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Abstract

Graphical models allow for easy interpretation and representation of complex distributions.

There is an expanding interest in model selection problems for high-dimensional graphical

models, particularly when the number of variables increases with the sample size. A popular

model selection tool is the Bayes factor, which compares the posterior probabilities of two

competing models. Consider data given in the form of a contingency table where N objects

are classified according to q random variables, where the conditional independence structure

of these random variables are represented by a discrete graphical model G. We assume the

cell counts follow a multinomial distribution with a hyper Dirichlet prior distribution imposed

on the cell probability parameters. Then we can write the Bayes factor as a product of

gamma functions indexed by the cliques and separators of G.

In this thesis, we study the behaviour of the Bayes factor when the dimension of a true

discrete graphical model is fixed and when the dimension increases to infinity with the

sample size. We prove that the Bayes factor is strong model selection consistent for both

decomposable and non-decomposable discrete graphical models. When the true graph is

non-decomposable, we prove that the Bayes factor selects a minimal triangulation of the true
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graph. We support our theoretical results with various simulations.

In addition, we introduce a variation of the genetic algorithm, called the graphical local

genetic algorithm, which can be implemented on large data sets. We use a local search operator

and a normalizing constant proportionate to the posterior probability of the candidate models

to determine optimal submodels, then reconstruct the full graph from the resulting subgraphs.

We demonstrate the graphical local genetic algorithm’s capabilities on both simulated data

sets with known true graphs and on a real-world data set.
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Chapter 1

Introduction

Discrete graphical models which exhibit specific properties are a subset of the class of

hierarchical log-linear models. Hierarchical log-linear models are used to analyse data given

in the form of a contingency table with N objects classified according to a set of q criteria.

Consider a vector of random variables X “ pXv, v P V q indexed by the set V “ t1, 2, . . . , qu

such that each Xv takes values in the finite set Iv. The resulting counts for each classification

can be given in the form of a contingency table corresponding to

I “
ą

vPV

Iv,

where I is the set of cells i “ piv, v P V q. The number of observations for cell i is denoted npiq

and the probability of an object being observed in cell i is denoted ppiq. If D Ă V , the D-

marginal table is the set of D-marginal cells iD “ piv, v P Dq. Given the marginal cell iD P ID,

we write the D-marginal cell count as nDpiDq “
ř

i1PI;iD“i1
D
npi1q. For N “

ř

iPI npiq, we
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assume the cell counts pnpiq, i P Iq follow a multinomial distribution and the cell probabilities

are modelled by a hierarchical log-linear model.

Let ∆ be a nonempty collection of subsets of V such that
Ť

DP∆D “ V , and if D P ∆,

D1 Ă D, and D1 ‰ H, then D1 P ∆. The collection of subsets ∆ is called the generating

class of the model. We arbitrarily select an element in each Iv and denote it by 0. Then

we can impose the baseline constraints, meaning for D P ∆, if iv “ 0 for some v P D, then

θDpiDq “ 0. Thus, we have the unique representation

log ppiq “ θH `
ÿ

DP∆,iv‰0,@vPD

θDpiDq,

where θH is a constant not depending on i. We give a full description of hierarchical log-linear

models in Section 2.2.2.

A discrete graphical model for X “ pXv, v P V q is a representation of the conditional

independencies between the random variables Xv using an undirected graph G “ pV,Eq with

vertex set V and edge set E Ď V ˆ V . A discrete graphical model is said to be decomposable

or Markov with respect to G, if Xa is independent of Xb given XV zta,bu, whenever pa, bq is

not an edge in E. If the random vector X is Markov with respect to G, we can write the

distribution of X as a decomposition of smaller components as follows,

ppxq9
ź

CPC
ϕCpxq,

where C is a particular set of subgraphs of G called cliques. Being able to express models
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according to an appropriate decomposable graph G makes it a convenient class of model to

work with because it allows for useful closed-form expressions and for efficient computing. In

addition, this property results in the decomposable chain rule, meaning one can construct

either an increasing or decreasing sequence of decomposable graphs differing by one edge

(Lauritzen, (1996)). The decomposable chain rule is a practical tool for comparing candidate

models when selecting which variables to include. Consequently, model selection methods

often restrict their search to decomposable models. More background definitions from graph

theory are provided in Section 2.2.1.

The discrete graphical models which are decomposable correspond to the class of hierar-

chical log-linear models. They have applications spanning many disciplines and are often used

for various machine learning applications, such as disease diagnostics and image recognition.

As the technology for collecting and storing data improves, there is an increasing demand for

exploring model selection problems in a high-dimensional setting, that is, when the number

of variables increases with the sample size. An area of particular interest is determining a

reliable model selection criterion. The different criteria for selecting a model consider aspects

such as the fit of the model to the data and complexity of the model.

In the frequentist setting, it is common to use a penalized likelihood type of criterion.

For example, Wainwright et al. (2007) and Ravikumar et al. (2010) propose a method

based on ℓ1-regularized logistic regression, where they show consistency for estimating the

neighbourhood of every node in the graph simultaneously of an associated binary Ising

model. In the case of continuous graphical models, Raskutti et al. (2009) give the sufficient
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conditions for model selection consistency of ℓ1-regularized Gaussian maximum likelihood.

Meinshausen and Bühlmann (2006) demonstrate that the neighbourhood estimate with

the lasso, introduced by Tibshirani (1996), converges to the true neighbourhood and that

this method is an appropriate alternative to standard covariance selection for sparse high-

dimensional graphs.

In the Bayesian setting, the Bayes factor is commonly used for model selection. It

compares the posterior distribution of the data under two different models and indicates

the support for one model over the other, regardless of whether either model is correct. For

comparing two models, say G1 and G2, the pairwise Bayes factor is the ratio

BFG1,G2 “
fpG1|xq

fpG2|xq
,

where fpG|xq is the posterior probability of a graph G given data x. Fitch et al. (2014)

focus on Gaussian graphical models with the hyper-inverse Wishart prior, which is the

Diaconis-Ylvisaker conjugate prior for the Gaussian distribution. They study the behaviour

of the Bayes factor for a fixed number of variables and they prove that when the true

graph is non-decomposable, model selection procedures will favour a minimal triangulation

of the true graph. They prove that the logarithm (log) of the Bayes factor between two

minimal triangulations with the same number of edges is stochastically bounded. A minimal

triangulation of a non-decomposable graph is a decomposable graph obtained from added

the minimum number of edges to the non-decomposable graph to make it decomposable.

Note that minimal triangulations are not necessarily unique. This result from Fitch et al.
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(2014) is valuable because it allows one to exploit the decomposable property of a minimal

triangulation. Therefore, when the true graph is non-decomposable it can be approximated

by its minimal triangulation(s).

In Niu et al. (2021), they prove results analogous to those in Fitch et al. (2014), but for

an increasing number of variables and they prove that strong model selection consistency

holds in the high-dimensional setting both when the true graph is decomposable and non-

decomposable. In order to do so, they reduce the Bayes factor to local moves comparing two

graphs differing by only one edge. They make the distinction between an overfitting model

and an underfitting model. When a candidate model is an overfitting model, it means that it

contains all the edges of the true model plus at least one false edge and when a candidate

model is an underfitting model, it means that it is missing at least one edge from the true

model. Niu et al. (2021) conclude that in the underfitting case, the Bayes factor converges

at a faster rate that in the overfitting case. This means that in the continuous setting, the

Bayes factor gives a stronger penalty to a missing true edge over an additional false edge.

The main topic of this thesis is proving strong model selection consistency for the Bayes

factor when the true discrete graphical model is non-decomposable and q increases to infinity.

For discrete decomposable models, the Bayes factor can be written in a closed-form as a

product of gamma functions. We define the Bayes factor and the assosiated Diaconis-Ylvisaker

prior for graphical log-linear models in Section 2.3. We assume the cell probability parameters

follow a Dirichlet prior distribution, thus for two decomposable graphs G1 and G2, we can

write the corresponding Bayes factor as a product of gamma functions. Our theoretical
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results are developed from our asymptotic approximation of the normalizing constant which

is proportionate to the posterior probability, using known properties of the gamma function.

We study the behaviour of the Bayes factor between competing decomposable models and

show that a true non-decomposable model can be approximated by a minimal triangulation.

Using these intermediate results, we are able to prove the desired strong model selection

consistency results.

Graphical model selection often consists of forward or backward elimination procedures on

decomposable graphs due to the decomposable chain rule. However, for q variables there are

2q possible models, thus these methods become computationally intensive for high-dimensional

data. Petijean et al. (2013) put forward an approach that they call Chordalysis, which is

a forward selection method where they use data mining techniques to store and reuse the

computed marginal likelihood ratios. Their method is effective; however, the efficiency of

their algorithm relies on the decomposable property of the candidate graphs and cannot

return a non-decomposable graph. Dobra and Mohammadi (2018) implement a Birth-Death

Markov Chain Monte Carlo (BDMCMC) algorithm, which they speed up by computing all of

the possible edges using parallel computing. They avoid being restricted to decomposable

graph by using a marginal posterior probability based on the marginal pseudo-likelihood.

The second topic of this thesis is proposing model selection algorithm for high-dimensional

discrete graphical models. We introduce a variation of the genetic algorithm with a crossover-

hill-climbing operator (Lozano et al., (2004)) for high-dimensional log-linear graphical models,

called the graphical local genetic algorithm. We use the log of the normalizing constant

6



proportionate to posterior probability to measure the appropriateness of the candidate

models. If the candidate model is decomposable, we compute the log of the normalizing

constant directly, and if the candidate model is non-decomposable, we compute the log

of the normalizing constant of its minimal triangulation. This allows the algorithm more

flexibility than forward or backward elimination procedures. We use simulation results to

show the flexibility of our algorithm, and we use our algorithm to analyse the real-world

Movies Dataset.

The remainder of this thesis is organized as follows. In Chapter 2, we give the preliminary

terminology from graph theory and hierarchical log-linear models and we prove strong

model selection consistency for the Bayes factor when the true discrete graphical model is

non-decomposable and q increases to infinity. In Chapter 3, we introduce a model selection

algorithm for high-dimensional data and provide our experimental results. We give concluding

remarks and suggest future work in Chapter 4.
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Chapter 2

Bayesian Model Selection Consistency for

Discrete Graphical Models

The Bayes factor is a popular method of model selection that compares the posterior

probabilities of two competing models. Consider data given in the form of a contingency

table where N objects are classified according to q random variables and the conditional

independence structure of these random variables are represented by a discrete graphical

model. We assume the cell counts follow a multinomial distribution with a hyper Dirichlet

prior distribution imposed on the cell probability parameters. We examine the behaviour of

the Bayes factor when the dimension of the model is fixed and when the dimension increases

to infinity with the sample size. Our main result is proving strong model selection consistency

for increasing dimension both when the true graph is decomposable and when the true graph

is non-decomposable. When the true graph is non-decomposable, we prove that the Bayes
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factor selects a minimal triangulation of the true graph.

2.1 Introduction

Graphical models allow for easy interpretation and representation of complex distributions.

There is an expanding interest in model selection problems for high-dimensional graphical

models, particularly when the number of variables increases with the sample size. In the

following, we focus on discrete graphical models for data given in the form of a contingency

table with N objects classified according to a set of q criteria. Consider a vector of random

variables X “ pXv, v P V q indexed by the set V “ t1, 2, . . . , qu such that each Xv takes

values in a q-dimensional contingency table. Then the conditional independencies between

the random variables Xv can be read off an undirected graph G “ pV,Eq with vertex set V

and edge set E Ď V ˆ V . The discrete graphical model for X is said to be decomposable

or Markov with respect to G, if Xa is independent of Xb given XV zta,bu, whenever pa, bq is

not an edge in E. We assume the cell counts of the contingency table follow a multinomial

distribution and the cell probabilities are modelled by a hierarchical log-linear model. The

class of discrete graphical models which are Markov with respect to an undirected graph G is

a subclass of the class of hierarchical log-linear models.

In this chapter, we examine the conditions required for Bayesian model selection consistency

when the true model is non-decomposable. We concentrate on the behaviour of the Bayes factor

between competing decomposable models and show that a non-decomposable model can be

approximated by a suitable decomposable model. Although the class of decomposable graphs
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can be considered limited, model selection problems are often restricted to decomposable

graphs due to the convenient computational properties and the scalability of algorithms. The

posterior probabilities become straightforward to calculate and it is possible to construct an

increasing sequence of decomposable graphs with q vertices, differing by one edge, which is

called the decomposable graph chain rule (Lauritzen, 1996).

In the Bayesian setting, the Bayes factor is commonly used for model selection. It compares

the posterior distribution of the data under two different models and indicates the support

for one model over the other, regardless of whether either model is correct. For decomposable

graphs, the Bayes factor can be computed explicitly; however, this calls for a tractable family

of prior distributions. Dawid and Lauritzen (1993) developed the hyper Markov laws for

decomposable graphs which extend the Markov properties from the random variables to the

probability distribution over the set of probability measures. For our purposes, the hyper

Dirichlet on the cell probabilities parameter is of particular interest because it is the conjugate

prior to a multinomial distribution. In our proofs, we primarily use the parametrization with

respect to the cell probabilities; however, in some instances, the log-linear parametrization

is more convenient. Since the log-linear model is a natural exponential family, the prior

distribution on the log-linear parameters is the Diaconis-Ylvisaker (DY) conjugate prior from

Diaconis and Ylvisaker (1979). Massam et al. (2009) derived the DY conjugate prior on the

log-linear parameter for graphical models and prove that it is identical to the hyper Dirichlet

through a one-to-one change of variables.

Since we use the hyper Dirichlet conjugate prior, the closed-form of the posterior prob-

10



ability for a decomposable graph G given data x is a product of gamma functions. We

present a convenient approximation for the logarithm of gamma functions, then we use

our approximation to write the logarithm of an expression proportionate to the posterior

probability. When both models have equal probability, the log of the Bayes factor is the

difference between the log of the posterior probabilities. We use the difference of log of the

posterior probabilities to investigate the asymptotic behaviour of the Bayes factor between

two decomposable graphical models. Initially, we prove that the Bayes factor favours the

model containing all the true edges over an underfitting model, and when both models contain

all the true edges, the one with fewer excess false edges is favoured. For a fixed dimension,

we can show this by simply using the Bayes factor, but for increasing dimension, we require a

prior model distribution to apply a stronger penalty on the extra edges. Thus, for increasing

dimension, we study the behaviour of the posterior odds ratio which is the product of the

Bayes factor and the ratio of model priors. When the true graph is non-decomposable, we

use a minimal triangulation of the true non-decomposable model as its proxy and we prove

that the Bayes factor favours a minimum triangulation over other competing models. We

show that the Bayes factor between two possible minimal triangulations with the same finite

number of edges is stochastically bounded. Lastly, we simulate the behaviour of the Bayes

factor to justify our theoretical results.

To the best of our knowledge, this is the only article that addresses Bayesian model

selection consistency for discrete graphical models when the dimension of the model increases

with the sample size. There has been previous work done regarding undirected Gaussian
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graphical models from the Bayesian perspective. Fitch et al. (2014) focus on Gaussian

graphical models with the hyper-inverse Wishart prior. They study the asymptotic behaviour

of the marginal likelihood ratio for a fixed number of variables and they prove that when

the true graph is non-decomposable, model selection procedures will favour a minimal

triangulation of the true graph. Also, they prove that the log of the marginal likelihood ratio

between two minimal triangulations with the same number of edges is stochastically bounded.

In Niu et al. (2021), they prove analogous results to Fitch et al. (2014) where the number

of variables q “ Opnαq with α ă 1{3 and they prove that strong model selection consistency

holds in the high-dimensional setting in both the well-specified case and the misspecified case.

To do so, they reduce the Bayes factor to local moves comparing two graphs differing by only

one edge and convert the Bayes factor into a function of the sample partial correlation. Then

they develop sharp concentration and tail bounds for the sample partial correlation.

In the well-specified case, the hyper-inverse Wishart prior is a particular case of the

so-called DAG-Wishart prior. Cao et al. (2019) prove strong model selection consistency

for Gaussian directed acyclic graphical (DAG) models using the DAG-Wishart prior with

multiple shape parameters when the dimension increases at a sub-exponential rate with

sample size. They use the modified Cholesky decomposition Ω “ LD´1LT of the inverse

covariance matrix Ω “ Σ´1 to parametrize their model, where L is a lower triangle matrix

and D is a diagonal matrix. Then they impose a sparsity pattern on the Gaussian DAG

model by putting constraints on the off-diagonal entries of L. Other examples of papers

on Gaussian DAG model selection consistency from the Bayesian point of view are Cao et
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al. (2020) and Lee et al. (2019). In the frequentist setting, Wainwright et al. (2007)

and Ravikumar et al. (2010) focus on undirected discrete graphical models. They estimate

local structures of the model using ℓ1-regularized logistic regression on each variable given

the remaining variables. They prove neighbourhood selection consistency for every vertex

in the graph simultaneously with the condition that the sample size grows more quickly

than p6d6 ` 2d5q log d, where d is the maximum number of adjacent vertices to the vertex

under consideration. Related ℓ1-regularization methods are often used in the literature on

graphical model selection because they lead to efficient algorithms. Equivalent approaches

are implemented in the study of model selection consistency for Gaussian graphical models

from a frequentist perspective in Meinshausen and Bühlmann (2006), Yuan and Lin (2007),

Raskutti et al. (2009), and Gao et al. (2012), among others.

The remainder of this chapter is organized as follows. In Section 2.2, we outline the

prerequisite terminology from graph theory and hierarchical log-linear models. In Section 2.3,

we define the Bayes factor for decomposable models. Section 2.4 gives the theoretical results

for the pairwise Bayes factor between decomposable graphs and model selection consistency

when the true graph is decomposable. Section 2.5 extends the theoretical results from Section

2.4 to the case where the true graph is assumed to be non-decomposable. Then we provide

simulation results in Section 3.3.1 and our conclusion in Section 2.7.
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2.2 Preliminaries

In the following subsections, we cover the necessary background definitions and concepts.

Section 2.2.1 contains basic notions from graph theory, which can be found in full detail in

Lauritzen (1996). Sections 2.2.2 and 2.2.3 review the parametrization of the hierarchical

log-linear model and the multinomial distribution expressed as a natural exponential family,

respectively. These last two subsections outline our model set-up as described in Letac and

Massam (2012).

2.2.1 Undirected graphs

An undirected graph is a pair G “ pV,Eq, where V “ t1, . . . , qu is a non-empty set of

vertices and E Ď V ˆ V is a set of unordered pair of vertices, called edges. A graph is

complete if every pair of vertices has an edge. The number of edges in a complete graph is

|E| “
`

q
2

˘

“ qpq ´ 1q{2, where | ¨ | denotes the cardinality of a set. A subgraph is a subset

of vertices and edges from G “ pV,Eq. If A Ď V , then GA “ pA,EAq is called an induced

subgraph of G, where EA “ E X pA ˆ Aq is obtained by including the edges of G with

endpoints in A. If a subset of G induces a complete subgraph, we call this subgraph a clique.

A path of length n from u to v is a sequence of n distinct vertices, u “ u0, . . . , un “ v,

such that pui´1, uiq P E for i “ 1, . . . , n. An n-cycle is a path of length n with u “ v. An

edge is called a chord if it connects two non-adjacent vertices in a cycle. An undirected graph

is called triangulated or chordal if every cycle of length n ě 4 has a chord. A subset S Ď V

is called an pu, vq-separator if all paths from u to v intersect S. We say S separates A from
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B if it is an pu, vq-separator for every u P A and v P B.

A triple pA,B, Sq of disjoint subsets of V such that V “ AYBYS is called a decomposition

if S separates A from B and S is a complete subset of V . An undirected graph is said to be

decomposable if it is complete, or if there exists a decomposition pA,B, Sq into decomposable

subgraphs GAYS and GBYS. Equivalently, a graph is decomposable if and only if it is

triangulated. A collection of random variables pXvqvPV with associated graph G are said to

be Markov relative to G if for any decomposition pA,B, Sq,

XA KK XB|XS.

An important property of decomposable graphs is that their cliques form a perfect ordering.

Let C1, . . . , Ck be a sequence of cliques and S2, . . . , Sk be a sequence of separators of an

undirected graph G. The ordering pC1, S2, C2, S3, . . . , Ckq is said to be perfect if for all i ą 1

there is a j ă i such that Si Ď Cj and the sets Si are complete for all i, where Sj “ Hj´1 XCj

and Hj´1 “ Y
i´1
j“1Cj. Let Rj “ CjzHj´1, then for every j, pHj´1, Rj, Sjq is a decomposition

of G.

If the random vector X “ pXv, v P V q is Markov with respect to G, then by the

Hammersley-Clifford theorem, we can write factorize the distribution of X as follows,

ppxq9
ź

CPC
ϕCpxq, (2.1)

where C is the set of cliques in G. Furthermore, the distribution of X can be written as a
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product of factors indexed according to the conditional dependencies encoded in the cliques

and separators of G.

Example. Figure 2.1 is a decomposable graph with cliques C1 “ tabu, C2 “ tbcu and separator

S2 “ tbu. The ordering pC1, S2, C2q is perfect since S2 Ď C1 and S2 is complete. Let Xa, Xb

and Xc be random variables which are Markov with respect to this decomposable graph G,

then the conditional independence

Xa KK Xc|Xb

is encoded in G.

a b c

Figure 2.1: An example of a decomposable graph G with two cliques.

The joint distribution of X “ pXa, Xb, Xcq can be written as a factorization indexed by the

cliques and separators of G, that is,

ppxa, xb, xcq “ ppxbqppxa|xbqppxc|xbq “
ppxbqppxa, xbqppxb, xcq

ppxbqppxbq
“

ppxa, xbqppxb, xcq

ppxbq
.

A graph G is said to be non-decomposable if it contains at least one chordless n-cycle

of length n ě 4. A graph G△ “ pV,E Y F q is called a triangulation of G “ pV,Eq if G△ is

chordal. The edges in set F are called fill-in edges and it is required that E X F “ H. A

triangulation is said to be minimal if pV,E Y F 1q is non-chordal for every F 1 ⊊ F . Strictly

speaking, a triangulation G△ is minimal if and only if the removal of any single fill-in edge

from it results in a non-chordal graph (Rose et al., 1976). For more information on minimal

16



triangulations, see Heggernes (2006).

Example. Graph (a) is the smallest non-decomposable graph and it has three possible

triangulations. Graph (d) is the complete graph on four vertices and it is a triangulation of

(a); however, it is not minimal. If we remove any one edge, we obtain another decomposable

graph. Graphs (b) and (c) are minimal since removing the edge pb, cq from (b), or the edge

pa, dq from (c) will result in a non-decomposable graph.

a b

c d

(a)

a b

c d

(b)

a b

c d

(c)

a b

c d

(d)

Figure 2.2: The smallest non-decomposable graph and its triangulations.

2.2.2 Hierarchical log-linear models

Let V “ t1, 2, . . . , qu be a set of indices corresponding to q criteria. Let X “ pXv, v P V q be

a vector of discrete random variables such that Xv takes values in the finite set Iv with |Iv|

levels. Consider N objects classified according to these q criteria, then the resulting counts

can be presented in a contingency table corresponding to

I “
ą

vPV

Iv,

where I is the set of cells i “ piv, v P V q and iv P Iv. The number of observations for cell i

is denoted npiq and the probability of an object being observed in cell i is denoted ppiq. If
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D Ă V , the D-marginal table

ID “
ą

vPD

Iv

is the set of D-marginal cells iD “ piv, v P Dq. Given the marginal cell iD P ID, we write the

D-marginal cell count as nDpiDq “
ř

i1PI;iD“i1
D
npi1q. For N “

ř

iPI npiq, we assume the cell

counts pnpiq, i P Iq follow a multinomial distribution with probability density function

P pnpiq, i P Iq “
N !

ś

iPI npiq!

ź

iPI

ppiqnpiq. (2.2)

Let ∆ be a nonempty collection of subsets of V such that if D P ∆, D1 Ă D, and D1 ‰ H,

then D1 P ∆. We assume
Ť

DP∆ D “ V . The collection of subsets ∆ is called a simplicial

complex or the generating class of the model (Letac and Massam, 2012). We denote the

space of real functions i ÞÑ xpiq defined on I as RI , then let Ω∆ be the linear subspace of

RI such that x P Ω∆ if and only if x “
ř

DP∆ θD, where θD P RI for D P ∆ are functions

depending only on iD. This linear subspace can be written as

Ω∆ “

#

x P RI : DθD P RI , D P ∆ such that θDpiq “ θDpiDq and x “
ÿ

DP∆

θD

+

.

The set of positive cell probabilities p “ pppiqqiPI on I such that log p P Ω∆ is the hierarchical

model generated by ∆, also referred to as a multiplicative model in Darroch and Speed

(1983). To guarantee a unique representation of log p, we must impose a constraint on the
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parameters θDpiDq . We arbitrarily select an element in each Iv to be the baseline level and

denote it by 0. By abuse of notation, we denote also by 0 the cell in I with all its levels

equal to 0. We choose the log-linear parametrization log ppiq and constrain the parameters by

imposing that for D P ∆, if iv “ 0 for some v P D, then θDpiDq “ 0, which gives the unique

representation

log ppiq “ θH `
ÿ

DP∆,iv‰0,@vPD

θDpiDq,

where θH is a constant not depending on i. Next, we adopt a more concise notation. We

define

Spiq “ tv P V, iv ‰ 0u

to be the support of cell i, and

J “ tj P I, Spjq P ∆u

to be the subset of I corresponding to the set of free parameters. For a given D P ∆

and θDpiDq such that iγ ‰ 0, @γ P D, there is only one j P J such that Spjq “ D and

jD “ jSpjq “ iD, and conversely. Therefore, we can write

θDpiDq “ θj for the unique j P J with Spjq “ D, iD “ jD. (2.3)
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To further simplify the notation we write j Ÿ i when Spjq Ď Spiq and jSpjq “ iSpjq. We say

that j is to the left of i. Now we can express (2.3) in terms of the free parameters tθj, j P Ju,

which becomes

log ppiq “ θH `
ÿ

jŸi

θj, (2.4)

where θH is a unique number such that
ř

iPI ppiq “ 1. As shown in Letac and Massam

(2012), by Möbius inversion theorem applied to (2.4), we are able to express the unique

representation of the log-linear parameter as

θj “
ÿ

j1PJ :j1Ÿj

p´1q
|Spjq|´|Spj1q| log

ppj1q

pp0q
. (2.5)

Example. Let V “ ta, b, cu, ∆ “ ta, b, c, ab, bcu and Ia “ Ib “ Ic “ t0, 1u. Then the random

variables Xa, Xb, and Xc can be modelled by the graph G “ pV,Eq represented in Figure 2.1.

The set of indices of the free parameters is

J “ tp100q, p010q, p001q, p110q, p011qu.

For i “ 101 the set of j in J such that j Ÿ i is t100, 001u. For i “ 111 the set of j in J

such that j Ÿ i is t100, 010, 001, 110, 011u and so on. For these two cells, using the unique

representation (2.4) we can write,
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log pp101q “ θ0 ` θ100 ` θ001

log pp111q “ θ0 ` θ100 ` θ010 ` θ001 ` θ110 ` θ011.

For j “ 100 the set of j1 in J such that j1 Ÿ j is t100u. For j “ 110 the set of j1 in J such

that j1 Ÿ j is t100, 010, 110u. For these two cells, using the unique parametrization (2.5) we

can write,

θ100 “ log
pp100q

pp0q

θ110 “ log
pp110qpp0q

pp100qpp010q
.

2.2.3 The multinomial distribution as a natural exponential family

As previously stated, we assume the cell counts for a q-dimensional contingency table with

sample size N follow a multinomial distribution. In this subsection, we show that the

distribution of cell counts can be written as a natural exponential family (NEF). We take the

multinomial density function and employ the representation (2.4). Then the multinomial

density (2.2) has the form
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ź

iPI

ppiqnpiq
“ exp

#

ÿ

iPI

npiq log ppiq

+

“ exp

$

&

%

ÿ

iPIzt0u

npiq log
ppiq

pp0q
` Nθ0

,

.

-

“ exp

$

&

%

ÿ

iPIzt0u

npiq

˜

ÿ

jPJ,jŸi

θj

¸

` Nθ0

,

.

-

“ exp

#

ÿ

jPJ

θj

˜

ÿ

i:jŸi

npiq

¸

` Nθ0

+

“ exp

#

ÿ

jPJ

θjnSpjqpjSpjqq ` Nθ0

+

,

where nSpjqpjSpjqq is the Spjq-marginal count. When D “ Spjq, for j P J we write

tpjq “ nDpiDq. (2.6)

For i P I, we introduce vectors

fi “
ÿ

jPJ,jŸi

ej,

where pejqjPJ is the canonical basis of RJ . Let θ “ pθj, j P Jq be the vector of the free

parameters. From the baseline constraints imposed when defining (2.4), we know θH “ log pp0q;

thus for i P I, we can write

22



log
ppiq

pp0q
“

ÿ

jPJ,jŸi

θj

log
ppiq

pp0q
“ xθ, fiy

ppiq

pp0q
“ exθ,fiy

ÿ

iPI

ppiq

pp0q
“
ÿ

iPI

exθ,fiy

“ñ pp0q “

˜

ÿ

iPI

exθ,fiy

¸´1

,

where xu, vy denotes the inner product between two vectors u, v P Rd. Let F be the |I| ˆ |J |

design matrix, where the ith row is fT
i and the superscript denotes the transpose of a vector

or matrix. It is stated in Proposition 2.1 in Letac and Massam (2012) that

log
ppiq

pp0q
“ pFθqi.

Thus, if n “ pnpiq, i P Iq is the vector of cell counts, we can write the multinomial density

(2.2) as
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exp

#

ÿ

iPI

npiqpFθqi ´ N log
ÿ

iPI

exθ,fiy

+

“ exp

#

xn, Fθy ´ N log
ÿ

iPI

exθ,fiy

+

“ exp

#

xF Tn, θy ´ N log
ÿ

iPI

exθ,fiy

+

.

Then let t “ F Tn denote the vector of marginal counts as defined in (2.6). Therefore, we can

write the likelihood function for a multinomial distribution as

Lpθq “ exp

#

xθ, ty ´ N log
ÿ

iPI

exθ,fiy

+

, (2.7)

and the log-likelihood function as

ℓpθq “ xθ, ty ´ N log
ÿ

iPI

exθ,fiy. (2.8)

We denote the vector of sufficient statistics as t “ ptpjq, j P Jq, the canonical log-linear

parameter as θ “ pθj, j P Jq and the cumulant generating function as

kpθq “ log
ÿ

iPI

exθ,fiy.
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Example. Consider the binary random variables Xa, Xb and Xc, modelled by the decomposable

graph represented in Figure 2.1. Thus, we have a 3-dimensional contingency table with the

set of cells

I “ tp000q, p100q, p010q, p001q, p110q, p011q, p101q, p111qu

and the vector of cell counts

n “ pnp000q, np100q, np010q, np001q, np110q, np011q, np101q, np111qq
T .

The vectors fi, i P I corresponding to our model are

f000 “

ˆ

0, 0, 0, 0, 0

˙T

,

f100 “

ˆ

1, 0, 0, 0, 0

˙T

,

f010 “

ˆ

0, 1, 0, 0, 0

˙T

,

f001 “

ˆ

0, 0, 1, 0, 0

˙T

,

f110 “

ˆ

1, 1, 0, 1, 0

˙T

,

f011 “

ˆ

0, 1, 1, 0, 1

˙T

,

f101 “

ˆ

1, 0, 1, 0, 0

˙T

,

f111 “

ˆ

1, 1, 1, 1, 1

˙T

.
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Thus, we have design matrix

F “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 1 0 1 0

0 1 1 0 1

1 0 1 0 0

1 1 1 1 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

and
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F Tn “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 0 1 1 1

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

np000q

np100q

np010q

np001q

np110q

np011q

np101q

np111q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

np100q ` np110q ` np101q ` np111q

np010q ` np110q ` np011q ` np111q

np001q ` np011q ` np101q ` np111q

np110q ` np111q

np011q ` np111q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

tp100q

tp010q

tp001q

tp110q

tp011q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

We can write the log-likelihood function using the formulation (2.8) with sufficient statistic
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t “ ptp100q, tp010q, tp001q, tp110q, tp011qq
T

“ pnap1q, nbp1q, ncp1q, nabp1, 1q, nbcp1, 1qq
T ,

canonical parameter θ “ pθ100, θ010, θ001, θ110, θ011q
T and cumulant generating function

kpθq “ logp1 ` eθ100 ` eθ010 ` eθ001 ` eθ100`θ010`θ110 ` eθ010`θ010`θ011

` eθ100`θ001 ` eθ100`θ010`θ001`θ110`θ011q.

Let Mpθq “
ř

iPI e
xθ,fiy. For j,m, l Ÿ i, we define the following marginal probabilities:

Pjpθq “
Bk

Bθj
“

ř

iPI e
xθ,fiyfi,j

Mpθq
, (2.9)

Pjmpθq “

`
ř

iPI e
xθ,fiyfi,j ¨ fi,m

˘

Mpθq
, (2.10)

and

Pjmlpθq “

`
ř

iPI e
xθ,fiyfi,j ¨ fi,m ¨ fi,l

˘

Mpθq
. (2.11)

When we take the first derivative of (2.9) with respect to θm, we obtain the following expression

which is a function of marginal probabilities, that is
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BPjpθq

Bθm
“

`
ř

iPI e
xθ,fiyfi,j ¨ fi,m

˘

Mpθq ´
`
ř

iPI e
xθ,fiyfi,j

˘

¨
`
ř

iPI e
xθ,fiyfi,m

˘

rMpθqs2

“ Pjmpθq ´ Pjpθq ¨ Pmpθq. (2.12)

We will use (2.12) to express the first, second and third derivatives of the log-likehood

functions in terms of marginal probabilities. Taking the first derivative of (2.8), we obtain

the jth entry of the score vector

Bℓ

Bθj
“ tpjq ´ NPjpθq. (2.13)

The pj,mqth entry of the second derivative of (2.8) is

B2ℓ

BθjBθm
“ ´N rPjmpθq ´ Pjpθq ¨ Pmpθqs , (2.14)

and the pj,m, lqth entry of the third derivative of (2.8) is
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Bp3qℓ

BθjBθmBθl
“ ´N

„

BPjmpθq

Bθl
´

BPjpθq

Bθl
Pmpθq ´

BPmpθq

Bθl
Pjpθq

ȷ

“ ´N rPjmlpθq ´ PjmpθqPlpθq ´ PjlpθqPmpθq ` PjpθqPlpθqPmpθq

´ PmlpθqPjpθq ` PmpθqPlpθqPjpθqs.

(2.15)

2.3 The Bayes factor for decomposable models

Consider a sample of q-dimensional random vectors taking values in a q-dimensional con-

tingency table, as described in Section 2.2.2, where the cell counts follow a multinomial

distribution with density (2.2). It is shown in Lauritzen (1996) that if a probability distribu-

tion is Markov with respect to a decomposable graph G, then it can be written as a product

of factors over the cliques and the separators of G. Let C be the set of cliques, S be the set

of separators, and νpSq be the multiplicity of separator S P S. Let pCpiCq and pSpiSq denote

the C-marginal and the S-marginal cell probabilities, respectively, where C denotes a clique

in C. Let p be the vector of the C-marginal and the S-marginal cell probabilities. Then from

the distribution (2.2), we can write the log-likelihood function as

ℓppq “
ÿ

CPC

ÿ

iCPIC

nCpiCq log pCpiCq ´
ÿ

SPS
νpSq

ÿ

iSPIS

nSpiSq log pSpiSq, (2.16)

with maximum likelihood estimate (MLE)

p̂piq “

ś

CPC nCpiCq

N
ś

SPS nSpiSqνpSq
. (2.17)
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The number of parameters in a decomposable model with log-likelihood (2.16) is the

number of parameters corresponding to the cliques minus the number of parameters cor-

responding to the separators, to avoid redundancy. The number of free parameters is one

less than the number of parameters since the sum of the cell probabilities is equal to 1. We

denote the number of free parameters in a decomposable model as

k “ ´1 `
ÿ

CPC
|Iv| ´

ÿ

SPS
νpSq ¨ |Iv|. (2.18)

Note that the number of levels |Iv| can vary across different v P V . For convenient notation,

we assume |Iv| “ 2, meaning |IC | “ 2|C| and |IS| “|S|.

2.3.1 The hyper Dirichlet prior

The density of the multinomial random vector X given a graph G can be written as the NEF

fpx|θ,Gq “ exptxθ, ty ´ Nkpθqu. (2.19)

From Diaconis and Ylvisaker (1979), we know the conjugate prior on θ can be written as

πs,αpθ|Gq “
1

IGps, αq
exptxθ, sy ´ αkpθqu, (2.20)

with normalizing constant IGps, αq and hyperparameters s “ pspjq, j P Jq and α. The vector

s consists of fictive counts from a fictive contingency table, and the set of indices J correspond

to the same subset of I as for the sufficient statistic t. The real number α is the total fictive
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counts and the choice of α will change the shape of the prior distribution. The sufficient

statistic and the hyperparamters both depend on G1, and in the high-dimensional case, α

will depend on N ; however, we suppress G1 and N in the notation for readability. In Lemma

3.1 of Massam et al. (2009) show that IGps, αq ă `8 holds if and only if α ą 0 and there

exists a contingency table with cells i P I such that

spjq “ α
ÿ

iSpjq“jSpjq

ppiq, for j P J,

where each ppiq ą 0. See Massam et al. (2009) for a discussion on how to obtain ps, αq. The

posterior probability of G given x is

fpG|xq “

ş

exptxθG, t ` sy ´ pN ` αqkpθqudθG
ř

G1PG
ş

exptxθG1 , t ` sy ´ pN ` αqkpθqudθG1

“
IGpt ` s,N ` αq

ř

G1PG IG1pt ` s,N ` αq
. (2.21)

From (2.21), when each model is assigned an equal probability, we see that the pairwise

Bayes factor comparing model G1 to model G2 is a ratio of the normalizing constants

BFG1,G2 “
fpG1|xq

fpG2|xq
“

IG1pt ` s,N ` αq

IG2pt ` s,N ` αq
.

(2.22)

Let spiq denote the fictive cell count for cell i P I and let sDpiDq denote any D-marginal

fictive cell count – not necessarily corresponding to the set of indices J . Massam et al. (2009)
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proved that the prior πs,αpθ|Gq exhibits the strong hyper Markov property for graphical

models as defined by Dawid and Lauritzen (1993), and is identical to the hyper Dirichlet

with normalizing constant

IGps, αq “

ś

CPC
ś

iCPIC
ΓpsCpiCqq

Γpαq
ś

SPS
“
ś

iSPIS
ΓpsSpiSqq

‰νpSq
. (2.23)

Their Proposition 4.1 demonstrates how to obtain the marginal fictive cell counts from a

linear combination of the components of s and α. Therefore, the Bayes factor (2.22) becomes

the product of gamma functions, where their arguments are the sum of true cell counts and

fictive cell counts over the cliques and the separators. When the two models differ by only

one edge, the Bayes factor becomes a localized comparison.

Example. Consider the binary random variables Xa, Xb and Xc and the two decomposable

models G1 “ tab, cu and G2 “ tab, bcu. Let n˚piq “ npiq ` spiq be the sum of the true and

the fictive counts for cell i, let n˚
DpiDq “ nDpiDq ` sDpiDq be the sum of the true and the

fictive D-marginal cell counts, and let N˚ “ N `α be the sum of the total true and the total

fictive cell counts. For convenience, we denote the components of (2.23) as

Γ̃C
“

ź

iCPIC

Γpn˚
CpiCqq

and

Γ̃S
“

ź

iSPIS

Γpn˚
SpiSqq.
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Then the Bayes factor comparing G1 and G2 is

BFG1,G2 “
Γ̃abΓ̃cΓ̃bΓpN˚qΓpN˚q

ΓpN˚qΓpN˚qΓpN˚qΓ̃abΓ̃bc

“
Γ̃cΓ̃b

ΓpN˚qΓ̃bc
,

where

Γ̃c “ Γpn˚p000q ` n˚p100q ` n˚p010q ` n˚p110qqΓpn˚p001q ` n˚p101q ` n˚p011q ` n˚p111qq,

Γ̃b “ Γpn˚p000q ` n˚p100q ` n˚p001q ` n˚p101qqΓpn˚p010q ` n˚p110q ` n˚p011q ` n˚p111qq,

Γ̃bc “ Γpn˚p000q ` n˚p100qqΓpn˚p010q ` n˚p110qqΓpn˚p001q ` n˚p101qqΓpn˚p011q ` n˚p111qq.

Since G1 and G2 differ by only one edge, the Bayes factor simplifies to the ratio comparing

no edge from vertices b to c versus the inclusion of the edge pb, cq.

2.3.2 The model prior

When the dimension of the model is fixed the Bayes factor is sufficient to guarantee the true

model is selected; however, when the dimension of the model is increasing we require a prior

distribution on the model to encourage sparsity. We follow the approach used in Niu et al.

(2021). To limit the number of false edges, we assume given a decomposable graph G that

the probability of a model parameter being included in G follows a Bernoulli distribution.

Let Qmax “ 25pq´1q be the upper bound for the total number of parameters in the model,
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where we assume 5 is the most complex interaction between variables. This assumption

is for convenience; results hold for any finite constant. For l “ 1, . . . , Qmax, let el “ 1 if

the lth parameter is in G, and 0 otherwise. Then the prior distribution of a model G given

probability ρ is

πpG|ρq9

«

Qmax
ź

l“1

ρelp1 ´ ρq
1´el

ff

¨ 1DqpGq, (2.24)

where Dq is the set of all decomposable graphs with q vertices. We state our assumption

about ρ in Section 2.4.

Therefore, when the dimension is increasing we will examine the behaviour of the posterior

odds ratio, defined as

PRG1,G2 “
fpG1|xq

fpG2|xq
“

fpx|G1qπpG1q

fpx|G2qπpG2q
, (2.25)

where fpx|Gq “
ş

exptxθG, t ` sy ´ pN ` αqkpθqudθG.

2.3.3 Asymptotic approximation of the posterior probability

Our results rely on the logarithm of the Bayes factor, which becomes the log of the difference

of normalizing constants of the form IGpt` s,N `αq. Thus, we use Lemma 2.3.1 and Lemma

2.3.2 to write an asymptotic approximation for the log of this normalizing constant, which is

proportionate to the posterior probability for a decomposable model (2.21). For our proofs

in Sections 2.3.3, 2.4 and 2.5, we use background lemmas which state the necessary large

35



deviation results. In Appendix 4, we provide the proofs for Lemmas 4.1.1-4.2.1.

Here we give a convenient expression for log Γpxq with x ě 1, for x P R, using the

inequality for the gamma function from Theorem 1.6 in Batir (2008).

Lemma 2.3.1. For all positive real numbers x ě 1,

log Γpxq “ x log x ´ x ´ 1{2 log x ` c1,

where c1 P p1
2
log 2π, 1

2
log 3πq.

Proof of Lemma 2.3.1. Theorem 1.6 in Batir (2008) states that for all positive real numbers

x ě 1, we have

xxe´x
a

2πpx ` aq ă Γpx ` 1q ă xxe´x
a

2πpx ` bq,

with a, b constant. They specify that a “ 1{6 and b “ e2

2π
´ 1 are the best possible constants.

For our purposes, these constants are negligible.

Since Γpx ` 1q “ xΓpxq, then

36



xxe´x
a

2πpx ` aq ă xΓpxq ă xxe´x
a

2πpx ` bq

xx´1e´x
a

2πpx ` aq ă Γpxq ă xx´1e´x
a

2πpx ` bq

xx´1e´x
?
2πx ă Γpxq ă xx´1e´x

?
3πx

xxe´xx´1{2
?
2π ă Γpxq ă xxe´xx´1{2

?
3π

log
´

xxe´xx´1{2
?
2π

¯

ă log Γpxq ă log
´

xxe´xx´1{2
?
3π

¯

x log x ´ x ´ 1{2 log x ` 1{2 log 2π ă log Γpxq ă x log x ´ x ´ 1{2 log x ` 1{2 log 3π.

Therefore,

log Γpxq “ x log x ´ x ´ 1{2 log x ` c1,

where c1 P p1
2
log 2π, 1

2
log 3πq.

We use Lemma 2.3.1 to rewrite log of the normalizing constant, which has the form of

(2.23) with arguments t` s and N `α, without gamma functions. Since Lemma 2.3.1 applies

to x ě 1; in practice, if the true count of any marginal cell is zero then we assign 1 to the

corresponding marginal fictive cell count; otherwise, the fictive cell counts are constants

greater than zero and the total number of fictive counts is assumed to be much less than

the total sample size. This ensures that each component of the vector t ` s is greater than

or equal to 1. In this scenario, even though the fictive counts are not evenly distributed

across the cells, this does not affect the asymptotic result since the fictive counts are small
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compared to the true counts. Our theoretical results require the MLE to exist, meaning there

are no cells with zero counts. Therefore, in the relevant proof, we show that the MLE for

each cell is non-zero with probability tending to 1.

Let p̂˚piq “
npiq`spiq
N`α

be the frequency estimate of sum of true and fictive counts for cell i P I

with the same Markov property as the MLE (2.17). We denote the sum of the true and the

fictive D-marginal cell counts by n˚
DpiDq and the of the true and fictive total cell counts by N˚.

Then we let p̂˚ be the vector of marginal cell frequencies indexed by the cliques C P C and the

separators S P S, namely, p̂˚CpiCq “
nCpiCq`sCpiCq

N`α
“

n˚
CpiCq

N˚ and p̂˚SpiSq “
nSpiSq`sSpiSq

N`α
“

n˚
SpiSq

N˚ .

To simplify our expression when the sample size N Ñ 8, we evaluate the log-likelihood at

p̂˚; that is,

ℓpp̂˚
q “

ÿ

CPC

ÿ

iCPIC

n˚
CpiCq log p̂˚C

piCq ´
ÿ

SPS
νpSq

ÿ

iSPIS

n˚
SpiSq log p̂˚S

piSq. (2.26)

Lemma 2.3.2. Assume the true C-marginal and S-marginal cell probabilities pC0 piCq and

pS0 piSq are bounded away from 0 and 1, and | log pC0 piCq| ă c2 and | log pS0 piSq| ă c2, for a

positive constant c2. Let p̂˚ denote the vector of frequency estimators for the vector of true

marginal probabilities p0. Then, if k is the number of parameters in the model and the sample

size N Ñ 8, we have

1. when q is fixed,

log IGpt ` s,N ` αq “ ℓpp̂˚
q ´

k

2
logpN ` αq ` Op1q,
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2. when qN Ñ 8 as N Ñ 8,

log IGpt ` s,N ` αq “ ℓpp̂˚
q ´

kN
2

plogpN ` αq ` Op1qq ` CN ,

with probability 1 ´ qNOpQN
´QN q, where CN “ 25pqN ´ 1qpc2 ` ϵNq, QN “ qN

2,

ϵN “ p18CN´1QN logQNq1{2, and C is a positive universal constant.

Proof of Lemma 2.3.2. Let n˚ be the vector of marginal counts such that n˚
DpiDq “ nDpiDq `

sDpiDq is the sum of the true D-marginal cell counts and the fictive D-marginal cell counts,

and let N˚ “ N ` α be the sum of the total cell counts and the total fictive counts for

a decomposable model G with m cliques and pm ´ 1q separators. We must consider two

cases: when q is fixed and when qN is increasing. First, we find an asymptotic expression for

log IGpn˚, N˚q when q is fixed.

Let C and S denote the set of cliques and the set of separators for a model G, respectively.

By Lemma 2.3.1, taking the logarithm of IGpn˚, N˚q gives

log IGpn˚, N˚
q “

ÿ

CPC

ÿ

iCPIC

„

n˚
CpiCq log n˚

CpiCq ´ n˚
CpiCq ´

1

2
log n˚

CpiCq

ȷ

´
ÿ

SPS
νpSq

ÿ

iSPIS

„

n˚
SpiSq log n˚

SpiSq ´ n˚
SpiSq ´

1

2
log n˚

SpiSq

ȷ

´ N˚ logN˚
` N˚

`
1

2
logN˚

` Op1q,
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where Op1q is a constant equal to the finite number of parameters k times a constant c1, such

that c1 P p1
2
log 2π, 1

2
log 3πq.

Since N Ñ 8, we approximate the cell counts which are arguments of a logp¨q function

with the marginal frequency estimates p̂˚CpiCq “
n˚
CpiCq

N˚ and p̂˚SpiSq “
n˚
SpiSq

N˚ , and we denote

the vector of marginal frequency estimates by p̂˚. Then we rearrange the terms to obtain the

log-likelihood function evaluated at p̂˚ plus a penalty term, that is
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log IGpn˚, N˚
q “

ÿ

CPC

ÿ

iCPIC

n˚
CpiCq logN˚p̂˚C

piCq ´
ÿ

CPC

ÿ

iCPIC

n˚
CpiCq

´
ÿ

CPC

ÿ

iCPIC

1

2
logN˚p̂˚C

piCq ´
ÿ

sPS
νpSq

ÿ

iSPIS

n˚
SpiSq logN˚p̂˚S

piSq

`
ÿ

SPS
νpSq

ÿ

iSPIS

n˚
SpiSq `

ÿ

SPS
νpSq

ÿ

iSPIS

1

2
logN˚p̂˚S

piSq ´ N˚ logN˚

` N˚
`

1

2
logN˚

` Op1q

“
ÿ

CPC

ÿ

iCPIC

n˚
CpiCq log p̂˚C

piCq ´
ÿ

SPS
νpSq

ÿ

iSPIS

n˚
SpiSq log p̂˚S

piSq

` mN˚ logN˚
´ pm ´ 1qN˚ logN˚

´ mN˚
´

ÿ

CPC

ÿ

iCPIC

1

2
logN˚p̂˚C

piCq

` pm ´ 1qN˚
`

ÿ

SPS
νpSq

ÿ

iSPIS

1

2
logN˚p̂˚S

piSq ´ N˚ logN˚
` N˚

`
1

2
logN˚

` Op1q

“ ℓpp̂˚
q ´

ÿ

CPC

ÿ

iCPIC

1

2
logN˚p̂˚C

piCq `
ÿ

SPS
νpSq

ÿ

iSPIS

1

2
logN˚p̂˚S

piSq

`
1

2
logN˚

` Op1q,

where ℓpp̂˚q is the log-likelihood function (2.26) evaluated at the marginal frequency estimator

p̂˚. Since the dimension of the model is fixed,

´
ÿ

CPC

ÿ

iCPIC

1

2
log p̂˚C

piCq `
ÿ

SPS
νpSq

ÿ

iSPIS

1

2
log p̂˚S

piSq (2.27)
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is approximately constant, thus it can be absorbed into Op1q. Therefore,

log IGpn˚, N˚
q “ ℓpp̂˚

q ´
ÿ

CPC

ÿ

iCPIC

1

2
logN˚

`
ÿ

SPS
νpSq

ÿ

iSPIS

1

2
logN˚

`
1

2
logN˚

` Op1q

“ ℓpp̂˚
q ´

ÿ

CPC

2|C|

2
logN˚

`
ÿ

SPS
νpSq

2|S|

2
logN˚

`
1

2
logN˚

` Op1q

“ ℓpp̂˚
q `

ˆ

1 ´
ř

CPC 2
|C| `

ř

SPS νpSq2|S|

2

˙

logN˚
` Op1q.

“ ℓpp̂˚
q ´

k

2
logN˚

` Op1q,

where k is the number of parameters of the model (2.18).

Next, when the dimension of the model is increasing as the sample size increases to infinity,

we need to consider the multiplicity of the constant c1 in the interval p1
2
log 2π, 1

2
log 3πq and

we need to establish an upper bound for (2.27). By Lemma 2.3.1, we have

log IGpn˚, N˚
q “ ℓpp̂˚

q ´
kN
2

plogN˚
` Op1qq ´

ÿ

CPC

ÿ

iCPIC

1

2
log p̂˚C

piCq

`
ÿ

SPS
νpSq

ÿ

iSPIS

1

2
log p̂˚S

piSq.

We write plogN˚ `Op1qq to account for adding a constant c1 for each log of a gamma function.
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We assume the true C-marginal and S-marginal cell probabilities pC0 piCq and pS0 piSq are

bounded away from 0 and 1, and | log pC0 piCq| ă c2 and | log pS0 piSq| ă c2 for a positive constant

c2. Moreover, we assume the most complex interaction is a 5-way interaction and we consider

qN ´ 1 to be the maximum number of cliques in a decomposable graph. By Lemma 4.1.11

with ϵN “ p18CN´1QN logQNq1{2,

ˇ

ˇ

ˇ

ˇ

ˇ

´
1

2

˜

ÿ

CPC

ÿ

iCPIC

log p̂˚C
piCq ´

ÿ

SPS
νpSq

ÿ

iSPIS

log p̂˚S
piSq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ă

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

CPC

ÿ

iCPIC

log p̂˚C
piCq

ˇ

ˇ

ˇ

ˇ

ˇ

ă

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

CPC

ÿ

iCPIC

plog pC0 piCq ` ϵNq

ˇ

ˇ

ˇ

ˇ

ˇ

ă 25pqN ´ 1qpc2 ` ϵNq.

with probability 1 ´ qNOpQN
´QN q. Therefore,

log IGpn˚, N˚
q “ ℓpp̂˚

q ´
kN
2

plogN˚
` Op1qq ` CN

with probability 1 ´ qNOpQN
´QN q, where CN “ 25pqN ´ 1qpc2 ` ϵNq.

Notice that our first expression in Lemma 2.3.2 is similar to the well-known Bayesian

information criterion (BIC); namely, BIC “ ´2ℓpp̂q ` k logN . In this case we would have
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log IGps ` t, N ` αq “ ´
BIC
2

` Op1q “ ℓpp̂q ´ k logN ` Op1q.

However, the BIC requires the Laplace approximation of the integral

ż

fpx|θ,Gqπs,αpθ|GqdθG,

which is suitable for a fixed dimension, but it is harder to control the error term when the

dimension is increasing. Therefore, instead of the Laplace approximation, we use our log Γpxq

approximation in Lemma 2.3.1 since our main goal is to focus on the high-dimensional scheme.

Our approximation is preferable because it allows us to avoid high-dimensional integration

and to control each error term.

2.4 Theoretical results when the true graph is decompos-

able

In this section, we present our pairwise Bayes factor consistency results and our strong

consistency results when the true graph is decomposable. First, we state the graph notation

we follow from Niu et al. (2021) and the necessary assumptions to support our results.

Denote Gq as the q-dimensional graph space and Dq as the q-dimensional decomposable

graph space. We use Gt “ pV,Etq to denote the true graph, and suppose Ga “ pV,Eaq is
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any competing decomposable graph which is not the true graph Gt, then let Ea X Et be the

set of true edges in Ea. Moreover, we write Ga ⊊ Gt to denote Ea ⊊ Et, Ga Ć Gt to denote

Ea Ć Et, and Ga ‰ Gt to denote Ea ‰ Et.

When qN is increasing with N , the concept of a ‘true graph’ is in fact a sequence of true

graphs depending on N . However, this notion is challenging to capture in our theoretical

results. Thus, we assume that at every value of qN , there exists a true graph Gt.

Assumption 1. Assume that the true cell probabilities p0piq for each cell i P I are

bounded away from 0 and 1, and that | log p0piq| for i P I is bounded by a positive constant.

Similarly, the true C-marginal and S-marginal cell probabilities pC0 piCq and pS0 piSq are bounded

away from 0 and 1, and | log pC0 piCq| ă c2 and | log pS0 piSq| ă c2 for a positive constant c2.

This assumption ensures that we can control our asymptotic results in the high-dimensional

setting. The number of cells and the number of model parameters increase as the number of

variables increases, so this assumption allows us to find upper bounds for summations that

are indexed by the marginal cells.

Assumption 2. In the high-dimensional setting, the number of variables qN Ñ 8 as the

sample size N Ñ 8 and qN
4 log qN “ opNq.

This assumption restricts the dimension of the model when the dimension is increasing

with the sample size. To prove model selection consistency for a competing overfitting model,

we require that the number of variables cannot increase faster than N1{4. This assumption

is more strict, but comparable to the assumptions in Fitch et al. (2014) and in Niu et al.

(2021), where they let p “ Opn1{3q in the high-dimensional setting.
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Assumption 3. Assume the most complex interaction between the variables is a 5-way

interaction, meaning the order of any clique or separator is at most 5. We assume all variables

are binary, thus we consider 25pqN ´ 1q to be the upper bound for the number of parameters

in a given model. Without loss of generality, we can change 5-way to any m-way interaction

as long as m is bounded, and we can change the base-2 to the highest number of levels |IC |

associated with any clique in G.

To control the complexity of the model when the parameters increases as qN Ñ 8, we

assume that 5 is the highest order of interaction. We can obtain the upper bound for maximum

number of parameters; that is, ´1 `
ř

CPC 2
|C| ´

ř

SPS νpSq2|S| ă
ř

CPC 2
|C| ă 25pqN ´ 1q,

where qN ´ 1 is the maximum number of cliques in a decomposable graph. The most cliques

a decomposable graph can have is one less than the number of vertices, meaning the graph

represents only 2-way interactions. This assumption holds as long as as the order of largest

clique is bounded.

Assumption 4. The ratio of the total fictive counts over the total true cell counts

is bounded, such that 0 ă α
N

ă ϵN , where ϵN “ pCN´1q logNq1{2 when q is fixed and

ϵN “ pCN´1QN logQNq1{2 when qN Ñ 8.

This assumption states that the total fictive counts are negligible compared to the total

true cell counts.

Assumption 5. The smallest Kullback-Leibler divergence between the true model Gt

and an underfitting model Ga is bounded; that is, Et log ftpxq ´ Et log fapxq ą cm, where the

positive constant cm is a universal lower bound for the Kullback-Leibler divergence.
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When the competing model is an underfitting model, we apply the Kullback-Leibler

theorem to find the behaviour of the Bayes factor. Since the Kullback-Leibler divergence

between models Gt and Ga depends on the model Ga, we require that the smallest cm is

bounded to prove strong model selection consistency.

Assumption 6. Under the true model, let Hpθq “ Et

´

´
B2ℓpθq

BθBθT

¯

denote the Fisher

Information, and let λmaxp¨q and λminp¨q denote the largest and the smallest eigenvalues of

Hpθq, respectively. We assume that the eigenvalues of the Fisher Information matrix under

the true model are bounded, meaning there exists constants M1 ą 0 and M2 ă `8 such that

M1 ă λminpHpθqq ď λmaxpHpθqq ă M2.

This is a standard assumption and it ensures that the random variable uTUpθq is bounded,

where u is a unit vector and Upθq is a score vector.

Assumption 7. Let ρ denote the probability of including a parameter such that

log ρ “ ´γ log qN , for some constant γ ą 0.

This assumption gives the condition for the model prior; namely, the probability ρ is

inversely proportional to the number of variables qN .

2.4.1 Pairwise Bayes factor consistency for decomposable graphs

We study the behaviour of the Bayes factor (2.22) between two decomposable models, say Ga

and Gb, when q is fixed and when qN is increasing with N . Two cases arise: when Ga is an

underfitting model and Gb is an overfitting model, and when Ga and Gb are both overfitting

models. We focus on decomposable graphs because they allow for the Bayes factor to be
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written explicitly. This is still possible when the true graph is non-decomposable since it can

be approximated by a minimal triangulation which, by definition, is a decomposable graph.

Here we give four lemmas for decomposable graphs in both the overfitting and the

underfitting case, which lay the foundation to later prove strong model selection consistency.

We begin by stating the lemmas for the pairwise comparison of decomposable graphs with a

fixed dimension.

Lemma 2.4.1. Let q be fixed. If Ga and Gb are both decomposable graphs, where Ga is an

underfitting model with |Ea XEt| ă |Et|, and Gb is an overfitting model, with |Eb XEt| “ |Et|,

then for ϵN “ p18CN´1q logNq1{2 and positive constants cm, C1 and C2,

BFGa,Gb
ă exp t´cmN

˚
` C1N

˚ϵN ` C2 logN
˚

` Op1qu ,

with probability greater than 1 ´ OpN´qq as N Ñ 8.

Proof of Lemma 2.4.1. For a decomposable model Ga, let p̂˚
a be the vector of frequency

estimates for the sum of the true and fictive marginal counts, let p0a be the vector of true

marginal cell probabilities, and let ka be the number of parameters in the model. Similarly,

for a decomposable model Gb. We assume Ga is an underfitting model and Gb is an overfitting

model. By Lemma 2.3.2, we can write the logarithm of the Bayes factor comparing Ga with

Gb as

logBFGa,Gb
“ ℓpp̂˚

aq ´ ℓpp̂˚
b q `

pkb ´ kaq

2
logN˚

` Op1q. (2.28)
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For N observations, we define ℓpp̂˚
aq and Et log fapxq as we did in the proof of Lemma 2.4.1,

where log fa represents the log density under graph Ga, and the expectation is under the true

density ftpxq. We also have the equivalent expressions for ℓpp̂˚
b q and Et log fbpxq “ Et log ftpxq,

corresponding to the model Gb. Next, we write

ℓpp̂˚
aq ´ ℓpp̂˚

b q “ Et log fapxq ´ Et log ftpxq ` ℓpp̂˚
aq ´ Et log fapxq ´ rℓpp̂˚

b q ´ Et log ftpxqs .

Under Assumption 5, for all the underfitting models,

Et log ftpxq ´ Et log fapxq ą cmN
˚,

where cm is the lower bound for the Kullback–Leibler divergence.

By Lemma 4.1.6 with ϵN “ p18CN´1q logNq1{2,

|ℓpp̂˚
aq ´ Et log fapxq| ă 25pq ´ 1qN˚ϵN

and

|ℓpp̂˚
b q ´ Et log ftpxq| ă 25pq ´ 1qN˚ϵN

with probability 1 ´ 26pq ´ 1qOpN´qq.

Since q is finite, we let C1 “ 26pq ´ 1q and C2 “
pka´kbq

2
be constants. Therefore,
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P pBFGa,Gb
ă exp t´cmN

˚
` C1N

˚ϵN ` C2 logN
˚

` Op1quq ą 1 ´ OpN´q
q.

Notice that N˚ϵN “ NϵN ` αϵN and NϵN “ p18CqN logNq1{2. Since logN ă N and

N ă N˚ implies that pN logNq1{2 ă N˚, then the leading term is ´cmN
˚ and BFGa,Gb

P
Ñ́ 0

as N Ñ 8.

Lemma 2.4.2. Let q be fixed and let α be the total fictive counts. If Ga and Gb are both

decomposable overfitting models, with |Ea X Et| “ |Eb X Et| “ |Et| and ka ą kb, then for

ϵN “ p18CN´1q logNq1{2 and positive constants C1, and C2,

BFGa,Gb
ă exp t´C1 logN

˚
` C2 logplogNqt1 ` op1qu ` Op1qu ,

with probability greater than 1 ´ OpplogNq´ãq ´ OpN´qq as N Ñ 8, where ã “ pka ´ kbq{6.

Proof of Lemma 2.4.2. Let p̂t be the vector of marginal frequency estimators for the true

model, and let the decomposable models Ga and Gb both be overfitting models. We can

write the logarithm of the Bayes factor comparing Ga with Gb as

logBFGa,Gb
“ ℓpp̂˚

aq ´ ℓpp̂˚
b q ´

pka ´ kbq

2
logN˚

` Op1q, (2.29)

where ka ą kb. We define ℓpp̂˚
aq and ℓpp̂˚

b q as we did in the proof of Lemma 2.4.2. We can

50



write

|ℓpp̂˚
aq ´ ℓpp̂˚

b q| “ |ℓpp̂˚
aq ´ ℓpp̂aq ´ tℓpp̂˚

b q ´ ℓpp̂bqu ` ℓpp̂aq ´ ℓpp̂bq|

ď |ℓpp̂˚
aq ´ ℓpp̂aq| ` |ℓpp̂˚

b q ´ ℓpp̂bq| ` |ℓpp̂aq ´ ℓpp̂bq|

By Assumption 4,

|ℓpp̂˚
aq ´ ℓpp̂aq| ă 25pq ´ 1qC 1N˚ α

N˚
“ 25pq ´ 1qC 1α

and

|ℓpp̂˚
b q ´ ℓpp̂bq| ă 25pq ´ 1qC2N˚ α

N˚
“ 25pq ´ 1qC2α,

where C 1 and C2 are positive constants.

Next, since the log-linear parametrization (2.5) is a unique representation we can

use ℓpθ̂aq ´ ℓpθ̂bq in the place of ℓpp̂aq ´ ℓpp̂bq. Let ξ “ N´1{2H
´1{2
a pθ0qUapθ0q and A “

H
1{2
a pθ0q ptHapθ0qu´1 ´ DatHbpθ0qu´1DaqHapθ0q

1{2 with trpBq “ ka ´ kb. By Lemma 4.2.1

and the proof of Lemma 2.4.4, we know that we can write

2tℓpθ̂aq ´ ℓpθ̂bqu “ ξTAξt1 ` opp1qu
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with probability 1 ´ OpN´qq, where the largest eigenvalue of Hapθ0q satisfies

rλmaxpHapθ0qqs´1 ď M´1
1 for a positive constant M1 such that M1 ă λminpHapθ0qq and

ξ „ subGaussianp1{M2
1 q. Following the proof of Lemma 2.4.2, using Lemma A.4 in Gao

and Carroll (2017) and Corollary 4.2 in Spokoiny and Zhilova (2013), we choose g “

p4q logNq1{2 and K “ pka ´ kbq logplogNq. Therefore, pka ´ kbq logplogNq ą r2pka ´ kbqs1{2{3

and q logN ą pka ´ kbq logplogNq for large N . If ξ˚ “ M1ξ, then

P
`

|ξ˚TAξ˚
| ě pka ´ kbqp1 ` logplogNqq

˘

ď 10.4 expt´pka ´ kbq logplogNq{6u

“ OpplogNq
´ã

q,

where ã “ pka ´ kbq{6.

Since q is finite, we let C1 “
pka´kbq

2
, and C2 “

pka´kbq

2M1
be constants. Then from (2.29),

P
ˆ

BFGa,Gb
ă exp

"

25pq ´ 1qC 1
` 25pq ´ 1qC2α ´

pka ´ kbq

2
logN˚

`
pka ´ kbq

2M1

p1 ` logplogNqqt1 ` opp1qu ` Op1q

*˙

“ P
ˆ

BFGa,Gb
ă exp

␣

´ C1 logN
˚

` C2 logplogNqt1 ` opp1qu ` Op1q
(

˙

ą 1 ´ OpplogNq
´ã

q ´ OpN´q
q.

Since logplogNq ă logN˚, then the leading term is ´C1 logN
˚ and BFGa,Gb

P
Ñ́ 0 as N Ñ 8.
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Lemma 2.4.1 states that the Bayes factor will support an overfitting model, which contains

all the true edges, over an underfitting model with at least one missing true edge. Lemma

2.4.2 states that when comparing two overfitting models, the Bayes factor supports the model

with less superfluous edges. We see that in the first scenario, the Bayes factor will converge

to zero at an exponential rate; however, in the second scenario, the Bayes factor converges to

zero at a polynomial rate. This means that the Bayes factor with the hyper Dirichlet prior

gives a stronger penalty to the removal of a true edge than it does to add a false edge. These

results coincide with those of Theorem 4.1 in Niu et al. (2021), which uses the hyper-inverse

Wishart prior in the Gaussian setting.

Next, we state the lemmas for the pairwise comparison of decomposable graphs with

increasing dimension. When qN Ñ 8, we require a prior distribution of the model (2.24);

therefore, Lemmas 2.4.3 and 2.4.4 examine the behaviour of the posterior odds ratio (2.25).

Lemma 2.4.3. Let qN be increasing with N . If Ga and Gb are both decomposable graphs,

where Ga is an underfitting model with |Ea X Et| ă |Et|, and Gb is an overfitting model, with

|Eb X Et| “ |Et|, then for ϵN “ p18CN´1QN logQNq1{2 and positive constants cm, c2, and γ,

PRGa,Gb
ă exp

␣

´ cmN
˚

` 26pqN ´ 1qrc2 ` pN˚
` 1qϵN s ` pkb,N ´ ka,Nq

“

1{2 logN˚
` γ log qN

` Op1q
‰(

with probability greater than 1 ´ OpQ´QN

N q as N Ñ 8.

Proof of Lemma 2.4.3. For a decomposable model Ga, let p̂˚
a be the vector of frequency
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estimates for the sum of the true and fictive marginal counts, let p0a be the vector of true

marginal cell probabilities, and let ka be the number of parameters in the model. Similarly,

for a decomposable model Gb. We assume Ga is an underfitting model and Gb is an overfitting

model. By Lemma 2.3.2, we can write the logarithm of the Bayes factor comparing Ga with

Gb as

logBFGa,Gb
“ ℓpp̂˚

aq ´ ℓpp̂˚
b q `

pkb,N ´ ka,Nq

2
plogN˚

` Op1qq ` Ca,N ´ Cb,N , (2.30)

where |Ca,N ´ Cb,N | ď 26pqN ´ 1qpc2 ` ϵNq for ϵN “ p18CN´1QN logQNq1{2, with probability

1 ´ qNOpQ´QN

N q.

Since qN increases with the sample size N , we require an expression for the log of posterior

odds ratio (2.25) using our asymptotic approximation in Lemma 2.3.2. For two competing

models Ga and Gb, by Assumption 7 with ρ ă 1{2, we have that,

log
πpGa|ρq

πpGb|ρq
9 log

ρka,N p1 ´ ρqQmax´ka,N

ρkb,N p1 ´ ρqQmax´kb,N
“ pka,N ´ kb,Nq log

ρ

1 ´ ρ
“ ´pka,N ´ kb,Nqpγ log qN ` Op1qq,

for some constant γ ą 0 and Qmax “ 25pqN ´ 1q. Therefore, the log of the posterior odds

ratio is
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logPRGa,Gb
“ ℓpp̂˚

aq ´ ℓpp̂˚
b q `

pkb,N ´ ka,Nq

2
plogN˚

` Op1qq ` 26pqN ´ 1qpc2 ` ϵNq

´ pka,N ´ kb,Nqpγ log qN ` Op1qq.

(2.31)

Let Ca and Sa denote the set of cliques and the set of separators for model Ga, respectively.

For N observations, we have

ℓpp̂˚
aq “ N˚

ÿ

CPCa

ÿ

iCPIC

p̂˚C
a piCq log p̂˚C

a piCq ´ N˚
ÿ

SPSa

νpSq
ÿ

iSPIS

p̂˚S
a piSq log p̂˚S

a piSq,

and

Et log fapxq “ N˚
ÿ

CPCa

ÿ

iCPIC

pC0,apiq log pC0,apiq ´ N˚
ÿ

SPSa

νpSq
ÿ

iSPIS

pS0,apiq log pS0,apiq,

where log fa represents the log density under graph Ga, and the expectation is under the true

density ftpxq. We also have the equivalent expressions for ℓpp̂˚
b q and Et log fbpxq “ Et log ftpxq,

corresponding to the model Gb. Next, we write

ℓpp̂˚
aq ´ ℓpp̂˚

b q “ Et log fapxq ´ Et log ftpxq ` ℓpp̂˚
aq ´ Et log fapxq ´ rℓpp̂˚

b q ´ Et log ftpxqs .

55



Under Assumption 5, for all the underfitting models,

Et log ftpxq ´ Et log fapxq ą cmN
˚,

where cm is the lower bound for the Kullback–Leibler divergence.

By Lemma 4.1.11 with ϵN “ p18CN´1QN logQNq1{2,

|ℓpp̂˚
aq ´ Et log fapxq| ă 25pqN ´ 1qN˚ϵN

and

|ℓpp̂˚
b q ´ Et log ftpxq| ă 25pqN ´ 1qN˚ϵN

with probability 1 ´ 26pqN ´ 1qOpQ´QN

N q. Therefore,

P
ˆ

PRGa,Gb
ă exp

␣

´ cmN
˚

` 26pqN ´ 1qN˚ϵN `
pkb,N ´ ka,Nq

2
plogN˚

` Op1qq

` 26pqN ´ 1qpc2 ` ϵNq ´ pka,N ´ kb,Nqpγ log qN ` Op1qq
(

˙

“ P
ˆ

PRGa,Gb
ă exp

␣

´ cmN
˚

` 26pqN ´ 1qrc2 ` pN˚
` 1qϵN s ` pkb,N ´ ka,Nqr1{2 logN˚

` γ log qN ` Op1qs
(

˙

ą 1 ´ OpQ´QN

N q.

Notice that qNN˚ϵN “ qNNϵN ` qNαϵN and qNNϵN “ p18CqN
4N log q2Nq1{2. Under Assump-
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tion 2, q4N log q2N9q4N log qN ă N ; thus, pqN
4N log q2Nq1{2 ă N ă N˚. Therefore, the leading

term is ´cmN
˚ and PRGa,Gb

P
Ñ́ 0 for qN Ñ 8 as N Ñ 8.

Lemma 2.4.4. Let qN be increasing with N , let α be the total fictive counts and let ω be a

positive constant greater than 6. If Ga and Gb are both decomposable overfitting models, with

|Ea X Et| “ |Eb X Et| “ |Et| and ka,N ą kb,N , then for ϵN “ p18CN´1QN logQNq1{2, and

positive constant γ ą pω{2M1 ´ 2q,

PRGa,Gb
ă exp

␣

´ pka,N ´ kb,Nqp2 ` γ ´ ω{2M1q log qNt1 ` op1qu
(

,

with probability greater than 1´OpqN
´ãq ´OpQ´QN

N q as N Ñ 8, where ã “ pka,N ´ kb,Nqω{6

and M1 is the lower bound for the smallest eigenvalue of the Fisher Information matrix under

the true model.

Proof of Lemma 2.4.4. Let p̂t be the vector of marginal frequency estimators for the true

model, and let the decomposable models Ga and Gb both be overfitting models with

ka,N ą kb,N . By Lemma 2.3.2, we can write the logarithm of the Bayes factor comparing Ga

with Gb as

logBFGa,Gb
“ ℓpp̂˚

aq ´ ℓpp̂˚
b q ´

pka,N ´ kb,Nq

2
plogN˚

` Op1qq ` Ca,N ´ Cb,N , (2.32)
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where |Ca,N ´ Cb,N | ď 26pqN ´ 1qpc2 ` ϵNq for ϵN “ p18CN´1QN logQNq1{2, with probability

1 ´ qNOpQ´QN

N q.

Similar to the proof of Lemma 2.4.3, we require an expression for the log of posterior

odds ratio (2.25). For γ ą pω{2M1 ´ 2q and ρ ă 1{2, where ω and M1 are positive constants

defined later in the proof, by Assumption 7

log
πpGa|ρq

πpGb|ρq
ă pka,N ´ kb,Nq log

ρ

1 ´ ρ
“ ´pka,N ´ kb,Nqpγ log qN ` Op1qq.

Therefore, the log of the posterior odds ratio is

logPRGa,Gb
“ ℓpp̂˚

aq ´ ℓpp̂˚
b q ´

pka,N ´ kb,Nq

2
plogN˚

` Op1qq ` 26pqN ´ 1qpc2 ` ϵNq

´ pka,N ´ kb,Nqpγ log qN ` Op1qq.

(2.33)

We can write

|ℓpp̂˚
aq ´ ℓpp̂˚

b q| “ |ℓpp̂˚
aq ´ ℓpp̂aq ´ tℓpp̂˚

b q ´ ℓpp̂bqu ` ℓpp̂aq ´ ℓpp̂bq|

ď |ℓpp̂˚
aq ´ ℓpp̂aq| ` |ℓpp̂˚

b q ´ ℓpp̂bq| ` |ℓpp̂aq ´ ℓpp̂bq|

Recall that
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|ℓpp̂˚
aq ´ ℓpp̂aq| “

ˇ

ˇ

ˇ

ˇ

ÿ

CPC

ÿ

iCPIC

n˚
a,C log p̂˚C

a piCq ´
ÿ

SPS
νpSq

ÿ

iSPIS

n˚
a,S log p̂

˚S
a piSq

´

˜

ÿ

CPC

ÿ

iCPIC

na,C log p̂Ca piCq ´
ÿ

SPS

ÿ

iSPIS

na,S log p̂
S
a piSq

¸

ˇ

ˇ

ˇ

ˇ

(2.34)

If any cell i has zero counts, then the MLE p̂piq “ 0 and log p̂piq is undefined, meaning ℓpp̂aq

and ℓpp̂bq as also undefined. By Assumption 1, we have that p0piq is bounded from below;

that is, p0piq ą c1 ą 0 for some constant c1. By Lemma 4.1.8,

|p̂piq ´ p0piq| ă p2N´1QN logQNq
1{2

with probability 1 ´ 2e´QN logQN . If

p2N´1QN logQNq
1{2

ă
c1

2
,

as N Ñ 8, then

p̂piq ą p0piq ´ p2N´1QN logQNq
1{2

ą c1
´

c1

2
ą

c1

2
ą 0.
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Thus, we have

P
ˆ

min p̂piq ą
c1

2

˙

“ 1 ´ 2qN2e´QN logQN “ 1 ´ epqN`1q log 2´QN logQN ,

where 2qN is the number of cells. Therefore, with probability tending to 1, the MLE for each

cell probability is non-zero, and hence the log-likelihoods evaluated at the MLE are well

defined.

For some clique C P C in the model Ga, let us consider (2.34) for a particular marginal

cell iC P IC . Then we have

ˇ

ˇ

ˇ

ˇ

pnpiCq ` spiCqq log

ˆ

npiCq ` spiCq

N˚

˙

´ npiCq log
npiCq

N

ˇ

ˇ

ˇ

ˇ

.

By the mean value theorem for functions with two variables, there exists a point pc, dq on

the line segment from px1, y1q to px2, y2q such that fpx2, y2q ´ fpx1, y1q “
Bf
Bx

pc, dqpx2 ´ x1q `

Bf
By

pc, dqpy2 ´ y1q. Consider the function fpx, yq “ x log x
y
, then Bf

Bx
“ log x

y
` 1 and Bf

By
“ ´x

y
.

Hence,

ˇ

ˇ

ˇ

ˇ

pnpiCq ` spiCqq log

ˆ

npiCq ` spiCq

N˚

˙

´ npiCq log
npiCq

N

ˇ

ˇ

ˇ

ˇ

“

´

log
c

d
` 1

¯

spiCq ´
c

d
α,
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where c ă d since pc, dq is a point on the line segment from pnpiCq, Nq to pnpiCq`spiCq, N`αq.

Then by Assumption 3,

ÿ

CPC

ÿ

iCPIC

ˇ

ˇ

ˇ

´

log
c

d
` 1

¯

spiCq ´
c

d
α
ˇ

ˇ

ˇ
ď c3pqN ´ 1qα,

where c3 ě 25 is a constant. Therefore,

|ℓpp̂˚
aq ´ ℓpp̂aq| ` |ℓpp̂˚

b q ´ ℓpp̂bq| ď 2c3pqN ´ 1qα.

Next, since the log-linear parametrization (2.5) is a unique representation we can use

ℓpθ̂aq ´ ℓpθ̂bq in the place of ℓpp̂aq ´ ℓpp̂bq. By Lemma 4.2.1, we have

2tℓpθ̂aq ´ ℓpθ̂bqu “ 2tℓpθ̂aq ´ ℓpθ0qu ´ 2tℓpθ̂bq ´ ℓpθ0qu

“
1

N
Uapθ0q

T
`

H´1
a pθ0q ´ DaH

´1
b pθ0qDa

˘

Uapθ0qt1 ` op1qu

with probability 1´2pka`kbqOpQ´QN

N q, where pka`kbq ď 26pqN´1q, Da “
`

Ikb,N , 0kb,N ,ka,N´kb,N

˘

and Ikb,N is the identity matrix with dimension kb,N ˆ kb,N and 0kb,N ,ka,N´kb,N is the matrix

of zero with dimension kb,N ˆ pka,N ´ kb,Nq. To simplify notation, let Ua “ Uapθ0q and

H
´1{2
a “ H

´1{2
a pθ0q. Then we standardize the score vector as follows,
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1

N
UT
a

`

H´1
a ´ DT

a H
´1
b Da

˘

Ua

“

ˆ

H´1{2
a

Ua
?
N

˙T
”

H1{2
a

`

H´1
a ´ DT

a H
´1
b Da

˘

H1{2
a

ı

ˆ

H´1{2
a

Ua
?
N

˙

.

We want to show that N´1{2H
´1{2
a Ua is a sub-Gaussian random vector. By definition, a

random vector X P Rd is said to be sub-Gaussian if it is centred and if, for any unit vector

u P Rd, the random variable uTX is sub-Gaussian (Pauwels, 2020).

We know the score vector has the form U “ t ´ NP pθq, where t is the vector of sufficient

statistics defined in (2.6) and P pθq is the vector of corresponding marginal probabilities as

defined in (2.9), (2.10), and (2.11) - both with length |J |. Let t̃ denote an indicator vector,

where it has a 1 in the component indicating one observation for a particular tj for j P J and

0 in its other components. Since each component of t̃ and P pθq are less or equal to 1, then

||t̃ ´ 1 ¨ P pθq||2 ď ||t̃||2 ` ||P pθq||2 ď 2. Thus, if u P R|J | is a unit vector such that ||u||22 “ 1,

then

uTH´1{2
a pt̃ ´ P pθqq ď ||uTH´1{2

a ||2||t̃ ´ P pθq||2 ď ||u||2||H´1{2
a ||2 ¨ 2 “ λmaxpH´1

a q ¨ 2,

where λmaxpHaq denotes the largest eigenvalue of the matrix Ha. By Assumption 6, λmaxpH´1
a q “
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rλmaxpHaqs´1 ď M´1
1 for a constant M1 ą 0 such that M1 ă λminpHaq. Thus,

uTH´1{2
a pt̃ ´ P pθqq ď

2

M1

,

meaning uTH
´1{2
a pt̃ ´ P̃ pθqq is a strictly bounded random variable. Then, since

E
`

uTH´1{2
a pt̃ ´ P pθqq

˘

“ 0,

we can apply Hoeffding’s Lemma (Lemma 1.8 in Rigollet (2003)). Therefore, for all s P R,

E
`

exp
␣

suTH´1{2
a pt̃ ´ P pθqq

(˘

ď es
2p2{M1q2{8

“ es
2{2M2

1 .

Thus, by definition and by Hoeffding’s Lemma, since uTH
´1{2
a pt̃´P pθqq „ subGaussianp1{M2

1 q,

then H
´1{2
a pt̃ ´ P pθqq „ subGaussianp1{M2

1 q.

For N data points, N´1{2uTH
´1{2
a Ua “ N´1{2

řN
i“1 u

TH
´1{2
a pt̃i ´ NP pθqq. Since the 2-

norm of a vector of length N with components N´1{2 is equal to 1, by Corollary 1.7 in Rigollet

(2003), we have that

E
`

exp
␣

sN´1{2uTH´1{2
a Ua

(˘

ď es
2{2M2

1 ,
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meaning N´1{2uTH
´1{2
a Ua „ subGaussianp1{M2

1 q. Therefore, by definition, N´1{2H
´1{2
a Ua „

subGaussianp1{M2
1 q.

For the rest of the proof, we follow the proof of Lemma A.4 from Gao and Carroll

(2017) which applies the large deviation result from Corollary 4.2 in Spokoiny and Zhilova

(2013). Let ξ “ N´1{2H
´1{2
a Ua and A “ H

1{2
a

`

H´1
a ´ DT

aH
´1
b Da

˘

H
1{2
a . It can be shown that

trpAq “ ka,N ´ kb,N , where trp¨q denotes the trace of a matrix. Then we define ξ˚ “ M1ξ,

because ξ˚ satisfies the exponential moment condition

logE
`

exptsT ξ˚
u
˘

ď ||s||
2
2{2, s P R|J |, ||s||

2
2 ď g

required for Corollary 4.2 (Spokoiny and Zhilova, 2013) for any real number g ą 0. Corollary

4.2 states that

P
`

|ξ˚TAξ˚
| ě pka,N ´ kb,Nq ` K

˘

ď 2 expt´K{6u ` 8.4 expt´xcu,

with 6xc ą K ą r2pka,N ´ kb,Nqs1{2{3 and xc ą g2{4 for large N . We choose g “ p4QN logQNq1{2

and K “ pka,N ´ kb,Nqω log qN , for a positive constant ω ą 6. Therefore, pka,N ´ kb,Nqω log qN ą

r2pka,N ´ kb,Nqs1{2{3 and

P
`

|ξ˚TAξ˚
| ě pka,N ´ kb,Nqp1 ` ω log qNq

˘

ď 10.4 expt´pka,N ´ kb,Nqω log qN{6u “ OpqN
´ã

q,
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where ã “ pka,N ´ kb,Nqω{6.

The terms Ca,N and Cb,N result from our approximation in Lemma 2.3.2. In the underfitting

case, in Lemma 2.4.3, the order of the difference Ca,N ´ Cb,N was less than the leading term.

However, for the overfitting case, we need to be more precise with this difference since both

terms depend on the number of model parameters and the parameter for Gb are a subset of

those for Ga. From Lemma 2.3.2, we see that Ca,N ´ Cb,N is a bound for

ˇ

ˇ

ˇ

ˇ

ˇ

´
1

2

˜

ÿ

CPC

ÿ

iCPIC

log p̂˚C
a piCq ´

ÿ

SPS
νpSq

ÿ

iSPIS

log p̂˚S
a piSq

¸
ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

´
1

2

˜

ÿ

CPC

ÿ

iCPIC

log p̂˚C
b piCq ´

ÿ

SPS
νpSq

ÿ

iSPIS

log p̂˚S
b piSq

¸ˇ

ˇ

ˇ

ˇ

ˇ

.

Therefore, by Lemma 4.1.9 with ϵN “ pCN´1QN logQNq1{2,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´
1

2

˜

ÿ

CPC

ÿ

iCPIC

log p̂˚C
a piCq ´

ÿ

SPS
νpSq

ÿ

iSPIS

log p̂˚S
a piSq

¸

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

´
1

2

ˆ

ÿ

CPC

ÿ

iCPIC

log p̂˚C
b piCq ´

ÿ

SPS
νpSq

ÿ

iSPIS

log p̂˚S
b piSq

˙ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

˜

ÿ

CPC

ÿ

iCPIC

log p̂˚C
a piCq ´

ÿ

SPS
νpSq

ÿ

iSPIS

log p̂˚S
a piSq

¸

´

ˆ

ÿ

CPC

ÿ

iCPIC

log p̂˚C
b piCq

´
ÿ

SPS
νpSq

ÿ

iSPIS

log p̂˚S
b piSq

˙
ˇ

ˇ

ˇ

ˇ

ă

ˇ

ˇ

ˇ

ˇ

˜

ÿ

CPC

ÿ

iCPIC

plog pC0,apiCq ` ϵNq ´
ÿ

SPS
νpSq

ÿ

iSPIS

plog pS0,apiSq ` ϵNq

¸

´

ˆ

ÿ

CPC

ÿ

iCPIC

plog pC0,bpiCq ` ϵNq ´
ÿ

SPS
νpSq

ÿ

iSPIS

plog pS0,bpiSq ` ϵNq

˙
ˇ

ˇ

ˇ

ˇ

,

65



with probability 1 ´ OpQ´QN

N q. Under Assumptions 1 and 4, for a given clique
ˇ

ˇ

ř

iCPIC
log p0piCq

ˇ

ˇ ď 25c2, and for a given separator
ˇ

ˇ

ř

iSPIS
log p0piSq

ˇ

ˇ ď 25c2. Since Ga is

an overfitting model, there are pka,N ´ kb,Nq extra parameters θj such that j P JazJb, where

Ja is the subset of I corresponding to the free parameters in Ga and similarly for Jb. By

Assumption 3 each j has at most five 1’s in it, meaning as qN Ñ 8, the addition of any θj

for j P JazJb affects at most 5 cliques and 4 separators. Thus,

ˇ

ˇ

ˇ

ˇ

˜

ÿ

CPC

ÿ

iCPIC

plog pC0,apiCq ` ϵNq ´
ÿ

SPS
νpSq

ÿ

iSPIS

plog pS0,apiSq ` ϵNq

¸

´

ˆ

ÿ

CPC

ÿ

iCPIC

plog pC0,bpiCq ` ϵNq ´
ÿ

SPS
νpSq

ÿ

iSPIS

plog pS0,bpiSq ` ϵNq

˙
ˇ

ˇ

ˇ

ˇ

ď 2 ¨ 5 ¨ 25pc2 ` ϵNqpka,N ´ kb,Nq ` 2 ¨ 4 ¨ 25pc2 ` ϵNqpka,N ´ kb,Nq

“ 18 ¨ 25pc2 ` ϵNqpka,N ´ kb,Nq

We choose α “ 1
pqN´1q

. Therefore,
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P
ˆ

PRGa,Gb
ă exp

␣

2c3pqN ´ 1qα ´
pka,N ´ kb,Nq

2
plogN˚

` Op1qq `
pka,N ´ kb,Nq

2M1

p1 ` ω log qNq

` 18 ¨ 25pc2 ` ϵNqpka,N ´ kb,Nq ´ pka,N ´ kb,Nqpγ log qN ` Op1qq
(˘

ą P
ˆ

PRGa,Gb
ă exp

␣

2c3 ´ pka,N ´ kb,Nqp2 ` γ ´ ω{2M1q log qN ` pka,N ´ kb,Nqr18 ¨ 25pc2 ` ϵNq

` 1{2M1 ` Op1qs
(

˙

“ P
ˆ

PRGa,Gb
ă exp

␣

´ pka,N ´ kb,Nqp2 ` γ ´ ω{2M1q log qNt1 ` op1qu
(

˙

ą 1 ´ OpqN
´ã

q ´ OpQ´QN

N q.

Since γ ą pω{2M1 ´ 2q implies that ´pka,N ´ kb,Nqp2 ` γ ´ ω{2M1q ă 0, then the leading

term is ´pka,N ´ kb,Nqp2 ` γ ´ ω{2M1q log qN and PRGa,Gb

P
Ñ́ 0 for qN Ñ 8 as N Ñ 8.

Lemma 2.4.3 yields very similar results as Lemma 2.4.1. When the competing model

is an underfitting model, the model prior does not affect the result since log qN ă N . By

Assumption 2, we have that q4N log qN ă N˚ and by Assumption 3, the upper bound for the

number of parameters is a model is 25pqN´1q, meaning pkb,N´ka,Nq{2 logN˚9qN logN˚ ă N˚

since logN˚ ă pN˚q3{4. Thus, in Lemma 2.4.3, ´cmN
˚ is the leading term and the posterior

odds ratio converges to zero at an exponential rate. The model prior makes sure that strong

model selection consistency will hold in the high-dimensional case for all overfitting models.

Indeed, Lemma 2.4.4 holds for γ ą pω{2M1 ´ 2q, such that log ρ “ log qN
´γ, where ρ is the

prior edge inclusion probability. In Lemma 2.4.4, the posterior odds ratio converges at a
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polynomial rate. Therefore, we see that the removal of a true edge still has a stronger penalty

than adding a false edge when qN is increasing, but the posterior odds ratio also favours the

model with less superfluous edges.

2.4.2 Strong model selection consistency for decomposable graphs

So far we have discussed in general the pairwise comparison of decomposable models. Now

we must specify how the previous four lemmas from Section 2.4.1 are used when considering

the true model, specifically when the true model is decomposable. Suppose Ga is any

decomposable model such that Ga ‰ Gt. When Ga is an underfitting model we have Ga ⊊ Gt

and we can apply Lemma 2.4.1 if q is fixed or Lemma 2.4.3 if qN is increasing, where we treat

Gt as an overfitting model. Similarly, when Ga is an overfitting model, we have Ga Ć Gt and

we can apply Lemma 2.4.2 or Lemma 2.4.4, where we treat both Gt and Ga as overfitting

models with ka ą kt.

In Section 2.3.1, we defined the posterior probability (2.21) for any graph G. Thus, for

the true graph Gt, we define

fpGt|xq “
IGtpt ` s,N ` αq

ř

G1PDq
IG1pt ` s,N ` αq

. (2.35)

In order to proof strong consistency, we show that the posterior probability fpGt|xq converges

to 1 as N Ñ 8. We do this by showing that the sum of all of the Bayes factors, for fixed q,

or all of the posterior odds ratios, for increasing qN , converge to 0.

Theorem 2.4.5 and Theorem 2.4.6 state the strong consistency results for when the true
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graph Gt is decomposable for fixed q and increasing qN , respectively.

Theorem 2.4.5. Let q be fixed. If the true graph Gt is decomposable, then we have the

following:

1. Let Ga be any decomposable graph which is not equal to Gt, then BFGa,Gt

P
Ñ́ 0 as

N Ñ 8.

2. For all competing decomposable models, fpGt|xq
P
Ñ́ 1 as N Ñ 8.

Proof of Theorem 2.4.5. This proof requires two cases: when the competing model is an

underfitting model, meaning Gt Ć Ga, and when the competing model is an overfiting model,

meaning Gt ⊊ Ga.

Part 1. In case 1, when |Ea X Et| ă |Et|, Ga is an underfitting model. Since Gt is

decomposable and has more edges than Ga, by Lemma 2.4.1, BFGa,Gt

P
Ñ́ 0.

Let cm ą 0 be the smallest Kullback-Leibler divergence between an underfitting model

Ga and the true graph Gt, which by Assumption 5 is bounded. By Lemma 2.4.1, where

ϵN “ p18CN´1q logNq1{2, and C1 and C2 are positive constants,

logBFGa,Gt ă ´cmN
˚

` C1N
˚ϵN ` C2 logN

˚
` Op1q ă ´cmN

˚
` c1N˚

“ ´pcm ´ c1
qN˚,

where c1 ą 0 be a positive constant. Let δ1 be the upper bound for logBFGa,Gt . Therefore,

for all of the competing underfitting models, we have
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P
ˆ

max
Ga:GtĆGa

BFGa,Gt ď e´δ1

˙

ą 1 ´ 2q expt´Cq logNu

ą 1 ´ exptq2 log 2 ´ Cq logNu Ñ 1,

as N Ñ 8, since q is fixed and C is a positive universal constant.

In case 2, when |Ea X Et| “ |Et| and |Ea| ą |Et|, then ka ą kt. Since Ga is an overfitting

model and Gt is decomposable, by Lemma 2.4.2, BFGa,Gt

P
Ñ́ 0.

By Lemma 2.4.2, where α is the total fictive counts, and C1, and C2 are positive constants,

logBFGa,Gt ă ´C1pka ´ ktq logN
˚

` C2pka ´ ktq logplogNq ` Op1q

ă ´pC1 ´ C2qpka ´ ktq logN
˚

` Op1q

“ ´C 1
pka ´ ktq logN

˚
` Op1q,

where C 1 is a constant such that 0 ă C 1 ă pC1 ´C2q. Let m1 “ ka ´kt and let δ2 be the upper

bound for logBFGa,Gt . For fixed q, the number of model parameters is at most 2q ´ 1. Since

1 ´ OpN´ãq ą 1 ´ OpN´ãq ´ OpN´qq, using the binomial theorem, for all of the competing

overfitting models, we have

P
ˆ

max
Ga:Gt⊊Ga

BFGa,Gt ď e´δ2

˙

ą 1 ´

”

`

1 ` N´ω
˘2q

´ 1
ı

Ñ 1,
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as N Ñ 8, since q is fixed and limNÑ8 p1 ` N´ωq
2q

“ 1.

Part 2. From Part 1, we have that the largest upper bound for BFGa,Gt when Gt Ć Ga is

BFGa,Gt:GtĆGa ă e´D1N˚

,

where D1 “ cm ´ c1 ą 0 is a constant. Let k1
a be the number of true parameters in ka. Then

for all underfitting competing models, we have

ÿ

Ga:GtĆGa

BFGa,Gt “

kt´1
ÿ

k1
a“0

ˆ

kt
k1
a

˙ p2q´1q´kt
ÿ

ka´k1
a“0

ˆ

p2q ´ 1q ´ kt
ka ´ k1

a

˙

BFGa,Gt:GtĆGa

ă exptq log 2 ´ D1N
˚
u Ñ 0,

as N Ñ 8. Also, we have that the largest upper bound for BFGa,Gt when Gt ⊊ Ga is

BFGa,Gt:Gt⊊Ga ă e´D2pka´ktq logN˚

,

where 1 ă D2 ă pC1 ´C2q is a constant. Let m1 “ ka ´ kt. Then for all overfitting competing

models, we have
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ÿ

Ga:Gt⊊Ga

BFGa,Gt “

2p´1
ÿ

ka“kt`1

ˆ

p2q ´ 1q ´ kt
ka ´ kt

˙

BFGa,Gt:Gt⊊Ga

ă

p2q´1q´kt
ÿ

m1“1

ˆ

p2q ´ 1q ´ kt
m1

˙

”

e´D2 logN˚
ım1

“

”

1 ` e´D2 logN˚
ıp2q´1q´kt

´ 1

ă
“

1 ` N˚´D2
‰2q

´ 1

ă expt2qN˚´D2u ´ 1 Ñ 0

as N Ñ 8, since 1 ` x ă ex for x ą 0, q is finite and D2 ą 0.

From (2.35) and the proof of Theorem 2.4.6, we have

fpGt|xq “
1

1 `
ř

Ga‰Gt
BFGa,Gt

.

When q is fixed and Gt is decomposable, we have shown that for any competing decomposable

graph Ga, the sum
ř

Ga‰Gt
BFGa,Gt

P
Ñ́ 0. Therefore, fpGt|xq

P
Ñ́ 1 as N Ñ 8.

Theorem 2.4.6. Let qN be increasing with N . If the true graph Gt is decomposable, then we

have the following:

1. Let Ga be any decomposable graph which is not equal to Gt, then PRGa,Gt

P
Ñ́ 0 as

N Ñ 8.
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2. For all competing decomposable models, fpGt|xq
P
Ñ́ 1 as N Ñ 8.

To prove Part 2 of Theorem 2.4.6, we require a slightly stronger condition on γ; that is,

γ ą pω{2M1 ´ 1q.

Proof of Theorem 2.4.6. This proof requires two cases: when the competing model is an

underfitting model, meaning Gt Ć Ga, and when the competing model is an overfiting model,

meaning Gt ⊊ Ga.

Part 1. In case 1, when |Ea X Et| ă |Et|, Ga is an underfitting model. Since Gt is

decomposable and has more edges than Ga, by Lemma 2.4.3, PRGa,Gt

P
Ñ́ 0.

Let cm ą 0 be the smallest Kullback-Leibler divergence between an underfitting model

Ga and the true model Gt, which by Assumption 5 is bounded. By Lemma 2.4.3, where

ϵN “ p18CN´1QN logQNq1{2, and c2, and γ are positive constants,

logPRGa,Gt ă ´cmN
˚

` 26pqN ´ 1qrc2 ` pN˚
` 1qϵN s

` pkt,N ´ ka,Nq
“

1{2 logN˚
` γ log qN ` Op1q

‰

ă ´cmN
˚

` c1N˚

“ ´pcm ´ c1
qN˚,

where c1 ą 0 be a positive constant. Let δ1 be the upper bound for logPRGa,Gt . Therefore,

for all of the competing underfitting models, we have
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P
ˆ

max
Ga:GtĆGa

PRGa,Gt ď e´δ1

˙

ą 1 ´ 2QN expt´CQN logQNu

ą 1 ´ exptQN log 2 ´ CQN logQNu Ñ 1

as qN increases with N Ñ 8, where C is a positive universal constant.

In case 2, when |Ea X Et| “ |Et| and |Ea| ą |Et|, then ka,N ą kt,N . Since Ga is an

overfitting model and Gt is decomposable, by Lemma 2.4.4, PRGa,Gt

P
Ñ́ 0.

By Lemma 2.4.4, where ϵN “ p18CN´1QN logQNq1{2, and M1, γ, and ω are positive

constants,

logPRGa,Gt ă ´pka,N ´ kt,Nqp2 ` γ ´ ω{2M1q log qNt1 ` op1qu

“ ´C 1
pka,N ´ kt,Nq log qN ,

where C 1 is a constant such that 0 ă C 1 ă p2 ` γ ´ ω{2M1q. Let m1 “ ka,N ´ kt,N and

let δ2 be the upper bound for logPRGa,Gt . By Assumption 3, the maximum order of any

clique be 5, so the number of model parameters is at most 32pqN ´ 1q. Since 1 ´ OpqN
´ãq ą

1 ´ OpqN
´ãq ´ OpQ´QN

N q, using the binomial theorem, for all of the competing overfitting

models we have
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P
ˆ

max
Ga:Gt⊊Ga

PRGa,Gt ď e´δ2

˙

ą 1 ´
ÿ

maxGa:Gt⊊Ga

10.4 exp t´m1ω log qN{6u

ą 1 ´

32pqN´1q
ÿ

ka,N“kt,N`1

ˆ

32pqN ´ 1q ´ kt,N
ka,N ´ kt,N

˙

10.4 exp t´m1ω log qN{6u

ą 1 ´

32pqN´1q´kt,N
ÿ

m1“1

ˆ

32pqN ´ 1q ´ kt,N
m1

˙

r10.4 exp t´ω log qN{6us
m1

ą 1 ´

”

`

1 ` 10.4qN
´ω{6

˘32qN
´ 1

ı

Ñ 1,

for qN increasing with N Ñ 8, since

lim
qNÑ8

log
`

1 ` 10.4qN
´ω{6

˘

1{p32qNq
“ lim

qNÑ8

p10.4p´ω{6qqN
´ω{6´1q

1`10.4qN ´ω{6

´1{p32qN 2q

“ lim
qNÑ8

ˆ

10.4p´ω{6q

´1{32

˙

qN
1´ω{6

1 ` 10.4qN´ω{6
“ 0

implies limqNÑ8

`

1 ` 10.4qN
´ω{6

˘32qN
“ 1, for ω ą 6.

Part 2. From Part 1, we have that the largest upper bound for PRGa,Gt when Gt Ć Ga is

PRGa,Gt:GtĆGa ă e´D1N˚

,

where D1 “ cm ´ c1 ą 0 is a constant. Let k1
a,N be the number of true parameters in ka,N .
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Then for all underfitting competing models, we have

ÿ

Ga:GtĆGa

PRGa,Gt “

kt´1
ÿ

ka,N 1“0

ˆ

kt,N
ka,N 1

˙ 32pqN´1q´kt,N
ÿ

ka,N´k1
a,N“0

ˆ

32pqN ´ 1q ´ kt,N
ka,N ´ k1

a,N

˙

PRGa,Gt:GtĆGa

ă exptQN log 2 ´ D1N
˚
u Ñ 0,

as N Ñ 8. Also, we have that the largest upper for PRGa,Gt when Gt ⊊ Ga is

PRGa,Gt:Gt⊊Ga ă e´D2pka,N´kt,N q log qN ,

where 1 ă D2 ă p2` γ ´ω{2M1q is a constant. Let m1 “ ka,N ´ kt,N . Then for all overfitting

competing models, we have

ÿ

Ga:Gt⊊Ga

PRGa,Gt “

32pqN´1q
ÿ

ka,N“kt,N`1

ˆ

32pqN ´ 1q ´ kt,N
ka,N ´ kt,N

˙

PRGa,Gt:Gt⊊Ga

ă

32pqN´1q´kt
ÿ

m1“1

ˆ

32pqN ´ 1q ´ kt
m1

˙

“

e´D2 log qN
‰m1

“
“

1 ` e´D2 log qN
‰32pqN´1q´kt

´ 1

ă
“

1 ` qN
´D2

‰32qN
´ 1

ă expt32{5qN
1´D2u ´ 1 Ñ 0

as qN Ñ 8, since 1 ` x ă ex for x ą 0 and D2 ą 1.
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From (2.35) we have

fpGt|xq “
IGtpt ` s,N ` αqπpGtq

ř

G1PDq
IG1pt ` s,N ` αqπpG1q

“
1

ř

G1PDq

IG1 pt`s,N`αqπpG1q

IGt pt`s,N`αqπpGtq

“
1

1 `
ř

Ga‰Gt
PRGa,Gt

.

When qN is increasing and Gt is decomposable, we have shown that for any competing

decomposable graph Ga, the sum
ř

Ga‰Gt
PRGa,Gt

P
Ñ́ 0. Therefore, fpGt|xq

P
Ñ́ 1 as N Ñ

8.

2.5 Theoretical results when the true graph is non-

decomposable

In the case when the true graph is non-decomposable, numerical methods are required

to compute the Bayes factor. To overcome this issue in the Gaussian case, Fitch et al.

(2014) prove that when the true graph is non-decomposable, model selection procedures for

decomposable graphs will favour a minimal triangulation of the true graph. In this section,

we prove that this is indeed also the case for discrete graphical models. We show that the

results from Section 2.4 can be extended to the non-decomposable case for both fixed q and

qN growing with N .

When Gt is non-decomposable, we denote Mt as the minimal triangulation space of Gt

and we let Gm “ pV,Emq be any minimum triangulation of Gt, where Em “ Et Y F and
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F is a non-empty set of fill-in edges. In this section, we use Ga to denote any competing

decomposable graph that is not a minimal triangulation.

Theorem 2.5.1. Let q be fixed. If the true graph Gt is non-decomposable, then we have the

following:

1. Let Gm be a minimal triangulation of the true model Gt and Ga be any decomposable

graph which is not a minimal triangulation, then BFGa,Gm

P
Ñ́ 0 as N Ñ 8.

2. If Gm1 and Gm2 are any two different minimal triangulations of Gt with the same

number of fill-in edges, then the Bayes factor between them BFGm1 ,Gm2
is stochastically

bounded.

3. Let Mt be the minimal triangulation space of Gt. Then
ř

GmPMt
fpGm|xq

P
Ñ́ 1 as

N Ñ 8.

Proof of Theorem 2.5.1. Similar to Theorem 2.4.5, this proof requires two cases: when a

minimal triangulation is competing with an underfitting model, meaning Gm Ć Ga, and when

a minimal triangulation is competing with an overfitting model, meaning Gm ⊊ Ga.

Part 1. In case 1, when |Ea X Et| ă |Em X Et| “ |Et|, Ga is an underfitting model and

Gm is a minimal triangulation of the true model Gt, which is considered as an overfitting

model. Then by Lemma 2.4.1, BFGa,Gm

P
Ñ́ 0.

Let cm ą 0 be the smallest Kullback-Leibler divergence between an underfitting model

Ga and the minimal triangulation Gm, which by Assumption 5 is bounded. By Lemma 2.4.1,
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where ϵN “ p18CN´1q logNq1{2,

logBFGa,Gm ă ´cmN
˚

` C1N
˚ϵN ` C2 logN

˚
` Op1q

ă ´cmN
˚

` c1N˚

“ ´pcm ´ c1
qN˚,

where c1 ą 0 be a positive constant. Let δ1 be the upper bound for logBFGa,Gm . Therefore,

for all of the competing underfitting models, we have

P
ˆ

max
Ga:GmĆGa

BFGa,Gm ď e´δ1

˙

ą 1 ´ exptq2 log 2 ´ Cq logNu Ñ 1,

as N Ñ 8, since q is fixed and C is a positive universal constant.

In case 2, when |Ea X Et| “ |Em X Et| “ |Et| and |Ea| ą |Em|, then ka ą km. Since the

competing model Ga and the minimal triangulation Gm are both decomposable overfitting

models, by Lemma 2.4.2, BFGa,Gm

P
Ñ́ 0.

By Lemma 2.4.2, where α is the total fictive counts, and C1, and C2 are positive constants,
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logBFGa,Gm ă ´C1pka ´ kmq logN˚
` C2pka ´ kmqp1 ` logplogNqq ` Op1q

ă ´pC1 ´ C2qpka ´ kmq logN˚
` Op1q

“ ´C 1
pka ´ kmq logN˚

` Op1q.

where C 1 is a constant such that 0 ă C 1 ă pC1 ´ C2q. Let m1 “ ka ´ km and let δ2 be the

upper bound for logBFGa,Gm . Since 1´OpN´ãq ą 1´OpN´ãq ´OpN´qq, using the binomial

theorem, for all of the competing overfitting models that are not a minimal triangulation we

have

P
ˆ

max
Ga:Gm⊊Ga

BFGa,Gm ď e´δ2

˙

ą 1 ´

”

`

1 ` N´ω
˘2q

´ 1
ı

Ñ 1,

as N Ñ 8, since q is fixed and limNÑ8 p1 ` N´ωq
2q

“ 1.

Part 2. Let Gm1 and Gm2 be two different minimum triangulations of Gt with the same

number of fill-in edges, with corresponding vectors of marginal frequency estimates p̂˚
m1

and

p̂˚
m2

. By Lemma 2.3.2, we have

logBFGm1 ,Gm2
“ ℓpp̂m1q ´ ℓpp̂m2q `

km2 ´ km1

2
logN˚

` Op1q

“ ℓpp̂m1q ´ ℓpp̂m2q ` Op1q,
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since |Em1 | “ |Em2 | and km1 “ km2 .

Let Gmc be the graph such that it contains the same edges as the true non-decomposable

graph Gt and the cycles in Gt which are greater or equal to 3 are complete subgraphs.

Therefore, Gm1 , Gm2 ⊊ Gmc ⊊ Gc, where Gc is the complete graph, and kmc ´km1 “ kmc ´km2

is finite. For the model Gm1 , we have

ℓpp̂˚
m1

q “ N˚
ÿ

CPC

ÿ

iCPIC

p̂˚C
m1

piCq log p̂˚C
m1

piCq ´ N˚
ÿ

SPS
νpSq

ÿ

iSPIS

p̂˚S
m1

piSq log p̂˚S
m1

piSq,

similarly for Gm2 and Gmc . Since Gm1 and Gm2 are both overfitting models, we follow the

proof of Lemma 2.4.2. We can write

|ℓpp̂˚
m1

q ´ ℓpp̂˚
m2

q| “ |ℓpp̂˚
m1

q ´ ℓpp̂m1q ´ tℓpp̂˚
m2

q ´ ℓpp̂m2qu ´ tℓpp̂mcq ´ ℓpp̂m1qu

` ℓpp̂mcq ´ ℓpp̂m2q|

ď |ℓpp̂˚
m1

q ´ ℓpp̂m1q| ` |ℓpp̂˚
m2

q ´ ℓpp̂m2q| ` |ℓpp̂mcq ´ ℓpp̂m1q|

` |ℓpp̂mcq ´ ℓpp̂m2q|

By Assumption 4,

|ℓpp̂˚
m1

q ´ ℓpp̂m1q| ă 25pq ´ 1qC 1N˚ α

N˚
“ 25pq ´ 1qC 1α
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and

ˇ

ˇℓpp̂˚
m2

q ´ ℓpp̂m2q
ˇ

ˇ ă 25pq ´ 1qC2N˚ α

N˚
“ 25pq ´ 1qC2α,

where C 1 and C2 are positive constants.

Let ξ1 “ N´1{2HmcUmc and A1 “ H
1{2
mc pH´1

mc
´ DT

mc
H´1

m1
DmcqH

1{2
mc , where

D “ pIkm1
, 0km1 ,kmc´km1

q, H denotes the Hessian matrix and U denotes the score vector.

Also, trpA1q “ pkmc ´ km1q. As seen in the proof of Lemma 2.4.2, we know that ξ1 „

subGaussianp1{M2
1 q. By Lemma 4.2.1, we can write |ℓpp̂mcq ´ ℓpp̂m1q| as 1

2
ξT1 A1ξ1t1 ` op1qu

with probability OpN´qq.

Let ξ˚ “ M1ξ, then ξ˚ satisfies the exponential moment condition

logE
`

exptsT ξ˚
u
˘

ď ||s||
2
2{2, s P R|J |, ||s||

2
2 ď g

required for Corollary 4.2 (Spokoiny and Zhilova, 2013) for any real number g ą 0. Corollary

4.2 states that

P
`

|ξ˚T
1 A1ξ

˚
1 | ě pkmc ´ km1q ` K

˘

ď 2 expt´K{6u ` 8.4 expt´xcu,

with 6xc ą K ą r2pkmc ´ km1qs1{2{3 and xc ą g2{4 for large N . We choose g “ p4q logNq1{2
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and K “ pkmc ´ km1qCϵ, where
b

2
9pkmc´km1 q

ă Cϵ ă ´ 6
pkmc´km1 q

log ϵ
20.8

for any 0 ă ϵ ă 1.

Therefore, pkmc ´ km1qCϵ ą r2pkmc ´ km1qs1{2{3 and q logN ą pkmc ´ km1qCϵ ą

b

2pkmc´km1 q

9

for large N . Since K{6 ă xc implies that e´K{6 ă e´xc , we have

P
`

|ξ˚T
1 A1ξ

˚
1 | ě pkmc ´ km1qp1 ` Cϵq

˘

ď 10.4 expt´pkmc ´ km1qCϵ{6u

ă ϵ{2.

Let ξ˚T
2 A2ξ

˚
2 be the quadratic form of ℓpp̂mcq ´ ℓpp̂m2q defined analogously to the quadratic

form for Gm1 . Then

P
`

|ξ˚T
2 A2ξ

˚
2 | ě pkmc ´ km2qp1 ` Cϵq

˘

ď 10.4 expt´pkmc ´ km2qCϵ{6u

ă ϵ{2.

Since kmc ´ km1 “ kmc ´ km2 , we can write

|ℓpp̂mcq ´ ℓpp̂m1q| ` |ℓpp̂mcq ´ ℓpp̂m2q| “ |ξ˚T
1 A1ξ

˚
1 | ` |ξ˚T

2 A2ξ
˚
2 |

ă 2pkmc ´ km1qp1 ` Cϵq.

Let C1 “ 25pq ´ 1qC 1 ` 25pq ´ 1qC2 and C2 “
pkmc´km1 q

2M1
be constants because q is fixed. Since

| logBFm1,m2 | ď |ℓpp̂m1q ´ ℓpp̂m2q| ` Op1q, then
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P p| logBFm1,m2 | ă C1α ` C2p1 ` Cϵq ` Op1qq ą 1 ´ ϵ{2 ´ ϵ{2

Therefore,

P pexpt´rC1α ` C2p1 ` Cϵq ` Op1qsu ă BFm1,m2 ă exptC1α ` C2p1 ` Cϵq ` Op1quq

ą 1 ´ ϵ.

Part 3. From Part 1, we have that the largest upper bound for BFGa,Gm when Gm Ć Ga

is

BFGa,Gm:GmĆGa ă e´D1N˚

,

where D1 “ cm ´ c1 ą 0 is a constant. Let k1
a be the number of true parameters in ka. Then

for all underfitting competing models, we have

ÿ

Ga:GmĆGa

BFGa,Gm “

kt´1
ÿ

k1
a“0

ˆ

km
k1
a

˙ p2q´1q´km
ÿ

ka´k1
a“0

ˆ

p2q ´ 1q ´ km
ka ´ k1

a

˙

BFGa,Gt:GmĆGa

ă exptq2 log 2 ´ D1N
˚
u Ñ 0,
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as N Ñ 8. Also, we have that the largest upper bound for BFGa,Gm when Gm ⊊ Ga is

BFGa,Gm:Gm⊊Ga ă e´D2pka´kmq logN˚

,

where 1 ă D2 ă pC1 ´C2q is a constant. Let m1 “ ka ´km. Then for all overfitting competing

models, we have

ÿ

Ga:Gm⊊Ga

BFGa,Gm “

2q´1
ÿ

ka“km`1

ˆ

p2q ´ 1q ´ km
ka ´ km

˙

BFGa,Gm:Gm⊊Ga

ă

p2q´1q´km
ÿ

m1“1

ˆ

p2q ´ 1q ´ km
m1

˙

”

e´D2 logN˚
ım1

“

”

1 ` e´D2 logN˚
ıp2q´1q´km

´ 1

ă
“

1 ` N˚´D2
‰2q

´ 1

ă expt2qN˚´D2u ´ 1 Ñ 0,

as N Ñ 8, since 1 ` x ă ex for x ą 0, q is finite and D2 ą 1. Therefore,

ÿ

Ga:Ga‰Gm

BFGa,Gm

P
Ñ́ 0, as N Ñ 8 (2.36)

Let Gm1 , Gm2 , ..., Gml
be all the minimal triangulations of Gt, where l is a positive integer

and Gm P Mt. Then similar to the proof of Theorem 2.5.2, we have
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ÿ

GmPMt

fpGm|xq “
1

1 `
ř

GaRMt

IGa pt`s,N`αq
řl

i“1 IGmi
pt`s,N`αq

(2.37)

and BFGmi ,Ga

P
Ñ́ 8, for i “ 1, 2, . . . , l. Therefore,

ÿ

GmPMt

fpGm|xq “
1

1 `
ř

GaRMt

1
řl

i“1 BFGmi,Ga

P
Ñ́ 1 (2.38)

for fixed q as N Ñ 8.

Part 1 of Theorem 2.5.1 states that for fixed q when Gt is non-decomposable, the Bayes

factor will favour a minimal triangulation over any other competing decomposable graph.

This is compatible with our results from Section 2.4 since a minimal triangulation contains

all of the true edges and the least number of possible false edges. Part 2 of the theorem

states that the Bayes factor between two minimal triangulations with the same number of

fill-in edges is stochastically bounded, meaning the Bayes factor is bounded by a constant

Cϵ, for any 0 ă ϵ ă 1. To prove this, we use the same approach as we do for comparing

two overfitting models. The simulation results in Fitch et al. (2014) and Niu et al. (2021)

suggest that one minimal triangulation being favoured over the other is data-dependent. Part

3 states that the posterior probability of competing models will eventually concentrate within

the minimal triangulation space.

Theorem 2.5.2 provides the equivalent results for the high-dimensional case, when qN Ñ 8
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as N Ñ 8. Similar to Part 2 of Theorem 2.4.6, to prove Part 3 of Theorem 2.5.2, we require

γ ą pω{2M1 ´ 1q.

Theorem 2.5.2. Let qN be increasing with N . If the true graph Gt is non-decomposable,

then we have the following:

1. Let Gm be a minimal triangulation of the true model Gt and Ga be any decomposable

graph which is not a minimal triangulation, then PRGa,Gm

P
Ñ́ 0 as N Ñ 8.

2. If Gm1 and Gm2 are any two different minimal triangulations of Gt with the same

finite number of fill-in edges, then the posterior odds ratio between them PRGm1 ,Gm2
is

stochastically bounded.

3. Let Mt be the minimal triangulation space of Gt. Then
ř

GmPMt
fpGm|xq

P
Ñ́ 1 as

N Ñ 8.

Proof of Theorem 2.5.2. This proof requires two cases: when a minimal triangulation is

competing with an underfitting model, meaning Gm Ć Ga, and when a minimal triangulation

is competing with an overfitting model, meaning Gm ⊊ Ga.

Part 1. In case 1, when |Ea X Et| ă |Em X Et| “ |Et|, Ga is an underfitting model and

Gm is a minimal triangulation of the true model Gt, which is considered as an overfitting

model. Then by Lemma 2.4.3, PRGa,Gm

P
Ñ́ 0.

Let cm ą 0 be the smallest Kullback-Leibler divergence between an underfitting model

Ga and the minimal triangulation Gm, which by Assumption 5 is bounded. By Lemma 2.4.3,
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where ϵN “ p18CN´1QN logQNq1{2, and c2, and γ are positive constants,

logPRGa,Gm ă ´cmN
˚

` 26pqN ´ 1qrc2 ` pN˚
` 1qϵN s

` pkm ´ kaq
“

1{2 logN˚
` γ log qN ` Op1q

‰

ă ´pcm ´ c1
qN˚,

where c1 ą 0 be a positive constant. Let δ1 be the upper bound for logPRGa,Gm . Therefore,

for all of the competing underfitting models, we have

P
ˆ

max
Ga:GmĆGa

PRGa,Gm ď e´δ1

˙

ą 1 ´ 2QN expt´CQN logQNu

ą 1 ´ exptQN log 2 ´ CQN logQNu Ñ 1,

as qN increases with N Ñ 8, where C is a positive universal constant.

In case 2, when |Ea X Et| “ |Em X Et| “ |Et| and |Ea| ą |Em|, then ka,N ą km,N . Since

the competing model Ga and the minimal triangulation Gm are both decomposable overfitting

models, by Lemma 2.4.2, PRGa,Gm

P
Ñ́ 0.

By Lemma 2.4.4, where ϵN “ p18CN´1QN logQNq1{2, and M1, γ and ω are positive

constants,
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logPRGa,Gm ă ´pka,N ´ km,Nqp2 ` γ ´ ω{2M1q log qNt1 ` op1qu

ă ´C 1
pka,N ´ km,Nq log qN ,

where C 1 is a constant such that 0 ă C 1 ă p2 ` γ ´ ω{2M1q. Let m1 “ ka,N ´ km,N and let δ2

be the upper bound for logPRGa,Gm . Since 1 ´ OpqN
´ãq ą 1 ´ OpqN

´ãq ´ OpQ´QN

N q, using

the binomial theorem, for all of the competing overfitting models that are not a minimal

triangulation we have

P
ˆ

max
Ga:Gm⊊Ga

PRGa,Gm ď e´δ2

˙

ą 1 ´

”

`

1 ` 10.4qN
´ω{6

˘32qN
´ 1

ı

Ñ 1,

for qN increasing with N Ñ 8.

Part 2. Let Gm1 and Gm2 be two different minimum triangulations of Gt with the same

number of fill-in edges, with corresponding vectors of marginal frequency estimates p̂˚
m1

and

p̂˚
m2

. By Lemma 2.3.2, we have

logBFGm1 ,Gm2
“ ℓpp̂m1q ´ ℓpp̂m2q `

km2,N
´ km1,N

2
plogN˚

` Op1qq ` Cm1,N ´ Cm2,N

“ ℓpp̂m1q ´ ℓpp̂m2q ` Cm1,N ´ Cm2,N ,
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since |Em1,N
| “ |Em2,N

| and km1,N
“ km2,N

, where |Cm1,N ´ Cm2,N | ď 26pqN ´ 1qpc2 ` ϵNq for

ϵN “ p18CN´1QN logQNq1{2, with probability 1 ´ qNOpQ´QN

N q.

Let Gmc be the graph such that it contains the same edges as the true non-decomposable

graph Gt and the cycles in Gt which are greater or equal to 3 are complete subgraphs. There-

fore, Gm1 , Gm2 ⊊ Gmc ⊊ Gc, where Gc is the complete graph, and kmc,N ´ km1,N “ kmc,N ´ km2,N

is finite. For the model Gm1 , we have

ℓpp̂˚
m1

q “ N˚
ÿ

CPC

ÿ

iCPIC

p̂˚C
m1

piCq log p̂˚C
m1

piCq ´ N˚
ÿ

SPS
νpSq

ÿ

iSPIS

p̂˚S
m1

piSq log p̂˚S
m1

piSq,

similarly for Gm2 and Gmc . Since Gm1 and Gm2 are both overfitting models, we follow the

proof of Lemma 2.4.2. We can write

|ℓpp̂˚
m1

q ´ ℓpp̂˚
m2

q| “ |ℓpp̂˚
m1

q ´ ℓpp̂m1q ´ tℓpp̂˚
m2

q ´ ℓpp̂m2qu ´ tℓpp̂mcq ´ ℓpp̂m1qu

` ℓpp̂mcq ´ ℓpp̂m2q|

ď |ℓpp̂˚
m1

q ´ ℓpp̂m1q| ` |ℓpp̂˚
m2

q ´ ℓpp̂m2q| ` |ℓpp̂mcq ´ ℓpp̂m1q|

` |ℓpp̂mcq ´ ℓpp̂m2q|

Similar to the proof of Lemma 2.4.4, for a constant c3 ě 25,
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|ℓpp̂˚
m1

q ´ ℓpp̂m1q| `
ˇ

ˇℓpp̂˚
m2

q ´ ℓpp̂m2q
ˇ

ˇ ď 2c3pqN ´ 1qα.

Let ξ1 “ N´1{2HmcUmc and A1 “ H
1{2
mc pH´1

mc
´ DT

mc
H´1

m1
DmcqH

1{2
mc , where

D “ pIkm1,N
, 0km1,N

,kmc,N´km1,N
q, H denotes the Hessian matrix and U denotes the score vector.

Also, trpA2q “ pkmc,N ´ km1,Nq. As seen in the proof of Lemma 2.4.2, we know that ξ1 „

subGaussianp1{M2
1 q. By Lemma 4.2.1, we can write |ℓpp̂mcq ´ ℓpp̂m1q| as 1

2
ξT1 A1ξ1t1 ` op1qu

with probability OpQ´QN

N q.

Let ξ˚
1 “ M1ξ1. We choose g “ p4qN logNq1{2 and K “ pkmc,N ´ km1,NqCϵ, where

b

2
9pkmc,N´km1,N

q
ă Cϵ ă ´ 6

pkmc,N´km1,N
q
log ϵ

10.4
for any 0 ă ϵ ă 1. Therefore, pkmc,N ´ km1,NqCϵ ą

r2pkmc,N ´ km1,Nqs1{2{3 and q logN ą pkmcăN ´ km1,NqCϵ ą

b

2pkmc,N´km1,N
q

9
for large N .

Since K{6 ă xc implies that e´K{6 ă e´xc , we have

P
`

|ξ˚T
1 A1ξ

˚
1 | ě pkmc,N ´ km1,Nqp1 ` Cϵq

˘

ď 10.4 expt´pkmc,N ´ km1,NqCϵ{6u

ă ϵ{2.

Let ξ˚T
2 A2ξ2 be the quadratic form of ℓpp̂mcq ´ ℓpp̂m2q as defined analogously to the

quadratic form for Gm1 . Then
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P
`

|ξ˚T
2 A2ξ

˚
2 | ě pkmc,N ´ km2,Nqp1 ` Cϵq

˘

ď 10.4 expt´pkmc,N ´ km2,NqCϵ{6u

ă ϵ{2.

Since kmc,N ´ km1,N “ kmc,N ´ km2,N , we can write

|ℓpp̂mcq ´ ℓpp̂m1q| ` |ℓpp̂mcq ´ ℓpp̂m2q| “ |ξ˚T
1 A1ξ

˚
1 | ` |ξ˚T

2 A2ξ
˚
2 |

ă 2pkmc,N ´ km1,Nqp1 ` Cϵq.

We can drop the term from the model prior distribution since km1,N “ km2,N implies that

´pkm1,N ´ km2,Nqpγ log qN´log 2q “ 0. Since | logBFm1,m2 | ď |ℓpp̂m1q´ℓpp̂m2q|`|Cm1,N ´ Cm2,N |

where Cm1,N “ Cm2,N , then choosing α “ 1
pqN´1q

, gives

P p| logBFm1,m2 | ă 2c3 ` pkmc,N ´ km1,Nqp1 ` Cϵqq ă 1 ´ ϵ{2 ´ ϵ{2

Therefore,

P pexpt´2c3 ´ pkmc,N ´ km1,Nqp1 ` Cϵqu ă BFm1,m2 ă expt2c3 ` pkmc,N ´ km1,Nqp1 ` Cϵquq

ă 1 ´ ϵ.

Part 3. From Part 1, we know that the largest upper bound for PRGa,Gm when Gm Ć Ga

is

92



PRGa,Gm:GmĆGa ă e´D1N˚

,

where D1 “ cm ´ c1 ą 0 is a constant. Let ka,N
1 be the number of true parameters in ka,N .

Then for all underfitting competing models, we have

ÿ

Ga:GmĆGa

PRGa,Gm “

kt,N´1
ÿ

ka,N 1“0

ˆ

km,N

ka,N 1

˙ 32pqN´1q´km,N
ÿ

ka,N´ka,N 1“0

ˆ

32pqN ´ 1q ´ km,N

ka,N ´ ka,N 1

˙

PRGa,Gt:GmĆGa

ă exptQN log 2 ´ D1N
˚
u Ñ 0,

as N Ñ 8. Also, we have that the largest upper bound for PRGa,Gm when Gm ⊊ Ga is

PRGa,Gm:Gm⊊Ga ă e´D2pka,N´km,N q logN˚

,

where 1 ă D2 ă p2`γ´ω{2M1q is a constant. Let m1 “ ka,N ´ km,N . Then for all overfitting

competing models, we have
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ÿ

Ga:Gm⊊Ga

PRGa,Gm “

32pqN´1q
ÿ

ka,N“km,N`1

ˆ

32pqN ´ 1q ´ km,N

ka,N ´ km,N

˙

PRGa,Gm:Gm⊊Ga

ă

32pqN´1q´km
ÿ

m1“1

ˆ

32pqN ´ 1q ´ km,N

m1

˙

“

e´D2 log qN
‰m1

“
“

1 ` e´D2 log qN
‰32pqN´1q´km,N

´ 1

ă
“

1 ` qN
´D2

‰32qN
´ 1

ă expt32qN
1´D2u ´ 1 Ñ 0, as N Ñ 8,

since 1 ` x ă ex for x ą 0 and D2 ą 1. Therefore,

ÿ

Ga:Ga‰Gm

PRGa,Gm

P
Ñ́ 0, as N Ñ 8 (2.39)

Let Gm1 , Gm2 , ..., Gml
be all the minimal triangulations of Gt, where l is a positive integer

and Gm P Mt. Then

ÿ

GmPMt

fpGm|xq “
ÿ

GmPMt

IGmpt ` s,N ` αqπpGmq
ř

G1PG IG1pt ` s,N ` αqπpG1q

“

řl
i“1 IGmi

pt ` s,N ` αqπpGmi
q

řl
i“1 IGmi

pt ` s,N ` αqπpGmi
q `

ř

GaRMt
IGapt ` s,N ` αqπpGaq

“
1

1 `
ř

GaRMt

IGa pt`s,N`αqπpGaq
řl

i“1 IGmi
pt`s,N`αqπpGmi q

.

(2.40)
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From Part 1, we have that PRGa,Gmi

P
Ñ́ 0. Therefore,

IGmi
pt ` s,N ` αqπpGmi

q

IGapt ` s,N ` αqπpGaq
“ PRGmi ,Ga

P
Ñ́ 8, (2.41)

for i “ 1, 2, ..., l. Thus, we have that

ÿ

GmPMt

fpGm|xq “
1

1 `
ř

GaRMt

1
řl

i“1 PRGmi,Ga

P
Ñ́ 1 (2.42)

for qN increases with N Ñ 8.

2.6 Simulations

In this section, we give our simulation results for strong model selection consistency when

the true graph is decomposable and when the true graph is non-decomposable. We begin

with an example of the behaviour of the pairwise Bayes factor for decomposable models with

5 vertices. Additionally, we give examples of pairwise comparisons between graphs with 100

vertices to demonstrate that our results hold in a high-dimensional case.

We assume all random variables are binary and sample the model parameters from a

standard normal distribution and divide the values by 5 to ensure that none of the cell

probabilities are too small. If the cell probabilities are too small it may affect the Bayes

factor’s ability to detect the differences between certain parameters in competing models.

Then for each scheme, we use Gibbs sampling to generate a data set with 10,000 samples
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and burn the first 1,000 samples. In each simulation, we compute the Bayes factor, or the

logarithm of the Bayes factor for sample sizes 1000 to 8,000, incremented by 1,000, and take

the mean (Ave.) and standard deviation (Sd.) of 100 replications across each sample size. For

the pairwise examples, we compute the logarithm of the Bayes Factor because the gamma

functions produce large outputs, which are treated as infinity in R. When we simulate the

strong consistency results, we can compute the sum of the exponential logarithm of Bayes

factors.

Example. Here we consider the behaviour of the pairwise Bayes factor for decomposable

models with 5 vertices. In Figure 2.3a, we have the true model Gt “ tab, bc, cd, deu. We

remove the edge tcdu from the true model to obtain the competing underfitting model

G1 “ tab, bc, deu in Figure 2.3b , and we add the edge tacu to the true model to obtain the

competing overfitting model G2 “ tabc, cd, deu in Figure 2.3c.

a b c d e

(a)
a b c d e

(b)
a

b c d e

(c)

Figure 2.3: Image (a) is the graph Gt, (b) is the graph G1 and (c) is the graph G2.

The true model parameters are
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β0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´0.143008907

0.005672983

0.174860886

´0.275814717

´0.206133244

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where each element of β0 corresponds to one of the random variables, and

β “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0.03497966 0 0 0

0.03497966 0 ´0.09529885 0 0

0 ´0.09529885 0 ´0.11242776 0

0 0 ´0.11242776 0 ´0.01575931

0 0 0 ´0.01575931 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where the matrix β gives the values of the two-way interaction terms corresponding to the

cliques C1 “ tabu, C2 “ tbcu, C3 “ tcdu, and C4 “ tdeu.

Table 2.1 gives the results of the pairwise comparisons between the underfitting model G1

and the true model Gt, and between the overfitting model G2 and Gt. We remark that in the

first case when the competing model is missing a true edge, the Bayes factor converges much

faster than the second case when the competing model has one false edge. This is consistent

with our theoretical results, which find that the Bayes factor penalizes a missing true edge
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more harshly than a false edge.

Table 2.1: Pairwise Bayes factor consistency results for graphs with 5 vertices.

Sample size Avg. logBFG1,Gt Sd. logBFG1,Gt Avg. logBFG2,Gt Sd. logBFG2,Gt

1,000 -90.2435 41.62552 -0.8100 0.8270

2,000 -210.6764 67.5859 -1.3042 0.9272

3,000 -347.8014 84.3046 -1.9635 0.7598

4,000 -483.1799 82.4035 -2.3295 0.6000

5,000 -625.8922 102.5758 -2.7459 0.4011

6,000 -752.7225 91.1773 -2.8961 0.4265

7,000 -914.7118 79.5608 -3.1285 0.3921

8,000 -1055.2129 63.9394 -3.2839 0.2811

Example. Here we examine the behaviour of pairwise Bayes factors when the true graph is

non-decomposable. We assume the true graph is the smallest non-decomposable graph with

4 vertices; that is, Gt “ tab, ac, bd, cdu which is represented in Figure 2.4. The true model

parameters are

β0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´0.0155838

´0.3616984

´0.2489833

0.2883302

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where each element of β0 corresponds to one of the random variables, and
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β “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0.3589437 0.1783851 0

0.3589437 0 0 ´0.3984551

0.1783851 0 0 0.2008634

0 ´0.3984551 0.2008634 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where the matrix β gives the values of the two-way interaction terms corresponding to the

pairs of vertices tabu, tacu, tbdu, and tcdu.

a b

c d

Figure 2.4: Visual representation of Gt.

In Figures 2.5a and 2.5b we have the minimal triangulations Gm1 “ tabd, acdu and

Gm2 “ tabc, bcdu, respectively. Then in Figure 2.5c we have an underfitting model Ga “

tab, ac, cdu with one missing true edge edge, and in Figure 2.5d we have an underfitting model

Gb “ tab, bc, cdu with two missing true edges and one false edge.
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a b

c d

(a) Visual representation of Gm1 .

a b

c d

(b) Visual representation of Gm2 .
a b

c d

(c) Visual representation of Ga.

a b c d

(d) Visual representation of Gb.

Figure 2.5: The two minimal triangulations of Gt and two competing models.

In Table 2.2 and Table 2.3, we have the results for each minimal triangulation competing

with model Ga and Gb, respectively. We see that the pairwise Bayes factor converges to 0 in

each case and it converges at similar rates. Finally, in Table 2.4, we observe that the Bayes

factor between two minimal triangulations is bounded by constants close to 0.

Table 2.2: Comparing the underfitting model Ga to the minimal triangulations Gm1 and Gm2 .

Sample size Avg. logBFGa,Gm1
Sd. logBFGa,Gm1

Avg. logBFGa,Gm2
Sd. logBFGa,Gm2

1,000 -3.0907 3.1218 -3.1660 2.9711

2,000 -7.1842 3.9829 -7.2119 4.8540

3,000 -11.3777 4.5142 -11.1513 5.0440

4,000 -14.8443 4.3048 -14.6982 4.4552

5,000 -19.2345 4.8599 -20.3070 4.4748

6,000 -23.8811 4.9440 -24.1890 4.3770

7,000 -29.1548 4.2772 -28.0810 4.3526

8,000 -33.4932 3.3035 -32.6125 2.9264
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Table 2.3: Comparing the underfitting model Gb to the minimal triangulations Gm1 and Gm2 .

Sample size Avg. logBFGb,Gm1
Sd. logBFGb,Gm1

Avg. logBFGb,Gm2
Sd. logBFGb,Gm2

1,000 -4.1105 3.0185 -3.8495 3.4017

2,000 -7.1983 4.3379 -7.8876 3.5872

3,000 -12.6721 5.4692 -11.5883 4.4302

4,000 -16.7995 4.4322 -16.1975 4.7767

5,000 -22.5098 5.8016 -21.0118 4.8093

6,000 -25.4583 4.6616 -25.6652 4.6348

7,000 -31.5930 4.4213 -31.0920 4.4580

8,000 -35.4698 2.8318 -35.8314 2.7732

Table 2.4: Comparison between the minimal triangulations Gm1 and Gm2 .

Sample size Avg. logBFGm1 ,Gm2
Sd. logBFGm1 ,Gm2

1,000 -0.2058 1.7574

2,000 -0.1069 1.4370

3,000 0.2001 1.5596

4,000 0.2162 1.2121

5,000 0.1577 1.3021

6,000 0.0364 1.0890

7,000 0.1746 0.8681

8,000 0.1537 0.6723

Example. In this example, we demonstrate strong model selection consistency for decomposable

models with 3 vertices. We arbitrarily chose Gt “ tac, bcu to be the true graph, which

is represented in Figure 2.6. There are 7 different competing models corresponding to

decomposable graphs with 3 vertices. Namely, G1 “ ta, b, cu, G2 “ tab, cu, G3 “ tbc, au,

G4 “ tac, bu, G5 “ tab, bcu, G6 “ tab, acu, and G7 “ tabcu. From the proof of Theorem 2.4.5,
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we know that in order to prove that fpGt|xq Ñ 1, we need to show that
ř

Ga‰Gt
BFGa,Gt Ñ 0.

a c b

Figure 2.6: Visual representation of Gt.

The true model parameters are

β0 “

¨

˚

˚

˚

˚

˚

˚

˝

0.03307030

´0.09786483

0.29487145

˛

‹

‹

‹

‹

‹

‹

‚

,

where each element of β0 corresponds to one of the random variables, and

β “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0.3885803

0 0 0.4318364

0.3885803 0.4318364 0

˛

‹

‹

‹

‹

‹

‹

‚

,

where the matrix β gives the values of the interaction terms corresponding to the cliques

C1 “ tabu and C2 “ tbcu.

Table 2.5 gives the results for strong model selection consistency for decomposable graphs.

We see that indeed the sum of the Bayes factors for all the competing models with 3 vertices

converge to 0 as the sample size increases. Therefore, we can conclude that fpGt|xq Ñ 1 as

the sample size increases.
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Table 2.5: Strong model selection consistency results for decomposable graphs with 3 vertices.

Sample size Avg.
ř

Ga‰Gt
BFGa,Gt Sd.

ř

Ga‰Gt
BFGa,Gt

1,000 3.1381 18.4994

2,000 0.6365 1.5304

3,000 0.2799 0.7748

4,000 0.1277 0.1418

5,000 0.0900 0.0763

6,000 0.0621 0.0378

7,000 0.0474 0.0164

8,000 0.0355 0.0077

Example. Next, we demonstrate strong model selection consistency for non-decomposable

models with 4 vertices. We assume the true graph is the smallest non-decomposable graph

with 4 vertices; that is, Gt “ tab, ac, bd, cdu which is represented in Figure 2.4.

Since there are 61 competing decomposable graphs with 4 vertices, for this example, we

arbitrarily chose 12 of the connected graphs to be the competing models; namely, G1 “

tab, ac, cdu, G2 “ tacd, abu, G3 “ tac, bcdu, G4 “ tab, bd, cdu, G5 “ tac, bd, cdu, G6 “ tabcdu,

G7 “ tbcd, abu, G8 “ tacd, bdu, G9 “ tabd, acu, G10 “ tabd, cdu, G11 “ tacd, bcdu, and

G12 “ tabc, abdu. From the proof of Theorem 2.5.1, we know that in order to prove that

ř

GmPMt
fpGm|xq Ñ 1, we need to show that

řl
i“1BFGmi ,Ga Ñ 8.

Table 2.6 gives the results for strong model selection consistency for non-decomposable

graphs. The results show that for 12 out of the 61 possible competing decomposable

models, the Bayes factor favours the minimal triangulations. Therefore, this indicates that

ř

GmPMt
fpGm|xq Ñ 1 as the sample size increases.
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Table 2.6: Strong model selection consistency results for non-decomposable graphs with 4
vertices.

Sample size Avg.
ř

GaRMt

1
řl

i“1 BFGmi,Ga

Sd.
ř

GaRMt

1
řl

i“1 BFGmi,Ga

1,000 0.5264 0.4868

2,000 0.3789 1.8577

3,000 0.0944 0.1772

4,000 0.0466 0.1222

5,000 0.0121 0.0278

6,000 0.0076 0.0210

7,000 0.0012 0.0019

8,000 0.0002 0.0003

Example. Here, to simplify the computations, we use tree graphs with 100 vertices to

demonstrate the behaviour of the Bayes factor in the high-dimension setting. A tree is a

connected acyclic undirected graph with q vertices and q ´ 1 edges, and a disjoint union of

trees is called a forest. In a forest graph, every pair of vertices are connected by at most

one path. Consequently, the corresponding models consist of at most two-way interactions,

which makes computing the Bayes factor more manageable. We use a built-in function in R

to randomly generate tree graphs based on the Barabasi-Albert model which, is one of the

algorithms commonly used to generate random scale-free networks.

To create the true model, we randomly generate a tree graph and remove the edge t24, 64u

so we can easily form a competing underfitting model and a competing overfitting model

which are also tree graphs. The true model Gt is represented in Figure 2.7. The graph has

two clusters, where most of the graph is connected in the large cluster and vertices t64u, t73u,
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t74u, and t95u are connected in the smaller cluster. In Figure 2.8, we have the competing

underfitting model Ga, which is the same as the true graph, but we remove the edge t4, 36u.

We see that the vertices t36u, t41u, t59u, and t82u now form another component. To form

the competing overfitting model Gb, represented in Figure 2.9, we add the edge t24, 64u to

the true graph Gt.

Figure 2.7: Visual representation of Gt.
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Figure 2.8: Visual representation of Ga.
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Figure 2.9: Visual representation of Gb.

In Table 2.7, we have the results for pairwise comparison of the underfitting model Ga

with Gt, and the overfitting model Gb with Gt. Again, we see that in both cases the log of

the Bayes factor tends to negative infinity and it penalizes a missing true more severely than

an additional false edge.
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Table 2.7: Pairwise Bayes factor consistency results comparing Ga to Gt, and Gb to Gt.

Sample size Avg. logBFGa,Gt Sd. logBFGa,Gt Avg. logBFGb,Gt Sd. logBFGb,Gt

1,000 -22.5420 4.8036 -14.4729 2.4966

2,000 -41.4994 5.8613 -25.8421 2.9886

3,000 -63.2577 8.3956 -39.0688 4.5068

4,000 -79.2360 15.2566 -53.0429 3.7209

5,000 -97.2665 14.6249 -61.4124 4.5596

6,000 -118.4968 15.1862 -75.2714 4.0259

7,000 -137.6191 17.4938 -89.1145 4.9238

8,000 -156.4441 17.8156 -101.8007 4.4059

2.7 Conclusion

In our research, we introduce Bayesian model selection consistency results for high-dimensional

discrete graphical models. We use the approximation of the logarithm of a gamma function to

express the logarithm of the normalizing constant IGpt ` s,N ` αq, which is proportionate to

the posterior probability. This permits us to derive a convenient expression for the logarithm

of the Bayes factor, and to easily examine the behaviour of the Bayes factor when q is fixed

and the behaviour of the posterior odds ratio when qN is increasing. We establish pairwise

consistency and strong model selection consistency for discrete graphical models, where

the data is obtained from a contingency table, for both fixed dimensional models and for

high-dimensional models. Moreover, our results demonstrate that when the true graph is

non-decomposable, it can be reasonably approximated by one of its minimal triangulations

and the difference between minimal triangulations with the same number of edges is negligible.
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Many model selection algorithms are restricted to the class of decomposable models; however,

our method allows these algorithms to also analyse non-decomposable models.
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Chapter 3

Graphical Local Genetic Algorithm

Graphical log-linear models are an effective tool for representing complex structures that

emerge from high-dimensional data. It is challenging to fit an appropriate model in the

high-dimensional setting and many existing methods rely on a convenient class of models,

called decomposable models, which lend well to a stepwise approach. However, these methods

restrict the pool of candidate models from which they can search and these methods are

difficult to scale. It can be shown that a non-decomposable model can be approximated by

the decomposable model which is its minimal triangulation, thus extending the convenient

computational properties of decomposable models to any model. In this chapter, we propose

a local genetic algorithm with a crossover-hill-climbing operator (Lozano et al., (2004)) for

log-linear graphical models. We show that the graphical local genetic algorithm can be used

successfully to fit non-decomposable models for both a low number of variables and a high

number of variables. We use an expression proportionate to the posterior probability as a
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measure of fitness and parallel computing to decrease the computation time.

3.1 Introduction

The most commonly used graphical log-linear models are hierarchical models which are

determined by their two-way interactions, meaning for every higher-order term in the model,

the model also contains the corresponding lower-order terms. A log-linear model obtained

from a q-dimensional contingency table can be represented by an undirected graph G “ pV,Eq

with vertex set V “ t1, 2, . . . , qu and edge set E Ď V ˆ V . If the graphical log-linear model

corresponds to a chordal (decomposable) graph, then it is called a decomposable model;

otherwise, it is called nonchordal (non-decomposable). Frequently, graphical model selection

consists of forward or backward elimination procedures on decomposable graphs due to

the decomposable chain rule, that is, one can construct either an increasing or decreasing

sequence of decomposable graphs differing by one edge (Lauritzen (1996)). However, for q

variables there are 2q possible models, thus these methods become computationally intensive

for high-dimensional models.

In Gauraha (2016), and Gauraha and Parui (2020), they present a forward selection

method for low-dimensional graphs, using the mutual conditional independence between

vertices to reduce the search space and in turn reduces the computational complexity.

Another popular method is the graphical lasso, which is the graphical version of the lasso

introduced by Tibshirani (1996). The original approach was for Gaussian graphical models,

but it has since been extended to log-linear models with many variations. For example, in
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Allen and Liu (2012) they propose the Poisson graphical lasso, and in Dahinden et al.

(2010), they offer a variation of the group lasso where they learn subsets of the graph then

reconstruct the original graph.

In the high-dimensional setting, Petijean et al. (2013) present their approach, called

Chordalysis. It is a forward selection method where they use data mining techniques to store

and reuse the computed marginal likelihood ratios. They demonstrate that their method is

efficient and effective for up to 150 variables. However, the efficiency of their algorithm relies

on the decomposable property of the candidate graphs and the sensitivity of the algorithm

decreases rapidly with sample size. Dobra and Mohammadi (2018) implement a Birth-Death

Markov Chain Monte Carlo (BDMCMC) algorithm using a marginal posterior probability

based on the marginal pseudo-likelihood with a Dirichlet prior to define the birth and death

probabilities. To speed up their algorithm, they compute all of the possible edges using

parallel computing.

Model selection for discrete variables can be particularly challenging because the typical

optimization methods borrowed from calculus are not applicable. A popular approach for

binary variables is to use a genetic algorithm, first introduced by Holland (1975), which in a

metaheuristic procedure that aims to optimize some criterion by imitating Darwinian natural

selection. The genetic algorithm is an iterative process where the binary elements represent

chromosomes. During each iteration, or generation, two candidate parents are selected from

the population using a measure of fitness. Then their chromosomes are combined using a

crossover operation to produce offspring which are subject to random chromosomal mutation.
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Finally, the new offspring are introduced into the population. Since its inception, many

variations for each step of the genetic algorithm have been introduced.

Poli and Roverato (1998), and Blauth and Pigeot (2002) both proposed genetic algorithms

for graphical models for a low number of variables - 10 variables and 6 variables, respectively.

Poli and Roverato (1998) used the Akaike’s Information Criterion as their measure of

fitness and they used the elitism variation, meaning the top 5% of candidates of the current

population are kept into the next generation. Their main contribution was how they exploited

the hierarchical properties of the candidate models in the crossover step. The parents

exchanged randomly selected subsets of their corresponding graphs and thus reducing the

required computations. Blauth and Pigeot (2002) used the Bayesian Information Criterion as

their measure of fitness and tournament selection which considers the ranks of the candidate

chromosomes. Other variations of the genetic algorithm include local searches. Lozano et

al. (2004) give a real-coded local genetic algorithm and García-Martínez (2006) give a

binary-coded local genetic algorithm. The key in both these contributions is to balance the

diversity of the global search while fine-tuning the local search. In the local search, they

propose what they call the crossover-hill-climbing operator, meaning the most fit offspring

replaces the worst parent and reproduces with the best parent for a predetermined number

of iterations. In Lozano et al. (2004), they use negative assortment mating, meaning the

candidate parents that are selected are the most different from each other. Conversely, in

García-Martínez (2006), they use positive assortment mating.

In the following chapter, we present a local genetic algorithm which implements the
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crossover-hill-climbing operator from Lozano et al. (2004) for log-linear graphical models,

using the log of a nomalizing constant proportionate to the posterior probability as a measure

of fitness. Since the genetic algorithm has no stepwise component, we are not constrained

to the class of decomposable models. It can be shown that a model corresponding to a

non-decomposable graph can be approximated by its minimal triangulation, which is by

definition a decomposable graph. This allows us to benefit from convenient properties of

decomposable graphs when computing the posterior probability, while also being able to

consider a wider variety of candidate models. In order to focus the search, we use what we

called the edgewise Bayes factor to initiate the candidate models. In the low-dimensional

setting, we perform our algorithm on the entire graph and in the high-dimensional setting,

we find appropriate candidate subsets of the graph, then reconstruct the full graph from a

predetermined number of subsets. In Section 3.2, we give an overview of log-linear graphical

models and define the posterior probability for a decomposable graph. Then we describe the

graphical local genetic algorithm and how we use adjacency matrices to perform each step of

the algorithm. In Section 3.3, we give our experiment results. We perform simulations for

the number of variables q P t6, 8, 12, 20, 50, 100u in Section 3.3.1 and we apply our algorithm

to a real data set in Section 3.3.2. We conclude in Section 3.4.

3.2 Materials and Methods

In this section, we first describe the log-linear graphical model, and give the necessary

background from graph theory to illustrate how we compute the posterior probability cor-
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responding to both decomposable and non-decomposable graphs. For additional details

on graph theory and graphical models, see Lauritzen (1996). Then we explain the global

and local components of the Graphical Local Genetic Algorithm (GLGA), and how we

implement the algorithm in a high-dimensional setting. Finally, we discuss the complexity of

the algorithm and the computing technique we used to speed up certain steps.

3.2.1 Log-linear Graphical Models

Consider a vector of random variables X “ pXv, v P V q indexed by the set V “ t1, 2, . . . , pu

such that each Xv takes values in the finite set Iv with |Iv| levels. Then the resulting counts

can be presented in a p-dimensional contingency table corresponding to

I “
ą

vPV

Iv,

where I is the set of cells i “ piv, v P V q and iv P Iv. The number of observations for cell i

is denoted npiq and the probability of an object being observed in cell i is denoted ppiq. If

D Ă V , the set of D-marginal cells is iD “ piv, v P Dq. For N “
ř

iPI npiq, we assume the

cell counts follow a multinomial distribution and the cell probabilities are modelled by a

hierarchical log-linear model. For simplicity, in this paper, we assume all random variables

are binary.

The conditional independencies between the random variables Xv can be read off an

undirected graph G “ pV,Eq with vertex set V and edge set E Ď V ˆ V , that is, if Xa is

independent of Xb given XV zta,bu, whenever pa, bq is not an edge in E. A graph is complete
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if every pair of vertices has an edge. The discrete graphical model for X is said to be

decomposable or Markov with respect to G if it corresponds to a chordal or triangulated

undirected graph, meaning every cycle of length greater or equal to 4 has a chord. Furthermore,

a collection of random variables pXvqvPV with associated graph G are said to be Markov

relative to G if for any triple of disjoint sets pA,B, Sq,

XA KK XB|XS,

where V “ A Y B Y S and S is a complete subset.

For a graph G and any of its decompositions pA,B, Sq, we call the subsets A and B

cliques, and the subset S a separator. The advantage of using a decomposable model is that

the probability distribution of its variables can be written as a product of factors over the

cliques C P C and the separators S P S of the corresponding decomposable graph. This

allows for many convenient computational properties. If a graph is non-decomposable, it has

been shown that its minimal triangulation can be used as a reasonable proxy. The minimal

triangulation of a non-decomposable graph is the graph made up of the least number of

fill-in edges which results in a decomposable graph. Since the minimal triangulation of a

non-decomposable graph is by definition decomposable, all of the computational advantages

will apply.

For example, the graph in Figure 3.1a is the smallest non-decomposable graph and it

has three possible triangulations. Graph 3.1d is the complete graph on four vertices and

it is a triangulation of 3.1a; however, it is not minimal. Graphs 3.1b and 3.1c are minimal
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since removing the edge pb, cq from 3.1b, or the edge pa, dq from 3.1c will result in a non-

decomposable graph. Therefore, if we want to consider the non-decomposable graph 3.1a

as a candidate model, then we would calculate the required computations corresponding to

either the minimal triangulation 3.1b or 3.1d and use the result to compare graph 3.1a to

other competing models.

a b

c d

(a)

a b

c d

(b)

a b

c d

(c)

a b

c d

(d)

Figure 3.1: The smallest non-decomposable graph and its triangulations.

The implementation of a genetic algorithm requires a measure of fitness. We use an

expression proportionate to the posterior probability, fpG|xq, which requires an appropriate

prior distribution. We choose the Dirichlet distribution on the log-linear parameters because it

is the Diaconis-Ylvisaker (DY) conjugate prior (Diaconis and Ylvisaker (1979)). The Dirichlet

distribution is parametrized by fictive counts (or pseudocounts), denoted spiq for i P I, which

sum up to α. In Dawid and Lauritzen (1993), they develop the hyper Dirichlet conjugate

prior which exhibits the same Markov properties when corresponding to a decomposable

model. It can be shown that a posterior probability which is Markov with respect to a

decomposable graph G is proportionate to a normalizing constants, denoted IGpn` s,N `αq,

and can be written as the product of gamma functions indexed over the cliques and separators

of G, that is,
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fpG|xq9IGpn ` s,N ` αq “

ś

CPC
ś

iCPIC
ΓpnCpiCq ` sCpiCqq

ΓpN ` αq
ś

SPS
“
ś

iSPIS
ΓpnSpiSq ` sSpiSqq

‰νpSq
, (3.1)

where n is the vector of true cell counts, s is the vector of fictive cell counts, and νpSq is the

multiplicity of separator S. If a model corresponds to a non-decomposable graph, then we

compute the the normalizing constant (3.1) for its minimal triangulation.

We denote the number of free parameters in a decomposable model by k and it can be

expressed as

k “ ´1 `
ÿ

CPC
|IC | ´

ÿ

SPS
νpSq ¨ |IS|. (3.2)

Since we assume that all variables are binary, in our simulations we use |IC | “ 2|C| and

|IS| “ 2|S|. However, the algorithm can be implemented for variables with more than 2 levels

using equation (3.2).

3.2.2 Graphical Local Genetic Algorithm

Genetic algorithms (GAs) belong to the class of evolutionary algorithms and are used to solve

optimization and search problems. They mimic the evolutionary process of natural selection,

popularized by Charles Darwin. In the original algorithm, developed by Holland (1975),

each candidate solution corresponds to an individual in the population which is assumed

to have one chromosome. A chromosome is represented by a string of 0’s and 1’s and each
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element of the string is called an allele. In the first generation, the population is randomly

initiated and the fitness of each candidate in the population is measured. Then two parents

are selected from the population, often the most ‘fit’ are selected, and they produce offspring

by a crossover operation. The simplest crossover operation is the one-point crossover where

the chromosome of each parent it randomly cut into two segments and switched with one

of the segments of the other parent to create offspring. Finally, the offspring are subject

to random mutations in one of more of the alleles in their chromosome. Depending on the

fitness of the offspring, they may replace existing members of the population or they may

simply be added to the population. The algorithm iterates until a predetermined stopping

criterion is met. There are many variations of each step in the algorithm. For more details

on these variations, see Givens and Hoeting (2013).

Since we are interested in graphical models, we will use adjacency matrices instead of

strings of 0’s and 1’s. An undirected graph G “ pV,Eq with |V | “ q can be represented by

a q ˆ q matrix A “ paijq, where aij “ 1 if pi, jq P E and i ‰ j, and aij “ 0 otherwise. For

example, consider a graph G1 with vertices V “ ta, b, c, du and cliques G1 “ tabc, bcdu, as

seen in Figure 3.2a. In Figure 3.2b, we have its adjacency matrix with 1’s where the element

of the matrix corresponds to an edge in the graph, and 0’s where the element corresponds to

no edge in the graph and 0’s on the diagonal.

All of our computations are in R, where it is more practical to use the log Γp¨q function

instead of Γp¨q, so we use the logarithm of the normalizing constant (2.21) to measure the

fitness of each model. We use the igraph package in R to obtain the cliques and separators
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Figure 3.2: A visual representation of the graph G1 and the corresponding adjacency matrix.

from the adjacency matrix of a decomposable graph or of a minimal triangulation of a

graph, and compute the sum of the log of gamma functions indexed according to the graph’s

factorization. In the case that a candidate model is non-decomposable and we compute

the log of the normalizing constant for its minimal triangulation, we do not consider the

minimal triangulation to be an updated version of the candidate model. We use the minimal

triangulation only for its convenient computational properties. It has been shown that when

comparing overfitting models, the log posterior probability will favour the model with less

superfluous edges. However, when comparing underfitting models, it will favour the candidate

model with most true edges. This cause the genetic algorithm to be prone to keeping false

edges if it means having more true edges. Therefore, we add a penalty term to our measure

of fitness to prevent the algorithm from selecting a model with too many unnecessary edges.

We use the penalty ´k log ΓpN ` αq, where k is the number of free parameters in the model

(3.2).

Since the genetic algorithm does not have the same restrictions as some other model

selection methods, it is sensitive to its initial conditions and can consider any possible

candidate model. Seeing as our goal is to implement the GLGA in the high-dimensional
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setting, we must direct the algorithm towards the more suitable models. To do so, we use the

Bayes factor (3.3) to compare the presence of each edge versus no edges. The Bayes factor is

the ratio of posterior probabilities (2.21) for two models and it is commonly used in model

selection to compare candidate models. When comparing two models Ga and Gb with equal

probability, the Bayes factor is a ratio of normalizing constants (2.21), that is,

BFGa,Gb
“

IGapt ` s,N ` αq

IGb
pt ` s,N ` αq

.

(3.3)

To initialize the population, we compute the edgewise Bayes factor for each possible edge,

that is, we compare a candidate model with the single edge in question to the model with no

edges. We use ranges of the values of the edgewise Bayes factors to determine the probability

of including that edge or not in the otherwise randomly generated initial candidate models,

where these ranges depend on the sample size. One of the convenient properties of the Bayes

factor is that, for two decomposable models, the cliques or separators common to both models

will cancel out and hence not need to be computed. Thus, even if we have a high-dimensional

data set, we only need to compute the Bayes factor for the given edge. For example, even

if q “ 100, to compute the Bayes factor for the edge tabu, we simply need to compare the

existence of the edge tabu versus no edge ta, bu. Therefore, is it not computationally intensive

to compute the Bayes factor for each edge.

In order to perform the crossover step and the mutation step, we use the upper triangular
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adjacency matrix. For the crossover step, we randomly select a cut-point and we interchange

the rows above and below the cut-point between the two parent matrices. We do this

three times using three different cut-points to create six offspring at each crossover step. In

Figure 3.3a, we have the upper triangular matrix of the adjacency matrix which represents

the graph G1 from Figure 2.5a in Section 2.2. To continue our example, consider a graph

G2 “ tac, ad, cdu with upper triangular adjacency matrix seen in Figure 3.3b. Say we

randomly choose to cut G1 and G2 between row 1 and row 2, as seen in Figure 3.3a and

Figure 3.3b. Then to complete the crossover, we take row 1 from G1 and rows 2-4 from G2 to

form one offspring (Figure 3.3c), and we take row 1 from G2 and rows 2-4 from G1 to form

a second offspring (Figure 3.3d). In each crossover step, we do three unique cuts to obtain

six offspring. In the mutation step, since the genetic algorithm tends to pick up extra edges

when there are missing true edges, we simply take the upper triangular adjacency matrix for

each offspring and with a small probability we change 0 to 1. We do not allow for random

mutations from 0 to 1.

¨

˚

˚

˝

0 1 1 0
0 0 1 1
0 0 0 1
0 0 0 0

˛

‹

‹

‚

(a)

¨
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˚

˝
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0 0 0 0
0 0 0 1
0 0 0 0

˛

‹

‹

‚

(b)

¨

˚

˚

˝

0 1 1 0
0 0 0 0
0 0 0 1
0 0 0 0

˛

‹

‹

‚

(c)

¨

˚

˚

˝

0 0 1 1
0 0 1 1
0 0 0 1
0 0 0 0

˛

‹

‹

‚

(d)

Figure 3.3: Example of creating two offspring with one cut-point in the crossover step.

Once we have the six offspring obtained from what we refer to as the global crossover,

post-mutation step, if certain conditions are met we perform a local search. We implement the
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crossover-hill-climbing step from Lozano et al. (2004), but applied to graphical models. We

refer to crossover operations preform during the crossover-hill-climbing step as local crossover.

Let p1 “ the current best parent, p2 “the best current offspring, nt “ 3, and noff “ 6. The

pseudo code for the crossover-hill-climbing operator can be found in Figure 3.4.

Crossover-hill-climbing(p1, p2, noff , nt)

1. Select parents p1 and p2.

2. Repeat nt times.

(a) Generate noff offspring by performing local crossover on p1 and p2.

(b) Evaluate the fitness of each noff offspring.

(c) Find the offspring with the highest fitness value, obest.

(d) If obest is better than the parent with the lowest fitness score, either p1 or
p2, then replace that parent with obest.

(e) If p1 “ p2, then exit iteration.

3. Return parent with highest fitness score, either p1 or p2.

Figure 3.4: Pseudocode for crossover-hill-climbing step.

Since the local search can add unnecessary computational expense, Lozano et al. (2004)

only carry out the crossover-hill-climbing step with probability 1 if the best new offspring

is better than the worst member of the population, or with probability 0.0625 otherwise.

We opt to carry out the local search only if the best new offspring is better than the worst

member of the population. Lozano et al. (2004) implement specific mating, global crossover,

mutation and replacement strategies, which keeps the population diverse; however, we choose

more targeted strategies. Only our local crossover operation follows their approach. Our
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global crossover step and our mutation step are similar to the generic genetic algorithm, with

the probability of mutation 0.0005.

In the low-dimensional case, we initiate m1 “ 20 models then for each of the nit “ 20

global iterations, we add m2 “ 5 new randomly generated models to add diversity to the

population. Thus, the regular GLGA considers a total of 120 models, not including the

offspring. We only do at most 3 local iteration because since we control the initialization of

the matrices with the edgewise Bayes factor, the local searches converge quickly. We select

the matrix with the highest edgewise values up until a cut-off, determined by the sample

size, as one parent which mates in every iteration with a second parent which is the model

with the highest fitness score out of the current population. We only keep the offspring from

the global crossover step and the offspring from the local crossover step if they have higher

fitness scores than the member of the population with the current highest fitness score. The

pseudo code for the graphical local genetic algorithm can be found in Table 3.5. Note that in

our simulation results we use m1 “ 20, m2 “ 5, nit “ 20, nt “ 3, and x “ 3.
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Graphical Local Genetic Algorithm

1. Initialize population of m1 matrices.

2. Repeat nit times.

(a) Evaluate fitness of current population and select best two matrices from
the current population as parent models.

(b) Perform one-point global crossover x times and mutation to produce 2x
offspring.

(c) Evaluate fitness of the offspring and find best offspring, obest.

(d) If the top offspring is better than the worst individual in the general
population, then

i. Find the best parent, cbest, and perform Crossover-hill-climbing(cbest,
obest, 2x, nt).

ii. Once the termination condition is met, if final best parent is better
than the best individual in the general population, then replace the
worst individual with result from Crossover-hill-climbing step.

(e) Generate m2 new random matrices to add diversity to the general popula-
tion, then continue to next iteration.

Figure 3.5: Pseudocode for graphical local genetic algorithm.

Initiating the Matrices

The advantage of the graphical local genetic algorithm is its flexibility; however, it is sensitive

to its initialization. Thus, we use the edgewise Bayes factor (2.22) and the sample size to

guide the search. Once we compute the Bayes factor for each edge, we use the distribution

of these edgewise values as a guideline to choose two cut-off points. We choose two cut-off

points: the first to indicate that edges with a corresponding value greater or equal to this

cut-off will be initialized with a high probability, and the second to indicate that edges with

125



a corresponding value lesser or equal to this cut-off will be initialized with a low probability.

The value of these cut-off points will depend on the sample size.

We use the first and third quartile as guidelines for the cut-off values. Edges corresponding

to Bayes factor values greater than the third quartile are included with probability 0.9, and

edges corresponding to Bayes factor values between the first and the third quartile are

included with probability 0.4. To be conservative, for sample sizes over 1,000, we round up

the third quartile value and we round down the first quartile value to the nearest number

in the set t0, 5, 10, 100, 500, 1, 000, 5, 000, 10, 000u. Therefore, there are few edges considered

with high probability and there are few edges that are not considered. In general, for sample

sizes over 100,000 we take the cut-off points t100, 1, 000u, between 5,000 and 100,000 we take

t10, 100u, and under 1,000 we take t7, 10u. For example, if we have a sample size of 6,000,

then we compute (2.22) for each edges. The edges with corresponding edgewise Bayes factor

values greater or equal to 100 will be initialized with probability 0.9, the edges with values

between 10 and 100 will be initialized with probability 0.4, and the edges with values less

than 10 will not be considered.

These are general guidelines for fitting a predictive model. If it is desired to obtain a

sparse model for interpretation, then the cut-off points can be made more conservative and

the edge probabilities can be decreased. A histogram showing the distribution of the edgewise

Bayes factor values can help make the decision.
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High-Dimensional Setting

The regular local graphical genetic algorithm we just described works well for up to 20

variables. For larger number of variables, we randomly select overlapping subsets of 8

variables and perform the algorithm as usual. We store the resulting top submodels as an

array of adjacency matrices, then we select the union of all the edges to reconstruct the

full model. We choose subsets of 8 because the algorithm works well with the number of

variables for a variety of edge densities. The number of subsets is chosen depending on the

number of variables; however, it is preferable to fit too many submodels than too few. In

the high-dimensional case, we do not need to initiate as many matrices and we do not need

as many global iterations because the subsets will be relatively sparse. We initiate m1 “ 10

models then for each of the nit “ 3 global iterations, we add m2 “ 5 newly generated models.

Thus, the high-dimensional GLGA considers a total of 25 models, not including the offspring.

Since we are computing the log of the normalizing constant for subsets of the graph, it

can occur that false edges are retained in the model. To combat this we, for sample sizes

of 5,000 or more, follow the general guidelines for cut-off points in Section 3.2.2, and for

sample sizes under 5,000, we take the upper cut-off as 10 and the lower cutoff as the second

lowest edgewise Bayes factor value. The edges corresponding to high Bayes factor values

are included with probability 0.9; however, the edges with corresponding values between the

two cut-offs are included with probability 0.1. We lower this second probability since each

subset is less dense than the full graph. Furthermore, to reduce superfluous edges, after the

final graph is constructed if there are 3-cycles such that two of the edges have correspond
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to high edgewise Bayes factor values and the third edges corresponds to a lower value, we

delete the third edge with probability 0.8. This reduces the number of false edges that have

accumulated over the course of the algorithm. As stated earlier, it is preferable to fit too

many submodels than too few. This adjustment to remove extra edges means that we do not

need to worry about searching too many subsets. In Section 3.3.1, we use 600 subsets of 8

variables to fit two models with q “ 100 variables with two different densities. We use the

same set up to fit both models and obtain favourable results, which demonstrates that this

adjustment corrects for taking too many subsets. If we want the resulting model to be sparse

for the interpretation purposes, then we will adjust the initial settings instead of taking less

subsets.

Scalability of Algorithm

Most of the computations are performed on arrays of matrices and can be done quickly. The

bottleneck of the algorithm is computing the fitness of each model. Both the log of the

normalizing constant and the penalty slow down the computation because we must iterate

over all the cliques and separators. Since the fitness of each model can be computed separately,

we can use parallel computing to decrease the computing time.

In R, the packages foreach and doParallel allow us to use parallel execution on seven

cores of the computer, which significantly reduces the computing time. For example, to

compute the log of the normalizing constant for 120 models with 8 vertices, the regular ‘for’

loop takes 4.2213 seconds and the ‘foreach’ loop takes 1.3114 seconds. For 120 models with
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20 vertices, the regular ‘for’ loop takes 1.3405 minutes and the ‘foreach’ loop takes 31.5809

seconds. In the low-dimensional setting, meaning up to 20 variables, the time it takes to run

the algorithm is still manageable with q “ 20 taking 36.1979 seconds.

We also use parallel computing to compute the edgewise Bayes factor when generating

the initial model population. For q “ 100, there are 4950 edges we need to consider. It takes

the regular ‘for’ loop 2.8219 minutes to compute the Bayes factor indicating the presence or

absence of each edge, and the ‘foreach’ loops takes 1.4356 minutes.

3.3 Experiments

In Section 3.3.1, we give the results of experiments with simulated data sets for q P

t6, 8, 12, 20, 50, 100u for various sample sizes from 100 to 500,000. We use Gibbs sampling

to generate each data set and we burn the first 1,000 samples. Then in Section 3.3.2, we

implement the GLGA on a real world data set with q “ 32.

3.3.1 Simulated Data Sets

Here we demonstrate the capabilities of the GLGA using simulated data from known graphs

for various q and various sample sizes and compare it to the Chordalysis approach by Petijean

et al. (2013). In Petijean et al. (2013), they illustrate the advantages of the Chordalysis

approach; however, the method can only return a decomposable and it looses accuracy for

smaller sample sizes.
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To evaluate the performance of each algorithm, we use the

sensitivity “
TP

TP ` FN
, specificity “

TN
TN ` FP

, and F1-score “
2 ˚ TP

2 ˚ TP ` FP ` FN
,

where TP, TN, FP and FN are the number of true positives, true negative, false positives

and false negative, respectively. Each score is between 0 and 1, and a higher score implies

better accuracy. The sensitivity is the proportion of true edges correctly identified, and

the specificity is the proportion of absent edges correctly identified. We aim to have both

sensitivity and specificity be 0.70 or above. The F1´score measures the balance between

precision“ TP{pTP ` FPq and recall“ TP{pTP ` FNq, thus is measures the model selection

method’s ability to both identify true edges and false edges. In general, an F1´score over 0.9

is very strong, between 0.9-0.8 is strong, between 0.5-0.8 is okay, and below 0.5 is weak.

Low-Dimensional Data Sets

First we give our simulation results for known graphs with q P t6, 8, 12, 20u in Tables 3.1, 3.2,

3.3, and 3.4, respectively. For each graph, we give the average sensitivity, specificity, and F1

scores, and standard deviations (Sd.) of 20 runs and compare the results to the Chordalysis

algorithm. Chordalysis returns the same graph every run, thus we do not have any standard

deviation to report. For each sample size, the first row is the GLGA results, and the second

row is the Chordalysis results.

In general, the GLGA performs well for sample size 5,000 or more, and it outperforms

Chordalysis for small sample sizes. Moreover, since Chrordalysis must return a decomposable
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model, only the GLGA is able to select the true model.

Figure 3.6: True non-decomposable graph with q “ 6.

Table 3.1: Results from simulated data set with q “ 6. The first row gives the results using
GLGA and the second row is using Chordalysis.

Sample Size Sensitivity Sd. Specificity Sd. F1´Score Sd.

100 0.63 0.0707 1.00 0.0000 0.77 0.0512
0.20 - 1.00 - 0.33 -

500 0.50 0.0000 1.00 0.0000 0.67 0.0000
0.50 - 1.00 - 0.67 -

1,000 0.60 0.0000 1.00 0.0000 0.75 0.0000
0.60 - 1.00 - 0.75 -

5,000 0.78 0.0167 0.96 0.0179 0.87 0.0106
0.60 - 1.00 - 0.75 -

10,000 0.80 0.0000 0.80 0.0000 0.84 0.0000
0.80 - 0.80 - 0.84 -

50,000 0.80 0.0000 1.00 0.0000 0.89 0.0000
0.90 - 0.60 - 0.86 -

100,000 0.96 0.0110 0.92 0.0219 0.96 0.0045
1.00 - 0.60 - 0.91 -

500,000 1.00 0.0000 0.92 0.0219 0.98 0.0052
1.00 - 0.20 - 0.83 -
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Figure 3.7: True non-decomposable graph with q “ 8.

Table 3.2: Results from simulated data set with q “ 8. The first row gives the results using
GLGA and the second row is using Chordalysis.

Sample Size Sensitivity Sd. Specificity Sd. F1´Score Sd.

100 0.50 0.0000 0.86 0.0000 0.61 0
0.07 - 1.00 - 0.13 -

500 0.65 0.0000 1.00 0.0000 0.78 0
0.50 - 1.00 - 0.67 -

1,000 0.50 0.0000 1.00 0.0000 0.67 0
0.50 - 1.00 - 0.67 -

5,000 0.71 0.0000 0.93 0.0175 0.80 0.0076
0.64 - 1.00 - 0.78 -

10,000 0.77 0.0064 0.94 0.0156 0.84 0.0102
0.79 - 0.86 - 0.81 -

50,000 0.83 0.0078 0.81 0.0239 0.82 0.0114
1.00 - 0.57 - 0.81 -

100,000 0.83 0.0217 0.87 0.0120 0.84 0.0163
0.86 - 0.71 - 0.80 -

500,000 0.97 0.0078 0.81 0.0128 0.90 0.0077
1.00 - 0.50 - 0.80 -
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Figure 3.8: True non-decomposable graph with q “ 12.

Table 3.3: Results from simulated data set with q “ 12. The first row gives the results using
GLGA and the second row is using Chordalysis.

Sample Size Sensitivity Sd. Specificity Sd. F1´Score Sd.

100 0.57 0.0263 0.85 0.0000 0.58 0.0195
0.26 - 0.98 - 0.40 -

500 0.77 0.0141 0.91 0.0049 0.77 0.0123
0.53 - 1.00 - 0.69 -

1,000 0.72 0.0288 0.96 0.0000 0.79 0.0193
0.58 - 0.98 - 0.71 -

5,000 0.78 0.0047 0.96 0.0000 0.83 0.0030
0.68 - 0.98 - 0.79 -

10,000 0.67 0.0047 0.98 0.0000 0.78 0.0034
0.63 - 0.98 - 0.75 -

50,000 0.89 0.0000 0.98 0.0000 0.92 0.0000
0.68 - 0.98 - 0.79 -

100,000 0.75 0.0115 0.97 0.0055 0.83 0.0040
0.79 - 0.94 - 0.81 -

500,000 0.91 0.0047 0.79 0.0019 0.75 0.0025
0.89 - 0.85 - 0.79 -
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Figure 3.9: True non-decomposable graph with q “ 20.

Table 3.4: Results from simulated data set with q “ 20. The first row gives the results using
GLGA and the second row is using Chordalysis.

Sample Size Sensitivity Sd. Specificity Sd. F1´Score Sd.

100 0.65 0.0716 0.75 0.0670 0.48 0.0244
0.24 - 1.00 - 0.38 -

500 0.61 0.0161 0.97 0.0000 0.70 0.0122
0.41 - 1.00 - 0.58 -

1,000 0.75 0.0161 0.96 0.0035 0.77 0.0152
0.56 - 1.00 - 0.72 -

5,000 0.82 0.0110 0.90 0.0021 0.72 0.0132
0.59 - 1.00 - 0.74 -

10,000 0.70 0.0026 0.96 0.0006 0.75 0.0023
0.53 - 1.00 - 0.69 -

50,000 0.82 0.0026 0.94 0.0006 0.79 0.0020
0.76 - 0.98 - 0.83 -

100,000 0.73 0.0026 0.96 0.0007 0.76 0.0025
0.71 - 0.98 - 0.79 -

500,000 0.91 0.0000 0.93 0.0006 0.82 0.0010
0.74 - 0.92 - 0.69 -
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High-Dimensional Data Sets

Here we start with results for the same graph with 20 variables as in Figure 3.9; however, we

use the modified version of the GLGA with subsets. Note that we used different data sets, so

the results using Chordalysis are different in each table. We use 50 subsets of 8 variables

when using the high-dimensional method for q “ 20. The results in Table 3.5 show that even

though we are fitting subsets of the model, we can still obtain favourable results.

In Tables 3.6, 3.7, and 3.8, we have the results for q “ 50, q “ 100 with an edge density of

0.02, and q “ 100 with an edge density of 0.05, respectively. For q “ 50, we take 300 subsets

of 8 and for q “ 100, we take 600 subsets of 8. In Figures 3.11 and 3.12, we see that there is

a noticeable difference in density between the two graphs. However, we use the same number

of subsets for both graphs. This justifies the use of the adjustment we describe in Section

3.2.2. Again, it is better to take more subsets, than to take too few. The adjustment will

control the number of false edges.

We see that the GLGA has sensitivity and specificity scores over 0.7, and F1´score over

0.5 for sample size 5,000 or more. For the smaller sample sizes, it does not give as strong

results; however, it is able to find the same or more edges than using Chordalysis. Note that

the Chordalysis algorithm had an error when running on a data set with sample size 500,000

due to lack of memory, this is why its sensitivity score for the simulation is so low.
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Table 3.5: Results from simulated data set with q “ 20. The first row gives the results using
GLGA and the second row is using Chordalysis.

Sample Size Sensitivity Sd. Specificity Sd. F1´Score Sd.

100 0.84 0.0572 0.68 0.0262 0.50 0.0064
0.09 - 1.00 - 0.16 -

500 0.80 0.0147 0.70 0.037 0.50 0.0190
0.29 - 1.00 - 0.46 -

1,000 0.89 0.0449 0.77 0.0482 0.60 0.0337
0.56 - 1.00 - 0.71 -

5,000 0.79 0.0417 0.83 0.0154 0.62 0.0173
0.53 - 0.99 - 0.67 -

10,000 0.71 0.0322 0.94 0.0197 0.71 0.0390
0.56 - 1.00 - 0.71 -

50,000 0.85 0.0000 0.91 0.0059 0.75 0.0091
0.65 - 0.99 - 0.77 -

100,000 0.75 0.0573 0.95 0.0187 0.76 0.0332
0.68 - 0.97 - 0.75 -

500,000 0.78 0.0332 0.91 0.0199 0.71 0.0325
0.79 - 0.94 - 0.76 -

Figure 3.10: True non-decomposable graph with q “ 50.
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Table 3.6: Results from simulated data set with q “ 50. The first row gives the results using
GLGA and the second row is using Chordalysis.

Sample Size Sensitivity Sd. Specificity Sd. F1´Score Sd.

100 0.61 0.0153 0.63 0.0035 0.26 0.0225
0.05 - 1.00 - 0.10 -

500 0.60 0.0220 0.69 0.0031 0.23 0.0195
0.31 - 1.00 - 0.48 -

1,000 0.76 0.0229 0.83 0.0032 0.48 0.0142
0.37 - 1.00 - 0.54 -

5,000 0.73 0.0236 0.75 0.0019 0.57 0.0365
0.42 - 0.99 - 0.57 -

10,000 0.61 0.0289 0.93 0.0050 0.55 0.01418
0.48 - 0.99 - 0.62 -

50,000 0.81 0.0165 0.91 0.0071 0.63 0.0196
0.47 - 0.98 - 0.58 -

100,000 0.62 0.0116 0.98 0.0036 0.69 0.0138
0.52 - 0.98 - 0.60 -

500,000 0.77 0.0137 0.92 0.0104 0.62 0.0189
0.56 - 0.94 - 0.54 -

Figure 3.11: True non-decomposable graph with q “ 100 and edge density 0.02.
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Table 3.7: Results from simulated data set with q “ 100 and edge density 0.02. The first row
gives the results using GLGA with 600 subsets of 8 variables and the second row is using
Chordalysis.

Sample Size Sensitivity Sd. Specificity Sd. F1´Score Sd.

100 0.41 0.0306 0.80 0.0024 0.07 0.0059
0.04 - 1.00 - 0.08 -

500 0.66 0.0222 0.92 0.0040 0.23 0.0134
0.36 - 1.00 - 0.53 -

1,000 0.78 0.0243 0.90 0.0008 0.24 0.0077
0.60 - 1.00 - 0.75 -

5,000 0.82 0.0231 0.98 0.0007 0.59 0.0153
0.72 - 1.00 - 0.84 -

10,000 0.78 0.0523 0.98 0.0069 0.54 0.0153
0.77 - 1.00 - 0.87 -

50,000 0.88 0.0206 0.98 0.0020 0.57 0.0202
0.84 - 0.99 - 0.90 -

100,000 0.80 0.0200 0.99 0.0007 0.78 0.0169
0.84 - 1.00 - 0.91 -

500,000 0.88 0.0230 0.99 0.0007 0.75 0.0174
0.03 - 0.98 - 0.03 -

138



Figure 3.12: True non-decomposable graph with q “ 100 and edge density 0.05.

Table 3.8: Results from simulated data set with q “ 100 and edge density 0.05. The first row
gives the results using GLGA with 600 subsets of 8 variables and the second row is using
Chordalysis.

Sample Size Sensitivity Sd. Specificity Sd. F1´Score Sd.

100 0.33 0.0050 0.88 0.0056 0.17 0.0063
0.06 - 0.99 - 0.11 -

500 0.53 0.0291 0.94 0.0026 0.38 0.0163
0.28 - 1.00 - 0.43 -

1,000 0.61 0.0116 0.94 0.0011 0.41 0.0071
0.38 - 1.00 - 0.55 -

5,000 0.71 0.0470 0.95 0.0077 0.50 0.0146
0.44 - 0.99 - 0.60 -

10,000 0.79 0.0231 0.94 0.0010 0.52 0.0144
0.43 - 1.00 - 0.60 -

50,000 0.82 0.0126 0.94 0.0035 0.52 0.0155
0.47 - 0.99 - 0.63 -

100,000 0.72 0.0124 0.99 0.0010 0.74 0.0163
0.46 - 0.99 - 0.63 -

500,000 0.75 0.0163 0.97 0.0024 0.61 0.0161
0.46 - 0.99 - 0.61 -
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3.3.2 Application on Real Data Set

In this section, we apply the GLGA to a real-world data set. We apply our algorithm to the

Movies Dataset collected by TMDB and GroupLens (https://grouplens.org/datasets/

movielens/latest/). The original data set contains over 280,000 movie titles with reviews

from over 50,000 individual viewers. The ratings are on a scale from 0 to 5 with intervals of

0.5. We select 32 movies which were reviewed by the same 353 individuals and if they rated

a movie 4 or more then we encoded that observation as ’1’ to mean they like the movie, and

if they rated a movie 3.5 or less we encoded that observation as ’0’ to mean they do not like

the movie.

Since the same size a relatively small for this number of variables and the purpose of the

model is for interpretation, we use conservative cut-off points and initial edge probabilities

when generating the initial populations of submatrices. Edges with a Bayes factor value of 30

or over are initialized with probability 0.8, and edges with values of 15 or lower are initialized

with probability 0.05. We used a histogram of the edgewise Bayes factors to decide these

cut-offs. Moreover, since in our simulations we used 50 subsets for 20 variables, here we used

60 subsets. Figure 3.13 shows the graph representing selected model with the numeric labels

given in the original data set. A legend for the titles, genre and year of the movies is provide

in Appendix 4.2.
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Figure 3.13: Graphical representation of model selected for the Movie Dataset.

The graph in Figure 3.13 show connections between movies which are liked by the same

viewers. First, we notice that Bridge to Terabithia (1265) is the only movie not connected

any other movie in the graph. This is because it is the only family movie we considered;

therefore, we do not expect it to have been viewed by the same demographic as the other

movies. The movie with the most connections is Batman Returns (364). This movie is apart

of the well-known Batman franchise, so it was likely viewed by different demographics. It is

considered an action movie and it is connected to movies with related genres drama, thriller,

and horror; as well as, action. Batman Returns was directed by Tim Burton who is known

for his quirky gothic fantasy and horror style. We notice that Batman Returns is connected

to Silent Hill (588) and Motha vs Godvilla (1682) which are both categorized as horror. It is
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also connected to Big Fish (587) which is a fantasy-drama, also directed by Tim Burton.

This type of model can be used to guide movie recommendations to users based on

the movies they have previously viewed. The user would be recommended the movies

connected to a movie that have viewed and if they like the original movie, they would select

a recommended movie and if they did not like the original movie, they know not to select the

new recommendations. For first time viewers, the recommendation system should start with

a movie with many connections because those are likely to have been enjoyed by a diverse

audience, for example, Batman Returns.

3.4 Conclusion

Graphical log-linear models are an effective tool for modelling complex interactions between

discrete variables; however, model selection for high-dimensional data is a difficult task. In

this chapter, we introduce the Graphical Local Genetic Algorithm, which is an extension of the

graphical genetic algorithm to the high-dimensional setting with the crossover-hill-climbing

operator from Lozano et al. (2004).

First, we successfully apply the GLGA to graphs up to 20 variables, then we modify the

GLGA by implementing the algorithm for subsets of 8 variables and reconstructing the final

model using the resulting subgraphs. We are able to fit data sets with up to 100 variables

using the GLGA. Previously, the graphical genetic algorithm had only been implemented for

graphs with a low number of variables. Many competing model selection methods are stepwise

methods which rely on the properties of decomposable graphs. Our simulation results show

142



that the GLGA is flexible in that it can fit non-decomposable models with varying densities

by taking advantage of the convenient properties of minimal triangulations. Moreover, we

use the GLGA to analyse a real-world data set containing movie reviews for 32 movies from

353 individuals. The resulting model exhibits valuable connections between movies, which

can be used for a movie recommendation system.
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Chapter 4

Conclusion and Future Work

In this thesis, we studied the Bayes factor as a model selection criterion for high-dimensional

discrete graphical models. Our main topic was proving that the Bayes factor is strong

model selection consistent for non-decomposable models when the number of variable is

increasing with the sample size. Our primary contribution is our approximation of log of

the normalizing constant proportionate to the posterior probability. We derive a convenient

expression approximate to log of the posterior probability that is comparable to the BIC.

While the BIC is suitable for fixed dimension, our approximation is preferable for increasing

dimension because it allows us to avoid high-dimensional integration and to control each

individual error term. First, we examine the behaviour of the pairwise Bayes factor, then we

establish the conditions for strong model selection consistency for both decomposable and

non-decomposable graphs. Our theoretical results demonstrate that when the true graph is

non-decomposable, it can be reasonably approximated by one of its minimal triangulations
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and the difference between minimal triangulations with the same number of edges is negligible.

We bolster these results with simulations using both a low number of variables and a high

number of variables.

After establishing our theoretical results for the Bayes factor, we propose a model selection

algorithm for high-dimensional discrete data as our second topic. We introduce the Graphical

Local Genetic Algorithm, which is an extension of the graphical genetic algorithm to the

high-dimensional setting with the crossover-hill-climbing operator from Lozano et al. (2004).

In general, the genetic algorithm is a metaheuristic approach that aims to optimize some

criterion and is not constrained to any stepwise procedure. We apply the GLGA to graphs up

to 20 variables, then we modify the algorithm to take subsets of 8 variables and reconstructing

the final model using the resulting subgraphs. Using this method, we are able to fit data

sets with up to 100 variables. Our experiment results show that the GLGA is flexible in that

it can fit non-decomposable models with varying densities, and it can be used to analyse

real-world data sets.

In our research, we use the DY conjugate prior and the model prior defined in Section

2.3.2, where the edge probability is inversely proportional to the number of variables. Future

research could include investigating the behaviour of the Bayes factor under other prior

distributions, and there is a need to study the Bayes factor under more flexible settings, that

is, when qN increasing at a rate similar to N or faster than N . Moreover, the GLGA is

adaptable and it would be interesting to see it applied to other types of graphical models,

such as continuous graphical models and directed graphical models. The GLGA can easily be
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modified to use other model selections criterion when computing the fitness of the candidate

models.
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Appendix A

In Sections 2.3.3, 2.4 and 2.5, we use a combination of the weak law of large numbers,

the continuous mapping theorem and the triangle inequality to acquire the necessary large

deviation results. We prove these lemmas for one component of a vector of probabilities,

meaning in the following lemmas, π0, π̂, and π̂˚ correspond to cell probabilities for a Bernoulli

random variable. When we apply these lemmas, we use the Bonferroni correction to account

for the differences between the estimates and the true probabilities for all of the marginal cell

probabilities in a given model. In our main results, we use p0, p̂, and p̂˚ to denote vectors of

marginal probabilities.

Most of our theoretical results are in terms of the parametrization with respect to the cell

probabilities. The exception is when we are comparing overfitting models, which requires the

log of the likelihood ratio. In Appendix 4.2, we provide the quadratic form of the log of the

likelihood ratio using the log-linear parametrization.

Here we provide the proofs for Lemmas 4.1.1-4.2.1, where Lemmas 4.1.3-4.1.7 are for a

fixed number of variables, and Lemmas 4.1.8-4.1.12 are for a number of variables increasing

with the sample size. More details are given in the proofs which cover increasing qN than are
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given in the proofs for fixed q. Lemma 4.2.1 shows the proof for qN Ñ 8.

4.1 Results regarding large deviation bounds

Lemma 4.1.1. Let Yi „ Bernoullip1, π0q, i “ 1, ..., N . By Assumption 1, π0 is bounded

away from 0 and 1. Define Ȳ “ 1
N

řN
i“1 Yi “ π̂ and EpYiq “ π0. Then

π̂ log π̂ ` p1 ´ π̂q logp1 ´ π̂q
P
Ñ́ π0 log π0 ` p1 ´ π0q logp1 ´ π0q,

where the term π0 log π0 ` p1 ´ π0q logp1 ´ π0q is the expected log-likelihood of Yi.

Proof of Lemma 4.1.1. Let gpπ0q “ π0 log π0 ` p1´π0q logp1´π0q, where gpπ0q is continuous

on the interval p0, 1q. By weak law of large numbers π̂ P
Ñ́ π0. Furthermore, by the continuous

mapping theorem gpπ̂q
P
Ñ́ gpπ0q.

Lemma 4.1.2. Let Yi „ MultinomialpN, π̃0q, i “ 1, ..., N , where Yi “ pY1, . . . , Yqq
T and

π̃0 “ pπ01, . . . , π0qq
T such that

řq
j“1 yj “ N and

řq
j“1 π0j “ 1. By Assumption 1, each π0j is

bounded away from 0 and 1. Define π̂j “
yj
N

and EpYiq “ Nπ0i. Then

q
ÿ

j“1

π̂j log π̂j
P
Ñ́

q
ÿ

j“1

π0j log π0j,

where the term
řq

j“1 π0j log π0j is the expected log-likelihood of Yi.

Proof of Lemma 4.1.2. Let gpπ0jq “ π0j log π0j, where gpπ0jq is continuous on the interval

p0, 1q. By weak law of large numbers π̂j
P
Ñ́ π0j. Furthermore, the sum of a finite number of

154



continuous functions is itself a continuous function, so by the continuous mapping theorem,

řq
j“1 gpπ̂jq

P
Ñ́

řq
j“1 gpπ0jq.

Lemma 4.1.3. Under the same setting as Lemma 4.1.1,

P
`

|π̂ ´ π0| ą p2N´1q logNq
1{2
˘

“ O
`

N´q
˘

,

where the dimension q is fixed.

Proof of Lemma 4.1.3. Under the same setting as Lemma 4.1.1, we have that Y „ Bernoullip1, π0q.

We let Z “ Y ´ EpY q, then for N independent Bernoulli random variables Y1, . . . , YN we can

write |π̂ ´ π0| “ |N´1
řN

i“1rYi ´ EpYiqs|. Following the proof of Lemma 4.1.7, we know that

P p|π̂ ´ π0| ą tq ď 2e´Nt2{2.

Letting t “ p2N´1q logNq1{2,

P p|π̂ ´ π0| ą tq ď 2 expt´N rp2N´1q logNq
1{2

s
2
{2u “ 2 expt´q logNu “ OpN´q

q.

Lemma 4.1.4. Under the same setting as Lemma 4.1.1,

P
`

|gpπ̂q ´ gpπ0q| ą pCN´1q logNq
1{2
˘

“ O
`

N´q
˘

,
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where the dimension q is fixed, gp¨q is the continuous function defined in Lemma 4.1.1 and C

is a positive universal constant.

Proof of Lemma 4.1.4. From Lemma 4.1.1, we have gpπ0q “ π0 log π0 ` p1 ´ π0q logp1 ´ π0q.

Following the proof of Lemma 4.1.8, by the mean value theorem and Lemma 4.1.3 which

gives

|gpπ̂q ´ gpπ0q| “ |g1
pkq||π̂ ´ π0| ă |g1

pkq|p2N´1q logNq
1{2

“ pCN´1q logNq
1{2,

where C is a positive universal constant. Therefore,

P
`

|gpπ̂q ´ gpπ0q| ą pCN´1q logNq
1{2
˘

“ OpN´q
q,

for fixed dimension q.

Lemma 4.1.5. Let π̂˚ be the empirical frequency of the sum of true cell counts and fictive

cell counts for a fixed marginal cell probability. Under Assumption 4, by Lemma 4.1.3,

P
`

|π̂˚
´ π0| ą p18N´1q logNq

1{2
˘

“ O
`

N´q
˘

,

where the dimension q is fixed.

Proof of Lemma 4.1.5. Under the conditions as Lemma 4.1.10, we define π̂ “ 1
N

řN
i“1 Yi and
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π̂˚ “ 1
N`α

p
řN

i“1 Yi ` s̃q. Then following the proof of Lemma 4.1.10, under Assumption 4, by

the triangle inequality and Lemma 4.1.3 where ϵN “ p2N´1q logNq1{2, we have

|π̂˚
´ π0| ď |π̂˚

´ π̂| ` |π̂ ´ π0| ă
2α

N
` ϵN ă 2ϵN ` ϵN “ 3ϵN .

Therefore,

P
`

|π̂˚
´ π0| ą p18N´1q logNq

1{2
˘

“ O
`

N´q
˘

,

for fixed q.

Lemma 4.1.6. Let π̂˚ be the empirical frequency of the sum of true cell counts and fictive

cell counts for a fixed marginal cell probability. Then by Lemma 4.1.4 and Lemma 4.1.5,

P
`

|gpπ̂˚
q ´ gpπ0q| ą p18CN´1q logNq

1{2
˘

“ O
`

N´q
˘

,

where the dimension q is fixed, gp¨q is the continuous function defined in Lemma 4.1.1 and C

is a positive universal constant.

Proof of Lemma 4.1.6. In Lemma 4.1.1, we define gpπ0q “ π0 log π0 ` p1 ´ π0q logp1 ´ π0q

and in Lemma 4.1.5, we define π̂ “ 1
N

řN
i“1 Yi and π̂˚ “ 1

N`α
p
řN

i“1 Yi ` s̃q.

Following the proof of Lemma 4.1.11, by the triangle inequality and Lemma 4.1.4 where
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ϵN “ pCN´1q logNq1{2, we have

|gpπ̂˚
q ´ gpπ0q| ă |g1

pkq|2ϵN ` ϵN “ CϵN ,

where C is a positive universal constant. Therefore,

P
`

|gpπ̂˚
q ´ gpπ0q| ą p18CN´1q logNq

1{2
˘

“ O
`

N´q
˘

,

for fixed dimension q.

Lemma 4.1.7. Let θrts denote the tth component of the log-linear parameter vector θ “

pθj, j P Jq, where θj has the representation (2.5). Let θ̂ denote the MLE and let θ0 denote

the true value of the log-linear parameter vector. Under the same setting as Lemma 4.1.1,

P
´

|pθ̂ ´ θ0qrts| ą pCN´1q logNq
1{2
¯

“ O
`

N´q
˘

,

where the dimension q is fixed.

Proof of Lemma 4.1.7. Following the proof of Lemma 4.1.12, we know that any θrts is a linear

combination of the log of the cell probabilities.

Let π̂ and π0 denote the MLE and the true value of any cell probability, respectively.

Let hp¨q be any continuous function. Then by the mean value theorem and by Lemma 4.1.3
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where ϵN “ p2N´1q logNq1{2, we have

|hpπ̂q ´ hpπ0q| ă pCN´1q logNq
1{2,

where C is a positive universal constant.

It is known that the sum of a finite number of continuous functions is also a continuous

function. Since logpxq is a continuous function for x ą 0 and the dimension q is finite, then

we can apply the continuous mapping theorem. Thus, by Lemma 4.1.3 and by the continuous

mapping theorem, we have

P
´

|pθ̂ ´ θ0qrts| ą pCN´1q logNq
1{2
¯

“ O
`

N´q
˘

,

for fixed dimension q.

Lemma 4.1.8. Under the same setting as Lemma 4.1.1,

P
`

|π̂ ´ π0| ą p2N´1QN logQNq
1{2
˘

“ O
`

QN
´QN

˘

,

where QN “ qN
2 and the dimension qN increases as N Ñ 8.

Proof of Lemma 4.1.8. From the conditions stated in Lemma 4.1.1, we have that Y „

Bernoullip1, π0q with Y P r0, 1s and EpY q “ π0. Let Z “ Y ´ EpY q, then EpZq “ 0, where

Z P p´1, 1q since
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0 ď Y ď 1 “ñ ´EpY q ď Z ď 1 ´ EpY q “ñ ´1 ă ´π0 ď Z ď 1 ´ π0 ă 1,

and by assumption π0 is bounded away from 0 and 1. By Hoeffding’s lemma, Lemma 1.8 in

Rigollet (2003),

E
`

etZ
˘

ď et
2{2,

for t P R, thus Z „ subGaussianp1q. Since EpZq “ 0, by Hoeffding’s inequality, Theorem

1.9 in Rigollet (2003), for N independent Bernoulli random variables Y1, . . . , Yn we have

P

˜

1

N

N
ÿ

i“1

rZi ´ EpZiqs ą t

¸

“ P

˜

1

N

N
ÿ

i“1

rYi ´ EpYiqs ą t

¸

ď e´2N2t2{4N
“ e´Nt2{2.

Also from Lemma 4.1.1, we can write |π̂ ´ π0| “ |N´1
řN

i“1rYi ´ EpYiqs|. Therefore,

P p|π̂ ´ π0| ą tq ď 2e´Nt2{2.

Letting t “ p2QN logQNq
1{2 with QN “ qN

2, then
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P p|π̂ ´ π0| ą tq ď 2 expt´N rp2N´1QN logQNq
1{2

s
2
{2u “ 2 expt´QN logQNu “ OpQ´QN

N q.

Lemma 4.1.9. Under the same setting as Lemma 4.1.1,

P
`

|gpπ̂q ´ gpπ0q| ą pCN´1QN logQNq
1{2
˘

“ O
´

Q´QN

N

¯

,

where QN “ qN
2, the dimension qN is increasing as N Ñ 8, gp¨q is the continuous function

defined in Lemma 4.1.1 and C is a positive universal constant.

Proof of Lemma 4.1.9. From Lemma 4.1.1, we have gpπ0q “ π0 log π0 ` p1 ´ π0q logp1 ´ π0q.

By the mean value theorem, we have

g1
pkq “

gpπ̂q ´ gpπ0q

π̂ ´ π0

,

for some k between π0 and π̂. By Assumption 1, π0 is bounded away from 0 and 1; therefore,

the neighbourhood of k is also bounded away from 0 and 1. Then we can assume |g1pkq|

is bounded by a positive constant. Then if we apply the result from Lemma 4.1.8, where

ϵN “ p2N´1QN logQNq1{2, we have
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|gpπ̂q ´ gpπ0q| “ |g1
pkq||π̂ ´ π0| ă |g1

pkq|p2N´1QN logQNq
1{2

“ pCN´1QN logQNq
1{2,

where C is a positive universal constant. Therefore,

P
`

|gpπ̂q ´ gpπ0q| ą pCN´1QN logQNq
1{2
˘

“ OpQ´QN

N q,

where QN “ qN
2 and the dimension qN is increasing as N Ñ 8.

Lemma 4.1.10. Let π̂˚ be the empirical frequency of the sum of true cell counts and fictive

cell counts for a fixed marginal cell probability. Under Assumption 4, by Lemma 4.1.8,

P
`

|π̂˚
´ π0| ą p18N´1QN logQNq

1{2
˘

“ O
´

Q´QN

N

¯

,

where QN “ qN
2 and the dimension qN is increasing as N Ñ 8.

Proof of Lemma 4.1.10. Under the same setting as Lemma 4.1.1, we define π̂ “ 1
N

řN
i“1 Yi,

where
řN

i“1 Yi is the true count for a fixed marginal cell with
řN

i“1 Yi ă N . Then let

π̂˚ “ 1
N`α

p
řN

i“1 Yi ` s̃q, where s̃ is the marginal fictive count corresponding to the appropriate

marginal cell and α is the total fictive counts with s̃ ă α.

By the triangle inequality and Lemma 4.1.8, where ϵN “ p2N´1QN logQNq1{2, we have
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|π̂˚
´ π0| ď |π̂˚

´ π̂| ` |π̂ ´ π0|

ă

ˇ

ˇ

ˇ

ˇ

ˇ

p
řN

i“1 Yi ` s̃q

N ` α
´

řN
i“1 Yi

N

ˇ

ˇ

ˇ

ˇ

ˇ

` ϵN

ă

ˇ

ˇ

ˇ

ˇ

2Nα

NpN ` αq

ˇ

ˇ

ˇ

ˇ

` ϵN

ă
2α

N
` ϵN .

By Assumption 4, we have that 2α
N

ă 2ϵN , then

|π̂˚
´ π0| ă

2α

N
` ϵN ă 2ϵN ` ϵN “ 3ϵN .

Therefore,

P
`

|π̂˚
´ π0| ą p18N´1QN logQNq

1{2
˘

“ O
´

Q´QN

N

¯

,

where QN “ qN
2 and the dimension qN is increasing as N Ñ 8.

Lemma 4.1.11. Let π̂˚ be the empirical frequency of the sum of true cell counts and fictive

cell counts for a fixed marginal cell probability. Then by Lemma 4.1.9 and Lemma 4.1.10,

P
`

|gpπ̂˚
q ´ gpπ0q| ą p18CN´1QN logQNq

1{2
˘

“ O
´

Q´QN

N

¯

,
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where QN “ qN
2, the dimension qN is increasing as N Ñ 8, gp¨q is the continuous function

defined in Lemma 4.1.1 and C is a positive universal constant.

Proof of Lemma 4.1.11. In Lemma 4.1.1, we define gpπ0q “ π0 log π0 ` p1 ´ π0q logp1 ´ π0q,

and in Lemma 4.1.10, we define π̂ “ 1
N

řN
i“1 Yi and π̂˚ “ 1

N`α
p
řN

i“1 Yi ` s̃q.

By the triangle inequality and Lemma 4.1.9, where ϵN “ pCN´1QN logQNq1{2 , we have

|gpπ̂˚
q ´ gpπ0q| ď |gpπ̂˚

q ´ gpπ̂q| ` |gpπ̂q ´ gpπ0q| ă |gpπ̂˚
q ´ gpπ̂q| ` ϵN ,

and by the mean value theorem,

gpπ̂˚
q “ gpπ̂q ` g1

pkqpπ̂˚
´ π̂q,

for some k between π̂ and π̂˚. By Assumption 1, π0 is bounded away from 0 and 1; therefore,

the neighbourhood of k is also bounded away from 0 and 1. Then we can assume |g1pkq| is

bounded by a positive constant. By the mean value theorem and Lemma 4.1.10, we have

|gpπ̂˚
q ´ gpπ̂q| “ |g1

pkq||π̂˚
´ π̂| ă |g1

pkq|
2α

N
ă |g1

pkq|2ϵN .

Then we can write
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|gpπ̂˚
q ´ gpπ0q| ă |g1

pkq|2ϵN ` ϵN “ CϵN ,

where C is a positive universal constant. Therefore,

P
`

|gpπ̂˚
q ´ gpπ0q| ą p18CN´1QN logQNq

1{2
˘

“ O
´

Q´QN

N

¯

,

where QN “ qN
2 and the dimension qN is increasing as N Ñ 8.

Lemma 4.1.12. Let θrts denote the tth component of the log-linear parameter vector θ “

pθj, j P Jq, where θj has the representation (2.5). Let θ̂ denote the MLE and let θ0 denote the

true value of the log-linear parameter vector. By Assumption 3 and under the same setting as

Lemma 4.1.1,

P
´

|pθ̂ ´ θ0qrts| ą p210CN´1QN logQNq
1{2
¯

“ O
´

Q´QN

N

¯

,

where QN “ qN
2 and the dimension qN is increasing as N Ñ 8.

Proof of Lemma 4.1.12. From (2.5) we see that if π̃ denotes the vector of all cell probabilities

and A denotes a matrix with components ´1, 0, or 1, then

θ “ A log π̃.
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Therefore, any tth component of the log-linear parameter vector θ; that is, θrts is a linear

combination of log of the cell probabilities.

Let π̂ and π0 denote the MLE and the true value of any cell probability, respectively. Let

hp¨q be any continuous function. Then the mean value theorem gives,

hpπ̂q “ hpπ0q ` h1
pkqpπ̂ ´ π0q,

for some k between π0 and π̂. By Assumption 1, π0 is bounded away from 0 and 1, thus

there exists constants 0 ă c1 ă c2 ă 1 such that π0 P pc1, c2q. If k P rc1, c2s, then |h1pkq| is

bounded. Otherwise, we can choose an ϵ, such that 0 ă ϵ ăă 1 and k P pc1 ´ ϵ, c2 ` ϵq. Then

by Lemma 4.1.8, where ϵN “ p2N´1QN logQNq1{2, we have

|k ´ π0| ă |π̂ ´ π0| ă ϵN

with probability 1 ´ OpQ´QN

N q. Therefore, |h1pkq| is bounded with probability 1 ´ OpQ´QN

N q.

By the mean value theorem,

|hpπ̂q ´ hpπ0q| “ |h1
pkq||π̂ ´ π0| ă |h1

pkq|p2N´1QN logQNq
1{2

“ pCN´1QN logQNq
1{2,

where C is a positive universal constant.

When we consider the log-linear parametrization (2.5), we see that for a particular j P J ,
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this parametrization is defined by the summation over j1 P J : j1 Ÿ j. Therefore, the number

of summations to express any θrts is at most 2max |C| for C P C, since the number of elements

in j is at most the cardinality of the clique with the highest order. Under Assumption 3, the

highest order of any clique or separator is 5, thus for qN Ñ 8 as N Ñ 8, the number of log

of the cell probabilities that are summed is at most 25. Since logpxq is a continuous function

for x ą 0, then the sum of 25 continuous functions is also a continuous function. Thus, by

Lemma 4.1.8 and by the continuous mapping theorem, we have

P
´

|pθ̂ ´ θ0qrts| ą p210CN´1QN logQNq
1{2
¯

“ O
´

Q´QN

N

¯

,

where QN “ qN
2 and the dimension qN is increasing as N Ñ 8.

4.2 Quadratic form of log of the likelihood ratio for over-

fitting models

Here we use the marginal probabilities, and first, second, and third derivatives of the log-

likelihood function (2.8), that is, (2.9), (2.10), (2.11), (2.12), (2.13), (2.14), and (2.15) found

in Section 2.2.2.

Lemma 4.2.1. Let Upθq “
Bℓpθq

Bθ
denote the score vector and let Hpθq “ E

´

´
B2ℓpθq

BθBθT

¯

denote

the Fisher Information under the true model, where the log-likelihood ℓpθq has the form (2.8).

Under Assumptions 2 and 4, for a model with k parameters and QN “ qN
2, as N Ñ 8
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2tℓpθ̂q ´ ℓpθ0qu “
1

N
UNpθ0q

T
tHpθ0qu

´1UNpθ0qt1 ` op1qu,

with probability 1 ´ 2kOpN´qq when q is fixed, and with probability 1 ´ 2kNOpQ´QN

N q when

qN is increasing with N .

Proof of Lemma 4.2.1. Here we prove the lemma for qN Ñ 8 as N Ñ 8. We use the

notation and follow the proof of Lemma A2 in Gao and Carroll (2017).

Recall that k is the number of free parameters in a hierarchical log-linear model. For a fixed

component r and r, t, u P t1, . . . , ku, let ℓp1q
r “ Bℓ

Bθr
, ℓp2q

rt “ B2ℓ
BθrBθt

, and ℓ
p3q

rtu “ B3ℓ
BθrBθtBθu

, where each

derivative has the form (2.13), (2.14), and (2.15), respectively. Let Hrtpθ0q “ N´1E
´

´
B2ℓpθ0q

BθrBθTt

¯

denote the pr, tqth entry of the Hessian matrix evaluated at the true parameter θ0. The Taylor

expansion for one component of the score vector at θ̂ is

0 “
1

N
ℓp1q
r pθ̂q “

1

N
ℓp1q
r pθ0q `

ÿ

t

1

N
ℓ

p2q

rt pθ0qpθ̂ ´ θ0qrts `
ÿ

tu

1

2N
ℓ

p3q

rtupθ̃qpθ̂ ´ θ0qrtspθ̂ ´ θ0qrus,

for some θ̃ between θ̂ and θ0.

From (2.14) we know that 1
N
ℓ

p2q

rt pθ0q “ Prpθ0qPtpθ0q ´Prtpθ0q “ Op1q is bounded since it is

a continuous function of marginal cell probabilities of the form (2.9) and (2.10). Furthermore,

since there is no random variable in (2.14), we can write 1
N
ℓ

p2q

rt pθ0q “ ´Hrtpθ0q. Hence,
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ÿ

t

1

N
ℓ

p2q

rt pθ0qpθ̂ ´ θ0qrts “ ´
ÿ

t

Hrtpθ0qpθ̂ ´ θ0qrts.

Similarly, from (2.15) we know that 1
N
ℓ

p3q

rtupθ0q “ Prtpθ0qPupθ0q `Prupθ0qPtpθ0qPtupθ0qPrpθ0q ´

Prtupθ0q ´Prpθ0qPupθ0qPtpθ0q ´Ptpθ0qPupθ0qPrpθ0q “ Op1q is bounded since it is a continuous

function of marginal cell probabilities of the form (2.9), (2.10) and (2.11). The function ℓ
p3q

rtup¨q

is by definition bounded because it is comprised of the marginal cell probabilities (2.9), (2.10)

and (2.11), meaning it is made up of terms where the denominator is greater or equal to

the numerator. Then we can say that
ˇ

ˇ

ˇ

1
N
ℓ

p3q

rtupθ̃q

ˇ

ˇ

ˇ
is bounded by a constant, where θ̃ is in the

neighbourhood of θ0. Since Hrtpθ0q is also bounded, we can say that
ˇ

ˇ

ˇ

1
N
ℓ

p3q

rtupθ̃q{Hrtpθ0q
ˇ

ˇ

ˇ
ă C1

for some constant C1 ą 0. Moreover, there is no random variable in (2.15), so we can write

1
N
ℓ

p3q

rtupθ̃q “ E
´

1
N
ℓ

p3q

rtupθ̃q

¯

. Then by Assumptions 2 and 3, and by Lemma 4.1.12,

´
ÿ

t

Hrtpθ0qpθ̂ ´ θ0qrts `
ÿ

tu

1

2N
E
´

ℓ
p3q

rtupθ̃q

¯

pθ̂ ´ θ0qrtspθ̂ ´ θ0qrus

“ ´
ÿ

t

Hrtpθ0qpθ̂ ´ θ0qrts

$

&

%

1 `
ÿ

u

pθ0 ´ θ̂qrus

»

–

E
´

ℓ
p3q

rtupθ̃q

¯

pθ̂ ´ θ0qrts

2NHrtpθ0qpθ̂ ´ θ0qrts

fi

fl

,

.

-

ď ´
ÿ

t

Hrtpθ0qpθ̂ ´ θ0qrts

#

1 `
C1kN
2

ˆ

210CQN logQN

N

˙1{2
+

ď ´
ÿ

t

Hrtpθ0qpθ̂ ´ θ0qrts

#

1 `
C2

2

ˆ

210CpqN ´ 1q2QN logQN

N

˙1{2
+

“ ´
ÿ

t

Hrtpθ0qpθ̂ ´ θ0qrts t1 ` op1qu
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with probability 1 ´ qNOpQ´QN

N q, where QN “ qN
2 and C2 “ 25C1. Thus, we can write

0 “
1

N
ℓp1q
r pθ̂q “

1

N
ℓp1q
r pθ0q ´

ÿ

t

Hrtpθ0qpθ̂ ´ θ0qrtst1 ` opp1qu.

Then in matrix form, we obtain the result

1

N
UNpθ0q “ Hpθ0qpθ̂ ´ θ0qt1 ` opp1qu “ñ pθ̂ ´ θ0q “

1

N
tHpθ0qu

´1UNpθ0qt1 ` opp1qu.

(4.1)

Next, we consider the Taylor series expansion of the log-likelihood ℓpθq at θ̂

ℓpθ̂q ´ ℓpθ0q “ UNpθ0q
T

pθ̂ ´ θ0q `
ÿ

rt

1

2
pθ̂ ´ θ0qrrspθ̂ ´ θ0qrtsℓ

p2q

rt pθ0q

`
ÿ

rtu

1

6
pθ̂ ´ θ0qrrspθ̂0 ´ θ0qrtspθ̂0 ´ θ0qrusℓ

p3q

rtupθ̃q,

for some θ̃ between θ̂ and θ0. Since ℓ
p2q

rt pθ0q “ ´NHrtpθ0q and ℓ
p3q

rtupθ̃q “ E
´

ℓ
p3q

rtupθ̃q

¯

, using

the same reasoning as above, we have
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´
ÿ

rt

1

2
pθ̂ ´ θ0qrrspθ̂ ´ θ0qrtsNHrtpθ0q `

ÿ

rtu

1

6
pθ̂ ´ θ0qrrspθ̂ ´ θ0qrtspθ̂ ´ θ0qrusE

´

ℓ
p3q

rtupθ̃q

¯

“ ´
ÿ

rt

1

2
pθ̂ ´ θ0qrrspθ̂ ´ θ0qrtsNHrtpθ0q

$

&

%

1 `

ř

u E
´

ℓ
p3q

rtupθ̃q

¯

pθ0 ´ θ̂qrus

3NHrtpθ0q

,

.

-

ď ´
ÿ

rt

1

2
pθ̂ ´ θ0qrrspθ̂ ´ θ0qrtsNHrtpθ0q

#

1 `
C2

3

ˆ

210CpqN ´ 1q2QN logQN

N

˙1{2
+

“ ´
ÿ

rt

1

2
pθ̂ ´ θ0qrrspθ̂ ´ θ0qrtsNHrtpθ0q t1 ` op1qu

with probability 1 ´ qNOpQ´QN

N q. From (4.1), we see that we obtain

ℓpθ̂q ´ ℓpθ0q “
1

N
UNpθ0q

T
tHpθ0qu

´1UNpθ0qt1 ` opp1qu

´
1

2N2

␣

tHpθ0qu
´1UNpθ0q

(T
NHpθ0qtHpθ0qu

´1UNpθ0qt1 ` opp1qu

“
1

N
UNpθ0q

T
tHpθ0qu

´1UNpθ0qt1 ` opp1qu

´
1

2N
UNpθ0q

T
tHpθ0qu

´1UNpθ0qt1 ` opp1qu

“
1

2N
UNpθ0q

T
tHpθ0qu

´1UNpθ0qt1 ` opp1qu.

Therefore,

2tℓpθ̂q ´ ℓpθ0qu “
1

N
UNpθ0q

T
tHpθ0qu

´1UNpθ0qt1 ` op1qu,
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with probability 1 ´ 2kNOpQ´QN

N q, where kN ď 25pqN ´ 1q.
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Appendix B

Table 4.1: Legend for the labels of the movies in Figure 3.13.

Label Movie Title Genre Year

111 Scarface Crime/Drama 1983

153 Lost in Translation Romance/Drama 2003

165 Back to the Future Part II Sci-fi/Comedy 1989

231 Syriana Drama/Political Thriller 2005

293 A River Runs Through It Drama 1992

296 Terminator 3: Rise of the Machines Action/Sci-fi 2003

318 The Million Dollar hotel Drama/Mystery 2000

364 Batman Returns Action/Adventure 1992

377 Nightmare on Elm Street Horror/Mystery 1984

380 Rain Man Drama 1988

480 Monsoon Wedding Comedy/Drama/Romance 2001

500 Resevoir Dogs Action/Adventure 1992

586 Wag the Dog Comedy/Political Cinema 1997

587 Big Fish Drama/Fantasy 2003

588 Silent Hill Supernatural/Horror 2006

590 The Hours Drama/Romance 2002

593 Solaris Sci-fi/Drama/Mystery 1972
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Label Movie Title Genre Year

597 Titanic Romance/Drama 1997

608 Men in Black II Sci-fi/Action 2002

648 Beauty and the Beast Fantasy/Romance 1946

780 The Passion of Joan of Arc Drama/Silent 1928

858 Sleepless in Seattle Romance/Comedy 1993

1073 Arlington Road Thriller/Crime 1999

1089 Point Break Action/Crime 1991

1213 The Talented Mr. Ripley Thriller/Drama 1999

1265 Bridge to Terabithia Family/Fantasy 2007

1682 Mothra vs Godzilla Sci-fi/Horror 1964

1721 All the Way Boys Action/Comedy 1972

2959 License to Wed Romance/Comedy 2007

4993 5 Card Stud Western/Drama 1968

4995 Boogie Nights Comedy/Drama 1997
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