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Abstract

We classify irreducible Whittaker modules for generalized Heisenberg Lie algebra

t and irreducible Whittaker modules for Lie algebra t̃ obtained by adjoining m

degree derivations d1, d2, . . . , dm to t. Using these results, we construct imaginary

Whittaker modules for non-twisted extended affine Lie algebras and prove that the

imaginary Whittaker modules of Z-independent level are always irreducible.
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Introduction

In Block’s classification [Bl] of all irreducible modules for the three-dimensional

simple Lie algebra sl2, they fall into two families: highest (lowest) weight modules

and a family which are irreducible modules over a Borel subalgebra of sl2 including

Whittaker modules. This result illustrates the prominent role played by Whittaker

modules.

The class of Whittaker modules for an arbitrary finite-dimensional complex semi-

simple Lie Algebra g was defined by Kostant. Kostant defined and systemati-

cally studied in [Ko] Whittaker modules for an arbitrary finite-dimensional complex

semisimple Lie algebra g. He showed that these modules with a fixed regular Whit-

taker function (Lie homomorphism) on a nilpotent radical are (up to isomorphism)

in bijective correspondence with central characters of U(g). Specifically, irreducible

Whittaker modules correspond to the maximal ideals of the center Z(g). In [Wa],

N.Wallach gave new proofs of Kostant’s results in the case that g is the product

of complex Lie algebras isomorphic to sln. E.McDowell [Mc], and D.Milicic and
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W.Soegbel [MS] studied a category of modules for an arbitrary finite-dimensional

complex semisimple Lie algebra g which includes the Bernstein-Gelfand-Gelfand

category O as well as those Whittaker modules where the Whittaker function on

a nilpotent radical may be irregular (degenerate). The irreducible objects in this

category are constructed by inducing over a parabolic subalgebra p of g from an

irreducible Whittaker module or from a highest weight module for the reductive

Levi factor of p (when the Whittaker function is zero).

Naturally, the next important task is to study Whittaker modules over infinite-

dimensional Lie algebras. Affine Lie algebras are the most extensively studied

and most useful ones among infinite-dimensional Kac-Moody algebras. The in-

tegrable highest weight modules were the first class of representations over affine

Kac-Moody algebras being extensively studied, see [Ka] for detailed discussion of

results. In [Ch], Chari classified all irreducible integrable weight modules with

finite-dimensional weight spaces over the untwisted affine Lie algebras. Chari and

Pressley [CP1], then extended this classification to all affine Lie algebras. The re-

sults of [Ch] and [CP1] state that every irreducible integrable weight module with

finite-dimensional weight spaces is either a highest weight module or a loop module.

Very recently, a complete classification for all irreducible weight modules with finite-

dimensional weight spaces over affine Lie algebras were obtained in [FT, DG]. As for

irreducible weight modules with infinite-dimensional weight spaces and irreducible
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non-weight modules, the first examples were given by Chari and Pressley in [CP2] by

taking the tensor product of some irreducible integrable highest weight modules and

integrable loop modules over affine Lie algebras. Besides the irreducible modules

constructed in [CP2], a class of irreducible weight modules over affine Lie algebras

with infinite-dimensional weight spaces were constructed in [BBFK]. A complete

classification for all irreducible (weight and non-weight) modules over affine Lie al-

gebras with locally nilpotent action of the nilpotent radical were obtained in [MZ].

All irreducible modules over untwisted affine Lie algebras with locally finite action

of the nilpotent radical were classified in [GZ].

A class of irreducible non-weight modules for untwisted affine Lie algebras from

irreducible Whittaker modules over the subalgebra generated by imaginary root

spaces were constructed in [Chr]. These modules are called imaginary Whittaker

modules since they are different from the above Whittaker modules in nature.

Extended affine Lie algebras, first introduced by mathematical physicists [H-KT],

are a higher-dimensional generalization of affine Kac-Moody Lie algebras. Roughly

speaking, extended affine Lie algebras are complex Lie algebras characterized by a

symmetric non-degenerate invariant bilinear form, a finite-dimensional ad-diagonalizable

abelian subalgebra (i.e, a Cartan subalgebra), a discrete irreducible root system and

ad-nilpotency of the root spaces attached to non-isotropic roots. It turns out the

root systems of such Lie algebras are precisely the extended affine root systems
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introduced by Saito [Sa] in the study of elliptic singularities. Those Lie algebras

and root systems have been further studied in [AABGP], [BGK] and [ABGP], and

among others. Our purpose in this thesis to investigate the properties of imaginary

Whittaker modules over non-twisted extended affine Lie algebras.

The organization of the thesis is as follows: Some basic definitions and notations

are given in Chapter 1; in Chapter 2, we classify the irreducible Whittaker modules

for generalized Heisenberg Lie algebras t; in Chapter 3, we classify the irreducible

Whittaker modules for Lie algebras t̃ obtained by adjoining m degree derivations

d1, d2, . . . , dm to t; while in Chapter 4, we use our results from Chapter 3 to con-

struct imaginary Whittaker modules for non-twisted extended affine Lie algebras

and investigate their properties.
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1 Preliminaries

A Lie algebra g is a vector space over a field F with a product [·, ·], called Lie

bracket, which is bilinear and satisfies two additional conditions:

1. [x, x] = 0 for all x in g,

2. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ g. (Jacobi identity)

For any algebra A we denote its center by Z(A). Let n be a positive integer and

let t be a Lie algebra over C with the following properties:

1. t has a one-dimensional center, Z(t) = Cc,

2. t is Z-graded, t = ⊕i∈Zti,

3. dimCti = n for all i ∈ Z, i ̸= 0, and t0 = Cc.

Set t+ = ⊕i>0ti, t
− = ⊕i<0ti. We assume that there is a basis {xri}1≤r≤n of ti and

a basis {yri}1≤r≤n of t−i, i ∈ Z>0 such that

[c, xri] = [c, yri] = 0, [xri, xsj] = [yri, ysj] = 0, [xri, ysj] = δrsδijc
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for all 1 ≤ r, s ≤ n, i ∈ Z>0. It follows that degree xri = degree xsi = i, degree yri =

degree ysi = −i for all 1 ≤ r, s ≤ n, i ∈ Z>0.

The algebra t is an infinite-dimensional Heisenberg Lie algebra [Chr]. We extend

the above definition to a generalized Heisenberg Lie algebra t with three similar

properties as infinite-dimensional Heisenberg Lie algebras:

1. t has a m-dimensional center, Z(t) = Cc1 ⊕ Cc2 ⊕ . . .⊕ Ccm,

2. t is Zm-graded, t = ⊕α∈Zmtα,

3. dimCtα = n for all α ∈ Zm, α ̸= 0, and t0 = Cc1 ⊕ Cc2 ⊕ . . .⊕ Ccm,

for some positive integers m and n.

We can order the elements of Zm lexicographically, that is, for α, β ∈ Zm, α =

(α1, α2, . . . , αm) and β = (β1, β2, . . . , βm), α < β if and only if, for some i =

1, 2, . . . ,m, αi < βi, and for all j > i, αj = βj. Set Zm+ = {α ∈ Zm|α < 0}, where

we denote 0 = (0, 0, . . . , 0). Set t+ = ⊕α∈Zm+tα, t
− = ⊕α∈Zm+t−α. We assume that

there is a basis {xrα}1≤r≤n of tα and a basis {yrα}1≤r≤n of t−α, α ∈ Zm+ such that

[ci, xrα] = [ci, yrα] = 0, [xrα, xsβ] = [yrα, ysβ] = 0,

[xrα, ysβ] = δrsδαβ(α1c1 + α2c2 + . . .+ αmcm)

for all 1 ≤ r, s ≤ n, α, β ∈ Zm+. It follows that degree xrα = degree xsα = α, and

degree yrα = degree ysα = −α for all 1 ≤ r, s ≤ n, α ∈ Zm+.
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2 Whittaker modules for Heisenberg Lie

algebras t

2.1 Whittaker modules for t

In this section we describe the irreducible Whittaker modules for t. All the results

of this section are valid for generalized Heisenberg Lie subalgebras of any extended

affine Lie algebras.

Definition 2.1 Let η : U(t+) → C be an algebra homomorphism such that η|t+ ̸= 0,

and let V be a U(t)-module.

1. A non-zero vector v ∈ V is called a Whittaker vector of type η if xv = η(x)v

for all x ∈ U(t+)

2. V is called a Whittaker module for t if V contains a cyclic Whittaker vector

v (i.e. v ∈ V is a Whittaker vector and V = U(t)v).

Notation 2.2 Let V be a Whittaker module of type η for t with cyclic Whittaker
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vector v. Let η′ : U(t+) → C be an algebra homomorphism and assume that xrαv =

η′(xrα)v for some 1 ≤ r ≤ n, α ∈ Zm+. Then η(xrα) = η′(xrα).

Next we will construct Whittaker modules for t. Set b = t+⊕Cc1⊕Cc2⊕ . . .⊕

Ccm. Let a⃗ = (a1, a2, . . . , am) ∈ Cm and let Cη,⃗a = Cṽ be a one-dimensional vector

space viewed as a b-module by

ciṽ = aiṽ, xṽ = η(x)ṽ (2.1)

for all 1 ≤ i ≤ m and x ∈ U(t+). Set

Mη,⃗a = U(t)⊗U(b) Cη,⃗a, v = 1⊗ ṽ. (2.2)

Define an action of U(t) on Mη,⃗a by left multiplication (on the first tensor factor).

Note that Mη,⃗a = U(t)v and that Mη,⃗a is a Whittake module for t.

Since Zm+ is totally ordered and enumerated as

(0, 0, . . . , 0, 1) < (0, 0, . . . , 0, 2) < . . . ,

we can denote that ki = (kiα, kiβ, . . . ), where α = (0, 0, . . . , 0, 1), β = (0, 0, . . . , 0, 2),

for all i = 1, 2, . . . , n. Let k = (k1, k2, . . . , kn) and only finitely many krα are non

zero. Denote I be the set of all such k. Then we can order the elements of I

lexicograpically and denote this total order by ≤.

Let ξ : U(t−) → C be an algebra homomorphism. For any k ∈ I, since there

are only finitely many krα ̸= 0, we may define:
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1. |k| =
∑

α∈Zm+
1≤r≤n

krα,

2. yk =
∏

α∈Zm+
1≤r≤n

ykrαrα ,

3. k! =
∏

α∈Zm+
1≤r≤n

krα!,

4. (x− η)k =
∏

α∈Zm+
1≤r≤n

(xrα − η(xrα))
krα ,

5. (y − ξ)k =
∏

α∈Zm+
1≤r≤n

(yrα − ξ(yrα))
krα .

Proposition 2.3 Let a⃗ = (a1, a2, . . . , am) ∈ Cm and assume Mη,⃗a and v are as

defined in Definition 2.1. Then the following hold:

1. The set {ykv|k ∈ I} is a basis of Mη,⃗a as a C-vector space.

2. As a U(t−)-module, Mη,⃗a is isomorphic to U(t−).

3. Mη,⃗a is free as a U(t−)-module.

Proof.

1. Since U(t) ∼= U(t−) ⊗C U(b) by Poincaré-Birkoff-Witt theorem in section

17.3 [Hu], U(t) is a free right U(b)-module with basis {yk|k ∈ I}. Hence

Mη,⃗a = U(t)⊗U(b) Cη,⃗a
∼= (U(t−)⊗C U(b))⊗U(b) Cη,⃗a

∼= U(t−)⊗C (U(b)⊗U(b)

Cη,⃗a) ∼= U(t−)⊗C Cη,⃗a is a C-vector space with basis {yk|k ∈ I}.

2. This is obvious from the proof of Proposition 2.3(1).
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3. Since U(t−) is a domain, it follows thatMη,⃗a is torsion-free as a U(t−)-module.

Hence Mη,⃗a is free as a U(t−)-module since Mη,⃗a is cyclic as a U(t−)-module.

�

Lemma 2.4 Let a⃗ = (a1, a2, . . . , an) ∈ Cm and v ∈ Mη,⃗a be defined as in Definition

2.1, we have the following:

1. if a⃗ = (a1, a2, . . . , an) ̸= 0, then

(x− η)kykv = {
∏

1≤r≤n,α∈Zm+

(α1a1 + α2a2 + . . . , + αnan)
krα}k!v (2.3)

for any k ∈ I.

2. if a⃗ = (a1, a2, . . . , an) ̸= 0 and k, l ∈ I with k < l, then (x− η)lykv = 0.

3. if a⃗ = (a1, a2, . . . , an) = 0, then xrαy
kv = η(xrα)y

kv for all 1 ≤ r ≤ n, α ∈

Zm+, k ∈ I.

Proof.

1. Since [xrα, xsβ] = [yrα, ysβ] = 0 and [xrα, ysβ] = δrsδαβ(α1c1 + α2c2 + . . . +

αmcm), we have the following calculation:

(xrα − η(xrα))yrα = yrα(xrα − η(xrα)) + α1c1 + α2c2 + · · ·+ αmcm,

(xrα − η(xrα))y
2
rα = yrα[yrα(xrα − η(xrα)) + 2(α1c1 + α2c2 + · · ·+ αmcm)],

(xrα − η(xrα))y
3
rα = y2rα[yrα(xrα − η(xrα)) + 3(α1c1 + α2c2 + · · ·+ αmcm)],
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and by induction we may have

(xrα−η(xrα))y
krα
rα = ykrα−1

rα [yrα(xrα−η(xrα))+krα(α1c1+α2c2+ · · ·+αmcm)].

Hence,

(xrα − η(xrα))y
krα
rα v = ykrα−1

rα krα(α1a1 + α2a2 + · · ·+ αmam)v

(xrα − η(xrα))
krαykrαrα v = ykrα−1

rα krα(α1a1 + α2a2 + · · ·+ αmam)v

= krα(α1a1 + α2a2 + · · ·+ αmam)(xrα − η(xrα))
krα−1ykrα−1

rα v

= krαkrα − 1(α1a1 + α2a2 + · · ·+ αmam)
2

·(xrα − η(xrα))
krα−2ykrα−2

rα v

= . . .

= krα!(α1a1 + α2a2 + · · ·+ αmam)
krαv.

Since [xrα, xsβ] = [yrα, ysβ] = 0, we have

(x− η)kykv = k!Π1≤r≤n,α∈Zm+(α1a1 + α2a2 + · · ·+ αmam)
krαv

for any k ∈ I.
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2. k < l ⇒ ∃1 ≤ r ≤ n, α ∈ Zm+ such that krα < lrα, so

(xrα − η(xrα))
lrαykrαrα v = krα!(α1a1 + α2a2 + · · ·+ αmam)

krα

∗(xrα − η(xrα))
lrα−krαv

= 0

⇒ (x− η)lykv = 0.

3. If a⃗ = (a1, a2, . . . , am) = 0 ⇒ [xrα, ysβ] = 0 for all 1 ≤ r, s ≤ n, α, β ∈ Zm+ ⇒

xrαy
kv = η(xrα)y

kv for all 1 ≤ r ≤ n, α ∈ Zm+, k ∈ I.

�

2.2 Whittaker modules for t with a1, a2, . . . , am Z-independent

In this section, we classify all irreducible Whittaker modules for t with a1, a2, . . . , am

Z-independent.

Proposition 2.5 Let a⃗ = (a1, a2, . . . , am) be Z-independent, then Mη,⃗a is irre-

ducible as a U(t)-module.

Proof. Let N be a nonzero U(t)-submodule of Mη,⃗a and let 0 ̸= u ∈ N . Then, u

has a unique expression

u =
∑
k

λky
kv,
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where only finitely many λk ̸= 0. Let l = max{k ∈ I|λk ̸= 0}. If l = 0, then v ∈ N

and so N = Mη,⃗a.

Assume that l ̸= 0, then

(x− η)lu = {
∏

1≤r≤n,α∈Zm+

(α1a1 + α2a2 + . . . ,+αnan)
lrα}l!λlv ∈ N.

Since λl ̸= 0 and
∏

1≤r≤n,α∈Zm+(α1a1 + α2a2 + . . . ,+αnan)
lrα ̸= 0, we have that

v ∈ N , so N = Mη,⃗a and Mη,⃗a is irreducible as a U(t)-module. �

Proposition 2.6 Let a⃗ = (a1, a2, . . . , am) be Z-independent, then Mη,⃗a is the unique

(up to isomorphism) irreducible Whittaker module of type η on which c1, c2, . . . , cm

acts on the Whittaker vector v by a1, a2, . . . , am respectively.

Proof. Let M ′ be a Whittaker t-module of type η with cyclic Whittaker vector v′

such that c1v
′ = a1v

′, c2v
′ = a2v

′, . . . , cmv
′ = amv

′, then we only need to show that

M ′ ∼= Mη,⃗a. Let Cη,⃗a be defined the same as in Definition 2.1. Then the map

f : U(t)⊗ Cη,a → M ′

defined by

(u, rv) 7→ ruv′,
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where r ∈ C, u ∈ U(t), is bilinear. Moreover if w ∈ U(b), then

f(uw, rv) = r(uw)v′

= f(u,w(rv)).

Hence there exists an induced linear map

f : Mη,⃗a = U(t)⊗U(b) Cη,⃗a → M ′

defined by

u⊗ rv 7→ ruv′,

which is a homomorphism of (left) U(t)-modules, and it is obviously surjective as

M ′ = U(t)v′. Since Mη,⃗a is irreducible, f is then one-to-one. Thus, M ′ ∼= Mη,⃗a as

desired.

�

Corollary 2.7 Let a⃗ = (a1, a2, . . . , am) be Z-independent. Let M ′ be a Whittaker

t-module of type η with cyclic Whittaker vector v′ such that civ
′ = aiv

′ for all

1 ≤ i ≤ m. Then M ′ ∼= Mη,⃗a.

Proposition 2.8 Let a⃗ = (a1, a2, . . . , am) be Z-independent. Then the space of

Whittaker vectors (of type η) for Mη,⃗a is one-dimensional.
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Proof. Let η′ : U(t) → C be an algebra homomorphism. Suppose that w ∈ Mη,⃗a

is a Whittaker vector of type η′. We show that η = η′ and that w ∈ Cv. By

Proposition 2.3(1), w has a unique expression

w =
∑
k

λky
kv,

where only finitely many λk ̸= 0. We may assume that λk ̸= 0 for some k ̸= 0,

otherwise we would have w ∈ Cv and the proof is done. Let 0 ̸= l = max{k|λk ̸= 0}.

By Lemma 2.4(1), we have

(x− η)lw = λll!Π1≤r≤n,α∈Zm(α1a1 + α2a2 + · · ·+ αmam)
lrαv.

Since t+ is abelian and w is a Whittaker vector of type η′,

(xrα − η′(xrα))(x− η)lw = (x− η)l(xrα − η′(xrα))w

= 0

for all 1 ≤ r ≤ n, α ∈ Zm+. Thus

(xrα − η′(xrα))v = (λll!Π1≤r≤n,α∈Zm+(α1a1 + α2a2 + · · ·+ αmam)
lrα)−1

∗(xrα − η′(xrα))(x− η)lw

= 0

for all 1 ≤ r ≤ n, α ∈ Zm+. Which is to say η′(xrα) = η(xrα) for all 1 ≤ r ≤ n, α ∈

Zm+. so we have η = η′. This implies that

(x− η)lw = 0 ⇒ λk = 0,
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which is a contradiction to our choice of l. Therefore, w = λv for some λ ∈ C as

desired.

�

Proposition 2.9 Let a⃗ = (a1, a2, . . . , am) be Z-independent. Then Mη,⃗a
∼= Mη′ ,⃗a′

as U(t)-modules if and only if η = η′ and a⃗ = a⃗′.

Proof. We only need to prove that if Mη,⃗a
∼= Mη′ ,⃗a′ , then η = η′ and a⃗ = a⃗′,

because the other direction is obviuos. Since Mη,⃗a
∼= Mη′ ,⃗a′ , let f : Mη,⃗a → Mη′ ,⃗a′

be an isomorphism of U(t)-modules and choose v ∈ Mη,⃗a as a Whittaker vector.

Then a′if(v) = cif(v) = f(civ) = f(aiv) = aiv for i = 1, 2, . . . ,m. So, a′i = ai for

i = 1, 2, . . . ,m and a⃗ = a⃗′. Moreover,

(u− η(u))f(v) = f((u− η(u))v)

= f(0)

= 0

for all u ∈ U(t+), which implies that f(v) is a Whittaker vector of type η in Mη′ ,⃗a′ .

By Proposition 2.8 , it follows that η = η′. �
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2.3 Whittaker modules for t with a1, a2, . . . , am Z-dependent

In this chapter, we assume that a⃗ = (a1, a2, . . . , am) ∈ Cm ̸= 0 and a1, a2, . . . , am

are Z-dependent. Let Ω = {k ∈ I| there exists at least one entry krα ̸= 0 such that

a1α1 + a2α2 + . . . + amαm = 0}. For any k ∈ I, denote [k]r,α the same as k ∈ I

except that, if krα ̸= 0 for k, then the (r, α)th position is krα − 1 instead of krα.

Proposition 2.10 Let a⃗ = (a1, a2, . . . , am) be Z-dependent. Then Nη = spanC{ykv|k ∈

Ω} is a maximal submodule of Mη,⃗a.

Proof. First we show that Nη is a proper submodule of Mη,⃗a. For any w ∈ Nη, w

has a unique expression

w =
∑
k∈Ω

λky
kv,

where only finitely many λk ∈ Ω are not zero.

1. For any r = 1, 2, . . . ,m, α ∈ Zm+. If α1a1 + α2a2 + . . .+ αmam = 0, then

xrαw =
∑
k∈Ω

λkη(xrα)y
kv ∈ Nη.

If α1a1 + α2a2 + . . .+ αmam ̸= 0, then we can rewrite w as

w =
∑

k∈Ω,krα>0

λky
kv +

∑
k∈Ω,krα=0

λky
kv,
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and we have

xrαw =
∑

k∈Ω,krα>0

λky
kxrαv +

∑
k∈Ω,krα=0

λky
kxrαv

+
∑

k∈Ω,krα>0

λkkrαy
[k]r,α(α1c1 + . . .+ αmcm)v

=
∑
k∈Ω

λkη(xrα)y
kv +

∑
k∈Ω,krα>0

λkkrαy
[k]r,α(α1a1 + . . .+ αmam)v.

Since α1a1 + α2a2 + . . .+ αmam ̸= 0, it must be [k]r,α ∈ Ω given that k ∈ Ω.

Thus xrαw ∈ Nη. So, for any r = 1, 2, . . . , n, α ∈ Zm+, we have xrαw ∈ Nη,

which shows that Nη is stable under U(t+).

2. For any k′ ∈ I, yk
′
w =

∑
k∈Ω λky

k′ykv =
∑

k∈Ω λky
k+k′v ∈ Nη.

The above implies that Nη is stable under U(t) and Nη ̸= Mη,⃗a, so Nη is a proper

submodule of Mη,⃗a. Consider V = {ykv|k ∈ I\Ω}. It is easy to see that V is a C-

basis of Mη,⃗a/Nη. Next we will show that Mη,⃗a/Nη is irreducible as a U(t)-module.

Similar as the proof of Proposition 2.5, let K be a U(t)-submodule of Mη,⃗a/Nη.

Then for any 0 ̸= w ∈ K, w has a unique expression

w =
∑
k∈I\Ω

λky
kv,

where only finitely many k ∈ I\Ω are not zero. Let l = max{k ∈ I\Ω|λk ̸=

0}. If l = 0, then v ∈ K and so K = Mη,⃗a/Nη. Assume that l ̸= 0. Then
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(x− η)lw = {
∏

1≤r≤n,α∈Zm+(α1a1 + α2a2 + . . . ,+αmam)
lrα}l!λlv ∈ N . Since λl ̸= 0

and
∏

1≤r≤n,α∈Zm+(α1a1 + α2a2 + . . . ,+αnan)
lrα ̸= 0, this implies that v ∈ K, and

so K = Mη,⃗a/Nη and thus Mη,⃗a/Nη is irreducible as a U(t)-module. So, Nη is a

maximal submodule of Mη,⃗a.

�

For every 1 ≤ r ≤ n and α ∈ Zm+, let er,α be the element of Ω which has 1 in

the (r, α)th position and zeros elsewhere.

Proposition 2.11 N
(r,α)
η = spanC{ykv|k ∈ Ω, k ̸= er,α} is a maximal U(t)-submodule

of Nη for every er,α ∈ Ω.

Proof. First we show that N
(r,α)
η is a proper submodule of Nη. For any w ∈ N

(r,α)
η ,

w has a unique expression

w =
∑

k∈Ω\er,α

λky
kv,

where λk ̸= 0 for only finitely many k ∈ Ω \ er,α.

Obviously, N
(r,α)
η is stable under U(t−) since for any k′ ∈ I, we have

yk
′
w =

∑
k∈Ω\er,α

λky
k+k′v ∈ Ñη.

For any i = 1, 2, . . . ,m,

ciw =
∑

k∈Ω\er,α

λky
kciv
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=
∑

k∈Ω\er,α

λkaiy
kv ∈ N (r,α)

η .

So, N
(r,α)
η is stable under Cc1 ⊕ Cc2 . . .C⊕ cm.

Now we claim that Ñ
(r,α)
η is also stable under U(t+). By induction we have

xrαy
k
sβ = yksβxrα + kδr,sδα,βy

k−1
s,β (α1c1 + α2c2 + . . .+ αmcm),

where 1 ≤ r, s ≤ n, α, β ∈ Zm+, k ∈ Z≥0.

For any r = 1, 2, . . . , n, and α1, α2, . . . , αm ∈ Z+, if a1α1+a2α2+. . .+amαm = 0,

then

xrαw =
∑

k∈Ω\er,α

λky
kxrαv =

∑
k∈Ω\er,α

λkη(xrα)y
kv ∈ N (r,α)

η .

If a1α1 + a2α2 + . . . + amαm ̸= 0, denote [k]rα the same as k except that, if

krα > 0, the element at (r, α)th position is krα − 1 instead of krα. Then, we can

rewrite w as

w =
∑

k∈Ω\er,α,krα>0

λk,py
kv +

∑
k∈Ω\er,α,krα=0

λk,py
kv.

So we have

xrαw =
∑

k∈Ω\er,α,krα>0

λk,py
[k]rα(α1a1 + α2a2 + . . .+ αmam)v

+
∑

k∈Ω\er,α,krα>0

λk,py
kxrαv +

∑
k∈Ω\er,α,krα=0

λk,py
kxrαv.

Since a1α1 + a2α2 + . . .+ amαm ̸= 0 and k ∈ Ω \ er,α, we have [k]rα ∈ Ω \ er,α and

20



xrαw ∈ N
(r,α)
η .

For any r = 1, 2, . . . , n, α ∈ Zm+, we have xrαw ∈ N
(r,α)
η , so N

(r,α)
η is stable

under U(t+). Thus, N
(r,α)
η is a proper submodule of Nη.

Moreover, Nη/N
(r,α)
η = spanC{yer,αv}, which is a one-dimensional C-vector

space, so N
(r,α)
η is a maximal U(t)-submodule of Nη. �

Proposition 2.12 Every maximal U(t)-submodule of Nη is of the form N
(r,α)
η for

some er,α ∈ Ω.

Proof. Assume that there exists a maximal submodule M of Nη such that M ̸=

N
(r,α)
η for all 1 ≤ r ≤ n and α ∈ Zm+ such that α1a1 + α2a2 + . . . + αmam = 0.

Then by the maximality of M and N
(r,α)
η in Nη, we have M + N

(r,α)
η = Nη. So,

(M +N
(r,α)
η )/M ∼= N

(r,α)
η /M ∩N

(r,α)
η and it follows that Nη/M ∼= N

(r,α)
η /M ∩N

(r,α)
η .

Since N
(r,α)
η is not irreducible, we have M ∩ N

(r,α)
η ̸= 0. Let Nr,α = spanC{yr,αv}.

Note that N
(r,α)
η ∩ Nr,α = 0, hence (M ∩ N

(r,α)
η ) ∩ (M ∩ Nr,α) = 0. Thus, as

vector spaces, (M ∩ N
(r,α)
η ) + (M ∩ Nr,α) = (M ∩ N

(r,α)
η ) ⊕ (M ∩ Nr,α). Since

Nη/M ∼= N
(r,α)
η /M ∩N

(r,α)
η , Nη/N

(r,α)
η

∼= M/M ∩N
(r,α)
η is irreducible and we must

have

M = (M ∩N (r,α)
η )⊕ (M ∩Nr,α).
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Suppose that M ∩Nr,α ̸= 0 for all 1 ≤ r ≤ n and α ∈ Zm+ such that α1a1+α2a2+

. . . + αmam = 0, then w = yrαv ∈ M for all 1 ≤ r ≤ n and α ∈ Zm+ such that

α1a1 + α2a2 + . . . + αmam = 0. Since {yrαv|1 ≤ r ≤ n, α ∈ Zm+, α1a1 + α2a2 +

. . .+αmam = 0} generates Nη, we get that Nη ∈ M , which can not happen because

we assumed that M is a maximal submodule of Nη. So, M ∩ Nr,α = 0 for some

1 ≤ r ≤ n and α ∈ Zm+ such that α1a1 + α2a2 + . . . + αmam = 0. Then we get

M = M ∩ N
(r,α)
η and by the maximality of M we have M = N

(r,α)
η . But this is

a contradiction as we assumed that M ̸= N
(r,α)
η for all 1 ≤ r ≤ n and α ∈ Zm+

such that α1a1 + α2a2 + . . . + αmam = 0. We conclude that M = N
(r,α)
η for some

1 ≤ r ≤ n and α ∈ Zm+ such that α1a1 + α2a2 + . . .+ αmam = 0. �

Proposition 2.13 The space of Whittaker vectors (of type η) for Mη/Nη is one-

dimensional.

Proof. Let w ̸= 0 be a Whittaker vector for Mη/Nη, then (x − η)kw ∈ Nη for all

k ∈ I . We can write w as

w =
∑
k∈I\Ω

λky
kv +Nη,

where only finitely many λk are not zero. Let l = max{k ∈ I\Ω, λk ̸= 0}. If l = 0,

then w = λv+Nη for some nonzero λ ∈ C. Assume that l ̸= 0, then we can see that

(x − η)lw = {
∏

1≤r≤n,α∈Zm+(α1a1 + α2a2 + . . . ,+αnan)
lrα}l!v + Nη. Since l /∈ Ω,,
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we have α1a1 +α2a2 + . . . ,+αnan ̸= 0 for every lrα > 0. But this is a contradiction

because (x−η)lw ∈ Nη. Thus, we have w = λv+Nη for some λ ∈ C, which implies

that the space of Whittaker vectors (of type η) for Mη/Nη is one-dimensional. �

Theorem 2.14 Nη is the unique maximal submodule of Mη,⃗a.

Proof. Let K be a maximal U(t)-submodule of Mη,⃗a and suppose that K ̸= Nη.

Then K ∩ Nη is a maximal U(t)-submodule of Nη. Since K + Nη = Mη,⃗a, so

Nη/(K ∩Nη) ∼= Mη,⃗a/K and then we must have K ∩Nη = N
(r,α)
η for some er,α ∈ Ω.

Hence N
(r,α)
η ⊆ K. Since K/(K ∩ Nη) ∼= Mη,⃗a/Nη and Mη,⃗a/Nη has a Whittaker

vector, there exists w ∈ K,w /∈ Nη such that w+(K ∩Nη) is a Whittaker vector in

K/(K ∩Nη). Thus, by Proposition 2.13, we may assume that w = v+
∑

k∈Ω λky
kv

after by multiplying a scalar. Then 0 ̸= yrαw = yrαv+
∑

k∈Ω λkyrαy
kv ∈ K ∩Nη =

N
(r,α)
η . Since

∑
k∈Ω λkyrαy

kv ∈ N
(r,α)
η , we get yrαv ∈ N

(r,α)
η , which is a contradiction

with the defnition of N
(r,α)
η . Hence K = Nη and we get that Nη is the unique

maximal submodule of Mη,⃗a. �
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2.4 Whittaker modules for t with a1 = a2 = · · · = am = 0

In this chapter we will investigate the maximal U(t)-submodules for Mη,⃗a with

a1 = a2 = · · · = am = 0. We denote Mη,⃗a as Mη,⃗0.

Notation 2.15 Let ξ : U(t−) → C be an algebra homomorphism, and let Jξ be the

ideal in U(t−) generated by yrα − ξ(yrα) for all 1 ≤ r ≤ n, α ∈ Zm+.

Lemma 2.16 Let M
(ξ)

η,⃗0
= Jξv in Mη,⃗0. Then M

(ξ)

η,⃗0
is a maximal U(t)-submodule of

Mη,⃗0.

Proof. Since Jξ is an ideal of U(t−), it follows that M
(ξ)

η,⃗0
is stable under U(t−).

By Lemma 2.4(3), M
(ξ)

η,⃗0
is stable under U(t+), and it is obviously stable under t0.

Hence, M
(ξ)

η,⃗0
is a U(t)-submodule of Mη,⃗0 and is proper because v /∈ M

(ξ)

η,⃗0
. Since

M
(ξ)

η,⃗0
= spanC{(y − ξ)kv|k ∈ I, k ̸= 0} and the set spanC{(y − ξ)kv|k ∈ I} is a C-

basis of Mη,⃗0, we get that Mη,⃗0/M
(ξ)

η,⃗0
= Cv. So, M (ξ)

η,⃗0
is a maximal U(t)-submodule

of Mη,⃗0. �

Lemma 2.17 Every maximal ideal of U(t−) is of the form Jξ for some algebra

homomorphism ξ : U(t−) → C.

Proof. Let M be a maximal ideal of U(t−), then U(t−)/M is a field extension of

C. Since every proper field extension of C must contain a copy of C(z), where
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z is algebraically independent over C, hence it must have uncountable dimension.

Since dimCU(t−)/M is countable, U(t−)/M is not a proper field extension and

U(t−)/M = C. So, for every 1 ≤ r ≤ n, α ∈ Zm+, there exists ξrα ∈ C such that

yrα = ξrα+M ⇒ yrα− ξrα ∈ M . Let ξ : U(t−) → C be the algebra homomorphism

defined by ξ(yrα) = ξrα for all 1 ≤ r ≤ n, α ∈ Zm+. Then Jξ ⊂ M , and by the

maximality of Jξ, we have M = Jξ. �

Set P = U(t−). By the PBW theorem, we may view P as a polynomial ring

in the variables yrα, 1 ≤ r ≤ n, α ∈ Zm+. For any u ∈ P , define the action

of U(t) on u by: yrα acts on u as multiplication by yrα, xrαu = η(xrα)u and

c1u = c2u = · · · = cmu = 0.

Lemma 2.18 Every maximal U(t)-submodule of P has the form Jξ for some alge-

bra homomorphism ξ : U(t−) → C.

Proof. Let K be a maximal U(t)-submodule of P . Then K is a proper U(t)-

submodule of P with the action of U(t−) defined above. Clearly, K is an ideal of

P . Hence K must be contained in some maximal ideal of P = U(t−). By Lemma

2.16, K ⊂ Jξ for some algebra homomorphism ξ : U(t−) → C. However, Jξ is a

U(t)-submodule of P , so it is stable under the action of U(t+) and c1, c2, . . . , cm

defined above. Hence K = Jξ by the maximality of K as a U(t)-submodule of P. �
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Theorem 2.19 Every maximal U(t)-submodule of Mη,⃗0 has the form M
(ξ)

η,⃗0
for some

algebra homomorphism ξ : U(t−) → C.

Proof. Define f : P → Mη,⃗0 by u 7→ uv for all u ∈ P . As in Proposition 2.3(2), we

know that f is an isomorphism of (left) U(t−)-modules, where the action of U(t−)

on P is by left multiplication. It is easy to see that f is actually an isomorphism of

(left) U(t)-modules. Let M be a maximal U(t)-submodule of Mη,⃗0. Then f−1(M)

is a maximal U(t)-submodule of P . By Lemma 2.18, it follows that f−1(M) = Jξ

for some algebra homomorphism ξ : U(t−) → C. So M = (Jξ) = Jξv = M
(ξ)

η,⃗0
as

desired. �

2.5 The center of U(t) and annihilator ideals

In this section, we describe the center of the enveloping algebra U(t). Then we

show how the annihilator in U(t) of an irreducible Whittaker module for t of Z-

independent levels is generated. Let Z = Z(U(t)) be the center of the enveloping

algebra U(t) of t.

Proposition 2.20 Z = C[c1, c2, . . . , cm].
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Proof. Since it is obvious that C[c1, c2, . . . , cm] ⊆ Z, we only need to prove Z ⊆

C[c1, c2, . . . , cm]. Let u =
∑

λk,l,by
kxlcb ∈ Z, where cb = cb11 c

b2
2 . . . cbmm and only

finitely many non-zero λk,l,b occur in the sum. Assume that there exists m ∈

I,m ̸= 0, such that λk,m,b ̸= 0 for some k ∈ I, b ∈ Zm, b1, b2, . . . , bm ≥ 0. Let

α ∈ Zm+, 1 ≤ r ≤ n be such that mrα ̸= 0. Then the set

Ir,α = {(k, l, b)|λk,l,b ̸= 0 for some k, l ∈ I, b ∈ Zm with lrα ̸= 0}

is non-empty and we can write

u =
∑

(k,l,b)∈Ir,α

λk,l,by
kxlcb +

∑
(k,l,b)/∈Ir,α

λk,l,by
kxlcb.

Now for any k ∈ I, 1 ≤ s ≤ n, β ∈ Zm+, let k(s,β) be defined as: k
(s,β)
rα = krα if

(r, α) ̸= (s, β) and k
(s,β)
sβ = ksβ − 1. Note that if k, l ∈ I and k(s,β) = l(s,β) for some

1 ≤ s ≤ n, β ∈ Zm+, then k = l. Since

[xrα, ysβ] = δrsδαβ(α1c1 + α2c2 + . . .+ αmcm),

we have

xlrα
rα yrα = lrαx

lrα−1
rα (α1c1 + α2c2 + . . .+ αmcm) + yrαx

lrα
rα ,

uyrα = yrα
∑

(k,l,b)∈Ir,α

λk,l,by
kxlcb + yrα

∑
(k,l,b)/∈Ir,α

λk,l,by
kxlcb

+
∑

(k,l,b)∈Ir,α

λk,l,blrαy
kxl(r,α)cb(α1c1 + α2c2 + . . .+ αmcm).
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Since uyrα = yrαu, it follows that

yrα
∑

(k,l,b)∈Ir,α

λk,l,by
kxlcb + yrα

∑
(k,l,b)/∈Ir,α

λk,l,by
kxlcb

= yrα
∑

(k,l,b)∈Ir,α

λk,l,by
kxlcb + yrα

∑
(k,l,b)/∈Ir,α

λk,l,by
kxlcb

+
∑

(k,l,b)∈Ir,α

λk,l,blrαy
kxl(r,α)cb(α1c1 + α2c2 + . . .+ αmcm).

This implies

∑
(k,l,b)∈Ir,α

λk,l,blrαy
kxl(r,α)cb(α1c1 + α2c2 + . . .+ αncn) = 0.

We have ∑
(k,l,b)∈Ir,α

λk,l,bαilrαy
kxl(r,α)cbci = 0,

for every 1 ≤ i ≤ m. Since α ∈ Zm+, there exists at least one 1 ≤ j ≤ m such that

αj ̸= 0. So we have ∑
(k,l,b)∈Ir,α

λk,l,blrαy
kxl(r,α)cb = 0.

Note that if (k′, l′(r,α), b′) = (k, l(r,α), b) in the above sum, then k′ = k, l′(r,α) =

l(r,α), b′ = b. So λk,l,blrαy
kxl(r,α)cb = 0 for all (k, l, b) ∈ Ir,α, which implies λk,l,b = 0

for all (k, l, b) ∈ Ir,α and this is a contradiction. Hence such m does not exist and u

can be written as u =
∑

k,b λk,by
kcb ∈ Z. Now, assume that there exists k ∈ I, k ̸= 0,

such that λk,b ̸= 0 for some b ∈ Zm, b1, b2, . . . , bm ≥ 0. Let α ∈ Zm+, 1 ≤ r ≤ n be
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such that krα ̸= 0. Then the set

Jr,α = {(k, b)|λk,b ̸= 0 for some k ∈ I, b ∈ Zm with krα ̸= 0}

is non-empty and we can write

u =
∑

(k,b)∈Jr,α

λk,by
kcb +

∑
(k,b)/∈Jr,α

λk,by
kcb.

we have

xrαy
krα
rα = krαy

krα−1
rα (α1c1 + α2c2 + . . .+ αmcm) + ykrαrα xrα,

xrαu =
∑

(k,b)∈Jr,α

λk,by
kxrαc

b +
∑

(k,b)/∈Jr,α

λk,by
kxrαc

b

+
∑

(k,b)∈Jr,α

λk,bkrαy
k(r,α)cb(α1c1 + α2c2 + . . .+ αmcm).

Since xrαu = uxrα, it follows that

∑
(k,b)∈Jr,α

λk,by
kxrαc

b +
∑

(k,b)/∈Jr,α

λk,by
kxrαc

b

+
∑

(k,b)∈Jr,α

λk,bkrαy
k(r,α)cb(α1c1 + α2c2 + . . .+ αmcm)

=
∑

(k,b)∈Jr,α

λk,by
kxrαc

b +
∑

(k,b)/∈Jr,α

λk,by
kxrαc

b.

This implies

∑
(k,b)∈Jr,α

λk,bkrαy
k(r,α)cb(α1c1 + α2c2 + . . .+ αmcm) = 0.
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We have ∑
(k,b)∈Jr,α

λk,bαikrαy
k(r,α)

cbci = 0,

for every 1 ≤ i ≤ m. Since α ∈ Zm+, there exists at least one 1 ≤ j ≤ m such that

αj ̸= 0. So we have ∑
(k,b)∈Jr,α

λk,bkrαy
k(r,α)

cb = 0.

So, λk,bkrαy
k(r,α)

cb for all (k, b) ∈ Jr,α, which implies λk,b = 0 for all (k, b) ∈ Jr,α

and this is a contradiction. Hence such k does not exist and u can be written as

u =
∑

b∈Zm λbc
b ∈ C[c1, c2, . . . , cm]. �

Now, for any a⃗ = (a1, a2, . . . , am) ∈ Cm, let Za⃗ be the ideal in Z generated by

c1 − a1, c2 − a2, . . . , cm − am. We will show that the annihilator ideal in U(t) of

an irreducible Whittaker module for t with a1, a2, . . . , am Z-independent is gener-

ated by Za⃗. In the setting of Whittaker modules for finite dimensional complex

semisimple Lie algebra g, Kostant showed that the annihilator in the envelop-

ing algebra U(g) of an irreducible Whittaker module for g is centrally generated

[Kos]. In [On], M.Ondrus showed that the annihilator of any Whittaker module

for the quantum enveloping algebra Uq(sl2) of sl2 is centrally generated. In [Chr],

Christodoulopoulou showed that the annihilator ideal in U(t) of an irreducible

Whittaker module for t is centrally generated when m = 1 and a1 ̸= 0.
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Proposition 2.21 If a⃗ = (a1, a2, . . . , am) ∈ Cm is Z-independent, then AnnU(t)Mη,⃗a =

U(t)Za⃗.

Proof. It is obvious that U(t)Za⃗ ⊂ AnnU(t)Mη,⃗a, we only need to show that for any

u ∈ AnnU(t)Mη,⃗a, we have u ∈ U(t)Za⃗. By the PBW theorem, u can be written as

∑
l,k∈I,b∈Zm

λl,k,by
l(x− η)k(c− a⃗)b,

where (c−a⃗)b =
∏i=m

i=1 (ci−ai)
bi and there are only finitely many nonzero terms in the

sum. If b21+ b22+ . . .+ b2m > 0 and l, k ∈ I, we have yl(x−η)k(c− a⃗)b ∈ AnnU(t)Mη,⃗a.

We may assume that ∑
l,k∈I

λl,ky
l(x− η)k.

For the Whittaker vector v, since uv = 0, we get that λl,0 = 0 for all l by Proposition

2.3(1). Since u ̸= 0, we may assume that there exist l, k ∈ I, k ̸= 0 such that λl,k ̸= 0.

Let k′ = min{k ∈ I|λl,k ̸= 0 for some l ∈ I} and k′ ̸= 0. Then by Lemma 2.4, we

have

0 = uyk
′
v =

∑
l∈I

λl,k′k
′!{

∏
r,α

(α1a1 + . . .+ αmam)
k′rα}ylv.

Since a1, a2, . . . , am are Z-independent,
∏

r,α(α1a1 + . . . + αmam)
k′rα ̸= 0. So we

have λl,k′ = 0 for all such l and this is a contradiction by our choice of k′. Thus,

u ∈ U(t)Za⃗ as desired. �
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3 Whittaker modules for t̃

3.1 Extending t by m derivations

Let t be the Heisenberg algebra defined in Chapter 2. Set t̃ = t⊕Cd1⊕Cd2⊕ . . .⊕

Cdm, and extend the Lie bracket on t to t̃ by

[ci, dj] = 0, [di, xrα] = αixrα, [di, yrα] = −αiyrα, [di, dj] = 0,

for all 1 ≤ i, j ≤ m, 1 ≤ r ≤ n, α ∈ Zm+.

Set t̃+ = t+ =
⊕

α∈Zm+ tα, t̃
− = t− =

⊕
α∈Zm+ tα and t̃0 = t0⊕Cd1⊕Cd2⊕ . . .⊕

Cdm.

Definition 3.1 Let η : U (̃t+) → C be an algebra homomorphism such that η|̃t+ ̸= 0,

and let V be a U (̃t)-module.

1. A non-zero vector v ∈ V is called a Whittaker vector of type η if xv = η(x)v

for all x ∈ U (̃t+).

32



2. V is called a Whittaker module for t̃ if V contains a cyclic Whittaker vector

v (i.e. v ∈ V is a Whittaker vector and V = U (̃t)v).

Next we will construct Whittaker modules for t̃. Set b̃ = t+⊕Cc1⊕Cc2⊕ . . .⊕

Ccm. Let a⃗ = (a1, a2, . . . , am) ∈ Cm and let Cη,⃗a = Cṽ be a one-dimensional vector

space viewed as a b̃-module by

ciṽ = aiṽ, xṽ = η(x)ṽ,

for all 1 ≤ i ≤ m and x ∈ U (̃t+). Set

M̃η,⃗a = U (̃t)⊗u(b̃) Cη,⃗a, v = 1⊗ ṽ.

Define an action of U (̃t) on M̃η,⃗a by left multiplication (on the first tensor factor).

Note that M̃η,⃗a = U (̃t)v and that M̃η,⃗a is a Whittaker module for t̃.

Proposition 3.2 Let a⃗ = (a1, a2, . . . , am) ∈ Cm, and dp = dp11 dp22 . . . dpmm , where

p = (p1, p2, . . . , pm) ∈ Zm
≥0. Then we have

1. The set {ykdp|k ∈ I, p ∈ Zm
≥0} is a basis of M̃η,⃗a as a C-vector space.

2. As a U (̃t− ⊕ Cd1 ⊕ Cd2 ⊕ · · · ⊕ Cdm)-module, M̃η,⃗a is isomorphic to U (̃t− ⊕

Cd1 ⊕ Cd2 ⊕ . . .⊕ Cdm).

3. M̃η,⃗a is free as a U (̃t− ⊕ Cd1 ⊕ Cd2 ⊕ . . .⊕ Cdm)-module.

Proof.
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1. Since U (̃t) ∼= U (̃t−⊕Cd1⊕Cd2⊕ · · ·⊕Cdm)⊗C U(b̃) by PBW theorem, U (̃t)

is a free right U(b̃)-module with basis of U (̃t−⊕Cd1⊕Cd2⊕· · ·⊕Cdm). And

since {ykdp|k ∈ I, p ∈ Zm
≥0}, we haveM̃η,⃗a = U (̃t)⊗U(b̃) Cη,⃗a

∼= (U (̃t− ⊕ Cd1 ⊕

Cd2 ⊕ · · · ⊕ Cdm)⊗C U(b̃))⊗U(b̃) Cη,⃗a
∼= U (̃t− ⊕ Cd1 ⊕ Cd2 ⊕ · · · ⊕ Cdm)⊗C

(U(b̃)⊗U(b̃)Cη,⃗a) ∼= U (̃t−⊕Cd1⊕Cd2⊕· · ·⊕Cdm)⊗CCη,⃗a is a C-vector space

with basis {ykdp|k ∈ I, p ∈ Zm
≥0}.

2. This is obvious from the proof of Proposition 3.2(1).

3. Since U (̃t− ⊕ Cd1 ⊕ Cd2 ⊕ · · · ⊕ Cdm) is a domain, it follows that M̃η,⃗a is

torsion-free as a U (̃t− ⊕ Cd1 ⊕ Cd2 ⊕ · · · ⊕ Cdm)-module. Hence M̃η,⃗a is

free as a U (̃t− ⊕ Cd1 ⊕ Cd2 ⊕ · · · ⊕ Cdm)-module since M̃η,⃗a is cyclic as a

U (̃t− ⊕ Cd1 ⊕ Cd2 ⊕ · · · ⊕ Cdm)-module.

�

Proposition 3.3 Let a⃗ = (a1, a2, . . . , am) ∈ Cm be Z-independent and Mη,⃗a be the

irreducible Whittaker U(t) module (of type η) constructed in Chapter 2. Then Mη,⃗a

is isomorphic to a proper U(t)-submodule of M̃η,⃗a.

Proof. In M̃η,⃗a, set V = U(t)v. By Corollary 2.7, V ∼= Mη,⃗a and V is a proper

subspace of M̃η,⃗a by Propositions 2.3(1) and 3.2(1). �
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For any k ∈ Z>0, 1 ≤ i ≤ k ∈ Z, let (k)i = k(k − 1)(k − 2) . . . (k − i + 1) be the

falling factorial. Set (k)i = 0 if i < 0 or i > k, and (k)0 = 1.

Lemma 3.4 Let 1 ≤ r, s ≤ n, α, β ∈ Zm+, α ̸= β, q, e ∈ Z≥0, p ∈ Zm
≥0, C

j
q =

q!/j!(q − j)!, then we have

1. (xrα − η(xrα))
qdp =

∑j=q
j=0C

j
q (−1)q−jη(xrα)

q−j
∏i=m

i=0 (di − jαi)
pixj

rα.

2. (xrα−η(xrα))
qyerα =

∑min(e,q)
j=0 Cj

q (e)jy
e−j
rα (α1c1+· · ·+αmcm)

j(xrα−η(xrα))
q−j.

3. (xrα − η(xrα))
qyq

′

sβ = yq
′

sβ(xrα − η(xrα))
q.

Proof.

1. For any 1 ≤ i ≤ m, 1 ≤ r ≤ n, e, q ∈ Z≥0, p = (p1, p2, . . . , pm) ∈ Zm
≥0, α ∈

Zm+, by induction, we have:

[di, xrα] = αixrα,

xrαdi = (di − αi)xrα,

xl
rαdi = (di − lαi)x

l
rα,

xl
rαd

pi
i = (di − lαi)

pixl
rα. (3.1)
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So, by induction we have

(xrα − η(xrα))
qdp11 = [

j=q∑
j=0

(−1)q−jCj
qη(xrα)

q−jxrα
j]dp11

=

j=q∑
j=0

(−1)q−jCj
qη(xrα)

q−j(d1 − jα1)
p1xj

rα,

(xrα − η(xrα))
qdp11 dp22 = [

j=q∑
j=0

(−1)q−jCj
qη(xrα)

q−j(d1 − jα1)
p1xj

rα]d
p2
2

=

j=q∑
j=0

(−1)q−jCj
qη(xrα)

q−j(d1 − jα1)
p1(d2 − jα2)

p2xj
rα,

(xrα − η(xrα))
qdp =

j=q∑
j=0

(−1)q−jCj
qη(xrα)

q−j[
i=m∏
i−0

(di − jαi)
pi ]xj

rα.

2. [xrα, ysβ] = δr,sδα,β(α1c1 + · · ·+ αmcm) implies that

(xrα − η(xrα))yrα = yrα(xrα − η(xrα)) + (α1c1 + · · ·+ αmcm),

(xrα − η(xrα))y
2
rα = y2rα(xrα − η(xrα)) + 2(α1c1 + · · ·+ αmcm)yrα.

By induction on e, we can show that

(xrα − η(xrα))y
e
rα = yerα(xrα − η(xrα)) + e(α1c1 + · · ·+ αmcm)y

e−1
rα ,

which proves (2) for q = 1, e ≥ 1. Now for all q ≤ e, suppose that (2) is true
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for 1, 2, . . . , q − 1. Then we have

(xrα − η(xrα))
q−1yerα =

q−1∑
j=0

Cj
q−1(e)jy

e−j
rα (α1c1 + · · ·+ αmcm)

j

∗(xrα − η(xrα))
q−1−j,

(xrα − η(xrα))
qyerα =

q−1∑
j=0

Cj
q−1(e)j(xrα − η(xrα))y

e−j
rα

∗(α1c1 + · · ·+ αmcm)
j(xrα − η(xrα))

q−1−j

=

q−1∑
j=0

Cj
q−1(e)j(y

e−j
rα (xrα − η(xrα)) + (e− j)(α1c1 + . . .

+αmcm)y
e−j−1
rα )(α1c1 + · · ·+ αmcm)

j(xrα − η(xrα))
q−1−j

=

q−1∑
j=0

Cj
q−1(e)jy

e−j
rα (α1c1 + · · ·+ αmcm)

j(xrα − η(xrα))
q−j

+

q−1∑
j=0

Cj
q−1(e)j(e− j)(α1c1 + · · ·+ αmcm)

j+1ye−j−1
rα

=

q∑
j=0

Cj
q−1(e)jy

e−j
rα (α1c1 + · · ·+ αmcm)

j(xrα − η(xrα))
q−j
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+

q∑
j=0

Cj−1
q−1(e)j−1(e− j + 1)(α1c1 + · · ·+ αmcm)

jye−j
rα

+

q∑
j=0

Cj
q (e)jy

e−j
rα (α1c1 + · · ·+ αmcm)

j(xrα − η(xrα))
q−j.

Since that Cq
q−1 = 0, C−1

q−1 = 0 and Cj
q−1+Cj−1

q−1 = Cj
q , (2) is true for all q ≤ e.

Now, for q > e,

(xrα − η(xrα))
qyerα = (xrα − η(xrα))

q−e(xrα − η(xrα))
eyerα

= (xrα − η(xrα))
q−e

e∑
j=0

Cj
e(e)jy

e−j
rα

∗(α1c1 + · · ·+ αmcm)
j(xrα − η(xrα))

e−j.

So by induction, we have that

(xrα − η(xrα))
qyerα =

e∑
j=0

Cj
q (e)jy

e−j
rα (α1c1 + · · ·+ αmcm)

j(xrα − η(xrα))
q−j.

All the above show that

(xrα − η(xrα))
qyerα =

min(e,q)∑
j=0

Cj
q (e)jy

e−j
rα (α1c1 + · · ·+ αmcm)

j(xrα − η(xrα))
q−j.

3. The relation [xrα, ysβ] = 0 for α ̸= β implies (xrα − η(xrα))
qyq

′

sβ = yq
′

sβ(xrα −

η(xrα))
q.
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Next, we will discuss some standard facts for further use. For any m, k ∈ Z≥0,

let

∆m(xk) =
m∑
j=0

(−1)m−jCj
m(x+ j)k (3.2)

be the m-th forward difference of the monomial xk. When m = 1, we will omit the

superscript and just write ∆. Let

σ(k,m) = ∆m(xk)|x=0 =
m∑
j=0

(−1)m−jCj
mj

k. (3.3)

σ(k,m) is sometimes referred to as the ordered Stirling number and is equal to

the number of set compositions of {1, 2, . . . , k} of length m. If 0 ≤ m ≤ k, then

1
m!
σ(k,m) is the Stirling number of the second kind. It is easy to see that σ(k, 1) = 1

and σ(k, k) = k! for all k ≥ 1. Note that ∆(xk) is a polynomial in x of degree k− 1

for every k > 1. By induction on m, we can show that ∆m(xk) is a polynomial in

x of degree at most k −m for every 1 ≤ m ≤ k. Hence ∆k(xk) is constant for all

x, and in fact ∆k(xk) = k! for all k ≥ 0, since ∆k(xk) = σ(k, k) = k! for all k ≥ 0.

From this, it follows that ∆m(xk) = 0 if 0 ≤ k < m. As σ(k,m) = ∆m(xk), we get

that σ(k,m) = 0 if 0 ≤ k < m.

Lemma 3.5 Assume that M̃η,⃗a and v are defined as in Definition 3.1. Let 1 ≤ i ≤

m, 1 ≤ r, s ≤ n, q ∈ Z≥0, p = (p1, p2, . . . , pm) ∈ Zm
≥0, α ∈ Zm+. Then
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1. (xrα − η(xrα))
qdpv = (−1)q(

m∏
i=1

αpm
i )q!η(xrα)

qv if q = p1 + p2 + · · ·+ pm.

2. (xrα − η(xrα))
qdpv = 0 if q > p1 + p2 + · · ·+ pm.

3. If a⃗ = (a1, a2, . . . , am) ̸= 0, then

(xrα − η(xrα))
|p|+sysrαd

pv

= (−1)|p|(
m∏
i=1

αpm
i )(|p|+ s)!(α1c1 + · · ·+ αmcm)

sη(xrα)
|p|v,

and (xrα − η(xrα))
q+sysrαd

pv = 0 if |p|+ s < q.

Proof.

1.

(xrα − η(xrα))
qdpv =

j=q∑
j=0

(−1)q−jCj
qη(xrα)

q−j[
i=m∏
i−0

(di − jαi)
pi ]xj

rαv

= η(xrα)
q
j=q∑
j=0

(−1)q−jCj
q [

i=m∏
i−0

(di − jαi)
pi ]v.

For the convenience of typesetting, we denote i = (i1, i2, . . . , im) ∈ Zm and

set A = {i | 0 ≤ i1 ≤ p1, 0 ≤ i2 ≤ p2, . . . , 0 ≤ im ≤ pm}. Since

i=m∏
i−0

(di − jαi)
pi =

∑
i∈A

(−1)i1+i2+···+imCi1
p1
Ci2

p2
· · ·Cim

pm

∗αi1
1 α

i2
2 · · ·αim

m dp1−i1
1 dp2−i2

2 · · · dpm−im
m ji1+i2+···+im .
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So, by the fact that σ(k, k) = k! and σ(k,m) = 0 for all 0 ≤ k < m, we have

(xrα − η(xrα))
qdpv

= η(xrα)
q
j=q∑
j=0

(−1)q−jCj
q (
∑
i∈A

(−1)i1+i2+···+imC i1
p1
Ci2

p2
· · ·Cim

pm

∗αi1
1 α

i2
2 · · ·αim

m dp1−i1
1 dp2−i2

2 · · · dpm−im
m ji1+i2+···+im)v

= η(xrα)
q(
∑
i∈A

(−1)i1+i2+···+imC i1
p1
C i2

p2
· · ·Cim

pmα
i1
1 α

i2
2 · · ·αim

m

∗dp1−i1
1 dp2−i2

2 · · · dpm−im
m σ(i1 + i2 + · · ·+ im, q))v

= (−1)qη(xrα)
qq!αi1

1 α
i2
2 · · ·αim

m v.

2. This part is obvious from the proof of Lemma 3.5(1).

3. It follows from Lemma 3.4(2) that

(xrα − η(xrα))
|p|+sysrαd

pv

=
s∑

j=0

Cj
|p|+s(s)jy

s−j
rα (α1c1 + · · ·+ αmcm)

j(xrα − η(xrα))
|p|+s−jdpv.
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By Lemma 3.5(2), we have that

(xrα − η(xrα))
|p|+s−jdpv = 0,

for all j = 0, 1, 2, . . . , s− 1 and

(xrα − η(xrα))
|p|dpv = (−1)|p|(

m∏
i=1

αpm
i )|p|!η(xrα)

|p|v.

Hence,

(xrα − η(xrα))
|p|+sysrαd

pv

= Cs
|p|+ss!(α1c1 + · · ·+ αmcm)

s(−1)|p|(
m∏
i=1

αpm
i )|p|!η(xrα)

|p|v

= (−1)|p|(s+ |p|)!(
m∏
i=1

αpm
i )(α1c1 + · · ·+ αmcm)

sη(xrα)
|p|v

as desired. This implies that (xrα − η(xrα))
q+sysrαd

pv = 0 if |p|+ s < q.

�

For any k ∈ I, let ||ik|| =
∑

1≤r≤n,α∈Zm+ αikrα.

Lemma 3.6 Let p = (p1, p2, . . . , pm) ∈ Zm
≥0, k ∈ I. Then

1. xkdp = (
∏m

i=0(di − ||ik||)pi)xk.
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2. ykdp = (
∏m

i=0(di + ||ik||)pi)yk.

3. dpxk = xk(
∏m

i=0(di + ||ik||)pi).

4. dpyk = yk(
∏m

i=0(di − ||ik||)pi).

Proof.

1. By equation 3.1 we have

xkrα
rα di = (di − krααi)x

krα
rα

⇒ xkdi = (di − ||ik||)xk

⇒ xkdpii = (di − ||ik||)pixk

⇒ xkdp = (
m∏
i=0

(di − ||ik||)pi)xk.

2. By equation 3.1 we have

ykrαrα di = (di + krααi)y
krα
rα

⇒ ykdi = (di + ||ik||)yk

⇒ ykdpii = (di + ||ik||)piyk

⇒ ykdp = (
m∏
i=0

(di + ||ik||)pi)yk.
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3. By induction, we have

dix
krα
rα = xkrα

rα (di + krααi)

⇒ dix
k = xk(di + ||ik||)

⇒ dpii x
k = xk(di + ||ik||)pi

⇒ dpxk = xk(
m∏
i=0

(di + ||ik||)pi).

4. By induction, we have

diy
krα
rα = ykrαrα (di − krααi)

⇒ diy
k = yk(di − ||ik||)

⇒ dpii y
k = yk(di − ||ik||)pi

⇒ dpyk = yk(
m∏
i=0

(di − ||ik||)pi).

�

3.2 Whittaker modules for t̃ with a1, a2, . . . , am Z-independent

Definition 3.7 Let η : U (̃t+) → C be an algebra homomorphism and Γ be the

collection of all η such that: if given α ∈ Zm+ with α1α2 . . . αm ̸= 0, for each

1 ≤ i ≤ m, we can fix all αj, for j = 1, 2, . . . , i − 1, i + 1, . . . ,m, and still have

infinitely many αi such that η|̃tα ̸= 0.
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From this chapter to the end of the article, if not specifically noticed, we assume

that η ∈ Γ.

Proposition 3.8 Let a⃗ = (a1, a2, . . . , am) ∈ Cm be Z-independent. If η ∈ Γ, then

M̃η,⃗a is irreducible as a U (̃t)-module.

Proof. Let K be a non-zero U (̃t)-submodule of M̃η,⃗a. Since M̃η,⃗a=U (̃t)v and U(t)v

is irreducible as U(t)-module, we only need to show that K ∩ U(t)v ̸= 0. Let

0 ̸= w ∈ K and w has a unique expression

w =
∑
k,p

λk,py
kdpv,

where λk,p ̸= 0 for only finitely many k ∈ I, p ∈ Zm
≥0. Let l = max{|p| = p1 + p2 +

. . .+ pm|λk,p ̸= 0 for some k ∈ I}. If l = 0, then w ∈ U(t)v and so K ∩ U(t)v ̸= 0.

Now, consider the case l > 0, we will show that there exists u ∈ U (̃t) such that

0 ̸= uw ∈ K ∩ U(t)v. Since η ∈ Γ, there must exist 1 ≤ r ≤ n, α ∈ Zm+ such that

α1α2 . . . αm ̸= 0, η(xrα) ̸= 0 and krα = 0 for all k with λk,p ̸= 0 for some p. Then

(xrα − η(xrα))
lw = (xrα − η(xrα))

l
∑
k,p

λk,py
kdpv.

By Lemma 3.5, we have

(xrα − η(xrα))
lw =

∑
k,|p|=l

λk,py
k(xrα − η(xrα))

ldpv

=
∑
k,|p|=l

(−1)lλk,pα
p1
1 αp2

2 · · ·αpm
m η(xrα)

ll!ykv
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=
∑
k

(−1)ll!η(xrα)
l(
∑
|p|=l

λk,pα
p1
1 αp2

2 · · ·αpm
m )ykv.

If
∑

|p|=l λk,pα
p1
1 αp2

2 · · ·αpm
m ̸= 0 for some k with λk,|p|=l ̸= 0, then 0 ̸= (xγα −

η(xγα))
lw ∈ K ∩ U(t)v and the proof is done. If

∑
|p|=l λk,pα

p1
1 αp2

2 · · ·αpm
m = 0 for

all k with λk,|p|=l ̸= 0. Since α1α2 . . . αm ̸= 0, for fixed k, we have p′ ̸= p and

|p′| = |p| = l. Since p′ ̸= p, there must exsits 1 ≤ j ≤ m such that pj ̸= p′j.

Consider

∑
|p|=l

λk,pα
p1
1 αp2

2 · · ·αpm
m

=
∑
|p|=l

(λk,pα
p1
1 . . . α

pj−1

j−1 α
pj+1

j+1 · · ·αpm
m )α

pj
j

as a finite term polynomial f(αj) for αj.

Since η ∈ Γ,we may keep all αi, i = 1, 2, . . . ,m, i ̸= j fixed and have infinitely

many αj such that η(xr,α) ̸= 0. f(αj) = 0 has only finite solutions in Z, so we may

choose αj ∈ Z such that f(αj) ̸= 0. Then for this α ∈ Zm
≥0,

∑
|p|=l

λk,pα
p1
1 αp2

2 · · ·αpm
m ̸= 0.

Since {yk|k ∈ I} is the C basis for U(t)v, we have that

0 ̸=
∑
k

(−1)ll!η(xrα)
l(
∑
|p|=l

λk,pα
p1
1 αp2

2 · · ·αpm
m )ykv ∈ K ∩ U(t)v

and the proof is done. �
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Proposition 3.9 Let a⃗ = (a1, a2, . . . , αm) ∈ Cm be Z-independent. If η ∈ Γ, then

the space of Whittaker vectors for M̃η,⃗a is one dimensional.

Proof. Let η
′
: U (̃t) → C be an algebra homomorphism. Suppose that w ∈ M̃η,⃗a

is a Whittaker vector of type η
′
. We show that η = η

′
and that w ∈ Cv. By

Proposition 3.2(1), w has a unique expression

w =
∑
k,p

λk,py
kdpv,

where only finitely many λk,p ̸= 0. Let l = max{|p| = p1+ p2+ · · ·+ pm|λk,p ̸= 0 for

some k ∈ I}. If l = 0, then w ∈ U(t)v, hence w ∈ Cv by Proposition 2.5. Suppose

that l > 0. We will show that this lead to a contradiction. By our assumption on

η, we may choose α ∈ Zm+, 1 ≤ r ≤ n such that η(xrα) ̸= 0 and krα = 0 for all k

such that λk,p ̸= 0 for some p. By Lemma 3.4(3) and 3.5(1), we have that

(xrα − η(xrα))
lw =

∑
k,|p|=l

λk,py
k(xrα − η(xrα))

ldpv

=
∑
k,|p|=l

(−1)lλk,pα
p1
1 αp2

2 · · ·αpm
m η(xrα)

ll!ykv

=
∑
k

(−1)ll!η(xrα)
l(
∑
|p|=l

λk,pα
p1
1 αp2

2 · · ·αpm
m )ykv.

Let ker(η) be the kernel of η in U (̃t+). We claim that there exist 0 ̸= u+ ∈ ker(η)

such that u+w = v. Let q = max{k|λk,|p|=l ̸= 0} (with respect to the lexicographic
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order in I). If q = 0, then by the formula above, we get

(xrα − η(xrα))
lw = (−1)ll!η(xrα)

l(
∑
|p|=l

λk,pα
p1
1 αp2

2 · · ·αpm
m )v ∈ Cv.

Thus, the claim holds in this case with u+ = (xrα − η(xrα))
l. Suppose that q ̸= 0,

then by the formula above and Lemma 2.4(1) we have

(x− η)m(xrα − η(xrα))
lw

= (−1)ll!η(xrα)
l(
∑
|p|=l

λk,pα
p1
1 αp2

2 · · ·αpm
m )v

and this is an element of

C{
∏

1≤r≤n,α∈Zm+

(α1a1 + . . . ,+αmam)
krα}m!v.

Multiplying (x − η)m(xrα − η(xrα))
l by an appropriate scalar, we get an element

u+ ∈ U (̃t+) such that u+w = v. This proves the claim. Since U (̃t+) is abelian and

w is a Whittaker vector of type η′, we have

(xsβ − η′(xsβ))v = (xsβ − η′(xsβ))u+w = u+(xsβ − η′(xsβ))w = 0

for all 1 ≤ s ≤ n, β ∈ Zm+. Therefore η = η′. Since u+ ∈ ker(η), this implies

v = u+w = η(u+)w = 0, which is a contradiction. �

Proposition 3.10 Let a⃗ = (a1, a2, . . . , am) ∈ Cm be Z-independent. If η ∈ Γ,

and M ′ is a Whittaker t̃-module of type η with cyclic Whittaker vector v′ such that

c1v
′ = a1v

′, c2v
′ = a2v

′, . . . , cmv
′ = amv

′, then M ′ ∼= M̃η,⃗a and so M ′ is irreducible.
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Proof. Let Cη,⃗a = Cv. Then the map

f : U (̃t)⊗ Cη,⃗a → M ′,

defined by (u, rv) 7→ ruv′ for r ∈ C, u ∈ U (̃t), is bilinear. Moreover if w ∈ U(b̃),

then

f(uw, rv) = r(uw)v′ = f(u,w(rv)).

Hence there exists an induced linear map

f : M̃η,⃗a = U (̃t)⊗U(b̃) Cη,⃗a → M ′,

defined by u⊗rv 7→ ruv′, which is a homomorphism of (left) U (̃t)-modules, and it is

obviously surjective as M ′ = U (̃t)v′. Since M̃η,⃗a is irreducible, f is then one-to-one.

Thus, M ′ ∼= M̃η,⃗a as desired. �

Corollary 3.11 Let a⃗ = (a1, a2, . . . , am) ∈ Cm be Z-independent. If η ∈ Γ, then

M̃η,⃗a is the unique (up to isomorphism) irreducible Whittaker t̃-module of type η on

which ci acts on the Whittaker vector v by ai for i = 1, 2, . . . ,m.

Proposition 3.12 Let η′ : U (̃t+) → C be a nonzero algebra homomorphism and

η ∈ Γ. Let a⃗, a⃗′ ∈ Cm and both Z-independent. Then M̃η,⃗a
∼= M̃η′a⃗′ as U (̃t)-modules

if and only if η = η′ and a⃗ = a⃗′.

49



Proof. This follows from the proof of Proposition 3.9. �

Now we describe a filtration of M̃η,⃗a by U(t) modules. For s = 0, 1, 2, 3, . . . , let

M̃
(s)
η,⃗a = spanC{ykdpv|k ∈ I, |p| ≤ s}.

Note that M̃
(0)
η,⃗a = spanC{ykv|k ∈ I} ∼= Mη,⃗a and that M̃

(s)
η,⃗a is a U(t)-module for

each s by Lemma 3.4.

Proposition 3.13 The sequence

M̃
(0)
η,⃗a $ M̃

(1)
η,⃗a $ · · · $ M̃

(s)
η,⃗a $ . . .

is a filtration of M̃η,⃗a by U(t)-modules. Moreover, if a1, a2, . . . , am are Z-independent,

then M̃
(s)
η,⃗a/M̃

(s−1)
η,⃗a is an irreducible Whittaker U(t)-module.

Proof. Since M̃
(s)
η,⃗a is stable under U(t) for all s = 0, 1, 2, . . . , the sequence is a

filtration by U(t)-modules. Since M̃
(s)
η,⃗a/M̃

(s−1)
η,⃗a

∼= Mη,⃗a as U(t)-modules, we have

M̃
(s)
η,⃗a/M̃

(s−1)
η,⃗a irreducible as a whittaker U(t)-module. �

3.3 Whittaker modules for t̃ with a1, a2, . . . , am Z-dependent

Proposition 3.14 Let a⃗ = (a1, a2, . . . , am) ∈ Cm ̸= 0 and a1, a2, . . . , am be Z-

dependent, η ∈ Γ. Then Ñη = spanC{ykdpv|k ∈ Ω} is a maximal submodule of
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M̃η,⃗a.

Proof. First we show that Ñη is a proper submodule of M̃η,⃗a. For any w ∈ Ñη, w

has a unique expression

w =
∑

k∈Ω,p∈Zm
≥0

λk,py
kdpv,

where λk,p ̸= 0 for only finitely many k ∈ Ω, p ∈ Zm
≥0.

Obviously, Ñη is stable under t̃− since for any k′ ∈ I, we have

yk
′
w =

∑
k∈Ω,p∈Zm

≥0

λk,py
k+k′dpv ∈ Ñη.

For any i = 1, 2, . . . ,m,

ciw =
∑

k∈Ω,p∈Zm
≥0

λk,py
kdpciv

=
∑

k∈Ω,p∈Zm
≥0

aiλk,py
kdpv ∈ Ñη.

So Ñη is stable under Cc1 ⊕ Cc2 . . .⊕ Ccm. Now, for any p′ ∈ Zm
≥0, by Lemma 3.6

we have

dp
′
w =

∑
k∈Ω,p∈Zm

≥0

λk,py
k(

i=m∏
i=0

(di − ||ik||p′i))dpv ∈ Ñη.

So Ñη is stable under Cd1 ⊕ Cd2 . . .⊕ Cdm.

Now we claim that Ñη is also stable under t̃+. For any r = 1, 2, . . . , n, α =

(α1, α2, . . . , αm) ∈ Zm + . If a1α1 + a2α2 + . . .+ amαm = 0, by induction we have

xrαy
k
sβ = yksβxrα + kδr,sδα,βy

k−1
s,β (α1c1 + α2c2 + . . .+ αmcm).
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Denote [k]rα the same as k except that, if krα > 0, the element at (r, α)th

position is krα − 1 instead of krα. Then, we can rewrite w as

w =
∑

k∈Ω,krα ̸=0,p∈Zm
≥0

λk,py
kdpv +

∑
k∈Ω,krα=0,p∈Zm

≥0

λk,py
kdpv.

SO,

xrαw =
∑

k∈Ω,krα ̸=0,p∈Zm
≥0

krαλk,py
[k]rαdp(α1a1 + α2a2 + . . .+ αmam)v

+
∑

k∈Ω,krα ̸=0,p∈Zm
≥0

λk,py
kxrαd

pv +
∑

k∈Ω,krα=0,p∈Zm
≥0

λk,py
kxrαd

pv

=
∑

k∈Ω,p∈Zm
≥0

λk,py
kxrαd

pv

=
∑

k∈Ω,p∈Zm
≥0

η(xrα)λk,py
k(

i=m∏
i=1

(di − αi)
pi)v ∈ Ñη.

If a1α1 + a2α2 + . . .+ amαm ̸= 0. Then for any k ∈ Ω, we have [k]rα ∈ Ω, so

xrαw =
∑

k∈Ω,krα ̸=0,p∈Zm
≥0

krαλk,py
[k]rαdp(α1a1 + α2a2 + . . .+ αmam)v

+
∑

k∈Ω,krα ̸=0,p∈Zm
≥0

λk,py
kxrαd

pv +
∑

k∈Ω,krα=0,p∈Zm
≥0

λk,py
kxrαd

pv
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=
∑

k∈Ω,p∈Zm
≥0

λk,py
kxrαd

pv +
∑

k∈Ω,krα ̸=0,p∈Zm
≥0

krαλk,py
[k]rαdp(α1a1 + . . .+ αmam)v

=
∑

k∈Ω,p∈Zm
≥0

η(xrα)λk,py
k(

i=m∏
i=1

(di − αi)
pi)v

+
∑

k∈Ω,krα ̸=0,p∈Zm
≥0

krαλk,py
[k]rαdp(α1a1 + . . .+ αmam)v ∈ Ñη.

Since for any r = 1, 2, . . . , n, α =∈ Zm+, we have xrαw ∈ Ñη , so Ñη is stable under

t̃+. Thus, Ñη is a proper submodule of M̃η,⃗a.

Now consider M̃η/Ñη
∼= spanC{ykdpv|k ∈ I, k /∈ Ω, p ∈ Zm

≥0}. By Proposition

3.8, M̃η/Ñη is irreducible as a U (̃t)-module. Thus Ñη is a maximal submodule of

M̃η,⃗a.

�

For r = 1, 2, . . . , n, α ∈ Zm+, let er,α be the element of I which has 1 in the

(r, α)th position and zeros everywhere else. Denote Ωr,α = Ω \ er,α.

Lemma 3.15 Let a⃗ = (a1, a2, . . . , am) ∈ Cm ̸= 0 be Z-dependent, η ∈ Γ. Then

Ñ
(r,α)
η = spanC{ykdpv|k ∈ Ωr,α, p ∈ Zm

≥0} is a maximal U (̃t)-module of Ñη.

Proof. First we show that Ñ
(r,α)
η is a proper submodule of Ñη. For any w ∈ Ñ

(r,α)
η ,
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w has a unique expression

w =
∑

k∈Ωr,α,p∈Zm
≥0

λk,py
kdpv,

where λk,p ̸= 0 for only finitely many k ∈ Ωr,α, p ∈ Zm
≥0.

For any 0 ̸= k′ ∈ I, we have

yk
′
w =

∑
k∈Ωr,α,p∈Zm

≥0

λk,py
k+k′dpv.

Suppose that yk
′
w /∈ Ñ

(r,α)
η , since w ∈ Ñη, we have yk

′
w ∈ Ñη. Then there must

exist k ∈ Ωr,α, p ∈ Zm
≥0, λk,p, such that yk+k′dpv ∈ Ñη \ Ñ

(r,α)
η , which implies that

k + k′ = er,α. So, k = er,α or k′ = er,α. If k = er,α, then k′ = 0 is a contradiction.

If k′ = er,α, then k = 0, but 0 /∈ Ωr,α and this is a contradiction. So yk
′
w ∈ Ñ

(r,α)
η

and this shows that Ñ
(r,α)
η is stable under t̃−. Similar to Proposition 3.14, Ñ

(r,α)
η is

stable under Cd1 ⊕ Cd2 ⊕ . . .⊕ Cdm and Cc1 ⊕ Cc2 ⊕ . . .⊕ Ccm.

Now we claim that Ñη is also stable under t̃
+. For any s = 1, 2, . . . ,m, β ∈ Zm+,

by Lemma 3.6, we have

xsβw =
∑

k∈Ωr,α,p∈Zm
≥0

η(xsβ)λk,py
k(

i=m∏
i=1

(di − βi)
pi)v

+
∑

k∈Ωr,α,ksβ ̸=0,p∈Zm
≥0

ksβλk,py
[k]sβdp(β1a1 + . . .+ βmam)v.
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Assume that xsβw /∈ Ñ
(r,α)
η , then it must be that

∑
k∈Ωr,α,ksβ ̸=0,p∈Zm

≥0

ksβλk,py
[k]sβdp(β1a1 + β2a2 + . . .+ βmam)v ̸= 0.

So, β1a1 + β2a2 + . . .+ βmam ̸= 0 and this implies [k]sβ ̸= er,α given that k ∈ Ωr,α.

Thus, xsβw ∈ Ñ
(r,α)
η and this is a contradiction with our assumption. Since for any

s = 1, 2, . . . , n, β ∈ Zm+, we have xsβw ∈ Ñ
(r,α)
η , so Ñ

(r,α)
η is stable under t̃+. Thus,

Ñ
(r,α)
η is a proper submodule of Ñη.

Now consider Ñη/Ñ
(r,α)
η

∼= spanC{yrαdpv|p ∈ Zm
≥0}. Let A be a proper U (̃t)-

submodule of spanC{yrαdpv|p ∈ Zm
≥0} and 0 ̸= u ∈ A. Then u has an unique

expression

u =
∑
p∈Zm

≥0

λpyrαd
pv.

From Proposition 3.8, we have for some s = 1, 2, . . . , n, β ∈ Zm+,

(xsβ − η(xsβ))
lu = λyrαv,

where l = max{|p|} and λ is a nonzero constant. Now, for any p ∈ Zm
≥0,

λ−1

i=m∏
i=1

(di + αi)
pi(xsβ − η(xsβ))

lu = yrαd
pv.

Thus, u generates Ñη/Ñ
(r,α)
η and A = Ñη/Ñ

(r,α)
η . So Ñη/Ñ

(r,α)
η is irreducible as

a U (̃t)-module and all the above proved that Ñ
(r,α)
η is a maximal proper U (̃t)-

submodule of Ñη. �
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Proposition 3.16 Every maximal U (̃t)-submodule of Ñη is of the form Ñ
(r,α)
η for

some r = 1, 2, . . . , n, α ∈ Zm+ such that α1a1 + α2a2 + . . .+ αmam = 0.

Proof. By Lemma 3.15, Ñ
(r,α)
η is a maximal U (̃t)-submodule of Ñη for all r =

1, 2, . . . , n, α ∈ Zm+ such that α1a1+α2a2+ . . .+αmam = 0. Assume that there ex-

ists a maximal submodule M of Ñη such that M ̸= Ñ
(r,α)
η for all r = 1, 2, . . . , n, α ∈

Zm+ such that α1a1 + α2a2 + . . .+ αmam = 0. Let Ñr,α = spanC{yrαdpv|p ∈ Zm
≥0},

then Ñη = Ñr,α ⊕ Ñ
(r,α)
η and we have

M = (M ∩ Ñr,α)⊕ (M ∩ Ñ (r,α)
η ).

Suppose that M ∩ Ñr,α ̸= 0 for all r = 1, 2, . . . , n, α ∈ Zm+ such that α1a1+α2a2+

. . . + αmam = 0. Then for any r = 1, 2, . . . , n, α ∈ Zm+ such that α1a1 + α2a2 +

. . .+ αmam = 0, we have

0 ̸= u =
∑
p∈Zm

≥0

λpyrαd
pv ∈ M.

From the proof of Lemma 3.15, we have that spanC{yrαdpv|p ∈ Zm
≥0} ∈ M . Since

{yrαdpv|p ∈ Zm
≥0, r = 1, 2, . . . , n, α ∈ Zm+, α1a1+α2a2+ . . .+αmam = 0} generates

Ñη, we have that Ñη ⊂ M , which can not happen because we assumed that M is a

proper maximal submodule of Ñη. So, M ∩ Ñr,α ̸= 0 for some r = 1, 2, . . . , n, α ∈

Zm+ such that α1a1+α2a2+ . . .+αmam = 0. Then we have M = M∩Ñ
(r,α)
η and by

the maximality ofM we haveM = Ñ
(r,α)
η . But this is a contradiction as we assumed
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thatM ̸= Ñ
(r,α)
η for all r = 1, 2, . . . , n, α ∈ Zm+ such that α1a1+α2a2+. . .+αmam =

0. Thus, we conclude that M = Ñ
(r,α)
η for some r = 1, 2, . . . , n, α ∈ Zm+ such that

α1a1 + α2a2 + . . .+ αmam = 0. �

Proposition 3.17 The space of Whittaker vectors (of type η) for M̃η,⃗a/Ñη is one-

dimensional.

Proof.

Let w ̸= 0 be a Whittaker module for M̃η,⃗a/Ñη, then (x − η)kw ∈ Ñη for all

k ∈ I. We can write

w =
∑

k∈I\Ω,p∈Zm
≥0

λk,py
kdpv + Ñη,

where only finitely many λk,p ̸= 0. Let l = max{|p||λk,p ̸= 0}. If l = 0, then by

Proposition 2.13, we have that w = λv + Ñη for some λ ∈ C. If l > 0, then by the

proof of Proposition 3.8, there are some r = 1, 2, . . . , n, α ∈ Zm+, such that

(xrα − η(xrα))
lw =

∑
k∈I\Ω

λky
kv + Ñη,

where there is at least one k such that λk ̸= 0 and this is the same as the case that

l = 0. So we always have w = λv + Ñη for some λ ∈ C.

�
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Theorem 3.18 Ñη is the unique maximal submodule of M̃η,⃗a.

Proof. Let K be a maximal U (̃t)-submodule of M̃η,⃗a and suppose that K ̸= Ñη.

Then K ∩ Ñη is a maximal U (̃t)-submodule of Ñη. By Proposition 3.16, we have

K ∩ Ñη = Ñ
(r,α)
η for some r = 1, 2, . . . , n, α ∈ Zm+ such that α1a1 + α2a2 + . . . +

αmam = 0. Hence Ñ
(r,α)
η ⊂ K. Since K/(K ∩ Ñη) ∼= M̃η,⃗a/Ñη and M̃η,⃗a/Ñη has

a Whittaker vector, there exists w ∈ K,w /∈ Ñη, such that w + (K ∩ Ñη) is a

Whittaker vector in K/(K ∩ Ñη). Thus, by Proposition 3.9, we may assume that

w = v +
∑

k∈Ω,p∈Zm
≥0

λk,py
kdpv

after by multiplying a scalar. Then 0 ̸= yrαw = yrαv +
∑

k∈Ω,p∈Zm
≥0

λk,pyrαy
kdpv ∈

K ∩ Ñη = Ñ
(r,α)
η . Since

∑
k∈Ω,p∈Zm

≥0
λk,pyrαy

kdpv ∈ Ñ
(r,α)
η , we have yrαv ∈ Ñ

(r,α)
η ,

which is a contradiction with the definition of Ñ
(r,α)
η . Hence K = Ñη and Ñη is the

unique maximal submodule of M̃η,⃗a. �

3.4 Whittaker modules for t̃ with a1 = a2 = · · · = am = 0

Proposition 3.19 Ñη = spanC{ykdpv|k ̸= 0, p ∈ Zm
≥0} is a maximal submodule of

M̃η,⃗0.

Proof. First we show that Ñη is a proper submodule of M̃η,⃗0. For any w ∈ Ñη, w
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has a unique expression

w =
∑

k ̸=0,p∈Zm
≥0

λk,py
kdpv,

where λk,p ̸= 0 for only finitely many k ̸= 0, p ∈ Zm
≥0. Obviously, Ñη is stable under

t̃− since for any k′ ∈ I, we have

yk
′
w =

∑
k ̸=0,p∈Zm

≥0

λk,py
k+k′dpv ∈ Ñη.

For any i = 1, 2, . . . ,m,

ciw =
∑

k ̸=0,p∈Zm
≥0

λk,py
kdpciv

=
∑

k ̸=0,p∈Zm
≥0

aiλk,py
kdpv ∈ Ñη.

So Ñη is stable under Cc1 ⊕ Cc2 . . .⊕ Ccm. Now, for any p′ ∈ Zm
≥0, by Lemma 3.6,

we have

dp
′
w =

∑
k ̸=0,p∈Zm

≥0

λk,py
k(

i=m∏
i=0

(di − ||ik||p′i))dpv ∈ Ñη.

So Ñη is stable under Cd1 ⊕ Cd2 . . .⊕ Cdm.

Now we claim that Ñη is also stable under t̃+. We can rewrite w as

w =
∑

k ̸=0,krα ̸=0,p∈Zm
≥0

λk,py
kdpv +

∑
k ̸=0,krα=0,p∈Zm

≥0

λk,py
kdpv.
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So we have

xrαw =
∑

k ̸=0,krα=0,p∈Zm
≥0

λk,py
kxrαd

pv +
∑

k ̸=0,krα ̸=0,p∈Zm
≥0

λk,py
kxrαd

pv

+
∑

k ̸=0,krα ̸=0,p∈Zm
≥0

krαλk,py
[k]rαdp(α1a1 + . . .+ αmam)v

=
∑

k ̸=0,p∈Zm
≥0

λk,py
kxrαd

pv

=
∑

k ̸=0,p∈Zm
≥0

η(xrα)λk,py
k(

i=m∏
i=1

(di − αi)
pi)v ∈ Ñη.

Since for any r = 1, 2, . . . , n, α =∈ Zm+, we have xrαw ∈ Ñη , so Ñη is stable under

t̃+. Thus, Ñη is a proper submodule of M̃η,⃗0.

Now consider M̃η,⃗0/Ñη
∼= spanC{dpv|p ∈ Zm

≥0}. For any 0 ̸= w ∈ spanC{dpv|p ∈

Zm
≥0}, w has an unique expression

w =
∑
p∈Zm

≥0

λpd
pv,

where only finitely many λp ̸= 0. Let l = max{|p||λp ̸= 0}. If l = 0, then w = λv

for some nonzero constant λ ∈ C. If l > 0, then from the proof of Proposition 3.8,

there is some r = 1, 2, . . . , n, α ∈ Z+ such that

(xrα − η(xrα))w = λv,
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for some nonzero constant λ ∈ C. We always have the fact w generates M̃η,⃗0/Ñη

and so M̃η,⃗0/Ñη is irreducible as a U (̃t)-module. Thus Ñη is a maximal submodule

of M̃η,⃗0. �

Lemma 3.20 Ñ
(r,α)
η = spanC{ykdpv|k ∈ I \ {0, er,α}, p ∈ Zm

≥0} is a maximal U (̃t)-

module of Ñη.

Proof. Since c1, c2, . . . , cm acts by zero on v, Ñ
(r,α)
η is stable under U (̃t). Thus,

Ñ
(r,α)
η is a proper submodule of Ñη.

Now consider Ñη/Ñ
(r,α)
η

∼= spanC{yrαdpv|p ∈ Zm
≥0}. Let A be a proper U (̃t)-

submodule of spanC{yrαdpv|p ∈ Zm
≥0} and u ∈ A. Then u has an unique expression

u =
∑
p∈Zm

≥0

λpyrαd
pv,

where only finitely many λp ̸= 0 for p ∈ Zm
≥0. From Proposition 3.8, we have for

some s = 1, 2, . . . , n, β ∈ Zm+,

(xsβ − η(xsβ))
lu = λyrαv,

where l = max{|p|} and λ is a nonzero constant. Now, for any p ∈ Zm
≥0,

λ−1

i=m∏
i=1

(di + αi)
pi(xsβ − η(xsβ))

lu = yrαd
pv.
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Thus, u generates Ñη/Ñ
(r,α)
η and A = Ñη/Ñ

(r,α)
η . So Ñη/Ñ

(r,α)
η is irreducible as

an U (̃t)-module and all the above proved that Ñ
(r,α)
η is a maximal proper U (̃t)-

submodule of Ñη. �

Remark 3.21 It is easy to see that N = spanC{ykdpv|k ∈ I \ {0, er,α, es,β}, p ∈

Zm
≥0} = Ñ

(r,α)
η ∩ Ñ

(s,β)
η for (r, α) ̸= (s, β) is a proper U (̃t)-submodule of Ñ

(r,α)
η , so

Ñ
(r,α)
η is not irreducible.

Proposition 3.22 Every maximal U (̃t)-submodule of Ñη is of the form Ñ
(r,α)
η for

some r = 1, 2, . . . , n, α ∈ Zm+.

Proof. By Lemma 3.20, Ñ
(r,α)
η is a maximal U (̃t)-submodule of Ñη for all r =

1, 2, . . . , n, α ∈ Zm+. Assume that there exists a maximal submodule M of Ñη such

that M ̸= Ñ
(r,α)
η for all r = 1, 2, . . . , n, α ∈ Zm+. Let Ñr,α = spanC{yrαdpv|p ∈

Zm
≥0}, then Ñη = Ñr,α ⊕ Ñ

(r,α)
η and we have

M = (M ∩ Ñr,α)⊕ (M ∩ Ñ (r,α)
η ).

Suppose that M ∩ Ñr,α ̸= 0 for all r = 1, 2, . . . , n, α ∈ Zm+. Then for any r =

1, 2, . . . , n, α ∈ Zm+, we have

0 ̸= u =
∑
p∈Zm

≥0

λpyrαd
pv ∈ M.
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From the proof of Lemma 3.20, we have that spanC{yrαdpv|p ∈ Zm
≥0} ∈ M . Since

{yrαdpv|p ∈ Zm
≥0, r = 1, 2, . . . , n, α ∈ Zm+} generates Ñη, we have that Ñη ⊂ M ,

which can not happen because we assumed that M is a proper maximal submodule

of Ñη. So, M ∩ Ñr,α ̸= 0 for some r = 1, 2, . . . , n, α ∈ Zm+. Then we have

M = M ∩ Ñ
(r,α)
η and by the maximality of M we have M = Ñ

(r,α)
η . But this is

a contradiction as we assumed that M ̸= Ñ
(r,α)
η for all r = 1, 2, . . . , n, α ∈ Zm+.

Thus, we conclude that M = Ñ
(r,α)
η for some r = 1, 2, . . . , n, α ∈ Zm+.

�

Proposition 3.23 The space of Whittaker vectors (of type η) for M̃η,⃗0/Ñη is one-

dimensional.

Proof.

Let w ̸= 0 be a Whittaker module for M̃η,⃗0/Ñη, then (x − η)kw ∈ Ñη for all

k ∈ I. We can write

w =
∑

k ̸=0,er,α,p∈Zm
≥0

λk,py
kdpv + Ñη,

where only finitely many λk,p ̸= 0. Let l = max{|p||λk,p ̸= 0}. If l = 0, then by

Proposition 2.13, we have that w = λv + Ñη for some λ ∈ C. If l > 0, then by the

proof of Proposition 3.8, there are some r = 1, 2, . . . , n, α ∈ Zm+, such that

(xrα − η(xrα))
lw =

∑
k ̸=0,er,α

λky
kv + Ñη,
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where there is at least one k such that λk ̸= 0 and this is the same as the case that

l = 0. We always have w = λv+ Ñη for some λ ∈ C. Thus, the space of Whittaker

vectors (of type η) for M̃η,⃗0/Ñη is one-dimensional.

�

Theorem 3.24 Ñη is the unique maximal submodule of M̃η,⃗0.

Proof. Let K be a maximal U (̃t)-submodule of M̃η,⃗0 and suppose that K ̸= Ñη.

Then K ∩ Ñη is a maximal U (̃t)-submodule of Ñη. By Proposition 3.22, we have

K ∩ Ñη = Ñ
(r,α)
η for some r = 1, 2, . . . , n, α ∈ Zm+. Hence Ñ

(r,α)
η ⊂ K. Since

K/(K ∩ Ñη) ∼= M̃η,⃗0/Ñη and M̃η,⃗0/Ñη has a Whittaker vector, there exists w ∈

K,w /∈ Ñη, such that w + (K ∩ Ñη) is a Whittaker vector in K/(K ∩ Ñη). Thus,

by Proposition 3.9, we may assume that

w = v +
∑

k ̸=0,p∈Zm
≥0

λk,py
kdpv

after by multiplying a scalar. Then 0 ̸= yrαw = yrαv +
∑

k ̸=0,p∈Zm
≥0

λk,pyrαy
kdpv ∈

K ∩ Ñη = Ñ
(r,α)
η . Since

∑
k ̸=0,p∈Zm

≥0
λk,pyrαy

kdpv ∈ Ñ
(r,α)
η , we have yrαv ∈ Ñ

(r,α)
η ,

which is a contradiction with the definition of Ñ
(r,α)
η . Hence K = Ñη and Ñη is the

unique maximal submodule of M̃η,⃗0. �
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4 Imaginary Whittaker modules for non-twisted

extended affine Lie algebras

4.1 Imaginary Whittaker modules

Let g be a finite-dimensional simple Lie algebra of rank n over C, h a Cartan

subalgebra of g, ∆ the set of roots of g relative to h, {φ1, φ2, ..., φn} a set of simple

roots for ∆. Then g = h ⊕
⊕

φ∈∆ gφ. Set n± =
⊕

φ∈∆+ g±φ, where ∆+ is the

set of positive roots cooresponding to ∆. Denote L as the Laurent polynomial ring

generated bym commutative variables t1, t2, . . . , tm, which is L = C[t±1
1 , t±1

2 , ..., t±1
m ].

For α ∈ Zm, we denote tα = tα1
1 tα2

2 . . . tαm
m in L. Let ḡ be the non-twisted extended

affine Lie algebra associated with g, then

ḡ = (g⊗ L)⊕ Cc1 ⊕ ...⊕ Ccm ⊕ Cd1 ⊕ ...⊕ Cdm.

The Lie bracket is given by

1. [ci, ḡ] = 0, for all i = 1, 2, ...,m,
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2. [di, dj] = 0, for all i, j = 1, 2, ...,m,

3. [di, x⊗ tα] = αix⊗ tα, for all α ∈ Zm, x ∈ g, i = 1, 2, ...,m,

4. [x ⊗ tα, y ⊗ tβ] = [x, y] ⊗ tα+β + δα+β,0K(x, y)(α1c1 + α2c2 + ... + αmcm), for

all α, β ∈ Zm, x, y ∈ g, where K is the Killing form on g.

Let {θ1, θ2, ..., θn} be an orthonomal basis of h such that K(θi, θj) = δi,j. Set

xrα = θr ⊗ tα, yrα = θr ⊗ t−α for r = 1, 2, ...n, α ∈ Zm+. Let t = ⊕α∈Zmtα, where


tα = h⊗ tα, α ̸= 0,

tα = Cc1 ⊕ ...⊕ Ccm, α = 0.

(4.1)

Thus t is a generalized Heisenberg subalgebra of ḡ, {xrα}1≤r≤n is a basis of tα,

{yrα}1≤r≤n is a basis of t−α for all α ∈ Zm+, such that

[ci, xrα] = [ci, yrα] = 0,

[xrαxsβ] = [yrα, ysβ] = 0,

[xrα, ysβ] = δrsδαβ(α1c1 + α2c2 + . . .+ αmcm).

for all 1 ≤ r, s ≤ n, 1 ≤ i ≤ m, α, β ∈ Zm + .

Set t± = ⊕α∈Zm+t±α, t̃ = t ⊕ Cd1 ⊕ ... ⊕ Cdm. The subalgebras t, t̃ motivated

the definitions in the previous chapters, and so we may apply all the results on

Whittaker modules to t and t̄ from chapters 2 and chapter 3.

66



Now, let n̄± = n± ⊗ L, then the extended affine Lie algebra ḡ has the following

decomposition

ḡ = n̄− ⊕ (̃t⊕ h)⊕ n̄+.

The subalgebra p = (̃t⊕ h)⊕ n̄+ is a parabolic subalgebra of ḡ. Moreover, [̃t, h] = 0

and n̄+ is an ideal of p.

Assume that λ ∈ (h⊕Cc1⊕ ...⊕Ccm)∗ and η ∈ Γ. Let L̄η,λ be the unique (up to

isomorphism) irreducible Whittaker t̃-module of type η and levels λ(c1), λ(c2), . . . , λ(cm).

Denote a⃗ = (λ(c1), λ(c2), . . . , λ(cm)), then we have:

1. L̄η,λ = M̃η,⃗a, if λ(c1), λ(c2), ..., λ(cm) are Z-independent,

2. L̄η,λ = M̃η,⃗a/Ñη, if λ(c1), λ(c2), ..., λ(cm) are Z-dependent,

3. L̄η,λ = M̃η,⃗a/Ñη, if λ(c1) = λ(c2) = ... = λ(cm) = 0.

Let ṽ ∈ L̄η,λ be a Whittaker vector of type η. Define a U(p)-module structure

on L̄η,λ by letting

1. hw = λ(h)w for all h ∈ h⊕ Cc1 ⊕ Cc2 ⊕ ...⊕ Ccm, w ∈ L̄η,λ,

2. n̄+w = 0 for all w ∈ L̄η,λ.

Set

Vη,λ = U(ḡ)⊗U(p) L̄η,λ, v = 1⊗ v̄.
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Define an action of U(ḡ) on Vη,λ by multiplication on the left on the U(ḡ) factor.

We will say that Vη,λ is an imaginary Whittaker module of type (η, λ) for ḡ.

Let Q+ be be the non-negative integral linear span of φ1, φ2, ..., φn and extend

an element µ ∈ (h)∗ to an element of (h ⊕ Cc1 ⊕ Cc2 ⊕ ... ⊕ Ccm)∗ by letting

µ(c1) = µ(c2) = ... = µ(cm) = 0. For ϕ ∈ Q+, set

U(n̄−)−ϕ = {u ∈ U(n̄−)|[h, u] = −ϕ(h)u, h ∈ h⊕ Cc1 ⊕ Cc2 ⊕ ...⊕ Ccm}.

For µ ∈ (h⊕ Cc1 ⊕ Cc2 ⊕ ...⊕ Ccm)∗, set

V µ
η,λ = {w ∈ Vη,λ|hw = µ(h)w, h ∈ h⊕ Cc1 ⊕ Cc2 ⊕ ...⊕ Ccm}.

Proposition 4.1

1. As U(n̄−)-modules, Vη,λ
∼= U(n̄−)⊗C L̄η,λ. Moreover, Vη,λ is free as a U(n̄−)-

module.

2. The map w → 1 ⊗ w defines a p-isomorphism of L̄η,λ onto the p-submodule

U(p)v of Vη,λ.

3. Vη,λ = ⊕ϕ∈Q+V λ−ϕ
η,λ , and V λ−ϕ

η,λ
∼= U(n̄−)−ϕ ⊗C L̄η,λ as modules for h ⊕ Cc1 ⊕

Cc2 ⊕ ...⊕ Ccm. In particular, V λ
η,λ

∼= L̄η,λ.

Proof.
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1. Since ḡ = n̄− ⊕ p, the PBW theorem implies that U(ḡ) ∼= U(n̄−) ⊗C U(p).

So Vη,λ = U(ḡ)⊗U(p) L̄η,λ
∼= U(n̄−)⊗C L̄η,λ as vector space over C. Thus the

map f : U(n̄−) ⊗C L̄η,λ → Vη,λ defined by (u,w) 7→ uw is an isomorphism

of U(n̄−)-modules. It follows by Corollary 5.13 [Hun] that Vη,λ is free as a

U(n̄−)-module.

2. This part is evident from the definitions.

3. First, claim that U(n̄−) = ⊕ϕ∈Q+U(n̄−)−ϕ. For every (u,w) ∈ U(n̄−)−ϕ ⊗C

L̄η,λ, since u ∈ U(n̄−)−ϕ, w ∈ L̄η,λ, we have [h, u] = −ϕ(h)u ⇔ hu− uh =

−ϕ(h)u ⇔ huw − uhw = −ϕ(h)uw ⇔ huw − uλ(h)w = −ϕ(h)uw ⇔ h(uw) =

(λ− ϕ)(h)uw ⇔ uw ∈ V λ−ϕ
η,λ . So the isomorphism f in (1) is an isomorphism

between U(n̄−)−ϕ⊗C L̄η,λ and V λ−ϕ
η,λ for every ϕ ∈ Q+. In particular, if ϕ = 0,

then U(n̄−) = C and V λ
η,λ

∼= L̄η,λ.

�

Proposition 4.2 Every U(ḡ)-submodule M of Vη,λ has a decompositionM = ⊕ϕ∈Q+M∩

V λ−ϕ
η,λ into weight spaces relative to h⊕ Cc1 ⊕ Cc2 ⊕ ...⊕ Ccm.

Proof. Since Vη,λ = ⊕ϕ∈Q+V λ−ϕ
η,λ ⇒ M = ⊕ϕ∈Q+M ∩ V λ−ϕ

η,λ . �
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Proposition 4.3 Assume λ, λ′ ∈ (h⊕Cc1⊕Cc2⊕...⊕Ccm)∗, Let η′ : U (̄t+) → C be

a algebra homomorphism, λ′(c1), λ
′(c2), . . . , λ

′(cm) are Z-independent and η′ ∈ Γ.

Then Vη,λ
∼= Vη′,λ′ as U(g)-modules if and only if η = η′ and λ = λ′.

Proof. We only need to prove that if Vη,λ
∼= Vη′,λ′ , then η = η′ and λ = λ′ because

the other direction is obvious. Let f : Vη,λ → Vη′,λ′ be an isomorphism of U(g)

modules. Let D(λ) (resp D(λ′)) be the set of weights of Vη,λ (resp. Vη′,λ′) for the

action of h⊕Cc1⊕Cc2⊕ ...⊕Ccm, then λ ∈ D(λ′). Hence there exists ϕ ∈ Q+ such

that λ = λ′−ϕ. Similarly, λ′ = λ−ϕ′ for some ϕ′ ∈ Q+, which implies that ϕ = −ϕ′.

Thus, ϕ = ϕ′ = 0 since ϕ, ϕ′ ∈ Q+. Therefore λ = λ′ and f restricted on V λ
η,λ is

an isomorphism of U (̃t)-modules from V λ
η,λ to V λ

η′,λ. Consequently, L̄η,λ
∼= L̄η′,λ.

Choose v ∈ L̄η,λ as a Whittaker vector, then

(u− η(u))f(v) = f((u− η(u))v) = f(0) = 0

for all u ∈ U (̃t+), which implies that f(v) is a Whittaker vector of type η in L̄η′,λ.

By Proposition 3.9, it follows that η = η′. �

4.2 An irreducibility criterion

For the rest of this section, we will focus on imaginary Whittaker modules with Z-

independent level for extended affine Lie algebra ḡ and show that they irreducible.
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Fix η ∈ Γ, let m = n̄− ⊕ t̃− ⊕Cd1 ⊕Cd2 ⊕ ...⊕Cdm. Note that n̄− is an ideal in m.

Proposition 4.4 Let λ ∈ (h ⊕ Cc1 ⊕ Cc2 ⊕ ... ⊕ Ccm)∗, λ(c1), λ(c2), . . . , λ(cm) be

Z-independent, then Vη,λ is torsionfree as left U(m)-module.

Proof. Denote a⃗ = (λ(c1), λ(c2), . . . , λ(cm)). Since λ(c1), λ(c2), . . . , λ(cm) are Z-

independent, we have L̄η,λ = M̃η,⃗a. Let {ωs}s∈S be a C-basis of U (̄t− ⊕ Cd1 ⊕

Cd2 ⊕ · · · ⊕ Cdm), then {ωs}s∈S is also a C-basis of L̄η,λ. By the PBW theorem

U(m) ∼= U(n̄−)⊗CU (̄t−⊕Cd1⊕Cd2⊕· · ·⊕Cdm). Hence U(m) is a free left U(n̄−)-

module with basis {ωs}s∈S. Moreover, by Proposition 4.1, {ωsv}s∈S is a basis of

Vη,λ as a free U(n̄−)-module. The map f : Vη,λ → U(m) defined by u ⊗ wv 7→

uw, u ∈ U(n̄−), w ∈ U (̄t− ⊕ Cd1 ⊕ Cd2 ⊕ · · · ⊕ Cdm) is obviously surjective. Let

u =
∑

s ysωsv ∈ Vη,λ, where ys ∈ U(n̄−). Then f(u) =
∑

s ysωs = 0 would imply

that ys = 0 for all s, so u = 0. Hence f is an isomorphism of vector space over C.

Suppose that y ∈ m, u ∈ U(n̄−), w ∈ U (̄t− ⊕ Cd1 ⊕ Cd2 ⊕ · · · ⊕ Cdm). Since n̄− is

an ideal in m, we have [y, u] ∈ u(n̄−). Therefore f([y, u]⊗ w) = [y, u]w. Moreover,

since m = n̄− ⊕ t̃− ⊕ Cd1 ⊕ Cd2 ⊕ · · · ⊕ Cdm, there must exist unique u1 ∈ n̄− and

u2 ∈ t̃− ⊕ Cd1 ⊕ Cd2 ⊕ · · · ⊕ Cdm such that y = u1 + u2. Hence f(y(u ⊗ wv)) =

f(yu⊗wv) = f(uy⊗wv)+ f([y, u]⊗wv) = f(uu1⊗wv)+ f(uu2⊗wv)+ [y, u]w =

uu1w + f(u⊗ u2wv) + [y, u]w = uu1w + uu2w + [y, u]w = uyw + [y, u]w = y(uw).

Hence f is an isomorphism of U(m)-modules. Since U(m) is a domain, it follows
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that Vη,λ is torsion-free as a U(m)-module. �

We begin by establishing some notation. For any µ =
∑n

i=1 kiφi ∈ Q+, let

ht(µ) =
∑n

i=1 ki. If γ, ω ∈ ∆+, γ =
∑n

i=1 κiφi, ω =
∑n

i=1 νiφi, then we define γ ≤ ω

if and only if (κ1, κ2, . . . , κn, ) ≤ (ν1, ν2, . . . , νn, ) in the lexicographic order. Thus,

≤ is a total order on Q+ which satisfies the following property: if γ, ω ∈ ∆+, γ ≤ ω

and ω−γ ∈ ∆, then ω−γ ∈ ∆+. Fix a Chevalley basis {eγ|γ ∈ ∆}∪{hi|1 ≤ i ≤ n}

for g. For γ ∈ ∆, α ∈ Zm+, we define element eγ+α as follows

eγ+α = eγ ⊗ tα.

Since n̄− = n− ⊗ L, the set

B = {e−γ+α|γ ∈ ∆+, α ∈ Zm+}

is a basis of n̄−.

If γ, ω ∈ ∆+, α, β ∈ Zm+, define e−γ+α < e−ω+β if γ < ω or γ = ω and α ≤ β.

Then ≤ is a total order on B. Let l = |∆+| and let γ1 < γ2 < · · · < γl be an

ordered listing of the roots in ∆+ using the total order above. For 1 ≤ i ≤ l, set

Eκi
i =

∏
α∈Zm+

e
κi(α)
−γi+α,

where κi : Zm+ → Z≥0 has only finite support. Set

Eκ = Eκ1
1 Eκ2

2 · · ·Eκl
l .
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Then by the PBW theorem, the set

A = {Eκ|κ = (κ1, κ2, . . . , κl), κi : Zm+ → Z≥0}

is a basis for U(n̄−). For any κ = (κ1, κ2, . . . , κl) and any i, set

Nκ,i = {α ∈ Zm + |κi(α) ̸= 0}.

Since κi : Zm → Z≥0 has only finite support, Nκ,i is a finite set for every i. Given

κ ̸= 0, denote Nκ = Nκ,i with i minimum so that Nκ,i not empty. Suppose Eκ ∈ A,

and Nκ = Nκ,i, for α ∈ Nκ, let (E
κ)[α] be the same as Eκ but with power e

κi(α)−1
−γi+α .

By the definitions, it is easy to very the following:

Lemma 4.5 1. if α, α′ ∈ Nκ, α ̸= α′, then

(Eκ)[α] ̸= (Eκ)[α′].

2. Assume κ ̸= κ′, Nκ = Nκ,i, Nκ′ = Nκ′,i. If α ∈ Nκ ∩Nκ′, then

(Eκ)[α] ̸= (Eκ′
)[α].

Lemma 4.6 Let x, y ∈ g, u1, u2, . . . , un ∈ U(g), k ∈ Z≥0. Then

1. [y, u1 · · · un] =
∑n

i=1 u1 · · ·ui−1[y, ui]ui+1 · · ·un.

2. [y, xk] =
∑n

i=1 x
k−i[y, x]xi−1 = kxk−1[y, x] +

∑k
i=2 x

k−i[[y, x], xi−1].
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Proof. Since u1[y, u2]+ [y, u1]u2 = u1(yu2−u2y)+(yu1−u1y)u2 = yu1u2−u1u2y =

[y, u1u2], by induction on n we have

[y, u1 · · ·un] = u1 · · · un−1[y, un] + [y, u1 · · · un−1]un

= u1 · · · un−1[y, un] +
n−1∑
i=1

u1 · · ·ui−1[y, ui]ui+1 · · ·un

=
n∑

i=1

u1 · · ·ui−1[y, ui]ui+1 · · ·un.

The second equation is just a special case of the first one. �

Lemma 4.7 Assume 1 ̸= Eκ ∈ A, Let β ∈ Zm+ such that α < β for all α ∈ Nκ =

Nκ,i. Let y be a non-zero element of gγi ⊗ t−β ⊂ n̄−, then there exists u ∈ U(n̄−)

such that

[y, Eκ] = u+
∑
α∈Nκ

κi(α)(E
κ)[α][y, e−γi+α]. (4.2)

Moreover, ∑
α∈Nκ

κi(α)(E
κ)[α][y, e−γi+α] ̸= 0. (4.3)

Proof. Note that ḡ−γi−β = g−γi ⊗ t−β and ḡ−γi+α = g−γi ⊗ tα for every α ∈ Zm+.

[y, e−γi+α] = b[eγi−β, e−γi+α] = b[eγi ⊗ tβ, e−γi ⊗ tα] = b[eγi , e−γi ] ⊗ tα−β for some

0 ̸= b ∈ C. Since [eγi , e−γi ] = hγi ̸= 0, β > α ⇒ tα−β ̸= 0, we have [y, e−γi+α] ̸= 0.

Moreover, [y, e−γi+α] = bhγi ⊗ tα−β ⇒ [y, e−γi+α] ∈ tα−β ⊂ t̄− for all α ∈ Nκ.

Since α ∈ Nκ = Nκ,i, we have κj = 0 for all 1 ≤ j ≤ i − 1. Thus, we may write
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Eκ = Eκi
i E

κi+1

i+1 · · ·Eκl
l , by Lemma 4.6,

[y, Eκ] = [y, Eκi ]Eκi+1 · · ·Eκl + Eκi [y, Eκi+1 · · ·Eκl ].

Since γi < γj for all i < j, so, if i < j and γi − γj ∈ ∆ then γi − γj ∈ ∆−. Then

by Lemma 4.2, [y, Eκi+1 · · ·Eκl ] ∈ U(n̄−) because [y, e−γj+α] = [eγi , e−γj ] ⊗ tα−β is

equal to 0 if γi − γj /∈ ∆, or equal to beγi−γj ⊗ tα−β ∈ U(n̄−) if γi − γj ∈ ∆.

Now we compute [y, Eκi ],

[y, Eκi ] = [y,
∏

α∈ Nκ

e
κi(α)
−γi+α]

=
∑

α∈ Nκ

· · · eκi(α−)
−γi+α−[y, e

κi(α)
−γi+α]e

κi(α+)
−γi+α+ · · · ,

where α− (α+) is the element in Zm+ most close to α but are smaller (greater)

than α with lexicographic order.

[y, e
κi(α)
−γi+α] = κi(α)(e−γi+α)

κi(α)−1[y, e−γi+α]

+

κi(α)∑
j=2

(e−γi+α)
κi(α)−j[[y, e−γi+α], (e−γi+α)

j−1].

Since [y, e−γi+α] ∈ t̃− for all α ∈ Nκ, we have

u′ =

κi(α)∑
j=2

(e−γi+α)
κi(α)−j[[y, e−γi+α], (e−γi+α)

j−1] ∈ U(n̄−).
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So,

[y, Eκi ] =
∑

α∈ Nκ

· · · eκi(α−)
−γi+α−{u′ + κi(α)(e−γi+α)

κi(α)−1

∗[y, e−γi+α]}eκi(α+)
−γi+α+ · · · .

Again, since [y, e−γi+α] ∈ t̃− for all α ∈ Nκ, we can move [y, e−γi+α] to the right

side at the expense of commutators live in U(n̄−), denoted as u′′. So,

[y, Eκi ] = {
∑

α∈ Nκ

· · · eκi(α−)
−γi+α−(κi(α)(e−γi+α)

κi(α)−1)e
κi(α+)
−γi+α+ · · · }

∗[y, e−γi+α] + u′′ +
∑

α∈ Nκ

· · · eκi(α−)
−γi+α−u

′e
κi(α+)
−γi+α+ · · ·

=
∑

α∈ Nκ

κi(α)(E
κi)[α][y, e−γi+α] + u′′′,

for some u′′′ ∈ U(n̄−). Thus, we have

[y, Eκ] = [y, Eκi ]Eκi+1 · · ·Eκl + Eκi [y, Eκi+1 · · ·Eκl ]

= {
∑

α∈ Nκ

κi(α)(E
κi)[α][y, e−γi+α] + u′′′}Eκi+1 · · ·Eκl

+Eκi [y, Eκi+1 · · ·Eκl ]
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= u+
∑
α∈Nκ

κi(α)(E
κ)[α][y, e−γi+α]

for some u ∈ U(n̄−).

Suppose that ∑
α∈Nκ

κi(α)(E
κ)[α][y, e−γi+α] = 0.

Since the elements of {(Eκ)[α]|α ∈ Nκ} are linearly independent by Lemma 4.5,

and by the PBW theorem, A is a basis of U(m) as a free right U (̃t− ⊕Cd1 ⊕Cd2 ⊕

· · · ⊕ Cdm)-module. So [y, e−γi+α] = 0 for every α ∈ Nκ, which is not true. Hence

∑
α∈Nκ

κi(α)(E
κ)[α][y, e−γi+α] ̸= 0.

�
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Recall that k = (k1α, k1β, . . . , k2α, k2β, . . . , knα, knβ, . . . ) = (krα)1≤r≤n,α∈Zm+. For

any k ∈ I, let k⊤ = (k1α, k2α, . . . , knα, k1β, k2β, . . . , knβ, . . . ). Let I⊤ = {k⊤|k ∈ I}.

We order the elements in I⊤ in the reverse lexicographic order. For any yk, yl, dp, dq,

where k, l ∈ I, p, q ∈ Zm
≥0, we define ykdp ≤ yldq if k⊤ < l⊤ (in the reverse lexico-

graphic order) or k = l and |p| ≤ |q|.

Theorem 4.8 Let λ ∈ (h ⊕ Cc1 ⊕ Cc2 ⊕ · · · ⊕ Ccm)∗, λ(c1), λ(c2), . . . , λ(cm) be

Z-independent and η ∈ Γ. Then Vη,λ is irreducible as a U(ḡ)-module.

Proof. Let K be a non-zero U(ḡ)-submodule of Vη,λ, we will show that K = Vη,λ. It

suffices to show that K ∩ L̄η,λv ̸= 0 becauseL̄η,λv = U (̄t)v is irreducible as a U (̄t)-

module and Vη,λ = U(ḡ)v. By Proposition 4.1(3), it follows that K ∩ V λ−µ
η,λ ̸= 0

for some µ ∈ Q+. Assume that 0 ̸= w ∈ K ∩ V λ−µ
η,λ . We claim that there exists

u ∈ U(ḡ) such that 0 ̸= uw ∈ L̄η,λv. We will proceed by induction on ht(µ). If

µ = 0, then we are done since V λ
η,λ = L̄η,λv. Suppose that the claim is true for all

µ′ ∈ Q+ with ht(µ′) < ht(µ). By Proposition 3.2(1) and Proposition 4.1(1), w has

a unique expression

w =
k∑

q=1

(
∑
κ

λκ,qE
κ)wqd

pqv, (4.4)

where k ∈ Z>0, E
κ ∈ A, λκ,q ∈ C, and for each q, only finitely many λκ,q ∈ C ̸= 0.

wq ∈ {yk|k ∈ I}, pq ∈ Zm
≥0 and wqd

pq ̸= wq′d
pq′ if q ̸= q′.

Since w ∈ V λ−µ
η,λ = U(n̄−)−u ⊗C L̄η,λ, for each κ such that λκ,q ̸= 0 for some q, we
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have

[h,Eκ] = −µ(h)Eκ (4.5)

for all h ∈ h⊕ Cc1 ⊕ Cc2 ⊕ · · · ⊕ Ccm. We claim that

µ =
l∑

i=1

∑
α∈Zm+

κi(α)γi. (4.6)

[h, e−γi+αe−γj+β] = [h, e−γi ⊗ tαe−γj ⊗ tβ]

= [h⊗ 1, e−γi ⊗ tα]e−γj ⊗ tβ

+e−γi ⊗ tα[h⊗ 1, e−γj ⊗ tβ]

= [h, e−γi ]⊗ tαe−γj ⊗ tβ + e−γi ⊗ tα[h, e−γj ]⊗ tβ

= −γi(h)e−γi+αe−γj+β − γj(h)e−γi+αe−γj+β

= −(γi + γj)(h)e−γi+αe−γj+β,

⇒ [h,Eκ] = [h,
l∏

i=1

∏
α∈Zm+

e
κi(α)
−γi+α]

= (−
l∑

i=1

∑
α∈Zm+

κi(α)γi)(h)E
κ,

⇒ µ =
l∑

i=1

∑
α∈Zm+

κi(α)γi.

For each q, redefine Ω as,

Ω = {κ|λκ,q ̸= 0},
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and denote iq = min{j|Nκ = Nκ,j, κ ∈ Ωq}. Without loss of generality, we may

assume that

i1 = · · · = ij < ij+1 ≤ · · · ≤ ik.

Then we may write

w =

j∑
q=1

(
∑
κ∈Ωq

λκ,qE
κ)wqd

pqv +
k∑

q=j+1

(
∑
κ∈Ωq

λκ,qE
κ)wqd

pqv.

Let

N = {α|α ∈ Nκ, κ ∈ Ωq, q = 1, 2, . . . , k}.

Recall that {yrα = θr ⊗ t−α}1≤r≤n is a basis of t−αforα ∈ Zm+. To avoid misun-

derstandings, we will write yr,α for yrα. Let β ∈ Zm+ such that α < β,wq < yr,β−α

for all q, r and all α ∈ N . Let y = eγi1−β, since y ∈ n̄+,

ywqd
pqv = 0

for all 1 ≤ q ≤ k. As [y, e−γi1+α] = [eγi1 , e−γi1
] ⊗ tα−β, we have [y, e−γi1+α] ̸= 0

because [eγi1 , e−γi1
] ̸= 0. Moreover, if α ∈ N , then

[y, e−γi1+α] ∈ tα−β = t̃α−β ⊂ t̃−,

since α < β for all α ∈ N . Thus, for every α ∈ N , there exist values νr,α ∈ C, 1 ≤

r ≤ n, with at least one νr,α ̸= 0 such that

[y, e−γi1+α] =
n∑

r=1

νr,αyr,β−α
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and this expression is unique. If iq = i1 = · · · = ij, then by Lemma 4.7, for all

κ ∈ Ωq there exists uκ,q ∈ U(n̄−) such that

[y, Eκ] = uκ,q +
∑
α∈Nκ

κi1(α)(E
κ)[α][y, e−γi1+α],

where
∑

α∈Nκ
κi1(α)(E

κ)[α][y, e−γi1+α] ̸= 0. So,

yw =

j∑
q=1

(
∑
κ∈Ωq

λκ,qyE
κ)wqd

pqv +
k∑

q=j+1

(
∑
κ∈Ωq

λκ,qyE
κ)wqd

pqv

=

j∑
q=1

(
∑
κ∈Ωq

λκ,q([y, E
κ]− Eκy))wqd

pqv

+
k∑

q=j+1

(
∑
κ∈Ωq

λκ,q([y, E
κ]− Eκy))wqd

pqv

=

j∑
q=1

(
∑
κ∈Ωq

λκ,q[y, E
κ])wqd

pqv +
k∑

q=j+1

(
∑
κ∈Ωq

λκ,q[y, E
κ])wqd

pqv

=

j∑
q=1

∑
κ∈Ωq

∑
α∈Nκ

λκ,qκi1(α)(E
κ)[α][y, e−γi1+α]wqd

pqv

+
k∑

q=j+1

∑
κ∈Ωq

λκ,quκ,qwqd
pqv +

k∑
q=j+1

∑
κ∈Ωq

λκ,q[y, E
κ]wqd

pqv
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=

j∑
q=1

∑
κ∈Ωq

∑
α∈Nκ

n∑
r=1

λκ,qκi1(α)νr,α(E
κ)[α]yr,β−αwqd

pqv

+
k∑

q=j+1

∑
κ∈Ωq

λκ,quκ,qwqd
pqv +

k∑
q=j+1

∑
κ∈Ωq

λκ,q[y, E
κ]wqd

pqv.

We claim that yw ̸= 0. Suppose that yw = 0. Let

f : Vη,λ → U(m),

defined by u ⊗ wv 7→ uw, u ∈ U(n̄−), w ∈ U (̄t− ⊕ Cd1 ⊕ Cd2 · · · ⊕ Cdm). Then we

have

0 = f(yw) =

j∑
q=1

∑
κ∈Ωq

∑
α∈Nκ

n∑
r=1

λκ,qκi1(α)νr,α(E
κ)[α]yr,β−αwqd

pq

+
k∑

q=j+1

∑
κ∈Ωq

λκ,quκ,qwqd
pq +

k∑
q=j+1

∑
κ∈Ωq

λκ,q[y, E
κ]wqd

pq .

Since wq′ < yr,β−α for all q′, r, , α ∈ N , it follows that

wq′ < wqyr,β−α

for all q, q′, so

wq′d
pq ′ < wqyr,β−αd

pq
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for all q, q′, α ∈ N . As Nκ ⊆ N , for all κ ∈ Ωq and all q, so

j∑
q=1

∑
κ∈Ωq

∑
α∈Nκ

n∑
r=1

λκ,qκi1(α)νr,α(E
κ)[α]yr,β−αwqd

pq = 0.

Let δ = min{α|α ∈ Nκ, κ ∈ Ω1∪Ω2∪· · ·∪Ωj}. Suppose that 1 ≤ r ≤ n is maximal

such that νr,δ ̸= 0. Assume α ∈ Nκ, κ ∈ Ω1 ∪ Ω2 ∪ · · · ∪ Ωj, and α ̸= δ. Then

ys,β−α < yr,β−δ

for all 1 ≤ r, s ≤ n, since β − α < β − δ. Moreover, if s < r, then

ys,β−δ < yr,β−δ.

Hence

wq′ys,β−αd
pq ′ < wqyr,β−δd

pq , 1 ≤ s, r ≤ n

for all q, q′, α ∈ Nκ and α ̸= δ,κ ∈ Ω1 ∪ Ω2 ∪ · · · ∪ Ωj. Also

wq′ys,β−δd
pq ′ < wqyr,β−δd

pq , 1 ≤ s < r ≤ n

for all q, q′. Hence

j∑
q=1

∑
κ∈Ωq ,δ∈Nκ

λκ,qκi1(δ)νr,δ(E
κ)[δ]yr,β−δwqd

pq = 0

⇒
j∑

q=1

∑
κ∈Ωq ,δ∈Nκ

λκ,qκi1(δ)νr,δ(E
κ)[δ]wqyr,β−δd

pq = 0,
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since yr,β−δwq = wqyr,β−δ. Let 1 ≤ q ≤ j such that δ ∈ Nκ for some κ ∈ Ωq. Since

wq′yr,β−δd
pq ′ ̸= wqyr,β−δd

pq if q ̸= q′, and U(m) is free as a right U (̃t− ⊕ Cd1 ⊕

Cd2 · · · ⊕ Cdm)-module, it must be

∑
κ∈Ωq

λκ,q(E
κ)[δ] = 0.

Since the elements Eκ, κ ∈ Ωq are linearly independent, and δ is fixed, so (Eκ)[δ], κ ∈

Ωq must also be linearly independent. Then we have λκ,q = 0 for all κ ∈ Ωq, which

is a contradiction. This proves that yw ̸= 0.

Since µ− γi1 ∈ Q+, 0 ̸= yw ∈ V
λ−(µ−γi1)

η,λ and ht(µ− γi1) < ht(µ), by the inductive

hypothesis there exists u ∈ U(ḡ) such that 0 ̸= u(yw) = (uy)w ∈ L̄η,λ, hence

K ∩ L̄η,λ ̸= 0 as desired. �
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[MS] D. Milic̆ić, W. Soergel, The composition series of modules induced from Whit-

taker modules, Comment. Math. Helv. 72 (1997) 503-520.

[MZ] V. Mazorchuk, K. Zhao, Characterization of simple highest weight modules,

Canad. Math. Bull. 56 (2013), no. 3, 606-614.

[Sa] K. Saito, Extended affine root system 1 (Coxeter transformations), Publ.

RIMS, Kyoto Univ. 21 (1985), 75-179.

87



[Wa] N. Wallach, The restriction of Whittaker modules to certain parabolic subal-

gebras, Proc. Amer. Math. Soc. 81 (2) (1981), 181-188.

88


