
COMPUTING PROBABILISTIC BISIMILARITY DISTANCES

QIYI TANG

A DISSERTATION SUBMITTED TO
THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

YORK UNIVERSITY
TORONTO, ONTARIO

AUGUST 2018

c© Qiyi Tang, 2018

Abstract

Behavioural equivalences like probabilistic bisimilarity rely on the transition proba-

bilities and, as a result, are sensitive to minuscule changes of those probabilities.

Such behavioural equivalences are not robust, as first observed by Giacalone, Jou

and Smolka. Probabilistic bisimilarity distances, a robust quantitative generalization

of probabilistic bisimilarity, capture the similarity of the behaviour of states of a

probabilistic model. The smaller the distance, the more alike the states behave.

In particular, states are probabilistic bisimilar if and only if the distance between

them is zero. In this dissertation, we focus on algorithms to compute probabilistic

bisimilarity distances for two probabilistic models: labelled Markov chains and

probabilistic automata.

In the late nineties, Desharnais, Gupta, Jagadeesan and Panangaden defined

probabilistic bisimilarity distances on the states of a labelled Markov chain. This

provided a quantitative generalization of probabilistic bisimilarity, which was intro-

duced by Larsen and Skou a decade earlier. Several algorithms to approximate and

compute these probabilistic bisimilarity distances have been put forward. In this

ii

dissertation, we correct and generalize some of these policy iteration algorithms.

Moreover, we develop several new algorithms which have better performance in

practice and can handle much larger systems.

Similarly, Deng, Chothia, Palamidessi and Pang presented probabilistic bisimi-

larity distances on the states of a probabilistic automaton. This provided a robust

quantitative generalization of probabilistic bisimilarity introduced by Segala and

Lynch. Although the complexity of computing probabilistic bisimilarity distances

for probabilistic automata has already been studied and shown to be in NP∩coNP

and PPAD, we are not aware of any practical algorithms to compute those distances.

In this dissertation, we provide several key results that may prove to be useful for

the development of algorithms to compute probabilistic bisimilarity distances for

probabilistic automata. In particular, we present a polynomial time algorithm that

decides distance one. Furthermore, we give an alternative characterization of the

probabilistic bisimilarity distances as a basis for a policy iteration algorithm.

iii

Acknowledgements

I would like to express sincere appreciation to my dissertation supervisor, Franck

van Breugel, for his continuous generous support, for his vision, wisdom, enthusiasm

and patience, and for his always generosity with his time. I feel honoured to work

with him. This journey, though with some ups and downs, has been a great pleasure.

I would like to thank Eric Ruppert for being a member of my supervisory

committee, for his generosity with his time, advise and feedback.

I would like to thank Suprakash Datta for his support as a member of my

supervisory committee.

I would like to express special thanks to Prakash Panangaden. His questions

and comments as the external examiner have had a significant impact on the final

version of this dissertation.

I would like to thank Jonathan Ostroff from whom I have picked up skills that

impacted my research a lot.

I would like to thank Stephen Watson for being the internal member of my ex-

amining committee and asking thought provoking questions during the examination.

iv

I would like to thank Giorgio Bacci and Giovanni Bacci, with whom I have

discussed my research, for their time and good suggestions. I would also like to

thank David Maclver for the interesting discussions of the research and his generosity

with his time of reviewing this dissertation.

I would like to thank the anonymous referees of my papers for their constructive

feedback that shaped parts of the dissertation.

Many thanks to my family, for always being there for me. Without their support

and understanding, I would not have had the courage to pursue my dreams. Last

but not least, I would like to thank my fiancé, Yulong Wu, for his love, inspiration,

support and optimistic nature.

v

Table of Contents

Abstract ii

Acknowledgements iv

Table of Contents vi

List of Symbols x

1 Introduction 1

1.1 Behavioural Equivalences for Probabilistic Models 1

1.2 Two Probabilistic Models and Their Distances 4

1.3 Algorithms to Compute the Probabilistic Bisimilarity Distances . . 9

1.4 Contributions and Publications . 15

2 Probabilistic Models and Probabilistic Bisimilarity Distances 18

2.1 Labelled Markov Chains . 18

2.2 Probabilistic Automata . 44

vi

3 First Order Theory over the Reals 52

3.1 Labelled Markov Chains . 52

3.2 Probabilistic Automata . 58

4 Ellipsoid Method 62

4.1 Linear Programming and the Ellipsoid Method 62

4.2 Labelled Markov Chains . 68

4.3 Probabilistic Automata . 75

5 Labelled Markov Chains and Markov Decision Processes 77

5.1 Markov Decision Processes . 78

5.2 Policy Iteration for MDPs . 88

5.3 Labelled Markov Chains . 90

6 Policy Iteration for Labelled Markov Chains 107

6.1 An Alternative Characterization of Probabilistic Bisimilarity Distances109

6.2 Simple Policy Iteration . 120

6.3 An Exponential Lower Bound of Simple Policy Iteration 130

6.4 General Policy Iteration . 151

7 Partial Policy Iteration 155

7.1 Simple Partial Policy Iteration . 156

7.2 An Exponential Lower Bound of Simple Partial Policy Iteration . . 171

vii

7.3 General Partial Policy Iteration . 172

8 Distance One for Labelled Markov Chains 176

8.1 Characterization of Distance One 177

8.2 An Algorithm of Deciding for Distance One 182

8.3 Three New Algorithms . 187

8.3.1 New Policy Iteration . 189

8.3.2 Algorithm for Small Distances 190

8.3.3 Approximation Algorithm 192

9 Experimental Results 198

9.1 First Order Theory over the Reals and the Ellipsoid Method 201

9.2 Deciding Non-trivial Distances . 201

9.2.1 Bounded Retransmission Protocol 202

9.2.2 Synchronous Leader Election 203

9.2.3 Randomized Self-stabilising 205

9.3 Policy Iteration Algorithms . 206

9.3.1 Randomized Quicksort . 207

9.3.2 Dies . 209

9.4 Large Number of Non-trivial Distances 210

10 Simple Stochastic Games and Probabilistic Automata 212

viii

10.1 Simple Stochastic Games . 212

10.2 The Bisimulation Game for Probabilistic Automata 217

10.3 An Alternative Characterization of Probabilistic Bisimilarity Distances220

11 Distance One for Probabilistic Automata 240

11.1 First Attempt . 241

11.2 Deciding Distance One . 249

11.3 Correctness Proof . 258

11.3.1 The Lambda Function and the Game Characterization . . . 258

11.3.2 Iterative Characterization 263

11.3.3 Construction of a Max Policy 266

11.3.4 The Function Psi . 274

12 Conclusion 282

12.1 Algorithms for Labelled Markov Chains 282

12.2 Algorithms for Probabilistic Automata 284

12.3 Future Work . 284

12.3.1 Time Complexity of Other Policy Iteration Algorithms for

Labelled Markov Chains . 285

12.3.2 Policy Iteration Algorithms for Probabilistic Automata . . . 285

Bibliography 288

ix

List of Symbols

A set of actions of Markov decision processes 78

α available action function of Markov decision pro-

cesses 78

A∗ optimal max policy for simple stochastic games

225

B subset of set of state pairs with distance one 108

CB set of couplings which excludes B 108

c cost function of Markov decision processes 78

D1 set of state pairs with distance one 106

Distr probability distribution 18

E set of edges of simple stochastic games 218

` labelling function of labelled Markov chains and

probabilistic automata 18, 44

Γ a function used to define D1 176

ν greatest fixed point 22

x

H Hausdorff metric 48

I∗ optimal min policy for simple stochastic games 225

K Kantorovich metric 33

L set of labels of labelled Markov chains and proba-

bilistic automata 18, 44

Λ function to compute D1 for probabilistic automata

249

µ least fixed point 22

∆ distance function 21

∆1 distance function 42

∆B distance function parametrized by B 121

A set of max policies for simple stochastic games 214

I set of min policies for simple stochastic games 214

Ω set of couplings 19

ω coupling 19

1 function that maps each element to one 31

P edge probability function for simple stochastic

games 214

∆c distance function for probabilistic automata with

discount factor c 220

xi

ΘP
B distance function parametrized by the partial pol-

icy P and B 156

Φ value function of Markov decision processes 83

π transition probability function for Markov decision

processes 78

P set of partial policies 155

ΨT distance function used by Bacci et al. 114

R equivalence relation 20

S set of states of labelled Markov chains and proba-

bilistic automata 18, 44

S2 set of state pairs 18

S2
0 set of state pairs which are probabilistic bisimilar

50

S2
1 set of state pairs which have difference labels 50

S2
? set of state pairs which have the same labels but

are not probabilistic bisimilar 50

τ transition function of labelled Markov chains 18

∞ terminal state of Markov decision processes 90

ΘT
B distance function parametrized by the total policy

T and B 110

xii

T set of total policies 78

V set of vertices of simple stochastic games 78

V0 zero sink in simple stochastic games 214

V1 one sink in simple stochastic games 214

Vmax set of min vertices in simple stochastic games 214

Vmin set of min vertices in simple stochastic games 213

Vrnd set of random vertices in simple stochastic games

214

vT value function under the policy T 81

0 function that maps each element to zero 31

xiii

1 Introduction

This chapter discusses the motivations behind this dissertation, the main objectives,

and the contributions achieved in the dissertation.

1.1 Behavioural Equivalences for Probabilistic Models

Checking for bugs in software is critical. Software verification is the process to

verify that the designed system behaves the way it is supposed to. Though software

verification is time consuming, failing to detect system errors can be costly and

sometimes catastrophic (see, for example, [8, page 1-2]).

A behavioural equivalence captures which states of a model give rise to the

same behaviour. In software verification, simulations and bisimulations [68, 73]

are two important notions of behaviour equivalences which can be used to capture

correctness criteria, such as, for example, linearizability [49] (see, for example, [39]).

Verifying that an implementation satisfies a specification boils down to checking that

the model of the implementation gives rise to the same behaviour as the model of

the specification, that is, the models are behavioural equivalent (see [1, Chapter 3]).

1

We refer the reader to, for example, [76, page 1–4], for an extensive discussion of

the importance of behavioural equivalences.

Model checking is one of the most popular software verification techniques. It can

show the absence of errors, which is its major advantage compared to other model-

based verification techniques such as testing. The software tool which conducts

model checking is called a model checker. The following graph shows the general

process of model checking. There are three different phases.

System

Model

Model checker

Property

Property

satisfied

Counterexample OK

no yes

• Firstly, a model is built for the software system. Usually, we model the

2

system’s behaviour using a model description language of the model checker.

Also, we need to determine the desired properties that the system should

satisfy. These properties are expressed in a property specification language of

the model checker.

• Secondly, the model checker is run to check the validity of the properties in

the system model.

• Finally, the model checker terminates with three possible outcomes. It outputs

OK if the system satisfies the desired properties or it outputs a counterexample

otherwise. The model checker may not always terminate successfully if it has

to explore too many states due to the so-called state space explosion problem.

In such cases, it may run out of memory or time.

One of the techniques to tackle the state space explosion problem is to minimize

the state space by collapsing those states which are bisimilar, that is, have equivalent

behaviours (see [1, Chapter 3]). There are many other techniques to tackle the state

space explosion problem, such as symbolic execution (see, for example, [59]) and

partial order reduction (see, for example, [45]).

In this dissertation, we focus on quantitatively generalizations of behavioural

equivalences for probabilistic models. These models can capture randomized algo-

rithms, probabilistic protocols, biological systems and many other systems in which

probabilities play a central role. In particular, we consider labelled Markov chains

3

and probabilistic automata.

1.2 Two Probabilistic Models and Their Distances

A labelled Markov chain is a Markov chain with labelled states. These labels provide

a partition of the states so that states satisfying the same basic properties of interest

are in the same partition. Probabilistic bisimilarity due to Larsen and Skou [64] is

a key behavioural equivalence for labelled Markov chains. As shown by Katoen,

Kemna, Zapreev and Jansen [57], minimizing a labelled Markov chain by identifying

those states that are probabilistic bisimilar speeds up model checking. However,

probabilistic bisimilarity only identifies those states that behave exactly the same

with exactly the same probability.

The following example shows how the behaviour of rolling a die can be mimicked

by flipping a coin, an example due to Knuth and Yao [62]. Six of the states are

labelled with the values of a die and the other states are labelled zero. In this

example, we are interested in the labels representing the value of a die. As the reader

can easily verify, the states with these labels are each reached with probability 1
6

from the initial, top most, state. In general, labels are used to identify particular

states that have properties of interest. As a consequence, states with different labels

are not behaviourally equivalent.

4

11 22 33 44 55 66

0 0

0

0

0

0 0

1 1 1 1 1 1

1
2

1
2

1
2 1

2
1
2

1
2

1
2

1
2 1

2
1
2

1
2

1
2 1

2

1
2

If we replace the fair coin in the above example with a biased one, then none of

the states labelled with zero in the original model with the fair coin are behaviourally

equivalent to any of the states labelled with zero in the model with the biased coin.

Behavioural equivalences like probabilistic bisimilarity rely on the transition

probabilities and, as a result, are sensitive to minor changes of those probabilities.

That is, such behavioural equivalences are not robust, as first observed by Giacalone,

Jou and Smolka [43].

A behavioural pseudometric is a quantitative generalization of a behavioural

equivalence. Such a pseudometric assigns to each pair of states a number in the

unit interval [0, 1]. The smaller this number, the more alike the states behave. For

the models that include quantitative information such as time and probabilities,

behavioural pseudometrics are an essential complement to behavioural equivalences.

For some historical background on this behavioural pseudometric we refer the reader

to [21, Section 1].

The probabilistic bisimilarity distances for labelled Markov chains that we study

5

in this dissertation were first defined by Desharnais, Gupta, Jagadeesan and Panan-

gaden in [31]. Their definition is based on a real-valued modal logic. This logic

can be viewed as a function which maps a formula of the logic and a state of the

labelled Markov chain to a real number in the unit interval of [0, 1]. The larger the

number is, the more likely the state satisfies the formula. The distance between

two states is defined as the difference of the formula which can distinguish them

most. This pseudometric captures the similarity of the behaviour of the states.

The smaller the distance, the more alike the states behave. In particular, states

have distance zero if and only if they are probabilistic bisimilar. This provides a

quantitative generalization of probabilistic bisimilarity that is robust in that small

changes in the transition probabilities give rise to small changes in the distances.

For example, we can model a biased die by using a biased coin instead of a fair coin

in the above example. Let us assume that the odds of heads, that is, going to the

left, for the biased coin, is 0.51. A state labelled zero in the model of the fair die

has a non-trivial distance, that is, a distance greater than zero and smaller than

one, to the corresponding state in the model of the biased die. For example, the

initial states have distance about 0.036 i. We refer the reader to [15] for a more

detailed discussion of a similar example.

Later, Van Breugel and Worrell [20] defined probabilistic bisimilarity distances

iThe actual distance is 27251
755000 .

6

on labelled Markov chains as a fixed point of a function. The Kantorovich metric [56]

is a key ingredient of this pseudometric. They also showed that their pseudometric

coincides with the one defined by Desharnais et al. This pseudometric can also be

characterized in terms of tests [17], as the values of a game (Chapter 5), in terms of

a coalgebra [20] and a quantitative algebra [66]. It provides a natural generalization

of probabilistic bisimilarity. It can be defined in terms of the Kantorovich metric,

a natural distance function on probability distributions, and it can be elegantly

characterized in terms of a logic, tests, a game, a coalgebra and a quantitative

algebra. In this dissertation, we will use the definition of the probabilistic bisimilarity

distances which is interpreted as a fixed point of a function.

The other model, probabilistic automata, was first studied by Segala in [78]. It

captures not only probabilities but also nondeterminism (and, hence, concurrency).

Let us consider a simple example.

ff

tt

bb

hh
1
2

1
2

51
100

49
100

1

1

1 1

The states of a probabilistic automaton are also labelled. In the above example,

the labels are represented by colours. Each state has one or more probabilistic

7

transitions. For example, the state t has a single probabilistic transition that takes

state t to itself with probability one. State f has two probabilistic transitions. One

takes state f to state h with probability one. The other represents a fair coin toss.

Also state b has two transitions, one of which represents a biased coin toss.

Segala and Lynch [79] introduced probabilistic bisimilarity for probabilistic au-

tomata. This behavioural equivalence for probabilistic automata generalizes the one

introduced by Larsen and Skou [64]. States s and t of a probabilistic automaton

are probabilistic bisimilar if for each outgoing probabilistic transition of state s

there exists a matching outgoing probabilistic transition of state t, and vice versa.

Two probabilistic transitions match if they both transition to each probabilistic

bisimilarity equivalence class with the exact same probability. States f and b in the

above example are not probabilistic bisimilar. Although the transition from state f

to state h can be matched by the transition from state b to state h, the probabilistic

transitions representing a fair and biased coin toss do not match since the probabili-

ties are slightly different. Deng, Chothia, Palamidessi and Pang [29] introduced a

behavioural pseudometric for probabilistic automata that generalizes probabilistic

bisimilarity. The Hausdorff metric [47] and the Kantorovich metric [56] are key

ingredients of this pseudometric. The former is used to capture nondeterminism.

This idea dates back to the work of De Bakker and Zucker [10]. As we already

mentioned earlier, the Kantorovich metric captures probabilistic behaviours.

8

On the one hand, the behaviours of the states h and t of the above example

are very different since their labels are different. As a result, their probabilistic

bisimilarity distance is one. On the other hand, the behaviours of the states f and

b are very similar, which is reflected by the fact that these states have probabilistic

bisimilarity distance 1
100

.

Tracol, Desharnais and Zhioua [91] also introduced a behavioural pseudometric

for probabilistic automata. Their probabilistic bisimilarity distances generalize

probabilistic bisimilarity as well, but are different from the ones introduced by

Deng et al. An example showing the difference can be found in [91, Example 5].

To compute their probabilistic bisimilarity distances, they developed an iterative

algorithm. In each iteration, a maximum flow problem needs to be solved. The

resulting algorithm runs in polynomial time.

1.3 Algorithms to Compute the Probabilistic Bisimilarity

Distances

As we already mentioned earlier, behavioural equivalences can be used to verify that

an implementation satisfies a specification. Similarly, the distances can be used to

check how similar an implementation is to a specification. We also mentioned that

probabilistic bisimilarity can be used to tackle the state space explosion problem.

Probabilistic bisimilarity distances can be used in a similar way, by identifying those

9

states that behave almost the same, that is, have a small distance (see [6, 69, 80]).

Ferns, Panangaden, and Precup [36] show that the probabilistic bisimilarity distances

can also be used in model approximation, that is, the probabilistic bisimilarity

distances can provide error bounds between the correct and the approximate value

function of some approximation schemes. Note that, Ferns and Precup [37] also

show that the probabilistic bisimilarity distances are related to the values. They

show that the probabilistic bisimilarity distances for a Markov decision process can

be viewed as the optimal value function of an optimal coupling of two copies of the

original Markov decision process.

In order to exploit the probabilistic bisimilarity distances, it is essential to

be able to approximate or compute these distances. In this dissertation, we will

first introduce definitions and theorems from the literature in Chapter 2. We will

review the algorithms to compute the probabilistic bisimilarity distances for labelled

Markov chains in the literature. We briefly introduce these algorithms below.

The first algorithm to approximate these distances due to Desharnais et al. [31]

was presented by Van Breugel, Sharma and Worrell in [19]. This algorithm will be

discussed in Chapter 3. Since the statement that the distance between states s and

t is less than q, for some rational q, can be expressed in the existential fragment of

the first order theory over the reals, and this theory is decidable as shown by Tarski

[89], one can use binary search to approximate the distance between s and t. The

10

satisfiability problem for the existential fragment of the first order theory over the

reals can be solved in polynomial space [22]. This algorithm can only handle very

small examples.

Subsequently, Chen, Van Breugel and Worrell [23] presented a polynomial time

algorithm to compute the distances, which will be discussed in Chapter 4. They

showed that the distances are rational and that those distances can be computed by

means of Khachiyan’s ellipsoid method [58]. In particular, they showed that the

distance function can be expressed as the solution of a linear program. In this case,

the separation algorithm, which is an integral part of the ellipsoid method, boils

down to solving a minimum cost flow problem. The network simplex algorithm

solves the latter problem in polynomial time [70].

In Chapter 6, we will present the algorithm by Bacci, Bacci, Larsen and Mar-

dare [3]. In their paper, they showed that their algorithm, in contrast to the two

algorithms mentioned above, can handle non-trivial labelled Markov chains. Their

algorithm can be viewed as a basic algorithm, enhanced with an optimization. The

key idea behind this optimization is not to compute all the distances but only the

ones in which we are interested.

The above three algorithms are the main ones in the literature to approximate

or compute probabilistic bisimilarity distances for labelled Markov chains. We will

improve and correct some of these algorithms. Also, we will propose and present

11

some new algorithms.

In Chapter 5, we will construct a transformation mapping each labelled Markov

chain to a Markov decision process. A state pair of a labelled Markov chain is

mapped to a single vertex of the transformed Markov decision process and the

distance of a state pair of the labelled Markov chain corresponds to the value of the

corresponding vertex of the transformed Markov decision process. Thus, computing

the distances of a labelled Markov chain is equivalent to computing the values of the

corresponding Markov decision process. As shown by Van Breugel and Worrell [21],

a probabilistic automaton can be transformed into a two player game. A similar

transformation will be presented in Chapter 10. Since a labelled Markov chain

can be viewed as a probabilistic automaton without nondeterminism, we adopt the

game perspective of Markov decision processes in this dissertation, that is, a Markov

decision process can be viewed as a one player game.

In Chapter 6, we will show that a small modification of the basic algorithm of

Bacci et al. [3] can be seen as an instance of simple policy iteration, also known as

sequential policy iteration. We will show that the basic algorithm by Bacci et al. [3],

without the modification, does not always correctly compute the distances. We will

prove an exponential lower bound of this simple policy iteration algorithm. Many

similar lower bounds have been proved for closely related algorithms by showing

that the algorithms can be viewed as binary counters. We refer the reader to, for

12

example, the thesis of Friedmann [40] for several such proofs. We will also present

the general policy iteration algorithm in this chapter. The results in Chapter 5 and

Chapter 6 can be found in [85].

In Chapter 7, we will correct the optimization part of the algorithm by Bacci

et al. We will refer to the algorithm with the corrected optimization as the partial

policy iteration. This algorithm has an input which is a query set of state pairs. We

are only interested in the distances of the state pairs in this set. Thus, the partial

policy iteration algorithm does not need to consider all the state pairs in the system.

We will show that an exponential lower bound also holds for the simple partial policy

iteration algorithm. We will also generalize the general policy iteration algorithm to

use partial policies and present the general partial policy iteration algorithm. These

results can be found in [86].

In Chapter 8, we will present three new algorithms. A polynomial time decision

procedure for distance one will be presented first. This procedure is the key new

ingredient of the three new algorithms to approximate or compute the distances.

These new algorithms, as shown in Chapter 9, are much faster and can handle much

larger models. The results in this chapter can be found in [87].

To compare the performance of the algorithms to approximate and compute

probabilistic bisimilarity distances for labelled Markov chains, we ran several experi-

ments. These algorithms include the algorithm which applies the first order theory

13

over the reals, the polynomial time algorithm which uses the ellipsoid method, the

(partial) policy iteration algorithms due to Bacci et al. and our new algorithms. We

have implemented the above algorithms in Java and have ran implementations on

several labelled Markov chains. These implementations were run on a number of

labelled Markov chains. These labelled Markov chains model well-known randomized

algorithms and were obtained from examples of probabilistic model checkers such

as PRISM [63] and jpf-probabilistic [93]. The experimental results can be found in

Chapter 9.

For probabilistic automata, we are not aware of any practical algorithms to com-

pute the probabilistic bisimilarity distances due to Deng et al. [29]. In Section 3.2, we

will generalize the algorithm to approximate the probabilistic bisimilarity distances

for labelled Markov chains which uses the first-order theory over the reals so that it

can handle probabilistic automata. This work is very similar to [24, 25]. However,

such an algorithm is not practical. In Chapter 10, we will present a transformation

mapping each probabilistic automaton to a simple stochastic game, a simplification

of Shapley’s stochastic games [82] due to Condon [27]. This transformation was

firstly presented by Van Breugel and Worrell [21]. We will discuss the possibility of

developing a policy iteration algorithm to compute the distances for probabilistic

automata. In particular, we will present an alternative characterization of the

distances in terms of the corresponding simple stochastic game (Chapter 10) and

14

a procedure to decide distance one for probabilistic automata (Chapter 11). The

results about probabilistic automata can be found in [88].

Chapter 12 will discuss the future work and conclude the dissertation.

1.4 Contributions and Publications

The dissertation explores algorithms to compute probabilistic bisimilarity distances

for labelled Markov chains and probabilistic automata. Our major contributions to

algorithms to compute the distances for labelled Markov chains are the following.

• We review and generalize the algorithms in literature. In particular, we focus

on the policy iteration algorithms. We found an error in the basic algorithm

by Bacci et al. [3]. We then correct the algorithm and show that the modified

algorithm corresponds to a policy iteration algorithm. We prove an exponential

lower bound for the simple policy iteration algorithm to compute the distances.

• We study the on-the-fly optimization of the algorithm of Bacci et al. and show

that it does not always consider sufficiently many states. We modify their

optimization and prove our modification correct. We prove an exponential

lower bound for the simple partial policy iteration algorithm.

• We present a polynomial time decision procedure for distance one.

• We develop three new algorithms, in which the decision procedure for distance

15

one is a key step, to compute or approximate the probabilistic bisimilarity

distances of labelled Markov chains. These new algorithms are much faster

and can handle much larger models in practice.

For probabilistic automata, we provide several key results towards algorithms to

compute probabilistic bisimilarity distances for probabilistic automata.

• We present a polynomial time decision procedure for distance one.

• We propose an alternative characterization of their distances in terms of a

game. We believe this characterization forms the basis for a policy iteration

algorithm to compute the probabilistic bisimilarity distances for probabilistic

automata, just as the similar characterization forms the basis for the algorithm

to compute the probabilistic bisimilarity distances for labelled Markov chains

by Bacci et al. [3].

The publications related to the dissertation are the following.

- Qiyi Tang and Franck van Breugel. Deciding Probabilistic Bisimilarity Dis-

tance One for Probabilistic Automata. To appear in Proceedings of the 29th

International Conference on Concurrency Theory, Beijing, China, September

2018.

- Qiyi Tang and Franck van Breugel. Deciding Probabilistic Bisimilarity Dis-

tance One for Labelled Markov Chains. In Proceedings of the 30th Interna-

16

tional Conference on Computer Aided Verification, Oxford, UK, July 2018.

- Qiyi Tang and Franck van Breugel. Algorithms to Compute Probabilistic

Bisimilarity Distances for Labelled Markov Chains. In Proceedings of the 28th

International Conference on Concurrency Theory, Berlin, Germany, September

2017.

- Qiyi Tang and Franck van Breugel. Computing Probabilistic Bisimilarity

Distances via Policy Iteration. In Proceedings of the 27th International

Conference on Concurrency Theory, Quebec City, Canada, August 2016.

17

2 Probabilistic Models and Probabilistic

Bisimilarity Distances

In this chapter, we introduce the two basic probabilistic models, labelled Markov

chains and probabilistic automata, that are studied in this dissertation. We present

their most prominent behaviour equivalence: probabilistic bisimilarity. We also

introduce the quantitative notion of probabilistic bisimilarity distances for these two

models. The definitions and results in this chapter are collected from the literature.

2.1 Labelled Markov Chains

In this section, we review the model of interest, labelled Markov chains, its most well

known behavioural equivalence, probabilistic bisimilarity due to Larsen and Skou

[64] (see also [65]), and the probabilistic bisimilarity pseudometric due to Desharnais

et al. [31] (see also [33]). Given a finite set S, a function µ : S → [0, 1] is a rational

probability distribution on S if µ(s) is rational for every s ∈ S and
∑
s∈S

µ(s) = 1. We

denote the set of probability distributions on a set S by Distr(S). For µ ∈ Distr(S),

18

its support is defined by support(µ) = { s ∈ S | µ(s) > 0 }. Instead of S × S, we

often write S2.

Definition 2.1.1. A labelled Markov chain is a tuple 〈S, L, τ, `〉 consisting of

• a nonempty finite set S of states,

• a nonempty finite set L of labels,

• a transition function τ : S → Distr(S), and

• a labelling function ` : S → L.

Note that we restrict our attention to labelled Markov chains with finitely

many states and the transition probabilities of which are rationals. We denote the

transition probability from s to t as τ(s)(t).

Labelled Markov chains are often used to model systems with probabilistic

behaviour. An example of such a Markov chain is depicted below. In a labelled

Markov chain, each state has a label. These labels are used to capture that particular

properties of interest hold in some states and do not hold in other states.

Example 2.1.2. We consider a labelled Markov chain with four states: fair,

unfair, head, and tail. It models a fair coin flip and a biased coin flip. The

following table contains the transition probabilities and, hence, captures τ . The

labelled Markov chain can be depicted as the graph on the right. In this example,

19

the label is represented by the colour of the state. The state fair models a fair

coin flip, which reaches head and tail with probability 1
2
, respectively. The state

unfair models a biased coin flip, which reaches head with probability 2
3

and tail

with probability 1
3
.

fair unfair head tail

fair 0 0 1
2

1
2

unfair 0 0 2
3

1
3

head 0 0 1 0

tail 0 0 0 1

head

fair

tail

unfair

1
2

1
2

2
3

1
3

1 1

For the remainder of this section, we fix a labelled Markov chain 〈S, L, τ, `〉. In

order to characterize probabilistic bisimilarity, we first introduce the notion of a

coupling of probability distributions.

Definition 2.1.3. Let µ, ν ∈ Distr(S). The set Ω(µ, ν) of couplings of µ and ν is

defined by

Ω(µ, ν) =

{
ω ∈ Distr(S2)

∣∣∣∣∣ ∑
t∈S

ω(s, t) = µ(s) ∧
∑
s∈S

ω(s, t) = ν(t)

}
.

The set Ω(µ, ν) is a convex polytope (see, for example, [72, Section 2.3.2]). We

denote its vertices (see, for example, [72, page 36]) by V (Ω(µ, ν)). Generally, the set

Ω(µ, ν) is infinite, but the set V (Ω(µ, ν)) is finite (see, for example, [60, page 259]).

20

Note that ω ∈ Ω(µ, ν) is a joint probability distribution with marginals µ and ν

(see, for example, [13, page 260-262]).

Definition 2.1.4. The lifting of a relation R ⊆ S2 is the relation R↑ ⊆ Distr(S)2

defined by (µ, ν) ∈ R↑ if there exists ω ∈ Ω(µ, ν) such that support(ω) ⊆ R.

This notion of lifting can be found, for example, in [55, Definition 4.3]. It can

be used to define probabilistic bisimilarity as follows.

Definition 2.1.5. An equivalence relation R ⊆ S2 is a probabilistic bisimulation if

for all s, t ∈ S, if (s, t) ∈ R then

• `(s) = `(t), and

• (τ(s), τ(t)) ∈ R↑.

Probabilistic bisimilarity, denoted ∼, is defined as the largest probabilistic

bisimulation. For a proof that such a largest probabilistic bisimulation exists, we

refer the reader to, for example, [15, Proposition 4.3]. In [55, Theorem 4.6] it is

shown that this definition is equivalent to the standard definition given in [64].

Definition 2.1.6. Probabilistic bisimilarity is defined by

∼ =
⋃
{R ⊆ S2 | R is a probabilistic bisimulation }.

The probabilistic bisimilarity pseudometric of Desharnais et al. [31] maps each

pair of states of a labelled Markov chain to a distance, which is an element of

21

the unit interval [0, 1]. Hence, the pseudometric is a function from S2 to [0, 1],

that is, an element of [0, 1]S
2
. Such a function is a pseudometric if it satisfies the

following three properties: for all s, t, u ∈ S , d(s, s) = 0, d(s, t) = d(t, s) and

d(s, u) ≤ d(s, t) + d(t, u). As we will discuss below, it can be defined in terms of the

following function.

Definition 2.1.7. The function ∆ : [0, 1]S
2 → [0, 1]S

2
is defined by

∆(d)(s, t) =


1 if `(s) 6= `(t)

min
ω∈Ω(τ(s),τ(t))

∑
u,v∈S

ω(u, v) d(u, v) otherwise

To define the probabilistic bisimilarity pseudometric as a fixed point of ∆ we

use the Knaster-Tarski fixed point theorem [90, 61] which is presented next.

Let X be a nonempty set. Consider a function f : X → X. Then x ∈ X is a

fixed point of f if f(x) = x. Let v ⊆ X2. Then x ∈ X is a pre-fixed point of f if

f(x) v x and it is a post-fixed point of f if x v f(x). The function f is monotone

if for all x, y ∈ X, if x v y then f(x) v f(y).

Theorem 2.1.8. [90, Theorem 1] Let 〈X,v〉 be a complete lattice and f : X → X

be a monotone function.

(a) f has a least fixed point.

(b) f has a greatest fixed point.

(c) The least fixed point of f is the least pre-fixed point of f .

22

(d) The greatest fixed point of f is the greatest post-fixed point of f .

Although we will not use the definition of complete lattice, interested readers

can find it, for example, in [28, Chapter 2]. We denote the least fixed point and the

greatest fixed point of f by µ(f) and ν(f), respectively.

We present the following theorem which will be used in the proofs of Chapter 11.

Theorem 2.1.9. Let S be a nonempty finite set and let Φ : 2S
2 → 2S

2
be a monotone

function.

(a) µ(Φ) = Φn(∅) for some n ∈ N.

(b) ν(Φ) = Φn(S2) for some n ∈ N.

(c) If X ⊆ µ(Φ) then µ(Φ) = Φn(X) for some n ∈ N.

Proof. For proofs of part (a) and (b), see, for example, [26, Lemma 8]. Part (c) is

proved in the appendix.

To apply the above theorem, we need to define an order on [0, 1]S
2
.

Definition 2.1.10. The relation v ⊆ [0, 1]S
2 × [0, 1]S

2
is defined by

d v e if d(s, t) ≤ e(s, t) for all s, t ∈ S.

Proposition 2.1.11. 〈[0, 1]S
2
,v〉 is a complete lattice.

Proof. See, for example, [32, Lemma 3.2].

23

Next, we show that Ω(τ(s), τ(t)) in Definition 2.1.7 can be replaced by V (Ω(τ(s), τ(t))),

and in the future, we use them interchangeably.

Proposition 2.1.12. For all d ∈ [0, 1]S
2

and s, t ∈ S, if `(s) = `(t) then

∆(d)(s, t) = min
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) d(u, v).

Proof. Let d ∈ [0, 1]S
2
and s, t ∈ S with `(s) = `(t). The function σ : Ω(τ(s), τ(t))→

[0, 1] is defined by

σ(ω) =
∑
u,v∈S

ω(u, v) d(u, v).

For all ω, π ∈ Ω(τ(s), τ(t)) and r ∈ [0, 1],

σ(r ω + (1− r) π) = r σ(ω) + (1− r)σ(π).

As a consequence, σ is a concave function (see, for example, [72, page 13]). Since

Ω(τ(s), τ(t)) is a convex polytope and a concave function on a convex polytope

attains its minimum at a vertex of the polytope (see, for example, [60, page 260]), we

can conclude that there exists ω ∈ V (Ω(τ(s), τ(t))) such that σ attains its minimum

at ω. As a consequence, the desired result holds.

The next proposition proves that ∆ is monotone.

Proposition 2.1.13. [16, Proposition 38] For all d, e ∈ [0, 1]S
2
, if d v e then

∆(d) v ∆(e).

Proof. Let d, e ∈ [0, 1]S
2

with d v e. Let s, t ∈ S. We distinguish two cases.

24

• If `(s) 6= `(t) then

∆(d)(s, t) = 1 = ∆(e)(s, t).

• Otherwise,

∆(d)(s, t) = min
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) d(u, v)

≤ min
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) e(u, v) [d v e]

= ∆(e)(s, t).

According to Proposition 2.1.11, the set [0, 1]S
2

endowed with the order v forms

a complete lattice. According to Proposition 2.1.13, ∆ is a monotone function. We

can conclude from Theorem 2.1.8(a), the Knaster-Tarski fixed point theorem, that

∆ has a least fixed point. We denote this fixed point by µ(∆). As we will prove

later in this chapter, µ(∆) is a pseudometric. This is the probabilistic bisimilarity

pseudometric introduced by Desharnais et al.

The probabilistic bisimilarity pseudometric µ(∆) provides a quantitative gener-

alization of probabilistic bisimilarity as captured by the following result which can

be found in [31, Theorem 1].

Theorem 2.1.14. [31, Theorem 1] For all s, t ∈ S, s ∼ t if and only if µ(∆)(s, t) = 0.

Proof. We split the proof into two parts.

25

• (=⇒) For all s, t ∈ S, if s ∼ t then µ(∆)(s, t) = 0.

Define d ∈ [0, 1]S
2

by

d(s, t) =


0 if s ∼ t

1 otherwise

We prove µ(∆)(s, t) = 0 for all s ∼ t by proving that µ(∆) v d. To do

that, we show that d is a pre-fixed point of ∆, that is, ∆(d) v d. As µ(∆)

is the least pre-fixed point of ∆ by Theorem 2.1.8(c), we can conclude that

µ(∆) v d.

Let s, t ∈ S. We distinguish two cases.

– If s 6∼ t then

∆(d)(s, t) ≤ 1 = d(s, t).

– Otherwise, s ∼ t. According to Definition 2.1.5 and Definition 2.1.6, we

can conclude that `(s) = `(t), and by Definition 2.1.4 there must exist

an π ∈ Ω(τ(s), τ(t)) such that support(π) ⊆∼.

∆(d)(s, t) = min
ω∈Ω(τ(s),τ(t))

∑
u,v∈S

ω(u, v) d(u, v)

≤
∑
u,v∈S

π(u, v) d(u, v)

=
∑

(u,v)∈∼

π(u, v) d(u, v) [support(π) ⊆∼]

= 0 [d(u, v) = 0 for all u ∼ v]

26

= d(s, t). [s ∼ t]

• (⇐=) For all s, t ∈ S, if µ(∆)(s, t) = 0 then s ∼ t.

Let R ⊆ S2 such that (s, t) ∈ R if and only if µ(∆)(s, t) = 0. By Defini-

tion 2.1.6, it suffices to show that R is a probabilistic bisimulation.

Let (s, t) ∈ R. By definition µ(∆)(s, t) = 0. Let

π = argmin
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v)µ(∆)(u, v) (2.1)

According to the definition of ∆, we have `(s) = `(t) and

0 = µ(∆)(s, t)

= ∆(µ(∆))(s, t) [µ(∆) is a fixed point of ∆]

= min
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v)µ(∆)(u, v)

=
∑
u,v∈S

π(u, v)µ(∆)(u, v) [2.1].

From the above equations, we can deduce that for all (u, v) ∈ support(π),

µ(∆)(u, v) = 0, that is, support(π) ⊆ R. According to Definition 2.1.5 and

Definition 2.1.6, we conclude that R is a probabilistic bisimulation.

Example 2.1.15. The probabilistic bisimilarity distances for the labelled Markov

chain in Example 2.1.2 can be found in the table below.

27

fair unfair head tail

fair 0 1
6

1 1

unfair 1
6

0 1 1

head 1 1 0 1

tail 1 1 1 0

The distance for states with different labels is one. For example, the distance

between head and any other state is 1. As the distance function is symmetric, the

table above is symmetric. As the distance between a state with itself is zero, the

diagonal contains all zeros.

The states fair and unfair have the same label. According to the Defini-

tion 2.1.7, we have to find a coupling π ∈ Ω(τ(fair), τ(unfair)) such that

π = argmin
ω∈Ω(τ(fair),τ(unfair))

∑
(u,v)∈S2

ω(u, v)µ(∆)(u, v).

Next, we provide a visual representation of a coupling in Ω(τ(fair), τ(unfair)).

fair unfair

head

tail

head

tail

1
2

1
2

2
3

1
3

1
2

1
6

1
3

28

A coupling in Ω(τ(fair), τ(unfair)) has to satisfy the following equations.

ω(head, head) + ω(head, tail) = 1
2

ω(tail, head) + ω(tail, tail) = 1
2

ω(head, head) + ω(tail, head) = 2
3

ω(head, tail) + ω(tail, tail) = 1
3

Such a coupling can be viewed as a transportation plan of moving one unit from

state fair to state unfair in the network. In the above figure, the dashed lines

show a possible coupling.

Since the distance between a state and itself is zero, transporting between the tail

states contributes zero to the distance of the state pair (fair, unfair). Similarly,

transporting between the head states contributes zero to the distance of the state pair

(fair, unfair). Since the distance between head and tail is one, transporting

between these pairs contributes 1
6

to the distance of the state pair (fair, unfair).

Hence, the distance of state fair and state unfair can be viewed as the cost of

transporting one unit from fair to unfair. As the reader can easily verify, the

above transportation plan gives rise to the minimal cost of transporting one unit

from state fair to state unfair, which is 1
6
.

We partition the set S2 of state pairs into

S2
0 = { (s, t) ∈ S2 | s ∼ t }

S2
1 = { (s, t) ∈ S2 | `(s) 6= `(t) }

S2
? = S2 \ (S2

0 ∪ S2
1)

29

The following example shows the partition of state pairs of the labelled Markov

chain in Example 2.1.2.

Example 2.1.16. There are 16 state pairs of states in the labelled Markov chain

in Example 2.1.2 and

S2
0 = {(fair, fair), (unfair, unfair), (head, head), (tail, tail)}

S2
1 = {(fair, head), (head, fair), (fair, tail), (tail, fair),

(unfair, head), (head, unfair), (unfair, tail), (tail, unfair),

(head, tail), (tail, head)}

S2
? = {(fair, unfair), (unfair, fair)}.

According to Theorem 2.1.14, the state pairs in S2
0 have distances zero. From

the definition of ∆, we can deduce that the state pairs in S2
1 have distance one.

Note that there may be state pairs with the same label that have distance one (see

Example 2.1.17). The set S2
? contains the remaining state pairs.

Example 2.1.17. We consider a labelled Markov chain with three states: s, t and

u. The label is represented by the colour of the state. The transition probabilities

are denoted in the graph below. We are interested in the distance of s and t.

s t u

1 1
2

1

1
2

30

Since s and u have different labels, the distance of s and u is one, that is,

µ(∆)(s, u) = 1.

State s and state t have the same label. The reader can verify that there is only

one coupling π in the set Ω(τ(s), τ(t)), where π(s, t) = π(s, u) = 1
2
. Next, we provide

a visual representation of the coupling π.

s ts

t

u

1

1
2

1
2

1
2

1
2

Recall that a coupling can be viewed as a transportation plan of moving one unit

from state s to state t. In the above figure, the dashed lines represent the coupling π.

Thus, we have

µ(∆)(s, t) = ∆(µ(∆))(s, t) [µ(∆) is a fixed point of ∆]

= min
ω∈Ω(τ(s),τ(t))

∑
(u,v)∈S2

ω(u, v)µ(∆)(u, v) [definition of ∆]

=
∑

(u,v)∈S2

π(u, v)µ(∆)(u, v) [π is the only coupling in Ω(τ(s), τ(t))]

= 1
2
× µ(∆)(s, t) + 1

2
× µ(∆)(s, u)

= 1
2
× µ(∆)(s, t) + 1

2
× 1 [µ(∆)(s, u) = 1]

= 1
2
× µ(∆)(s, t) + 1

2

31

We can conclude that the distance of s and t is one by solving the above equation.

This example shows that two states with the same label can have distance one too.

The least fixed point of a monotone function on a complete lattice can be

obtained iteratively. Starting from the least element of the lattice the function is

applied repeatedly. In general, one may have to iterate a transfinite number of times.

Here, we restrict our attention to monotone functions on [0, 1]S
m

, where m ∈ N and

S is a set. We endow the set [0, 1]S
m

with the following order.

Definition 2.1.18. Letm ∈ N and let S be a set. The relationv ⊆ [0, 1]S
m×[0, 1]S

m

is defined by

f v g if f(s1, . . . , sm) ≤ g(s1, . . . , sm) for all s1, . . . , sm ∈ S.

Note that the above definition generalizes Definition 2.1.10. Also Proposi-

tion 2.1.11 can be generalized as follows.

Proposition 2.1.19. 〈[0, 1]S
m
,v〉 is a complete lattice.

Proof. Similar to the proof of Proposition 2.1.11.

The least element of [0, 1]S
m

is the function 0 : Sm → [0, 1] which maps each

tuple to zero. The greatest element of [0, 1]S
m

is the function 1 : Sm → [0, 1] which

maps each tuple to one. The set [0, 1]S
m

not only carries a natural order, as we

defined in Definition 2.1.18, but also a natural metric, which we define next.

32

Definition 2.1.20. The function ‖ · − · ‖ : [0, 1]S
m × [0, 1]S

m → [0, 1] is defined by

‖f − g‖ = sup
s1,...,sm∈S

|f(s1, . . . , sm)− g(s1, . . . , sm)|.

A function Φ : [0, 1]S
m → [0, 1]S

m
is c-Lipschitz if ‖Φ(f)−Φ(g)‖ ≤ c ‖f − g‖ for

all f , g ∈ [0, 1]S
m

. A 1-Lipschitz function is also called nonexpansive. A function is

contractive if it is c-Lipschitz for some c ∈ (0, 1). Now we have all the ingredients to

express the iterative characterization of the least fixed point.

Theorem 2.1.21. Let m ∈ N and let S be a finite set. If Φ : [0, 1]S
m → [0, 1]S

m
is

monotone and nonexpansive then

µ(Φ) = sup
n∈N

Φn(0).

Proof. Here we only sketch a proof. The details can be found in [14, Corollary 1].

In the proof, a series of functions dn ∈ [0, 1]S
m

for n ∈ N are defined as

dn =


0 if n = 0

Φ(dn−1) otherwise.

The fact that Φ is nonexpansive implies that Φ is continuous. Since Φ is monotone

and continuous, one can show that dω v Φ(dω) and Φ(dω) v dω. As the least fixed

point of a monotone function on a complete lattice can be obtained iteratively, we

have

µ(Φ) = dω = sup
n∈ω

dn = sup
n∈ω

Φn(0).

33

The above theorem will allows us to prove properties of least fixed points by

inductive arguments as we will see numerous times.

We present Banach’s fixed point theorem [11], which will be used in Chapter 10.

Proposition 2.1.22. 〈[0, 1]S
2
, ‖ · − · ‖〉 is a nonempty complete metric space.

Proof. See, for example, [9, Section 1.1.2].

Theorem 2.1.23. Let X be a nonempty complete metric space and f : X → X a

contractive function. Then f has a unique fixed point.

Proof. See, for example, [9, Theorem 1.34].

We have already shown that ∆ is monotone. According to Theorem 2.1.21, if ∆

is nonexpansive, µ(∆) can be characterized as sup
n∈N

∆n(0). We will show that ∆ is

indeed nonexpansive.

We define the Kantorovich metric [56] in the next definition and will use the

fact that the function K is nonexpansive to prove that ∆ is nonexpansive.

Definition 2.1.24. The function K : [0, 1]X
2 → [0, 1]Distr(X)2 is defined by

K(d)(µ, ν) = min
ω∈V (Ω(ν,µ))

∑
u,v∈S

ω(u, v) d(u, v).

The function K is nonexpansive.

Proposition 2.1.25. For all d, e ∈ [0, 1]X
2
, ||K(d)−K(e)|| ≤ ||d− e||.

34

Proof. See, for example, [14, Section 3].

Proposition 2.1.26. For all d, e ∈ [0, 1]S
2
, ||∆(d)−∆(e)|| ≤ ||d− e||.

Proof. Let d, e ∈ [0, 1]S
2
. Let s, t ∈ S. We distinguish two cases.

• Let `(s) 6= `(t). According to the definition of ∆, we have

|∆(d)(s, t)−∆(e)(s, t)| = |1− 1| = 0 ≤ ||d− e||.

• If `(s) = `(t), then

|∆(d)(s, t)−∆(e)(s, t)| = |K(d)(τ(s), τ(t))−K(e)(τ(s), τ(t))|

≤ ||K(d)−K(e)||

≤ ||d− e|| [Proposition 2.1.25]

Recall that a function d : S2 → [0, 1] is a pseudometric if for all s, t, u ∈ S :

d(s, s) = 0

d(s, t) = d(t, s)

d(s, u) ≤ d(s, t) + d(t, u)

Next, we show that the probabilistic bisimilarity distances form a pseudometric.

Proposition 2.1.27. If d ∈ [0, 1]S
2

satisfies d(s, t) = d(t, s) for all s, t ∈ S, then

∆(d)(s, t) = ∆(d)(t, s) for all s, t ∈ S.

35

Proof. Let s, t ∈ S. We distinguish two cases.

• If `(s) 6= `(t), then

∆(d)(s, t) = 1 = ∆(d)(t, s).

• Otherwise, `(s) = `(t). Towards a contradiction, we assume that

∆(d)(s, t)>∆(d)(t, s) (2.2)

without loss of generality. Let π = argmin
ω∈Ω(τ(t),τ(s))

∑
u,v∈S

ω(u, v) d(u, v). Let

ρ(u, v) = π(v, u) for all u, v ∈ S. Since

∑
v∈S

ρ(u, v) =
∑
v∈S

π(v, u) = τ(t)(u)

and ∑
u∈S

ρ(u, v) =
∑
u∈S

π(v, u) = τ(s)(v),

we conclude that ρ ∈ Ω(τ(s), τ(t)).

We have

∆(d)(s, t) = min
ω∈Ω(τ(s),τ(t))

∑
u,v∈S

ω(u, v) d(u, v)

≤
∑
u,v∈S

ρ(u, v) d(u, v)

=
∑
u,v∈S

π(v, u) d(u, v) [definition of ρ]

=
∑
u,v∈S

π(v, u) d(v, u) [d(u, v) = d(v, u) for all u, v ∈ S]

= min
ω∈Ω(τ(t),τ(s))

∑
u,v∈S

ω(u, v) d(u, v)

= ∆(d)(t, s).

36

The above result contradicts (2.2). Thus, ∆(d)(s, t) = ∆(d)(t, s).

Proposition 2.1.28. If d ∈ [0, 1]S
2

satisfies d(s, u) ≤ d(s, t) + d(t, u) for all

s, t, u ∈ S, then ∆(d)(s, u) ≤ ∆(d)(s, t) + ∆(d)(t, u) for all s, t, u ∈ S.

Proof. Let s, t, u ∈ S. We distinguish the following cases.

• If `(s) 6= `(u), then either `(s) 6= `(t) or `(t) 6= `(u). Hence,

∆(d)(s, u) = 1 ≤ ∆(d)(s, t) + ∆(d)(t, u).

• Otherwise, `(s) = `(u).

(a) If `(s) 6= `(t), then

∆(d)(s, u) ≤ 1 ≤ 1 + ∆(d)(t, u) = ∆(d)(s, t) + ∆(d)(t, u).

(b) Otherwise, `(s) = `(t).

Let

πs,t = argmin
ω∈Ω(τ(s),τ(t))

∑
x,y∈S

ω(x, y) d(x, y)

and

πt,u = argmin
ω∈Ω(τ(t),τ(u))

∑
x,y∈S

ω(x, y) d(x, y).

We define the function πs,u : S2 → [0, 1] by

πs,u(x, z) =
∑

y∈support(τ(t))

πs,t(x, y) πt,u(y, z)

τ(t)(y)
.

37

First, we show that for all x, y ∈ S,

if y 6∈ support(τ(t)) then πs,t(x, y) = 0. (2.3)

Let y ∈ S and assume that y 6∈ support(τ(t)), that is, τ(t)(y) = 0. Since

πs,t ∈ Ω(τ(s), τ(t)), we have that
∑
x∈S

πs,t(x, y) = τ(t)(y) = 0. Hence,

πs,t(x, y) = 0 for all x ∈ S. Similarly, one can prove that for all y, z ∈ S,

if y 6∈ support(τ(t)) then πt,u(y, z) = 0. (2.4)

For all x, z ∈ S,

∑
z∈S

πs,u(x, z) =
∑
z∈S

∑
y∈support(τ(t))

πs,t(x, y)πt,u(y, z)

τ(t)(y)

=
∑

y∈support(τ(t))

πs,t(x, y)

τ(t)(y)

∑
z∈S

πt,u(y, z)

=
∑

y∈support(τ(t))

πs,t(x, y)

τ(t)(y)
τ(t)(y) [πt,u ∈ Ω(τ(t), τ(u))]

=
∑

y∈support(τ(t))

πs,t(x, y)

=
∑
y∈S

πs,t(x, y) [(2.3)]

= τ(s)(x) [πs,t ∈ Ω(τ(s), τ(t))]

and

∑
x∈S

πs,u(x, z) =
∑
x∈S

∑
y∈support(τ(t))

πs,t(x, y)πt,u(y, z)

τ(t)(y)

=
∑

y∈support(τ(t))

πt,u(y, z)

τ(t)(y)

∑
x∈S

πs,t(x, y)

38

=
∑

y∈support(τ(t))

πt,u(y, z)

τ(t)(y)
τ(t)(y) [πs,t ∈ Ω(τ(s), τ(t))]

=
∑

y∈support(τ(t))

πt,u(y, z)

=
∑
y∈S

πt,u(y, z) [(2.4)]

= τ(u)(z) [πt,u ∈ Ω(τ(t), τ(u))]

Hence, πs,u ∈ Ω(τ(s), τ(u)).

Thus, we have

∆(d)(s, u) = min
ω∈Ω(τ(s),τ(u))

∑
x,z∈S

ω(x, z) d(x, z)

≤
∑
x,z∈S

πs,u(x, z) d(x, z) [πs,u ∈ Ω(τ(s), τ(u))]

=
∑
x,z∈S

∑
y∈support(τ(t))

πs,t(x, y) πt,u(y, z)

τ(t)(y)
d(x, z)

≤
∑
x,z∈S

∑
y∈support(τ(t))

πs,t(x, y) πt,u(y, z)

τ(t)(y)

(
d(x, y) + d(y, z)

)
[d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ S]

=
∑
x,z∈S

∑
y∈support(τ(t))

πs,t(x, y) πt,u(y, z)

τ(t)(y)
d(x, y) +

∑
x,z∈S

∑
y∈support(τ(t))

πs,t(x, y) πt,u(y, z)

τ(t)(y)
d(y, z)

=
∑
x∈S

∑
z∈S

∑
y∈support(τ(t))

πs,t(x, y) πt,u(y, z)

τ(t)(y)
d(x, y) +

∑
x∈S

∑
z∈S

∑
y∈support(τ(t))

πs,t(x, y)πt,u(y, z)

τ(t)(y)
d(y, z)

=
∑
x∈S

∑
y∈support(τ(t))

πs,t(x, y)

τ(t)(y)
d(x, y)

∑
z∈S

πt,u(y, z) +

39

∑
z∈S

∑
y∈support(τ(t))

πt,u(y, z)

τ(t)(y)
d(y, z)

∑
x∈S

πs,t(x, y)

=
∑
x∈S

∑
y∈support(τ(t))

πs,t(x, y)

τ(t)(y)
d(x, y) τ(t)(y) +

∑
z∈S

∑
y∈support(τ(t))

πt,u(y, z)

τ(t)(y)
d(y, z) τ(t)(y)

[
∑
z∈S

πt,u(y, z) = τ(t)(y) and
∑
x∈S

πs,t(x, y) = τ(t)(y)]

=
∑
x∈S

∑
y∈support(τ(t))

πs,t(x, y) d(x, y) +

∑
z∈S

∑
y∈support(τ(t))

πt,u(y, z) d(y, z)

=
∑
x∈S

∑
y∈S

πs,t(x, y) d(x, y) +
∑
z∈S

∑
y∈S

πt,u(y, z) d(y, z)

[(2.3) and (2.4)]

=
∑
x,y∈S

πs,t(x, y) d(x, y) +
∑
y,z∈S

πt,u(y, z) d(y, z)

= min
ω∈Ω(τ(s),τ(t))

∑
x,y∈S

ω(x, y) d(x, y) +

min
ω∈Ω(τ(t),τ(u))

∑
y,z∈S

ω(y, z) d(y, z)

= ∆(d)(s, t) + ∆(d)(t, u).

Proposition 2.1.29. For all d ∈ [0, 1]S
2
, if d is a pseudometric then ∆(d) is a

pseudometric.

Proof. Let d ∈ [0, 1]S
2
. Assume that d is a pseudometric. It remains to show that

∆(d) satisfies the three properties given on page 35.

40

1. Let the function π : S2 → [0, 1] be defined by

π(u, v) =


τ(s)(u) if u = v

0 otherwise

Since ∑
v∈S

π(u, v) = τ(s)(u)

and ∑
u∈S

π(u, v) = τ(s)(v),

we conclude that π ∈ Ω(τ(s), τ(s)).

Let s ∈ S. Then

∆(d)(s, s) = min
ω∈Ω(τ(s),τ(s))

∑
u,v∈S

ω(u, v) d(u, v)

≤
∑
u,v∈S

π(u, v) d(u, v) [π ∈ Ω(τ(s), τ(s))]

=
∑
u∈S

π(u, u) d(u, u)

= 0 [d is a pseudometric]

2. Since d is a pseudometric, d(s, t) = d(t, s) for all s, t ∈ S. According to

Proposition 2.1.27, ∆(d)(s, t) = ∆(d)(t, s) for all s, t ∈ S.

3. Since d is a pseudometric, d(s, u) ≤ d(s, t)+d(t, u) for all s, t, u ∈ S. According

to Proposition 2.1.28, ∆(d)(s, u) ≤ ∆(d)(s, t) + ∆(d)(t, u) for all s, t, u ∈ S.

41

Theorem 2.1.30. µ(∆) is a pseudometric.

Proof. First, we show that for all n ∈ N, ∆n(0) is a pseudometric by induction

on n. The base case, n = 0, is immediate. The induction step follows from

Proposition 2.1.29.

It remains to show that µ(∆) satisfies the three properties given on page 35.

• Let s ∈ S. Then

µ(∆)(s, s) = sup
n∈N

∆n(0)(s, s)

[Proposition 2.1.13 and 2.1.26 and Theorem 2.1.21]

= 0 [∆n(0) is a pseudometric].

• Let s, t ∈ S. Then

µ(∆)(s, t) = sup
n∈N

∆n(0)(s, t)

[Proposition 2.1.13 and 2.1.26 and Theorem 2.1.21]

= sup
n∈N

∆n(0)(t, s) [∆n(0) is a pseudometric]

= µ(∆)(t, s) [Proposition 2.1.13 and 2.1.26 and Theorem 2.1.21]

• Let s, t, u ∈ S. Then

µ(∆)(s, u) = sup
n∈N

∆n(0)(s, u)

42

[Proposition 2.1.13 and 2.1.26 and Theorem 2.1.21]

≤ sup
n∈N

(
∆n(0)(s, t) + ∆n(0)(t, u)

)
[∆n(0) is a pseudometric]

= sup
n∈N

∆n(0)(s, t) + sup
n∈N

∆n(0)(t, u)

= µ(∆)(s, t) + µ(∆)(t, u)

[Proposition 2.1.13 and 2.1.26 and Theorem 2.1.21]

We slightly modify the function ∆, defining the probabilistic bisimilarity dis-

tances, to the function ∆1. This new function is a key ingredient of the algorithm

based on the ellipsoid method (see Chapter 4), the policy iteration algorithms (see

Chapter 6), and the three new algorithms in which deciding distance one is a key

step (see Chapter 8).

Definition 2.1.31. The function ∆1 : [0, 1]S
2 → [0, 1]S

2
is defined by

∆1(d)(s, t) =


0 if s ∼ t

∆(d)(s, t) otherwise.

Some properties of ∆1 are collected in the following theorem, which will be used

in the correctness proofs of the algorithms presented in Chapter 4, Chapter 6 and

Chapter 8.

Theorem 2.1.32.

(a) The function ∆1 is monotone.

43

(b) The function ∆1 is nonexpansive.

(c) µ(∆1) = ν(∆1).

(d) µ(∆1) = µ(∆).

(e) µ(∆1) = sup
m∈N

∆m
1 (0).

Proof.

(a) Since ∆ is monotone (Proposition 2.1.13), we can easily deduce that ∆1 is

monotone as well.

(b) Since ∆ is nonexpansive (Proposition 2.1.26), we can easily deduce that ∆1 is

nonexpansive as well.

(c) Same as the proof of Theorem 6.2.2(c) where B = S2
1 .

(d) Same as the proof of Theorem 6.2.2(d) where B = S2
1 .

(e) Since ∆1 is monotone (part (a)) and nonexpansive (part (b)), we can conclude

from Theorem 2.1.21 that µ(∆1) = sup
n∈N

∆n
1 (0).

2.2 Probabilistic Automata

In this section, we review the other model of interest, probabilistic automata, its

most well known behavioural equivalence, probabilistic bisimilarity due to Segala

44

and Lynch [79], and the probabilistic bisimilarity pseudometric due to Deng et al.

[29]. This model was first studied in the context of concurrency by Segala in [78].

It captures both nondeterminism (and, hence, concurrency) and probabilities.

Definition 2.2.1. A probabilistic automaton is a tuple 〈S, L,→, `〉 consisting of

• a nonempty finite set S of states,

• a nonempty finite set L of labels,

• a finitely branching transition relation → ⊆ S ×Distr(S), and

• a labelling function ` : S → L.

For the remainder of this section, we fix a probabilistic automaton 〈S, L,→, `〉.

Instead of (s, µ) ∈ →, we will write s→µ, where s ∈ S and µ ∈ Distr(S). Note that,

we suppose the transition relation→ to be finitely branching, that is, for each s ∈ S

the set {µ ∈ Distr(S) | s→ µ } is nonempty and finite.

Example 2.2.2. In Example 2.1.2, we use the state fair to model a fair coin flip

and the state unfair to model a biased coin flip. In this example, we model the

system which non-deterministically chooses to flip either a fair coin or a biased one

using a probabilistic automaton.

We consider the probabilistic automaton above with five states. Recall that a

transition in a labelled Markov chains is probabilistic, that is, it takes a state to

45

coin

head tail

head

tail
1
2

1
2

2
3

1
3

1 1

1

1

a probability distribution on states. Each state of a probabilistic automaton has

a set of such probabilistic transitions emanating from it. The state coin has two

non-deterministic alternatives. The one takes the automaton to state head and tail

with probability 1
2
. The other goes to state head with probability 2

3
and state tail

with probability 1
3
.

Next, we introduce the notion of probabilistic bisimilarity for probabilistic

automata due to Segala and Lynch [79].

Definition 2.2.3. An equivalence relation R ⊆ S2 is a probabilistic bisimulation if

for all s, t ∈ S, if (s, t) ∈ R then

• `(s) = `(t),

• for all s→ µ there exists t→ ν such that (µ, ν) ∈ R↑ and

• for all t→ ν there exists s→ µ such that (ν, µ) ∈ R↑.

46

Definition 2.2.4. Probabilistic bisimilarity is defined by

∼ =
⋃
{R ⊆ S2 | R is a probabilistic bisimulation }.

Proposition 2.2.5. ∼ is a probabilistic bisimulation.

Proof. See, for example, [71, Proposition 7.12].

As we will see below, the probabilistic bisimilarity pseudometric, due to Deng et

al. [29] is defined as the least fixed point of the following function.

Definition 2.2.6. The function ∆ : [0, 1]S
2 → [0, 1]S

2
is defined by

∆(d)(s, t) =



1 if `(s) 6= `(t)

max
{

max
s→µ

min
t→ν

min
ω∈Ω(µ,ν)

∑
u,v∈S

ω(u, v) d(u, v),

max
t→ν

min
s→µ

min
ω∈Ω(µ,ν)

∑
u,v∈S

ω(u, v) d(u, v)
}

otherwise

The following proposition shows that the function ∆ is monotone.

Proposition 2.2.7. [29, Lemma 2.10] For all d, e ∈ [0, 1]S
2
, if d v e then ∆(d) v

∆(e).

Proof. Let d, e ∈ [0, 1]S
2

with d v e. Let s, t ∈ S. We distinguish two cases.

• If `(s) 6= `(t) then

∆(d)(s, t) = 1 = ∆(e)(s, t).

47

• Otherwise,

∆(d)(s, t) = max
{

max
s→µ

min
t→ν

min
ω∈Ω(µ,ν)

∑
u,v∈S

ω(u, v) d(u, v),

max
t→ν

min
s→µ

min
ω∈Ω(µ,ν)

∑
u,v∈S

ω(u, v) d(u, v)
}

≤ max
{

max
s→µ

min
t→ν

min
ω∈Ω(µ,ν)

∑
u,v∈S

ω(u, v) e(u, v),

max
t→ν

min
s→µ

min
ω∈Ω(µ,ν)

∑
u,v∈S

ω(u, v) e(u, v)
}

[d v e]

= ∆(e)(s, t).

Since 〈[0, 1]S
2
,v〉 is a complete lattice according to Proposition 2.1.11 and ∆

is monotone by Proposition 2.2.7, we can conclude from Theorem 2.1.8(a), the

Knaster-Tarski fixed point theorem, that ∆ has a least fixed point. This least fixed

point is denoted by µ(∆) and captures the probabilistic bisimilarity distances for

a probabilistic automaton. The fact that these probabilistic bisimilarity distances

generalize probabilistic bisimilarity is shown next.

Theorem 2.2.8. [29, Corollary 2.14] For all s, t ∈ S, µ(∆)(s, t) = 0 if and only if

s ∼ t.

Proof. The proof is very similar to the one of Theorem 2.1.14, so we do not provide

the proof here. Instead, we refer the reader to [29, Corollary 2.14].

48

Theorem 2.2.9. µ(∆) is a pseudometric.

Proof. The proof is very similar to the one of Theorem 2.1.30, so we do not provide

the proof here.

The Hausdorff metric [47] is defined next.

Definition 2.2.10. The function H : [0, 1]X
2 → [0, 1](2

X)2 is defined by

H(d)(M,N) = max

{
max
µ∈M

min
ν∈N

d(µ, ν),max
ν∈N

min
µ∈M

d(µ, ν)

}
.

We will show that the function H is nonexpansive and will use this fact to prove

that ∆ is nonexpansive.

Proposition 2.2.11. For all d, e ∈ [0, 1]X
2
, ||H(d)−H(e)|| ≤ ||d− e||.

Proof. Let d, e ∈ [0, 1]X
2
. It suffices to show that for all M , N ⊆ X, |H(d)(M,N)−

H(e)(M,N)| ≤ ‖d − e‖. Let M , N ⊆ X. Without loss of generality, assume

that H(d)(M,N) ≥ H(e)(M,N). In this case, it remains to show H(d)(M,N) ≤

H(e)(M,N) + ‖d− e‖. From the definition of H, we can conclude that we need to

show

∀µ ∈M : ∃ν ∈ N : d(µ, ν) ≤ H(e)(M,N) + ‖d− e‖ ∧ (2.5)

∀ν ∈ N : ∃µ ∈M : d(µ, ν) ≤ H(e)(M,N) + ‖d− e‖ (2.6)

We only prove (2.5), as (2.6) can be proved similarly. Let µ ∈M . From the definition

of H, we can conclude that there exists ν ∈ N such that e(µ, ν) ≤ H(e)(M,N).

49

Since d(µ, ν)− e(µ, ν) ≤ ‖d− e‖, we can conclude that

d(µ, ν) ≤ e(µ, ν) + ‖d− e‖ ≤ H(e)(M,N) + ‖d− e‖.

Proposition 2.2.12. For all d, e ∈ [0, 1]S
2
, ||∆(d)−∆(e)|| ≤ ||d− e||.

Proof. Let d, e ∈ [0, 1]S
2
. Let s, t ∈ S. We distinguish two cases.

• Let `(s) 6= `(t). By the definition of ∆, we have

|∆(d)(s, t)−∆(e)(s, t)| = |1− 1| = 0 ≤ ||d− e||.

• Otherwise, `(s) = `(t).

|∆(d)(s, t)−∆(e)(s, t)|

= | H(K(d))({µ | s→ µ}, {ν | t→ ν})−

H(K(d)) H(K(e))({µ | s→ µ}, {ν | t→ ν})|

≤ ‖H(K(d))−H(K(e))‖

≤ ‖K(d)−K(e)‖ [Proposition 2.2.11]

≤ ‖d− e‖ [Proposition 2.1.25]

Similarly to the discussion of labelled Markov chains, we partition the set S2 of

state pairs of a probabilistic automaton into

50

• S2
0 = {(s, t) ∈ S2 | s ∼ t}

• S2
1 = {(s, t) ∈ S2 | `(s) 6= `(t)}

• S2
? = S2 \ (S2

0 ∪ S2
1).

We slightly modify the function ∆ defining the probabilistic bisimilarity distances

to the function ∆1.

Definition 2.2.13. The function ∆1 : [0, 1]S
2 → [0, 1]S

2
is defined as follows.

∆1(d)(s, t) =


0 if (s, t) ∈ S2

0

∆(d)(s, t) otherwise.

We collect some of the properties of ∆1 in the following theorem, which will be

used later.

Theorem 2.2.14.

(a) The function ∆1 is monotone.

(b) µ(∆1) = µ(∆).

Proof.

(a) Since ∆ is monotone (Proposition 2.2.7), we can easily deduce that ∆1 is

monotone as well.

(b) Similar to [23, Corollary 18].

51

3 First Order Theory over the Reals

In this chapter, we look at the algorithm to approximate the probabilistic bisimilarity

distances for probabilistic transition systems by Van Breugel, Sharma and Worrell

[18] (see also [19]). The key idea is to express the distance function using the first

order theory over the reals. We adapt this key idea to come up with algorithms

to approximate probabilistic bisimilarity distances for labelled Markov chains and

probabilistic automata.

3.1 Labelled Markov Chains

In [18], Van Breugel, Sharma and Worrell show that the probabilistic bisimilarity

distances for probabilistic transition systems, a variant of Markov chains, can be

defined as a greatest fixed point of a function. The probabilistic bisimilarity distances

are then a post-fixed point of this function, which can be expressed in the first order

theory over real closed fields. Based on that, they come up with an algorithm which

exploits Tarski’s decision procedure [89] to approximate the probabilistic bisimilarity

distances. We describe this algorithm in this section, adapted to the case of labelled

52

Markov chains.

A probabilistic transition system differs from a labelled Markov chains in 1) there

are no labels in a probabilistic transition system, while the states are labelled in a

labelled Markov chain; 2) a state in a probabilistic transition system may have no

outgoing transitions, while the outgoing transitions of a state of a labelled Markov

chain form a probability distribution, that is, for any state s we have
∑
t∈S

τ(s)(t) = 1.

It is noted that the probabilistic bisimilarity distances in [18] are defined as a

greatest fixed point of a function, while in Section 2.1 we define these distances

as a least fixed point of ∆. This is mainly due to the fact that their ordering [18,

Definition 8] is the opposite to ours in Definition 2.1.10.

The probabilistic bisimilarity distances on the labelled Markov chain are defined

as µ(∆), the least fixed point of ∆ of Definition 2.1.7. According to Theorem 2.1.8(c),

µ(∆) is a pre-fixed point of ∆.

For the rest of this section, we assume that the labelled Markov chain 〈S, L, τ, `〉

has N states s1, s2, · · · , sN . We represent the probabilistic bisimilarity distances

on the set S of states of the labelled Markov chain as a collection of real valued

variables dij where 1 ≤ i, j ≤ N .

We use the predicate below to capture that d is a pseudometric. It requires

that the distance must be a real value in [0, 1], and the three properties which we

mentioned in Section 2.1.

53

Definition 3.1.1. The predicate pseudo(d) is defined by

pseudo(d) ≡
∧

1≤i,j≤N

(
dij ≤ 1 ∧ dij ≥ 0

)
∧
∧

1≤i≤N

dii = 0 ∧∧
1≤i,j≤N

dij = dji ∧
∧

1≤i,j,k≤N

dik ≤ dij + djk

Since we have shown in Theorem 2.1.30 that µ(∆) is a pseudometric even though

the function ∆ is not restricted to pseudometrics, we can replace Definition 3.1.1

with the definition below.

Definition 3.1.2. The predicate unit(d) is defined by

unit(d) ≡
∧

1≤i,j≤N

dij ≤ 1 ∧ dij ≥ 0 (3.1)

The following two predicates help define the predicate pre-fixed(d). pre-fixed1(d, i, j)

captures the case where si and sj have different labels and, hence, their distance is

one. pre-fixed2(d, i, j) captures the case where si and sj have the same label and

in which case ∆(d)(si, sj) ≤ dij captures the pre-fixed point property. The latter

is the case if there exists ω ∈ Ω(τ(si), τ(sj)) such that
∑

1≤x,y≤N

ωxy dxy ≤ dij. The

predicate pre-fixed(d) below is then used to capture that d is a pre-fixed point of ∆.

Definition 3.1.3. The predicate pre-fixed(d) is defined by

pre-fixed(d) ≡
∧

1≤i,j≤N

(
pre-fixed1(d, i, j) ∨ pre-fixed2(d, i, j)

)

54

where

pre-fixed1(d, i, j) ≡ `(si) 6= `(sj) ∧ dij = 1

and

pre-fixed2(d, i, j) ≡ `(si) = `(sj) ∧

∃(ωxy)1≤x,y≤N

((∧
1≤x,y≤N

ωxy ≤ 1 ∧ ωxy ≥ 0
)
∧(∧

1≤x≤N

∑
1≤y≤N

ωxy = τ(si)(sx)
)
∧(∧

1≤y≤N

∑
1≤x≤N

ωxy = τ(sj)(sy)
)
∧

(∑
1≤x,y≤N

ωxy dxy ≤ dij

))

With the definitions above, we are ready to present the algorithm. The inputs

of the algorithm include a labelled Markov chain 〈S, L, τ, `〉, a positive thresh-

old ε ∈ (0, 1], and a pair of states (si, sj) for which the distance will be approxi-

mated. The algorithm outputs an interval of at most size ε in which the probabilistic

bisimilarity distance for (si, sj) lies.

tarski is a decision procedure which takes as input a predicate expressed in the

first order theory over the reals. This procedure outputs whether there is solution

to the input predicate. The existence of such a procedure was first proved by Tarski

[89]. The upper-bound of the time complexity of this decision procedure is doubly

exponential in the number of quantifier alternations, and exponential in the number

of variables [74].

55

According to Definition 2.1.7, a pair of states with different labels has distance one.

This leads to the algorithm directly returning the interval [1, 1], if the states si and

sj have different labels. Otherwise, we use binary search to find the approximation

interval.

1 i f `(si) 6= `(sj)

2 r e turn [1, 1] ;

3 e l s e

4 l = 0

5 u = 1

6 whi le u− l > ε

7 m = l+u
2

8 i f tarski(∃ d ∈ RN2
: unit(d) ∧ pre-fixed(d) ∧ dij ≤ m)

9 u = m ;

10 e l s e

11 l = m ;

12 r e turn [l, u] ;

The next proposition indicates that if there is a solution to the input predicate

of the procedure tarski on line 8 for a distance function d, a state pair (si, sj) and

a real number m , then the distance between si and sj must be less than or equal

to m. Otherwise, the distance between si and sj is greater than m.

56

Proposition 3.1.4. ∃d ∈ [0, 1]S
2

: ∆(d) v d ∧ d(si, sj) ≤ m ⇐⇒ µ(∆)(si, sj) ≤

m.

Proof. We prove two implications.

- Assume

∃d ∈ [0, 1]S
2

: ∆(d) v d ∧ d(si, sj) ≤ m. (3.2)

According to Theorem 2.1.8(c), µ(∆) is the least pre-fixed point of ∆. Thus,

µ(∆) v e for all e ∈ [0, 1]S
2

with ∆(e) v e. By (3.2), we have µ(∆) v d and,

hence, µ(∆)(si, sj) ≤ d(si, sj) ≤ m.

- Assume µ(∆)(si, sj) ≤ m. Since µ(∆) is a pre-fixed point of ∆, we have

∆(µ(∆)) v µ(∆) ∧ µ(∆)(si, sj) ≤ m.

To prove the partial correctness of the above algorithm, we annotate it with the

following assertions.

1 i f `(si) 6= `(sj)

2 r e turn [1, 1] ;

3 e l s e

4 l = 0

5 u = 1

6 whi le u− l > ε

57

{µ(∆)(si, sj) ∈ [l, u]}

7 m = l+u
2

8 i f tarski(∃d ∈ RN2
: unit(d) ∧ pre-fixed(d) ∧ dij ≤ m)

{µ(∆)(si, sj) ∈ [l, u] ∧ µ(∆)(si, sj) ≤ m}

9 u = m ;

{µ(∆)(si, sj) ∈ [l, u]}

10 e l s e

{µ(∆)(si, sj) ∈ [l, u] ∧ µ(∆)(si, sj)>m}

11 l = m ;

{µ(∆)(si, sj) ∈ [l, u]}

12 r e turn [l, u] ;

To conclude that the above iterative procedure terminates, we observe that in each

iteration the size of the interval [l, u] is cut in half. Thus, the algorithm terminates

in log 1
2
ε iterations.

3.2 Probabilistic Automata

In this section, we apply the first order theory over the reals to approximate the

probabilistic bisimilarity distances for probabilistic automata. Similar to labelled

Markov chains, the probabilistic bisimilarity distances for probabilistic automata

are defined as µ(∆), which is a pre-fixed point of ∆. As it can also be expressed in

58

the first order theory over the reals, we can come up with a similar algorithm for

probabilistic automata. Some similar work can be found in [24, 25].

For the rest of this section, we assume that the probabilistic automaton 〈S, L,→, `〉

has N states s1, s2, · · · , sN . We represent the probabilistic bisimilarity distances

on the set S of states of the probabilistic automaton as a collection of real-valued

variables dij for 1 ≤ i, j ≤ N . We assume each state si, where 1 ≤ i ≤ N , has Mi

non-deterministic transitions to µi1, µ
i
2, · · · , µiMi

.

We use the same predicate unit(d) defined in Definition 3.1.2 to capture that

each dij is in the unit interval [0, 1]. The following two predicates help define the

predicate pre-fixed(d). pre-fixed1(d, i, j) is the same as in Definition 3.1.3 which

captures the case where si and sj have different labels and, hence, the distance is

one. pre-fixed2(d, i, j) captures the case where si and sj have the same label and

in which case ∆(d)(si, sj) ≤ dij captures the pre-fixed point property. The latter

is the case if for each si → µiu there exists sj → µjv and a coupling ω ∈ Ω(µiu, µ
j
v)

such that
∑

1≤x,y≤N

ωxydxy ≤ dij and the same condition with the roles of si and sj

interchanged. The predicate pre-fixed(d) below is then used to capture that d is a

pre-fixed point of ∆.

Definition 3.2.1. The predicate pre-fixed(d) is defined by

pre-fixed(d) ≡
∧

1≤i,j≤N

pre-fixed1(d, i, j) ∨ pre-fixed2(d, i, j)

59

where

pre-fixed1(d, i, j) ≡ `(si) 6= `(sj) ∧ dij = 1

and

pre-fixed2(d, i, j) ≡ `(si) = `(sj) ∧∧
1≤u≤Mi

∨
1≤v≤Mj

∃(ωxy)1≤x,y≤N((∧
1≤x,y≤N

ωxy ≤ 1 ∧ ωxy ≥ 0
)
∧(∧

1≤x≤N

∑
1≤y≤N

ωxy = µiu(sx)
)
∧(∧

1≤y≤N

∑
1≤x≤N

ωxy = µjv(sy)
)
∧

∑
1≤x,y≤N

ωxy dxy ≤ dij

)

With the above definitions, we are ready to describe the algorithm. The inputs

of the algorithm include a probabilistic automaton 〈S, L,→, `〉, a positive threshold

ε ∈ (0, 1], and a pair of states (si, sj) for which the distance will be approximated.

The algorithm outputs an interval of at most size ε in which the probabilistic

bisimilarity distance for (si, sj) lies.

According to Definition 2.2.6, a pair of states with different labels has distance one.

This leads to the algorithm directly returning the interval [1, 1], if the states si and

sj have different labels. Otherwise, we use binary search to find the approximated

interval. To avoid redundancy, we do not list the algorithm here as it is the same

60

as the one for labelled Markov chains. The only difference is the definition of the

predicate pre-fixed(d)2 which is used as the input predicate to the decision procedure

tarski.

61

4 Ellipsoid Method

In [23], Chen, Van Breugel and Worrell showed that probabilistic bisimilarity

distances for a labelled Markov chain can be expressed as the solution of a linear

program. This linear program can be solved by Khachiyan’s ellipsoid method [58],

of which the running time is polynomial in the size of the labelled Markov chain.

In this chapter, we give a brief introduction on how to use binary search together

with the ellipsoid method to solve linear programs. We then use this algorithm

to approximate the probabilistic bisimilarity distances for labelled Markov chains.

At the end of this chapter, we discuss the possibility of applying this technique to

compute the probabilistic bisimilarity distances for probabilistic automata.

4.1 Linear Programming and the Ellipsoid Method

In this section, we review some definitions related to linear programming and give

an introduction of the ellipsoid method.

Definition 4.1.1. Let m,n be positive integers. A linear program in inequality

62

form is of the following form:

maximize cT · x such that

A · x ≤ b

where x, c ∈ Rn, A ∈ Rm×n and b ∈ Rm.

The linear program in Rn defined above is said to have m constraints which are

expressed by A · x ≤ b. Note that for a linear program, the constraints are not

necessarily given explicitly. The linear program in Section 4.2, which corresponds

to computing the probabilistic bisimilarity distances, does not give the constraints

explicitly. cT · x is called the objective function. For the remainder of this section,

we fix a linear program LP as defined above.

For a linear program, there are several possibilities:

• the linear program is infeasible, that is, no vector x satisfying the constraints

exists;

• the maximized value of cT · x is unbounded;

• an optimum exists.

We assume that the linear program LP is feasible and bounded and, hence, has

an optimal value.

Let c be a positive integer. The ellipsoid method can be used to check whether

there exists a vector x that satisfies the following system. Such a point is called a

63

feasible point.

cT · x ≥ c

A · x ≤ b

The ellipsoid method determines the feasibility of the above system in polynomial

time [58]. We denote the procedure as ellipsoid(LP, c). This procedure returns

true if the system has a feasible point. It implies that the optimum of LP is at

least c. It returns false if the system is infeasible which implies that the optimum

of LP is less than c.

There are several ways to use the ellipsoid method to solve a linear program

(see, for example, [75, Section 3.1]). Here we present the one which can solve LP

by combining binary search and the ellipsoid method. Let l and u be the lower

bound and the upper-bound of cT ·x, respectively. Let ε be a positive number. The

following algorithm outputs an interval of at most size ε in which the optimum of

LP lies.

1 whi le u− l > ε

2 c = l+u
2

3 i f ellipsoid(LP, c)

4 l = c ;

5 e l s e

6 u = c ;

64

7 r e turn [l, u] ;

In the above algorithm, if line 3 returns true, it means the optimum is greater

than c, so that the optimum lies in [c, u]. Otherwise, line 3 returns false and the

optimum lies in [l, c). We continue the algorithm until we reach a solution with the

desired accuracy.

Now that we know how to use the ellipsoid method to solve a linear problem,

we are ready to introduce the ellipsoid method at a high level. For proofs of the

correctness of the ellipsoid method, we refer the interested reader to, for example,

[77, Chapter 13-14].

The ellipsoid method proceeds in iterations. It starts with an initial ellipsoid

of which the volume is big enough to include all the feasible points of LP with

bound c. The centre of the ellipsoid at each iteration is a candidate for a feasible

point of the problem. At each iteration, it verifies whether the centre of the ellipsoid

65

is a feasible point. If it is, the algorithm terminates and returns true. If it is not,

the algorithm calls the Separation procedure find a vector. This vector is used to

construct a new ellipsoid of which the centre might be feasible for the next iteration.

If a maximum number of iterations is reached and a feasible point is not found, the

algorithm terminates and returns false.

The above figure shows the kth iteration of the ellipsoid method where k is

smaller than the maximum number of iterations. At the kth iteration, the ellipsoid

is Ek. If its centre xk is not a feasible point, we find a vector a. This vector forms

a hyperplane {x |aT · x< aT · xk} which separates xk and the region defined on

line 9 of the algorithm below. The separating hyperplane is then used to construct

the new ellipsoid Ek+1 with centre xk+1 which includes the portion of Ek that lies

on the opposite side of the hyperplane from xk for the next iteration.

In the algorithm below, the initial ellipsoid E0 = R2In is a ball with centre 0 and

radius R. Note that R should be initialized properly to make sure that the ellipsoid

includes all the feasible solutions. We will come back to how to initialise R later. N

is the maximum number of iterations the algorithm can have. Its value depends on

the size of the linear program. For details of what value should be assigned to N , we

refer the readers to [77, page 168] for the linear programs with explicit inequalities

and [77, page 173] for the linear programs without explicit inequalities.

The ellipsoid method ellipsoid(LP, c,Separation) is presented below.

66

1 k = 0 ;

2 x0 = 0 ;

3 B0 = R2In where In i s the n× n i d e n t i t y matrix ;

4 whi le k ≤ N

5 i f cT · xk ≥ c and xk s a t i s f i e s the c o n s t r a i n t s o f LP

6 r e turn true ;

7 e l s e

8 Separation outputs a ∈ Rn such that aT · x< aT · xk

9 f o r a l l x s a t i s f y i n g the c o n s t r a i n t s o f LP and cT · x ≥ c ;

10 d = 1√
aTBka

Bka ;

11 xk+1 = xk − 1
n+1
d ;

12 Bk+1 = n2

n2−1
(Bk − 2

n+1
ddT) ;

13 k = k+1;

14 r e turn false ;

If after N iterations, a feasible point is not found, the algorithm returns false

at line 14. Otherwise, at the kth iteration, the ellipsoid Ek = {x ∈ Rn | (x −

xk)TB−1
k (x− xk)} is defined by the n× n matrix Bk. The ellipsoid has centre xk,

which is a potential feasible point and this is checked at line 5. If xk is a feasible

point, the algorithm terminates with true. If it is not, we need to find a separating

hyperplane to construct a new ellipsoid for the (k+ 1)th iteration. The construction

67

of the new ellipsoid is shown on line 8-12. The procedure which checks whether

xk is a feasible point or not and in the latter case finds a separating hyperplane

is called a separation algorithm. Note that a separation procedure Separation

running in polynomial time is a necessary condition for the ellipsoid method being

polynomial time as well.

4.2 Labelled Markov Chains

In this section, we review the polynomial time algorithm to compute the distances

presented by Chen, Van Breugel and Worrell [23]. They showed that the distances

are rational [23, page 446] and that those distances can be computed by means of

Khachiyan’s ellipsoid method [58]. In particular, they showed that the distance

function can be expressed as the solution of a linear program. In this case, the

separation algorithm, which is an integral part of the ellipsoid method, boils down

to solving a minimum cost flow problem. The network simplex algorithm solves the

latter problem in polynomial time [70].

According to Theorem 2.1.32(c, d), for a labelled Markov chain 〈S, L, τ, `〉, the

probabilistic bisimilarity pseudometric µ(∆) is the unique fixed point of ∆1. It

follows that µ(∆) is the greatest fixed point of ∆1. By Theorem 2.1.8(d), µ(∆) is

the greatest post-fixed point of ∆1. Thus, the following linear program computes the

probabilistic bisimilarity distances. Note that the constraints of this linear program

68

are not given explicitly, for the case where a state pair has the same label but is not

probabilistic bisimilar.

maximize
∑

(s,t)∈S2

d(s, t) such that

d(s, t) ≥ 0

d(s, t) ≤ 1

d(s, t) ≤ 0 s ∼ t

d(s, t) ≤ 1 `(s) 6= `(t)

d(s, t) ≤
∑

(u,v)∈S2

ω(u, v) d(u, v) ω ∈ V (Ω(τ(s), τ(t))), s 6∼ t, `(s) = `(t)

Recall that S2
? , S2

1 and S2
0 form a partition of S2. S2

1 contains all the pairs of

states that have different labels. Thus, S2
1 can be decided by comparing the labels of

every pair of states, of which the running time is polynomial in the number of states.

S2
0 contains the state pairs which have distance zero. According to Theorem 2.1.14,

distance zero coincides with probabilistic bisimilarity. The first decision procedure

for probabilistic bisimilarity was provided by Baier [7]. More efficient decision

procedures were subsequently proposed by Derisavi, Hermanns and Sanders [30] and

also by Valmari and Franceschinis [92]. The latter two both run in O(|E| log |S|)

time, where |S| and |E| are the number of states and transitions of the labelled

Markov chain. Hence, it remains to compute the probabilistic bisimilarity distances

of the state pairs in S2
? .

The above system is equivalent to the system below. In this section, we fix LP

69

to be the following linear program.

maximize
∑

(s,t)∈S2
?

d(s, t) such that

∀(s, t) ∈ S2
? d(s, t) ≥ 0

∀(s, t) ∈ S2
? d(s, t) ≤ 1

∀(s, t) ∈ S2
? ∀ω ∈ V (Ω(τ(s), τ(t))) d(s, t) ≤

∑
(u,v)∈S2

?

ω(u, v) d(u, v)+

∑
(u,v)∈S2

1

ω(u, v)

We can restrict the linear program to the set S2
? since d(s, t) is zero for (s, t) ∈ S2

0

and is one for (s, t) ∈ S2
1 . Note that for each (s, t) ∈ S2

? , instead of d(s, t) ≤∑
(u,v)∈S2

ω(u, v) d(u, v), we have d(s, t) ≤
∑

(u,v)∈S2
?

ω(u, v) d(u, v) +
∑

(u,v)∈S2
1

ω(u, v), since

d(u, v) can be replaced with zero if (u, v) ∈ S2
0 and one if (u, v) ∈ S2

1 . That is,∑
(u,v)∈S2

ω(u, v) d(u, v)

=
∑

(u,v)∈S2
?

ω(u, v) d(u, v) +
∑

(u,v)∈S2
0

ω(u, v) d(u, v) +
∑

(u,v)∈S2
1

ω(u, v) d(u, v)

=
∑

(u,v)∈S2
?

ω(u, v) d(u, v) +
∑

(u,v)∈S2
0

ω(u, v)× 0 +
∑

(u,v)∈S2
1

ω(u, v)× 1

=
∑

(u,v)∈S2
?

ω(u, v) d(u, v) +
∑

(u,v)∈S2
1

ω(u, v)

Thus, for each (s, t) ∈ S2
? and ω ∈ V (Ω(τ(s), τ(t))), we have d(s, t) ≤

∑
(u,v)∈S2

?

ω(u, v) d(u, v)+∑
(u,v)∈S2

1

ω(u, v).

The dimension n of this linear program is |S2
? |. As discussed in the previous

section, we can use binary search to compute the distances. Since for each (s, t) ∈ S2
?

70

we have 0 ≤ d(s, t) ≤ 1, we can set the lower bound of the objective function∑
(s,t)∈S2

?

d(s, t) to 0 and the upper-bound to n. In each iteration of the binary search,

we run the ellipsoid method ellipsoid(LP, c,Separation), where c ∈ [0, n] .

There are several input parameters to be set for the procedure ellipsoid(LP, c,

Separation). Let η be the size of the LP, the maximum number of iterations N

can be set to 125n3η according to [77, page 173].

A ball in n dimensions can be defined by the set of points (x1, ..., xn) which is

represented by the equation

R2 ≥
n∑
i=1

(xi − ci)2 (4.1)

where R is the radius of the ball and (c1, · · · , cn) is the centre of the ball. The initial

ellipsoid is a ball with centre 0, so ci = 0 for all 1 ≤ i ≤ n. Since for each (s, t) ∈ S2
?

we have 0 ≤ d(s, t) ≤ 1, the maximum value of the right hand side of (4.1) can be

obtained by replacing xi with one for all i. Thus, the radius of the ball R can be

set to
√
n.

We need one more ingredient for the ellipsoid method, the polynomial time separa-

tion algorithm. Firstly, the separation algorithm for ellipsoid(LP, c,Separation)

should check in polynomial time if a distance function d is a feasible solution, that

is, if d satisfies the following constraints:

• C1: ∀(s, t) ∈ S2
? : d(s, t) ≥ 0;

• C2: ∀(s, t) ∈ S2
? : d(s, t) ≤ 1;

71

• C3: ∀(s, t) ∈ S2
? : ∀ω ∈ V (Ω(τ(s), τ(t))) : d(s, t) ≤

∑
(u,v)∈S2

?

ω(u, v) d(u, v) +∑
(u,v)∈S2

1

ω(u, v);

• C4:
∑

(s,t)∈S2
?

d(s, t) ≥ c.

C1, C2 and C3 are the constraints in LP. The constraint C4 is added in each

iteration of the binary search algorithm.

It is obvious that checking the constraints C1, C2 and C4 only requires polynomial

time. For the constraint C3, it suffices to check whether

d(s, t) ≤ min
ω∈V (Ω(τ(s),τ(t)))

∑
(u,v)∈S2

ω(u, v) d(u, v)

is satisfied for all (s, t) ∈ S2
? . Thus, it suffices to give a polynomial time procedure

to compute a π ∈ S2 → [0, 1] such that

π(s, t) = argmin
ω∈V (Ω(τ(s),τ(t)))

∑
(u,v)∈S2

ω(u, v) d(u, v).

This problem can be formulated as the minimum-cost flow problem.

minimize
∑

(s,t)∈S2
?

ω(s, t) d(s, t) such that

∀u ∈ S :
∑
v∈S

ω(u, v) = τ(s)(u)

∀v ∈ S :
∑
u∈S

ω(u, v) = τ(t)(v)

∀(s, t) ∈ S2 : ω(s, t) ≥ 0

This problem can be solved in polynomial time using, for example, Orlin’s

network simplex algorithm [70].

72

Secondly, if any of the C1-C4 constraints is violated, the following proposition

shows that a polynomial time procedure to find a separation hyperplane exists.

Proposition 4.2.1. If d is not a feasible solution, the separating hyperplane can be

defined as follows.

(a) If there exists (s, t) ∈ S2
? such that d(s, t)< 0, the hyperplane is defined as

α(u, v) =


−1 if (u, v) = (s, t)

0 otherwise

(b) If there exists (s, t) ∈ S2
? such that d(s, t)> 1, the hyperplane is defined as

α(u, v) =


1 if (u, v) = (s, t)

0 otherwise

(c) If there exist (s, t) ∈ S2
? and ω ∈ V (Ω(τ(s), τ(t))) such that

d(s, t)>
∑

(u,v)∈S2

ω(u, v) d(u, v)

the hyperplane is defined as

α(u, v) =


1− ω(u, v) if (u, v) = (s, t)

−ω(u, v) otherwise

(d) If
∑

(s,t)∈S2
?

d(s, t)<c, the hyperplane is defined as α(u, v) = −1 for all (u, v) ∈ S2
? .

Proof. We have to show that the hyperplane α is a separating hyperplane such that

∑
(u,v)∈S2

?

α(u, v) d′(u, v)<
∑

(u,v)∈S2
?

α(u, v) d(u, v)

73

for all d′ satisfying the constraints C1-C4.

We consider four cases.

(a) If d violates C1, there must exist some (s, t) ∈ S2
? such that d(s, t) < 0. Let

the hyperplane α be defined as in case (a) above. Then,

∑
(u,v)∈S2

?

α(u, v) d′(u, v) = −d′(s, t) ≤ 0<−d(s, t) =
∑

(u,v)∈S2
?

α(u, v) d(u, v).

(b) If d violates C2, there must exist some (s, t) ∈ S2
? such that d(s, t) > 1. Let

the hyperplane α be defined as in case (b) above. Then,

∑
(u,v)∈S2

?

α(u, v) d′(u, v) = d′(s, t) ≤ 1< d(s, t) =
∑

(u,v)∈S2
?

α(u, v) d(u, v).

(c) If d violates C3, there must exist some (s, t) ∈ S2
? and ω ∈ V (Ω(τ(s), τ(t)))

such that d(s, t)>
∑

(u,v)∈S2

ω(u, v) d(u, v). Let the hyperplane α be defined as

in case (c) above. Then,

∑
(u,v)∈S2

?

α(u, v) d′(u, v) = α(s, t) d′(s, t) +
∑

(u,v)∈S2
?\(s,t)

α(u, v) d′(u, v)

= (1− ω(s, t)) d′(s, t) +
∑

(u,v)∈S2
?\(s,t)

−ω(u, v) d′(u, v)

= d′(s, t)−
∑

(u,v)∈S2
?

ω(u, v) d′(u, v)

≤ 0 [d′ satisfies C3]

< d(s, t)−
∑

(u,v)∈S2
?

ω(u, v) d(u, v)

= (1− ω(s, t)) d(s, t) +
∑

(u,v)∈S2
?\(s,t)

−ω(u, v) d(u, v)

74

= α(s, t) d(s, t) +
∑

(u,v)∈S2
?\(s,t)

α(u, v) d(u, v)

=
∑

(u,v)∈S2
?

α(u, v) d(u, v).

(d) Assume C4 is violated, that is,
∑

(s,t)∈S2
?

d(s, t) < c. Let the hyperplane α be

defined as in case (d) above. Then,

∑
(u,v)∈S2

?

α(u, v) d′(u, v) = −
∑

(u,v)∈S2
?

d′(u, v)

≤ −c [d′ satisfies C4]

< −
∑

(u,v)∈S2
?

d(u, v)

=
∑

(u,v)∈S2
?

α(u, v) d(u, v).

4.3 Probabilistic Automata

A linear program has an objective function, which is either maximized or minimized.

In the definition of the probabilistic bisimilarity distances for probabilistic automata,

when two states have the same label the distance is defined by a mixture of maxi-

mizations and minimizations. It is not straightforward whether the transformation

to a linear program is possible. In [4], Bacci et al. define the probabilistic bisimilarity

distances for probabilistic automata by maximizing the Hausdorff distance. However,

75

the definition of Hausdorff distance itself involves alternations of maximizations

and minimizations. It is unclear whether we can formulate the computation of the

probabilistic bisimilarity distances for probabilistic automata as a linear program.

76

5 Labelled Markov Chains and Markov Decision

Processes

In this chapter, we introduce a Markov decision process (MDP) as a game played by

a single player. As the player moves from one vertex of the game graph to another,

a cost may be incurred. The goal of the game is to minimize the cost according to

some criterion ii. We limit our goal to minimizing the cost according to the so-called

total cost criterion, that is, we want to minimize the expected cumulative cost in the

long run. There are other criteria, including the discounted cost criterion and the

average cost criterion. For more details about the criteria, we refer the readers to,

for example, [46, Chapter 2]. The MDPs we are interested in have positive cost and

are stopping MDPs, a special kind of MDPs which we will introduce in Section 5.1.

We will introduce the optimal policy that can minimize the expected cumulative

cost for stopping MDPs. The so-called optimal value of a vertex is the expected

cumulative cost of the player starting at that vertex and following an optimal policy.

iiIn other settings, the goal of the game might be to maximize the rewards. For example, in the
reinforcement learning literature, the goal of the player is to maximize the expected cumulative
rewards in the long run (see, for example, [84, Section 1.3]).

77

In Section 5.2, we will present a classic algorithm by Howard [53] to compute such

an optimal policy. In Section 5.3.1, we will present a new transformation mapping

a labelled Markov chain to a stopping MDP, where the probabilistic bisimilarity

distances of the labelled Markov chain correspond to the so-called optimal values of

the stopping MDP. This transformation is similar to the one in [21] which maps a

probabilistic automaton to a simple stochastic game (see Chapter 10).

5.1 Markov Decision Processes

MDPs were introduced by Bellman [12]. We can view an MDP as a game played by

a single player iii. An MDP has vertices and actions where each vertex has at least

one action. In a game, the player is at a vertex and chooses an action available at

that vertex. The player then moves to a vertex which is chosen randomly according

to the probability distribution determined by that action. Each transition incurs

a cost which is a number in the unit interval [0, 1]. The goal of the player is to

minimize the expected cumulative cost in the long run.

A policy for the player maps each vertex to one of the actions available at

that vertex. In game theory, these policies are called pure and stationary (see, for

example, [44]). The policies are pure since they map the vertices to one of the

actions, not a probability distribution on the actions. The policies are stationary

iiiThe reinforcement learning community uses agent instead of player (see, for example [84]).

78

(or memoryless), since the policy is the same every time the player visits the same

vertex. Policies are also known as strategies. Now let us formally define MDPs.

Definition 5.1.1. A Markov decision process (MDP) is a tuple 〈V,A, α, π, c〉

consisting of

• a set V of vertices,

• a set A of actions,

• an available action function α : V → 2A,

• a transition probability function π : V × A→ Distr(V), and

• a cost function c : V × A× V 7→ [0, 1].

Furthermore, we restrict our attention to MDPs with finitely many vertices and

finitely many actions. We restrict the transition probabilities to be rationals. For

each vertex x ∈ V , α(x) is the set of actions that are available at vertex x. We

denote the cost of the transition from x to y under action a as c(x, a, y), where the

action a should be available at x, that is, a ∈ α(x), and the transition probability

should be positive, that is, π(x, a)(y)> 0.

The set of (total) policies is defined as follows. We will consider partial policies

in Chapter 7.

Definition 5.1.2. The set T of total policies is defined by T = {T ∈ AV | ∀x ∈

V : T (x) ∈ α(x)}.

79

Example 5.1.3. We consider an MDP with four vertices: x, y, z and w. There

are three actions: a, b and ε. The vertex x has two available actions a and b. All

the other vertices have only one available action. The MDP can be depicted as the

graph shown below. The transition probabilities are denoted along the edges. The

cost of all transitions is zero except the one from w to z under the action ε which is

one.

z

ε

w
ε

x y

1
1
2

1
2

1
2

1
2

a b b

1 1

A total policy T maps each vertex to an available action at that vertex. For

example, the following defines a policy.

T (x) = b

T (y) = b

T (z) = ε

T (w) = ε

As there are no negative costs in an MDP, the expected cumulative cost is always

non-negative. However, the expected cumulative cost is not always bounded as the

80

following simple MDP shows. The cost of the transition from x back to itself taking

the action ε is one. As there is only one action available at vertex x, the player can

only take this action. Obviously, the expected cumulative cost is not bounded.

x

ε
1

In this dissertation, we consider a special kind of MDP of which the cost is

always bounded (see [46, Section 2.4]). An MDP and a policy for the player give

rise naturally to a Markov chain, where the vertices of the MDP are the states

of the Markov chain (see Definition 5.3.3). A vertex is called a terminal vertex if

no cost will be accumulated once such a vertex is reached. The value under any

policy of a terminal vertex is zero. An MDP is stopping if for each policy, in the

corresponding Markov chain, from each vertex the player reaches a terminal vertex

with probability one.

For the remainder of this section, we fix a stopping MDP 〈V,A, α, π, c〉. Let us

assume that the expected cumulative cost is bounded by one. The value function

vT : V → [0, 1] under a policy T maps each vertex x to the expected cumulative

cost in the long run provided that the player plays according to the policy T and

starts at vertex x. The expected cumulative cost is used to evaluate the policy T

and can be characterized as the unique fixed point of the following function [46,

Definition 2.4.4].

81

Definition 5.1.4. Let T ∈ T be a policy for the player. The function ΘT : [0, 1]V →

[0, 1]V is defined by

ΘT (v)(x) =


∑
y∈V

π
(
x, T (x)

)(
y
)(

c(x, T (x), y) + v(y)
)

if x is not a terminal vertex

0 if x is a terminal vertex.

Theorem 5.1.5. ΘT has a unique fixed point.

Proof. In [46, Definition 2.4.4], vT is defined to be the unique solution of the

following equations.

vT (x) =


∑
y∈V

π
(
x, T (x)

)(
y
)(

c(x, T (x), y) + vT (x)
)

if x is not a terminal vertex

0 if x is a terminal vertex.

ΘT has a unique fixed point which is equal to vT , thus the values of the vertices

under the policy T are defined as the unique fixed point of ΘT .

Example 5.1.6. Consider the MDP in Example 5.1.3. Vertex z is a terminal

vertex as it can only go back to itself by taking the action ε and the cost of that

transition is zero. Vertex w reaches z by taking ε and ε is the only available action

at z. Vertex y can take its only available action b and go to w first, from which it

reaches z. Vertex x has two available actions. If the player chooses a, it reaches z.

Otherwise, it chooses b and reaches z and w each with probability 1
2
. Hence, it’s a

stopping MDP.

82

The MDP and the policy T of Example 5.1.3 give rise to a Markov chain which

is shown below.

z

ε

w
ε

x y

1
2

1
2

1
2

1
2

b b

1 1

We can calculate the values of the vertices under the policy T by solving the

following equations according to Definition 5.1.4.

vT (x) = ΘT (vT)(x) = 1
2
×
(
c
(
x, b, z

)
+ vT (z)

)
+

1
2
×
(
c
(
x, b, w

)
+ vT (w)

)
[T (x) = b]

vT (y) = ΘT (vT)(y) = 1
2
×
(
c
(
y, b, y

)
+ vT (y)

)
+

1
2
×
(
c
(
y, b, w

)
+ vT (w)

)
[T (y) = b]

vT (z) = ΘT (vT)(z) = 0 [z is a terminal vertex]

vT (w) = ΘT (vT)(w) = 1×
(
c
(
w, ε, z

)
+ vT (z)

)
[T (w) = ε]

Note that all costs are zero except c
(
w, ε, z

)
= 1. The values of the vertices

under the policy T , which are the solutions of the above equations, are shown in the

table below.

x y z w
1
2

1 0 1

83

The set [0, 1]V is endowed with the partial order v defined as v v v′ if and only

if v(x) ≤ v′(x) for all x ∈ V (cf. Definition 2.1.18). A policy T is better than a

policy T ′ if vT (x) ≤ vT
′
(x) for every x ∈ V , that is, vT v vT

′
. A policy is optimal if

it minimizes the expected accumulated cost. It has been shown that every MDP

has an optimal policy [46, Theorem 2.1.9]. An optimal policy Topt for a stopping

MDP satisfies vTopt v vT for every policy T .

The optimal values of a stopping MDP, that is, the values of the vertices under

the optimal policy, can be characterized as the least fixed point of the following

function.

Definition 5.1.7. The function Φ : [0, 1]V → [0, 1]V is defined by

Φ(f)(x) =


min
a∈α(x)

∑
y∈V

π(x, a)(y)
(
c(x, a, y) + f(y)

)
if x is not a terminal vertex

0 if x is a terminal vertex.

Proposition 5.1.8. For all f, g ∈ [0, 1]V , if f v g then Φ(f) v Φ(g).

Proof. Let f, g ∈ [0, 1]V with f v g. Let x ∈ V . We consider two cases.

• If x is a terminal vertex, Φ(f)(x) = 0 = Φ(g)(x).

• Otherwise x is not a terminal vertex and

Φ(f)(x) = min
a∈α(x)

∑
y∈V

π(x, a)(y)
(
c(x, a, y) + f(y)

)
≤ min

a∈α(x)

∑
y∈V

π(x, a)(y)
(
c(x, a, y) + g(y)

)
[f v g]

= Φ(g)(x).

84

Since 〈[0, 1]V ,v〉 is a complete lattice (Proposition 2.1.19) and Φ is monotone,

we can conclude from Theorem 2.1.8(a), the Knaster-Tarski fixed point theorem,

that Φ has a least fixed point. We denote this least fixed point by µ(Φ).

Proposition 5.1.9. For all T ∈ T , we have µ(Φ) v vT .

Proof. Let T ∈ T . According to Theorem 2.1.8(c), it suffices to prove that Φ(vT) v

vT . Let x be a vertex. We consider two cases.

• If x is a terminal vertex, then

µ(Φ)(x) = Φ(µ(Φ))(x) = 0 = ΘT (vT)(x) = vT (x).

• Otherwise, x is not a terminal vertex and

Φ(vT)(x) = min
a∈α(x)

∑
y∈V

π(x, a)(y)
(
c(x, a, y) + vT (y)

)
≤

∑
y∈V

π(x, T (x))(y)
(
c(x, T (x), y) + vT (y)

)
= ΘT (vT)(x)

= vT (x).

Proposition 5.1.10. There exists a policy T ∈ T such that vT = µ(Φ).

85

Proof. For each non-terminal vertex x, we define

T (x) = argmin
a∈α(x)

∑
y∈V

π(x, a)(y)
(
c(x, a, y) + µ(Φ)(y)

)
. (5.1)

Since the set A is assumed to be finite, the above exists. By Theorem 5.1.5, vT is

the unique fixed point of the function ΘT . To conclude that vT = µ(Φ), it remains

to show that µ(Φ) is a fixed point of ΘT . Let x ∈ V . We distinguish two cases.

• If x is a terminal vertex, then

ΘT (µ(Φ))(x) = 0 = Φ(µ(Φ))(x) = µ(Φ)(x).

• Otherwise, x is not a terminal vertex. Then

ΘT (µ(Φ))(x) =
∑
y∈V

π(x, T (x))(y)
(
c(x, T (x), y) + µ(Φ)(y)

)
= min

a∈α(x)

∑
y∈V

π(x, a)(y)
(
c(x, a, y) + µ(Φ)(y)

)
[(5.1)]

= Φ(µ(Φ))(x)

= µ(Φ)(x).

Theorem 5.1.11. µ(Φ) = min
T∈T

vT .

Proof. Immediate consequence of Proposition 5.1.9 and Proposition 5.1.10.

Example 5.1.12. We show that the policy T in Example 5.1.3 is not optimal. Let

us define a new policy T ′, which is the same as T except that T ′ maps x to a. The

values of the vertices under T ′ are shown in the table below.

86

x y z w

0 1 0 1

We have

vT (x) = 1
2
> 0 = vT

′
(x).

Thus, the policy T is not optimal. The reader can verify that vT
′

is the least fixed

point of Φ and the policy T ′ is optimal.

Next, we show that the function Φ is nonexpansive. This result will be used to

show µ(Φ) = µ(∆) in Section 5.3.

Theorem 5.1.13. For all f, g ∈ [0, 1]V , ||Φ(f)− Φ(g)|| ≤ ||f − g||.

Proof. Let f, g ∈ [0, 1]V . Let x ∈ V . We distinguish two cases.

• Assume x is a terminal vertex. According to the definition of Φ, we have

|Φ(f)(x)− Φ(g)(x)| = |0− 0| = 0 ≤ ||f − g||.

• Otherwise, x is not a terminal vertex. Without loss of generality, assume that

Φ(f)(x) ≥ Φ(g)(x). Let

b = argmin
a∈α(x)

∑
y∈V

π(x, a)(y)
(
c(x, a, y) + g(y)

)
.

87

We have

|Φ(f)(x)− Φ(g)(x)| = Φ(f)(x)− Φ(g)(x)

= min
a∈α(x)

∑
y∈V

π(x, a)(y)
(
c(x, a, y) + f(y)

)
−

min
a∈α(x)

∑
y∈V

π(x, a)(y)
(
c(x, a, y) + g(y)

)
= min

a∈α(x)

∑
y∈V

π(x, a)(y)
(
c(x, a, y) + f(y)

)
−

∑
y∈V

π(x, b)(y)
(
c(x, b, y) + g(y)

)
≤

∑
y∈V

π(x, b)(y)
(
c(x, b, y) + f(y)

)
−

∑
y∈V

π(x, b)(y)
(
c(x, b, y) + g(y)

)
=

∑
y∈V

π(x, b)(y)
(
f(y)− g(y)

)
≤

∑
y∈V

π(x, b)(y)||f − g||

= ||f − g||.

5.2 Policy Iteration for MDPs

Next, we review Howard’s policy iteration algorithm which correctly computes an

optimal policy of an MDP in a finite number of iterations [53]. Note that we only

consider stopping MDPs but Howard’s policy iteration algorithm can correctly

compute an optimal policy for MDPs in general.

88

Consider a stopping MDP 〈V,A, α, π, c〉. The action

b = argmin
a∈α(x)

∑
y∈V

π(x, a)(y)
(
c(x, a, y) + vT (y)

)
for vertex x is called optimal with respect to a fixed policy T . Note that b may not

be unique. We call a vertex x of an MDP switchable with respect to a fixed policy

T if T (x) is not an optimal action, that is,

∑
y∈V

π(x, T (x))(y)
(
c(x, T (x), y) + vT (y)

)
> min

a∈α(x)

∑
y∈V

π(x, a)(y)
(
c(x, a, y) + vT (y)

)
.

The policy iteration algorithm starts with a random policy. It repeatedly selects

switchable vertices, and switches them. That is, it changes the policy so that the

actions corresponding to the selected vertices are replaced by the optimal actions of

those vertices. The algorithm halts when there is no switchable vertex, in which

case an optimal policy has been found.

Different policy iteration algorithms have different select procedures which we

denote by select in the code below. Such a select procedure determines the set of

vertices to be switched. The select procedures for three different policy iteration

algorithms are as follows:

• Simple policy iteration algorithm: it selects only one of the switchable vertices.

Specifically, it assigns each vertex a unique id and it selects the switchable

vertex with the largest id.

• General policy iteration algorithm: it selects all the switchable vertices.

89

• Random policy iteration algorithm: it selects a switchable vertex uniformly at

random from the set of switchable vertices.

1 T = a random p o l i c y

2 S = {x ∈ V | x is switchable with respect to T}

3 whi le S 6= ∅

4 f o r each x ∈ select(S)

5 T (x) = argmin
a∈α(x)

∑
y∈V

π(x, a)(y)
(
c(x, a, y) + vT (y)

)
6 S = {x ∈ V | x is switchable with respect to T}

5.3 Labelled Markov Chains

Now, we are ready to introduce the transformation that maps each labelled Markov

chain to a stopping MDP such that distances correspond to optimal values.

Definition 5.3.1. Let 〈S, L, τ, `〉 be a labelled Markov chain. The corresponding

Markov decision process 〈V,A, α, π, c〉 consists of

• the set of vertices V = S2 ∪ {∞},

• the set of actions A =
⋃
{V (Ω(τ(s), τ(t))) | x ∈ S2

? } ∪ {ε},

• the available actions function α : V → 2A defined by

α(x) =


V (Ω(τ(s), τ(t))) if x = (s, t) ∧ (s, t) ∈ S2

?

{ε} if x ∈ S2
0 ∪ S2

1 ∪ {∞}

90

• the probability transition function π : V × A→ Distr(V) defined by

π(x, a)(y) =


a(u, v) if x ∈ S2

? ∧ a ∈ α(x) ∧ y ∈ S2 ∧ y = (u, v)

1 if x ∈ S2
0 ∪ S2

1 ∪ {∞} ∧ a = ε ∧ y = ∞

0 otherwise

• the cost function c : V × A× V → [0, 1] defined by

c(x, a, y) =


1 if x ∈ S2

1 ∧ a = ε ∧ y = ∞

0 otherwise

Note that ∞ is a terminal vertex as it has only one transition which takes it

back to itself and there is no cost associated with this transition. Let (s, t) ∈ S2
0 .

This vertex has only one transition which always takes it to the terminal vertex ∞.

The cost associated with that transition is zero. Let (s, t) ∈ S2
1 . Similarly, there is

only one transition which always takes (s, t) to the terminal vertex ∞. However,

the cost of that transition is one. Let (s, t) ∈ S2
? . The available actions at vertex

(s, t) are the couplings in V (Ω(τ(s), τ(t))) and the cost is zero no matter which

action is taken. The probability of transitioning from (s, t) to (u, v) with action ω

is ω(u, v). Recall that a coupling is a probability distribution on S2.

Example 5.3.2. We consider the labelled Markov chain with six states shown below.

The labels are represented by the colours of the states.

91

s

yx

t

u w

1
2

1
2

1 1

1
2

1
2

11

Let V (Ω(τ(s), τ(t))) = {ρ, ω} with

ρ(x,w) = ρ(y, u) = ω(x, u) = ω(y, w) = 1
2
.

Let V (Ω(τ(t), τ(s))) = {ρ′, ω′} with

ρ′(w, x) = ρ′(u, y) = ω′(u, x) = ω′(w, y) = 1
2
.

According to Definition 5.3.1, the labelled Markov chain is transformed into the

MDP shown below. The cost of all transitions is zero, except the ones starting from

vertices in S2
1 , that is, the cost is one for the transitions starting from (x,w), (y, w),

(y, u) and their symmetric counterparts (w, x), (w, y), (u, y).

We will show later that the distance of a state pair in a labelled Markov chain is

equivalent to the expected cumulative cost of the vertex in the corresponding MDP

under the optimal policy. As can be seen from the following figure, the MDP is

symmetric since the distance function is symmetric.

92

s, t∞

ε

x, w

ε

y, uε

x, u

ε

y, w

ε

ρ

ω

1
2

1
2

1
2

1
2

1

1

1

1

1

t, s

w, x

ε

u, y ε

u, x

ε

w, y

ε

ρ′

ω′

1
2

1
2

1
2

1
2

1

1

1

1

The MDP mapped to the labelled Markov chain above.

Next, we will show that the MDP transformed from a labelled Markov chain

according to Definition 5.3.1 is stopping.

By using only the actions of the policy, an MDP and a policy naturally give rise

to a Markov chain, where the vertices of the MDP are the states of the Markov

chain. We will call this the coupled Markov chain.

Definition 5.3.3. Let 〈V,A, α, π, c〉 be an MDP. Let T ∈ T be a policy. The

coupled Markov chain 〈S, τ〉 consists of

• the set of states S = V , and

• the transition probability function τ : S → Distr(S) is defined by

τ(s) = π(s, T (s)).

93

We define the relation I by I = { (s, s) | s ∈ S }. Given the relations P , R ⊆ S2,

we define the relations R−1 and P ◦R by

R−1 = { (t, s) | (s, t) ∈ R }

P ◦R = { (s, u) | ∃t ∈ S : (s, t) ∈ P ∧ (t, u) ∈ R }

A strongly connected component of a Markov chain is a maximal set of states

such that there is a path between every pair of states in the set. A bottom strongly

connected component of a Markov chain, also known as a closed communication

class, is a strongly connected component such that every state in the component

can only reach states in the component. For details on the strongly connected

components and bottom strongly connected components, we refer interested readers

to, for example, [8, Notation 10.26].

Lemma 5.3.4. For a relation R ⊆ S2, let the predicate B(R) iv be defined by

B(R) iff ∀(s, t) ∈ R : `(s) = `(t) ∧ ∃ω ∈ Ω(τ(s), τ(t)) : support(ω) ⊆ R. Then,

(a) B(I).

(b) If B(R) then B(R−1).

(c) If B(P) and B(R) then B(P ◦R).

(d) If B(P) and B(R) then B(P ∪R).

ivThe predicate B(R) captures that R is a probabilistic bisimulation if R is an equivalence
relation.

94

(e) If C is a closed communication class not containing any element in S2
0 ∪ S2

1 ,

then B(C).

(f) If C is a closed communication class not containing any element in S2
0 ∪ S2

1

and C̄ is the reflexive, symmetric and transitive closure of C, then B(C̄).

(g) If C is a closed communication class not containing any element in S2
0 ∪ S2

1

and (s, t) ∈ C, then s ∼ t.

Proof. (a) Let s ∈ S. We define ω : S2 → [0, 1] by

ω(u, v) =


τ(s)(u) if u = v

0 otherwise

It is proved in Proposition 2.1.29 that ω ∈ Ω(τ(s), τ(s)). We also observe that

support(ω) ⊆ I. Since also for all s ∈ S, `(s) = `(s), we can conclude that

B(I).

(b) Assume that B(R). Let (s, t) ∈ R. Since B(R), we have that `(s) = `(t)

and there exists π ∈ Ω(τ(t), τ(s)) such that support(π) ⊆ R. We define

ρ : S2 → [0, 1] by

ρ(u, v) = π(v, u).

According to the proof of Proposition 2.1.27, ρ ∈ Ω(τ(s), τ(t)). Furthermore,

support(ρ) = { (u, v) | ρ(u, v)> 0 }

95

= { (u, v) | π(v, u)> 0 }

⊆ { (u, v) | (v, u) ∈ R } [support(π) ⊆ R]

= R−1.

Hence, we can conclude that B(R−1).

(c) Assume that B(P) and B(R). Suppose that (s, u) ∈ P ◦R, that is, (s, t) ∈ P

and (t, u) ∈ R for some t ∈ S. Since B(P) and B(R), we have that `(s) = `(t)

and `(t) = `(u) and, hence, `(s) = `(u). From B(P) and B(R), we can

conclude that there exist πst ∈ Ω(τ(s), τ(t)) and πtu ∈ Ω(τ(t), τ(u)) such that

support(πst) ⊆ P and support(πtu) ⊆ R. We define the function πsu : S2 →

[0, 1] by

πsu(x, z) =
∑

y∈support(τ(t))

πst(x, y)πtu(y, z)

τ(t)(y)
.

According to the proof of Proposition 2.1.28, we have πsu ∈ Ω(τ(s), τ(u)).

Thus, for all x, z ∈ S,

(x, z) ∈ support(πsu)

iff
∑

y∈support(τ(t))

πst(x, y)πtu(y, z)

τ(t)(y)
> 0

iff ∃y ∈ support(τ(t)) : πst(x, y)> 0 ∧ πtu(y, z)> 0

iff ∃y ∈ support(τ(t)) : (x, y) ∈ support(πst) ∧ (y, z) ∈ support(πtu)

implies ∃y ∈ support(τ(t)) : (x, y) ∈ P ∧ (y, z) ∈ R

[support(πst) ⊆ P and support(πtu) ⊆ R]

96

implies (x, z) ∈ P ◦R.

Therefore, B(P ◦R).

(d) Assume that B(P) and B(R). Suppose that (s, t) ∈ P ∪ R. Let us assume

that (s, t) ∈ P . The other case, when (s, t) ∈ R, can be proved similarly. Since

B(P), we can conclude that `(s) = `(t) and there exists ω ∈ Ω(τ(s), τ(t)) such

that support(ω) ⊆ P ⊆ P ∪R. Hence, B(P ∪R).

(e) Assume that C is a closed communication class that does not contain any

element in S2
0 ∪ S2

1 . Let (s, t) ∈ C. Since (s, t) 6∈ S2
1 , `(s) = `(t).

Let u, v ∈ S. Since C is a closed communication class, if π((s, t), (u, v))> 0

then (u, v) ∈ C. From the construction of the Markov chain and the fact

that (s, t) is in neither S2
0 nor S2

1 , we can conclude that π((s, t), (u, v)) =

T (s, t)(u, v). We have that T (s, t) ∈ Ω(τ(s), τ(t)) and support(T (s, t)) =

{ (u, v) | π(s, t)(u, v)> 0 } ⊆ C. Hence, B(C).

(f) Let C be a closed communication class not containing any element in S2
0 ∪ S2

1 .

From part (a) and (d) we can conclude that the reflexive closure of C satisfies

B. From part (b) and (d) we can deduce that the reflexive and symmetric

closure satisfies B as well. Finally, from part (c) and (d) we can conclude that

the transitive closure of the reflexive and symmetric closure also satisfies B.

(g) Let C be a closed communication class not containing any element in S2
0 ∪ S2

1

97

and let C̄ be the reflexive, symmetric and transitive closure of C. Since C̄ is

an equivalence relation and B(C̄) by part (f), we can conclude that C̄ is a

probabilistic bisimulation. If (s, t) ∈ C then (s, t) ∈ C̄ and, hence, s ∼ t.

Theorem 5.3.5. The MDP defined in Definition 5.3.1 is a stopping MDP.

Proof. The proof is very similar to the one of [85, Theorem 14]. To show that the

MDP is stopping, we need to show that every vertex reaches ∞ with probability one.

Obviously, the vertices in S2
0 and S2

1 reach ∞ with probability one. It remains to

consider the vertices in S2
? . Due to the construction of the MDP in Definition 5.3.1,

if a vertex in S2
? cannot reach a vertex in S2

0 ∪ S2
1 , it cannot reach ∞. Hence, it

suffices to show that in a coupled Markov chain induced by any policy T , a vertex

(s, t) ∈ S2
? reaches elements in S2

0 ∪S2
1 with probability one. Towards a contradiction,

assume there exists a policy such that a vertex (s, t) ∈ S2
? does not reach elements in

S2
0 ∪ S2

1 with probability one in the coupled Markov chain. Each vertex in a Markov

chain reaches with probability one a closed communication class (see, for example,

[8, Theorem 10.27]). Since (s, t) does not reach elements in S2
0 ∪ S2

1 with probability

one, (s, t) reaches a closed communication class C not containing any element in

S2
0 ∪ S2

1 . According to part (g) of Lemma 5.3.4, u ∼ v for every (u, v) ∈ C. Hence,

(u, v) ∈ S2
0 which contradicts the fact that C does not contain any elements of

S2
0 ∪ S2

1 .

98

As we will show next, there is direct correspondence between the function Φ from

Definition 5.1.7 and the function ∆ from Definition 2.1.7. From this correspondence

it is straightforward that the optimal values of the vertices in the MDP and the

probabilistic bisimilarity distances of the labelled Markov chain agree.

Theorem 5.3.6. For all (s, t) ∈ S2,µ(Φ)(s, t) = µ(∆)(s, t). v

Proof. First, let us show that for all n ∈ N,

Φn(0)(∞) = 0 (5.2)

by induction on n. Obviously, the above holds if n = 0. Let n > 0. We have

Φn(0)(∞) = Φ
(
Φn−1(0)

)
(∞) = 0 since ∞ is a terminal state.

Next, we show that for all n ∈ N and for all (s, t) ∈ S2
0 ,

∆n(0)(s, t) = 0 (5.3)

by induction on n. Obviously, the above holds if n = 0.

Let n > 0. Let (s, t) ∈ S2
0 . By Definition 2.1.5, `(s) = `(t), and there exists an

ρ ∈ Ω(τ(s), τ(t)) such that support(ρ) ⊆∼.

∆n(0)(s, t) = min
ω∈Ω(τ(s),τ(t))

∑
u,v∈S

ω(u, v) ∆n−1(0)(u, v)

≤
∑
u,v∈S

ρ(u, v) ∆n−1(0)(u, v)

=
∑

(u,v)∈∼

ρ(u, v) ∆n−1(0)(u, v) [support(ρ) ⊆∼]

vWe do not write µ(Φ) = µ(∆) since ∞ is a vertex in the MDP.

99

= 0 [induction hypothesis: ∆n−1(0)(u, v) = 0 for all u ∼ v]

Next, we show that for all s, t ∈ S and n ∈ N,

Φn(0)(s, t) = ∆n(0)(s, t) (5.4)

by induction on n. Obviously, the above holds if n = 0. Let n > 0. We distinguish

the following cases.

• If (s, t) ∈ S2
1 then

Φn(0)(s, t) = min
a∈α(s,t)

∑
y∈V

π((s, t), a)(y)
(
c((s, t), a, y) + Φn−1(0)(y)

)
= π((s, t), ε)(∞)

(
c((s, t), ε,∞) + Φn−1(0)(∞)

)
[α(s, t) = {ε} since (s, t) ∈ S2

1]

= 1× (1 + 0)

[π
(
(s, t), ε

)(
∞
)

= 1, c
(
(s, t), ε,∞

)
= 1 and (5.2)]

= 1

= ∆(∆n−1(0))(s, t)

= ∆n(0)(s, t).

100

• If (s, t) ∈ S2
0 then

Φn(0)(s, t) = min
a∈α(s,t)

∑
y∈V

π((s, t), a)(y)
(
c((s, t), a, y) + Φn−1(0)(y)

)
= π((s, t), ε)(∞)

(
c((s, t), ε,∞) + Φn−1(0)(∞)

)
[α(s, t) = {ε} since (s, t) ∈ S2

0]

= 1× (0 + 0)

[π
(
(s, t), ε

)(
∞
)

= 1, c
(
(s, t), ε,∞

)
= 0 and (5.2)]

= 0

= ∆n(0)(s, t) [(5.3)].

• Otherwise, (s, t) ∈ S2
? . Then

∀ω ∈ α(s, t) : ∀(u, v) ∈ S2 : π
(
(s, t), ω

)
(u, v) = ω(u, v) (5.5)

∀ω ∈ α(s, t) : ∀(u, v) ∈ S2 : c
(
(s, t), ω, (u, v)

)
= 0 (5.6)

101

Hence,

Φn(0)(s, t) = min
a∈α(s,t)

∑
y∈V

π((s, t), a)(y)
(
c((s, t), a, y) + Φn−1(0)(y)

)
= min

ω∈V (Ω(τ(s),τ(t)))

∑
(u,v)∈S2

π((s, t), ω)(y)
(
c
(
s, t), ω, y

)
+

Φn−1(0)(y)
)

[α(s, t) = V (Ω(τ(s), τ(t))) since (s, t) ∈ S2
?]

= min
ω∈V (Ω(τ(s),τ(t)))

∑
(u,v)∈S2

ω(u, v)
(

0 + Φn−1(0)(u, v)
)

[(5.5) and (5.6)]

= min
ω∈V (Ω(τ(s),τ(t)))

∑
(u,v)∈S2

ω(u, v) Φn−1(0)(u, v)

= min
ω∈V (Ω(τ(s),τ(t)))

∑
(u,v)∈S2

ω(u, v) ∆n−1(0)(u, v)

[induction hypothesis]

= ∆n(0)(s, t).

Now, we are ready to prove the result. Let (s, t) ∈ S2. Then

µ(Φ)(s, t) = sup
n∈N

Φn(0)(s, t)

[Proposition 5.1.8, Proposition 5.1.13 and Theorem 2.1.21]

= sup
n∈N

∆n(0)(s, t) [(5.4)]

= µ(∆)(s, t)

[Proposition 2.1.13, Proposition 2.1.26 and Theorem 2.1.21].

102

Example 5.3.7. We are interested in the distance of the states s and t of the

labelled Markov chain in Example 5.3.2. We have

µ(∆)(s, t) = ∆(µ(∆))(s, t) [µ(∆) is a fixed point of ∆]

= min
ω∈V (Ω(τ(s),τ(t))

∑
(u,v)∈S2

ω(u, v)µ(∆)(u, v)

= min
ω∈{ρ,ω}

∑
(u,v)∈S2

ω(u, v)µ(∆)(u, v) [V (Ω(τ(s), τ(t)) = {ρ, ω}]

= min

 ∑
(u,v)∈S2

ρ(u, v)µ(∆)(u, v),
∑

(u,v)∈S2

ω(u, v)µ(∆)(u, v)


= min

{
1
2
µ(∆)(x,w) + 1

2
µ(∆)(y, u), 1

2
µ(∆)(x, u) + 1

2
µ(∆)(y, w)

}
[ρ(x,w) = ρ(y, u) = ω(x, u) = ω(y, w) = 1

2
]

= min
{

1
2
× 1 + 1

2
× 1 , 1

2
× 0 + 1

2
× 1
}

[µ(∆)(x,w) = µ(∆)(y, u) = µ(∆)(y, w) = 1 ∧ µ(∆)(x, u) = 0]

= min{1 , 1
2
}

= 1
2
.

The MDP below is transformed from the labelled Markov chain. Note that we

only present half of the MDP which is related to (s, t).

There are two policies in this MDP denoted by W and U , where

W (x) =


ρ if x = (s, t)

ε otherwise

U(x) =


ω if x = (s, t)

ε otherwise

103

s, t

∞

ε

x, v

ε

y, u

ε

x, u

ε

y, v

ε

ρ ω

1
2

1
2

1
2

1
2

1 1 1 1

1

We can calculate the values of the vertices under the policy W by solving the

following equations according to Definition 5.1.4.

vW (s, t) = 1
2
×
(
c
(
(s, t), ρ, (x, v)

)
+ vW (x, v)

)
+

1
2
×
(
c
(
(s, t), ρ, (y, u)

)
+ vW (y, u)

)
[W (s, t) = ρ]

vW (x, v) = 1×
(
c
(
(x, v), ε,∞

)
+ vW (∞)

)
[W (x, v) = ε]

vW (y, u) = 1×
(
c
(
(y, u), ε,∞

)
+ vW (∞)

)
[W (y, u) = ε]

vW (∞) = 0 [∞ is a terminal vertex]

Note that

c
(
(s, t), ρ, (x, v)

)
= c
(
(s, t), ρ, (y, u)

)
= 0

and

c
(
(x, v), ε,∞

)
= c
(
(y, u), ε,∞

)
= 1.

104

The values of the vertices under the policy W are the solution of the above equations

shown in the table below.

(s, t) (x, v) (y, u) ∞
1 1 1 0

We can calculate the values of the vertices under the policy U by solving the

following equations according to Definition 5.1.4.

vU(s, t) = 1
2
×
(
c
(
(s, t), ω, (x, u)

)
+ vU(x, u)

)
+

1
2
×
(
c
(
(s, t), ω, (y, v)

)
+ vU(y, v)

)
[U(s, t) = ω]

vU(x, u) = 1×
(
c
(
(x, u), ε,∞

)
+ vU(∞)

)
[U(x, u) = ε]

vU(y, v) = 1×
(
c
(
(y, v), ε,∞

)
+ vU(∞)

)
[U(y, v) = ε]

vU(∞) = 0 [∞ is a terminal vertex]

Note that

c
(
(s, t), ω, (x, u)

)
= c
(
(s, t), ρ, (y, v)

)
= c
(
(x, u), ε,∞

)
= 0

and

c
(
(y, v), ε,∞

)
= 1.

The values of the vertices under the policy U are the solution of the above equations

shown in the table below.

(s, t) (x, u) (y, v) ∞
1
2

0 1 0

105

According to Theorem 5.1.11, we have

µ(Φ) = min
T∈T

vT = min{vW , vU} = vU .

Thus, µ(Φ)(s, t) = vU(s, t) = 1
2

= µ(∆)(s, t).

106

6 Policy Iteration for Labelled Markov Chains

We have shown in Section 5.1 that Howard’s policy iteration algorithm can compute

the optimal values for stopping MDPs. Also, we have shown in Section 5.3 that

each labelled Markov chain can be mapped to a stopping MDP and the probabilistic

bisimilarity distances of the labelled Markov chain correspond to the optimal

values of the stopping MDP. We can use policy iteration algorithms to compute the

optimal values of the corresponding stopping MDP, thus the probabilistic bisimilarity

distances for the labelled Markov chain.

We define the set D1 of state pairs with probabilistic bisimilarity distance one as

D1 = { (s, t) ∈ S2 | µ(∆)(s, t) = 1 }.

Let a set B be such that S2
1 ⊆ B ⊆ D1. We will prove that the policy iteration

algorithm can compute the distances for the state pairs in S2
? \B.

To compute all distances of a labelled Markov chain, the algorithm is as follows.

It starts with computing S2
0 (step 1). These state pairs have distance zero. The

second step is to compute the set B. If we choose B = S2
1 , as we have discussed in

107

Section 4.2, it can be decided by comparing the labels of each state pair (step 2).

The state pairs in B have distance one. Then it runs the policy iteration algorithm

to compute the distances for the remaining state pairs in S2
? \B (step 3).

The following diagram shows the decision procedure for distance zero, the set B

and the policy iteration algorithm.

Deciding S2
0

Deciding B

Policy Iteration Algorithm

Note that the policy iteration algorithm can be either the simple policy iteration

(Section 6.2) or the general policy iteration (Section 6.4).

The first two steps require polynomial time as discussed in Section 4.2 vi. We

will see in Section 6.3 that the running time of the simple policy iteration can be

exponential. Thus, the algorithm of computing all the distances, using simple policy

iteration, has an exponential lower bound. As the complexity of the general policy

iteration is unknown, the complexity of the algorithm of deciding all the distances,

using general policy iteration, remains unknown as well.

The algorithms presented in this section are modifications of the basic algorithm

of Bacci et al. [3]. Their algorithm can be viewed as a basic algorithm, enhanced

viIt is polynomial time to decide S2
1 as shown in Section 4.2. It is also polynomial time to decide

D1, which will be discussed in detail in Chapter 8.

108

with an optimization. The basic algorithm corresponds to the policy iteration

algorithm (step 3) and the key idea behind this optimization is to compute the

distances “on the fly.” Roughly speaking, to compute the distance of s and t we

only need to compute the distance of u and v where s and t can reach u and v in n

transitions for some n > 0. We will show in Theorem 6.1.9 that the basic algorithm

of Bacci et al. [3], since it does not determine probabilistic bisimilarity first, does

not always compute the distances correctly vii.

6.1 An Alternative Characterization of µ(∆)

Before we proceed to the policy iteration algorithms, we provide an alternative

characterization of the probabilistic bisimilarity pseudometric µ(∆) in terms of the

policy of the corresponding MDP. This alternative characterization generalizes the

one presented by Chen et al. [23] which only considers the case B = S2
1 .

Since all the state pairs in S2
1 have distance one, S2

1 ⊆ D1. Our characterization

is parametric in a set B satisfying S2
1 ⊆ B ⊆ D1. The alternative characterization

relies on couplings, a notion from the theory of Markov chains.

Definition 6.1.1. The set CB of couplings of the labelled Markov chain 〈S, L, τ, `〉

is defined by

CB = {T ∈ Distr(S2)S
2
?\B | ∀(s, t) ∈ S2

? \B : T (s, t) ∈ Ω(τ(s), τ(t)) }.
viiIn [5], as they only consider the pseudometric which is parametrized by a discount factor less

than one, the basic algorithm is correct.

109

Just as we denote the vertices of Ω(µ, ν) for µ, ν ∈ Distr(S) as V (Ω(µ, ν)), we

define

V (CB) = {T ∈ Distr(S2)S
2
?\B | ∀(s, t) ∈ S2

? \B : T (s, t) ∈ V (Ω(τ(s), τ(t))) }.

Recall that for each (s, t) ∈ S2
? \ B, the set V (Ω(τ(s), τ(t))) is finite. Since we

restrict our attention to labelled Markov chains with finitely many states, the set

S2
? \ B is finite as well. Therefore, the set V (CB) contains only finite number of

couplings. This fact is crucial in proving the termination of the policy iteration

algorithms.

For the remainder of this section, we fix a labelled Markov chain 〈S, L, τ, `〉. We

also fix a coupling T ∈ V (CB) of the labelled Markov chain. We have shown in

Section 5.3 that the labelled Markov chain can be transformed into an MDP. The

coupling T can then be viewed as a policy of the MDP, where a vertex in S2
? \B is

mapped to the action T (s, t), a vertex in S2
0 is mapped to the action ε and a vertex

in B is mapped to any available action.

Next, we show that the values under the policy T of the MDP transformed

from the labelled Markov chain can be characterized as the least fixed point of the

following function.

110

Definition 6.1.2. The function ΘT
B : [0, 1]S

2 → [0, 1]S
2

is defined by

ΘT
B(d)(s, t) =



0 if (s, t) ∈ S2
0

1 if (s, t) ∈ B∑
u,v∈S

T (s, t)(u, v) d(u, v) otherwise.

Proposition 6.1.3. For all d, e ∈ [0, 1]S
2
, if d v e then ΘT

B(d) v ΘT
B(e).

Proof. Let d, e ∈ [0, 1]S
2

with d v e. Let s, t ∈ S. We distinguish three cases.

• If (s, t) ∈ S2
0 then

ΘT
B(d)(s, t) = 0 = ΘT

B(e)(s, t).

• If (s, t) ∈ B then

ΘT
B(d)(s, t) = 1 = ΘT

B(e)(s, t).

• Otherwise,

ΘT
B(d)(s, t) =

∑
u,v∈S

T (s, t)(u, v) d(u, v)

≤
∑
u,v∈S

T (s, t)(u, v) e(u, v) [d v e]

= ΘT
B(e)(s, t).

By Proposition 2.1.11, [0, 1]S
2

is a complete lattice. By Proposition 6.1.3, ΘT
B is

a monotone function. We can conclude from the Knaster-Tarski fixed point theorem

111

(Theorem 2.1.8(a)) that ΘT
B has a least fixed point. We denote this fixed point by

µ(ΘT
B).

ΘT
B is very similar to ΘT of Definition 5.1.4. In fact, for all (s, t) ∈ S2, we

have µ(ΘT
B)(s, t) = µ(ΘT)(s, t). This can be easily proved by showing that for any

v ∈ [0, 1]S
2∪{∞}, ΘT (v)(s, t) = 0 for any (s, t) ∈ S2

0 and ΘT (v)(s, t) = 1 for any

(s, t) ∈ B.

Next, we show that the distances of the labelled Markov chain can be character-

ized as the values of the coupled MDP under a policy. In particular, this policy is

optimal for the coupled MDP since it leads to minimum values of all vertices. That

is, the other policies will not lead to smaller values of vertices. The proof is very

similar to that of Theorem 5.1.11.

Proposition 6.1.4. For all T ∈ V (CB), ∆(µ(ΘT
B)) v µ(ΘT

B).

Proof. Let s, t ∈ S. We distinguish three cases.

• If (s, t) ∈ B then

∆(µ(ΘT
B))(s, t) ≤ 1 = µ(ΘT

B)(s, t).

• If (s, t) ∈ S2
0 , then s ∼ t. According to Definition 2.1.5, we can conclude that

`(s) = `(t), and there exists an π ∈ Ω(τ(s), τ(t)) such that

support(π) ⊆∼ (6.1)

112

∆(µ(ΘT
B))(s, t) = min

ω∈Ω(τ(s),τ(t))

∑
(u,v)∈S2

ω(u, v)µ(ΘT
B)(u, v)

≤
∑

(u,v)∈S2

π(u, v)µ(ΘT
B)(u, v)

=
∑

(u,v)∈support(π)

π(u, v)µ(ΘT
B)(u, v)

= 0

[(6.1), ∀u ∼ v : µ(ΘT
B)(u, v) = ΘT

B(µ(ΘT
B))(u, v) = 0]

= ΘT
B(µ(ΘT

B))(s, t) [since s ∼ t, ΘT
B(µ(ΘT

B))(s, t) = 0]

= µ(ΘT
B)(s, t).

• Otherwise,

∆(µ(ΘT
B))(s, t) = min

ω∈Ω(τ(s),τ(t))

∑
u,v∈S

ω(u, v)µ(ΘT
B)(u, v)

≤
∑
u,v∈S

T (s, t)(u, v)µ(ΘT
B)(u, v) [T (s, t) ∈ Ω(τ(s), τ(t))]

= ΘT
B(µ(ΘT

B))(s, t)

= µ(ΘT
B)(s, t).

Corollary 6.1.5. For all T ∈ V (CB), µ(∆) v µ(ΘT
B).

Proof. The corollary follows from Proposition 6.1.4 and Theorem 2.1.8(c).

Proposition 6.1.6. There exists a T ∈ V (CB) such that µ(ΘT
B) v µ(∆).

113

Proof. For each (s, t) ∈ S2
? \B, define

T (s, t) = argmin
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v)µ(∆)(u, v).

Obviously, T ∈ V (CB).

Since µ(ΘT
B) is the least fixed point of ΘT

B, it suffices to show that µ(∆) is a

fixed point of ΘT
B. Let s, t ∈ S. We distinguish three cases.

• If (s, t) ∈ B, then

µ(ΘT
B)(s, t) = ΘT

B(µ(ΘT
B))(s, t) = 1 = µ(∆)(s, t).

• If (s, t) ∈ S2
0 then s ∼ t. We have

µ(ΘT
B)(s, t) = 0

= µ(∆)(s, t) [Theorem 2.1.14].

• Otherwise,

ΘT
B(µ(∆))(s, t) =

∑
u,v∈S

T (s, t)(u, v)µ(∆)(u, v)

= min
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v)µ(∆)(u, v)

[by construction of T]

= ∆(µ(∆))(s, t)

= µ(∆)(s, t).

114

The probabilistic bisimilarity pseudometric µ(∆) can be characterized as follows.

Theorem 6.1.7. µ(∆) = min
T∈V (CB)

µ(ΘT
B).

Proof. Immediate consequence of Proposition 6.1.5 and 6.1.6.

Bacci, Bacci, Larsen and Mardare [3] put forward an algorithm to compute

the probabilistic bisimilarity distances. Their algorithm can be viewed as a basic

algorithm, enhanced with an optimization. Here, we focus on the basic algorithm.

The optimization will be discussed in Chapter 7. Next, we will present the basic

algorithm by Bacci et al.

Definition 6.1.8. Let T ∈ Distr(S2)S
2\S2

1 such that

∀(s, t) ∈ S2 \ S2
1 : T (s, t) ∈ V (Ω(τ(s), τ(t))). (6.2)

The function ΨT : [0, 1]S
2 → [0, 1]S

2
is defined by

ΨT (d)(s, t) =


1 if (s, t) ∈ S2

1∑
u,v∈S

T (s, t)(u, v) d(u, v) otherwise.

The basic algorithm of Bacci et al. relies on the fact that if a coupling T ∈

Distr(S2)S
2\S2

1 satisfying (6.2) is locally optimal, that is, ∆(µ(ΨT)) = µ(ΨT), then

it is globally optimal as well, that is, µ(ΨT) = µ(∆) (see [3, Lemma 18]). However,

as we will show next, this is not the case in general.

We denote the Dirac distribution concentrated at the pair of states (s, t) by

Dir(s,t), that is, Dir(s,t)(u, v) = 1 if s = u and t = v and Dir(s,t)(u, v) = 0 otherwise.

115

Theorem 6.1.9. There exists a labelled Markov chain and T ∈ Distr(S2)S
2\S2

1

satisfying (6.2) such that ∆(µ(ΨT)) = µ(ΨT) and µ(ΨT) 6= µ(∆).

Proof. Consider the following labelled Markov chain.

s1s1 s2s2

s0 1
2

1

1
2

1

Note that

V (Ω(τ(s0), τ(s0)) = {1
2
Dir(s1,s1) + 1

2
Dir(s2,s2),

1
2
Dir(s1,s2) + 1

2
Dir(s2,s1)} (6.3)

V (Ω(τ(s1), τ(s1)) = {Dir(s0,s0)} (6.4)

V (Ω(τ(s2), τ(s2)) = {Dir(s0,s0)} (6.5)

Now take T ∈ Distr(S2)S
2\S2

1 satisfying (6.2) such that

T (s0, s0) = 1
2
Dir(s1,s2) + 1

2
Dir(s2,s1) (6.6)

(6.7)

First, let us consider the state pairs which have different labels, namely (s0, s1),

(s1, s2), (s0, s2) and their counterparts. Let (s, t) ∈ S2
1 . Then

µ(ΨT)(s, t) = ΨT (µ(ΨT))(s, t)

116

= 1 [Definition 6.1.8]. (6.8)

(6.9)

We consider the remaining state pairs which have the same labels, namely (s0, s0),

(s1, s1), (s2, s2). We will determine their values under the coupling T as follows.

-

µ(ΨT)(s0, s0) = ΨT (µ(ΨT))(s0, s0)

=
∑
u,v∈S

T (s0, t0)(u, v)µ(ΨT)(u, v) [Definition 6.1.8]

= 1
2
× µ(ΨT)(s1, s2) + 1

2
× µ(ΨT)(s2, s1) [(6.6)]

= 1
2
× 1 + 1

2
× 1 [(s1, s2) ∈ S2

1 and (6.8)]

= 1 (6.10)

-

µ(ΨT)(s1, s1) = ΨT (µ(ΨT))(s1, s1)

=
∑
u,v∈S

T (s1, t1)(u, v)µ(ΨT)(u, v) [Definition 6.1.8]

= µ(ΨT)(s0, s0) [(6.4)]

= 1 [(6.10)]

117

-

µ(ΨT)(s2, s2) = ΨT (µ(ΨT))(s2, s2)

=
∑
u,v∈S

T (s2, t2)(u, v)µ(ΨT)(u, v) [Definition 6.1.8]

= µ(ΨT)(s0, s0) [(6.5)]

= 1 [(6.10)]

Thus, µ(ΨT) = 1.

Next, we will show ∆(µ(ΨT)) = µ(ΨT). Thus, if the algorithm by Bacci et al.

[3] starts with the coupling T , it terminates with µ(ΨT) = 1.

We show that ∆(µ(ΨT)) = µ(ΨT) next. Let (s, t) ∈ S2
1 . Then ∆(µ(ΨT))(s, t) =

1 by Definition 2.1.7. The remaining state pairs (s0, s0), (s1, s1), (s2, s2) are consid-

ered as follows.

∆(µ(ΨT))(s0, t0) = min
{

1
2
µ(ΨT)(s1, t2) + 1

2
µ(ΨT)(s2, t1),

1
2
µ(ΨT)(s1, t1) + 1

2
µ(ΨT)(s2, t2)

}
= min

{
1, 1
}

= 1

∆(µ(ΨT))(s1, t1) = µ(ΨT)(s0, t0) = 1

∆(µ(ΨT))(s2, t2) = µ(ΨT)(s0, t0) = 1

Finally, we prove that the probabilistic bisimilarity distance of (s0, s0), (s1, s1),

(s2, s2) is zero. We define d ∈ [0, 1]S
2

by

d(u, v) =


1 if (u, v) ∈ S2

1

0 otherwise

118

We will show that µ(∆) = d. We first show that µ(∆)(s, t) = 1 for all (s, t) ∈ S2
1 .

Let (s, t) ∈ S2
1 . By Definition 2.1.7,

µ(∆)(s, t) = ∆(µ(∆))(s, t) = 1.

Since d is the smallest distance function such that d(s, t) = 1 for all (s, t) ∈ S2
1 ,

we are left to show that d is a fixed point of ∆.

We consider the remaining state pairs (s0, s0), (s1, s1), (s2, s2) as follows.

-

∆(d)(s0, t0) = min
ω∈Ω(τ(s0),τ(t0))

∑
u,v∈S

ω(u, v) d(u, v) [Definition 2.1.7]

= min{1
2
× d(s1, s2) + 1

2
× d(s2, s1), 1

2
× d(s1, s1) + 1

2
× d(s2, s2)}

[(6.3)]

= min{1
2
× 1 + 1

2
× 1, 1

2
× 0 + 1

2
× 0}

= min{1, 0}

= 0 (6.11)

-

∆(d)(s1, s1) = min
ω∈Ω(τ(s1),τ(t1))

∑
u,v∈S

ω(u, v)d(u, v) [Definition 2.1.7]

= d(s0, s0) [(6.4)]

= 0 [(6.11)]

119

-

∆(d)(s2, s2) = min
ω∈Ω(τ(s2),τ(t2))

∑
u,v∈S

ω(u, v)d(u, v) [Definition 2.1.7]

= d(s0, s0) [(6.5)]

= 0 [(6.11)]

Thus, ∆(d) = d and µ(∆) = d 6= µ(ΨT).

6.2 Simple Policy Iteration

In this section we present the simple policy iteration algorithm to compute the

distances for labelled Markov chains. Recall that a policy of the player maps

each vertex to one of its available actions. That is, such a policy maps (s, t) with

(s, t) ∈ S2
? \B to a coupling in V (Ω(τ(s), τ(t))).

The algorithm starts with an arbitrary policy, that is, an arbitrary T ∈ V (CB)

(see line 1). As long as there is a vertex which is not locally optimal with respect to

the current policy, the policy at that vertex is improved to a locally optimal choice.

Note that a vertex (s, t) is not locally optimal if there exists a different choice for

that vertex, that is, ω ∈ V (Ω(τ(s), τ(t)), so that the value of the vertex decreases.

This is captured on line 2. On line 3, we compute a locally optimal choice and

update the policy.

1 T ← an element o f V (CB)

120

2 whi le ∃(s, t) ∈ S2
? \B : µ(ΘT

B)(s, t)>∆(µ(ΘT
B))(s, t)

3 T (s, t)← argmin
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) µ(ΘT
B)(u, v)

This is our modification of the basic algorithm of Bacci et al. The main difference

is that we compute the states which are probabilistic bisimilar before running the

simple policy iteration algorithm. We use ΘT
B of Definition 6.1.2 which assigns the

probabilistic bisimilar state pairs to zero, while they use ΨT of Definition 6.1.8.

On line 1, an initial policy T ∈ V (CB) can be computed by the North-West

corner method in polynomial time (see, for example, [83, page 180]). On line 2,

rather than choosing an arbitrary vertex that is not locally optimal, in the simple

policy iteration a select procedure can be defined as follows: we number all the

vertices in S2
? \B and select the one with the highest number (see, for example, [67,

Section 2]). Note that µ(ΘT
B) can be computed in polynomial time (see, for example,

[8, Section 10.1.1]). On line 3, the computation can be viewed as a minimum-cost

flow problem, where s is the source vertex and t is the sink vertex. Below we present

the flow network. The sets {u1, · · · , un} and {v1, · · · , vn} are copies of S. For the

edge (s, ui) and (vj, t), the capacity is τ(s)(ui) and τ(t)(vj), respectively. There is

no cost transporting along these edges. Each edge (ui, vj) ∈ S2 has a capacity of

min (τ(s)(ui), τ(t)(vj)) and µ(ΘT
B)(ui, vj) is the cost of edge (ui, vj). The minimum

cost of transporting one unit from s to t is captured by ∆(µ(ΘT
B))(s, t), which can be

solved using the network simplex algorithm in strongly polynomial time [2, Section

121

11.8]. Thus, each line of the algorithm is in polynomial time and the running time

of the algorithm is determined by the number of iterations of the while loop.

s

u1

u2

un

t

v1

v2

vn

...

...

Next, we prove the partial correctness of the above algorithm, that is, if the

algorithm terminates then it computes the probabilistic bisimilarity distances. Hence,

we have to show that at termination µ(ΘT
B) captures µ(∆). We first introduce a

new function ∆B : [0, 1]S
2 → [0, 1]S

2
as follows.

Definition 6.2.1. The function ∆B : [0, 1]S
2 → [0, 1]S

2
is defined by

∆B(d)(s, t) =


0 if (s, t) ∈ S2

0

1 if (s, t) ∈ B

∆(d)(s, t) otherwise

The following theorem collects some properties of ∆B that we will use later.

Theorem 6.2.2. (a) The function ∆B is monotone.

(b) The function ∆B is nonexpansive.

(c) µ(∆B) = ν(∆B).

122

(d) µ(∆B) = µ(∆).

(e) µ(∆B) = sup
m∈N

∆m
B (0).

Proof. (a) Since ∆ is monotone (Proposition 2.1.13), we can easily deduce that

∆B is monotone as well.

(b) Since ∆ is nonexpansive (Proposition 2.1.26), we can easily deduce that ∆B is

nonexpansive as well.

(c) The proof of this part is very similar to [23, Proposition 17]. Since ∆B is

monotone according to part (a), we can conclude from the Knaster-Tarski fixed

point theorem (Theorem 2.1.8(a, b)) that ∆B has a least fixed point µ(∆B)

and a greatest fixed point ν(∆B).

To conclude that µ(∆B) = ν(∆B), let

m = max{ν(∆B)(s, t)− µ(∆B)(s, t) | s, t ∈ S }

and

M = { (s, t) ∈ S2 | ν(∆B)(s, t)− µ(∆B)(s, t) = m }.

We will show that m = 0, which implies that µ(∆B) = ν(∆B). We distinguish

three cases.

– Assume that M ∩ S2
0 6= ∅. Let (s, t) ∈M ∩ S2

0 . Then

ν(∆B)(s, t)− µ(∆B)(s, t)

123

= ∆B(ν(∆B))(s, t)−∆B(µ(∆B))(s, t)

= 0− 0

= 0

and, hence, m = 0.

– Assume that M ∩B 6= ∅. Let (s, t) ∈M ∩B. Then

ν(∆B)(s, t)− µ(∆B)(s, t)

= ∆B(ν(∆B))(s, t)−∆B(µ(∆B))(s, t)

= 1− 1

= 0

and, hence, m = 0.

– Otherwise, assume that M ∩ (S2
0 ∪B) = ∅. We will show that this leads

to a contradiction, that is, this case is vacuous. Next, we will prove that

M is a probabilistic bisimulation and, hence, M ⊆ S2
0 , which contradicts

M ∩ (S2
0 ∪B) = ∅.

Let (s, t) ∈M . Since M ∩ (S2
0 ∪B) = ∅, for all (s, t) ∈M we have that

(s, t) 6∈ B and, hence, (s, t) 6∈ S2
1 . Therefore, `(s) = `(t).

According to Definition 2.1.4 and Definition 2.1.5, it remains to show

that there exists π ∈ Ω(τ(s), τ(t)) such that support(π) ⊆ M , that is,

π(u, v)>0 implies (u, v) ∈M and, hence, ν(∆B)(u, v)−µ(∆B)(u, v) = m.

124

Suppose

∆B(µ(∆B))(s, t) =
∑
u,v∈S

π(u, v)µ(∆B)(u, v),

where π ∈ Ω(τ(s), τ(t)). Then

m = ν(∆B)(s, t)− µ(∆B)(s, t)

= ∆B(ν(∆B))(s, t)−∆B(µ(∆B))(s, t)

=

(
min

ω∈Ω(τ(s),τ(t))

∑
u,v∈S

ω(u, v)ν(∆B)(u, v)

)
−
∑
u,v∈S

π(u, v)µ(∆B)(u, v)

≤
∑
u,v∈S

π(u, v)ν(∆B)(u, v)−
∑
u,v∈S

π(u, v)µ(∆B)(u, v)

=
∑
u,v∈S

π(u, v)(ν(∆B)(u, v)− µ(∆B)(u, v)).

Since ν(∆B)(u, v) − µ(∆B)(u, v) ≤ m and
∑

u,v∈S π(u, v) = 1, we can

conclude from
∑

u,v∈S π(u, v)(ν(∆B)(u, v) − µ(∆B)(u, v)) ≥ m that

π(u, v)> 0 implies ν(∆B)(u, v)− µ(∆B)(u, v) = m.

(d) The proof of this part is very similar to [23, Corollary 18]. From part (c), we

can conclude that it suffices to prove that µ(∆) is a fixed point of ∆B. We

distinguish the following three cases.

– If (s, t) ∈ S2
0 then

∆B(µ(∆)) = 0 = µ(∆)(s, t)

by Theorem 2.1.14.

125

– If (s, t) ∈ B then

∆B(µ(∆)) = 1 = µ(∆)(s, t)

since B ⊆ D1.

– Otherwise,

∆B(µ(∆)) = ∆(µ(∆)) = µ(∆)(s, t).

(e) Since ∆B is monotone (part (a)) and nonexpansive (part (b)), we can conclude

from Theorem 2.1.21 that µ(∆B) = sup
n∈N

∆n
B(0).

Theorem 6.2.3. For all T ∈ V (CB), if µ(ΘT
B)(s, t) ≤ ∆(µ(ΘT

B))(s, t) for all

(s, t) ∈ S2
? \B, then µ(ΘT

B) = µ(∆).

Proof. Let T ∈ V (CB). Assume that

µ(ΘT
B)(s, t) ≤ ∆(µ(ΘT

B))(s, t) (6.12)

for all (s, t) ∈ S2
? \B. Let s, t ∈ S.

We have ∆B has unique fixed point according to Theorem 6.2.2(c) and µ(∆B) =

µ(∆) according to Theorem 6.2.2(d). It suffices to show that µ(ΘT
B) is a fixed point

of ∆B.

By Proposition 6.1.4, ∆(µ(ΘT
B)) v µ(ΘT

B). Thus,

∆(µ(ΘT
B))(s, t) ≤ µ(ΘT

B)(s, t) (6.13)

126

It remains to show that ∆B(µ(ΘT
B))(s, t) = µ(ΘT

B)(s, t). We distinguish the following

three cases.

• If (s, t) ∈ B then

µ(ΘT
B)(s, t) = ΘT

B(µ(ΘT
B))(s, t) = 1 = ∆B(µ(ΘT

B))(s, t).

• If (s, t) ∈ S2
0 then

µ(ΘT
B)(s, t) = ΘT

B(µ(ΘT
B))(s, t) = 0 = ∆B(µ(ΘT

B))(s, t).

• Otherwise, (s, t) ∈ S2
? \B. We have

µ(ΘT
B)(s, t) = ∆(µ(ΘT

B))(s, t) [(6.12) and (6.13)]

= ∆B(µ(ΘT
B))(s, t) [Definition 6.2.1]

As we already mentioned earlier, the set V (CB) is finite. To prove that the loop

terminates we show that T becomes smaller in every iteration.

Definition 6.2.4. The order ≺ on V (CB) is defined by T ≺ U if µ(ΘT
B) @ µ(ΘU

B).

To relate the value of T at the beginning of the loop with its value at the end of

the loop, we introduce the following notation.

Definition 6.2.5. Let T ∈ V (CB), (s, t) ∈ S2
? \ B and ω ∈ V (Ω(τ(s), τ(t))). The

function T [(s, t)/ω] : (S2
? \B)→ Distr(S2) is defined by

T [(s, t)/ω](u, v) =


ω if (u, v) = (s, t)

T (u, v) otherwise

127

Clearly, T [(s, t)/ω] ∈ V (CB). Next, we show that T indeed becomes smaller in

every iteration of the loop and, as a consequence, the loop terminates.

Lemma 6.2.6. For all T , U ∈ V (CB), if ΘU
B(µ(ΘT

B)) @ µ(ΘT
B) then µ(ΘU

B) @

µ(ΘT
B).

Proof. Let T , U ∈ V (CB). Assume that ΘU
B(µ(ΘT

B)) @ µ(ΘT
B). Then ΘU

B(µ(ΘT
B)) v

µ(ΘT
B), that is, µ(ΘT

B) is a pre-fixed point of ΘU
B. From the Knaster-Tarski fixed point

theorem (Theorem 2.1.8(c)) we can conclude that µ(ΘU
B) v µ(ΘT

B). It remains to

show that µ(ΘU
B) 6= µ(ΘT

B). Towards a contradiction, assume that µ(ΘU
B) = µ(ΘT

B).

Then

ΘU
B(µ(ΘT

B)) = ΘU
B(µ(ΘU

B)) = µ(ΘU
B) = µ(ΘT

B),

which contradicts the assumption ΘU
B(µ(ΘT

B)) @ µ(ΘT
B).

Theorem 6.2.7. For all T ∈ V (CB) and (s, t) ∈ S2
? \ B, if ∆(µ(ΘT

B))(s, t) <

µ(ΘT
B)(s, t), then T [(s, t)/π] ≺ T , where π = argmin

ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) µ(ΘT
B)(u, v).

Proof. Let T ∈ V (CB) and (s, t) ∈ S2
? \B. Assume that ∆(µ(ΘT

B))(s, t)<µ(ΘT
B)(s, t).

By Lemma 6.2.6, it remains to prove that Θ
T [(s,t)/π]
B (µ(ΘT

B)) @ µ(ΘT
B), where

π = argmin
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) µ(ΘT
B)(u, v).

Let x, y ∈ S. We distinguish the following cases.

128

• Assume (x, y) = (s, t). Then since (s, t) ∈ S2
? \B,

Θ
T [(s,t)/π]
B (µ(ΘT

B))(x, y) =
∑
u,v∈S

T [(s, t)/π](x, y)(u, v) µ(ΘT
B)(u, v)

=
∑
u,v∈S

π(u, v) µ(ΘT
B)(u, v) [(x, y) = (s, t)]

= min
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) µ(ΘT
B)(u, v)

= ∆(µ(ΘT
B))(s, t)

< µ(ΘT
B)(s, t)

= µ(ΘT
B)(x, y).

• Assume that (x, y) ∈ S2
0 . Then

Θ
T [(s,t)/π]
B (µ(ΘT

B))(x, y) = 0 = ΘT
B(µ(ΘT

B))(x, y) = µ(ΘT
B)(x, y).

• Assume that (x, y) ∈ B. Then

Θ
T [(s,t)/π]
B (µ(ΘT

B))(x, y) = 1 = ΘT
B(µ(ΘT

B))(x, y) = µ(ΘT
B)(x, y).

• Otherwise,

Θ
T [(s,t)/π]
B (µ(ΘT

B))(x, y)

=
∑
u,v∈S

T [(s, t)/π](x, y)(u, v) µ(ΘT
B)(u, v)

=
∑
u,v∈S

T (x, y)(u, v) µ(ΘT
B)(u, v) [(x, y) 6= (s, t)]

129

= ΘT
B(µ(ΘT

B))(x, y)

= µ(ΘT
B)(x, y).

6.3 An Exponential Lower Bound of Simple Policy Itera-

tion

Below, we will show that in the worst case, our algorithm takes exponential time.

Many similar lower bounds have been proved for closely related algorithms by

showing that the algorithms can be viewed as binary counters. We refer the reader

to, for example, the thesis of Friedmann [40] for several such proofs. In Section 5.3,

we have presented a transformation mapping a labelled Markov chain to an MDP,

which is equivalent to a simple stochastic game with only one player. For simple

stochastic games, Melekopoglou and Condon [67] showed that simple policy iteration

takes exponential time in the worst case. We cannot directly use their result since

no labelled Markov chain maps to the simple stochastic games they use in their

proof.

For each n ∈ N we will construct a labelled Markov chain of size O(n). Further-

more, we will show that our simple policy iteration algorithm takes Ω(2n) iterations

for the resulting MDP. From now on, in diagrams, like the one below, only if the

probabilities of the outgoing transitions of a state are not all the same, as is the

130

case for state un, we denote the actual probabilities.

Definition 6.3.1. For n ∈ N, the labelled Markov chain Mn is defined as follows

by induction on n. The labelled Markov chain M0 is defined as

s0

s1

r0 t0

t1

u0

If n > 0 then the labelled Markov chain Mn is defined as

sn+1

sn rn

tn−1

tn

un−1

tn+1

un

1
4

3
4

where the two dashed triangles together represent the labelled Markov chain Mn−1.

Note that Mn has 4n+ 10 states and 7n+ 14 transitions and, hence, is of size

O(n). Next, we give the MDP corresponding to the above defined labelled Markov

chains according to the transformation presented in Definition 5.3.1.

For the labelled Markov chains in Definition 6.3.1, the state pairs which have

distance one are the ones with different labels, that is, D1 = S2
1 . The optimal values

131

of vertices in S2
0 and B are zero and one, respectively. From now on, to simplify the

MDP we denote a vertex in S2
0 as a square labelled with zero and a vertex in B as

a square labelled with one.

Definition 6.3.2. For n ∈ N, the MDP Gn is defined as follows by induction on n.

The MDP G0 is defined as

v1

1 w1

1 0

1

0

If n > 0 then the MDP Gn is defined as

vn+1

1 wn+1

1

1

vn

1 wn

1

vn−1

1
2

1
4

1
4

where the dashed rectangle represents the MDP Gn−1.

132

In the above definition, we use vi to denote the vertex (si, ti) and wi to denote

the vertex (si−1, ui−1). Since s0 ∼ t0, µ(∆)(s0, t0) = 0 and we use a square labelled

with zero to denote v0. The vertex wi for 2 ≤ i ≤ n + 1 has lower priority than

v1, that is, wi can be switched only if none of the vertex vj for 1 ≤ j ≤ n + 1 is

switchable. The transformation given in Definition 5.3.1 applied to labelled Markov

chain Mn gives rise to an MDP of which Gn is only a part. In particular, for

2 ≤ i ≤ n+ 1 an action and the following edges have not been included in Gn, they

are never selected in any of the policies we construct in our proofs.

wi

wi−1

1

1
2

1
2

Next, we consider the policies for the MDP Gn. Recall that the Dirac distribution

Dirv is defined by Dirv(w) = 1 if w = v and Dirv(w) = 0 otherwise. In order to avoid

clutter, for 1 ≤ i ≤ n+ 1, instead of T (vi) = 1
2
Dir1 + 1

2
Dirvi−1

we write T (i) = 0 and

instead of T (vi) = 1
2
Dir1 + 1

2
Dirwi we write T (i) = 1.

A vertex is switchable if it is not locally optimal.

Definition 6.3.3. The vertex vi is switchable with respect to T if µ(ΘT
B)(vi) >

133

µ(ΘT i
B)(vi), where

T i(j) =


1− T (j) if j = i

T (j) otherwise.

Rather than starting from an arbitrary policy, we pick a specific initial policy

(line 1–3). Furthermore, rather than choosing an arbitrary vertex that is not locally

optimal, we pick the vi which is not locally optimal with the largest index (line 5).

1 T (1)← 1

2 f o r i = 2, . . . , n+ 1

3 T (i)← 0

4 whi le ∃ 1 ≤ i ≤ n+ 1 : vi is switchable with respect to T

5 m← max{ i | vi is switchable with respect to T }

6 T (m)← 1− T (m)

Example 6.3.4. In this example, we consider the case where n = 1. The labelled

Markov chain M1 is shown below.

s0

s1

s2

t0

t1

u0

t2

u1

1
4

3
4

134

Below we present (part of) the MDP G1 corresponding to the labelled Markov

chain M1.

v2

1 w2

1

1

v1

1 w1

1 0

1

0
1
4

1
4

For the above MDP, a policy of the player consists of either going to the right

(represented by 0) or down (represented by 1) in the vertices v2 and v1. The simple

policy iteration algorithm starts with policy 01. That is, for the vertices v2, v1,

the initial policy chooses the actions represented by the right edge and down edge,

respectively. In the table below, we present for each policy the values of the vertices

v2, v1. Going from one column to the next, the policy for either v2, v1 is switched.

As a result, none of the values increase and one of the values decreases. The table

contains all four 2-bit combinations and, hence, the MDP can be viewed as a 2-bit

counter.

policy

v2 0 1 1 0

v1 1 1 0 0

value

v2
7
8

13
16

13
16

3
4

v1
3
4

3
4

1
2

1
2

135

Next, we show that the above simple policy iteration algorithm applied to the

MDP Gn gives rise to exponentially many iterations.

In Proposition 6.3.18, we show that if the initial policy satisfies T (n + 1) =

0, · · · , T (2) = 0, T (1) = 1, then all the n+ 1 vertices are switchable. Moreover, by

Proposition 6.3.17, the next 2n+1 − 1 switches of the policy iteration algorithm are

made on these n+ 1 vertices to reach the policy T (n+ 1) = 0, · · · , T (0) = 0.

To prove these main propositions, we need to express the value of every vertex

as a formula that depends on the current policy and the values of the other vertices.

We start with a simple proposition.

It is immediate to observe that the value of w1 is 1
2
. Also, the value of vk can

be expressed in terms of the current policy at vk and the values of the neighbour

vertices wk and vk−1.

Proposition 6.3.5.

(a) µ(ΘT
B)(w1) = 1

2
.

(b) For all 1 ≤ k ≤ n+ 1, µ(ΘT
B)(vk) = 1

2
(T (k)(1 + µ(ΘT

B)(wk)) + (1− T (k))(1 +

µ(ΘT
B)(vk−1))).

Proof.

(a) Immediate.

136

(b) We distinguish two cases.

• If T (k) = 0 then µ(ΘT
B)(vk) = 1

2
+1

2
µ(ΘT

B)(vk−1) = 1
2
(T (k)(1+µ(ΘT

B)(wk))+

(1− T (k))(1 + µ(ΘT
B)(vk−1))).

• If T (k) = 1 then µ(ΘT
B)(vk) = 1

2
+1

2
µ(ΘT

B)(wk) = 1
2
(T (k)(1+µ(ΘT

B)(wk))+

(1− T (k))(1 + µ(ΘT
B)(vk−1))).

We define a helper function as follows.

Definition 6.3.6. For all 1 ≤ k ≤ n+ 1, aT (k) is defined by

aT (k) =


1
4

if k = 1

1
2
aT (k − 1)(1

2
− T (k − 1)) otherwise.

The next proposition is technical and is only used in the proof of Proposition 6.3.8.

Proposition 6.3.7. For all 1 ≤ k ≤ n+ 1,

µ(ΘT
B)(wk)− µ(ΘT

B)(vk−1) =
aT (k)

aT (1)
µ(ΘT

B)(w1).

Proof. We prove this property by induction on k. The base case, k = 1, is trivially

true. Let k > 1. Then

µ(ΘT
B)(wk)− µ(ΘT

B)(vk−1)

=
(

1
2

+ 1
4
µ(ΘT

B)(wk−1) + 1
4
µ(ΘT

B)(vk−2)
)
−

137

1
2

(
T (k − 1)(1 + µ(ΘT

B)(wk−1)) + (1− T (k − 1))(1 + µ(ΘT
B)(vk−2))

)
[Proposition 6.3.5(b)]

= 1
4
µ(ΘT

B)(wk−1)− 1
4
µ(ΘT

B)(vk−2) + T (k − 1)(1
2
µ(ΘT

B)(vk−2)− 1
2
µ(ΘT

B)(wk−1))

= 1
2
(1

2
− T (k − 1))(µ(ΘT

B)(wk−1)− µ(ΘT
B)(vk−2))

=
aT (k)

aT (k − 1)
(µ(ΘT

B)(wk−1)− µ(ΘT
B)(vk−2))

=
aT (k)

aT (k − 1)

aT (k − 1)

aT (1)
µ(ΘT

B)(w1) [induction hypothesis]

=
aT (k)

aT (1)
µ(ΘT

B)(w1).

The proposition below shows the relationship of the value of vk with the current

policy at vk and the value of vk−1.

Proposition 6.3.8. For all 1 ≤ k ≤ n+ 1,

µ(ΘT
B)(vk) = 1

2
+ 1

2
µ(ΘT

B)(vk−1) + T (k)aT (k).

Proof. First of all, we derive from Proposition 6.3.5(a) that

µ(ΘT
B)(w1)− µ(ΘT

B)(v0) = 1
2
− 0 = 1

2
. (6.14)

As a consequence,

µ(ΘT
B)(vk)

= 1
2
(T (k)(1 + µ(ΘT

B)(wk)) + (1− T (k))(1 + µ(ΘT
B)(vk−1)))

138

[Proposition 6.3.5(b)]

= 1
2

+ 1
2
µ(ΘT

B)(vk−1) + 1
2
T (k)(µ(ΘT

B)(wk)− µ(ΘT
B)(vk−1))

= 1
2

+ 1
2
µ(ΘT

B)(vk−1) + 1
2
T (k)

aT (k)

aT (1)
µ(ΘT

B)(w1)

[Proposition 6.3.7]

= 1
2

+ 1
2
µ(ΘT

B)(vk−1) + T (k)aT (k) [(6.14)]

The next proposition shows that switching the policy at a vertex with higher

index will not impact the values of the vertices with lower indices.

Proposition 6.3.9.

(a) For all 1 ≤ ` ≤ k ≤ n+ 1, aT (`) = aT̄k(`).

(b) For all 1 ≤ ` < k ≤ n+ 1, µ(ΘT
B)(v`) = µ(ΘT̄k

B)(v`).

Proof. Both parts are proved by induction on `.

(a) For the base case, ` = 1, we have that aT (1) = 1
4

= aT̄k(1). In the inductive

case, 1< ` ≤ k and

aT (`) = 1
2
aT (`− 1)(1

2
− T (`− 1))

= 1
2
aT̄k(`− 1)(1

2
− T̄k(`− 1)) [induction hypothesis]

= aT̄k(`).

139

(b) For the base case, ` = 1, we have that

µ(ΘT
B)(v1) = 1

2
+ 1

2
µ(ΘT

B)(v0) + T (1)aT (1) [Proposition 6.3.8]

= 1
2

+ 1
2
µ(ΘT̄k

B)(v0) + T̄k(1)aT̄k(1) [Definition 6.3.6]

= µ(ΘT̄k
B)(v1) [Proposition 6.3.8].

In the inductive case, 1< ` < k and

µ(ΘT
B)(v`) = 1

2
+ 1

2
µ(ΘT

B)(v`−1) + T (`)aT (`) [Proposition 6.3.8]

= 1
2

+ 1
2
µ(ΘT̄k

B)(v`−1) + T̄k(`)a
T̄k(`)

[induction hypothesis and part 1]

= µ(ΘT̄k
B)(v`) [Proposition 6.3.8].

We can tell whether a vertex is switchable by the current policy T at the vertex

and the sign of aT at the vertex.

Proposition 6.3.10. For all 1 ≤ k ≤ n + 1, vk is switchable with respect to T if

and only if

(T (k) = 0 ∧ aT (k)< 0) ∨ (T (k) = 1 ∧ aT (k)> 0)

Proof. Let 1 ≤ k ≤ n+ 1. Then

vk is switchable with respect to T

iff µ(ΘT
B)(vk)− µ(ΘT̄k

B)(vk)> 0

140

iff (1
2

+ 1
2
µ(ΘT

B)(vk−1) + T (k)aT (k))− (1
2

+ 1
2
µ(ΘT̄k

B)(vk−1) + T̄k(k)aT̄k(k))> 0

[Proposition 6.3.8]

iff (1
2

+ 1
2
µ(ΘT

B)(vk−1) + T (k)aT (k))− (1
2

+ 1
2
µ(ΘT

B)(vk−1) + (1− T (k))aT (k))> 0

[Proposition 6.3.9]

iff (2T (k)− 1)aT (k)> 0

iff (T (k) = 0 ∧ aT (k)< 0) ∨ (T (k) = 1 ∧ aT (k)> 0).

Corollary 6.3.11. v1 is switchable with respect to T if and only if T (1) = 1.

Proof. By Proposition 6.3.10, v(1) is switchable with respect to T is and only if

(T (1) = 0 ∧ aT (1)< 0) ∨ (T (1) = 1 ∧ aT (1)> 0).

By Definition 6.3.6, aT (1) = 1
4
> 0. Thus, v1 is switchable with respect to T if and

only if T (1) = 1.

The next proposition captures that switching a vertex has no impact on the

switchability of the vertices with lower indices.

Proposition 6.3.12. For all 1 ≤ ` < k ≤ n+ 1, v` is switchable with respect to T

if and only if v` is switchable with respect to T̄k.

141

Proof. Let 1 ≤ ` < k ≤ n+ 1. Then

v` is switchable with respect to T

iff (T (`) = 0 ∧ aT (`)< 0) ∨ (T (`) = 1 ∧ aT (`)> 0) [Proposition 6.3.10]

iff (T̄k(`) = 0 ∧ aT̄k(`)< 0) ∨ (T̄k(`) = 1 ∧ aT̄k(`)> 0) [Proposition 6.3.9]

iff v` is switchable with respect to T̄k [Proposition 6.3.10]

The next proposition is technical and is only used in the proof of Proposi-

tion 6.3.14.

Proposition 6.3.13. For all 1 ≤ k < n + 1, if vk is switchable with respect to T

then aT (k + 1)< 0.

Proof. We distinguish two cases. Assume that T (k) = 0. Since vk is switchable

with respect to T , we can conclude from Proposition 6.3.10 that aT (k)< 0. Hence,

aT (k + 1) = 1
2
aT (k)(1

2
− T (k)) = 1

4
aT (k)< 0.

Assume that T (k) = 1. Since vk is switchable with respect to T , we can conclude

from Proposition 6.3.10 that aT (k)> 0. Hence,

aT (k + 1) = 1
2
aT (k)(1

2
− T (k)) = −1

4
aT (k)< 0.

142

Let T be a policy with T (n+ 1) = 0, . . . , T (k + 2) = 0 and T (k + 1) = 1. If the

vertex vk is switchable, then after switching the policy at vk, the leftmost n+ 1− k

vertices will become switchable.

Proposition 6.3.14. For all 1 ≤ k < n + 1, if vk is switchable with respect to T

and T (n + 1) = 0, . . . , T (k + 2) = 0 and T (k + 1) = 1 then vn+1, . . . , vk+1 are

switchable with respect to T̄k.

Proof. According to Proposition 6.3.10, it suffices to show that aT̄k(n+ 1)< 0, . . . ,

aT̄k(k + 2)< 0 and aT̄k(k + 1)> 0. First of all,

aT̄k(k + 1) = 1
2
aT̄k(k)(1

2
− T̄k(k))

= 1
2
aT (k)(1

2
− (1− T (k))) [Proposition 6.3.9]

= −1
2
aT (k)(1

2
− T (k))

= −aT (k + 1).

From Proposition 6.3.13 we can conclude that aT̄k(k + 1)> 0.

Next, we show that for all ` satisfying k+ 2 ≤ ` ≤ n+ 1, aT̄k(`)< 0 by induction

on `. In the base case, ` = k + 2, we have

aT̄k(k + 2) = 1
2
aT̄k(k + 1)(1

2
− T̄k(k + 1))

= 1
2
aT̄k(k + 1)(1

2
− T (k + 1)))

= −1
4
aT̄k(k + 1).

143

As we have seen above, aT̄k(k + 1)> 0 and, hence, aT̄k(k + 2)< 0. In the inductive

case, ` > k + 2 and

aT̄k(`) = 1
2
aT̄k(`− 1)(1

2
− T̄k(`− 1))

= 1
2
aT̄k(`− 1)(1

2
− T (`− 1)))

= 1
4
aT̄k(`− 1).

By induction, aT̄k(`− 1)< 0. Therefore, aT̄k(`)< 0.

The next proposition reveals that the values of vk and wk cannot increase as the

algorithm proceeds. We will use this fact in the proof of Proposition 6.3.16.

Proposition 6.3.15. For all 1 ≤ k ≤ n + 1, if vk is switchable with respect to T

then

(a) for all 1 ≤ ` ≤ n+ 1, µ(ΘT
B)(v`) ≥ µ(ΘT̄k

B)(v`), and

(b) for all 1 ≤ ` ≤ n+ 1, µ(ΘT
B)(w`) ≥ µ(ΘT̄k

B)(w`).

Proof. Let 1 ≤ k ≤ n+ 1. Assume that vk is switchable with respect to T .

The following equation will be used in the proof. Since v0 = (s0, t0) and s0 ∼ t0,

µ(ΘT
B)(v0) = ΘT

B(µ(ΘT
B))(v0) = 0 = ΘT̄k

B (µ(ΘT̄k
B))(v0) = µ(ΘT̄k

B)(v0). (6.15)

We prove this proposition by induction on `. We distinguish the following cases.

144

• If k = 1 and ` = 1, then T (1) = 1 by Corollary 6.3.11. Thus, T̄k(1) = 0.

µ(ΘT
B)(v1) = 1

2
+ 1

2
µ(ΘT

B)(w1) [T (1) = 1 and Proposition 6.3.5(b)]

= 1
2

+ 1
2
× 1

2
[Proposition 6.3.5(a)]

> 1
2

+ 1
2
× 0

= 1
2

+ 1
2
µ(ΘT̄k

B)(v0) [(6.15)]

= µ(ΘT̄k
B)(v1) [T̄k(1) = 0 and Proposition 6.3.5(b)]

• If k > 1, ` = 1 and T (1) = 0 then

µ(ΘT
B)(v1) = 1

2
+ 1

2
µ(ΘT

B)(v0) [Proposition 6.3.5(b)]

= 1
2

+ 1
2
µ(ΘT̄k

B)(v0) [(6.15)]

= 1
2

+ 1
2
µ(ΘT̄k

B)(v0) + T̄k(1)aT̄k(1)

[k > 1 and T̄k(1) = T (1) = 0]

= µ(ΘT̄k
B)(v1) [Proposition 6.3.8]

• If k > 1, ` = 1 and T (1) = 1 then

µ(ΘT
B)(v1) = 1

2
+ 1

2
µ(ΘT

B)(w1) [Proposition 6.3.5(b)]

= 1
2

+ 1
2
µ(ΘT̄k

B)(w1) [Proposition 6.3.5(a)]

= µ(ΘT̄k
B)(v1) [Proposition 6.3.5(b)]

• If 1< ` < k and T (k) = 0 then

µ(ΘT
B)(v`) = 1

2
+ 1

2
µ(ΘT

B)(v`−1) [Proposition 6.3.8]

145

≥ 1
2

+ 1
2
µ(ΘT̄k

B)(v`−1) [induction hypothesis]

= µ(ΘT̄k
B)(v`) [Proposition 6.3.8]

• If 1< ` < k and T (k) = 1 then

µ(ΘT
B)(v`) = 1

2
+ 1

2
µ(ΘT

B)(w`) [Proposition 6.3.5(b)]

≥ 1
2

+ 1
2
µ(ΘT̄k

B)(w`) [induction hypothesis]

= µ(ΘT̄k
B)(v`) [Proposition 6.3.5(b)]

• If ` = k then µ(ΘT
B)(v`)>µ(ΘT̄k

B)(v`) since vk is switchable with respect to T .

• If k < ` ≤ n+ 1 and T (k) = 0 then

µ(ΘT
B)(v`) = 1

2
+ 1

2
µ(ΘT

B)(v`−1) [Proposition 6.3.8]

≥ 1
2

+ 1
2
µ(ΘT̄k

B)(v`−1) [induction hypothesis]

= µ(ΘT̄k
B)(v`) [Proposition 6.3.8]

• If k < ` ≤ n+ 1 and T (k) = 1 then

µ(ΘT
B)(v`) = 1

2
+ 1

2
µ(ΘT

B)(w`) [Proposition 6.3.5(b)]

≥ 1
2

+ 1
2
µ(ΘT̄k

B)(w`) [induction hypothesis]

= µ(ΘT̄k
B)(v`) [Proposition 6.3.5(b)]

This completes the proof of part 1. Next, we prove part 2.

146

• If ` = 1 then, by Proposition 6.3.5(a),

µ(ΘT
B)(w1) = 1

2
= µ(ΘT̄k

B)(w1).

• If 1< ` ≤ n+ 1 then

µ(ΘT
B)(w`) = ΘT

B(µ(ΘT
B))(w`)

= 1
4

+ 1
4
µ(ΘT

B)(w`−1) + 1
4
µ(ΘT

B)(v`−2)

≥ 1
4

+ 1
4
µ(ΘT̄k

B)(w`−1) + 1
4
µ(ΘT̄k

B)(v`−2)

[induction hypothesis]

= ΘT̄k
B (µ(ΘT̄k

B))(w`)

= µ(ΘT̄k
B)(w`).

By using the pigeonhole principle, we show that the policy iteration algorithm

can have at most 2n−k+2 − 1 iterations if the leftmost n− k + 2 vertices are allowed

to be switched. Moreover, after 2n−k+2 − 1 iterations of switching the leftmost

n− k + 2 vertices, these vertices will no longer be switchable.

Proposition 6.3.16. For all 1 ≤ k ≤ n+ 1, if only vn+1, . . . , vk are allowed to be

switched, then the loop 4–6 can be executed at most 2n−k+2 − 1 times.

Proof. Let 1 ≤ k ≤ n+1. Assume that only vn+1, . . . , vk are allowed to be switched.

Towards a contradiction, assume that the loop 4–6 is executed 2n−k+2 times. We

147

denote the value of T at the beginning of the (i+ 1)th iteration of the loop 4–6 by

Ti for 0 ≤ i ≤ 2n−k+2. Since only vn+1, . . . , vk are allowed to be switched, T is only

changed for the indices k, . . . , n+ 1. Therefore, T can only take on 2n−k+2 different

values. As a consequence, Ti = Tj for some 0 ≤ i < j ≤ 2n−k+2. Assume that v` is

switched in the (i+ 1)th iteration of the loop 4–6. Then

µ(ΘTi
B)(v`) > µ(Θ

Ti+1

B)(v`) [v` is switchable in Ti]

≥ µ(Θ
Tj
B)(v`)

[the value of v` cannot increase by Proposition 6.3.15]

= µ(ΘTi
B)(v`) [Ti = Tj]

which is a contradiction.

Finally, we come to the two main propositions.

Proposition 6.3.17. For all 1 ≤ k < n + 1, if T (n + 1) = 0, . . . , T (k + 1) = 0

and vn+1, . . . , vk are switchable with respect to T then during the next 2n−k+2 − 1

iterations of the loop 4–6 only vn+1, . . . , vk are switched resulting in T̄k.

Proof. Let 1 ≤ k < n+ 1. Assume T (n+ 1) = 0, . . . , T (k + 1) = 0 and vn+1, . . . ,

vk are switchable with respect to T .

We prove the proposition by induction on k. The base case is k = n. Since vn+1

is switchable, in the first iteration of the loop 4–6, vn+1 is switched resulting in T̄n+1.

148

According to Proposition 6.3.12, vn remains switchable with respect to T̄n+1 and vn

is switched resulting T̄n+1n in the second iteration.

Next, we will show that vn+1 is switchable with respect to T̄n+1n. We have

T̄n+1n(n+ 1) = 1. Since vn+1 is switchable with respect to T and T (n+ 1) = 0, by

Proposition 6.3.10, we have

aT (n+ 1) = 1
2
aT (n)(1

2
− T (n))< 0.

By Proposition 6.3.9(a), we have

aT (n) = aT̄n+1(n) = aT̄n+1n(n) (6.16)

We distinguish two cases.

• If T (n) = 0, then by Proposition 6.3.10, aT (n)< 0, since vn is switchable with

respect to T . By (6.16), aT̄n+1n(n) = aT (n)< 0 and by Definition 6.3.6

aT̄n+1n(n+ 1) = 1
2
aT̄n+1n(n)(1

2
− T̄n+1n(n)) = 1

2
aT̄n+1n(n)(1

2
− 1)> 0

• If T (n) = 1, then by Proposition 6.3.10, aT (n)> 0, since vn is switchable with

respect to T . By (6.16), aT̄n+1n(n) = aT (n)> 0 and by Definition 6.3.6

aT̄n+1n(n+ 1) = 1
2
aT̄n+1n(n)(1

2
− T̄n+1n(n)) = 1

2
aT̄n+1n(n)(1

2
− 0)> 0

In both cases, according to Proposition 6.3.10, vn+1 is switchable with respect

to T̄n+1n. Hence, in the third iteration of the loop 4–6, vn+1 is switched resulting in

T̄n+1nn+1 = T̄n.

149

In the inductive case, 1 ≤ k < n. Assume that T (n+ 1) = 0, . . . , T (k + 1) = 0

and vn+1, . . . , vk are switchable with respect to T . By induction, during the next

2n−k+1 − 1 iterations of the loop 4–6 only vn+1, . . . , vk+1 are switched resulting

in T̄k+1. According to Proposition 6.3.16, vn+1, . . . , vk+1 are not switchable after

2n−k+1 − 1 iterations of the loop 4–6. By Proposition 6.3.12, vk is switchable

with respect to T̄k+1. Hence, in the next iteration of the loop 4–6, vk remains

switched resulting in T̄k+1k. Since T (n + 1) = 0, . . . , T (k + 1) = 0, we have

that T̄k+1k(n + 1) = 0, . . . , T̄k+1k(k + 2) = 0, T̄k+1k(k + 1) = 1. Hence, by

Proposition 6.3.14 we have that vn+1, . . . , vk+1 are switchable with respect to T̄k+1k.

Again, by induction, during the next 2n−k+1 − 1 iterations of the loop 4–6 only

vn+1, . . . , vk+1 are switched resulting in T̄k+1kk+1 = T̄k. Hence, in total the loop is

iterated 2n−k+1 − 1 + 1 + 2n−k+1 − 1 = 2n−k+2 − 1 times.

Proposition 6.3.18. The loop 4–6 is iterated 2n+1 − 1 times, resulting in T̄1.

Proof. Initially, T (n+ 1) = 0, . . . , T (2) = 0, T (1) = 1.

First, by Definition 6.3.6, we have aT (1) = 1
4
> 0. Since T (1) = 1, from

Proposition 6.3.10 we can conclude that v1 is switchable with respect to T .

Next, we show that aT (k)< 0 for all 2 ≤ k ≤ n+ 1 by induction on k. The base

case is k = 2. According to Definition 6.3.6, aT (1) = 1
4
> 0. Then

aT (2) = 1
2
aT (1)(1

2
− T (1)) = 1

2
× 1

4
× (1

2
− 1)< 0.

150

In the inductive case, 2< k ≤ n+ 1. Then

aT (k) = 1
2
aT (k − 1)(1

2
− T (k − 1))

= 1
4
aT (k − 1)

< 0 [by induction]

From Proposition 6.3.10 we can conclude that vn+1, . . . , v2 are switchable with

respect to T . Hence, from Proposition 6.3.17 we can derive that the loop 4–6 is

iterated 2n+1 − 1 times, resulting in T̄1.

It follows from Proposition 6.3.18 that the simple policy iteration algorithm

requires exponential time in the worst case.

Theorem 6.3.19. For each n ∈ N, there exists a labelled Markov chain of size O(n)

such that simple policy iteration takes Ω(2n) iterations.

Proof. The labelled Markov chain Mn has size O(n) and simple policy iteration

takes Ω(2n) iterations according to Proposition 6.3.18.

6.4 General Policy Iteration

In Section 6.2, we presented the simple policy iteration algorithm where in each

iteration of the loop the policy is adjusted for a single state pair (s, t) which is not

locally optimal, that is, ∆(µ(ΘT
B))(s, t)< µ(ΘT

B)(s, t). In this section, we present

151

the general policy iteration algorithm, for which the policy is updated for all state

pairs which are not locally optimal.

1 f o r each (s, t) ∈ S2
? \B

2 T (s, t)← an element o f V (Ω(τ(s), τ(t))

3 whi le ∃(s, t) ∈ S2
? \B : ∆(µ(ΘT

B))(s, t)< µ(ΘT
B)(s, t)

4 U ← T

5 f o r each (s, t) ∈ S2
? \B such that ∆(µ(ΘU

B))(s, t)< µ(ΘU
B)(s, t)

6 T (s, t)← argmin
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) µ(ΘU
B)(u, v)

The proof of partial correctness is the same as the one for the simple policy

iteration algorithm. To prove termination, we slightly generalize Theorem 6.2.7.

Theorem 6.4.1. For all T ∈ V (CB) and distinct (s1, t1), . . . , (sn, tn) ∈ S2
? \B, if

∆(µ(ΘT
B))(si, ti)< µ(ΘT

B)(si, ti) for all 1 ≤ i ≤ n, then µ(Θ
T [(s1,t1)/π1]...[(sn,tn)/πn]
B) @

µ(ΘT
B), where

πi = argmin
ω∈V (Ω(τ(si),τ(ti)))

∑
u,v∈S

ω(u, v) µ(ΘT
B)(u, v)

for all 1 ≤ i ≤ n.

Proof. Let T ∈ V (CB) and (s1, t1), . . . , (sn, tn) ∈ S2
? \ B. Assume that (s1, t1),

. . . , (sn, tn) are distinct and ∆(µ(ΘT
B))(si, ti)< µ(ΘT

B)(si, ti) for all 1 ≤ i ≤ n. By

Lemma 6.2.6, it remains to prove that Θ
T [(s1,t1)/π1]...[(sn,tn)/πn]
B (µ(ΘT

B)) @ µ(ΘT
B),

where πi = argmin
ω∈V (Ω(τ(si),τ(ti)))

∑
u,v∈S

ω(u, v) µ(ΘT
B)(u, v) for all 1 ≤ i ≤ n. Let x, y ∈ S.

We distinguish the following cases.

152

• Assume (x, y) = (si, ti) for some 1 ≤ i ≤ n. Then

Θ
T [(s1,t1)/π1]...[(sn,tn)/πn]
B (µ(ΘT

B))(x, y)

=
∑
u,v∈S

T [(s1, t1)/π1] . . . [(sn, tn)/πn](x, y)(u, v) µ(ΘT
B)(u, v)

=
∑
u,v∈S

πi(u, v) µ(ΘT
B)(u, v)

= min
ω∈V (Ω(τ(si),τ(ti)))

∑
u,v∈S

ω(u, v) µ(ΘT
B)(u, v)

= ∆(µ(ΘT
B))(si, ti)

< µ(ΘT
B)(si, ti)

= µ(ΘT
B)(x, y).

• Assume that (x, y) ∈ S2
0 . Then

Θ
T [(s1,t1)/π1]...[(sn,tn)/πn]
B (µ(ΘT

B))(x, y) = 0 = ΘT
B(µ(ΘT

B))(x, y) = µ(ΘT
B)(x, y).

• Assume that (x, y) ∈ B. Then

Θ
T [(s1,t1)/π1]...[(sn,tn)/πn]
B (µ(ΘT

B))(x, y) = 1 = ΘT
B(µ(ΘT

B))(x, y) = µ(ΘT
B)(x, y).

• Otherwise,

Θ
T [(s1,t1)/π1]...[(sn,tn)/πn]
B (µ(ΘT

B))(x, y)

=
∑
u,v∈S

T [(s1, t1)/π1] . . . [(sn, tn)/πn](x, y)(u, v) µ(ΘT
B)(u, v)

=
∑
u,v∈S

T (x, y)(u, v) µ(ΘT
B)(u, v) [(x, y) 6= (si, ti) for all 1 ≤ i ≤ n]

153

= ΘT
B(µ(ΘT

B))(x, y)

= µ(ΘT
B)(x, y).

Although we have proved an exponential lower bound for the simple policy

iteration algorithm, it is still unknown whether there exists an exponential lower

bound for the general policy iteration algorithm.

154

7 Partial Policy Iteration

In the previous chapter, we have shown that the basic algorithm by Bacci et al. [3] is

the simple policy iteration algorithm. We have proved that their algorithm is wrong

and corrected it. We have also presented the general policy iteration algorithm.

These algorithms always compute the probabilistic bisimilarity distances for all state

pairs. An interesting question is whether the policy iteration algorithms can be

modified so that we only need to compute the probabilistic bisimilarity distances for

the state pairs we are interested in. In this chapter, we introduce the partial policy

iteration algorithms, inspired by the on-the-fly algorithm by Bacci et al. [3]. We will

show that their on-the-fly algorithm is wrong and will correct it. Furthermore, as we

will see in Example 7.1.10, though in the beginning a partial policy algorithm only

considers the state pairs in a query set, it may end up computing the probabilistic

bisimilarity distances for more state pairs. The following diagram shows the general

steps of applying partial policy algorithms, in which the partial policy algorithms

replace the policy iteration algorithms as the third step.

155

Deciding S2
0

Deciding B

Partial Policy Iteration Algorithm

Note that the partial policy iteration algorithm can be either the simple partial

policy iteration of Section 7.1 or the general partial policy iteration of Section 7.3.

We will study the time complexity of the partial policy iteration algorithms.

We will show that the running time of the simple partial policy iteration can be

exponential, similar to the simple policy iteration algorithm. Thus, the algorithm of

deciding the distances, which uses simple partial policy iteration, has an exponential

lower bound. As the time complexity of the general policy iteration is unknown, the

time complexity of the general partial policy algorithm, which uses partial policies,

remains unknown as well.

7.1 Simple Partial Policy Iteration

Instead of total policies, the partial policy iteration algorithms use partial ones.

Hence, we generalize the set of total policies V (CB) as follows. We denote the set of

partial functions from S2
? \B to Distr(S2) by S2

? \B 7→ Distr(S2) and the domain

of such a function P by dom(P).

Definition 7.1.1. For a labelled Markov chain 〈S, L, τ, `〉, the set P of partial

156

policies is defined by

P = {P ∈ (S2
? \B) 7→ Distr(S2) | ∀(s, t) ∈ dom(P) : P (s, t) ∈ V (Ω(τ(s), τ(t))) }.

Recall that S2
0 , S2

1 and S2
? form a partition of S2. For a given P ∈ P, S2

0 , B,

dom(P) and S2
? \B \ dom(P) form a partition of S2 as well. This partition is used

to generalize the function ΘT
B of Definition 6.1.2 to the partial setting.

dom(P)

S2
1S2

0 S2
?

B

D1

Definition 7.1.2. Let P ∈ P . The function ΘP
B : [0, 1]S

2 → [0, 1]S
2

is defined by

ΘP
B(d)(s, t) =



1 if (s, t) ∈ B∑
u,v∈S

P (s, t)(u, v) d(u, v) if (s, t) ∈ dom(P)

0 otherwise.

The following proposition shows that the function is ΘP
B monotone.

Proposition 7.1.3. For all d, e ∈ [0, 1]S
2
, if d v e then ΘP

B(d) v ΘP
B(e).

Proof. Let d, e ∈ [0, 1]S
2

with d v e. Let s, t ∈ S. We distinguish three cases.

• If (s, t) ∈ B then

ΘP
B(d)(s, t) = 1 = ΘP

B(e)(s, t).

157

• If (s, t) ∈ dom(P) then

ΘP
B(d)(s, t) =

∑
u,v∈S

P (s, t)(u, v) d(u, v)

≤
∑
u,v∈S

P (s, t)(u, v) e(u, v) [d v e]

= ΘP
B(e)(s, t).

• Otherwise,

ΘP
B(d)(s, t) = 0 = ΘP

B(e)(s, t).

Since [0, 1]S
2

is a complete lattice and ΘP
B is a monotone function, we can

conclude from the Knaster-Tarski fixed point theorem (Theorem 2.1.8(a)) that ΘP
B

has a least fixed point. We denote this fixed point by µ(ΘP
B).

The set Q ⊆ S2
? \B contains those pairs of states in which we are interested.

1 P ← the p a r t i a l f unc t i on with empty domain

2 f o r each (s, t) ∈ Q

3 P (s, t)← an element o f V (Ω(τ(s), τ(t)))

4 expand(P, s, t)

5 whi le ∃(s, t) ∈ dom(P) : ∆(µ(ΘP
B))(s, t)< µ(ΘP

B)(s, t)

6 P (s, t)← argmin
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) µ(ΘP
B)(u, v)

7 expand(P, s, t)

158

Let P ∈ P and (s, t) ∈ S2
? \B. The recursive function expand(P, s, t) is defined

as follows.

8 whi le ∃(u, v) ∈ support(P (s, t)) ∩ (S2
? \B) : (u, v) 6∈ dom(P)

9 P (u, v)← an element o f V (Ω(τ(u), τ(v)))

10 expand(P, u, v)

Intuitively, the function expand expands dom(P), the domain of the partial

function P . As can be seen from Example 7.1.10, without the function expand, the

algorithm will not consider a sufficient number of state pairs and will terminate

with the incorrect values of the distances.

To prove properties of this recursive function, we introduce the following predi-

cate.

Definition 7.1.4. Let P ∈ P and X ⊆ S2
? \ B. The predicate F (P,X) is defined

by

F (P,X) = ∀(s, t) ∈ dom(P) \X : support(P (s, t)) ∩ (S2
? \B) ⊆ dom(P).

Let us fix X ⊆ S2
? \ B. Roughly, this predicate F (P,X) captures the fact

that P is fully defined when we exclude X from its domain. Let P ∈ P and

(s, t) ∈ S2
? \ B. Next, we prove that for expand(P, s, t) the precondition F (P,X)

implies the postcondition F (P,X \{(s, t)}). First, we observe that F (P,X) is a loop

invariant. At the start of line 10, we have that F (P,X ∪ {(u, v)}). Hence, at the

159

end of line 10 we have F (P,X). To conclude that the loop terminates, we observe

that the finite set dom(P) \ support(P (s, t)) becomes smaller in every iteration.

Note that expand does not give rise to infinite recursion since for each recursive call

the finite set S2
? \ B \ dom(P) becomes smaller. At the end of the loop we have

F (P,X) and (u, v) ∈ dom(P) for all (u, v) ∈ support(P (s, t)) ∩ (S2
? \ B), that is,

support(P (s, t)) ∩ (S2
? \B) ⊆ dom(P). Therefore, F (P,X \ {(s, t)}).

Let P ∈ P , (s, t) ∈ S2
? \B and X ⊆ S2

? \B. Next, we annotate the code of the

simple partial policy iteration algorithm.

1 P ← the p a r t i a l f unc t i on with empty domain

{F (P, ∅)}

2 f o r each (s, t) ∈ Q

{F (P, ∅)}

3 P (s, t)← an element o f V (Ω(τ(s), τ(t)))

{F (P, {(s, t)})}

4 expand(P, s, t)

{F (P, ∅)}

{F (P, ∅) ∧Q ⊆ dom(P)}

5 whi le ∃(s, t) ∈ dom(P) : ∆(µ(ΘP
B))(s, t)< µ(ΘP

B)(s, t)

{F (P, ∅) ∧Q ⊆ dom(P)}

6 P (s, t)← argmin
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) µ(ΘP
B)(u, v)

160

{F (P, {(s, t)}) ∧Q ⊆ dom(P)}

7 expand(P, s, t)

{F (P, ∅) ∧Q ⊆ dom(P)}

{F (P, ∅) ∧Q ⊆ dom(P) ∧ ∀(s, t) ∈ dom(P) : µ(ΘP
B)(s, t) ≤ ∆(µ(ΘP

B))(s, t)}

We also annotate the code of expand(P, s, t). The assertions are given in red.

{F (P,X)}

8 whi le ∃(u, v) ∈ support(P (s, t)) ∩ S2
? : (u, v) 6∈ dom(P)

{F (P,X)}

9 P (u, v)← an element o f V (Ω(τ(u), τ(v)))

{F (P,X ∪ {(u, v)})}

10 expand(P, u, v)

{F (P,X)}

{F (P,X \ {(s, t)})}

The proof of partial correctness of this simple partial policy iteration algorithm

is similar to the partial correctness proof provided in Section 6.2. If the above

algorithm terminates, then we have that

F (P, ∅) ∧Q ⊆ dom(P) ∧ ∀(s, t) ∈ dom(P) : µ(ΘP
B)(s, t) ≤ ∆(µ(ΘP

B))(s, t)

at termination. As we will show next, from the above we can conclude that µ(ΘP
B)

and µ(∆) coincide on Q and, hence, µ(ΘP
B) contains the probabilistic bisimilarity

161

distances of Q.

We define a new distance function dPB : S2 → [0, 1]. We will show in Proposi-

tion 7.1.6 that µ(∆) v dPB and use this fact to prove that µ(ΘP
B) and µ(∆) agree

on the values in dom(P).

Definition 7.1.5. Let P ∈ P . The function dPB : S2 → [0, 1] is defined by

dPB(s, t) =


0 if (s, t) ∈ S2

0

µ(ΘP
B)(s, t) if (s, t) ∈ dom(P)

1 otherwise

Proposition 7.1.6. For all P ∈ P, if F (P, ∅) then µ(∆) v dPB.

Proof. Let P ∈ P and assume F (P, ∅). µ(∆) is the least fixed point of ∆. By the

Knaster-Tarski theorem (Theorem 2.1.8(c)), µ(∆) is the least pre-fixed point of ∆.

Hence, to show that µ(∆) v dPB, it suffices to show that ∆(dPB) v dPB.

Let s, t ∈ S. Assume F (P, ∅). We distinguish the following four cases.

• If (s, t) ∈ S2
0 , then s ∼ t. According to Definition 2.1.5, we can con-

clude that `(s) = `(t), and there must exist an π ∈ Ω(τ(s), τ(t)) such that

162

support(π) ⊆∼.

∆(dPB)(s, t) = min
ω∈Ω(τ(s),τ(t))

∑
(u,v)∈S2

ω(u, v) dPB(u, v)

≤
∑

(u,v)∈S2

π(u, v) dPB(u, v)

=
∑

(u,v)∈support(π)

π(u, v) dPB(u, v)

= 0 [∀u ∼ v : dPB(u, v) = 0]

= dPB(s, t).

Thus, ∆(dPB)(s, t) = 0 = dPB(s, t).

• Assume (s, t) ∈ dom(P). We have that (s, t) 6∈ B and s 6∼ t. Since F (P, ∅)

and (s, t) ∈ dom(P), we have that support(P (s, t)) ∩ (S2
? \ B) ⊆ dom(P).

Hence, support(P (s, t)) ⊆ S2
0 ∪B ∪ (S2

? ∩ dom(P)).

Next, we prove that dPB and µ(ΘP
B) coincide on support(P (s, t)), that is, for

all (u, v) ∈ support(P (s, t)),

dPB(u, v) = µ(ΘP
B)(u, v). (7.1)

Let (u, v) ∈ support(P (s, t)). We distinguish the following cases.

– If (u, v) ∈ S2
0 then

dPB(u, v) = 0 = ΘP
B(µ(ΘP

B))(u, v) = µ(ΘP
B)(u, v).

– If (u, v) ∈ B then

dPB(u, v) = 1 = ΘP
B(µ(ΘP

B))(u, v) = µ(ΘP
B)(u, v).

163

– If (u, v) 6∈ B, (u, v) 6∈ S2
0 and (u, v) ∈ dom(P) then

dPB(u, v) = µ(ΘP
B)(u, v).

Hence,

∆(dPB)(s, t) = min
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) dPB(u, v)

≤
∑
u,v∈S

P (s, t)(u, v) dPB(u, v) [P (s, t) ∈ V (Ω(τ(s), τ(t)))]

=
∑

(u,v)∈support(P (s,t))

P (s, t)(u, v) dPB(u, v)

=
∑

(u,v)∈support(P (s,t))

P (s, t)(u, v) µ(ΘP
B)(u, v) [(7.1)]

=
∑
u,v∈S

P (s, t)(u, v) µ(ΘP
B)(u, v) [P (s, t) ∈ V (Ω(τ(s), τ(t)))]

= ΘP
B(µ(ΘP

B))(s, t)

= µ(ΘP
B)(s, t)

= dPB(s, t) [(s, t) ∈ dom(P)].

• Otherwise, s 6∼ t and (s, t) 6∈ dom(P),

∆(dPB)(s, t) ≤ 1 = dPB(s, t).

Proposition 7.1.7. For all P ∈ P, if µ(ΘP
B)(s, t) ≤ ∆(µ(ΘP

B))(s, t) for all (s, t) ∈

dom(P), then µ(ΘP
B) v µ(∆).

164

Proof. Let P ∈ P. Assume µ(ΘP
B)(s, t) ≤ ∆(µ(ΘP

B))(s, t) for all (s, t) ∈ dom(P).

According to Theorem 6.2.2(c, d), µ(∆) is the unique fixed point of ∆B. Hence,

µ(∆) is also the greatest fixed point of ∆B. By the Knaster-Tarski theorem

(Theorem 2.1.8(d)), µ(∆) is the greatest post-fixed point of ∆B. Hence, to show

µ(ΘP
B) v µ(∆), it suffices to show µ(ΘP

B) is a post-fixed point of ∆B.

Let (s, t) 6∈ dom(P). We distinguish two cases.

• If (s, t) ∈ B then by Definition 7.1.2,

µ(ΘP
B)(s, t) = ΘP

B(µ(ΘP
B))(s, t) = 1 = ∆B(µ(ΘP

B))(s, t).

• Otherwise,

µ(ΘP
B)(s, t) = ΘP

B(µ(ΘP
B))(s, t) = 0 ≤ ∆B(µ(ΘP

B))(s, t).

Let (s, t) ∈ dom(P). As (s, t) 6∈ B and (s, t) 6∈ S2
0 , by Definition 7.1.2, we have

µ(ΘP
B)(s, t) = ΘP

B(µ(ΘP
B))(s, t) ≤ ∆(µ(ΘP

B))(s, t) = ∆B(µ(ΘP
B))(s, t).

Hence, µ(ΘP
B) v ∆B(µ(ΘP

B)). That is, µ(ΘP
B) is a post-fixed point of ∆B.

The next theorem proves the partial correctness of the simple partial policy

iteration algorithm, that is, if the algorithm terminates then it computes the

probabilistic bisimilarity distances for the state pairs in dom(P).

Theorem 7.1.8. For all P ∈ P, if F (P, ∅) and µ(ΘP
B)(s, t) ≤ ∆(µ(ΘP

B))(s, t) for

all (s, t) ∈ dom(P), then µ(ΘP
B)(s, t) = µ(∆)(s, t) for all (s, t) ∈ dom(P).

165

Proof. Let P ∈ P. Assume that F (P, ∅) and µ(ΘP
B)(s, t) ≤ ∆(µ(ΘP

B))(s, t) for all

(s, t) ∈ dom(P). Let (s, t) ∈ dom(P). Then

µ(ΘP
B)(s, t) ≤ µ(∆)(s, t) [Proposition 7.1.7]

≤ dPB(s, t) [Proposition 7.1.6]

= µ(ΘP
B)(s, t).

The above theorem shows that if the simple partial policy iteration algorithm

terminates, µ(ΘP
B) computes the bisimilarity distances for those state pairs in

dom(P). Since Q ⊆ dom(P), it computes the distances of all the state pairs in Q. It

remains to prove that the algorithm does terminate. As we already discussed above,

the recursive function expand terminates. Hence, we are left to show that the loop

of line 5–7 terminates as well. We prove this by showing that in each iteration of the

loop 〈S2
? \B\dom(P), P 〉 becomes smaller. These pairs are ordered lexicographically,

with the first component ordered by ⊂ and the second component ordered by ≺, as

introduced in Definition 6.2.4. Assume that P is updated for (s, t) on line 6 of the

current iteration of the loop. We distinguish two cases. If (u, v) 6∈ dom(P) for some

(u, v) ∈ support(P (s, t))∩ (S2
? \B), then expand(P, s, t) on line 7 will assign a value

to P (u, v) on line 9 of the expand function. As a consequence, dom(P) becomes

bigger and, hence, the first component of 〈S2
? \ B \ dom(P), P 〉 becomes smaller.

Note that in this case P may not become smaller as µ(ΘP
B)(u, v) was zero and may

166

have become positive. Otherwise, support(P (s, t)) ∩ (S2
? \ B) ⊆ dom(P). In that

case, the expand function does not perform any assignment to P and, therefore,

dom(P) stays the same. Thus, the first component stays the same. Furthermore,

the iteration changes the partial policy from P to P [(s, t)/π] (cf. Definition 6.2.5)

for some π. As we show next, in this case the second component, that is, the partial

policy, becomes smaller.

Theorem 7.1.9. For all P ∈ P and (s, t) ∈ dom(P), if ∆(µ(ΘP
B))(s, t) <

µ(ΘP
B)(s, t), then P [(s, t)/π] ≺ P , where π = argmin

ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) µ(ΘP
B)(u, v).

Proof. Let P ∈ P and (s, t) ∈ dom(P). Assume that ∆(µ(ΘP
B))(s, t)< µ(ΘP

B)(s, t).

Let π = argmin
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) µ(ΘP
B)(u, v). By Lemma 6.2.6, it suffices to

prove that Θ
P [(s,t)/π]
B (µ(ΘP

B)) @ µ(ΘP
B). Let x, y ∈ S. We distinguish the following

cases.

• Assume (x, y) = (s, t). Then

Θ
P [(s,t)/π]
B (µ(ΘP

B))(x, y) =
∑
u,v∈S

P [(s, t)/π](x, y)(u, v) µ(ΘP
B)(u, v)

=
∑
u,v∈S

π(u, v) µ(ΘP
B)(u, v) [(x, y) = (s, t)]

= min
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) µ(ΘP
B)(u, v)

= ∆(µ(ΘP
B))(s, t)

< µ(ΘP
B)(s, t)

= µ(ΘP
B)(x, y).

167

• Assume that (x, y) ∈ S2
0 . Then

Θ
P [(s,t)/π]
B (µ(ΘP

B))(x, y) = 0 = ΘP
B(µ(ΘP

B))(x, y) = µ(ΘP
B)(x, y).

• Assume (x, y) ∈ B. Then

Θ
P [(s,t)/π]
B (µ(ΘP

B))(x, y) = 1 = ΘP
B(µ(ΘP

B))(x, y) = µ(ΘP
B)(x, y).

• Assume that `(x) = `(y), (x, y) 6∈ dom(P) and (x, y) 6∈ B. Since (x, y) 6= (s, t),

we have that (x, y) 6∈ dom(P [(s, t)/π]) and

Θ
P [(s,t)/π]
B (µ(ΘP

B))(x, y) = 0 = ΘP
B(µ(ΘP

B))(x, y) = µ(ΘP
B)(x, y).

• Otherwise, (x, y) ∈ dom(P) and

Θ
P [(s,t)/π]
B (µ(ΘP

B))(x, y)

=
∑
u,v∈S

P [(s, t)/π](x, y)(u, v) µ(ΘP
B)(u, v)

=
∑
u,v∈S

P (x, y)(u, v) µ(ΘP
B)(u, v) [(x, y) 6= (s, t)]

= ΘP
B(µ(ΘP

B))(x, y)

= µ(ΘP
B)(x, y).

The on-the-fly algorithm of Bacci et al. differs in three major ways from our

simple partial policy iteration algorithm. First of all, as we have already mentioned

168

in Section 5, they use ΨT while we use ΘP
B. The main difference of these two

functions is that ΘP
B maps all the probabilistic bisimilar state pairs to zero. In the

proof of Theorem 6.1.9 we give an example which shows that deciding probabilistic

bisimilarity is essential for correctly computing the distances. Secondly, on line 5,

instead of considering all the state pairs in dom(P), they consider only those state

pairs that are reachable from the state pairs in Q in the coupled Markov chain

〈S2, P 〉. But, as we will show below, as a result they do not always correctly compute

the distances. Thirdly, they map the state pairs in S2
? \B \ dom(P) to one, while

we map them to zero.

We conclude this section with an example which shows that Bacci et al. do not

always consider partial policies that are defined for sufficiently many state pairs.

Example 7.1.10. Consider the labelled Markov chain presented below. Assume

that we are only interested in the probabilistic bisimilarity distance between the states

s and t. That is, Q = {(s, t)}.

a1 a2

a

s

b

b1 b2

1
2

1
2

1
2

1
2

1
2

1
2

1 1 1 1

c1 c2

c

t

d

d1 d2

1
2

1
2

1
2

1
2

1
2

1
2

1 1 1 1

After executing line 1–4 of the simple partial policy iteration algorithm, we may

169

end up with the partial policy P defined by

P (s, t) = 1
2
Dir(a,d) + 1

2
Dir(b,c)

P (a, d) = 1
2
Dir(a1,d2) + 1

2
Dir(a2,d1)

P (b, c) = 1
2
Dir(b1,c2) + 1

2
Dir(b2,c1).

At this point, we have µ(ΘP
B)(s, t) = 1, µ(ΘP

B)(a, d) = 1 and µ(ΘP
B)(b, c) = 1. Note

that (s, t) is not locally optimal, that is, ∆(µ(ΘP
B))(s, t)< µ(ΘP

B)(s, t). We update

P by setting P (s, t) = 1
2
Dir(a,c) + 1

2
Dir(b,d). The expand function on line 7 of the

simple partial policy iteration algorithm may give rise to

P (a, c) = 1
2
Dir(a1,c1) + 1

2
Dir(a2,c2)

P (b, d) = 1
2
Dir(b1,d1) + 1

2
Dir(b2,d2)

At this point, we have µ(ΘP
B)(s, t) = 3

4
, µ(ΘP

B)(a, c) = 1 and µ(ΘP
B)(b, d) = 1

2
. Since

in their algorithm, Bacci et al. only check local optimality for all state pairs in

dom(P), that is, for (s, t), (a, c) and (b, d), and all three are locally optimal, their

algorithm terminates at this point and outputs a distance of 3
4

between s and t.

Our algorithm checks for local optimality for all state pairs reachable from (s, t) in

the Markov chain 〈S2, P 〉. Since neither (a, d) nor (b, c) are locally optimal, our

algorithm continues. We update P by setting

P (a, d) = 1
2
Dir(a1,d1) + 1

2
Dir(a2,d2)

P (b, c) = 1
2
Dir(b1,c1) + 1

2
Dir(b2,c2)

At this point, we have µ(ΘP
B)(s, t) = 3

4
, µ(ΘP

B)(a, d) = 1
2

and µ(ΘP
B)(b, c) = 1

2
.

Since (s, t) is not locally optimal any more, we update P by setting P (s, t) =

170

1
2
Dir(a,d) + 1

2
Dir(b,c). This results in µ(ΘP

B)(s, t) = 1
2

which is the probabilistic

bisimilarity distance of (s, t).

7.2 An Exponential Lower Bound of Simple Partial Policy

Iteration

Below, we will prove the exponential lower bound for the simple partial policy itera-

tion algorithm. We will reuse the labelled Markov chains defined in Definition 6.3.1.

Recall that the labelled Markov chainMn has 4n+8 states and 7n+14 transitions.

Next, we show that it takes at least 2n+1 − 1 iterations of the simple partial policy

iteration algorithm to compute the distance of sn+1 and tn+1 in Mn.

The partial policy iteration algorithm contains some nondeterminism. In partic-

ular, on line 3 and 9, an element of V (Ω(τ(s), τ(t))) and V (Ω(τ(u), τ(v))) is chosen.

Furthermore, on line 5 a state pair (s, t) ∈ dom(P) with ∆(µ(ΘP
B))(s, t)<µ(ΘP

B)(s, t)

is selected. Note that, if 2 ≤ i ≤ n+ 1, then

V (Ω(τ(si), τ(ti))) = {1
2
Dir(si−1,ti−1) + 1

2
Dir(ri−1,ui−1),

1
2
Dir(si−1,ui−1) + 1

2
Dir(ri−1,ti−1)}.

Also,

V (Ω(τ(s1), τ(t1))) = {1
2
Dir(s0,u0) + 1

2
Dir(r0,t0),

1
2
Dir(s0,t0) + 1

2
Dir(r0,u0)}.

Furthermore, if 1 ≤ i < n+ 1, then

V (Ω(τ(si), τ(ui))) = {1
2
Dir(ri−1,ui−1) + 1

4
Dir(si−1,ti−1) + 1

4
Dir(si−1,ui−1),

171

1
2
Dir(si−1,ui−1) + 1

4
Dir(ri−1,ui−1) + 1

4
Dir(ri−1,ti−1)}.

To realize the exponential lower bound, on line 3 and 9 we choose the first element

of the above sets and on line 5 we select the (si, ti) with maximal index i.

Theorem 7.2.1. For each n ∈ N, there exists a labelled Markov chain of size O(n)

and a singleton set Q such that simple partial policy iteration takes Ω(2n) iterations

to compute the distances for the state pair in Q.

Proof. Let n ∈ N. After calling the function expand(P, sn+1, tn+1), all the vertices

in Gn of Definition 6.3.2 will be added to the domain of P . The rest of the proof is

the same as the proof of Theorem 6.3.19.

7.3 General Partial Policy Iteration

The general policy iteration algorithm, which we presented in Section 6.4, can be

generalized to use partial policies instead of total ones. The general partial policy

iteration algorithm is as follows.

1 P ← the p a r t i a l f unc t i on with empty domain

2 f o r each (s, t) ∈ Q

3 P (s, t)← an element o f V (Ω(τ(s), τ(t)))

4 expand(P, s, t)

5 whi le ∃(s, t) ∈ dom(P) : ∆(µ(ΘP
B))(s, t)< µ(ΘP

B)

172

6 R← P

7 f o r each (s, t) ∈ dom(R) such that ∆(µ(ΘR))(s, t)< µ(ΘR)(s, t)

8 P (s, t)← argmin
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) µ(ΘR)(u, v)

9 expand(P, s, t)

The proof of partial correctness is the same as the one for the general policy

iteration algorithm. To prove termination we slightly generalize Theorem 7.1.9.

Theorem 7.3.1. For all P ∈ P and distinct (s1, t1), . . . , (sn, tn) ∈ dom(P), if

∆(µ(ΘP
B)(si, ti) < µ(ΘP

B)(si, ti) for all 1 ≤ i ≤ n, then

µ(ΘP [(s1,t1)/π1]...[(sn,tn)/πn]) @ µ(ΘP
B),

where πi = argmin
ω∈V (Ω(τ(si),τ(ti)))

∑
u,v∈S

ω(u, v) µ(ΘP
B)(u, v) for all 1 ≤ i ≤ n.

Proof. Let P ∈ P and (s1, t1), . . . , (sn, tn) ∈ dom(P). Assume that (s1, t1), . . . ,

(sn, tn) are distinct and ∆(µ(ΘP
B))(si, ti) < µ(ΘP

B)(si, ti) for all 1 ≤ i ≤ n. By

Lemma 6.2.6, it suffices to prove that Θ
P [(s1,t1)/π1]...[(sn,tn)/πn]
B (µ(ΘP

B)) @ µ(ΘP
B),

where πi = argmin
ω∈V (Ω(τ(si),τ(ti)))

∑
u,v∈S

ω(u, v) µ(ΘP
B)(u, v) for all 1 ≤ i ≤ n. Let x, y ∈ S.

We distinguish the following cases.

• Assume (x, y) = (si, ti) for some 1 ≤ i ≤ n. Then

Θ
P [(s1,t1)/π1]...[(sn,tn)/πn]
B (µ(ΘP

B))(x, y)

=
∑
u,v∈S

P [(s1, t1)/π1] . . . [(sn, tn)/πn](x, y)(u, v) µ(ΘP
B)(u, v)

173

=
∑
u,v∈S

πi(u, v) µ(ΘP
B)(u, v)

= min
ω∈V (Ω(τ(si),τ(ti)))

∑
u,v∈S

ω(u, v) µ(ΘP
B)(u, v)

= ∆(µ(ΘP
B))(si, ti)

< µ(ΘP
B)(si, ti)

= µ(ΘP
B)(x, y).

• Assume that (x, y) ∈ S2
0 . Then

Θ
P [(s1,t1)/π1]...[(sn,tn)/πn]
B (µ(ΘP

B))(x, y) = 0 = ΘP
B(µ(ΘP

B))(x, y) = µ(ΘP
B)(x, y).

• Assume that (x, y) ∈ B. Then

Θ
P [(s1,t1)/π1]...[(sn,tn)/πn]
B (µ(ΘP

B))(x, y) = 1 = ΘP
B(µ(ΘP

B))(x, y) = µ(ΘP
B)(x, y).

• Assume that (x, y) 6∈ S2
0 , (x, y) 6∈ B and (x, y) 6∈ dom(P). Since (x, y) 6= (si, ti)

for all 1 ≤ i ≤ n, we have that (x, y) 6∈ dom(P [(s1, t1)/π1] . . . [(sn, tn)/πn])

and

Θ
P [(s1,t1)/π1]...[(sn,tn)/πn]
B (µ(ΘP

B))(x, y) = 0 = ΘP
B(µ(ΘP

B))(x, y) = µ(ΘP
B)(x, y).

• Otherwise, (x, y) 6= (si, ti) for all i satisfying 1 ≤ i ≤ n and (x, y) ∈ dom(P).

In this case,

Θ
P [(s1,t1)/π1]...[(sn,tn)/πn]
B (µ(ΘP

B))(x, y)

174

=
∑
u,v∈S

P [(s1, t1)/π1] . . . [(sn, tn)/πn](x, y)(u, v) µ(ΘP
B)(u, v)

=
∑
u,v∈S

P (x, y)(u, v) µ(ΘP
B)(u, v) [(x, y) 6= (si, ti) for all 1 ≤ i ≤ n]

= ΘP
B(µ(ΘP

B))(x, y)

= µ(ΘP
B)(x, y).

Similar to the general policy iteration algorithm, it is unknown if there exists an

exponential lower bound for the general partial policy iteration algorithm.

175

8 Distance One for Labelled Markov Chains

In this chapter, we present a characterization of D1, the set of all state pairs

which have distance one, as a greatest fixed point of a function. We then use this

characterization to develop an algorithm that decides distance one in O(m2) time,

where m is the number of transitions of the labelled Markov chain. Finally, we

propose three new algorithms to compute the probabilistic bisimilarity distances,

where all three have incorporated the new procedure of deciding distance one. The

algorithms presented in Chapter 6 and Chapter 7 do not decide distance one at first

and can only handle labelled Markov chains up to 150 states in a reasonable amount

of time. For one such labelled Markov chain, our implementation of the algorithms

takes more than 49 hours. It is shown in Chapter 9 that our new algorithms, with

deciding zero and one at first, takes 13 milliseconds instead of 49 hours. Furthermore,

these new algorithms can compute distances for labelled Markov chains with more

than 10,000 states in less than 50 minutes.

176

8.1 Characterization of Distance One

Recall that D1 is defined (see in Section 6.1) as the set of of all state pairs which have

probabilistic bisimilarity distance one. In this section we present a characterization

of D1 as a greatest fixed point of the function of Definition 8.1.1.

Let us consider the case that the probabilistic bisimilarity distance of states s

and t is one, that is, µ(∆)(s, t) = 1. Then ∆(µ(∆))(s, t) = 1. From the definition

of ∆, we can conclude that either `(s) 6= `(t), or for all couplings ω ∈ Ω(τ(s), τ(t))

we have support(ω) ⊆ D1.

Definition 8.1.1. The function Γ : 2S
2 → 2S

2
is defined by

Γ(X) = S2
1 ∪ { (s, t) ∈ S2

? | ∀ω ∈ Ω(τ(s), τ(t)) : support(ω) ⊆ X }.

Next, we show that the function Γ is monotone. Since the set 2S
2

of subsets of S2

endowed with the order⊆ is a complete lattice (see, for example, [28, Example 2.6(2)])

and the function Γ is monotone, we can conclude from the Knaster-Tarski fixed

point theorem (Theorem 2.1.8) that Γ admits a greatest fixed point.

Proposition 8.1.2. The function Γ is monotone.

Proof. Let X, Y ∈ 2S
2

with X ⊆ Y . Let (s, t) ∈ Γ(X). We distinguish two cases.

• If (s, t) ∈ S2
1 then obviously (s, t) ∈ Γ(Y).

• If (s, t) ∈ S2
? then

∀ω ∈ Ω(τ(s), τ(t)) : support(ω) ⊆ X

177

implies ∀ω ∈ Ω(τ(s), τ(t)) : support(ω) ⊆ Y [X ⊆ Y]

implies (s, t) ∈ Γ(Y).

We denote the greatest fixed point of Γ by ν(Γ). Next, we show that D1 is a

fixed point of Γ.

Proposition 8.1.3. D1 = Γ(D1).

Proof. For all s, t ∈ S,

(s, t) ∈ Γ(D1)

iff (s, t) ∈ S2
1 ∨ ∀ω ∈ Ω(τ(s), τ(t)) : support(ω) ⊆ D1

iff `(s) 6= `(t) ∨ ∀ω ∈ Ω(τ(s), τ(t)) : support(ω) ⊆ D1

iff `(s) 6= `(t) ∨ ∀ω ∈ Ω(τ(s), τ(t)) : ∀(u, v) ∈ support(ω) : (u, v) ∈ D1

iff `(s) 6= `(t) ∨ ∀ω ∈ Ω(τ(s), τ(t)) : ∀(u, v) ∈ support(ω) : µ(∆)(u, v) = 1

iff `(s) 6= `(t) ∨ ∀ω ∈ Ω(τ(s), τ(t)) :
∑
u,v∈S

ω(u, v)µ(∆)(u, v) = 1

iff `(s) 6= `(t) ∨ min
ω∈Ω(τ(s),τ(t))

∑
u,v∈S

ω(u, v)µ(∆)(u, v) = 1 [since
∑
u,v∈S

ω(u, v) = 1]

iff ∆(µ(∆))(s, t) = 1

iff µ(∆)(s, t) = 1

iff (s, t) ∈ D1.

178

Since we have already seen that D1 is a fixed point of Γ, we have that D1 ⊆ ν(Γ).

To conclude that D1 is the greatest point of Γ, it remains to show that ν(Γ) ⊆ D1,

which is equivalent to the following.

Proposition 8.1.4. ν(Γ) \D1 = ∅.

Proof. Towards a contradiction, assume that ν(Γ) \D1 6= ∅. Let

m = min{µ(∆)(s, t) | (s, t) ∈ ν(Γ) \D1 }

M = { (s, t) ∈ ν(Γ) \D1 | µ(∆)(s, t) = m }

S2
1S2

0 M
D1

ν(Γ)

Since ν(Γ) \D1 6= ∅, we have that M 6= ∅. Furthermore,

M ⊆ ν(Γ) \D1. (8.1)

Since ν(Γ) \D1 ⊆ ν(Γ), we have

M ⊆ ν(Γ) = Γ(ν(Γ)) ⊆ S2
1 ∪ S2

? . (8.2)

For all (s, t) ∈M ,

(s, t) ∈ ν(Γ) ∧ (s, t) 6∈ D1 [(8.1)]

179

implies (s, t) ∈ Γ(ν(Γ)) ∧ (s, t) 6∈ S2
1

implies ∀ω ∈ Ω(τ(s), τ(t)) : support(ω) ⊆ ν(Γ). (8.3)

For each (s, t) ∈M , let

ωs,t = argmin
ω∈Ω(τ(s),τ(t))

∑
u,v∈S

ω(u, v)µ(∆)(u, v). (8.4)

We distinguish the following two cases.

• Assume that there exists (s, t) ∈M such that support(ωs,t) ∩D1 6= ∅. Let

p =
∑

(u,v)∈ν(Γ)∩D1

ωs,t(u, v).

By (8.3), we have that support(ωs,t) ⊆ ν(Γ). Since support(ωs,t) ∩D1 6= ∅

by assumption, we can conclude that p > 0. Again using the fact that

support(ωs,t) ⊆ ν(Γ), we have that

∑
(u,v)∈ν(Γ)\D1

ωs,t(u, v) = 1− p. (8.5)

Furthermore,

m = µ(∆)(s, t)

= ∆(µ(∆))(s, t)

= min
ω∈Ω(τ(s),τ(t))

∑
u,v∈S

ω(u, v)µ(∆)(u, v)

=
∑
u,v∈S

ωs,t(u, v)µ(∆)(u, v) [(8.4)]

=
∑

(u,v)∈ν(Γ)

ωs,t(u, v)µ(∆)(u, v) [(8.3)]

180

=
∑

(u,v)∈ν(Γ)∩D1

ωs,t(u, v)µ(∆)(u, v) +
∑

(u,v)∈ν(Γ)\D1

ωs,t(u, v)µ(∆)(u, v)

= p+
∑

(u,v)∈ν(Γ)\D1

ωs,t(u, v)µ(∆)(u, v)

≥ p+ (1− p)m.

The last step follows from (8.5) and the fact that µ(∆)(u, v) ≥ m for all

(u, v) ∈ ν(Γ) \D1. From the facts that p > 0 and m ≥ p+ (1− p)m we can

conclude that m ≥ 1. This contradicts (8.1).

• Otherwise, support(ωs,t) ∩D1 = ∅ for all (s, t) ∈M . Next, we will show that

M is a probabilistic bisimulation under this assumption. From the fact that

M is a probabilistic bisimulation, we can conclude from Theorem 2.1.14 that

µ(∆)(s, t) = 0 for all (s, t) ∈M . Hence, since M 6= ∅ we have that M ∩S2
0 6= ∅

which contradicts (8.2).

Next, we prove that M is a probabilistic bisimulation. Let (s, t) ∈M . Since

M ⊆ ν(Γ) \D1 by (8.1), we have that (s, t) 6∈ D1 and, hence, ∆(µ(∆))(s, t) =

µ(∆)(s, t)<1. From the definition of ∆, we can conclude that `(s) = `(t). Since

support(ωs,t) ⊆ ν(Γ) by (8.3) and support(ωs,t) ∩D1 = ∅ by the assumption,

we have support(ωs,t) ⊆ ν(Γ) \D1. Since

m = µ(∆)(s, t)

=
∑

(u,v)∈ν(Γ)\D1

ωs,t(u, v)µ(∆)(u, v) [as above]

and µ(∆)(u, v) ≥ m for all (u, v) ∈ ν(Γ) \D1, and support(ωs,t) ⊆ ν(Γ) \D1,

181

we can conclude that µ(∆)(u, v) = m for all (u, v) ∈ support(ωs,t). Hence,

support(ωs,t) ⊆M . Therefore, M is a probabilistic bisimulation.

Theorem 8.1.5. D1 = ν(Γ).

Proof. Immediate consequence of Proposition 8.1.3 and 8.1.4.

8.2 An Algorithm of Deciding for Distance One

We have shown in the previous section that D1 can be characterized as the greatest

fixed point of Γ. Next, we show that D1 can be decided in polynomial time.

To compute the set of state pairs which have distance one, we can first compute

the set of state pairs which have distance less than one. The latter set we denote by

D<1. We can then obtain D1 by taking the complement of D<1. As we will discuss

below, D<1 can be characterized as the least fixed point of the following function.

Definition 8.2.1. The function Γ: 2S
2 → 2S

2
is defined by

Γ(X) = S2 \ Γ(S2 \X).

The next theorem follows from Theorem 8.1.5.

Theorem 8.2.2. D<1 = µ(Γ).

182

Proof. First, we prove that for all X ⊆ S2, X is a fixed point of Γif and only if

S2 \X is a fixed point of Γ. Let X ⊆ S2. Then

Γ(X) = X iff S2 \ Γ(S2 \X) = X

iff Γ(S2 \X) = S2 \X.

Next, we observe that S2 \ν(Γ) is a fixed point of Γ, since ν(Γ) is a fixed point of Γ.

Let X be a fixed point of Γ. Then S2 \ X is a fixed point of Γ. Hence,

S2 \X ⊆ ν(Γ). Therefore, S2 \ ν(Γ) ⊆ X. Consequently, µ(Γ) = S2 \ ν(Γ).

Finally,

D<1 = S2 \D1

= S2 \ ν(Γ) [Theorem 8.1.5]

= µ(Γ) [as proved above]

Next, we show that the computation of D<1 can be formulated as a reachability

problem on a directed graph which is induced by the labelled Markov chain. Thus,

we can use standard search algorithms, for example, breadth-first search, on the

induced graph. We present the graph induced by the labelled Markov chain as

follows.

183

Definition 8.2.3. The directed graph G = (V,E) is defined by

V = S2
0 ∪ S2

?

E = { 〈(u, v), (s, t)〉 | τ(s)(u)> 0 ∧ τ(t)(v)> 0 }

We are left to show that in the graph G defined above, a vertex (s, t) is reachable

from some vertex in S2
0 if and only if the state pair (s, t) in the labelled Markov

chain has distance less than one.

As we have discussed in the beginning of Section 8.1, if a state pair (s, t) has

distance one, either s and t have different labels, or for all couplings ω ∈ Ω(τ(s), τ(t))

we have that support(ω) ⊆ D1.

To avoid the universal quantification over couplings, we will use the following

proposition in the proof of Proposition 8.2.5.

Proposition 8.2.4. For all µ, ν ∈ Distr(S) and X ⊆ S2,

∀ω ∈ Ω(µ, ν) : support(ω) ⊆ X if and only if support(µ)× support(ν) ⊆ X.

Proof. Let µ, ν ∈ Distr(S) and X ⊆ S2. We prove two implications. We first show

that support(µ)× support(ν) 6⊆ X implies ∃ω ∈ Ω(µ, ν) : support(ω) 6⊆ X. Assume

support(µ)× support(ν) 6⊆ X. Then there exists (u, v) ∈ support(µ)× support(ν)

such that (u, v) 6∈ X. Hence, µ(u)> 0 and ν(v)> 0. Let

µ′(s) =


µ(u)−min(µ(u), ν(v)) if s = u

µ(s) otherwise

184

and

ν ′(s) =


ν(v)−min(µ(u), ν(v)) if s = v

ν(s) otherwise

As ∑
s∈S

µ′(s) = 1−min(µ(u), ν(v)) =
∑
s∈S

ν ′(s),

we can find a ω′ ∈ S2 → [0, 1] by applying Hitchcock’s North West corner rule [51]

such that
∑

t∈S ω
′(s, t) = µ′(s) and

∑
s∈S ω

′(s, t) = ν ′(t). Let

ω(s, t) =


min(µ(u), ν(v)) if s = u and t = v

ω′(s, t) otherwise

By construction, ω ∈ Ω(µ, ν). Since min(µ(u), ν(v)) > 0, we have that (u, v) ∈

support(ω). As (u, v) 6∈ X, we obtain support(ω) 6⊆ X.

It remains to prove that if there exists an ω ∈ Ω(µ, ν) such that support(ω) 6⊆ X,

then support(µ)× support(ν) 6⊆ X. Assume there exists an ω ∈ Ω(µ, ν) such that

support(ω) 6⊆ X. There must be a pair of states (u, v) ∈ support(ω) and (u, v) 6∈ X.

Thus, ω(u, v)> 0. We have

µ(u) =
∑
s∈S

ω(u, s) ≥ ω(u, v)> 0.

So u ∈ support(µ). Similarly, we can obtain that v ∈ support(ν). Thus, (u, v) ∈

support(µ)× support(ν).

It is well known that the vertices reachable from S2
0 can be expressed as the

least fixed point of Γ(see, for example, [34]).

185

Proposition 8.2.5. µ(Γ) = { (s, t) | (s, t) is reachable from some (u, v) ∈ S2
0 }.

Proof. For all X ⊆ S2,

Γ(X)

= S2 \ Γ(S2 \X)

= S2
0 ∪ { (s, t) ∈ S2

? | ∃ω ∈ Ω(τ(s), τ(t)) : support(ω) 6⊆ S2 \X }

= S2
0 ∪ { (s, t) ∈ S2

? | support(τ(s))× support(τ(t)) 6⊆ S2 \X }

[Proposition 8.2.4]

= S2
0 ∪ { (s, t) ∈ S2

? | support(τ(s))× support(τ(t)) ∩X 6= ∅ }

= S2
0 ∪ { (s, t) ∈ S2

? | ∃(u, v) ∈ X : (u, v) ∈ support(τ(s))× support(τ(t)) }

= S2
0 ∪ { (s, t) ∈ S2

? | ∃(u, v) ∈ X : τ(s)(u)> 0 ∧ τ(t)(v)> 0 }

= S2
0 ∪ { (s, t) ∈ V | ∃(u, v) ∈ X : 〈(u, v), (s, t)〉 ∈ E }.

Theorem 8.2.6. Distance smaller than one can be decided in O(m2) time.

Proof. Distance smaller than one can be decided as follows.

1. Decide distance zero.

2. Breadth-first search of the graph G defined in Definition 8.2.3, with the queue

initially containing the pairs of states that have distance zero.

186

By Theorem 8.2.2 and Proposition 8.2.5, we have that s and t have distance

smaller than one if and only if (s, t) is reachable in the directed graph G from some

(u, v) such that u and v have distance zero. These reachable state pairs can be

computed using breadth-first search, with the queue initially containing S2
0 .

We have discussed in Chapter 4 that distance zero, that is, probabilistic bisimilar-

ity, can be decided in O(m log n) time as shown by Derisavi, Hermanns and Sanders

in [30]. The directed graph G has n2 vertices and m2 edges. Hence, breadth-first

search takes O(n2 + m2) time. Since each state of a labelled Markov chain has

at least one transition, we have that n ∈ O(m). Hence, breadth-first search takes

O(m2) time.

Theorem 8.2.7. Distance one can be decided in O(m2) time.

Proof. As we have shown in Theorem 8.2.6, distance smaller than one can be decided

in O(m2) time. Hence, distance one can be decided in O(m2) time as well.

8.3 Three New Algorithms

In this section, we present three new algorithms for which the decision procedure

for distance one is a new ingredient.

The decision procedures for distance zero and one can be used to compute or

approximate probabilistic bisimilarity distances as indicated below. We call the

distances non-trivial if the distances are greater than zero and smaller than one.

187

Compute S2
0

Compute D1

Policy Iteration •

Compute Q DI

Partial Policy Iteration

few non-trivial distances many non-trivial distances

small distances approximate distances

Once we have computed the sets S2
0 and D1 of state pairs that have distance zero

and one, we can easily compute the number of state pairs with non-trivial distances.

If the number of non-trivial distances is small, then we can use the policy iteration

algorithms introduced in Chapter 6 to compute those distances. Otherwise, we can

either compute all distances smaller than a chosen ε > 0 or we can approximate the

distances up to some chosen accuracy α > 0. In the former case, we first compute a

query set Q of state pairs that contains all state pairs the distances of which are at

most ε. Subsequently, we apply the partial policy iteration algorithms introduced

in Chapter 7 to compute the distances for all state pairs in Q. In the latter case,

we start with a pair of distance functions, one being a lower-bound and the other

being an upper-bound of the probabilistic bisimilarity distances, and iteratively

188

improve the accuracy of those until they are α close. We call this new approximation

algorithm distance iteration (DI) as it is similar in spirit to Bellman’s value iteration

[12].

8.3.1 New Policy Iteration

To compute all distances of a labelled Markov chain, we augment the existing state

of the art algorithm, which is based on algorithms due to Derisavi, Hermanns and

Sanders [30] (step 1) and simple policy iteration algorithm due to Bacci, Bacci,

Larsen and Mardare [3] (step 3), by incorporating our decision procedure (step 2)

as follows.

1. Decide distance zero.

2. Decide distance one.

3. Policy iteration.

In this new algorithm, we not only decide distance zero, but also distance one,

before running policy iteration. By substituting D1 for B, Theorem 6.2.3 can be

used to show that if the algorithm terminates then it computes the probabilistic

bisimilarity distances. Similarly, Theorem 6.2.7, by initializing D1 for B, can be

used to show that the algorithm does terminate.

As we have already discussed in the previous section, step 1 and 2 are polynomial

time. However, if we use the simple policy iteration in step 3, it may take at least

189

exponential time in the worst case, as we have shown in Section 6.3. Hence, the

overall algorithm is exponential time.

In step 3, we can also initialize B with D1 and run either the general policy

iteration algorithm or the partial policy iteration algorithms. If the third step

is a general (partial) policy iteration algorithm, of which the time complexity is

unknown, the time complexity of the overall algorithm is unknown as well.

8.3.2 Algorithm for Small Distances

For systems of which the number of non-trivial distances is so large that computing

all of them is infeasible, we have to find alternative ways. In practice, as we often

only identify the state pairs with small distances, we can cut down the number of

non-trivial distances by only computing those with small distances.

To compute the non-trivial distances smaller than a positive number, ε, we use

the following algorithm.

1. Decide distance zero.

2. Decide distance one.

3. Compute the query set

Q = { (s, t) ∈ S2 \ (S2
0 ∪D1) | ∆(d)(s, t) ≤ ε }

190

where

d(s, t) =


1 if (s, t) ∈ D1

0 otherwise.

4. Partial policy iteration for Q.

The first two steps remain the same. In step 3, we compute a query set Q that

contains all state pairs with distances no greater than ε, as shown in Proposition 8.3.1.

In step 4, we use this set as the query set and initialize B with D1 to run the simple

partial policy iteration algorithm by Bacci et al. [3].

Proposition 8.3.1. Let d be the distance function defined in step 3. For all

(s, t) ∈ S2 \ (S2
0 ∪D1), if µ(∆)(s, t) ≤ ε, then ∆(d)(s, t) ≤ ε.

Proof. Let (s, t) ∈ S2 \ (S2
0 ∪D1). Suppose µ(∆)(s, t) ≤ ε. Hence,

d v µ(∆)

implies ∆(d) v µ(∆) [Proposition 2.1.13]

implies ∆(d)(s, t) ≤ µ(∆)(s, t)

implies ∆(d)(s, t) ≤ ε [µ(∆)(s, t) ≤ ε]

In this algorithm, we not only decide distance zero, but also distance one, before

running simple partial policy iteration. Let B be D1. Theorem 7.1.8 shows that if

191

the algorithm terminates then it computes the probabilistic bisimilarity distances.

In Section 7.1, the explanation before Theorem 7.1.9, together with the theorem,

show that the algorithm does terminate.

As we have seen in Section 4.2, step 1 and 2 take polynomial time. In step 3,

computing ∆(d) corresponds to solving a minimum cost network flow problem as

discussed in Section 4.2. Such a problem can be solved in polynomial time using, for

example, Orlin’s network simplex algorithm [70]. As we have shown in Section 7.2,

step 4 takes at least exponential time in the worst case. Therefore, the overall

algorithm is exponential time.

Note that we can also initialize B with D1 and run the general partial policy

iteration algorithm in step 4. As the complexity of the general partial policy

iteration algorithm is unknown, the time complexity of this overall algorithm for

small distances is unknown as well.

8.3.3 Approximation Algorithm

We propose another solution to deal with a large number of non-trivial distances by

approximating the distances rather than computing the exact values. To approximate

the distances such that the approximate values differ from the exact ones by at

most α, a positive number, we use the following algorithm.

1. Decide distance zero.

192

2. Decide distance one.

3. l(s, t) =


1 if (s, t) ∈ D1

0 otherwise

u(s, t) =


0 if (s, t) ∈ S2

0

1 otherwise

repeat

f o r each (s, t) ∈ S2 \ (S2
0 ∪D1)

i f l(s, t) 6= u(s, t)

l(s, t) = ∆(l)(s, t)

u(s, t) = ∆(u)(s, t)

u n t i l ‖l − u‖ ≤ α

Again, the first two steps remain the same. Step 3 contains the new approxima-

tion algorithm called distance iteration (DI). In this step, we define two distance

functions, a lower-bound l and an upper-bound u. We repeatedly apply ∆ to these

two functions until the difference of the distances in these two functions is smaller

than the threshold α. For each state pair we end up with an interval of at most size

α in which their distance lies.

To prove the total correctness of the above algorithm, we annotate it with the

following assertions.

193

1 l(s, t) =


1 if (s, t) ∈ D1

0 otherwise

2 u(s, t) =


0 if (s, t) ∈ S2

0

1 otherwise

{0 v l v µ(∆) v u v 1}

3 n = 0

4 r epeat

{∆n(0) v l v µ(∆) v u v ∆n
1 (1)}

5 f o r each (s, t) ∈ S2 \ (S2
0 ∪D1)

{∆n
1 (0)(s, t) ≤ l(s, t) ≤ µ(∆)(s, t) ≤ u(s, t) ≤ ∆n

1 (1)(s, t)}

6 i f l(s, t) 6= u(s, t)

7 l(s, t) = ∆(l)(s, t)

{∆n+1
1 (0)(s, t) ≤ l(s, t) ≤ µ(∆)(s, t) ≤ u(s, t) ≤ ∆n

1 (1)(s, t)}

8 u(s, t) = ∆(u)(s, t)

{∆n+1
1 (0)(s, t) ≤ l(s, t) ≤ µ(∆)(s, t) ≤ u(s, t) ≤ ∆n+1

1 (1)(s, t)}

{∆n+1
1 (0) v l v µ(∆) v u v ∆n+1

1 (1)}

9 n = n+ 1

10 u n t i l ‖l − u‖ ≤ α

{l v µ(∆) v u ∧ ‖l − u‖ ≤ α}

First, we prove that the above assertions hold. The assertion after line 2 follows

194

immediately from the definitions of 0, 1, u and l. This assertion also implies that

the loop invariant of the outer loop holds the first time we reach line 5.

If the assertion before line 5 holds, then the assertion after line 5 holds as well.

Note that the loop at line 5–8 iterates over (s, t) ∈ S2 \ (S2
0 ∪ D1). In that case,

∆1(d)(s, t) = ∆(d)(s, t) for all d ∈ [0, 1]S
2

according to Definition 2.1.31. To prove

that the assertion after line 8 holds, we distinguish the following two cases.

(i) If l(s, t) = u(s, t) then l(s, t) = µ(∆)(s, t) and u(s, t) = µ(∆)(s, t) since

l(s, t) ≤ µ(∆)(s, t) ≤ u(s, t). Since ∆1 is monotone (Theorem 2.1.32(a)), we

can conclude from ∆n
1 (0)(s, t) ≤ l(s, t) ≤ µ(∆)(s, t) that

∆n+1
1 (0)(s, t) ≤ ∆1(l)(s, t) ≤ ∆1(µ(∆))(s, t) =

∆(µ(∆))(s, t) = µ(∆)(s, t) = l(s, t).

Similarly, µ(∆)(s, t) ≤ u(s, t) ≤ ∆n(1)(s, t) implies that

u(s, t) = µ(∆)(s, t) = ∆(µ(∆))(s, t) = ∆1(µ(∆))(s, t) ≤

∆1(u)(s, t) ≤ ∆1(∆n(1))(s, t) = ∆n+1(1)(s, t).

Their conjunction implies the assertion after line 8.

(ii) Assume that l(s, t) 6= u(s, t). We have that ∆n
1 (0)(s, t) ≤ l(s, t) ≤ µ(∆)(s, t)

implies

∆n+1
1 (0)(s, t) ≤ ∆1(l)(s, t) ≤ ∆1(µ(∆))(s, t) = ∆(µ(∆))(s, t) = µ(∆)(s, t).

because ∆1 is monotone (Theorem 2.1.32(a)). As a consequence, the assertion

after line 7 is true. Using the monotonicity of ∆1 (Theorem 2.1.32(a)),

195

µ(∆)(s, t) ≤ u(s, t) ≤ ∆n
1 (1)(s, t) implies µ(∆)(s, t) = ∆(µ(∆))(s, t) =

∆1(µ(∆))(s, t) ≤ ∆1(u)(s, t) ≤ ∆n+1
1 (1)(s, t). Hence, the assertion after line 8

is true.

From the definition of u and l, we can conclude that u(s, t) = l(s, t) for all (s, t) ∈

S2
0 ∪D1. As in case (i) above, the assertion before line 6 implies the one after line 8.

From the assertion after line 8 we can deduce the assertion on the next line.

We can conclude that the loop invariant of the outer loop is maintained. The

postcondition after line 10 easily follows if the loop terminates.

Next we prove that the outer loop terminates. According to Theorem 2.1.32(d)

and 2.1.32(e), µ(∆) = sup
m∈N

∆m
1 (0). Since ∆1 is monotone and, hence, the sequence

(∆m
1 (0))m∈N is increasing,

∃M ∈ N : ∀m ≥M : ‖∆m
1 (0)− µ(∆)‖ ≤ α

2
.

By Theorem 2.1.32(c), 2.1.32(d) and 2.1.32(f), µ(∆) = infn∈N ∆n
1 (1). Since ∆1 is

monotone and, hence, the sequence (∆n
1 (1))n∈N is decreasing,

∃N ∈ N : ∀n ≥ N : ‖∆n
1 (1)− µ(∆)‖ ≤ α

2
.

Hence,

‖∆max(M,N)
1 (0)−∆

max(M,N)
1 (1)‖

≤ ‖∆max(M,N)
1 (0)− µ(∆)‖+ ‖µ(∆)−∆

max(M,N)
1 (1)‖

196

≤ α
2

+ α
2

= α.

Because ∆
max(M,N)
1 (0) v l and u v ∆

max(M,N)
1 (1), we can conclude that the outer

loop terminates after at most max(M,N) iterations.

197

9 Experimental Results

The algorithms considered in this chapter are the following.

• The algorithms which applies the first order theory over the reals described in

Section 3.1 and the ellipsoid method described in Section 4.2.

• D0 +D1: the decision procedure of the number of non-trivial distances (the

first two steps of the new algorithms in Section 8.3).

• D0 + SPI: the original state of the art algorithm which decides distance zero

before running the simple policy iteration algorithm by Bacci et al. [3] (see

Section 6.2).

• D0 + GPI: the algorithm which decides distance zero before running the

general policy iteration algorithm (see Section 6.4).

• D0 +D1 + SPI: the algorithm which decides both distance zero and distance

one before running the simple policy iteration algorithm (see Section 8.3.1).

• D0 +D1 + GPI: the algorithm which decides both distance zero and distance

198

one before running the general policy iteration algorithm (see Section 8.3.1).

• D0 + SPPI: the modified algorithm by Bacci et al. [3] with the on-the-fly

optimization which decides distance zero before running the simple partial

policy iteration algorithm (see Section 7.1).

• D0 + GPPI: the algorithm which decides distance zero before running the

general partial policy iteration algorithm (see Section 7.3).

• D0 + D1 + SPPI: the algorithm which decides both distance zero and dis-

tance one before running the simple partial policy iteration algorithm (see

Section 8.3.1).

• D0 + D1 + GPPI: the algorithm which decides both distance zero and dis-

tance one before running the general partial policy iteration algorithm (see

Section 8.3.1).

• D0 +D1 +Q+ SPPI: the algorithm which computes all distances smaller than

a chosen ε > 0 (see Section 8.3.2).

• D0 +D1 +DI: the algorithm which approximates the distances with accuracy α

(see Section 8.3.3).

We implemented all the algorithms in Javaviii and ran the implementations on

several labelled Markov chains. These labelled Markov chains model randomized

viiihttps://bitbucket.org/discoveri/probabilistic-bisimilarity-distances

199

algorithms and probabilistic protocols that are part of the distribution of probabilistic

model checkers such as PRISM [63] and jpf-probabilistic [93].

For each labelled Markov chain, we executed the code ten times. The first

few executions were discarded to account for the “warm-up” time that the Java

virtual machine needs to perform just-in-time compilation and optimization. For

the remaining runs the average running time and the standard deviation were

computed for each labelled Markov chain. The cut-off time is set to be 60 hours.

Our experiments were run on an Intel R© Xeon R© CPU X5660, using CentOS 7.5 and

the Java 64-bit virtual machine version 1.8.0 101.

Whereas the original state of the art algorithm, D0 + SPI , can handle labelled

Markov chains with up to 150 states, our new algorithm can handle more than

10,000 states. Furthermore, for one such labelled Markov chain with 150 states, the

original algorithm takes more than 49 hours, whereas our new algorithm takes only

13 milliseconds.

To decide distance zero, we implemented the algorithm to decide probabilistic

bisimilarity due to Derisavi, Hermanns and Sanders [30] in Java. We implemented

our algorithm to decide distance one, described in the proof of Theorem 8.2.7 and

Theorem 8.2.6.

200

9.1 First Order Theory over the Reals and the Ellipsoid

Method

We consider the randomized quicksort algorithm, an implementation of which is part

of jpf-probabilistic [93]. The size of the labelled Markov chain grows exponentially

in the size of the input, which is the list to be sorted. For example, lists of size 4, 5

and 6 give rise to labelled Markov chains with 10, 28 and 82 states, respectively.

The first order theory over the reals algorithm can only handle labelled Markov

chains with a handful of states. We ran the algorithm on the labelled Markov chain

with 10 states. It did not terminate within three days. The ellipsoid method takes

on average 73 seconds.

The ellipsoid method takes more than 43 hours for the labelled Markov chain

with 28 states, making it five orders of magnitude slower than the policy iteration

algorithms, which take less than a dozen seconds. As the first order theory over the

reals algorithm and the ellipsoid algorithm are not practical, we did not run them

on the other labelled Markov chains.

9.2 Deciding Non-trivial Distances

We compute the number of non-trivial distances for three models: the bounded

retransmission protocol by Helmink, Sellink and Vaandrager [48], the synchronous

leader election protocol of Itai and Rodeh [54] and the randomized self-stabilising

201

algorithm due to Herman [50]. Since there are no non-trivial distances in the first

two examples, deciding distance zero and one suffices to compute all the distances.

The example of the randomized self-stabilising algorithm shows the importance of

developing new algorithms when the number of non-trivial distances is so large that

the policy iteration algorithms are infeasible.

9.2.1 Bounded Retransmission Protocol

N M |S| |D0| |D1| |S2
1 | D0 +D1 STD

16 2 677 456,977 1,352 1,352 3.0 s 0.2 s

16 3 886 783,226 1,770 1,770 8.6 s 0.7 s

16 4 1,095 1,196,837 2,188 2,188 17.5 s 1.2 s

16 5 1,304 1,697,810 2,606 2,606 22.8 s 1.7 s

32 2 1,349 1,817,105 2,696 2,696 24.7 s 1.2 s

32 3 1,766 3,115,226 3,530 3,530 69.7 s 4.7 s

32 4 2,183 4,761,125 4,364 4,364 141.0 s 6 s

32 5 2,600 6,754,802 5,198 5,198 208.6 s 10.7 s

64 2 2,693 7,246,865 5,384 5,384 235.2 s 12 s

64 3 3,526 12,425,626 7,050 7,050 616.4 s 9 s

In the bounded retransmission protocol, there are two parameters: N denotes the

number of chunks and M the maximum allowed number of retransmissions of each

chunk. The results are shown in the table above. The algorithm can handle systems

up to 3,526 states within 11 minutes. In this example, there are no non-trivial

202

distances. As a consequence, deciding distance zero and one suffices to compute all

the distances in this case. The standard deviation of the running time of D0 +D1

is denoted STD in the tables.

9.2.2 Synchronous Leader Election

The example we consider here is the synchronous leader election protocol. The

protocol takes the number of processors, N , and a constant K as parameters. We

compare the running time of our new algorithm with the state of the art algorithm,

that combines algorithms due to Derisavi et al. and due to Bacci et al. The results

are shown in the table below. In this protocol, the number of non-trivial distances is

zero. Thus, our new algorithm, which first decides distance zero and one, terminates

without running the policy iteration algorithm. On the other hand, the original

simple policy iteration algorithm computes the distances of all the elements in the

set D1 \ S2
1 , the size of which is huge as can be seen from the table.

The biggest system the original simple policy iteration algorithm (D0 + SPI) can

handle is the one with 147 states (N = 3 and K = 4) and it takes more than 49

hours. The algorithm (D0 + GPI) takes about 10 hours. In contrast, our procedure

of deciding the non-trivial distances terminates within only 13 milliseconds.

203

N K |S| |D0| |D1| |S2
1 | D0 +D1 STD

3 2 26 122 554 50 1 ms 0.3 ms

3 4 147 7,419 14,190 292 13 ms 2.8 ms

3 6 459 88,671 122,010 916 214 ms 17 ms

3 8 1,059 508,851 612,630 2,116 3 s 98 ms

4 2 61 459 3,262 120 3 ms 0.4 ms

4 4 812 145,780 513,564 1,622 388 ms 13 ms

4 6 3,962 4,350,292 11,347,152 7,922 82 s 3 s

4 8 12,400 46,198,188 107,561,812 24,798 2,971 s 98 s

5 2 141 2,399 17,482 280 6 ms 1 ms

5 4 4,244 3,318,662 14,692,874 8,486 33 s 0.8 s

6 2 335 14,327 97,898 668 25 ms 2 ms

The graph on the next page plots the running time of D0 + D1 for each labelled

Markov chains shown in the above table. The vertical axis indicates the running

time in seconds in logarithmic scale and the number of states increases from left to

right. It can be seen that as the number of states increases, the running time of

deciding non-trivial distances increases, whereas the only exception is the labelled

Markov chain with 4244 states (N = 5 and K = 4) indicated by the second bar to

the right.

204

9.2.3 Randomized Self-stabilising

For the randomized self-stabilising algorithm, the size of the labelled Markov chain

grows exponentially in the numbers of processes, N . The results for the randomized

self-stabilising algorithm are shown in the table below. As we can see from the

table, for systems up to 128 states, the algorithm runs for less than a second. For

the system with 512 states, the algorithm terminates within seven minutes. For

the case N = 3, there are only 12 non-trivial distances. The size is so small that

we can easily compute all the non-trivial distances. The same applies to the case

N = 5. For N = 7 or 9, the number of non-trivial distances is around 11,000 and

200,000, respectively. This makes computing all of them infeasible. Thus, instead of

computing all of them, we need to find alternative ways to handle systems with a

205

large number of non-trivial distances. Moreover, in this example, as |D1| = |S2
1 |, we

know that all the state pairs with distance one are those that have different labels.

N |S| non-trivial |D0| |D1| |S2
1 | D0 +D1 STD

3 8 12 38 14 14 1.00 ms 0.46 ms

5 32 280 304 440 440 6.06 ms 2.16 ms

7 128 11,032 2,160 3,192 3,192 0.77 s 0.03 s

9 512 230,712 13,648 17,784 17,784 378.42 s 5.83 s

9.3 Policy Iteration Algorithms

In this section, we compare our new (partial) policy iteration algorithms which decide

both distance zero and distance one first with the original policy iteration algorithms.

We consider the randomized quicksort algorithm introduced in Section 9.1 and an

example of two dies due to Knuth and Yao [62], one using only a fair coin and the

other one using a biased coin. An implementation of the die algorithm is part of

PRISM.

For the partial policy iteration algorithms we compute the distance for a single

pair of states. From the results of the experiments, we make the following observa-

tions. Firstly, our new algorithms that decide the non-trivial distances first are faster

than the ones that only decide distance zero first. Secondly, the general (partial)

policy iteration algorithms are not necessarily faster than the simple (partial) policy

iteration algorithms.

206

9.3.1 Randomized Quicksort

We denote the list size as L in the tables.

L |S| D0 D0 +D1 non-trivial |D0| |D1| |S2
1 |

4 10 0.17 ms 0.31 ms 28 42 30 18

5 28 0.39 ms 1 ms 262 332 190 54

6 82 0.7 ms 4 ms 2300 2750 1674 162

The list of size 4 gives rise to a labelled Markov chain with 10 states. We compare

the running time of the new policy iteration algorithms which decide both distance

zero and distance one first with the ones that only decide distance zero first. The

last column of the table below is the total number of state pairs considered in the

specific policy iteration algorithm.

Algorithm Running time STD State pairs

D0 + SPI 19 ms 4.7 ms 40

D0 + GPI 15 ms 1 ms 40

D0 +D1 + SPI 14 ms 4 ms 28

D0 +D1 + GPI 11 ms 2 ms 28

D0 + SPPI 11 ms 3 ms 10

D0 + GPPI 13 ms 4ms 10

D0 +D1 + SPPI 10 ms 3 ms 10

D0 +D1 + GPPI 7 ms 0.7 ms 10

207

The list of size 5 gives rise to a labelled Markov chain with 28 states. The results

for the policy iteration algorithms are collected in the following table.

Algorithm Running time STD State pairs

D0 + SPI 13 s 41 ms 398

D0 + GPI 4 s 17 ms 398

D0 +D1 + SPI 9 s 57 ms 262

D0 +D1 + GPI 3 s 17 ms 262

D0 + SPPI 49 ms 3 ms 12

D0 + GPPI 49 ms 3 ms 12

D0 +D1 + SPPI 30 ms 4 ms 6

D0 +D1 + GPPI 27 ms 2 ms 6

The list of size 6 gives rise to a labelled Markov chain with 82 states. The results

for the policy iteration algorithm are collected in the following table. The algorithm

(D0 + SPI) takes about 14 hours and our new algorithm which incorporates the

decision procedure of distance one (D0 +D1 + SPI) takes less than 7 hours, while

the general policy iteration algorithms (D0 + GPI and D0 +D1 + GPI) only take

less than 30 minutes.

208

Algorithm Running time STD State pairs

D0 + SPI 14 hrs 2 min 3812

D0 + GPI 27 min 2 s 3812

D0 +D1 + SPI 7 hrs 1 min 2300

D0 +D1 + GPI 21 min 3 s 2300

D0 + SPPI 13 s 0.2 s 72

D0 + GPPI 36 s 0.4 s 72

D0 +D1 + SPPI 9 s 0.2 s 44

D0 +D1 + GPPI 25 s 0.1 s 44

9.3.2 Dies

In the next experiment, we model two dies, one using only a fair coin and the

other one using a biased coin with probability 0.51 for heads and 0.49 for tails.

The goal is to compute the probabilistic bisimilarity distance between the two dies.

The resulting labelled Markov chain has 20 states. There are 182 distances which

are computed by the original policy iteration algorithms, while there are only 30

non-trivial distances.

209

Algorithm Running time STD State pairs

D0 + SPI 7 s 21 ms 182

D0 + GPI 582 ms 2 ms 182

D0 +D1 + SPI 151 ms 18 ms 30

D0 +D1 + GPI 86 ms 3 ms 30

D0 + SPPI 203 ms 19 ms 28

D0 + GPPI 217 ms 3 ms 42

D0 +D1 + SPPI 52 ms 8 ms 14

D0 +D1 + GPPI 44 ms 4 ms 14

9.4 Large Number of Non-trivial Distances

For the cases when the number of non-trivial distances is large, we can either

compute all distances smaller than a chosen ε > 0 or we can approximate the

distances up to some chosen accuracy α > 0.

Let us use randomized quicksort introduced introduced in Section 9.3.1 and the

randomized self-stabilising algorithm due to Herman [50] introduced in Section 9.2.3

as examples. Recall that for the randomized self-stabilising algorithm, when N = 7,

the number of non-trivial distances is 11,032, which we are not able to handle using

the simple policy iteration algorithm.

We apply the algorithm for small distances (D0+D1+Q+PPI) for the randomized

210

quicksort example with 82 states. The upper-bound ε is set to be 0.1. The algorithm

terminates in about 5 minutes showing that no state pairs have distances smaller

than 0.1.

We apply the approximation algorithm to the randomized self-stabilising algo-

rithm with N = 7 and the randomized quicksort example with 82 states and present

the results below. The accuracy α is set to be 0.01.

The approximation algorithm for the randomized quicksort runs for about

14 minutes which makes it about 60 times faster than the original policy iteration

algorithm (D0 + SPI). For the randomized self-stabilising algorithm with 128 states,

the approximation algorithm terminates in about 54 hours. Although the number of

non-trivial distances for the randomized self-stabilising algorithm is about 5 times

of that of the randomized quicksort, the running time is more than 200 times slower.

It is unknown whether this approximation algorithm has exponential running time.

model |S| non-trivial D0 +D1 + DI STD

randomized quicksort 82 2,300 14 min 2 s

randomized self-stabilising algorithm 128 11,032 54 hrs 3 min

211

10 Simple Stochastic Games and Probabilistic

Automata

We have discussed different algorithms to compute the probabilistic bisimilar dis-

tances for labelled Markov chains. Now we shift our focus to probabilistic automata.

In Chapter 5, we presented a transformation from a labelled Markov chain to a

stopping MDP. In this chapter, we will present a transformation from a probabilistic

automaton to a simple stochastic game. This transformation was first proposed by

Van Breugel and Worrell [21]. We will also present a new characterization of the

probabilistic bisimilarity distances, in terms of the simple stochastic game, which

might form a basis for a policy iteration algorithm.

10.1 Simple Stochastic Games

Stochastic games were introduced by Shapley [82]. We are interested in a simplified

version of these games, called simple stochastic games, which were first studied by

Condon [27]. We use the more general definition of Zwick and Paterson [94]. The

212

more general SSG can be converted to an SSG as defined in [27] in polynomial time

[94, page 355].

A simple stochastic game is played with a single token by two players, called min

and max, on a finite directed graph (V,E). The graph has five types of vertices: min,

max and random vertices, 0-sinks and 1-sinks. The min, max and random vertices

have several outgoing edges, whereas the 0-sinks and 1-sinks have no outgoing edges.

Whenever the token is in a min (max) vertex, the token is moved to one of the

successors of the vertex, chosen by the min (max) player. If the token is in a random

vertex, the successor is chosen randomly. The min (max) player’s objective is to

minimize (maximize) the probability of reaching a 1-sink.

A policy I for the min player maps each min vertex to one of its two successors.

Similarly, a policy A for the max player assigns to each max vertex one of its

successors. Similar to the policies introduced for MDPs in Chapter 5, these policies

are pure and stationary.

Now let us formally define simple stochastic games.

Definition 10.1.1. A simple stochastic game (SSG) is a tuple 〈V,E, P 〉 consisting

of

• a finite directed graph (V,E) such that

– V is partitioned into the sets

∗ Vmin of min vertices,

213

∗ Vmax of max vertices,

∗ Vrnd of random vertices,

∗ V0 of 0-sinks, and

∗ V1 of 1-sinks,

– the vertices in V0 and V1 have outdegree zero and all other vertices have

outdegree at least one,

• a function P : Vrnd → Distr(V) such that for each vertex v ∈ Vrnd, P (v)(w)>0

iff (v, w) ∈ E.

For the rest of the section, we fix an SSG 〈V,E, P 〉. The set of min and max

polices are defined as follows.

Definition 10.1.2. The set I of min policies is defined by

I = {I ∈ Vmin → V | ∀x ∈ Vmin : (s, I(x)) ∈ E} .

Definition 10.1.3. The set A of max policies is defined by

A = {A ∈ Vmax → V | ∀x ∈ Vmax : (x,A(x)) ∈ E} .

Example 10.1.4. We consider an SSG on the finite directed graph shown below.

Max vertices are red and min vertices are green. The random vertices a1, a2 and a3

are denoted by bullets. The 0- and 1-sinks are square boxes which are labelled with

zeroes and ones. The probabilities of the outgoing edges of the random vertices are

denoted in the graph.

214

0 1

maxx1 maxx2

minm

1 1
2

1
2

1
2

1
2

a1 a2 a3

A min policy maps the min vertex m to either x1 or x2. A max policy maps the

max vertex x1 to either a1 or a2 and maps the max vertex x2 to either a2 or a3.

Let I ∈ I and I(m) = x1. Let A ∈ A and A(x1) = a1 and A(x2) = a2. The pair

of policies (I, A) is highlighted in red in the graph.

Given a pair of min and max policies (I, A), we define a value function vA,I that

maps each vertex x to the probability that the max player wins the game, provided

that the game starts at vertex x and the min and max players play according to I

and A. Condon [27, Lemma 1] shows that such a value function can be defined as

the least fixed point of the following function.

Definition 10.1.5. Let A ∈ A and I ∈ I. The function ΓA,I : [0, 1]V → [0, 1]V is

215

defined by

ΓA,I(v)(x) =



0 if x ∈ V0

1 if x ∈ V1

v(y)
if (x ∈ Vmin and I(x) = y) or

(x ∈ Vmax and A(x) = y)∑
(x,y)∈E

P (x)(y) v(y) if x ∈ Vrnd

Example 10.1.6. We consider the SSG and the pair of policies (A, I) of Exam-

ple 10.1.4.

At the min vertex m, the token moves to x1 according to I. At the max vertex x1,

the token goes to a1 according to A. There is only one outgoing edge of the random

vertex a1 which goes to a 0-sink. Thus, if we start at m, x1 or a1, the token reaches

a 0-sink which means that the probability the max player wins the game under (I, A)

is zero. If we start at the max vertex x2, the token moves to a2 according to A. At

the random vertex a2, the token moves to a 0-sink and 1-sink with probability 1
2
.

Thus, the probability that the max player wins the game is 1
2

if we start at x2 or a2.

At the random vertex a3, the token moves to m or a 1-sink, each with probability 1
2
.

From the above analysis, we know that m will always reach a 0-sink. Thus, if we

start at a3, the probability that the max player wins the game is 1
2
. The following

table shows the probabilities that the max player wins the game under the pair of

policies (I, A) starting at each vertex.

216

m x1 x2 a1 a2 a3

0 0 1
2

0 1
2

1
2

Alternatively, we can obtain the same values by computing the least fixed point

of the function in Definition 10.1.5.

10.2 The Bisimulation Game for Probabilistic Automata

In this section, we introduce the transformation that maps each probabilistic

automaton to an SSG. Note that this transformation was first presented by Van

Breugel and Worrell [21].

Definition 10.2.1. Let 〈S, L,→, `〉 be a probabilistic automaton. The SSG 〈V,E, P 〉

consists of

• the set V of vertices, which is partitioned into the sets

– Vmax = {(s, t) ∈ S2 | s 6∼ t ∧ `(s) = `(t)} ,

– Vmin = {(s, ν) ∈ S ×Distr(S) | ∃t ∈ S : t→ ν ∧ (s, t) ∈ Vmax}

– Vrnd =
⋃
{V (Ω(µ, ν)) | ∃s ∈ S : (s, ν) ∈ Vmin ∧ s→ µ } ,

– V0 = S2
0 ,

– V1 = S2
1 ,

217

• the set E of edges which is defined by

E = { 〈(s, t), (s, ν)〉 | (s, t) ∈ Vmax ∧ t→ ν}∪

{ 〈(s, t), (t, µ)〉 | (s, t) ∈ Vmax ∧ s→ µ}∪

{〈(s, ν), ω〉 | (s, ν) ∈ Vmin ∧ s→ µ ∧ ω ∈ V (Ω(µ, ν)) }∪

{ 〈ω, (u, v)〉 | ω ∈ Vrnd ∧ (u, v) ∈ S2 ∧ ω(u, v)> 0 },

and

• the function P : Vrnd → Distr(V) is defined by P (ω)(u, v) = ω(u, v).

Example 10.2.2. We consider a probabilistic automaton with four states shown

on the left. The labels are represented by the colours of the states. The only state

that has multiple transitions is t: one goes back to t with probability one, while the

other one takes the automaton to u and v with equal probabilities.

Let µ, ν1, ν2 be defined as follows. µ = Dirs, ν1 = Dirt and ν2 = 1
2
Diru + 1

2
Dirv.

The transition relation → is defined as {s→ µ, t→ ν1, t→ ν2}.

218

s t

u v

1
2

1
2

1 1

11

t, ss, t

s, ν1 s, ν2 t, µ

µ, ν1 µ, ν2 ν2, µ ν1, µ

0 1

1
2

1
2

1 1

The SSG on the right is transformed from the probabilistic automaton on the

left.

From Definition 10.1.2 and Definition 10.1.3 we can obtain the set of min and

max policies for the transformed SSG as follows.

Definition 10.2.3. The set I of min policies is defined by

I =

 I ∈ (S ×Distr(S))→ Distr(S2)
∀(s, ν) ∈ S ×Distr(S) : ∃µ ∈ Distr(S) :

I(s, ν) ∈ V (Ω(µ, ν)) ∧ s→ µ

 .

The set A of max policies is defined by

A =


A ∈ S2

? → (S ×Distr(S))

∀(s, t) ∈ S2
? :

(∃ν ∈ Distr(S) : A(s, t) = (s, ν) ∧ t→ ν)∨

(∃µ ∈ Distr(S) : A(s, t) = (t, µ) ∧ s→ µ)


.

219

10.3 An Alternative Characterization of Probabilistic Bisim-

ilarity Distances

In the previous section, we have shown that a probabilistic automaton can be

transformed into an SSG. In this section, we will show that there exists a pair of

optimal policies for the transformed SSG. We will explain what we mean by optimal

policies later in this section. Furthermore, we will show that the values under the

optimal policies of the SSG correspond to the probabilistic bisimilarity distances of

the probabilistic automaton.

We slightly modify the function ∆ of Definition 2.2.6 and introduce a discount

factor c. Note that we already introduced the special case when the discount factor

is 1 in Section 2.2, that is, ∆1. This extra parameter c is needed for the proofs in

this section.

Definition 10.3.1. Let c ∈ (0, 1]. The function ∆c : [0, 1]S
2 → [0, 1]S

2
is defined as

follows.

∆c(d)(s, t) =



1 if `(s) 6= `(t)

0 if s ∼ t

c∆(d)(s, t) otherwise.

We collect some properties of ∆c in the following theorem.

Proposition 10.3.2. For all c ∈ (0, 1],

220

(a) the function ∆c is monotone, and

(b) the function ∆c is c-Lipschitz.

Proof. First, we prove part (a). Let c ∈ (0, 1]. Let d, e ∈ [0, 1]S
2

with d v e. Let

s, t ∈ S. We distinguish three cases.

• If `(s) 6= `(t) then

∆c(d)(s, t) = 1 = ∆c(e)(s, t).

• If s ∼ t then

∆c(d)(s, t) = 0 = ∆c(e)(s, t).

• Otherwise,

∆c(d)(s, t) = c∆(d)(s, t)

≤ c∆(e)(s, t)

[d v e and ∆(d)(s, t) ≤ ∆(e)(s, t) by Proposition 2.2.7]

= ∆c(e)(s, t).

Next, we prove part (b). Let c ∈ (0, 1]. Let d, e ∈ [0, 1]S
2
. It suffices to show that

for all s, t ∈ S, |∆c(d)(s, t)−∆c(e)(s, t)| ≤ c ‖d− e‖. Let s, t ∈ S. We distinguish

three cases.

• If `(s) 6= `(t) then

|∆c(d)(s, t)−∆c(e)(s, t)| = |1− 1| = 0 ≤ c ‖d− e‖.

221

• If s ∼ t then

|∆c(d)(s, t)−∆c(e)(s, t)| = |0− 0| = 0 ≤ c ‖d− e‖.

• Let `(s) = `(t) and s 6∼ t. In this case, ∆c(d) is the composition of the

Hausdorff distance H (Definition 2.2.10) and the Kantorovich distance K

(Definition 2.1.24). Hence,

|∆c(d)(s, t)−∆c(e)(s, t)|

= |c H(K(d))({µ | s→ µ}, {ν | t→ ν})−

c H(K(e))({µ | s→ µ}, {ν | t→ ν})|

= c |H(K(d))({µ | s→ µ}, {ν | t→ ν})−

H(K(e))({µ | s→ µ}, {ν | t→ ν})|

≤ c ‖H(K(d))−H(K(e))‖

≤ c ‖K(d)−K(e)‖ [Proposition 2.2.11]

≤ c ‖d− e‖ [Proposition 2.1.25]

By Definition 10.1.5, we can define the values of the SSG under the pair of

policies (A, I) as the least fixed point of ΓA,I1 . This least fixed point captures the

expectation of reaching a state pair with different labels if both players use the

222

given policies. Note that here we introduce a discount factor c to the function, as

we will prove things about c = 1 by taking limits as c→ 1 later.

Definition 10.3.3. Let A ∈ A, I ∈ I and c ∈ (0, 1]. The function ΓA,Ic : [0, 1]S
2 →

[0, 1]S
2

is defined as follows.

ΓA,Ic (d)(s, t) =



1 if (s, t) ∈ S2
1

0 if (s, t) ∈ S2
0

c
∑
u,v∈S

I(A(s, t))(u, v) d(u, v) otherwise.

We collect some properties of ΓA,Ic in the following theorem.

Proposition 10.3.4. For all A ∈ A, I ∈ I and c ∈ (0, 1],

(a) the function ΓA,Ic is monotone and

(b) the function ΓA,Ic is c-Lipschitz.

Proof.

(a) Let A ∈ A, I ∈ I and c ∈ (0, 1]. Let d, e ∈ [0, 1]S
2

with d v e. We distinguish

three cases.

– If `(s) 6= `(t) then

ΓA,Ic (d)(s, t) = 1 = ΓA,Ic (e)(s, t).

– If s ∼ t then

ΓA,Ic (d)(s, t) = 0 = ΓA,Ic (e)(s, t).

223

– Otherwise,

ΓA,Ic (d)(s, t) = c
∑
u,v∈S

I(A(s, t))(u, v) d(u, v)

≤ c
∑
u,v∈S

I(A(s, t))(u, v) e(u, v) [d v e]

= ΓA,Ic (e)(s, t).

(b) Let A ∈ A, I ∈ I and c ∈ (0, 1]. Let d, e ∈ [0, 1]S
2
. Let s, t ∈ S. We

distinguish three cases.

– If `(s) 6= `(t) then

|ΓA,Ic (d)(s, t)− ΓA,Ic (e)(s, t)| = |1− 1| = 0 ≤ c ‖d− e‖.

– If s ∼ t then

|ΓA,Ic (d)(s, t)− ΓA,Ic (e)(s, t)| = |0− 0| = 0 ≤ c ‖d− e‖.

– Otherwise,

|ΓA,Ic (d)(s, t)− ΓA,Ic (e)(s, t)|

=

∣∣∣∣∣c ∑
u,v∈S

I(A(s, t))(u, v) d(u, v)− c
∑
u,v∈S

I(A(s, t))(u, v) e(u, v)

∣∣∣∣∣
= c

∣∣∣∣∣∑
u,v∈S

I(A(s, t))(u, v) d(u, v)−
∑
u,v∈S

I(A(s, t))(u, v) e(u, v)

∣∣∣∣∣
= c

∑
u,v∈S

I(A(s, t))(u, v) |d(u, v)− e(u, v)|

≤ c
∑
u,v∈S

I(A(s, t))(u, v) ‖d− e‖

= c ‖d− e‖.

224

By the Knaster-Tarski fixed point theorem (Theorem 2.1.8(a)), ΓA,Ic has a

least fixed point, which we denote by µ(ΓA,Ic). In the remainder of this section,

we show that there exists a max policy A∗ and a min policy I∗ such that the

corresponding value function captures the probabilistic bisimilarity distances, that

is µ(∆1) = µ(ΓA
∗,I∗

1). We call these policies A∗ and I∗ optimal.

The proof consists of two parts. First, we prove that there exists an optimal min

policy I∗ ∈ I such that

∀A ∈ A : µ(ΓA,I
∗

1) v µ(∆1). (10.1)

Lemma 10.3.5. There exists I ∈ I such that for all A ∈ A, µ(ΓA,I1) v µ(∆1).

Proof. Towards the construction of I∗ ∈ I, let s ∈ S and ν ∈ Distr(S). Since we

restrict our attention to finitely branching probabilistic automata,

µs,ν = argmin
s→µ

min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v)µ(∆1(u, v)) (10.2)

exists. Because the set V (Ω(µs,ν , ν)) is nonempty and finite, we can define

I∗(s, ν) = argmin
ω∈V (Ω(µs,ν ,ν))

∑
u,v∈S

ω(u, v)µ(∆1(u, v)). (10.3)

By construction I∗ ∈ I.

Let A ∈ A. Since µ(ΓA,I
∗

1) is the least pre-fixed point of ΓA,I
∗

1 according to

Theorem 2.1.8(c), to conclude that µ(ΓA,I
∗

1) v µ(∆1) it suffices to show that µ(∆1)

225

is a pre-fixed point of ΓA,I
∗

1 , that is, ΓA,I
∗

1 (µ(∆1)) v µ(∆1). Let s, t ∈ S. We

distinguish three cases.

• If `(s) 6= `(t) then ΓA,I
∗

1 (µ(∆1))(s, t) = 1 = ∆1(µ(∆1))(s, t) = µ(∆1)(s, t).

• If s ∼ t then ΓA,I
∗

1 (µ(∆1))(s, t) = 0 = ∆1(µ(∆1))(s, t) = µ(∆1)(s, t).

• Otherwise, `(s) = `(t) and s 6∼ t. Without any loss of generality, we assume

that A(s, t) = (s, ν) with t → ν. The case that A(s, t) = (t, µ) with s → µ

can be dealt with similarly. Then

ΓA,I
∗

1 (µ(∆1))(s, t)

=
∑
u,v∈S

I∗(A(s, t))(u, v)µ(∆1)(u, v)

=
∑
u,v∈S

I∗(s, ν)(u, v)µ(∆1)(u, v) [A(s, t) = (s, ν)]

= min
ω∈V (Ω(µs,ν ,ν))

∑
u,v∈S

ω(u, v) (µ∆1)(u, v) [(10.3)]

= min
s→µ

min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v) (µ∆1)(u, v) [(10.2)]

≤ max
t→ν

min
s→µ

min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v)µ(∆1)(u, v)

≤ max

{
max
s→µ

min
t→ν

min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v)µ(∆1)(u, v),

max
t→ν

min
s→µ

min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v)µ(∆1)(u, v)

}
= ∆1(µ(∆1))(s, t)

= µ(∆1)(s, t).

226

In the remainder of this dissertation, we denote the optimal min policy con-

structed in the above proof by I∗.

As we will see in the proof of Theorem 10.3.20, it remains to prove that there

exists an optimal max policy A∗ ∈ A such that

∀I ∈ I : µ(∆1) v µ(ΓA
∗,I

1).

The proof of this second part turns out to be much more involved than the proof of

the first part contained in the above proposition. The proof has the following three

major components.

• The probabilistic bisimilarity distances captured by µ(∆1) are the limit of

their discounted counterparts represented by µ(∆c).

• Similarly, for all A ∈ A and I ∈ I, the value function µ(ΓA,I1) is the limit

of the discounted value functions µ(ΓA,Ic). This result is inspired by [38,

Theorem 4.4.1].

• There exists an optimal max policy in the discounted setting.

Combining the above three components, we arrive at an optimal max policy. The

first two components are proved in Proposition 10.3.11 and Proposition 10.3.17.

The third major component of the proof, Proposition 10.3.18, consists of showing

that there exists an optimal max policy in the discounted setting.

227

In the next few propositions, we show the first component, lim
c↑1
µ(∆c) = µ(∆1).

Proposition 10.3.6. For all b, c ∈ (0, 1], if b ≤ c then µ(∆b) v µ(∆c).

Proof. Let b, c ∈ (0, 1] with b ≤ c. To conclude that µ(∆b) v µ(∆c) it suffices

to show ∆b(µ(∆c)) v µ(∆c) according to Theorem 2.1.8(c). Let s, t ∈ S. We

distinguish three cases.

• If `(s) 6= `(t) then

∆b(µ(∆c))(s, t) = 1 = ∆c(µ(∆c))(s, t) = µ(∆c)(s, t).

• If s ∼ t then

∆b(µ(∆c))(s, t) = 0 = ∆c(µ(∆c))(s, t) = µ(∆c)(s, t).

• Otherwise,

∆b(µ(∆c))(s, t) = b∆1(µ(∆c))(s, t) ≤ c∆1(µ(∆c))(s, t)

= ∆c(µ(∆c))(s, t) = µ(∆c)(s, t).

We define a new function δ1 which helps to prove that the probabilistic bisimi-

larity distances captured by µ(∆1) are the limit of their discounted counterparts

represented by µ(∆c), that is, lim
c↑1
µ(∆c) = µ(∆1).

228

Definition 10.3.7. The function δ1 : S2 → [0, 1] is defined by

δ1(s, t) = sup
c∈(0,1)

µ(∆c)(s, t).

Proposition 10.3.8. lim
c↑1
µ(∆c) = δ1.

Proof. It suffices to prove that

∀ε > 0 : ∃b ∈ (0, 1) : ∀c ∈ [b, 1) : ‖µ(∆c)− δ1‖< ε.

From Proposition 10.3.6 and the definition of δ1 we can conclude that for each

(s, t) ∈ S2 there exists b(s,t) ∈ (0, 1) such that |µ(∆c)(s, t) − δ1(s, t)| < ε for all

b(s,t) ≤ c < 1. Let b = max(s,t)∈S2 b(s,t). Then ‖µ(∆c)− δ1‖< ε for all b ≤ c < 1.

The next two propositions show that δ1 = µ(∆1).

Proposition 10.3.9. δ1 v µ(∆1).

Proof. Next, we show that for all c ∈ (0, 1), µ(∆c) v µ(∆1). From this we can

immediately deduce that δ1 v µ(∆1).

Let c ∈ (0, 1). To conclude that µ(∆c) v µ(∆1), it suffices to show that

∆c(µ(∆1)) v µ(∆1) according to Theorem 2.1.8(d). Let s, t ∈ S. We distinguish

three cases.

• If `(s) 6= `(t) then

∆c(µ(∆1))(s, t) = 1 = ∆1(µ(∆1))(s, t) = µ(∆1)(s, t).

229

• If s ∼ t then

∆c(µ(∆1))(s, t) = 0 = ∆1(µ(∆1))(s, t) = µ(∆1)(s, t).

• Otherwise,

∆c(µ(∆1))(s, t) = c∆1(µ(∆1))(s, t) ≤ ∆1(µ(∆1))(s, t) = µ(∆1)(s, t).

Proposition 10.3.10. µ(∆1) v δ1.

Proof. To conclude that µ(∆1) v δ1, it suffices to show that ∆1(δ1) = δ1 according

to Theorem 2.1.8(d). Let s, t ∈ S. We distinguish three cases.

• If `(s) 6= `(t) then

∆1(δ1)(s, t) = 1 = lim
c↑1

∆c(µ(∆c))(s, t) = lim
c↑1
µ(∆c)(s, t) = δ1(s, t)

by Proposition 10.3.8.

• If s ∼ t then

∆1(δ1)(s, t) = 0 = lim
c↑1

∆c(µ(∆c))(s, t) = lim
c↑1
µ(∆c)(s, t) = δ1(s, t)

by Proposition 10.3.8.

• Otherwise

∆1(δ1)(s, t) = ∆1(lim
c↑1
µ(∆c))(s, t) [Proposition 10.3.8]

230

= lim
c↑1

∆1(µ(∆c))(s, t)

[∆1 is 1-Lipschitz and, hence, continuous]

[by Proposition 2.2.12]

= lim
c↑1

c lim
c↑1

∆1(µ(∆c))(s, t)

= lim
c↑1

c∆1(µ(∆c))(s, t) [multiplication is continuous]

= lim
c↑1

∆c(µ(∆c))(s, t)

= lim
c↑1
µ(∆c)(s, t)

= δ1(s, t) [Proposition 10.3.8]

Proposition 10.3.11. lim
c↑1
µ(∆c) = µ(∆1).

Proof.

lim
c↑1
µ(∆c) = δ1 [Proposition 10.3.8]

= µ(∆1) [Proposition 10.3.9 and 10.3.10]

We have completed the first component of the proof. In the next few propositions,

we show that for all A ∈ A and I ∈ I, the value function µ(ΓA,I1) is the limit of the

discounted value functions µ(ΓA,Ic), that is, lim
c↑1
µ(ΓA,Ic) = µ(ΓA,I1). This result is

inspired by [38, Theorem 4.4.1].

231

Proposition 10.3.12. For all A ∈ A, I ∈ I and b, c ∈ (0, 1], if b ≤ c then

µ(ΓA,Ib) v µ(ΓA,Ic).

Proof. Let A ∈ A and I ∈ I. Let b, c ∈ (0, 1] with b ≤ c. To conclude that µ(ΓA,Ib) v

µ(ΓA,Ic) it suffices to show ΓA,Ib (µ(ΓA,Ic)) v µ(ΓA,Ic) according to Theorem 2.1.8(d).

Let s, t ∈ S. We distinguish three cases.

• If `(s) 6= `(t) then

ΓA,Ib (µ(ΓA,Ic))(s, t) = 1 = ΓA,Ic (µ(ΓA,Ic))(s, t) = µ(ΓA,Ic)(s, t).

• If s ∼ t then

ΓA,Ib (µ(ΓA,Ic))(s, t) = 0 = ΓA,Ic (µ(ΓA,Ic))(s, t) = µ(ΓA,Ic)(s, t).

• Otherwise,

ΓA,Ib (µ(ΓA,Ic))(s, t) = bΓA,I1 (µ(ΓA,Ic))(s, t)

≤ cΓA,I1 (µ(ΓA,Ic))(s, t)

= ΓA,Ic (µ(ΓA,Ic))(s, t)

= µ(ΓA,Ic)(s, t).

To prove lim
c↑1
µ(∆c) = µ(∆1), we have defined a function δ1 . Similarly, to prove

lim
c↑1
µ(ΓA,Ic) = µ(ΓA,I1), we define a function γA,I1 .

232

Definition 10.3.13. Let A ∈ A and I ∈ I. The function γA,I1 : S2 → [0, 1] is

defined by

γA,I1 (s, t) = sup
c∈(0,1)

µ(ΓA,Ic)(s, t).

The next proposition shows that γA,I1 = lim
c↑1
µ(ΓA,Ic) .

Proposition 10.3.14. For all A ∈ A and I ∈ I, lim
c↑1
µ(ΓA,Ic) = γA,I1 .

Proof. Let A ∈ A and I ∈ I. It suffices to prove that

∀ε > 0 : ∃b ∈ (0, 1) : ∀c ∈ [b, 1) : ‖µ(ΓA,Ic)− γA,I1 ‖< ε.

From Proposition 10.3.12 and the definition of γA,I1 we can conclude that for each

(s, t) ∈ S2 there exists b(s,t) ∈ (0, 1) such that |µΓA,Ic (s, t) − γA,I1 (s, t)| < ε for all

b(s,t) ≤ c<1. Let b = max(s,t)∈S2 b(s,t). Then ‖µ(ΓA,Ic)−γA,I1 ‖<ε for all b ≤ c<1.

The next two propositions indicate that γA,I1 = µ(ΓA,I1).

Proposition 10.3.15. For all A ∈ A and I ∈ I, γA,I1 v µ(ΓA,I1).

Proof. Let A ∈ A and I ∈ I. We show that for all c ∈ (0, 1), µ(ΓA,Ic) v µ(ΓA,I1).

From this we can immediately deduce that γA,I1 v µ(ΓA,I1).

Let c ∈ (0, 1). To conclude that µ(ΓA,Ic) v µ(ΓA,I1), it suffices to show that

ΓA,Ic (µ(ΓA,I1)) v µ(ΓA,I1) according to Theorem 2.1.8(d). Let s, t ∈ S. We distinguish

three cases.

233

• If `(s) 6= `(t) then

ΓA,Ic (µ(ΓA,I1))(s, t) = 1 = ΓA,I1 (µ(ΓA,I1))(s, t) = µ(ΓA,I1)(s, t).

• If s ∼ t then

ΓA,Ic (µ(ΓA,I1))(s, t) = 0 = ΓA,I1 (µ(ΓA,I1))(s, t) = µ(ΓA,I1)(s, t).

• Otherwise,

ΓA,Ic (µ(ΓA,I1))(s, t) = cΓA,I1 (µ(ΓA,I1))(s, t) ≤ ΓA,I1 (µ(ΓA,I1))(s, t) = µ(ΓA,I1)(s, t).

Proposition 10.3.16. For all A ∈ A and I ∈ I, µ(ΓA,I1) v γA,I1 .

Proof. Let A ∈ A and I ∈ I. To conclude that µ(ΓA,I1) v γA,I1 , it suffices to show

that ΓA,I1 (γA,I1) = γA,I1 according to Theorem 2.1.8(d). Let s, t ∈ S. We distinguish

three cases.

• If `(s) 6= `(t) then

ΓA,I1 (γA,I1)(s, t) = 1 = lim
c↑1

ΓA,Ic (µ(ΓA,Ic))(s, t) =

lim
c↑1
µ(ΓA,Ic)(s, t) = γA,I1 (s, t) [Proposition 10.3.14].

• If s ∼ t then

ΓA,I1 (γA,I1)(s, t) = 0 = lim
c↑1

ΓA,Ic (µ(ΓA,Ic))(s, t) =

lim
c↑1
µ(ΓA,Ic)(s, t) = γA,I1 (s, t) [Proposition 10.3.14].

234

• Otherwise,

ΓA,I1 (γA,I1)(s, t)

= ΓA,I1 (lim
c↑1
µ(ΓA,Ic))(s, t) [Proposition 10.3.14]

= lim
c↑1

ΓA,I1 (µ(ΓA,Ic))(s, t)

[by Proposition 10.3.4, ΓA,I1 is 1-Lipschitz and, hence, continuous]

= lim
c↑1

c lim
c↑1

ΓA,I1 (µ(ΓA,Ic))(s, t)

= lim
c↑1

cΓA,I1 (µ(ΓA,Ic))(s, t) [multiplication is continuous]

= lim
c↑1

ΓA,Ic (µ(ΓA,Ic))(s, t)

= lim
c↑1
µ(ΓA,Ic)(s, t)

= γA,I1 (s, t) [Proposition 10.3.14]

Combining the above propositions, we can conclude lim
c↑1
µ(ΓA,Ic) = µ(ΓA,I1), which

completes the second component of the proof.

Proposition 10.3.17. For all A ∈ A and I ∈ I, lim
c↑1
µ(ΓA,Ic) = µ(ΓA,I1).

Proof. Let A ∈ A and I ∈ I.

lim
c↑1
µ(ΓA,Ic) = γA,I1 [Proposition 10.3.14]

= µ(ΓA,I1) [Proposition 10.3.15 and 10.3.16]

235

For the case when the discount factor c is smaller than one, we construct a max

policy A∗c ∈ A in the next proposition so that ∀I ∈ I : µ(∆c) v µ(Γ
A∗c ,I
c).

Proposition 10.3.18. For all c ∈ (0, 1), ∃A ∈ A : ∀I ∈ I : µ(∆c) v µ(ΓA,Ic).

Proof. Let c ∈ (0, 1). Let s, t ∈ S. If

max
s→µ

min
t→ν

K(µ(∆c))(µ, ν) ≥ max
t→ν

min
s→µ

K(µ(∆c))(µ, ν) (10.4)

then we define A∗c(s, t) by

A∗c(s, t) =

(
t, argmax

s→µ
min
t→ν

K(µ(∆c))(µ, ν)

)
.

Because the probabilistic automaton is finitely branching, the above exists. Other-

wise, we define A∗c(s, t) by

A∗c(s, t) =

(
s, argmax

t→ν
min
s→µ

K(µ(∆c))(µ, ν)

)
.

By construction, A∗c ∈ A.

Let I ∈ I. Since 〈[0, 1]S×S, ‖·−·‖〉 is a nonempty complete metric space according

to Proposition 2.1.22 and the function Γ
A∗c ,I
c is contractive by Proposition 10.3.4, we

can conclude from Theorem 2.1.23 that Γ
A∗c ,I
c has a unique fixed point. Therefore,

µ(Γ
A∗c ,I
c) is not only the least fixed point but also the greatest fixed point of Γ

A∗c ,I
c .

According to Theorem 2.1.8(b), µ(Γ
A∗c ,I
c) is the greatest post-fixed point of Γ

A∗c ,I
c .

Hence, to conclude that µ(∆c) v µ(Γ
A∗c ,I
c) it suffices to show that µ(∆c) is a post-

fixed point of Γ
A∗c ,I
c , that is, µ(∆c) v Γ

A∗c ,I
c (µ(∆c)). Let s, t ∈ S. We distinguish

three cases.

236

• If (s, t) ∈ S2
0 , then

µ(∆c)(s, t) ≤ µ(∆1)(s, t) [Proposition 10.3.6]

= µ(∆)(s, t) [Theorem 2.2.14]

= 0 [Theorem 2.2.8]

= ΓA
∗
c ,I

c (µ(∆c))(s, t).

• If (s, t) ∈ S2
1 , then

µ(∆c)(s, t) = ∆c(µ(∆c))(s, t)

= 1

= ΓA
∗
c ,I

c (µ(∆c))(s, t).

• Otherwise, (s, t) ∈ S2
? . Without loss of any generality, assume that A∗c(s, t) =

(t, µ). This assumption implies (10.4) and

∆1(µ(∆c))(s, t) = min
t→ν

K(µ(∆c))(µ, ν). (10.5)

Hence,

µ(∆c)(s, t) = ∆c(µ(∆c))(s, t)

= c∆1(µ(∆c))(s, t)

= c min
t→ν

K(µ(∆c))(µ, ν) [(10.5)]

= c min
t→ν

min
ω∈V (Ω(ν,µ))

∑
u,v∈S

ω(u, v)µ(∆c)(u, v)

237

[Definition 2.1.24 of Kantorovich metric]

≤ c
∑
u,v∈S

I(A∗c(s, t))(u, v)µ(∆c)(u, v)

= cΓ
A∗c ,I
1 (µ(∆c))(s, t)

= ΓA
∗
c ,I

c (µ(∆c))(s, t).

Combining the three components, we obtain the second part of the proof. The

next lemma shows the existence of a policy A∗ ∈ A such that

∀I ∈ I : µ(∆1) v µ(ΓA
∗,I

1).

Lemma 10.3.19. ∃A ∈ A : ∀I ∈ I : µ(∆1) v µ(ΓA,I1).

Proof. According to Proposition 10.3.18,

∀n ∈ N : ∃An ∈ A : ∀I ∈ I : µ(∆ n
n+1

) v µ(ΓAn,In
n+1

). (10.6)

Since the set A is finite, the sequence (An)n∈N has a subsequence (Aσ(n))n∈N that is

constant, that is, there exists A∗ ∈ A such that for all n ∈ N, Aσ(n) = A∗. From

Proposition 10.3.11 and 10.3.17 we can conclude that

lim
n∈N

µ(∆ σ(n)
σ(n)+1

) = µ(∆1) and lim
n∈N

µ(ΓA,Iσ(n)
σ(n)+1

) = µ(ΓA,I1).

From (10.6) we can deduce that ∃A ∈ A : ∀I ∈ I : µ(∆1) v µ(ΓA,I1).

238

In the remainder of this dissertation, we denote the optimal max policy that

satisfies Lemma 10.3.19 by A∗. As a consequence,

∀I ∈ I : µ(∆1) v µ(ΓA
∗,I

1). (10.7)

Theorem 10.3.20. µ(∆1) = µ(ΓA
∗,I∗

1).

Proof. Since

µ(∆1) v µ(ΓA
∗,I∗

1) [(10.7)]

v µ(∆1) [(10.1)]

we can conclude that µ(∆1) = µ(ΓA
∗,I∗

1).

The above theorem characterizes the probabilistic bisimilarity distances for

probabilistic automata in terms of a game. This characterization could form the

basis for a policy iteration algorithm to compute the distances for probabilistic

automata, just as the similar characterization presented in Section 6.1 forms the

basis for the algorithm to compute the probabilistic bisimilarity distances for labelled

Markov chains by Bacci et al. [3].

In the next chapter, we will introduce an algorithm which decides distance one for

probabilistic automata. The game characterization of the probabilistic bisimilarity

distances will be used in the correctness proof of this algorithm.

239

11 Distance One for Probabilistic Automata

The complexity of computing the probabilistic bisimilarity distances for probabilistic

automata a la Deng et al. [29] was first studied by Fu [41]. He showed that these

probabilistic bisimilarity distances are rational. Furthermore, he proved that the

problem of deciding whether the distance of two states is smaller than a given

rational is in NP ∩ coNP. The proof can be adapted to show that the decision

problem is in UP ∩ coUP [42]. Recall that UP contains those problems in NP

with a unique accepting computation. Van Breugel and Worrell [21] have shown

that the problem of computing the probabilistic bisimilarity distances is in PPAD,

which is short for polynomial parity argument in a directed graph.

However, we are not aware of any practical algorithms to compute the distances

for probabilistic automata. In this chapter, we present a characterization of distance

one, which is an interplay of the greatest and least fixed point of a function. We

then present a polynomial time algorithm that decides distance one for probabilistic

automata. As a consequence, we can determine in polynomial time how many, if

any, distances are non-trivial, that is, greater than zero and smaller than one. As

240

we have already shown in Chapter 9 in the context of labelled Markov chains, being

able to decide distance zero and distance one in polynomial time has significant

impact on computing probabilistic bisimilarity distances for labelled Markov chains.

11.1 First Attempt

As a first attempt towards capturing the set D1, we mimick our approach taken in

Section 8.1 to characterize D1 for labelled Markov chains. However, as we will see

later, this attempt will fail.

By Theorem 8.1.5, the set D1 for a labelled Markov chain can be characterized

as the greatest fixed point of the function Γ. In our first attempt, we try to mimic

this idea and define D1 as either the greatest or the least fixed point of a function.

Let us consider the case that the probabilistic bisimilarity distance of states s and

t is one, that is, µ(∆)(s, t) = 1. Then ∆(µ(∆))(s, t) = 1. From the definition of

∆, we can conclude that either `(s) 6= `(t), or there exists s→ µ such that for all

t → ν and for all couplings ω ∈ Ω(µ, ν) we have that support(ω) ⊆ D1, or there

exists t → ν such that for all s → µ and for all couplings ω ∈ Ω(µ, ν) we have

support(ω) ⊆ D1. This analysis suggests the following definition.

Definition 11.1.1. The function Ξ : 2S
2 → 2S

2
is defined by

Ξ(X) = S2
1∪

(s, t) ∈ S2
?

∣∣∣∣∣ ∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ X∨

∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(ν, µ)) : support(ω) ⊆ X

 .

241

Proposition 11.1.2. The function Ξ is monotone.

Proof. Let X, Y ∈ 2S
2

with X ⊆ Y . Let (s, t) ∈ Ξ(X). We distinguish two cases.

• If (s, t) ∈ S2
1 then obviously (s, t) ∈ Ξ(Y).

• If (s, t) ∈ S2
? then

∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ X ∨

∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(ν, µ)) : support(ω) ⊆ X

implies ∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ Y ∨

∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(ν, µ)) : support(ω) ⊆ Y

implies (s, t) ∈ Ξ(Y).

By Knaster-Tarski’s fixed point theorem (Theorem 2.1.8(a, b)), Ξ has a least

and a greatest fixed point, which we denote by µ(Ξ) and ν(Ξ), respectively. We

first show that D1 is a fixed point of Ξ.

Proposition 11.1.3. Ξ(D1) = D1.

Proof. For all s, t ∈ S,

(s, t) ∈ Ξ(D1)

iff `(s) 6= `(t) ∨

242

(s 6∼ t ∧

(∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ D1 ∨

∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(ν, µ)) : support(ω) ⊆ D1))

iff (s 6∼ t ∧ `(s) 6= `(t)) ∨

(s 6∼ t ∧

(∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ D1 ∨

∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(ν, µ)) : support(ω) ⊆ D1))

iff s 6∼ t ∧

(`(s) 6= `(t) ∨

(∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ D1 ∨

∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(ν, µ)) : support(ω) ⊆ D1))

iff s 6∼ t ∧

(`(s) 6= `(t) ∨

(∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) :
∑
u,v∈S

ω(u, v)µ(∆1)(u, v) = 1 ∨

∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(ν, µ)) :
∑
u,v∈S

ω(u, v)µ(∆1)(u, v) = 1))

iff s 6∼ t ∧∆1(µ(∆1))(s, t) = 1

iff s 6∼ t ∧ µ(∆1)(s, t) = 1

iff µ(∆1)(s, t) = 1

243

iff (s, t) ∈ D1.

Proposition 11.1.4. There exists a probabilistic automaton such that D1 6= µ(Ξ).

Proof. As we have seen in Proposition 11.1.3, D1 is a fixed point of Ξ. We will show

that for the probabilistic automaton depicted below, S2
1 is a fixed point of Ξ as well.

Obviously, states with different labels have distance one, that is, S2
1 ⊆ D1. We will

demonstrate that the states s and t have distance one. Hence, S2
1 ⊂ D1. Therefore,

D1 is not the least fixed point of Ξ.

Consider the following probabilistic automaton.

s t

u v

1
2

1
2

1
2

1
2

1 1

Note that

S2
0 = {(s, s), (t, t), (u, u), (v, v)}

S2
1 = {(s, u), (s, v), (t, u), (t, v), (u, s), (u, t), (u, v), (v, s), (v, t), (v, u)}

S2
? = {(s, t), (t, s)}

Also note that

244

V (Ω(1
2
Dirs + 1

2
Diru,Dirt + 1

2
Dirv)) =

{1
2
Dir(s,t) + 1

2
Dir(u,v),

1
2
Dir(s,v) + 1

2
Dir(u,t)} (11.1)

Let us first show that S2
1 is a fixed point of Ξ, that is, Ξ(S2

1) = S2
1 . From

the definition of Ξ we can immediately conclude that S2
1 ⊆ Ξ(S2

1). To conclude

that Ξ(S2
1) ⊆ S2

1 , it suffices to show that (s, t) 6∈ Ξ(S2
1) and (t, s) 6∈ Ξ(S2

1). Since

(s, t) ∈ S2
? and

support(1
2
Dir(s,t) + 1

2
Dir(u,v)) = {(s, t), (u, v)} 6⊆ S2

1 ,

we can conclude from (11.1) that (s, t) 6∈ Ξ(S2
1). Similarly, we can show that

(t, s) 6∈ Ξ(S2
1).

It remains to show that the states s and t have distance one, that is, (s, t) ∈ D1.

First, we prove that for all n ∈ N,

∆n
1 (0)(s, t) = 1− 2−n (11.2)

by induction n. We distinguish two cases.

• If n = 0 then

∆n
1 (0)(s, t) = 0(s, t) = 0 = 1− 20 = 1− 2−n.

• If n > 0 then

∆n
1 (0)(s, t)

245

= min{1
2
∆n−1

1 (0)(s, t) + 1
2
∆n−1

1 (0)(u, v), 1
2
∆n−1

1 (0)(s, v) + 1
2
∆n−1

1 (0)(u, t)}

[(11.1)]

= min{1
2
∆n−1

1 (0)(s, t) + 1
2
, 1

2
+ 1

2
}

= 1
2
∆n−1

1 (0)(s, t) + 1
2

= 1
2
(1− 2−(n−1)) + 1

2
[induction hypothesis]

= 1− 2−n.

From the above, we can conclude that

µ(∆1)(s, t)

= sup
n∈N

∆n
1 (0)(s, t) [Theorem 2.1.21]

= sup
n∈N

1− 2−n

= 1.

Hence, (s, t) ∈ D1.

Proposition 11.1.5. There exists a probabilistic automaton such that D1 6= ν(Ξ).

Proof. We will demonstrate that the states s and t in the probabilistic automaton

depicted below have distance at most 1
2
. As a consequence, we conclude that D1 = S2

1 .

As we have seen in Proposition 11.1.3, D1 is a fixed point of Ξ. Furthermore, we

will show that D1 ∪ {(s, t), (t, s)} is a fixed point of Ξ as well. Therefore, D1 is not

the greatest fixed point of Ξ.

246

In this proof, we consider the following probabilistic automaton. Note that it is

the probabilistic automaton in Example 10.2.2.

s t

u v

1
2

1
2

1 1

1 1

Note that

S2
0 = {(s, s), (t, t), (u, u), (v, v), (s, u), (u, s)}

S2
1 = {(s, v), (t, u), (t, v), (u, t), (u, v), (v, s), (v, t), (v, u)}

S2
? = {(s, t), (t, s)}

Also note that

V (Ω(Dirs,
1
2
Diru + 1

2
Dirv)) = {1

2
Dir(s,u) + 1

2
Dir(s,v)}

V (Ω(Dirs,Dirt)) = {Dir(s,t)}
(11.3)

First, we will show that the states s and t have distance at most 1
2
. We define

the function d : S2 → [0, 1] by

d(x, y) =


1
2

if (x, y) = (s, t) or (x, y) = (t, s)

µ(∆1)(x, y) otherwise.

Next, we will show that d is a fixed point of ∆1. Since µ(∆1) is the least fixed point

of ∆1, we can conclude that µ(∆1)(s, t) ≤ d(s, t) = 1
2

and µ(∆1)(t, s) ≤ d(t, s) = 1
2
.

247

It remains to show that for all x, y ∈ S, ∆1(d)(x, y) = d(x, y). We distinguish three

cases.

• If (x, y) = (s, t) then

∆1(d)(s, t)

= max{min{1
2
d(s, u) + 1

2
d(s, v), d(s, t)},max{1

2
d(s, u) + 1

2
d(s, v), d(s, t)}}

= max{min{1
2
µ(∆1)(s, u) + 1

2
µ(∆1)(s, v), 1

2
},

max{1
2
µ(∆1)(s, u) + 1

2
µ(∆1)(s, v), 1

2
}}

= max{min{0 + 1
2
, 1

2
},max{0 + 1

2
, 1

2
}}

= 1
2

= d(s, t).

• The case that (x, y) = (t, s) is similar to the previous case.

• Assume (x, y) 6= (s, t) and (x, y) 6= (t, s). Note that if x→ µ and y → ν and

ω ∈ V (Ω(µ, ν)) then support(ω) ∩ {(s, t), (t, s)} = ∅. As a consequence,

∆1(d)(x, y) = ∆1(µ(∆1))(x, y) = µ(∆1)(x, y) = d(x, y).

It remains to show that D1 ∪ {(s, t), (t, s)} is a fixed point of Ξ, that is,

Ξ(D1 ∪ {(s, t), (t, s)}) = D1 ∪ {(s, t), (t, s)}.

We prove two inclusions. First of all, we observe that

D1 = Ξ(D1) [Proposition 11.1.3]

248

⊆ Ξ(D1 ∪ {(s, t), (t, s)}) [Proposition 11.1.2]

Because

support(1
2
Dir(s,u) + 1

2
Dir(s,v)) = {(s, u), (s, v)} ⊆ (D1 ∪ {(s, t), (t, s)}

support(Dir(s,t)) = {(s, t)} ⊆ (D1 ∪ {(s, t), (t, s)}

we can conclude from the transitions of the above probabilistic automaton, the

definition of Ξ and (11.3) that (s, t) ∈ Ξ(D1 ∪ {(s, t), (t, s)}). Similarly, we can

conclude that (t, s) ∈ Ξ(D1 ∪ {(s, t), (t, s)}). Hence,

D1 ∪ {(s, t), (t, s)} ⊆ Ξ(D1 ∪ {(s, t), (t, s)}).

To prove the other inclusion, we conclude from the definition of Ξ that

Ξ(D1 ∪ {(s, t), (t, s)}) ⊆ S2
1 ∪ S2

? = D1 ∪ {(s, t), (t, s)}.

11.2 Deciding Distance One

In the previous section, we have shown that the set D1 of state pairs that have

distance one is neither the least fixed point of Ξ nor the greatest fixed point of Ξ.

As we will prove in Section 11.3, the set D1 can be characterized as an interplay of

the greatest and the least fixed points of the function Λ of Definition 11.2.1. In this

section, we present an algorithm to compute the set D1.

249

Definition 11.2.1. The function Λ : 2S
2 × 2S

2 → 2S
2

is defined by

Λ(X, Y) = S2
1 ∪


(s, t) ∈ S2

?

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) :

support(ω) ⊆ X ∧ support(ω) ∩ Y 6= ∅∨

∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(µ, ν)) :

support(ω) ⊆ X ∧ support(ω) ∩ Y 6= ∅


.

Recall from Chapter 10 that the probabilistic bisimilarity distances can be

characterized in terms of an SSG. The set Λ(X, Y) contains all state pairs with

different labels and those state pairs for which there exists a move by the max player

so that every subsequent move of the min player always ends up in X and with

some positive probability in Y .

Let Y ⊆ S2. The function λX.Λ(X, Y) is the function that maps X to Λ(X, Y).

As we will see in Proposition 11.2.2(a), this function is monotone. Since 〈2S2
,⊆〉 is

a complete lattice, by Theorem 2.1.8(a, b), it admits a least and a greatest fixed

point, denoted by µX.Λ(X, Y) and νX.Λ(X, Y), respectively. Similarly, let X ⊆ S2.

The function λY.Λ(X, Y) is the function that maps Y to Λ(X, Y). As we will see

in Proposition 11.2.2(b), this function is monotone. Since 〈2S2
,⊆〉 is a complete

lattice, by Theorem 2.1.8(a, b), it admits a least and a greatest fixed point, denoted

by µY.Λ(X, Y) and νY.Λ(X, Y), respectively.

Proposition 11.2.2. For all X, Y , Z ⊆ S2 with X ⊆ Y ,

(a) Λ(X,Z) ⊆ Λ(Y, Z).

250

(b) Λ(Z,X) ⊆ Λ(Z, Y).

(c) µZ.Λ(X,Z) ⊆ µZ.Λ(Y, Z).

Proof. (a) Let (s, t) ∈ Λ(X,Z). We distinguish two cases.

– If (s, t) ∈ S2
1 then obviously (s, t) ∈ Λ(Y, Z).

– If (s, t) ∈ S2
? then

∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) :

support(ω) ⊆ X ∧ support(ω) ∩ Z 6= ∅∨

∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(ν, µ)) :

support(ω) ⊆ X ∧ support(ω) ∩ Z 6= ∅

implies

∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) :

support(ω) ⊆ Y ∧ support(ω) ∩ Z 6= ∅∨

∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(ν, µ)) :

support(ω) ⊆ Y ∧ support(ω) ∩ Z 6= ∅

implies

(s, t) ∈ Λ(Y, Z).

(b) Let (s, t) ∈ Λ(Z,X). We distinguish two cases.

– If (s, t) ∈ S2
1 then obviously (s, t) ∈ Λ(Z, Y).

251

– If (s, t) ∈ S2
? then

∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) :

support(ω) ⊆ Z ∧ support(ω) ∩X 6= ∅∨

∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(ν, µ)) :

support(ω) ⊆ Z ∧ support(ω) ∩X 6= ∅

implies

∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) :

support(ω) ⊆ Z ∧ support(ω) ∩ Y 6= ∅∨

∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(ν, µ)) :

support(ω) ⊆ Z ∧ support(ω) ∩ Y 6= ∅

implies

(s, t) ∈ Λ(Z, Y).

(c) We have that

Λ(X,µZ.Λ(Y, Z)) ⊆ Λ(Y,µZ.Λ(Y, Z)) [part (b)]

= µZ.Λ(Y, Z) [µZ.Λ(Y, Z) is a fixed point of Λ(Y, ·)]

that is, µZ.Λ(Y, Z) is a pre-fixed point of Λ(X, ·). Since µZ.Λ(X,Z) is the

least pre-fixed point of Λ(X, ·) according to Theorem 2.1.8(c), we can conclude

that µZ.Λ(X,Z) ⊆ µZ.Λ(Y, Z).

252

The set µY.Λ(X, Y) contains all state pairs (s, t) for which there exists a max

policy such that for all min policies, (s, t) can reach a state pair with different labels

and all state pairs reachable from (s, t) are element of X.

Since the function λX.µY.Λ(X, Y) is monotone as well, we can conclude from

Theorem 2.1.8(b) that the greatest fixed point νX.µY.Λ(X, Y) exists. The set

νX.µY.Λ(X, Y) contains all state pairs (s, t) for which there exists a max policy

such that for all min policies, all state pairs reachable from (s, t) can reach a state

pair with different labels. In the next section, we will prove that νX.µY.Λ(X, Y)

captures the set D1. According to Theorem 2.1.9(a) and (b), these greatest and

least fixed points can be obtained iteratively as follows.

1 Xc = S2

2 do

3 Yc = ∅

4 do

5 Yp = Yc

6 Yc = Λ(Xc, Yp)

7 whi le Yp 6= Yc

8 Xp = Xc

9 Xc = Yc

10 whi le Xp 6= Xc

253

The inner loop (line 3–7) computes the least fixed point µY.Λ(Xc, Y). The outer

loop (line 1–10) computes the greatest fixed point νX.µY.Λ(X, Y), which equals

D1 as we will prove in the next section. Due to the monotonicity of Λ we can

conclude that both the inner and outer loop terminate after at most |S|2 iterations.

To conclude that the above algorithm is polynomial time, it remains to show that

Λ(Xc, Yp) on line 6 can be computed in polynomial time.

Proposition 11.2.3. For all µ, ν ∈ Distr(S) and X ⊆ S2,

(a)

∀ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ X

iff K(d)(µ, ν) = 1

iff ∀ω ∈ Ω(µ, ν) : support(ω) ⊆ X

iff support(µ)× support(ν) ⊆ X

(b)

∀ω ∈ V (Ω(µ, ν)) : support(ω) ∩X 6= ∅

iff K(d)(µ, ν)> 0

iff ∀ω ∈ Ω(µ, ν) : support(ω) ∩X 6= ∅

where

d(s, t) =


1 if (s, t) ∈ X

0 otherwise.

254

Proof. Let µ, ν ∈ Distr(S) and X ⊆ S2. Let

π = argmin
ω∈V (Ω(µ,ν))

∑
(u,v)∈S2

ω(u, v) d(u, v).

(a) The proof consists of several parts.

– We first show that

∀ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ X

implies K(d)(µ, ν) = 1. Assume ∀ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ X. We

have

K(d)(µ, ν)

= min
ω∈V (Ω(µ,ν))

∑
(u,v)∈S2

ω(u, v) d(u, v)

=
∑

(u,v)∈S2

π(u, v) d(u, v)

=
∑

(u,v)∈X

π(u, v) d(u, v) +
∑

(u,v)∈S2\X

π(u, v) d(u, v)

=
∑

(u,v)∈X

π(u, v)× 1 +
∑

(u,v)∈S2\X

π(u, v)× 0 [definition of d]

=
∑

(u,v)∈X

π(u, v)

= 1 [support(π) ⊆ X]

– Next we prove that if K(d)(µ, ν) = 1, then

∀ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ X.

255

Assume that K(d)(µ, ν) = 1. Let ω ∈ V (Ω(µ, ν)). Then

1 = K(d)(µ, ν)

≤
∑

(u,v)∈S2

ω(u, v) d(u, v)

=
∑

(u,v)∈X

ω(u, v) d(u, v) +
∑

(u,v)∈S2\X

ω(u, v) d(u, v)

=
∑

(u,v)∈X

ω(u, v)× 1 +
∑

(u,v)∈S2\X

ω(u, v)× 0 [definition of d]

=
∑

(u,v)∈X

ω(u, v).

Hence,
∑

(u,v)∈X

ω(u, v) = 1 and, therefore, support(ω) ⊆ X.

– The proof that ∀ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ X if and only if

K(d)(µ, ν) = 1 is similar to the above proof, relying on Proposition 2.1.12.

– The fact that ∀ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ X if and only if support(µ)×

support(ν) ⊆ X is Proposition 8.2.4.

(b) The proof consists of several parts.

– First we show that ∀ω ∈ V (Ω(µ, ν)) : support(ω) ∩ X 6= ∅ implies

K(d)(µ, ν) > 0. Assume ∀ω ∈ V (Ω(µ, ν)) : support(ω) ∩ X 6= ∅. We

have

K(d)(µ, ν)

= min
ω∈V (Ω(µ,ν))

∑
(u,v)∈S2

ω(u, v) d(u, v)

256

=
∑

(u,v)∈S2

π(u, v) d(u, v)

=
∑

(u,v)∈X

π(u, v) d(u, v) +
∑

(u,v)∈S2\X

π(u, v) d(u, v)

=
∑

(u,v)∈X

π(u, v)× 1 +
∑

(u,v)∈S2\X

π(u, v)× 0 [definition of d]

=
∑

(u,v)∈X

π(u, v)

> 0 [support(π) ∩X 6= ∅]

– Next, we prove that ifK(d)(µ, ν)>0, then ∀ω ∈ V (Ω(µ, ν)) : support(ω)∩

X 6= ∅. Assume that K(d)(µ, ν)> 0. Let ω ∈ V (Ω(µ, ν)). Then

0 < K(d)(µ, ν)

≤
∑

(u,v)∈S2

ω(u, v) d(u, v)

=
∑

(u,v)∈X

ω(u, v) d(u, v) +
∑

(u,v)∈S2\X

ω(u, v) d(u, v)

=
∑

(u,v)∈X

ω(u, v)× 1 +
∑

(u,v)∈S2\X

ω(u, v)× 0 [definition of d]

=
∑

(u,v)∈X

ω(u, v).

Hence,
∑

(u,v)∈X ω(u, v)> 0 and, therefore, support(ω) ∩X 6= ∅.

– The proof that ∀ω ∈ Ω(µ, ν) : support(ω) ∩ X 6= ∅ if and only if

K(d)(µ, ν)> 0 is similar to the above proof, relying on Proposition 2.1.12.

Computing K(d)(µ, ν) boils down to solving a minimum cost network flow

problem, where d captures the cost. This problem can be solved in polynomial time

257

using, for example, Orlin’s network simplex algorithm [70]. Hence, Λ(Xc, Yp) can be

computed in polynomial time.

11.3 Correctness Proof

11.3.1 The Λ Function and the Game Characterization

This subsection collects some properties of the function Λ and relates it with the

game characterization of the probabilistic bisimilarity distances for probabilistic

automata.

Proposition 11.3.1. Λ(D1, D1) = D1.

Proof. We will show that Λ(D1, D1) = Ξ(D1). Since Ξ(D1) = D1 according to

Proposition 11.1.3, it follows that Λ(D1, D1) = D1.

Assume ω ∈ Distr(S2). By definition, support(ω) 6= ∅. Hence, support(ω) ⊆

D1∧support(ω)∩D1 6= ∅ is equivalent to support(ω) ⊆ D1. Therefore, Λ(D1, D1) =

Ξ(D1).

Recall that in Section 10.3 we have shown that µ(∆1) = µ(ΓA
∗,I∗

1) for the optimal

policies A∗ and I∗. The next proposition is technical and is only used in the proof

of Proposition 11.3.3.

Proposition 11.3.2. For all I ∈ I and (s, t) ∈ D1 \ S2
1 ,

µ(∆1)(s, t) ≤ ΓA
∗,I

1 (µ(∆1))(s, t).

258

Proof. Let I ∈ I and (s, t) ∈ D1\S2
1 . Without any loss of generality, we may assume

that A∗(s, t) = (s, ν). Let I(s, ν) = π. Then s→ µ, t→ ν and π ∈ V (Ω(µ, ν)).

µ(∆1)(s, t) = µ(ΓA
∗,I∗

1)(s, t) [Theorem 10.3.20]

= ΓA
∗,I∗

1 (µ(ΓA
∗,I∗

1))(s, t)

= ΓA
∗,I∗

1 (µ(∆1))(s, t) [Theorem 10.3.20]

=
∑
u,v∈S

I∗(A∗(s, t))(u, v)µ(∆1)(u, v)

=
∑
u,v∈S

I∗(s, ν)(u, v)µ(∆1)(u, v) [A∗(s, t) = (s, ν)]

= min
ω∈V (Ω(µs,ν ,ν))

∑
u,v∈S

ω(u, v)µ(∆1)(u, v) [(10.3)]

= min
s→µ

min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v)µ(∆1)(u, v) [(10.2)]

≤ min
ω∈V (Ω(µ,ν))

∑
u,v∈S

ω(u, v)µ(∆1)(u, v) [s→ µ]

≤
∑
u,v∈S

π(u, v)µ(∆1)(u, v) [π ∈ V (Ω(µ, ν))]

=
∑
u,v∈S

I(s, ν)(u, v)µ(∆1)(u, v) [I(s, ν) = π]

=
∑
u,v∈S

I(A∗(s, t))(u, v)µ(∆1)(u, v) [A∗(s, t) = (s, ν)]

= ΓA
∗,I

1 (µ(∆1))(s, t).

The next proposition is the key result in this subsection. It illustrates that in

the transformed SSG, the vertices in D1 \ S2
1 can only reach the vertices in D1 if

the max player plays according to the optimal max policy A∗ and the min player

259

plays an arbitrary min policy I.

Proposition 11.3.3. For all (s, t) ∈ D1 \S2
1 and I ∈ I, support(I(A∗(s, t))) ⊆ D1.

Proof. Let (s, t) ∈ D1 \ S2
1 . Towards a contradiction, assume there exist I ∈ I and

(x, y) ∈ support(I(A∗(s, t))) such that µ(∆1)(x, y)< 1. Then

µ(∆1)(s, t) ≤ ΓA
∗,I

1 (µ(∆1))(s, t) [Proposition 11.3.2]

=
∑
u,v∈S

I(A∗(s, t))(u, v)µ(∆1)(u, v)

< 1 [(x, y) ∈ support(I(A∗(s, t))) and µ(∆1)(x, y)< 1]

This contradicts (s, t) ∈ D1.

Next we show that D1 is the least fixed point of λY.Λ(D1, Y). We assume

Y = µY.Λ(D1, Y). Recall that we have presented a game characterization of the

distances in Section 10.3. We will use this characterization to show that D1 \Y = ∅.

Together with the fact that D1 is a fixed point of λY.Λ(Y, Y), we can conclude that

D1 = Y. The next proposition is technical and will only be used in the proof of

Proposition 11.3.5.

Proposition 11.3.4. If Y = µY.Λ(D1, Y) and Y ⊂ D1, then ∃I ∈ I : ∀(s, t) ∈

D1 \Y : µ(ΓA
∗,I

1)(s, t) = 0.

Proof. Assume that Y = µY.Λ(D1, Y) and Y ⊂ D1. First, we show that there

exists I ∈ I such that

∀(s, t) ∈ D1 \Y : support(I(A∗(s, t))) ⊆ D1 \Y

260

and then we prove

∀(s, t) ∈ D1 \Y : µ(ΓA
∗,I

1)(s, t) = 0.

Let (s, t) ∈ D1 \Y. Because (s, t) ∈ D1 we can deduce that (s, t) 6∈ S2
0 . Since

(s, t) 6∈ Y = Λ(D1,Y), we have that (s, t) 6∈ S2
1 . Hence, (s, t) ∈ S2

? .

Because (s, t) ∈ S2
? and (s, t) 6∈ Λ(D1,Y), we can conclude that

∀s→ µ : ∃t→ ν : ∃ω ∈ V (Ω(µ, ν)) :

support(ω) 6⊆ D1 ∨ support(ω) ∩Y = ∅ ∧ (11.4)

∀t→ ν : ∃s→ µ : ∃ω ∈ V (Ω(µ, ν)) :

support(ω) 6⊆ D1 ∨ support(ω) ∩Y = ∅

Without loss of generality, assume that A∗(s, t) = (t, µ) with s→ µ. By (11.4), we

have that

∃t→ ν : ∃ω ∈ V (Ω(µ, ν)) : support(ω) 6⊆ D1 ∨ support(ω) ∩Y = ∅.

In the remainder of this proof we denote the coupling ω satisfying the above by

I(A∗(s, t)). Hence,

support(I(A∗(s, t))) 6⊆ D1 ∨ support(I(A∗(s, t))) ∩Y = ∅.

Since (s, t) ∈ D1 and (s, t) 6∈ S2
1 , we can conclude from Proposition 11.3.3 that

support(I(A∗(s, t))) ⊆ D1

261

Combining the above, we obtain

support(I(A∗(s, t))) ⊆ D1 \Y (11.5)

Next, we prove for all (s, t) ∈ D1 \Y, µ(ΓA
∗,I

1)(s, t) = 0. To prove this, it suffices

to show that ∀n ∈ N : (ΓA
∗,I

1)n(0)(s, t) = 0 according to Theorem 2.1.21. We prove

this by induction on n. The base case n = 0 is immediate. Let n > 0. Then

(ΓA
∗,I

1)n(0)(s, t) = ΓA
∗,I

1 ((ΓA
∗,I

1)n−1(0))(s, t)

=
∑
u,v∈S

I(A∗(s, t))(u, v) (ΓA
∗,I

1)n−1(0)(u, v)

=
∑

(u,v)∈D1\Y

I(A∗(s, t))(u, v) (ΓA
∗,I

1)n−1(0)(u, v) [(11.5)]

= 0

[∀(u, v) ∈ D1 \Y : (ΓA
∗,I)n−1(0)(u, v) = 0 by induction]

The proposition below shows that D1 is the least fixed point of λY.Λ(D1, Y).

Proposition 11.3.5. D1 = µY.Λ(D1, Y).

Proof. Let Y = µY.Λ(D1, Y). From Proposition 11.3.1, we can conclude Y ⊆ D1.

It remains to prove that D1 ⊆ Y. Towards a contradiction, assume Y ⊂ D1.

We complete the proof by showing that this assumption implies ∅ ⊂ D1 \Y ⊆ D0.

Let (s, t) ∈ D1 \Y. Then

µ(∆1)(s, t) ≤ µ(ΓA
∗,I

1)(s, t) [(10.7)]

262

= 0 [Proposition 11.3.4]

11.3.2 Iterative Characterization of νX.µY.Λ(X, Y)

To conclude that the algorithm presented in Section 11.2 is correct, it remains to

show that νX.µY.Λ(X, Y) equals D1. In this subsection, we provide an iterative

characterization of νX.µY.Λ(X, Y).

Definition 11.3.6. For each i ∈ N, the set Xi ⊆ S2 is defined by

Xi =


S2 if i = 0

µY.Λ(Xi−1, Y) otherwise.

For each i, j ∈ N, the set Y j
i ⊆ S2 is defined by

Y j
i =


D1 if j = 0

Λ(Xi, Y
j−1
i) otherwise.

The above definition differs from the iterative algorithm presented in the previous

section in that Y 0
i = D1 whereas the algorithm starts its iteration towards the least

fixed point from ∅.

Next, we prove a key property of the sets Xi..

Proposition 11.3.7. For all i ∈ N, D1 ⊆ Xi.

Proof. We prove it by induction on i.

263

• In the base case, i = 0, we have that

X0 = µY.Λ(S2, Y)

⊇ µY.Λ(D1, Y) [D1 ⊆ S2 and Proposition 11.2.2(c)]

= D1 [Proposition 11.3.5]

• Let i > 0. Then

Xi = µY.Λ(Xi−1, Y)

⊇ µY.Λ(D1, Y) [by induction D1 ⊆ Xi−1 and Proposition 11.2.2(c)]

= D1 [Proposition 11.3.5]

The proposition below collects two properties of Y j
i , which will be used in the

proofs later.

Proposition 11.3.8.

(a) For all i, j ∈ N, D1 ⊆ Y j
i .

(b) For all i, j ∈ N, Y j
i ⊆ Y j+1

i .

Proof. (a) Let i ∈ N. We prove this proposition by induction on j. The base case,

j = 0, is vacuously true. Let j > 0. Then

Y j
i = Λ(Xi, Y

j−1
i)

264

⊇ Λ(Xi, D1) [by induction, D1 ⊆ Y j−1
i and Proposition 11.2.2(b)]

⊇ Λ(D1, D1) [Proposition 11.3.7 and Proposition 11.2.2(a)]

= D1 [Proposition 11.3.1]

(b) Let i ∈ N. We prove this proposition by induction on j.

– If j = 0 then

Y 0
i = D1

= Λ(D1, D1) [Proposition 11.3.1]

⊆ Λ(Xi, D1) [Proposition 11.3.7 and Proposition 11.2.2(b)]

= Λ(Xi, Y
0
i)

= Y 1
i .

– If j > 0 then

Y j
i = Λ(Xi, Y

j−1
i)

⊆ Λ(Xi, Y
j
i)

[by induction, Y j−1
i ⊆ Y j

i and Proposition 11.2.2(b)]

= Y j+1
i .

We conclude this subsection with the key proposition below.

265

Proposition 11.3.9.

(a) Xm = νX.µY.Λ(X, Y) for some m ∈ N.

(b) Y n
m = µY.Λ(Xm, Y) for some n ∈ N.

(c) Xm = Y n
m.

Proof. (a) It follows from Theorem 2.1.9(b) and Proposition 11.2.2(c).

(b) First, we have

D1 ⊆ Xm = µY.Λ(Xm, Y)

by Proposition 11.3.7 and part (a). The desired result follows from the latter

fact and Theorem 2.1.9(c) and Proposition 11.2.2(b).

(c) It follows from part (a) and (b).

From Proposition 11.3.9(a) and Proposition 11.3.7, we can conclude that it

suffices to prove Xm ⊆ D1.

11.3.3 Max Policy A′

In this subsection, we will construct a max policy A′. The construction of A′

relies on partitioning Xm \D1 into n disjoint subsets Z0, · · · , Zn−1, which is shown

by Proposition 11.3.11(b) and (d). Note that m and n are the constants from

266

Proposition 11.3.9. The key result in this section is Proposition 11.3.11 which

collects some properties of Zi.

Definition 11.3.10. For each 0 ≤ i < n, the set Zi ⊆ S2 is defined by

Zi = Y i+1
m \ Y i

m.

Zn−1

Z0

Z1

...

Xm
D1

S2
1S2

0

We collect some properties of Zi in the proposition below which is the key result

in this subsection.

Proposition 11.3.11.

(a) For all 0 ≤ i < n, Zi ⊆ S2
? .

(b) For all 0 ≤ i < j < n, Zi ∩ Zj = ∅.

(c) For all 1 ≤ j ≤ n,
⋃

0≤i<j

Zi = Y j
m \D1.

(d)
⋃

0≤i<n

Zi = Xm \D1.

(e) For all 0 ≤ i ≤ n, Y i
m = D1 ∪

⋃
0≤j<i

Zj.

267

Proof.

(a) Let 0 ≤ i < n. By Proposition 11.3.8(a), S2
1 ⊆ Y i

m. Furthermore, Y i+1
m =

Λ(Xm, Y
i
m) ⊆ S2

1 ∪ S2
? . Hence, Zi ⊆ S2

? .

(b) Let 0 ≤ i < j < n. Because i < j, Y i+1
m ⊆ Y j

m due to Proposition 11.3.8(b).

Since also Zi = Y i+1
m \ Y i

m ⊆ Y i+1
m and Zj = Y j+1

m \ Y j
m, we can conclude that

Zi ∩ Zj = ∅.

(c) We prove this part by induction on j.

– If j = 1 then

Z0 = Y 1
m \ Y 0

m = Y 1
m \D1.

– If j > 1 then

⋃
0≤i<j

Zi = Zj−1 ∪
⋃

0≤i<j−1

Zi

= Zj−1 ∪ (Y j−1
m \D1) [induction hypothesis]

= (Y j
m \ Y j−1

m) ∪ (Y j−1
m \D1)

= Y j
m \D1 [Y j−1

m ⊆ Y j
m by Proposition 11.3.8(b)]

(d) Follows from part(c) and the observation that Xm = Y n
m (Proposition 11.3.9(c)).

(e) We prove that for all Y i
m = D1 ∪

⋃
0≤j<i

Zj by induction on i.

– The base case i = 0 holds by the definition of Y i
m.

268

– If i > 0 then

Y i
m = Y i−1

m ∪ (Y i
m \ Y i−1

m)

= Y i−1
m ∪ Zi−1

= (D1 ∪
⋃

0≤j<i−1

Zj) ∪ Zi−1 [induction hypothesis]

= D1 ∪
⋃

0≤j<i

Zj

Based on the proposition below, we will construct the max policy A′ of Defini-

tion 11.3.13.

Proposition 11.3.12. For all 0 ≤ i < n and (s, t) ∈ Zi,

∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) : support(ω) ⊆ Xm ∧ support(ω) ∩ Y i
m 6= ∅∨

(11.6)

∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(ν, µ)) : support(ω) ⊆ Xm ∧ support(ω) ∩ Y i
m 6= ∅

(11.7)

Proof. Let 0 ≤ i < n and (s, t) ∈ Zi. Then

(s, t) ∈ Zi iff (s, t) ∈ Y i+1
m \ Y i

m

implies (s, t) ∈ Y i+1
m

iff (s, t) ∈ Λ(Xm, Y
i
m)

269

iff ∃s→ µ : ∀t→ ν : ∀ω ∈ V (Ω(µ, ν)) :

support(ω) ⊆ Xm ∧ support(ω) ∩ Y i
m 6= ∅ ∨

∃t→ ν : ∀s→ µ : ∀ω ∈ V (Ω(ν, µ)) :

support(ω) ⊆ Xm ∧ support(ω) ∩ Y i
m 6= ∅

[(s, t) ∈ Zi ⊆ S2
? by Proposition 11.3.11(a)]

Now we are ready to construct the max policy A′.

Definition 11.3.13. The function A′ : S2
? → (S ×Distr(S)) is defined by

A′(s, t) =


(t, µ) if (s, t) ∈ Zi and (11.6)

(s, ν) if (s, t) ∈ Zi and (11.7)

A∗(s, t) if (s, t) ∈ S2
? \ (Xm \D1).

In the transformed SSG of Definition 10.2.1, the vertices in Xm \ S2
1 can only

reach the vertices in Xm, if the min player plays according to the optimal min policy

I∗ and the max player plays according to the max policy A′.

Proposition 11.3.14. For all (s, t) ∈ Xm \ S2
1 , support(I∗(A′(s, t))) ⊆ Xm.

Proof. Let (s, t) ∈ Xm \ S2
1 . We distinguish two cases.

• If (s, t) ∈ D1 \ S2
1 , then

support(I∗(A′(s, t))) = support(I∗(A∗(s, t)))

270

[(s, t) 6∈ Xm \D1 since (s, t) ∈ D1]

⊆ D1 [Proposition 11.3.3]

⊆ Xm [Proposition 11.3.7]

• Otherwise, (s, t) ∈ Xm \ D1 since S2
1 ⊆ D1. Hence, (s, t) ∈ Zi for some

0 ≤ i < n according to Proposition 11.3.11(b) and (d). Without loss of

generality, assume that A′(s, t) = (t, µ). Then s → µ according to (11.6).

Assume that I∗(t, µ) = ω. Then t→ ν and ω ∈ V (Ω(µ, ν)). From (11.6) we

can conclude that support(ω) ⊆ Xm. Therefore, support(I∗(A′(s, t))) ⊆ Xm.

The value of the vertices in D1 is one if the min player plays according to the

optimal min policy I∗ and the max player plays according to A′.

Proposition 11.3.15. For all (s, t) ∈ D1, µ(ΓA
′,I∗

1)(s, t) = 1.

Proof. We will show that for all i ∈ N and (s, t) ∈ D1, (ΓA
′,I∗

1)i(0)(s, t) =

(ΓA
∗,I∗

1)i(0)(s, t). From this fact we can conclude that for all (s, t) ∈ D1,

µ(ΓA
′,I∗

1)(s, t) = µ(ΓA
∗,I∗

1)(s, t) [Proposition 10.3.4 and Theorem 2.1.21]

= µ(∆1)(s, t) [Theorem 10.3.20]

= 1 [(s, t) ∈ D1]

The base case, i = 0, is vacuously true. Let i>0. Let (s, t) ∈ D1. We distinguish

two cases.

271

• If `(s) 6= `(t) then

(ΓA
′,I∗

1)i(0)(s, t) = ΓA
′,I∗

1 ((ΓA
′,I∗

1)i−1(0))(s, t)

= 1

= ΓA
∗,I∗

1 ((ΓA
∗,I∗

1)i−1(0))(s, t)

= (ΓA
∗,I∗

1)i(0)(s, t).

• If `(s) = `(t) then

(ΓA
′,I∗

1)i(0)(s, t) = ΓA
′,I∗

1 ((ΓA
′,I∗

1)i−1(0))(s, t)

=
∑
u,v∈S

I∗(A′(s, t))(u, v) (ΓA
′,I∗

1)i−1(0)(u, v)

=
∑

(u,v)∈Xm

I∗(A′(s, t))(u, v) (ΓA
′,I∗

1)i−1(0)(u, v)

[Proposition 11.3.14]

=
∑

(u,v)∈Xm

I∗(A∗(s, t))(u, v) (ΓA
′,I∗

1)i−1(0)(u, v)

[(s, t) ∈ D1 \ S2
1]

=
∑

(u,v)∈D1

I∗(A∗(s, t))(u, v) (ΓA
′,I∗

1)i−1(0)(u, v)

[Proposition 11.3.3]

=
∑

(u,v)∈D1

I∗(A∗(s, t))(u, v) (ΓA
∗,I∗

1)i−1(0)(u, v)

[by induction]

=
∑
u,v∈S

I∗(A∗(s, t))(u, v) (ΓA
∗,I∗

1)i−1(0)(u, v)

[Proposition 11.3.3]

272

= ΓA
∗,I∗

1 ((ΓA
∗,I∗

1)i−1(0))(s, t)

= (ΓA
∗,I∗

1)i(0)(s, t).

The next proposition is technical and is only used in the proof of Proposi-

tion 11.3.20.

Proposition 11.3.16. For all ∅ 6= M ⊆ Xm with support(I∗(A′(s, t))) ⊆ M for

all (s, t) ∈M , if M ∩ (Xm \D1) 6= ∅ then M ∩D1 6= ∅.

Proof. Let ∅ 6= M ⊆ Xm. Assume that for all (s, t) ∈M ,

support(I∗(A′(s, t))) ⊆M. (11.8)

Next, we show that

∀0 ≤ i < n : M ∩ Zi 6= ∅ implies M ∩D1 6= ∅. (11.9)

From Proposition 11.3.11(d) the desired result follows. We prove (11.9) by induction

on i.

• Let i = 0. Let (s, t) ∈M ∩Z0. Without any loss of generality, we may assume

that A′(s, t) = (t, µ). From (11.6) and the fact that Y 0
m = D1 we can conclude

that

support(I∗(A′(s, t))) ⊆ Xm ∧ support(I∗(A′(s, t))) ∩D1 6= ∅. (11.10)

273

Since (s, t) ∈ M , we have (11.8). From (11.8) and (11.10), we can conclude

that M ∩D1 6= ∅.

• Let i > 0. Let (s, t) ∈M ∩ Zi. Without any loss of generality, we may assume

that A′(s, t) = (t, µ). From (11.6) we can conclude that

support(I∗(A′(s, t))) ⊆ Xm ∧ support(I∗(A′(s, t))) ∩ Y i
m 6= ∅. (11.11)

Since (s, t) ∈ M , we have (11.8). From (11.8) and (11.11), we can conclude

that M ∩ Y i
m 6= ∅. Let (u, v) ∈M ∩ Y i

m. We distinguish two cases.

– Assume (u, v) ∈ D1. Since (u, v) ∈M , we can conclude M ∩D1 6= ∅.

– Otherwise, (u, v) 6∈ D1. Since (u, v) ∈ Y i
m, we have (u, v) ∈ Y i

m \ D1.

From Proposition 11.3.11(c) we can deduce that (u, v) ∈ Zj for some

0 ≤ j < i. By the induction hypothesis, since (u, v) ∈M ∩ Zj for some

0 ≤ j < i, we can conclude M ∩D1 6= ∅.

11.3.4 The Function Ψ

In this subsection, we define a function Ψ to help us prove Proposition 11.3.21, that

is, Xm ⊆ D1. Since Xm = νX.µY.Λ(X, Y) by Proposition 11.3.9(a) and D1 ⊆ Xm

by Proposition 11.3.7, we can conclude D1 = νX.µY.Λ(X, Y).

274

Given the max policyA′ and an arbitrary min policy I, from Proposition 11.3.11(e)

and 11.3.12 we can conclude that each state pair in Zi can reach a state pair in D1

or Zj with j < i. Consequently, each state pair in Zi can reach a state pair in D1.

Given the max policy A′ and the optimal min policy I∗, we define the function Ψ

as follows.

Definition 11.3.17. The function Ψ : [0, 1]S
2 → [0, 1]S

2
is defined by

Ψ(d)(s, t) =


ΓA
′,I∗

1 (d)(s, t) if (s, t) ∈ Xm

0 otherwise

Proposition 11.3.18.

(a) The function Ψ is monotone.

(b) The function Ψ is nonexpansive.

Proof.

(a) Let d, e ∈ [0, 1]S
2

with d v e. Let s, t ∈ S. We distinguish two cases.

– If (s, t) ∈ Xm then

Ψ(d)(s, t) = ΓA
′,I∗

1 (d)(s, t)

≤ ΓA
′,I∗

1 (e)(s, t) [Proposition 10.3.4]

= Ψ(e)(s, t).

275

– Otherwise,

Ψ(d)(s, t) = 0 = Ψ(e)(s, t).

(b) Let d, e ∈ [0, 1]S
2
. Let s, t ∈ S. We distinguish two cases.

– If (s, t) ∈ Xm then

|Ψ(d)(s, t)−Ψ(e)(s, t)| = |ΓA
′,I∗

1 (d)(s, t)− ΓA
′,I∗

1 (e)(s, t)| ≤ ‖d− e‖

by Proposition 10.3.4(b).

– Otherwise,

|Ψ(d)(s, t)−Ψ(e)(s, t)| = |0− 0| = 0 ≤ ‖d− e‖.

Since 〈[0, 1]S
2
,v〉 is a complete lattice and Ψ is monotone, Ψ has a least fixed

point µ(Ψ) and a greatest fixed point ν(Ψ) by Theorem 2.1.8(a) and (b). Next, we

will show that µ(Ψ) and µ(ΓA
′,I∗

1) coincide on the state pairs in Xm.

Proposition 11.3.19. For all (s, t) ∈ Xm, µ(Ψ)(s, t) = µ(ΓA
′,I∗

1)(s, t).

Proof. According to the facts that the functions Ψ and ΓA
′,I∗

1 are monotone and non-

expansive (Proposition 11.3.18 and Proposition 10.3.4), we can conclude from

Theorem 2.1.21 that it suffices to prove that for all (s, t) ∈ Xm and i ∈ N,

Ψi(0)(s, t) = (ΓA
′,I∗

1)i(0)(s, t). We prove this by induction on i. The base case,

i = 0, is vacuously true. Let i > 0. Let (s, t) ∈ Xm. We distinguish two cases.

276

• If `(s) 6= `(t) then

Ψi(0)(s, t) = Ψ(Ψi−1(0))(s, t)

= ΓA
′,I∗

1 (Ψi−1(0))(s, t)

= 1

= ΓA
′,I∗

1 ((ΓA
′,I∗

1)i−1(0))(s, t)

= (ΓA
′,I∗

1)i(0)(s, t).

• If `(s) = `(t) then

Ψi(0)(s, t) = Ψ(Ψi−1(0))(s, t)

= ΓA
′,I∗

1 (Ψi−1(0))(s, t)

=
∑
u,v∈S

I∗(A′(s, t))(u, v) Ψi−1(0)(u, v)

=
∑

(u,v)∈Xm

I∗(A′(s, t))(u, v) Ψi−1(0)(u, v)

[Proposition 11.3.14]

=
∑

(u,v)∈Xm

I∗(A′(s, t))(u, v) (ΓA
′,I∗

1)i−1(0)(u, v)

[induction hypothesis]

=
∑
u,v∈S

I∗(A′(s, t))(u, v) (ΓA
′,I∗

1)i−1(0)(u, v)

[Proposition 11.3.14]

= ΓA
′,I∗

1 (ΓA
′,I∗

1)i−1(0))(s, t)

= (ΓA
′,I∗

1)i(0)(s, t).

277

Proposition 11.3.20. Ψ has a unique fixed point.

Proof. It is sufficient to prove that µ(Ψ) = ν(Ψ). Let

m = max{ν(Ψ)(s, t)− µ(Ψ)(s, t) | (s, t) ∈ S2 }

M = { (s, t) ∈ S2 | ν(Ψ)(s, t)− µ(Ψ)(s, t) = m }

To conclude that µ(Ψ) = ν(Ψ), it suffices to show that m = 0. We distinguish four

cases.

• Assume that M 6⊆ Xm. Let (s, t) ∈M and (s, t) 6∈ Xm. Then

µ(Ψ)(s, t) = Ψ(µ(Ψ))(s, t) = 0 = Ψ(ν(Ψ))(s, t) = ν(Ψ)(s, t).

Hence,

m = ν(Ψ)(s, t)− µ(Ψ)(s, t) = 0− 0 = 0.

• Assume that M ∩ D1 6= ∅. Let (s, t) ∈ M and (s, t) ∈ D1. By Proposi-

tion 11.3.7, (s, t) ∈ Xm. Hence,

µ(Ψ)(s, t) = µ(ΓA
′,I∗

1)(s, t) [Proposition 11.3.19]

= 1 [Proposition 11.3.15]

Since

ν(Ψ)(s, t) ≥ µ(Ψ)(s, t) = 1,

278

we can conclude that

m = ν(Ψ)(s, t)− µ(Ψ)(s, t) = 1− 1 = 0.

• As we will show next, it cannot be the case that M ⊆ Xm and M ∩D1 = ∅.

Towards a contradiction, assume that M ⊆ Xm and M ∩D1 = ∅. Hence, we

can conclude by Proposition 11.3.7 that M ⊆ Xm \D1.

m = ν(Ψ)(s, t)− µ(Ψ)(s, t)

= Ψ(ν(Ψ))(s, t)−Ψ(µ(Ψ))(s, t)

= ΓA
′,I∗

1 (ν(Ψ))(s, t)− ΓA
′,I∗

1 (µ(Ψ))(s, t) [(s, t) ∈ Xm]

=
∑
u,v∈S

I∗(A′(s, t))(u, v)ν(Ψ)(u, v)−
∑
u,v∈S

I∗(A′(s, t))(u, v)µ(Ψ)(u, v)

[(s, t) ∈ S2
?]

=
∑
u,v∈S

I∗(A′(s, t))(u, v) (ν(Ψ)(u, v)− µ(Ψ)(u, v))

and ν(Ψ)(u, v) − µ(Ψ)(u, v) ≤ m for all u, v ∈ S, we can conclude that

support(I∗(A′(s, t))) ⊆M . From the above and Proposition 11.3.16, we can

conclude M ∩D1 6= ∅. This contradicts the assumption that M ∩D1 = ∅.

From the fact that Ψ has a unique fixed point and the alternative characterization

of the probabilistic bisimilarity distances presented in Section 10.3, we can infer the

key result in this section, that is, Xm ⊆ D1.

279

Proposition 11.3.21. Xm ⊆ D1.

Proof. We define the function d ∈ S2 → [0, 1] by

d(s, t) =


1 if (s, t) ∈ Xm

0 otherwise

Next, we will show that d is a fixed point of Ψ, that is, for all s, t ∈ S,

Ψ(d)(s, t) = d(s, t). Let s, t ∈ S. We distinguish three cases.

• If (s, t) 6∈ Xm, then

Ψ(d)(s, t) = 0 = d(s, t).

• If `(s) 6= `(t) then

Ψ(d)(s, t) = ΓA
′,I∗

1 (d)(s, t) [S2
1 ⊆ Xm]

= 1

= d(s, t) [S2
1 ⊆ Xm]

• Otherwise, (s, t) ∈ Xm and `(s) = `(t). Then

Ψ(d)(s, t) = ΓA
′,I∗

1 (d)(s, t)

=
∑
u,v∈S

I∗(A′(s, t))(u, v) d(u, v)

=
∑

(u,v)∈Xm

I∗(A′(s, t))(u, v) d(u, v) [Proposition 11.3.14]

= 1 [d(u, v) = 1 for all (u, v) ∈ Xm]

= d(s, t).

280

Let (s, t) ∈ Xm. Then

µ(∆1)(s, t) ≥ µ(ΓA
′,I∗

1)(s, t) [(10.1)]

= µ(Ψ)(s, t) [Proposition 11.3.19]

= d(s, t) [Proposition 11.3.20]

= 1.

Hence, (s, t) ∈ D1.

Theorem 11.3.22. D1 = νX.µY.Λ(X, Y).

Proof. Immediately consequence of Proposition 11.3.9(a), Proposition 11.3.7 and

Proposition 11.3.21.

281

12 Conclusion

In this dissertation, we have presented our work on algorithms to compute the

probabilistic bisimilarity distances for labelled Markov chains and probabilistic

automata. In particular, we have focused on the policy iteration algorithms for

labelled Markov chains.

12.1 Algorithms for Labelled Markov Chains

The first step of our work was reviewing the algorithms in the literature. We have

reviewed the algorithm which uses the first order theory over the reals and the one

which uses Khachiyan’s ellipsoid method. We also have reviewed the (partial) policy

iteration algorithm by Bacci et al. [3].

To compute the distances correctly, we have slightly modified the algorithm

by Bacci et al. [3], that is running the procedure of deciding distance zero before

running the simple policy iteration algorithm. We have shown that it is a small, yet

essential modification. We have also presented the general policy iteration algorithm

and have proved the correctness of this algorithm.

282

The basic algorithm of Bacci et al. with the on-the-fly optimization is to compute

the distances for only a few state pairs. We have provided a counterexample showing

that the original algorithm does not always consider sufficiently many state pairs.

We have modified the algorithm and proved our modification correct. Furthermore,

we have generalized the general policy iteration algorithm to use partial policies.

We have proved an exponential lower bound for the simple (partial) policy

iteration algorithm. Note that although the simple (partial) policy algorithm is

exponential time in the worst case, in practice it is much faster than the polynomial-

time algorithm which uses the ellipsoid method, as can be seen in Chapter 9.

As shown by Derisavi, Hermanns and Sanders in [30] and also by Valmari

and Franceschinis [92], probabilistic bisimilarity distance zero for labelled Markov

chains can be decided in O(m log n), where n and m are the number of states and

transitions of the labelled Markov chain. In this dissertation, we have shown that

distance one can also be decided in polynomial time. As a consequence, we can

determine in polynomial time how many, if any, distances are non-trivial, that is,

greater than zero and smaller than one. We have developed three new algorithms in

which we compute the number of non-trivial distances first. As we have shown in

Chapter 9, the algorithm by Bacci et al. [3] (D0 +SPI), that does not decide distance

one before computing the non-trivial distances using policy iteration, can compute

distances for labelled Markov chains up to 150 states. For one such labelled Markov

283

chain, their algorithm takes more than 49 hours. The new algorithm that we have

presented in Section 8.3.1 takes 13 milliseconds instead of 49 hours. Furthermore,

the new algorithm can compute distances for labelled Markov chains with more

than 10,000 states in less than 50 minutes.

12.2 Algorithms for Probabilistic Automata

Inspired by the algorithm which uses the first order theory over the reals for labelled

Markov chains, we have developed an algorithm to compute the distances for

probabilistic automata. We have proposed an alternative characterization of the

probabilistic bisimilarity distances in terms of a simple stochastic game, which

may form a basis of a policy iteration algorithm. Moreover, we have presented a

polynomial-time algorithm to decide distance one.

12.3 Future Work

In this section, we briefly discuss some possible avenues for future work. There

are two main directions. Firstly, the worst-case running time of general (partial)

policy iteration and the expected running time of the randomized policy iteration

to compute the distances for labelled Markov chains remain unknown. Secondly, no

policy iteration algorithm to compute the distances for probabilistic automata has

been developed yet.

284

12.3.1 Time Complexity of Other Policy Iteration Algorithms for La-

belled Markov Chains

We have proved that the simple policy iteration algorithm for labelled Markov chains

runs in exponential time in the worst case. The general policy iteration algorithm

for infinite-horizon Markov decision processes with total-reward optimality criteria

is exponential time in the worst case [35]. However, it is unclear if the exponential

lower bound holds for those Markov decision processes which are transformed from

labelled Markov chains. We are also interested in the expected running time of

the randomized policy iteration algorithm. It has been an open problem for more

than fifty years whether closely related randomized algorithms run in expected

polynomial time.

12.3.2 Policy Iteration Algorithms for Probabilistic Automata

In Section 10.3, we have presented an alternative characterization of the probabilistic

bisimilarity distances for probabilistic automata. In future work, we plan to use this

characterization as the basis for an algorithm to compute the probabilistic bisimilarity

distances for probabilistic automata based on the policy iteration algorithm due to

Hoffman and Karp [52].

Consider the following probabilistic automaton.

285

s1 · · · sn t1 · · · tn

s t

1
n

1
n

1
n

1
n

1 1 1 1

This probabilistic automaton induces the following game graph.

s, t

· · ·

n! vertices

If µ and ν are both the uniform distribution on n elements, then the vertices

of Ω(µ, ν) can be viewed as permutations (see, for example, [81, Theorem 8.4]).

As a result, from the state pair (s, t) after one move by the max player and one

move by the min player, n! vertices can be reached. Hence, we may encounter an

exponential blow-up when we transform a probabilistic automaton into a game. As

a consequence, it is not immediately obvious which results from game theory can be

transferred to our setting. We leave this for future research.

To prove Lemma 10.3.19, which provides the second part of the proof of the

alternative characterization of the probabilistic bisimilarity distances, we rely on

the discounted functions ∆c and Γ
A∗c ,I
c for c ∈ (0, 1). In particular, in the proof of

Proposition 10.3.18 we use the fact that Γ
A∗c ,I
c has a unique fixed point. If we were

286

able to prove that ΓA
∗,I

1 has a unique fixed point, then we would be able to give a

proof of Lemma 10.3.19 that does not rely on discounted functions. We also leave

that for future research.

287

Bibliography

[1] Luca Aceto, Anna Ingolfsdottir, Kim Larsen, and Jǐŕı Srba. Reactive sys-
tems: Modelling, specification and verification. Cambridge University Press,
Cambridge, United Kingdom, 2003.

[2] Ravindra Ahuja, Thomas Magnanti, and James Orlin. Network flows: Theory,
algorithms, and applications. Prentice-Hall, Upper Saddle River, NJ, USA,
1993.

[3] Giorgio Bacci, Giovanni Bacci, Kim Larsen, and Radu Mardare. On-the-
fly exact computation of bisimilarity distances. In Nir Piterman and Scott
Smolka, editors, Proceedings of the 19th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, volume 7795
of Lecture Notes in Computer Science, pages 1–15, Rome, Italy, March 2013.
Springer-Verlag.

[4] Giorgio Bacci, Giovanni Bacci, Kim Larsen, and Radu Mardare. The behavior
of probabilistic systems: From equivalences to behavioral distances. In Mar-
tin Abadi, Philippa Gardner, Andrew Gordon, and Radu Mardare, editors,
Essays for the Luca Cardelli Fest, pages 15–26, Cambridge, United Kingdom,
September 2014. Microsoft Research.

[5] Giorgio Bacci, Giovanni Bacci, Kim Larsen, and Radu Mardare. On-the-fly
computation of bisimilarity distances. Logical Methods in Computer Science,
13(2), June 2017.

[6] Giovanni Bacci, Giorgio Bacci, Kim Larsen, and Radu Mardare. On the metric-
based approximate minimization of Markov chains. In Ioannis Chatzigiannakis,
Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, Proceedings of the
44th International Colloquium on Automata, Languages, and Programming,
volume 80 of Leibniz International Proceedings in Informatics, pages 104:1–
104:14, Warsaw, Poland, July 2017. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik.

288

[7] Christel Baier. Polynomial time algorithms for testing probabilistic bisimulation
and simulation. In Rajeev Alur and Thomas Henzinger, editors, Proceedings of
the 8th International Conference on Computer Aided Verification, volume 1102
of Lecture Notes in Computer Science, pages 50–61, New Brunswick, NJ, USA,
July/August 1996. Springer-Verlag.

[8] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, Cambridge, MA, USA, 2008.

[9] Jaco de Bakker and Erik de Vink. Control flow semantics. MIT Press, Cam-
bridge, MA, USA, 1996.

[10] Jaco de Bakker and Jeffery Zucker. Denotational semantics of concurrency.
In Proceedings of the 14th Annual ACM Symposium on Theory of Computing,
pages 153–158, San Francisco, CA, USA, May 1982. ACM.

[11] Stefan Banach. Sur les opérations dans les ensembles abstraits et leurs ap-
plications aux equations intégrales. Fundamenta Mathematicae, 3:133–181,
1922.

[12] Richard Bellman. A Markovian decision process. Journal of Mathematics and
Mechanics, 6(5):679–684, 1957.

[13] Patrick Billingsley. Probability and measure. Wiley Series in Probability and
Statistics. Wiley, New York, NY, USA, 3rd edition, 1995.

[14] Franck van Breugel. On behavioural pseudometrics and closure ordinals. Infor-
mation Processing Letters, 112(18):715–718, October 2012.

[15] Franck van Breugel. Probabilistic bisimilarity distances. ACM SIGLOG News,
4(4):33–51, November 2017.

[16] Franck van Breugel, Claudio Hermida, Michael Makkai, and James Worrell.
Recursively defined metric spaces without contraction. Theoretical Computer
Science, 380(1/2):143–163, June 2007.

[17] Franck van Breugel, Steven Shalit, and James Worrell. Testing labelled Markov
processes. In Peter Widmayer, Stephan Eidenbenz, Francisco Triguero, Rafael
Morales, Ricardo Conejo, and Matthew Hennessy, editors, Proceedings of the
29th International Colloquium on Automata, Languages and Programming,
volume 2380 of Lecture Notes in Computer Science, pages 537–548, Malaga,
Spain, July 2002. Springer-Verlag.

289

[18] Franck van Breugel, Babita Sharma, and James Worrell. Approximating a
behavioural pseudometric without discount for probabilistic systems. In Helmut
Seidl, editor, Proceedings of 10th International Conference on Foundations
of Software Science and Computational Structures, volume 4423 of Lecture
Notes in Computer Science, pages 123–137, Braga, Portugal, March 2007.
Springer-Verlag.

[19] Franck van Breugel, Babita Sharma, and James Worrell. Approximating a
behavioural pseudometric without discount. Logical Methods in Computer
Science, 4(2), April 2008.

[20] Franck van Breugel and James Worrell. Towards quantitative verification of
probabilistic systems. In Fernando Orejas, Paul Spirakis, and Jan van Leeuwen,
editors, Proceedings of 28th International Colloquium on Automata, Languages
and Programming, volume 2076 of Lecture Notes in Computer Science, pages
421–432, Crete, July 2001. Springer-Verlag.

[21] Franck van Breugel and James Worrell. The complexity of computing a
bisimilarity pseudometric on probabilistic automata. In Franck van Breugel,
Elham Kashefi, Catuscia Palamidessi, and Jan Rutten, editors, Horizons of the
Mind – A Tribute to Prakash Panangaden, volume 8464 of Lecture Notes in
Computer Science, pages 191–213. Springer-Verlag, Oxford, United Kingdom,
May 2014.

[22] John Canny. Some algebraic and geometric computations in PSPACE. In Janos
Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, pages 460–467, Chicago, IL, USA, May 1988. ACM.

[23] Di Chen, Franck van Breugel, and James Worrell. On the complexity of
computing probabilistic bisimilarity. In Lars Birkedal, editor, Proceedings of
the 15th International Conference on Foundations of Software Science and
Computational Structures, volume 7213 of Lecture Notes in Computer Science,
pages 437–451, Tallinn, Estonia, March/April 2012. Springer-Verlag.

[24] Taolue Chen, Tingting Han, and Jian Lu. On behavioral metric for probabilistic
systems: definition and approximation algorithm. In Proceedings of the 4th
International Conference on Fuzzy Systems and Knowledge Discovery, pages
21–25, Haikou, China, August 2007. IEEE.

[25] Taolue Chen, Tingting Han, and Jian Lu. On metrics for probabilistic systems:
definitions and algorithms. Computers and Mathematics with Applications,
57(6):991–999, March 2009.

290

[26] Edmund Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT
Press, Cambridge, MA, USA, 1999.

[27] Anne Condon. The complexity of stochastic games. Information and Computa-
tion, 96(2):203–224, February 1992.

[28] Brian Davey and Hilary Priestley. Introduction to lattices and order. Cambridge
University Press, Cambridge, United Kingdom, 2002.

[29] Yuxin Deng, Tom Chothia, Catuscia Palamidessi, and Jun Pang. Metrics
for action-labelled quantitative transition systems. In Antonio Cerone and
Herbert Wiklicky, editors, Proceedings of 3rd Workshop on Quantitative Aspects
of Programming Languages, volume 153(2) of Electronic Notes in Theoretical
Computer Science, pages 79–96, Edinburgh, United Kingdom, April 2005.
Elsevier.

[30] Salem Derisavi, Holger Hermanns, and William Sanders. Optimal state-space
lumping in Markov chains. Information Processing Letters, 87(6):309–315,
September 2003.

[31] Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden.
Metrics for labeled Markov systems. In Jos Baeten and Sjouke Mauw, editors,
Proceedings of the 10th International Conference on Concurrency Theory, vol-
ume 1664 of Lecture Notes in Computer Science, pages 258–273, Eindhoven,
The Netherlands, August 1999. Springer-Verlag.

[32] Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden.
The metric analogue of weak bisimulation for probabilistic processes. In Pro-
ceedings of 17th Annual IEEE Symposium on Logic in Computer Science, pages
413–422, Copenhagen, Denmark, July 2002. IEEE.

[33] Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden.
Metrics for labelled Markov processes. Theoretical Computer Science, 318(3):323–
354, June 2004.

[34] Allen Emerson and Edmund Clarke. Characterizing correctness properties of
parallel programs using fixpoints. In Jaco de Bakker and Jan van Leeuwen,
editors, Proceedings of the 7th Colloquium on Automata, Languages and Pro-
gramming, volume 85 of Lecture Notes in Computer Science, pages 169–181,
Noordwijkerhout, The Netherlands, July 1980. Springer-Verlag.

[35] John Fearnley. Exponential lower bounds for policy iteration. In Samson
Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide,

291

and Paul Spirakis, editors, Proceedings of the 37th Colloquium on Automata,
Languages and Programming, volume 6199 of Lecture Notes in Computer
Science, pages 551–562, Bordeaux, France, July 2010. Springer-Verlag.

[36] Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for
continuous Markov decision processes. SIAM Journal on Computing, 40(6):1662–
1714, 2011.

[37] Norman Ferns and Doina Precup. Bisimulation metrics are optimal value
functions. In Nevin Zhang and Jin Tian, editors, Proceedings of the 13th
Conference on Uncertainty in Artificial Intelligence, pages 210–219, Quebec
City, QC, Canada, July 2014. AUAI Press.

[38] Jerzy Filar and Koos Vrieze. Competitive Markov decision processes. Springer-
Verlag, New York, NY, USA, 1997.

[39] Ivana Filipovic, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstrac-
tion for concurrent objects. In Proceedings of the 18th European Symposium
on Programming, volume 5502 of Lecture Notes in Computer Science, pages
252–266, York, UK, March 2009. Springer-Verlag.

[40] Oliver Friedmann. Exponential lower bounds for solving infinitary payoff games
and linear programs. PhD thesis, Ludwig-Maximilians-University, Munich,
Germany, 2011.

[41] Hongfei Fu. Computing game metrics on Markov decision processes. In
Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Roger Wattenhofer, editors,
Proceedings of the 39th International Colloquium on Automata, Languages,
and Programming, volume 7392 of Lecture Notes in Computer Science, pages
227–238, Warwick, UK, July 2012. Springer-Verlag.

[42] Hongfei Fu. Personal communication, January 2013.

[43] Alessandro Giacalone, Chi-Chang Jou, and Scott Smolka. Algebraic reasoning
for probabilistic concurrent systems. In Proceedings of the IFIP WG 2.2/2.3
Working Conference on Programming Concepts and Methods, pages 443–458,
Sea of Gallilee, Israel, April 1990. North-Holland.

[44] Hugo Gimbert. Pure stationary optimal strategies in Markov decision processes.
In Wolfgang Thomas and Pascal Weil, editors, Proceedings of the 24th Annual
Symposium on Theoretical Aspects of Computer Science, volume 4393 of Lecture
Notes in Computer Science, pages 200–211, Aachen, Germany, February 2007.
Springer-Verlag.

292

[45] Patrice Godefroid and Pierre Wolper. Using partial orders for the efficient
verification of deadlock freedom and safety properties. In Kim Larsen and Arne
Skou, editors, Proceedings of the 3rd International Workshop on Computer
Aided Verification, volume 575 of Lecture Notes in Computer Science, pages
332–342, Aalborg, Denmark, 1991. Springer-Verlag.

[46] Thomas Dueholm Hansen. Worst-case analysis of strategy iteration and the
simplex method. PhD thesis, Aarhus University, Aarhus, Denmark, July 2012.

[47] Felix Hausdorff. Grundzüge der Mengenlehre. Von Veit & Comp., Leipzig, 1914.

[48] Leen Helmink, Alex Sellink, and Frits Vaandrager. Proof-checking a data link
protocol. In Henk Barendregt and Tobias Nipkow, editors, Proceedings of
the International Workshop on Types for Proofs and Programs, volume 806 of
Lecture Notes in Computer Science, pages 127–165, Nijmegen, The Netherlands,
May 1993. Springer-Verlag.

[49] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Programming Languages
and Systems, 12(3):463–492, July 1990.

[50] Ted Herman. Probabilistic self-stabilization. Information Processing Letters,
35(2):63–67, June 1990.

[51] Frank Hitchcock. The distribution of a product from several sources to numerous
localities. Studies in Applied Mathematics, 20(1/4):224–230, April 1941.

[52] Alan Hoffman and Richard Karp. On nonterminating stochastic games. Man-
agement Science, 12(5):359–370, January 1966.

[53] Ronald Howard. Dynamic programming and Markov processes. MIT Press,
Cambridge, MA, USA, 1960.

[54] Aron Itai and Michael Rodeh. Symmetry breaking in distributed networks.
Information and Computation, 88(1):60–87, September 1990.

[55] Bengt Jonsson and Kim Larsen. Specification and refinement of probabilistic
processes. In Proceedings of the 6th Annual Symposium on Logic in Computer
Science, pages 266–277, Amsterdam, The Netherlands, July 1991. IEEE.

[56] Leonid Kantorovich. On the transfer of masses (in Russian). Doklady Akademii
Nauk, 5(1):1–4, 1942. Translated in Management Science, 5(1):1–4, October
1958.

293

[57] Joost-Pieter Katoen, Tim Kemna, Ivan Zapreev, and David Jansen. Bisimu-
lation minimisation mostly speeds up probabilistic model checking. In Orna
Grumberg and Michael Huth, editors, Proceedings of the 13th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, volume 4424 of Lecture Notes in Computer Science, pages 87–101,
Braga, Portugal, March/April 2007. Springer-Verlag.

[58] Leonid Khachiyan. A polynomial algorithm in linear programming. Soviet
Mathematics Doklady, 20(1):191–194, 1979.

[59] James King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, July 1976.

[60] Viktor Klee and Christoph Witzgall. Facets and vertices of transportation
polytopes. In George Dantzig and Arthur Veinott, editors, Proceedings of 5th
Summer Seminar on the Mathematis of the Decision Sciences, volume 11 of Lec-
tures in Applied Mathematics, pages 257–282, Stanford, CA, USA, July/August
1967. AMS.

[61] Bronis law Knaster. Un théorème sur les fonctions d’ensembles. Annales de la
Société Polonaise de Mathématique, 6:133–134, 1928.

[62] Donald Knuth and Andrew Yao. The complexity of nonuniform random
number generation. In Joseph Traub, editor, Proceedings of a Symposium
on New Directions and Recent Results in Algorithms and Complexity, pages
375–428, Pittsburgh, PA, USA, April 1976. Academic Press.

[63] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verification
of probabilistic real-time systems. In Ganesh Gopalakrishnan and Shaz Qadeer,
editors, Proceedings of the 23rd International Conference on Computer Aided
Verification, volume 6806 of Lecture Notes in Computer Science, pages 585–591,
Snowbird, UT, USA, July 2011. Springer-Verlag.

[64] Kim Larsen and Arne Skou. Bisimulation through probabilistic testing. In
Proceedings of the 16th Annual ACM Symposium on Principles of Programming
Languages, pages 344–352, Austin, TX, USA, January 1989. ACM.

[65] Kim Larsen and Arne Skou. Bisimulation through probabilistic testing. Infor-
mation and Computation, 94(1):1–28, September 1991.

[66] Radu Mardare, Prakash Panangaden, and Gordon Plotkin. Quantitative
algebraic reasoning. In Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science, pages 700–709, New York, NY, USA, July 2016.
IEEE Computer Society Press.

294

[67] Mary Melekopoglou and Anne Condon. On the complexity of the policy iteration
algorithm. Computer Science Technical Report 941, University of Wisconsin,
Madison, WI, USA, June 1990.

[68] Robin Milner. A calculus of communicating systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, Germany, 1980.

[69] Abhishek Murthy, Md. Ariful Islam, Ezio Bartocci, Elizabeth Cherry, Flavio
Fenton, James Glimm, Scott Smolka, and Radu Grosu. Approximate bisim-
ulations for sodium channel dynamics. In David Gilbert and Monika Heiner,
editors, Proceedings of 10th International Conference on Computational Meth-
ods in Systems Biology, volume 7605 of Lecture Notes in Computer Science,
pages 267–287, London, United Kingdom, 2012. Springer-Verlag.

[70] James Orlin. A polynomial time primal network simplex algorithm for minimum
cost flows. Mathematical Programming, 78(2):109–129, August 1997.

[71] Prakash Panangaden. Labelled Markov processes. Imperial College Press,
London, United Kingdom, 2009.

[72] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial optimization:
algorithms and complexity. Prentice-Hall, Inc., Englewood Cliffs, NJ, USA,
1982.

[73] David Park. Concurrency and automata on infinite sequences. In Peter
Deussen, editor, Proceedings of 5th GI-Conference on Theoretical Computer
Science, volume 104 of Lecture Notes in Computer Science, pages 167–183,
Karlsruhe, Germany, March 1981. Springer-Verlag.

[74] Stefan Ratschan. Efficient solving of quantified inequality constraints over
the real numbers. ACM Transactions on Computational Logic, 7(4):723–748,
October 2006.

[75] Steffen Rebennack. Ellipsoid method. In Christodoulos Floudas and Panos
Pardalos, editors, Encyclopedia of Optimization, pages 890–899. Springer-Verlag,
New York, NY, USA, 2009.

[76] Davide Sangiorgi. Introduction to bisimulation and coinduction. Cambridge
University Press, Cambridge, United Kingdom, 2012.

[77] Alexander Schrijver. Theory of linear and integer programming. John Wiley &
Sons, Chichester, United Kingdom, 1986.

295

[78] Roberto Segala. Modeling and verification of randomized distributed real-time
systems. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA,
USA, June 1995.

[79] Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic
processes. In Bengt Jonsson and Joachim Parrow, editors, Proceedings of the
5th International Conference on Concurrency Theory, volume 836 of Lecture
Notes in Computer Science, pages 481–496, Uppsala, Sweden, August 1994.
Springer-Verlag.

[80] Prithviraj Sen, Amol Deshpande, and Lise Getoor. Bisimulation-based approx-
imate lifted inference. In Jeff Bilmes and Andrew Ng, editors, Proceedings of
the 25th Conference on Uncertainty in Artificial Intelligence, pages 496–505,
Montreal, QC, Canada, 2009. AUAI Press.

[81] Denis Serre. Matrices: theory and applications. Springer-Verlag, New York,
NY, USA, 2010.

[82] Lloyd Shapley. Stochastic games. Proceedings of the Academy of Sciences,
39(10):1095–1100, October 1953.

[83] James Strayer. Linear programming and its applications. Undergraduate Texts
in Mathematics. Springer-Verlag, New York, NY, USA, 1989.

[84] Richard Sutton and Andrew Barto. Reinforcement learning: an introduction.
MIT Press, Cambridge, MA, USA, 1998.

[85] Qiyi Tang and Franck van Breugel. Computing probabilistic bisimilarity
distances via policy iteration. In Josée Desharnais and Radha Jagadeesan,
editors, Proceedings of the 27th International Conference on Concurrency
Theory, volume 59 of Leibniz International Proceedings in Informatics, pages
22:1–22:15, Quebec City, QC, Canada, August 2016. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

[86] Qiyi Tang and Franck van Breugel. Algorithms to compute probabilistic
bisimilarity distances for labelled Markov chains. In Roland Meyer and Uwe
Nestmann, editors, Proceedings of the 28th International Conference on Con-
currency Theory, volume 85 of Leibniz International Proceedings in Informatics,
pages 27:1–27:16, Berlin, Germany, September 2017. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

[87] Qiyi Tang and Franck van Breugel. Deciding probabilistic bisimilarity distance
one for labelled Markov chains. In Hana Chockler and Georg Weissenbacher,

296

editors, Proceedings of the 30th International Conference on Computer Aided
Verification, volume 10981 of Lecture Notes in Computer Science, pages 681–699,
Oxford, UK, July 2018. Springer-Verlag.

[88] Qiyi Tang and Franck van Breugel. Deciding probabilistic bisimilarity dis-
tance one for probabilistic automata. To appear in Proceedings of the 29th
International Conference on Concurrency Theory, September 2018.

[89] Alfred Tarski. A decision method for elementary algebra and geometry. Univer-
sity of California Press, Berkeley, CA, USA, 1951.

[90] Alfred Tarski. A lattice-theoretic fixed point theorem and its applications.
Pacific Journal of Mathematics, 5(2):285–309, June 1955.

[91] Mathieu Tracol, Josée Desharnais, and Abir Zhioua. Computing distances
between probabilistic automata. In Mieke Massink and Gethin Norman, editors,
Proceedings 9th Workshop on Quantitative Aspects of Programming Languages,
volume 57 of Electronic Proceedings in Theoretical Computer Science, pages
148–162, Saarbrücken, Germany, April 2011.

[92] Antti Valmari and Giuliana Franceschinis. Simple O(m log n) time Markov
chain lumping. In Javier Esparza and Rupak Majumdar, editors, Proceedings of
the 16th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, volume 6015 of Lecture Notes in Computer Science,
pages 38–52, Paphos, Cyprus, March 2010. Springer-Verlag.

[93] Xin Zhang and Franck van Breugel. Model checking randomized algorithms
with Java PathFinder. In Proceedings of the 7th International Conference on
the Quantitative Evaluation of Systems, pages 157–158, Williamsburg, VA,
USA, September 2010. IEEE.

[94] Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158(1/2):343–359, May 1996.

297

	Abstract
	Acknowledgements
	Table of Contents
	List of Symbols
	Introduction
	Behavioural Equivalences for Probabilistic Models
	Two Probabilistic Models and Their Distances
	Algorithms to Compute the Probabilistic Bisimilarity Distances
	Contributions and Publications

	Probabilistic Models and Probabilistic Bisimilarity Distances
	Labelled Markov Chains
	Probabilistic Automata

	First Order Theory over the Reals
	Labelled Markov Chains
	Probabilistic Automata

	Ellipsoid Method
	Linear Programming and the Ellipsoid Method
	Labelled Markov Chains
	Probabilistic Automata

	Labelled Markov Chains and Markov Decision Processes
	Markov Decision Processes
	Policy Iteration for MDPs
	Labelled Markov Chains

	Policy Iteration for Labelled Markov Chains
	An Alternative Characterization of Probabilistic Bisimilarity Distances
	Simple Policy Iteration
	An Exponential Lower Bound of Simple Policy Iteration
	General Policy Iteration

	Partial Policy Iteration
	Simple Partial Policy Iteration
	An Exponential Lower Bound of Simple Partial Policy Iteration
	General Partial Policy Iteration

	Distance One for Labelled Markov Chains
	Characterization of Distance One
	An Algorithm of Deciding for Distance One
	Three New Algorithms
	New Policy Iteration
	Algorithm for Small Distances
	Approximation Algorithm

	Experimental Results
	First Order Theory over the Reals and the Ellipsoid Method
	Deciding Non-trivial Distances
	Bounded Retransmission Protocol
	Synchronous Leader Election
	Randomized Self-stabilising

	Policy Iteration Algorithms
	Randomized Quicksort
	Dies

	Large Number of Non-trivial Distances

	Simple Stochastic Games and Probabilistic Automata
	Simple Stochastic Games
	The Bisimulation Game for Probabilistic Automata
	An Alternative Characterization of Probabilistic Bisimilarity Distances

	Distance One for Probabilistic Automata
	First Attempt
	Deciding Distance One
	Correctness Proof
	The Lambda Function and the Game Characterization
	Iterative Characterization
	Construction of a Max Policy
	The Function Psi

	Conclusion
	Algorithms for Labelled Markov Chains
	Algorithms for Probabilistic Automata
	Future Work
	Time Complexity of Other Policy Iteration Algorithms for Labelled Markov Chains
	Policy Iteration Algorithms for Probabilistic Automata

	Bibliography

