H (di — ai)P)v
keQpeZy, i=1

+ Z km/\ﬁ,gy@“’dﬂ(alal + ...+ amam)v € Nﬂ‘
EGQ,kv-a¢07B€Zg0

Since for any r =1,2,...,n,a =€ Z™+, we have x,.,w € Nn , SO Nn is stable under
t+. Thus, Nn is a proper submodule of JT/[/n@.

Now consider Mn/ﬁn = spanc{y*d2v|k € I,k ¢ Q,p € Z%,}. By Proposition
3.8, Mn / Nn is irreducible as a U(t)-module. Thus Nn is a maximal submodule of

M, ;.

For r = 1,2,...,n,a € Z™+, let ¢, , be the element of I which has 1 in the

(r, )™ position and zeros everywhere else. Denote Q.o = Q\ €,,.

Lemma 3.15 Let @ = (ay,as,...,ay,) € C™ # 0 be Z-dependent, n € I'. Then

NI = spanc{ytdeo|k € Qya,p € 220} is a mazimal U(t)-module of N,.

Proof. First we show that K@Y’a’ is a proper submodule of Nn‘ For any w € Nér’a),
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w has a unique expression
_ k p
w = A py - dPo,
kEQr 0, pELT

where Ag, 7 0 for only finitely many k € Q,.,p € Z%,.
For any 0 # k' € I, we have

yEw = Z )\E,Eyb“kfldﬂv.

k€Qr,a,peZT
Suppose that y*w ¢ ]Vér’a), since w € Nm we have yEw € Nn. Then there must
exist k € Q0,p € ZZy, Ay, such that yEHE ey € Nn \ N,(f’a), which implies that

kE+kK =e

=r,a*

So,k=¢. otk =¢. ., lfk=¢

=r,a” 00

then &' = 0 is a contradiction.

If& =e,,, then k =0, but 0 ¢ Q,, and this is a contradiction. So y*w € Né’“”)

and this shows that N{"*) is stable under . Similar to Proposition 3.14, N\ is
stable under Cd; @ Cdy ® ... D Cd,,, and Cc;  Cey @ ... P Cgy,.

Now we claim that Nn is also stable under t¥. Forany s = 1,2,...,m, 8 € Z™+,

by Lemma 3.6, we have

vow = 3 (@) ey ([ (d = B
EEQT,Q,EEZELO =1
t Z kSB)‘E,gy@SBdE(ﬁl% + ...+ Bman)v.

EEQy a,ksp#0,pELT,
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Assume that z,5w ¢ N\"® | then it must be that

> ksgMepy ™ P d2(Bras + Boaz + ... + Bnm)v # 0.

K€D ks £0.pELT,

So, fray + Baag + ... + Ban # 0 and this implies [k],s # ¢, , given that k € Q4.
Thus, zsw € N,(,’“’”) and this is a contradiction with our assumption. Since for any
s=1,2,...,n,08 € Z™+, we have z 5w € Nér’a) , SO f\fé’""” is stable under t*. Thus,
Nér’a) is a proper submodule of f\?n.

Now consider N, /N = spanc{yrodlvlp € ZZy}. Let A be a proper U(¥)-

submodule of spanc{y,.d?v|p € ZZ;} and 0 # u € A. Then u has an unique

expression
U= Z ApYradPv.
JUSASY
From Proposition 3.8, we have for some s =1,2,...,n,5 € Z™+,

(xsﬁ - n(xs,@))lu = AlYraV,

where [ = max{|p|} and A is a nonzero constant. Now, for any p € ZZ,

MU (ds + )P (e — n(20p)) 0 = Yradlo.
1

I
3

.
Il

Thus, u generates N,/N"® and A = N,/N\". So N,/N{* is irreducible as
a U(t)-module and all the above proved that ]Vér’a) is a maximal proper U(t)-

submodule of Nn- O
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Proposition 3.16 Every maximal U(t)-submodule of Nn is of the form N,g’“’a) for

somer =1,2,... , n,a € Z™+ such that ayay + agas + ... + aa, = 0.

Proof. By Lemma 3.15, N\"® is a maximal U (t)-submodule of Nn for all r =
1,2,...,n,a € Z™+ such that aja; +asas+. . .+ a,,a,, = 0. Assume that there ex-
ists a maximal submodule M of Nn such that M # NT(,T’O‘) forallr=1,2,...,n,a €
Z™+ such that oya; + asag + ... + ama,, = 0. Let ]Vw = spanc{yrd?v|p € ZZ},

then Nn = Nr,a &5 N,Y"“’ and we have

M= (MNN,,) @ (MAN&).

Suppose that Mﬂﬁr,a #0forallr=1,2,...,n,a € Z™+ such that aja; + asas +
..+ apa, = 0. Then for any » = 1,2, ..., n,a € Z™+ such that aja; + asas +
...+ aa, =0, we have

0#u= Z ApYradPv € M.

pELT,
From the proof of Lemma 3.15, we have that spanc{y..d?v|p € ZZ,} € M. Since
WradPvlp € ZZ5, 7 = 1,2,...,n,a € Z™+, a1a1 + 02 + . . .+ apan, = 0} generates
f\?n, we have that Nn C M, which can not happen because we assumed that M is a
proper maximal submodule of ]vn. So, M N Nw # 0 for some r =1,2,... ., n,a €
Z™+ such that aja; +asas+. .. +ama, = 0. Then we have M = Mﬂﬁr(f’a) and by
the maximality of M we have M = N\"*). But this is a contradiction as we assumed
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that M # Nér’a) forallr =1,2,...,n,a € Z™+ such that aja; +osas+. . . Fama, =
0. Thus, we conclude that M = JW’“) for some r = 1,2,...,n,a € Z™+ such that

ara; + asas + ...+ agpay, = 0. O

Proposition 3.17 The space of Whittaker vectors (of type n) for Mn@/ﬁn is one-

dimensional.

Proof.
Let w # 0 be a Whittaker module for j\/[/n@/f\/fn, then (z — n)kw € Nn for all
k € I. We can write

w= Z )\&Bykdgv + ]V,,,
keN\Qper,

where only finitely many A, # 0. Let | = max{|p||[A\gp # 0}. If [ = 0, then by
Proposition 2.13, we have that w = Av + Nn for some A € C. If [ > 0, then by the

proof of Proposition 3.8, there are some r = 1,2,....n,a € Z™+, such that

(xra - 77(1’m>)lw = Z /\EyEU + ]\7177
keN\Q

where there is at least one k such that A\; # 0 and this is the same as the case that

I = 0. So we always have w = \v + Nn for some A € C.
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Theorem 3.18 Nn 1s the unique mazimal submodule of Mn@

Proof. Let K be a maximal U(t)-submodule of Mn@ and suppose that K # Nn-
Then K N Nn is a maximal U (t)-submodule of Nn‘ By Proposition 3.16, we have
KN Nn = JW’“) for some r = 1,2,...,n,a € Z™+ such that aja; + asas + ... +
Ay, = 0. Hence J\7,§’"’°“> C K. Since K/(K N Nn) = Mn,d/ﬁn and Mn,d/ﬁn has
a Whittaker vector, there exists w € K,w ¢ Nn, such that w + (K N Nn) is a
Whittaker vector in K/(K N ]v,,) Thus, by Proposition 3.9, we may assume that
w =1+ Z )\&Byﬁdﬂv
keQ,perl,

after by multiplying a scalar. Then 0 # y,ow = Yrov + Z&eﬂ,gezgo )\&Eymyﬁdﬂv €
KNN, = N Since ZEEQ’EGZ% AepYralyidPo € N we have ypqv € NA™,
which is a contradiction with the definition of N\"*. Hence K = Nn and Nn is the

unique maximal submodule of M, 5. O]

3.4 Whittaker modules for t with a1 =ay=---=a,, =0

Proposition 3.19 ]A\fn = spanc{yEdPolk # 0,p € ZZ} is a mazimal submodule of

M, 5.

Proof. First we show that Nn is a proper submodule of ]\777’5. For any w € Nn’ w
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has a unique expression

w = E N pyEdlo,
kAO.pELT,

where A, # 0 for only finitely many k # 0, p € Z%,. Obviously, NV, is stable under

t~ since for any k&’ € I, we have

yEw = Z Ay dR € N,
k#0,peZT,

For any i =1,2,...,m,

cw = Z /\E’Byﬁdgciv

k£0.pEZT,
= E ai)\ggykd’iv € N,.
k#0,peZT,

So Nn is stable under Cc; @ Ccy . .. @ Ceyp,. Now, for any p' € ZZ, by Lemma 3.6,

we have

1=

3

Fo= 3" N (] (i — Ilik][P))d2o € N,

k£0.pEZT,

<
[e=]

So N, is stable under Cdy @ Cdy . .. & Cd,,.

Now we claim that Nn is also stable under t+. We can rewrite w as

w = Z /\E,Bykdﬂv + Z )\&Byﬁdﬂv.

E#Q»kTOL;éO7BEZgLO E#QJCT‘OA :O,BGZSO
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So we have

TroW = Z )\E@yﬁxmdﬂv + Z )\E@yﬁxmdﬂv

E#QJCTCX :O,BGZTZ”O E#QJCTCX 7507£€Z72no

Y kel + e+ Q)
k#0,kra#0,p€ZT,

= Z )\E,ByEITQdBU

k#0,peZT,
=m "
= Y @)™ ([ [(d —a)P)o € N,
E£0.pEZ, i=1
Since for any r = 1,2,...,n,a =€ Z™+, we have x,,w € Nn , SO Nn is stable under

t*. Thus, Nn is a proper submodule of Mnﬁ'
Now consider Mn,a/ﬁn = spanc{d®v|p € ZZ,}. For any 0 # w € spanc{dlv|p €
Z'Z,}, w has an unique expression

w = Z ApdPo,

PEZT,
where only finitely many A, # 0. Let [ = maz{[p[|A, # 0}. If [ =0, then w = v
for some nonzero constant A € C. If [ > 0, then from the proof of Proposition 3.8,

there is some r = 1,2,...,n,a € Z+ such that

(770 — N(Tra))w = A,
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for some nonzero constant A € C. We always have the fact w generates Mnﬁ/ ]\vfn
and so Mnﬁ/ Nn is irreducible as a U(t)-module. Thus Nn is a maximal submodule

of M_=. O

Lemma 3.20 N\"* = spanc{ytd2v|k € I\ {0, o}, P € 2%} is a mazimal U(t)-

module of Nn-

Proof. Since ci,¢a, ..., ¢, acts by zero on v, JW"” is stable under U(t). Thus,
N\ is a proper submodule of Nn.

Now consider N, /N = spanc{yradvlp € ZZ}. Let A be a proper U(1)-
submodule of spanc{y.od?v|p € ZZy} and u € A. Then u has an unique expression
U= Z )\Bymdﬂv,

pEZT,
where only finitely many A, # 0 for p € Z%,. From Proposition 3.8, we have for

some s =1,2,...,n,08 € Z™+,

(xsﬂ - n(xsé’»lu = Ayrocva

where [ = max{|p|} and X is a nonzero constant. Now, for any p € ZZ,

M+ ci)Pi(gp — n(xsg))lu = Ypod2u.
1

I
3

.
Il
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Thus, u generates N,/N"® and A = N,/N\". So N,/N{* is irreducible as
an U(t)-module and all the above proved that N\"* is a maximal proper U(%)-

submodule of Nn- O

Remark 3.21 I is easy to see that N = spanc{y*dvlk € I\ {0 ¢rar205},p €
Z2y} = N NG for (r,a) # (s, B) is a proper U()-submodule of Ny, so

NI s not irreducible.

Proposition 3.22 Every maximal U(t)-submodule of Nn is of the form Né’”a) for

somer=1,2,....,n,a € Z™+.

Proof. By Lemma 3.20, N\ is a maximal U(t)-submodule of N, for all r =
1,2,...,n,a € Z™+. Assume that there exists a maximal submodule M of Nn such
that M # Nér’a) forall r = 1,2,...,n,a € Z™+. Let Nr,a = spanc{yradv|p €

77}, then N, = N, . @ N and we have
M=(MNN,.)® (MANI).

Suppose that M N Nm #0forallr=1,2,...,n,a € Z"+. Then for any r =
1,2,...,n,a € Z™+, we have

0#u= Z ApYradPv € M.

QGZ’Z”O
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From the proof of Lemma 3.20, we have that spanc{y,d?v|p € ZZ,} € M. Since
{yradv|p € ZZ),r = 1,2,...,n,a € Z™+} generates Nn» we have that Nn c M,
which can not happen because we assumed that M is a proper maximal submodule
of Nn- So, M N era # 0 for some r = 1,2,...,n,a € Z™+. Then we have
M = M N N and by the maximality of M we have M = N\"*. But this is
a contradiction as we assumed that M # N,sr’a) forall r = 1,2,...,n,a € Z™+.

Thus, we conclude that M = N for some r = 1,2,...,n,a € Z™+.

Proposition 3.23 The space of Whittaker vectors (of type n) for Mn,ﬁ/ﬁn is one-

dimensional.

Proof.
Let w # 0 be a Whittaker module for Mn,ﬁ/ﬁm then (z — n)kw € Nn for all
k € I. We can write
w = Z )\Eygybd% + Nn,
k#0.e, ,pELY,
where only finitely many A, # 0. Let | = max{[p|[A\xp # 0}. If [ = 0, then by

Proposition 2.13, we have that w = \v + ./Tf,, for some A € C. If [ > 0, then by the

proof of Proposition 3.8, there are some r = 1,2,...,n,a € Z™+, such that

(1‘7”04 - U(xm))lw - Z /\EyEU + Nm
k#0.e,
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where there is at least one k such that A\; # 0 and this is the same as the case that
[ = 0. We always have w = \v + Nn for some A € C. Thus, the space of Whittaker

vectors (of type n) for Mnﬁ/ Nn is one-dimensional.

Theorem 3.24 Nn 1s the unique maximal submodule of ]\777,6.

Proof. Let K be a maximal U(t)-submodule of ]/\\4/7]76 and suppose that K # Nn-
Then K N ]\7,7 is a maximal U (t)-submodule of Nn. By Proposition 3.22, we have
Kn Nn = N for some r = 1,2,...,n,a € Z™+. Hence Kf}f’“) C K. Since
K/(K N Nn) = Mn,ﬁ/ﬁn and Mvm@/ﬁn has a Whittaker vector, there exists w €
Kow¢ Nn, such that w4+ (K N Nn) is a Whittaker vector in K /(K N Nn) Thus,
by Proposition 3.9, we may assume that
w=1v-+ Z )\&Bybdgv
kA0, pELT,

after by multiplying a scalar. Then 0 # y,qw = Ypqv + ZE#Q,QGZSO AE,ByrayEdBU €
Kn Nn = Nér’“). Since Zbég’gezgo /\&Bymyﬁd’lv € N,gr’“), we have y,,v € ngr’a),
which is a contradiction with the definition of N\"**. Hence K = N, and N,, is the

unique maximal submodule of Mn . [l
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4 Imaginary Whittaker modules for non-twisted

extended affine Lie algebras

4.1 Imaginary Whittaker modules

Let g be a finite-dimensional simple Lie algebra of rank n over C, § a Cartan
subalgebra of g, A the set of roots of g relative to b, {¢1, 2, ..., pn} a set of simple
roots for A. Then g = h @ @ _cp 0 Set n* = @ a+ 92y, Where A™ is the
set of positive roots cooresponding to A. Denote L as the Laurent polynomial ring
generated by m commutative variables ¢y, ty, . . ., t,,, which is L = C[t{*, t5, ..., tE1].
For a € Z™, we denote t* = t7"t5% ... t% in L. Let g be the non-twisted extended

affine Lie algebra associated with g, then
g=@L)dCe;®..»Ce,, ®Cdy & ... & Cd,y,.

The Lie bracket is given by

1. [¢;,8] =0, for all i =1,2,...,m,
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2. [d;,d;] =0, foralli,j =1,2,...,m,
3. [di,x @t =z @t foralla € Z™, x € g,i =1,2,...,m,

4. [z @t*y @t°] = [2,y] @ 1P + S0ipoK (2, y) (101 + aacy + ... + ), for

all o, B € Z™,x,y € g, where K is the Killing form on g.

Let {64,6a,...,0,} be an orthonomal basis of h such that K(6;,0;) = 6;;. Set

Tra =0, 3t Yo =0, Rt forr =1,2,..n,a € Z"+. Let t = Bpezmts, where

to = b®ta> Cl/7£0,
(4.1)
t.=Cc® ... »Ccp, a=0.

Thus t is a generalized Heisenberg subalgebra of g, {Z,a}i1<r<n is a basis of {t,,

{Yra t1<r<n is a basis of t_, for all & € Z™+, such that

[Cia xra] — [Ci7 yra] — 07
[Tratss] = [Yra>Yss]l =0,
[Tra,ysg] = OrsOaplarcs + azco + ...+ pcn).

foralll<r,s<n,1<i<m,a B€Z™+.
Set tF = Dpezmitia, t=t®pCdy®..®Cd,. The subalgebras t, t motivated
the definitions in the previous chapters, and so we may apply all the results on

Whittaker modules to t and t from chapters 2 and chapter 3.
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Now, let i = n* ® L, then the extended affine Lie algebra g has the following
decomposition

g=n @ {toh ont.

The subalgebra p = (@& bh) @ is a parabolic subalgebra of g. Moreover, [t, b] = 0
and " is an ideal of p.

Assume that A € (h@Cc; ®...®Cc,,)* and ) € I'. Let L, 5 be the unique (up to
isomorphism) irreducible Whittaker t-module of type i and levels A(c1), A(c2), . . ., A(cm).

Denote @ = (A(¢1), A(e2), ..., A(cm)), then we have:

—~

M, g, if X(c1), M(c2), ..., AM(¢m) are Z-independent,

1. Ly
2. Ly = ]\A/[/n@/ﬁn, if A(¢1), A(e2), ..., A(¢m) are Z-dependent,
3. Lyx = My z/Ny, if A(c1) = Mcz) = ... = Acm) = 0.

Let © € L, be a Whittaker vector of type . Define a U(p)-module structure

on L, by letting

1. hw= X h)w for all h € h & Cc; & Cea & ... & Cep,w € Ly »,

2. ntw =0 for all w € Ly .

Set

Viar = U(8) Quep) Lpr,v =1® 7.
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Define an action of U(g) on V; , by multiplication on the left on the U(g) factor.
We will say that V;, , is an imaginary Whittaker module of type (1, A) for g.

Let Q* be be the non-negative integral linear span of ¢1, s, ..., ¢, and extend
an element p € (h)* to an element of (h & Cc; @ Cey @ ... B Cep,)* by letting

p(er) = pley) = ... = pley,) = 0. For ¢ € QF, set
Un ) ?={uecUm)|hu =—ph)u,h € h@®Cc, ®Ccy @ ... ® Cep ).
For p € (h @ Cey ® Cey @ ... B Cepp)*, set
Vi =A{w e Vpulhw = p(h)w,h € h @ Ce; @ Cey @ ... @ Cep b
Proposition 4.1

1. As U(n™)-modules, V;, x 2 U(n~) ®c L,. Moreover, V, , is free as a U(n™)-

module.

2. The map w — 1 ® w defines a p-isomorphism of L,  onto the p-submodule

U(p)v of V.

3. Vi = EB¢EQ+V77A7/\_¢, and V;;\;qj > U(n)"? ®c Ly as modules for b & Ce; &

Ceo @ ... ® Ccyy,. In particular, Vn’\A =N

Proof.
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1. Since g = n~ @ p, the PBW theorem implies that U(g) = U(n~) ®c U(p).
So Vo = U(8) Qup) Loy =2 U(™) ®c Ly, as vector space over C. Thus the
map [ : UM™) ®&c Ly — Vi defined by (u,w) — ww is an isomorphism

of U(n™)-modules. It follows by Corollary 5.13 [Hun| that V,, ) is free as a

U(n~)-module.
2. This part is evident from the definitions.

3. First, claim that U(n™) = @4+ U(n~)"?. For every (u,w) € U(R™)™ ®c
Ly, since u € U(M™)"% w € Ly, we have [h,u] = —¢(h)u & hu —uh =
—¢(h)u < huw — uhw = —p(h)uw < huw — u(h)w = —p(h)uw < h(uw) =
(A= 9¢)(huw & uw € Vn’\;‘ﬁ So the isomorphism f in (1) is an isomorphism
between U(n~) "% &¢ L, » and Vn’\;¢ for every ¢ € Q. In particular, if ¢ = 0,

then U(n~) = C and V), = Ly,

Proposition 4.2 Every U(g)-submodule M of V;, x has a decomposition M = @ geq+ MN

Vn)‘;ﬁ into weight spaces relative to h @ Ccy @ Ceo @ ... D Cey,.

Proof. Since V, , = @¢€Q+Vn’\7;¢ = M = Dgeq+M N Vn/\;d) =
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Proposition 4.3 Assume A\, N € (h§&Ce; B Cer®...dCeyp,)*, Letn' : U(tT) — C be
a algebra homomorphism, X (c1), N (¢ca), ..., N(cym) are Z-independent and nf € T.

Then V, x = Vi x as U(g)-modules if and only if n =1 and A = .

Proof. We only need to prove that if V, \ = V,/ y, then n = and A = X because
the other direction is obvious. Let f : V;, » — V,, » be an isomorphism of U(g)
modules. Let D(X) (resp D(X')) be the set of weights of V,, \ (resp. V,y x) for the
action of h®Cc; @ Cey @ ... ® Ce,y, then A € D(XN). Hence there exists ¢ € Q1 such
that A = N —¢. Similarly, ' = A—¢' for some ¢' € QT, which implies that ¢ = —¢'.
Thus, ¢ = ¢ = 0 since ¢, ¢’ € Q. Therefore A = X and f restricted on Vn)\/\ is

an isomorphism of U(t)-modules from Vn)‘)\ to Vn)’\,k' Consequently, I_/m/\ = Ly

Choose v € L,y as a Whittaker vector, then

(u —=n(u)f(v) = f((u—=n(u))v) = f(0) =0

for all u € U(t"), which implies that f(v) is a Whittaker vector of type 7 in L,y .

By Proposition 3.9, it follows that n = 7n'. 0J

4.2 An irreducibility criterion

For the rest of this section, we will focus on imaginary Whittaker modules with Z-

independent level for extended affine Lie algebra g and show that they irreducible.
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Fixnel,letm=0" &t dCd,dCdy & ... # Cd,,. Note that n~ is an ideal in m.

Proposition 4.4 Let A € (h @ Cc; @ Ceg @ ... & Cep)*, Mer), Aca)y .., Mem) be

Z-independent, then V,  is torsionfree as left U(m)-module.

Proof. Denote d@ = (A(c1),A(ca),..., A(cm)). Since A(cy), A(e2), ..., A(em) are Z-
independent, we have [_Jm,\ = Mn,d. Let {ws}ses be a C-basis of U(t~ @ Cd; @
Cdy @ -+ ® Cd,,), then {w,}ses is also a C-basis of L, . By the PBW theorem
Um) 2 U0 )@cU(t @Cdy ®Cdy & - --®Cd,,). Hence U(m) is a free left U(n™)-
module with basis {w,}scs. Moreover, by Proposition 4.1, {wsv}ses is a basis of
Vo as a free U(n~)-module. The map f : V,x» — U(m) defined by v ® wv
ww,u € U™ ),w € U™ @ Cdy; @ Cdy & --- & Cd,,) is obviously surjective. Let
u = yYswsv €V, , where ys € U(n~). Then f(u) = ), ysws = 0 would imply
that ys = 0 for all s, so u = 0. Hence f is an isomorphism of vector space over C.
Suppose that y e myu € U(n™),w € U(t” ® Cdy ® Cdy @ - -+ ® Cd,,). Since n~ is
an ideal in m, we have [y, u] € u(n™). Therefore f([y,u] ® w) = [y, ulw. Moreover,
sincem=n"@t §Cd; ®Cdy & --- ® Cd,,, there must exist unique u; € A~ and
uy €t~ @ Cdy @ Cdy @ - -+ @ Cd,, such that y = u; + up. Hence f(y(u ® wv)) =
Flyu®w) = Fuy®wo)+ F([y, 6] ©wv) = Flum @ wv)+ f(u ©wo) + [y, ulw =
wuiw + f(u ® ugwo) + [y, ulw = vugw + uusw + [y, ulw = uyw + [y, ujw = y(uw).

Hence f is an isomorphism of U(m)-modules. Since U(m) is a domain, it follows
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that V,,  is torsion-free as a U(m)-module. U

We begin by establishing some notation. For any p = > » kg, € Q7, let
ht(p) =>0 ki v, we ATy =37 kips,w =Y Vi, then we define v < w
if and only if (K1, K2, ..., kn, ) < (1,V2,...,Vy,) in the lexicographic order. Thus,
< is a total order on Q" which satisfies the following property: if v,w € AT, v < w
and w—~v € A, then w—~ € A*. Fix a Chevalley basis {e,|y € A}U{h;|1 <i <n}

for g. For v € A, € Z™+, we define element e, as follows
Crta = €y QL7
Since n~ =n~ ® L, the set
B={e_yialy € AT, € Z"+}

is a basis of n™.

If y,we At o, € Z"+, define e_ 1 < €_yypif vy <wory=wand a<p.
Then < is a total order on B. Let [ = |AT| and let 71 < 79 < -+- < 7 be an
ordered listing of the roots in A™ using the total order above. For 1 < <, set

Ri __ ki(a)
Brm T

aEZ™+

where k; : Z™+ — Z>¢ has only finite support. Set

E®=EMEp .. EX.
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Then by the PBW theorem, the set
A={E"Kk = (K1,Kkay...,Ki), ki : Z"+ — Z>o}
is a basis for U(n~). For any k = (K1, K2, ..., k) and any i, set
Ny ={a € Z™ + |ki(a) # 0}.

Since k; : Z™ — Z> has only finite support, N, ; is a finite set for every i. Given
Kk # 0, denote N, = N, ; with ¢ minimum so that N, ; not empty. Suppose E* € A,

and N, = N, for a € N,, let (E%), be the same as E* but with power eig(j.i’;l.

By the definitions, it is easy to very the following:
Lemma 4.5 1. ifa,d’ € Ny, a # o, then
(E%)fa) 7 (E)jar]-
2. Assume K # K', Ny = Ng;, Ny = Ny ;. If a € NyN Ny, then
(B%)) # (B o).
Lemma 4.6 Let x,y € g, uy, us,...,u, € U(g),k € Z>o. Then
Loy, un - ty) =D e o [y, Wi - - Uy
2. [y, 2¥) = 20, iy, alat = ket y 2] + 300, b [y, o] 2.
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Proof. Since ui[y, us] + [y, u1|us = ui(yus — usy) + (yus —ury)us = yugus — ugusy =
[y, uyus], by induction on n we have
[ya Uy - un] = Uyp--- un—l[y7 un] + [y7 Uy - un—l]un
n—1
= Uy Up—1[Y, Un] + Zm U (Y Wi - Uy,

i=1

n
= E Uy - - 'Ui—l[yaui]ui—i—l 2 Up.
i=1

The second equation is just a special case of the first one. [l

Lemma 4.7 Assume 1 # E= € A, Let f € Z™+ such that o < 8 for allaw € N, =
Nyi. Let y be a non-zero element of g, ® t=° C 0™, then there exists u € U(n™)

such that

ly, ¥ =u+ Z ki (@) (E) o] [Y, €—ital- (4.2)

aENg

Moreover,

> @) B[y, eyl # 0. (4.3)

aEN,
Proof. Note that §_,, s =g, ®t77 and §_, 10 = g_, @ t* for every a € Z™+.
[y, e rival = bler—p, € niral = bley, @ P e, @ 1°] = ble,,e_,] @ 2P for some
0+#be C. Since [e,,,e_,] =h,, #0, 3> a =1 =£0, we have [y,e_-, 1] # 0.
Moreover, [y, e, 1a] = bh,, @ t*% = [y,e_.1a] € ta_g C t for all a € N,.

Since aw € N, = N, ;, we have k; = 0 for all 1 < 5 <7 —1. Thus, we may write
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Ef=ENELT - EM, by Lemma 4.6,

[y, BY] = [y, EX]Er+t ... B 4 ERily, E< ... BR,

Since 7; < vy, for all @ < j, so, if i < j and 7, —y; € A then 7, —; € A™. Then
by Lemma 4.2, [y, EFi+1 - E%| € U(n™) because [y, €y, 1a] = [€q,, 6-q,] @ 1277 is
equal to 0 if 75 —; € A, or equal to be,, ,, ® te B eUm)ify —y €A

Now we compute [y, E%],

ly, ] = [y, H eiiv(?—&)-a]
ac Ni
ri(a— Ki(a kilat
= 3 e [yt e
ac N/e

where a— (a+) is the element in Z™+ most close to a but are smaller (greater)

than o with lexicographic order.

Ki(a)

[y> 6,%+a] = Kli(a)(e—’yﬁ-a)m(a)_l[yv e—%—i—a]
Ki(a)
+ (e—”/i-l-a)mi(a)_] [[ya 6—%‘4-06]7 (6—%‘-‘:-04)]_1]'
=2
Since [y, e_,+a] € t for all @ € N, we have
W= S (s [y, vl (s 1] € U(O).
=2
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So,

ly, B%] = Z 77+a {0 + #y(a )(6—%+a)m(a)_l

a€ Ng

i (a4
*[y, €—w+a]}€—y(i+oz+ T

Again, since [y,e_-, 1] € t for all @ € N,, we can move [y,e_...,] to the right

side at the expense of commutators live in U(n~), denoted as u”. So,

Kq l‘”vza Ki(a)— Ki(o+
[, B5) = {0 ) (ki) (empra) @m0 )

a€ Ng

*[Y, enipa] U + Z ' —w?%—oz—u/eiiv(?:o)ﬂr T

a€ Ny

= > E@)(E) ey, eyita) +u”,

ac Ny

for some v € U(n~). Thus, we have

9. B% = [y EX)ER o BN 4 By, e B

= { ) Rl@)(E") )y, e el + B BN

LBy, B B
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= u+ Z Ki(a) (E™)a)[y, €+l

for some u € U(n™).

Suppose that

Z ’fi(@) (Eﬁ)[a] [yv e*’YHrOé] =0.

a€ENg

Since the elements of {(E®)|o € N,} are linearly independent by Lemma 4.5,

and by the PBW theorem, A is a basis of U(m) as a free right U(t~ ® Cd; @ Cdy @

-+ @ Cd,,)-module. So [y, e_,,1+q] = 0 for every o € N, which is not true. Hence

Z Ki(@) (E*)(a)[y; €—yita] # 0.

a€ENyx
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Recall that k = (Kia, k1, - - -, k2, k2, - -, Knay kngy - - ) = (kra)1<r<n,aczm4. For
any k € I, let k" = (kia, k2ar - - - Koy K18, kg, - - -y kg, ). Let IT = {k'|k € I}.
We order the elements in I T in the reverse lexicographic order. For any y%, yt, d2, d4,
where k,l € I,p,q € 2%, we define yEd? < ytdd if kT <17 (in the reverse lexico-

graphic order) or k = [ and |p| < [q|.

Theorem 4.8 Let A € (h @ Ccy @ Cea @ -+ - @ Cep)*, M), Alc2), ...y A(em) be

Z-independent and n € I'. Then V;, 5 is irreducible as a U(g)-module.

Proof. Let K be a non-zero U(g)-submodule of V;, 5, we will show that K =V, 5. It
suffices to show that K N L, yv # 0 becauseL, yv = U(t)v is irreducible as a U (%)-
module and V;, y = U(g)v. By Proposition 4.1(3), it follows that K N Vn/\A_M #£0
for some p € Q. Assume that 0 # w € KN Vn’\;“ . We claim that there exists
u € U(g) such that 0 # uw € L, \v. We will proceed by induction on ht(u). If
i = 0, then we are done since Vn’}/\ = Z_}n,,\v. Suppose that the claim is true for all
e Qt with ht(p') < ht(p). By Proposition 3.2(1) and Proposition 4.1(1), w has
a unique expression

k
w =

1

O AngESwydPen, (4.4)

q

where k € Z~, E* € A, A\, 4 € C, and for each ¢, only finitely many A, , € C # 0.
wy € {y*|k € T}, py € 2% and w,d™ # wyd™ if g # ¢'.
Since w € VnA;“ = U(™)™ ®c Ly, for each k such that )., # 0 for some ¢, we
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have

foralhe h®Cci @ Cer @ - --

(A, 6_’Yi+ae_7j+/8] =

= [h, E*] =

= =

For each ¢, redefine (2 as,

[h, B] = —p(h) E* (45)

@ Ce,,. We claim that

p=> Y rila)y. (4.6)

i=1 a€Z™+
[h,e_y @t%_,, @17
h®1l e, ®te_, @t°
te_, @t h® 1 e, ®1°
[he—] @ty @7 +e s, @ t[h ey, ] @1
—Yi(h)e—r+a€r,18 = Vj(h) ey rabr15

—(vi + ’Yj)(h)e*vﬁae*“/frﬁ’

o~

!
Z Z /fi(a)%'-
=1 a€Z™+

Q= {ﬁp‘@,q # 0},
79



and denote i, = min{j|Ny, = N,;, & € Q,}. Without loss of generality, we may
assume that
Z’lz-.-:ij <Z]+1§"'§/Lk

Then we may write

J

k
w = Z( Z A B )wqdPav + Z (Z A B )wqdPro.

g=1 K€EQy q=j+1 KEQq

Let

N={ala € Ny, € Q.q=1,2,... k}.

Recall that {y,o = 0, ® t7*}1<,<p is a basis of t_, fora € Z™+. To avoid misun-
derstandings, we will write ¥, o for y,o. Let B € Z™+ such that o < 8, w; < Yrp—a

for all ¢,7 and all @ € N. Let y = e,, 5, since y € 7,
yw,dPv =0

forall 1 < ¢ < k. As [y,e_y, 1a] = [y, 64, ] @1°7F, we have [y,e_,, 1] # 0

because [e,, ,e_,, | # 0. Moreover, if o € N, then
[y, 6_%14_(}] S ta—,@ = ia_g C {_,

since a < 3 for all & € N. Thus, for every a € N, there exist values v, , € C,1 <

r <n, with at least one v, , # 0 such that

n
[Ys iy ra] = D Vralirp-a
r=1
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and this expression is unique. If i, = 4y = --- = 4;, then by Lemma 4.7, for all

K € Q, there exists u,, € U(n™) such that

[y, B = g + Z Ky () (E%)[a) [y7e*%’1+a ’

a€ENgx

where ZaeN H;Zl( )(Eﬁ)[a] [y7 e—’Yil +a] 7é 0. SO,

yw = Zj: Z Mgy B w,dPay + Z Z Ay B ) w,dPav

q=1 ke g=j+1 KeQ,

= Z Z/\"“f ly, B%] — E%y))w,dPiv

+ Z (Z Aoq([y, E5] — E™y))wydPev

q=j+1 KEQq

= Z(Z Angly, E¥])wed?v + Z (Z Asqlys B )wgdPrv

q=1 K€y q=j+1 K€Qq

J
= Z Z Z Aeghiy () (E5)[q) [y,e_% t+a]wgdPtv

=1 KEQq aENy

[}

+ Z Z A gl qWqdP4v + Z Z Aigly, B w,dPay

qg=j+1 KEQy q=j+1 KEQy
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J
- Z Z Z Z)\ﬁ»qﬁil(a)VT,a(Eﬁ>[a]yr,ﬁfawqdpfqv

k k
+ Z Z A g, qWa P + Z Z Awqlys B Jwgd™v.

q=j+1 KEQy q=j+1 KEQy

We claim that yw # 0. Suppose that yw = 0. Let
f Vo = U(m),

defined by u ®@ wv — vw,u € U™ ),w € Ut~ & Cdy & Cdy - -- & Cd,,). Then we

have

J n

0=flyw) = Z Z As,qhin (Q)Vra(E) ] Yr,p—awqd™

g=1 keQq aeN, r=1

k k
S e 3 S P

q=j+1 k€Qy q=j+1 keQyq

Since wy < yr 5o for all ¢, r,,a € N, it follows that

Wy < WeYr f—a

for all ¢, ¢, so

Wy dPL < WYy g—adPL
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for all ¢,¢',a € N. As N, C N, for all k € Q, and all ¢, so

J n
Z Z Z Z )‘ﬁ,q’iil(O‘)VT,Q(EE)[a]yr,B—awqdp—q =0.

q=1 kEQq aEN, T=1

Let § = min{aja € Ny, k€ Q1 UQU---UQ,;}. Suppose that 1 < r < n is maximal

such that v, 5 # 0. Assume a € N, 6 € Q; UQU---UQ;, and a # §. Then

ysvﬁ_a < y?’,ﬁ—é

forall 1 <r,s <n,since § —a <  — 0. Moreover, if s < r, then

Ys,8-5 < Yr,p—5-

Hence

wq/ysﬁ_ad”i/ < WeYrp—sd?2, 1 < s,r <mn

for all ¢,¢',a € Ny, and a # 0,6 € Q UQy U --- U ;. Also
wq/ysﬁ_(;dpi, < WeYrp—sd?t, 1 <s<r<n

for all ¢,q’. Hence

J

Do D Auaka Ors(BYyns-swed = 0

q=1 K€Qy,0€N,

J
:>Z Z Aqlin (0)Vr s (E%) 5 wWeyrg—sd?2 = 0,

q=1 KEQq,0EN,
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since Y, g_sWq = WeYrs—s. Let 1 < g < j such that o € N, for some k € €2,. Since
Wy lrg—sd? # Weyps_sd? if ¢ # ¢, and U(m) is free as a right Ut~ @ Cd; @
Cdy - - - ® Cd,,)-module, it must be

Z A (E%)5) = 0.

KESY

Since the elements E*, k € €, are linearly independent, and d is fixed, so (E%)(5, & €
2, must also be linearly independent. Then we have )\, , = 0 for all & € 2,, which

is a contradiction. This proves that yw # 0.

—(u—iy

Since pp—y;, € QT,0# yw € V;\/\ ) and ht(p — ;) < ht(p), by the inductive

hypothesis there exists u € U(g) such that 0 # u(yw) = (uwy)w € L, , hence

KN Ly #0 as desired. O
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