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Abstract

Linear mixed effects models are widely used in applications to analyze clustered

and longitudinal data. Model selection in linear mixed models is more challenging

than that of linear models as the parameter vector in a linear mixed model includes

both fixed effects and variance components parameters. When selecting the vari-

ance components of the random effects, the variance of the random effects must be

non-negative and therefore, parameters may lie on the boundary of the parameter

space. In this dissertation, we propose a modified BIC for model selection with lin-

ear mixed effects models that can solve the case when the variance components are

on the boundary of the parameter space. We first derive a modified BIC to choose

random effects assuming that the random effects are independent. Then, we pro-

pose a modified BIC to choose random effects when random effects are assumed to

be correlated. Lastly, we propose a modified BIC to choose both fixed effects and

random effects simultaneously. Through the simulation results, we found that the

modified BIC performs well and performs better than the regular BIC in most cases.
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The modified BIC is also applied to a real data set to choose the most appropriate

linear mixed model.
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1 Introduction

1.1 Introduction and Objective

With the development of technology in recent times, more complex, and large

datasets have become available. Statisticians and researchers are also developing

different statistical models to extract valuable information from data to aid decision-

making processes. Classical multiple linear regression models can be used to model

the relationship between variables. However, one of the assumptions of linear re-

gression is that the errors are independent. Therefore, when the observations are

correlated as with longitudinal data, clustered data, and hierarchical data, linear

regression models are no longer appropriate. A more powerful class of models used

to model correlated data are mixed-effects models, which have been used in many

fields of applications.

Correlation between observations may appear when data is collected hierarchi-

cally, for example, students may be sampled from the same school, and schools may
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be sampled within the same district. Consequently, students in the same school

have the same teachers and school environment and therefore, observations are not

independent of one another. Observations may be taken from members of the same

family, where each family is considered a group or a cluster. As the observations

are dependent, we can consider this clustered data. Another type of correlated data

pertains to when observations from the same subjects are collected over time, such

as repeated blood pressure measurements over a patient’s treatment period. This is

an example of longitudinal data. Patients (or subjects) may vary in the number and

date of the collected measurements. Since observations are recorded from the same

individual over time, it is reasonable to assume that subject-specific correlations ex-

ist in the trend of the response variable over time. We wish to model the pattern of

the response variable over time within subjects, and the variation in the time trends

between subjects.

Linear mixed-effects models are used to model correlated data, accounting for the

variability within and between clusters in clustered data, or the variability within

and between repeated measurements in longitudinal data. Model selection is an im-

portant procedure in statistical analysis, allowing the most appropriate model to be

chosen from a set of potential candidate models. A desired model is one that can ade-

quately fit the data and not too complex in order to improve two important aspects:

2



interpretability and predictability. In linear mixed models, identifying significant

random effects that should be included in mixed effects model is a challenging step

in model selection, since it involves conducting a hypothesis test for whether or not

the variance components of random effects are equal to zero. For example, we want

to test H0 : σ2 = 0 against H1 : σ2 > 0, where the parameter space of σ2 is [0,∞).

Under the null hypothesis, the testing value of variance component parameter lies

on the boundary of the parameter space. This violates one of the classical regularity

conditions that the true value of the parameter must be an interior point of the

parameter space. Therefore, classical hypothesis tests such as the likelihood ratio

test, the score test, and the Wald tests are no longer appropriate. We call this a

boundary issue. When the boundary issue happens, the asymptotic null distribution

of the likelihood ratio test statistic is not a chi-square distribution. Chernoff (1954),

Self and Liang (1987), Stram and Lee (1994), Azadbakhsh et al. (2021), and Baey

et al. (2019) pointed out that, under some conditions on the parameter space and

the likelihood functions, the null asymptotic distribution of the likelihood ratio test

statistic is a mixture of chi-square distributions. For instance, the asymptotic null

distribution of the likelihood ration test statistic for testing H0 : σ2 = 0 against

H1 : σ
2 > 0 is 1

2
χ2
0 +

1
2
χ2
1, not χ

2
1 ((Stram and Lee, 1994)). Shapiro (1985) provided

the expressions to calculate the exact weights used in the mixture of chi-square dis-
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tributions for some special cases. However, in general, determining the exact weights

used in the mixture of chi-squared distributions is difficult when the number of the

variance components being tested under the null hypothesis is large as the weights

are not available in a tractable form (Baey et al. (2019)).

There are a number of information criteria, such as the Akaike information crite-

rion (AIC) and the Bayesian information criterion (BIC), that have been developed

for model selection with linear mixed models by Vaida and Blanchard (2005), Pauler

(1998), Jones (2011), and Delattre and Poursat (2020). Other methods, including

shrinkage and permutation methods for identifying the important fixed effects and

random effects variance components, have been considered as in Ibrahim et al. (2011),

Bondell et al. (2010), Peng and Lu (2012), and Drikvandi et al. (2012).

The boundary issue has impacted the BIC. If we use regular BIC in linear mixed

models, that is, we treat this case as if there were no constraints on the model’s pa-

rameter vector, then the penalty term of the regular BIC would include all number of

components of the parameter vector. Therefore, the regular BIC would overestimate

the number of degrees of freedom of the linear mixed model (called model complexity

in the thesis) and would not take into account the fact that variances components

are constrained and bounded below by 0. Consequently, the regular BIC tends to

choose under-fitted linear mixed models.
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Several versions of modified BIC have been proposed for model selection in linear

mixed models as in (Jones, 2011; Pauler, 1998; Pauler et al., 1999). However, to our

knowledge, none of the current BIC can directly deal with the boundary issue.

Therefore, the main objective of this dissertation is to introduce a modified BIC

for model selection when the true value of the variance components parameters lie

on the boundary of the parameter space, allowing the most appropriate model to be

chosen from a set of candidate linear mixed models.

Here is the general idea on how our proposed method solves the boundary prob-

lem. From the previous literature, we know that the asymptotic null distribution

of the likelihood ratio test statistic of testing the nullity of several variances is a

chi-bar square distribution (Baey et al. (2019)). Based on this theoretical result, we

take the average of the chi-bar square distribution and include this average in the

complexity of the model. When random effects are correlated, the tricky problem is

in calculating the weights of the chi-bar square distribution. The weights depend on

a cone C∗ that contains the set of positive definite matrices. Describing the set of

positive definite matrices explicitly using constraints on the components of random

effects covariance matrix, D, is almost impossible. Thus, calculating the weights of

the chi-bar square distribution for this case is not an easy task and has not been

addressed in the literature. Our solution to this problem is: we bound cone C∗ by a

5



bigger cone. The bigger cone has a much simpler structure and allows us to calculate

the weights of the chi-bar distribution.

1.2 Outline of the dissertation

This thesis consists of two projects. The first project summarizes the “Modified

BIC for Model Selection in Linear Mixed Models” and the second project is an

application of “Predictive Models for Diabetes Mellitus Using Machine Learning

Techniques”.

In Chapter 1 of this dissertation, we provide an introduction to this dissertation.

After introducing the objective of the dissertation research, we review the linear

mixed models, previous research on model selection with linear mixed models, and

the hypothesis tests on random effects variances.

In Chapter 2, we introduce a modified BIC to choose random effects components

in a linear mixed model when random effects are assumed to be independent and

prove the model selection consistency of the modified BIC.

In Chapter 3, we introduce a modified BIC to choose random effects components

in a linear mixed model when random effects are assumed to be correlated.

In Chapter 4, we propose a modified BIC to choose both fixed effects and random

effects components in a linear mixed model where the random effects are assumed

6



to be independent or correlated.

In Chapter 5, we present our second project which is “Predictive Models for Di-

abetes Mellitus using Machine Learning Techniques”. In this project, we propose

predictive models utilizing Gradient Boosting Machine and Logistic Regression tech-

niques to predict the probability of patients having Diabetes Mellitus based on their

demographic information and laboratory results collected from their visits to medical

facilities.

In Chapter 6, we summarize the contributions of this thesis based on the proposed

modified BIC for linear mixed models that can deal with the boundary problem. A

discussion on potential future work follows.

1.3 Literature Review

In this section, we provide a brief overview of linear mixed models, hypothesis

testing under non-standard conditions, and review several model selection methods

from the literature, which are applied to linear mixed models based on information

criteria such as the AIC and BIC.
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1.3.1 Linear Mixed Models

Consider the linear mixed model introduced in Laird and Ware (1982):

yi =X iβ +Zbi + ϵi, (1.1)

for i = 1, . . . , N , where yi denotes the ni-dimensional vector of response measure-

ments for cluster i with i = 1, . . . , N ; β is a p×1 fixed effect parameter vector; X i is

a ni × p matrix of covariates for the fixed effects; Zi is a ni × q matrix of covariates

for the random effects; and bi denotes the random effects vector of the ith cluster;

bi is assumed to follow a multivariate normal distribution Nq(0,D), where D is a

q×q covariance matrix. b1, . . . , bN are assumed to be independent. Fixed effects are

used to model the population mean, while random effects are used to model between-

cluster variation in the response. ϵi is the vector of random errors and is assumed to

follow a multivariate normal distribution, N(0, σ2
ϵIni

), where Ini
denotes the ni×ni

identity matrix. bi and ϵi are assumed to be pairwise independent for i = 1, . . . , N .

The marginal distribution of yi is N(X iβ,V i) where V i = ZiDZ
T
i + σ2

ϵIni
.

Model (1.1) has broad application in many fields such as medical studies and ed-

ucational studies. For example, we look at the data set “Orthodont” in the nlme

package. The dental data set was introduced by Potthoff and Roy (1964), where

dental measurements were made on 11 girls and 16 boys at ages 8, 10, 12 and 14.

The response variable was the distance, in millimeters, from the center of pituitary

8



to the pterygomaxillary fissure. There are 27 subjects in the data set with the fol-

lowing variables: Distance is a numeric vector of distances from the pituitary to

the pterygomaxillary fissure (mm). These distances are measured on x-ray images

of the skull. Age is a numeric vector of ages of the subject (in years). Subject is

an ordered factor indicating the subject on which the measurement was made. Sex

is a factor with levels Male and Female. The objective is to study the change in an

orthodontic measurement over time for young boys and girls. This is an example of

longitudinal data. Each boy or girl can be considered as a subject or cluster. There

are 27 independent subjects or clusters. Each subject was measured 4 times. Thus,

the measurements within each subject are correlated. We can use model (1.1) to

analyze this data set. Fixed effects can be used to model the relationship between

Distance and Age for boys and girls. The regression coefficients, β, measures the

population average intercept and the population average slope meanwhile the ran-

dom effects bi = (bi0, bi1) are the effects in intercept and slope associated with subject

i. The subject intercept measures the deviation of that subject intercept from the

population average intercept. We assume that b1, . . . , b27 are independent and each

has a bivariate normal distribution N(0,D). The covariance matrix D of random

effects captures the variation between subjects.
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We can also write model (1.1) in matrix form as:

y =Xβ +Zb+ ϵ, (1.2)

where y = (y1
T , . . . ,yN

T )
T
is an n×1 vector; n =

∑N
i=1 ni; andX = (X1

T , . . . ,XN
T )

T

is an n×p matrix and β is a p×1 vector; Z = diag(Z1, . . . ,ZN ) is an n×Nq matrix;

b = (b1
T , . . . , bN

T )
T
is an Nq × 1 vector; and ϵ = (ϵT1 , . . . , ϵ

T
N)

T
is an n× 1 vector.

Let τ be the vector of distinct variance and covariance components in matrix D.

Let η be (τ T , σ2
ϵ)

T . Then the vector of parameters for this model is θ = (βT ,ηT )T .

We assume that the response vectors y1, . . . ,yN from N clusters are independent

random observations. Given a clustered data set, we wish to choose a linear mixed

model that yields fits the data well and is also a parsimonious model.

For the linear mixed model (1.1), the marginal log-likelihood function is:

lN(θ;y) =
N∑
i=1

[
−ni

2
log(2π)− 1

2
log |V i| −

1

2
(yi −X iβ)

TV −1
i (yi −X iβ)

]
.(1.3)

If the random effects components are independent, then D is a diagonal matrix. If

the random effects components are correlated, D is a full matrix. For our linear

mixed model (1.1), the information matrix is a block diagonal matrix (Searle, 1970).

IN (θ) = E

(
− ∂2l(θ)

∂θ∂θT

)
=

 Iββ Iβη

ITβη Iηη

 =

 XTV −1X 0

0 Iηη

 . (1.4)

where θ = (βT ,ηT )T ; η is the vector containing all different variances and co-

variances in D and σ2
ϵ and V = ZGZT + σ2

ϵIn = diag(V1,V2, . . . ,VN ) with

10



V i = ZiDZ
T
i + σ2

ϵIni
; n =

∑N
i=1 ni and G = diag(D, . . . ,D). The st-th ele-

ment of Iηη is 1
2
tr(V −1 ∂V

∂ηs
V −1 ∂V

∂ηt
) where tr(A) denotes the trace of matrix A, for

any matrix A. When V is unknown, V can be approximated by V̂ = V (θ̂) and

the partial derivatives are evaluated at θ̂ where θ̂ is the full maximum likelihood

estimator or restricted maximum likelihood estimator of θ.

The parameters in linear mixed models are usually estimated using the maximum

likelihood (ML) or restricted maximum likelihood (REML) method. First, for fixed

η, the log-likelihood l(β,η;y) is maximized over β by the generalized least squares

estimator:

β̂(η) = (XTV −1X)−1XTV −1y. (1.5)

Then, replace β in l(β,η;y) by β̂(η) to obtain the profile log-likelihood function,

lp(η) = l(β̂(η),η), which is a function of η, and

lp(η) = −n

2
log(2π)− 1

2
{log |V |+ (y −Xβ̂)TV −1(y −Xβ̂)}. (1.6)

Maximizing lp(η) with respect to η gives the maximum likelihood estimator η̂ML and

β̂ML = β̂(η̂ML), which is the maximum likelihood estimator of β. The maximum

likelihood estimator η̂ML has been found to be biased downwards because when the

variance components are estimated the maximum likelihood method does not take

into account the degrees of freedom lost by estimating the fixed effects (Harville,
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1974). Therefore, the restricted maximum likelihood estimator of η is often used to

produce unbiased estimates of variance and covariance parameters.

The restricted maximum log-likelihood, lR(η), is obtained by integrating out the

fixed effect parameter β from the likelihood L(β,η;y) which is the joint distribution

of β and η, and then taking the natural logarithm. The following derivation is from

Czado (2017). We have

(y −Xβ)TV −1(y −Xβ) = βTXTV −1Xβ − 2yTV −1Xβ + yTV −1y

= (β −By)TA(β −By) + yT [V −1 −BTAB]y,

where A =XTV −1X and B = A−1XTV −1.

Therefore,

∫
L(β,η;y)dβ

=

∫
(2π)−

n
2 |V |−

1
2 exp{−1

2
{(β −By)TA(β −By) + yT (V −1 −BTAB)y}}dβ

= (2π)−
n
2 |V |−

1
2 exp{−1

2
yT (V −1 −BTAB)y}

∫
exp{−1

2
(β −By)TA(β −By)}dβ

= (2π)−
n
2 |V |−

1
2 exp{−1

2
yT (V −1 −BTAB)y}(2π)

p
2 |A|−

1
2

= (2π)−
n−p
2 |V |−

1
2 exp{−1

2
yTPy}|A|−

1
2 ,

where P = V −1 − V −1X(XTV −1X)−1XTV −1. We also have

(y −Xβ̂)TV −1(y −Xβ̂) = β̂
T
XTV −1Xβ̂ − 2yTV −1Xβ̂ + yTV −1y = yTPy,

12



where β̂ = (XTV −1X)−1XTV −1y. Hence, the restricted maximum log-likelihood

function is

lR(η) = −1

2
{log |V |+ (y −Xβ̂)TV −1(y −Xβ̂)}

− 1

2
log |XTV −1X| − n− p

2
log 2π.

Thus,

lR(η) = lp(η)−
1

2
log |XTV −1X|+ C, (1.7)

where C is a constant term which does not depend on parameters.

Maximizing lR(η) with respect to η gives the restricted maximum likelihood

estimator η̂R and the restricted maximum likelihood estimator of β is β̂R = β̂(η̂R).

The conditional log-likelihood of y given b is

l(θ;y | b) = −n

2
log(2π)− n

2
log σ2

ϵ −
1

2σ2
ϵ

(y −Xβ −Zb)T (y −Xβ −Zb).(1.8)

1.3.2 Review of Model Selection for Linear Mixed Models

In this subsection we will provide a brief review of previous work on model selec-

tion for linear mixed models. The Akaike information criterion (AIC) and Bayesian

information criterion (BIC) play an important role in model selection. AIC is an

asymptotically unbiased estimator of Akaike Information (AI) which is based on
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Kullback-Leibler discrepancy between the true model and the approximating model.

The Akaike information criterion or AIC (Akaike, 1974) is:

AIC = −2l(θ̂;y) + 2p, (1.9)

where l(θ̂;y) is the value of the log-likelihood function evaluated at θ̂, the maximum

likelihood estimator of θ; and p is the number of parameters in the model. Out of

the set of candidate models, the model with the minimum AIC is chosen.

The Bayesian information criterion (BIC) provides a large-sample estimator of a

transformation for the Bayesian posterior probability associated with the approxi-

mating model. The Bayesian information criterion or BIC (Schwarz, 1978) is:

BIC = −2l(θ̂;y) + p log(n), (1.10)

where θ̂ is the maximum likelihood estimator of θ, p is the number of parameters

in the model, and n is the number of observations. This criterion includes two

terms: the first term measures the discrepancy of the model fitting and the second

term is the penalty for the model complexity. The BIC is used to compare and

select models, where the selected model is the one that minimizes the BIC. Under

some conditions, Schwarz (1978) proved that the BIC is consistent. That is, if

the set of candidate models contains the true model with parameter θT , then as

n becomes large, with probability approaching 1, the BIC will select the model of
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lowest dimension, containing θT . In multiple regression models, Rao and Wu (1989)

introduced a modified criterion with a flexible penalty function and demonstrated

its consistency property without making any distributional assumptions on the error

term of a multiple regression model.

There are also a number of information criteria developed for linear mixed models

in the literature. Vaida and Blanchard (2005) introduced the marginal AIC (based

on the marginal likelihood),

mAIC = −2l(θ̂;y) + 2an(p+ q), (1.11)

where an = 1 for the asymptotic form or an = n
n−p−q−1

for the finite sample form, p

is the number of parameters of β, and q is the number of variance and covariance

parameters of τ . The author also introduced the conditional AIC (based on the

conditional log-likelihood function) of the form,

cAIC = −2l(θ̂ | b̂) + 2(ρ+ 1), (1.12)

with b̂ is the empirical best linear unbiased predictor (EBLUP) of b and ρ = Tr(H1)

or the trace of the “hat” matrix,H1, such that ŷ =H1y. The authors recommend to

use ρ̂ when the variance and covariance components of random effects are unknown,

arguing that the difference between ρ̂ and ρ are negligible asymptotically. Liang et al.

(2008) propose a corrected version of cAIC that takes into account the estimation of
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the variance and covariance components. However, evaluating the bias correction is

computationally expensive. Greven and Kneib (2010) develop an analytic version of

the corrected cAIC and the bias correction of the corrected cAIC can be calculated.

Their method is implemented in the cAIC4 package in R (Säfken et al., 2018). We

will use this criterion in chapters 3 and 4.

The formula for the BIC used by the lmer function in the lme4 package in R for

linear mixed models is

BIC = −2l(θ̂;y) + (p+ q + 1) log(n), (1.13)

where p is the number of fixed effects parameters; q + 1 is the number of distinct

parameters in the random effects covariance matrix and the error term variance pa-

rameter; and n is the number of observations. Pauler (1998) developed a BIC to

select fixed effects parameters, β, in independent cluster models, making an adjust-

ment to effective sample size.

Pauler et al. (1999) addressed the boundary problems in the variance component

model by assuming that the parameter space Θ can be extended to an open set Θ∗

such that the boundary of Θ is in the interior of Θ∗. Jones (2011) developed an

effective sample size based on the correlation matrix corresponding to the covariance
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matrix of the response variable and proposed a BIC of the following form:

BICJ = −2l(θ̂) + (p+ q + 1) log{ne}. (1.14)

where ne =
∑N

i=1{1T
ni
C−1

i 1ni
} is the effective sample size. Ci is the correlation

matrix corresponding to V i which is the covariance matrix of the response variable,

yi, for cluster i.

Some other methods have been developed recently to overcome the limitations of

mixed-effects models in choosing the random effects. Chen and Dunson (2003) used

a hierarchical Bayesian model to identify random effects with zero variance. They

reparameterized the mixed model by decomposing the covariance matrix of random

effects, D as,

D = ΛΓΓTΛ, (1.15)

whereΛ is a diagonal matrix with elements proportional to the standard deviations of

the random effects, and Γ is a lower triangular matrix that relates to the correlations

among the random effects. The parameters in either Λ or Γ are considered regression

coefficients in a normal linear model. Therefore, the authors used normal priors for

these parameters in the Gibbs sampling algorithm in order to compute the posterior

distributions. Then, any random effects with zero variance will be identified and

dropped out of the model. Saville and Herring (2008) developed a test based on Bayes
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factors, however, this test relies on the subjective choice of the prior distribution of

parameters. Drikvandi et al. (2012) proposed a permutation test to test any subset

of the variance components.

The shrinkage approach to model selection in the linear mixed model is also pro-

posed as in Ibrahim et al. (2011), Bondell et al. (2010) and Peng and Lu (2012) for

choosing both fixed effects and random effects. The authors consider model selection

for the independent cluster model (1.1). This approach does both model selection

and model estimation by maximizing a penalized likelihood function. Ibrahim et al.

(2011) proposed joint selection of fixed and random effects by maximizing the fol-

lowing penalized likelihood function when p and q are fixed:

ℓ(θ)−N

p∑
j=1

ϕλj
(|βj|)−N

q∑
k=1

ϕλp+k
(∥γk∥)

where l(θ) is the marginal likelihood function as defined in (1.3); γk contains all

nonzero components of row k of Γ. Here Γ is a q × q lower triangular matrix and is

a factor in the Cholesky parametrization of the random effects covariance matrix D.

Matrix D is written as D = ΓΓT . The penalty functions can be SCAD (smoothly

clipped absolute deviation) function or ALASSO (Adaptive least absolute shrinkage

and selection operator) function. The ALASSO penalty functions are defined as:
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ϕλj
(|βj|) = λj

|βj|
|β̂j|

, j = 1, 2, ..., p

ϕλp+k
(∥γk∥) = λp+k

∥γk∥
∥γ̂k∥

, k = 1, 2, ..., q.

for fixed effect and random effects, respectively. Here, β̂j and γ̂k are the unpenalized

maximum likelihood estimators.

The tuning parameters, λj for j = 1, . . . , p and λp+k for k = 1, . . . , q are for fixed

effects and random effects, respectively. The author considered two tuning constants

which are defined as:

λj = λ(1), j = 1, 2, ..., p

λp+k = λ(2)
√
k, k = 1, 2, ..., q.

Compared to the Information Criterion approach, one of the advantages of the

shrinkage method is that we do not need to consider all possible models. Therefore,

the shrinkage method is very helpful when the number of fixed effects and/or random

effects is large. However, this shrinkage approach also has problems with boundary

issues in linear mixed model. As pointed out in Müller et al. (2013), this shrinkage

approach uses the unpenalized maximum likelihood or restricted maximum likelihood

estimates as the weights in the ALASSO penalty. When the boundary issue happens,

some of the maximum likelihood estimates of variance parameters could be exactly on

the zero boundary. In this case, the ALASSO weight is infinity and the optimization
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procedure may fail to converge.

Please see Müller et al. (2013) for a thorough review of model selection criteria

in linear mixed models. We will propose a modified BIC for model selection in linear

mixed models in the following chapters.
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1.3.3 Review of Hypothesis Testing with Boundary Problem

Let y1, . . . ,yn be n independent observations with common density function,

f(y;θ), where the parameter vector, θ, takes values in a parameter space, Θ, which

is a subset of Rm. Denote by θ∗ the true value of the parameter vector. Consider a

hypothesis test, H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1, where Θ0 ∩Θ1 = ∅, Θ = Θ0 ∪Θ1

and Θ ⊂ Rm. The log-likelihood ratio test statistic is

λn = −2

(
sup
θ∈Θ0

logL(θ;y)− sup
θ∈Θ

logL(θ;y)

)
,

where L(θ;y) denotes the likelihood function and L(θ;y) =
∏n

i=1 f(yi;θ). The

likelihood ratio statistic can also be written as,

λn = −2

(
sup
θ∈Θ0

l(θ;y)− sup
θ∈Θ

l(θ;y)

)
,

where l(θ;y) is the log-likelihood function.

When θ∗ is an interior point of Θ and Θ0 is a r-dimensional subspace of a m-

dimensional linear space Θ with r < m, under classical regularity conditions, the

null distribution of the likelihood ratio test statistic λn is χ2
m−r as n → ∞ where

m−r is the difference between the dimensions of Θ and Θ0. However, when the true

value of the parameter lies on the boundary of the parameter space, the distribution

of the likelihood ratio test statistic may no longer follow a chi-square distribution.

It has been proven in some literature that the limiting distribution of the like-
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lihood ratio test statistic in the non-standard condition is a mixture of chi-square

distributions. Generalizing Chernoff (1954)’s work on the case when θ∗ lies on the

boundary of Θ, Self and Liang (1987) showed that, under modified regularity con-

ditions, the likelihood ratio test statistic

λn = −2

(
max
θ∈Θ0

logL(θ;y)−max
θ∈Θ

logL(θ;y)

)
,

asymptotically has the same distribution as

inf
θ∈CΘ0

−θ∗
(z − θ)TI(θ∗)(z − θ)− inf

θ∈CΘ−θ∗
(z − θ)TI(θ∗)(z − θ), (1.16)

where CΘ0 is the cone approximating the set Θ0 and CΘ is the cone approximating

the set Θ at the point θ∗. CΘ0 − θ∗ and CΘ0 − θ∗ are translated cones of CΘ0 and

CΘ, respectively, such that their vertices are at the origin. Here z ∼ Nm(0, I
−1(θ∗))

and I(θ∗) is the Fisher information matrix at θ∗.

Silvapulle and Sen (2005) considered the case when observations are independent

but not necessarily identically distributed. Let y1, . . . ,yN be N independent obser-

vations and Y i has the probability density function fi(yi;θ), for i = 1, . . . , N . Let

lN(θ) be the log-likelihood function,
∑N

i=1 log fi(yi;θ). The parameter vector, θ,

takes values in a parameter space, Θ, which is a subset of Rm. Suppose that, for all

θ, N− 1
2 l

′
N(θ)

d−→ N(0,ν(θ)) and N−1{−l
′′
N(θ)}

a.s.−−→ ν(θ) for some positive definite

matrix ν(θ) and ν(θ) is continuous with respect to θ.
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Silvapulle and Sen (2005) showed that, under some regularity conditions, the null

distribution of the likelihood ratio test statistic

λN = −2

(
sup
θ∈Θ0

lN(θ;y)− sup
θ∈Θ

lN(θ;y)

)
,

is asymptotically the same as the distribution of

inf
θ∈TΘ0

(θ∗)
(z − θ)Tν(θ∗)(z − θ)− inf

θ∈TΘ(θ∗)
(z − θ)Tν(θ∗)(z − θ), (1.17)

where TΘ0(θ
∗) is the tangent cone of Θ0 at θ∗, TΘ(θ

∗) is the tangent cone of Θ at

θ∗; and z ∼ Nm(0,ν
−1(θ∗)).

The tangent cone of a set A at a point θ0 in A is denoted by TA(θ0) and is defined

in Silvapulle and Sen (2005, Section 4.7.1) as follows:

TA(θ0) = {w : ∃ tn ↓ 0, ∃θn ∈ A such that θn → θ0 and t−1
n (θn − θ0) → w}.

More generally, TA(θ0) is the set of all tangents to the set A at θ0.

Based on the work in Shapiro (1985), Silvapulle and Sen (2005) present the

definition of χ̄2 and the following results: Let C ⊂ Rm be a closed convex cone and let

Z ∼ Nm(0,V ), where V is a positive definite matrix. χ̄2(V , C) is a random variable

which has the same distribution as
[
ZTV −1Z −minθ∈C(Z − θ)TV −1(Z − θ)

]
. So,

we write

χ̄2(V , C) = ZTV −1Z −min
θ∈C

(Z − θ)TV −1(Z − θ). (1.18)
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Also, let C be a closed convex cone in Rm and V be a m × m positive definite

matrix. Then the distribution of χ̄2(V , C) is given by,

Pr
(
χ̄2(V , C) ≤ c

)
=

m∑
i=0

wi (m,V , C)Pr(χ2
i ≤ c), (1.19)

where wi (m,V , C) , i = 0, . . . ,m, are some non-negative numbers and∑m
i=0 wi (m,V , C) = 1. If V = I which is an identity matrix and C = Rm

+ , the

nonnegative orthant, then

Pr
(
χ̄2(I,Rm

+ ) ≤ c
)
=

m∑
i=0

2−m

(
m

i

)
Pr(χ2

i ≤ c), (1.20)

where
(
m
i

)
ism choose i and χ2

i is a chi-squared distribution with i degrees of freedom.

When TΘ0(θ
∗) is a linear subspace contained in TΘ(θ

∗) and TΘ(θ
∗) is a closed

convex cone, according to Silvapulle and Sen (2005, Theorem 3.7.1), the distribution

of

inf
θ∈TΘ0

(θ∗)
(z − θ)Tν(θ∗)(z − θ)− inf

θ∈TΘ(θ∗)
(z − θ)Tν(θ∗)(z − θ)

is

χ̄2(ν(θ∗)−1, C∗), (1.21)

where C∗ = TΘ(θ
∗) ∩ TΘ0(θ

∗)⊥; TΘ0(θ
∗)⊥ is the orthogonal complement of TΘ0(θ

∗)

in the sense that TΘ0(θ
∗)⊥ = {y : such that xTν(θ∗)y = 0 for all x ∈ TΘ0(θ

∗)},

and z ∼ Nm(0,ν(θ
∗)−1).
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Baey et al. (2019) used the results from both Self and Liang (1987) and Silvapulle

and Sen (2005) for testing the random effects variance components in linear mixed

models and generalized linear mixed models.

1.3.4 Review of Testing Random Effects Variances

In model (1.1), the random effects vector bi = (bi1, bi2, . . . , biq)
T is assumed to fol-

low a multivariate normal distribution, Nq(0,D). If the random effects components

are uncorrelated, then D is a diagonal matrix. If the random effects components are

correlated, then D is a full matrix. Let lN(θ;y) denote the marginal log-likelihood

function of the linear mixed model (1.1). lN(θ;y) =
∑N

i=1 log fi(yi;θ) where fi(yi;θ)

is the density function of yi, and,

lN(β,η;y) = −n

2
log(2π)− 1

2
log |V | − 1

2
(y −Xβ)TV −1(y −Xβ), (1.22)

where V = diag(V 1, . . . ,V N) and n =
∑N

i=1 ni.

Stram and Lee (1994) used Self and Liang (1987)’s results in testing for the

nonzero variance components of random effects in a linear mixed model using likeli-

hood ratio test statistic, given by,

λN = −2

(
max
θ∈Θ0

lN(θ;y)−max
θ∈Θ

lN(θ;y)

)
. (1.23)

The authors assumed that the true value of σ2
ϵ and β lie in the interior of the

admissible region of these parameters. The authors, thus, could restrict the geometry
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of Θ0 and Θ to deal with the variance components parameters in matrix D. Let

τ be the vector of distinct variance and covariance components in matrix D and

dim(τ ) = q.

Case 1: q = 1 and D = [σ2
1]. In this hypothesis test, the null hypothesis is,

H0 : σ2
1 = 0 and the alternative hypothesis is H1 : σ2

1 > 0. The parameter is θ =

(σ2
1). The parameter spaces are Θ0 = {0} and Θ = [0,∞). The approximating cones

at the vertex {0} are AΘ0(0) = {0} and AΘ(0) =[0,∞), respectively. Under the null

hypothesis, the limiting distribution of the log-likelihood ratio test statistic, λN , is

1
2
χ2
0 +

1
2
χ2
1 as N goes to infinity. Please refer to the definition of a approximating

cone in the Appendix section 7.

Case 2: q = 2 and D =
[

σ2
1 σ12

σ21 σ2
2

]
where σ12 = σ21. Consider the hypothesis

test, H0 : D =
[
σ2
1 0
0 0

]
with positive σ2

1 against H1: D is positive semi-definite. The

parameter is θ = (σ2
1, σ12, σ

2
2). The parameter spaces are Θ0 = {θ : σ2

1 > 0;σ12 =

0;σ2
2 = 0} and Θ = {θ : σ2

1 > 0;σ2
1σ

2
2 − (σ12)

2 ≥ 0;σ2
2 ≥ 0}. The author argued

that since σ2
1 is assumed to be positive under both H0 and H1, the only relevant

constraint is σ2
1σ

2
2 − (σ12)

2 ≥ 0. The approximating cones at the vertex {(0, 0,

0)} are AΘ0(0, 0, 0) = (0,∞) × {0} × {0} and AΘ(0, 0, 0) = (0,∞) × {R} × [0,∞),

respectively. And, under the null hypothesis, the limiting distribution of the log-

likelihood ratio test statistic, λN , is
1
2
χ2
1 +

1
2
χ2
2.
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Silvapulle and Sen (2005) also discussed about Case 2 above in their example

4.8.3. The authors pointed out that, under the null hypothesis, the the limiting

distribution of the log-likelihood ratio test statistic, λN , is

λN
d→∥U − TΘ0(θ

∗)∥2 − ∥U − TΘ(θ
∗)∥2,

where U ∼ Nm(0,ν(θ
∗)−1),m is the dimension of θ,

and ∥U−TΩ(θ
∗)∥2 = min

θ∈TΩ(θ
∗)
{(U − θ)Tν(θ∗)(U − θ)}

where Ω ∈ {Θ,Θ0}.

The authors also pointed out that there are two scenarios for case 2 above.

Scenario 1: The null hypothesis is assumed and θ∗ = (0, 0, 0)T . Since Θ is a closed

convex cone with vertex at origin, TΘ(θ
∗) = Θ. The authors noted that since neither

TΘ(θ
∗) nor TΘ0(θ

∗) is a linear space, the asymptotic null distribution of λN may not

be a chi-bar square distribution.

Scenario 2: The null hypothesis is assumed and θ∗ = (a, 0, 0)T where a is a positive

value. In this case, TΘ0(θ
∗) = {θ ∈ R3 : σ12 = 0;σ2

2 = 0} and TΘ(θ
∗) = {θ ∈ R3 :

σ2
2 ≥ 0}. Since TΘ(θ

∗) is a closed convex cone and TΘ0(θ
∗) is a linear subspace in

TΘ(θ
∗), the asymptotic null distribution of λN is a chi-bar square distribution.

Based on Silvapulle and Sen (2005)’s results (Equation 1.21), without loss of gen-

erality, Baey et al. (2019) tested the nullity of the last r variances and corresponding
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covariances of matrix D using likelihood ratio test statistic, assuming that the vari-

ances that are not being tested are strictly positive. Assume that matrixD is written

as D =
[
D11 D12

DT
12 D22

]
where the size of D11 is (q − r) × (q − r) and the size of D22 is

r × r. Under conditions as in 7.0.1.1, Baey et al. (2019) obtained the following re-

sults: When D is a diagonal matrix, D =
[
D11 0
0 D22

]
where D11 = diag(d1, . . . , dq−r)

and D22 = diag(dq−r+1, . . . , dq). The parameter θ = (βT , τ T , σ2
ϵ)

T ∈ Θ ⊂ Rm with

τ = (d1, . . . , dq). Consider the hypothesis test, H0 : D =
[
D11 0
0 0

]
with positive-

definite matrix D11 versus H1 : D is positive definite. Let θ∗ be the true value

of the parameter θ. Assume that the null hypothesis holds and θ∗ ∈ Θ0, then the

asymptotic null distribution of the log-likelihood ratio test statistic is χ̄2(ν(θ∗)−1, C∗)

(see Equation 1.18), which is a mixture of chi-squared distributions with degree of

freedom ranging from 0 to r.

χ̄2(ν(θ∗)−1, C∗) =
r∑

i=0

wi(m,ν(θ∗)−1, C∗)χ2
i , (1.24)

where wi (m,ν(θ∗)−1, C∗) , i = 0, . . . ,m, are some non-negative numbers and∑m
i=0wi (m,ν(θ∗)−1, C∗) = 1; χ2

i is a chi-square distribution with i degrees of free-

dom; and ν(θ) is some positive definite matrix such that N− 1
2 l

′
N(θ)

d−→ Nm(0,ν(θ))

and N−1{−l
′′
N(θ)}

a.s.−−→ ν(θ). C∗ = TΘ(θ
∗) ∩ TΘ0(θ

∗)⊥ where TΘ0(θ
∗)⊥ is the or-

thogonal complement of TΘ0(θ
∗) in Rm.

When D is a full matrix, the number of distinct variances and covariances is
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q(q + 1)/2. Consider the hypothesis test, H0 : D =
[
D11 0
0 0

]
with positive-definite

matrix D11 versus H1 : D is a positive definite matrix. Let θ∗ be the true value

of the parameter. Assume that the null hypothesis holds and θ∗ ∈ Θ0, then, Baey

et al. (2019) pointed out that the null asymptotic distribution of the log-likelihood

test statistic is χ̄2(ν(θ∗)−1, C∗), which is a mixture of chi-squared distributions with

degree of freedom ranging from r(q − r) to r(q − r) + r(r + 1)/2.

χ̄2(ν(θ∗)−1, C∗) =

r(q−r)+r(r+1)/2∑
i=r(q−r)

wi(m,ν(θ∗)−1, C∗)χ2
i , (1.25)

where wi (m,ν(θ∗)−1, C∗) , i = r(q − r), . . . , r(q − r) + r(r + 1)/2, are some non-

negative numbers and
∑r(q−r)+r(r+1)/2

i=r(q−r) wi (m,ν(θ∗)−1, C∗) = 1; χ2
i is a chi-square

distribution with i degrees of freedom; and ν(θ) is a positive definite matrix such

that N− 1
2 l

′
N(θ)

d−→ Nm(0,ν(θ)) and N−1{−l
′′
N(θ)}

a.s.−−→ ν(θ).

We will use these results in our work to develop a modified BIC in the following

chapters.

1.3.5 Notations

The following list contains general notations that will be used in the dissertation.

• bi denotes the random effects vector of the ith cluster; bi is assumed to follow

a multivariate normal distribution Nq(0,D), where D is a q × q covariance
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matrix. τ denotes the vector of distinct variance and covariance components

in matrix D.

• Ini
denotes the ni × ni identity matrix. N is the number of clusters; ni is the

number of observations in cluster i.

• The vector of parameters, θ = (βT , τ T , σϵ)
T ∈ Θ ⊂ Rm.

• Denote by θ∗ the true value of the parameter vector.

• TΘ0(θ
∗) is the tangent cone of Θ0 at θ

∗ and TΘ(θ
∗) is the tangent cone of Θ at

θ∗.

• ν(θ) is a positive definite matrix such that N− 1
2 l

′
N(θ)

d−→ N(0, ν(θ)) and

N−1{−l
′′
N(θ)}

a.s.−−→ ν(θ).

• Also, let C be a closed convex cone in Rp and V be a p × p positive definite

matrix. Then the distribution of χ̄2(V , C) is given by,

Pr
(
χ̄2(V , C) ≤ c

)
=

p∑
i=0

wi (p,V , C)Pr(χ2
i ≤ c), (1.26)

where wi (p,V , C) , i = 0, . . . , p, are some non-negative numbers and∑p
i=0 wi (p,V , C) = 1.

• a.s.−−→ means convergence almost surely as N goes to ∞.
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• d−→ means convergence in distribution as N goes to ∞.

• Sr
+ denotes the set of symmetric positive semi-definite matrices of size r × r.

Sr is the set of symmetric matrices of size r × r.

• Rr
+ denotes the positive orthant in Rr.

• AT denotes the transposition of matrix A, for any matrix A.
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2 Modified BIC for Linear Mixed Models with

Independent Random Effects

In this chapter, we provide a brief theoretical background and propose a modified

Bayesian information criterion (BIC) for choosing random effects in linear mixed

models with independent random effects.

Model selection in linear mixed models includes selection of both regression pa-

rameters β (fixed effects) and variance components of random effects. In this chapter,

we start with the selection of random effects for a special case when the random ef-

fects are uncorrelated. In chapter 3 we will select random effects for a general case

when random effects are correlated. In chapter 4, we will propose a modified BIC to

select both fixed effects and random effects.

Selecting random effects in linear mixed models is important because by selecting

the most appropriate random effect model, we can determine the underlying corre-

lation structures of the observations. Furthermore, it helps to interpret the data
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analysis results. Fixed effects describe the population level effect, whereas random

effects model the individual variability away from the population mean levels. For

example, for the data set “Orthodont” in the nlme package that is introduced in

chapter 1, beside modelling the pattern of the response variable over time within

subjects, it is also important to investigate the variation in the time trends between

subjects. This can be done using random effects in linear mixed models. When con-

sidering a BIC for choosing random effects in linear mixed models, the challenge is in

finding the asymptotic null distribution of the likelihood ratio test statistic when the

testing values of variance components are on the boundary of the parameter space.

We will tackle this problem in our work.

2.1 Background

Assume that the covariance matrixD of random effects in the linear mixed model

(1.1) is a q×q diagonal matrix. That is, the random effects are uncorrelated. Without

loss of generality, we want to test the nullity of the last r variance components,

r < q. Matrix D can be written as D =
[
D11 0
0 D22

]
where D11 = diag(d1, . . . , dq−r)

and D22 = diag(dq−r+1, . . . , dq). The parameter θ = (βT , τ T , σϵ)
T ∈ Θ ⊂ Rm with

τ = (d1, . . . , dq)
T . Consider the hypothesis test, H0 : D =

[
D11 0
0 0

]
with positive-

definite matrix D11 versus H1 : D is positive definite. Let θ∗ be the true value of
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the parameter. The parameter spaces under the null and alternative hypotheses and

their corresponding tangent cones at θ∗ are:

Θ0 = {θ ∈ Rm/β ∈ Rp; d1 > 0, . . . , dq−r > 0,

dq−r+1 = 0, . . . , dq = 0, σ2
ϵ ≥ 0}.

TΘ0(θ
∗) = {Rp × Rq−r × {0}r × R}.

Θ = {θ ∈ Rm/β ∈ Rp; d1 > 0, . . . , dq−r > 0,

dq−r+1 ≥ 0, . . . , dq ≥ 0, σ2
ϵ ≥ 0}.

TΘ(θ
∗) = Rp × Rq−r × Rr

+ × R.

In this case, TΘ0(θ
∗) is a linear subspace in TΘ(θ

∗). Therefore, C∗ = TΘ(θ
∗) ∩

TΘ0(θ
∗)⊥ = {0}p × {0}q−r × Rr

+ × {0} (Baey et al., 2019; Proposition 7.1). C∗ is

contained in a linear subspace of dimension r. Thus, wi(m,ν(θ∗)−1, C∗) = 0 for

i = r + 1, . . . ,m (Shapiro, 1985, 1988; proof of Corollary 1 in Baey et al., 2019).

Assuming that the null hypothesis holds and θ∗ ∈ Θ0, Baey et al. (2019) pointed

out that the asymptotic null distribution of the log-likelihood ratio test statistic is

a mixture of chi-squared distributions with degree of freedom ranging from 0 to r

(Corollary 7.1).

χ̄2(ν(θ∗)−1, C∗) =
r∑

i=0

wi(m,ν(θ∗)−1, C∗)χ2
i , (2.1)
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where wi (m,ν(θ∗)−1, C∗) , i = 0, . . . , r, are some non-negative numbers and∑r
i=0 wi (m,ν(θ∗)−1, C∗) = 1, χ2

i is a chi-square distribution with i degrees of free-

dom, ν(θ) is some positive definite matrix such that N− 1
2 l

′
N(θ)

d−→ Nm(0,ν(θ)) and

N−1{−l
′′
N(θ)}

a.s.−−→ ν(θ), and m is the dimension of θ. We will use this result in our

work to develop a modified BIC in the next section.

2.2 Derivation of the modified BIC

In this section, we introduce a modified BIC for choosing random effects in linear

mixed models with independent random effects.

In the parameter vector θ = (βT , τ T , σ2
ϵ)

T , τ is the parameter of interest; β

and σ2
ϵ are considered as nuisance parameters. Let λ = (βT , σϵ)

T and let p be the

number of parameters of β and q is the number of parameters of τ . We first consider

the linear mixed model (1.1) with the covariance matrix for random effects bi being

diagonal.

Let M = {Mk : k ≥ 1} be a countable set of possible candidate linear mixed

models. Let θk denote the vector of parameters of model Mk and let dk be the

complexity of model Mk. Assume that dk can be calculated and dk < dl if Mk ⊂ Ml.

Let MT be the model that generates the data (called the true model) with parameter

θT and the true value of θT is θT,0. Any modelMk that is more complex than the true
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model is called an over-fitting model. That is, MT ⊂ Mk or θT ⊂ θk and θT ̸= θk.

Let M+ be the set of all over-fitting models. An under-fitting model Mk is a model

such that θT ’s components are not a subset of its parameter vector’s components.

That is, θT ⊊ θk. Let M− be the set of all under-fitting models. Assume that

model Mk has parameter vector θk = (βk
T , τ k

T , σ2
ϵ,k)

T where βk is the vector of

fixed effects parameters which includes the population regression coefficients; τ k

contains the distinct variance and covariance elements of matrix D; and σϵ,k is the

parameter for the variance of the random error vector ϵ. For a general covariance

matrix case, model Mk is uniquely defined by its non-zero parameters in β and non-

zero variance components on the diagonal of matrix D. If dii = 0, then all elements

on row i and column i of this matrix are set to 0.

In this chapter, we consider the case when D is a diagonal matrix. Therefore, τ

contains all variances on the diagonal of matrix D. Let τ = (d1, . . . , dq)
T . Assume

that we test the model Mk (with τ k = (d1, . . . , dk)) against model M1 (with τ 1 =

(d1, 0, . . . , 0)). Here k is the number of variances of random effects in model Mk and

k ≥ 2. In this case, m = dim(θk) = p+ k + 1; q = k; and r = k− 1. Thus, based on

(2.1), the null limiting distribution of the likelihood ratio test statistic is:

χ̄2(ν(θ∗)−1, C∗) =
k−1∑
i=0

wi(m,ν(θ∗)−1, C∗)χ2
i , (2.2)

where C∗ = {0}p × {0} × Rk−1
+ × {0}; wi (m,ν(θ∗)−1, C∗) , i = 0, . . . , k − 1, are
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some non-negative numbers and
∑k−1

i=0 wi (m,ν(θ∗)−1, C∗) = 1; matrix ν(θ) is some

positive definite matrix such that N− 1
2 l

′
N(θ)

d−→ Nm(0,ν(θ)) and N−1{−l
′′
N(θ)}

a.s.−−→

ν(θ), and m is the dimension of θ.

For example, M2 is a model with 2 variance components. τ = (d1, d2)
T and

D =
[
d1 0
0 d2

]
. We want to test H0 : d2 = 0 vs. H1 : d2 > 0, assuming that d1 is

strictly positive. In this example, m = p+ 2 + 1; q = 2; k = 2; r = 1, and,

Θ = {θ ∈ Rm/β ∈ Rp; τ ∈ R2
+;σ

2
ϵ ≥ 0}

= Rp × R2
+ × R+

Θ0 = {θ ∈ Rm/β ∈ Rp; τ = (d1, 0)
T and d1 > 0;σ2

ϵ ≥ 0}

= {Rp × R+ × {0} × R+}.

The corresponding tangent cones to Θ0 and Θ at θ∗ are:

TΘ(θ
∗) = Rp × R × R+ × R

TΘ0(θ
∗) = Rp × R × {0} × R

T⊥
Θ0

(θ∗) = {0}p × {0} × R × {0}.

Therefore, C∗ = TΘ(θ
∗) ∩ TΘ0(θ

∗)⊥ = {0}p × {0} × R+ × {0}. Thus, the null
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asymptotic distribution of the log-likelihood ratio test statistic is

χ̄2(ν(θ∗)−1, C∗) =
1∑

i=0

wi(m,ν(θ∗)−1, C∗)χ2
i

= w0(m,ν(θ∗)−1, C∗)χ2
0 + w1(m,ν(θ∗)−1, C∗)χ2

1

=
1

2
χ2
0 +

1

2
χ2
1.

This is consistent with Stram and Lee (1994)’s results that the distribution of the

likelihood ratio test statistic for this case is 1
2
χ2
0 +

1
2
χ2
1.

If we compare model M1 with model M0 where modelM0 contains the fixed effects

only, then the likelihood ratio test statistic is 1
2
χ2
0 +

1
2
χ2
1 (Stram and Lee (1994)).

We now take the expectation of the chi-bar distribution in equation (2.2) and

include it in the complexity of model Mk.

E[χ̄2(ν(θ∗)−1, C∗)] =
k−1∑
i=0

wi(m,ν(θ∗)−1, C∗)i.

Also, the expectation of 1
2
χ2
0 +

1
2
χ2
1 is 1

2
× 0 + 1

2
× 1 or 0.5.

We propose the following modified BIC:

BIC∗(Mk) = −2l(θ̂k;y) + dk log(n), (2.3)

where θ̂k is the maximum likelihood estimator of θk in model Mk; n =
∑N

i=1 ni and

dk = p + 1.5 +
∑k−1

i=0 wi(m,ν(θ∗)−1, C∗)i for k > 1; dk = p + 1.5 for k = 1; and

dk = p+ 1 for k = 0.
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The first term, −2l(θ̂k;y), measures the goodness-of-fit for model Mk and the

second term, dk log(n), is the penalty for model complexity, which makes sure that

the model selected is parsimonious.

The rationale of choosing the complexity dk for model Mk when k > 1 is as

follows: p is the number of fixed effects parameters, 1 is for σϵ parameter, 0.5 for

the assumed random effect in the model (such as random intercept), and the rest

of dk is the expectation of the chi-bar distribution in equation (2.2). When k = 1,

d1 = p+1.5 is the complexity of model M1 which is the model with fixed effects and

only one random effect (such as random intercept). When k = 0, d0 = p + 1 is the

complexity of model M0 which is the model with fixed effects and no random effects.

In this case, d0 is exactly the regular BIC for multiple regression models.

A Bayesian information criterion has been proposed for model selection in linear

mixed models by some authors, such as Pauler (1998), Pauler et al. (1999), Jones

(2011), as summarized in Chapter 1 of our introduction. Pauler (1998) uses Bayes

factors to derive a Schwarz criterion to select the regression parameter β in inde-

pendent cluster models. However, it is difficult to obtain simple approximations to

the Bayes factor (Müller et al. (2013)). Pauler et al. (1999) addressed the boundary

problems in the variance component model by assuming that the parameter space

Θ can be extended to an open set Θ∗ such that the boundary of Θ is in the interior
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of Θ∗. Jones (2011) proposed to replace the total number of observations, n, in

the penalty term of BIC by an effective sample size that is calculated based on the

covariance matrix of the response variable. The penalty term in the formula for the

BIC used in the “lmer” function implemented in the current R package ‘lme4’ (Bates

et al., 2015) for linear mixed models is (p+q+1) log(n), where (p+q+1) is the total

number of parameters in the model. In this version, the boundary issue is totally

ignored. In our work, we have considered the boundary issue when obtaining the

asymptotic null distribution of the likelihood ratio test statistic and used its expected

value in the penalty term of our modified BIC.

We are now going to prove the consistency of the proposed BIC.

2.2.0.1 Assumptions for Theorem 1 and Theorem 2

(C1). The observations y = (y1, . . . ,yN) from different clusters are independent ran-

dom vectors. All the assumptions of the linear mixed model (1.1) are satisfied.

(C2). Let lN(θ;y) be the log-likelihood function of the linear mixed model (1.1).

Denote by Θ the parameter space of the model parameter vector, θ, and let

θ∗ be the true value of the parameter vector. Denote the vector of first partial

derivatives of lN(θ;y) with respected to θ by l
′
N(θ) and denote the matrix of

second partial derivatives of lN(θ;y) with respected to θ by l
′′
N(θ). Directional
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derivatives are used when θ is on the boundary of Θ. (i) Assume that, for all θ,

the first three partial derivatives of the log-likelihood function with respect to

θ exist almost everywhere. (ii) Also, assume that N−1 times the absolute value

of the third derivative of lN(θ;y) is bounded by a function of (Y 1, . . . ,Y N)

whose expectation exists and finite on the intersection of neighborhoods of θ∗

and Θ.

(C3). n1, . . . , nN are uniformly bounded. That is, there exists a constant K > 0 such

that ni ≤ K for i = 1, . . . , N .

(C4). Let θT be the parameter vector of the true model MT and let θT,0 denote the

true value of θT .

(i) For any under-fitting model, Mk, with model parameter θk ∈ Θk, assume

that ET,0

[
log

f(y;θT,0)

f(y;θk)

]
exists and there exists a unique pseudo true, θk,0, such

as θk,0 = argmin
θk∈Θk

ET,0

[
log

fi(y;θT,0)

fi(y;θk)

]
for all i.

(ii) For all θ, 1
N
(l(θ;y)− ET,0[l(θ;Y )])

p→ 0.

(iii) For any two nested models, Mk ⊂ Ml, −2
(
l(θ̂k;Y )− l(θ̂l;Y )

)
is bounded

by an integrable function, M(Y ), and E[M(Y )] < ∞.

Assumption (C1) is to ensure that the assumptions in the linear mixed model (1.1)

are satisfied. Assumption (C2) is to ensure that conditions (C1), (C2)(i)(ii)(iv) and
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(C3) in Baey et al. (2019)’s work are fulfilled so that the asymptotic null distribution

of the likelihood statistic is a chi-bar square distribution and Baey et al. (2019)’s

results in their Proposition 1, Corollary 1, and Theorem 2 can apply. Assumptions

(C3), (C4) are used in the proof of consistency of the proposed BIC.

Theorem 2.1 Theorem 1: Consistency of the modified BIC. Assume that the as-

sumptions (C1)− (C4) are satisfied, then

lim
n→∞

P (BIC∗(MT ) < BIC∗(Mk)) = 1 for all Mk ∈ M+

and lim
n→∞

P (BIC∗(MT ) < BIC∗(Mk)) = 1 for all Mk ∈ M−.

Theorem 1 says that as the sample size goes to infinity, the proposed BIC would

correctly identify the true model with probability tending to 1.

Given a set of candidate models, we calculate the proposed BIC value for each

model. Then, the selected model is the one that minimizes the proposed BIC. Please

see a proof of Theorem 1 in the subsection below.

2.2.1 Proof to Theorem 1

Proof.
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We first compare the proposed BIC of the true model to an underfitted model.

We prove that the proposed BIC of the true model is less than the proposed BIC

of any underfitted model with probability tending to 1 as n goes to ∞. We then

show that the proposed BIC of the true model is also less than that of any overfitted

model with probability tending to 1. Combining two parts, we get the result that the

proposed BIC of the true model is less than that of any other model with probability

tending to 1 as n goes to ∞ or the proposed BIC would correctly identify the true

model with probability tending to 1.

In the following, we use l(θ̂k;y) instead of lN(θ̂k;y) for the convenience of expo-

sition.

Case 1: For any under-fitting model,Mk ∈ M−, we want to prove that lim
n→∞

P (BIC∗(Mk)−

BIC∗(MT ) > 0) = 1.
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We have that

BIC∗(Mk) = −2l(θ̂k;y) + dk log(n),

BIC∗(MT ) = −2l(θ̂T ;y) + dT log(n),

BIC∗(Mk)−BIC∗(MT ) = −2
(
l(θ̂k;y)− l(θ̂T ;y)

)
+ (dk − dT ) log(n).

−2
(
l(θ̂k;y)− l(θ̂T ;y)

)
= −2

(
l(θ̂k;y)− l(θk,0;y)− [l(θ̂T ;y)− l(θT,0;y)]

− l(θT,0;y) + l(θk,0;y)
)

= −2
(
l(θ̂k;y)− l(θk,0;y)

)
+ 2

[
l(θ̂T ;y)− l(θT,0;y)

]
+ 2 [l(θT,0;y)− l(θk,0;y)]− 2ET,0 [l(θT,0;Y )− l(θk,0;Y )]

+ 2ET,0 [l(θT,0;Y )− l(θk,0;Y )] .

We have that l(θ̂k;y)− l(θk,0;y) = op(1) and l(θ̂T ;y)− l(θT,0;y) = op(1) because

θ̂k
p→ θk,0 and θ̂T

p→ θT,0 (as shown in the proof of Theorem 2 in Baey et al. (2019))

and function l(θ;y) is continuous with respect to θ. Also, under assumption C4(ii),

1
N
(l(θT,0;y)− ET,0[l(θT,0;Y )])

p→ 0 and 1
N
(l(θk,0;y)− ET,0[l(θk,0;Y )])

p→ 0. Thus,

1

N
(l(θT,0; ;y)− l(θk,0;y)− ET,0[l(θT,0;Y )− l(θk,0;Y )])

p→ 0,

and therefore, l(θT,0;y)− l(θk,0;y)− ET,0[l(θT,0;Y )− l(θk,0;Y )] = op(N).
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The last term can be evaluated as,

ET,0[l(θT,0;Y )− l(θk,0;Y )] =
N∑
i=1

ET,0[log fi(Y i;θT,0)− log fi(Y i;θk,0)]

=
N∑
i=1

ET,0

[
log

fi(Y i;θT,0)

fi(Y i;θk,0)

]
= Op(N).

This is because ET,0

[
log

fi(Y i;θT,0)

fi(Y i;θk,0)

]
is the Kullback-Leibler distance between fi(Y i;θk,0)

and fi(Y i;θT,0); and is positive and finite by assumption C4(i).

Assume that the cluster sample sizes, n1, . . . , nN are uniformly bounded (assump-

tion C3), then Op(N) dominates (dk − dT ) log(n) as N → ∞. Thus, BIC∗(Mk) −

BIC∗(MT ) > 0. And, lim
n→∞

P (BIC∗(MT ) < BIC∗(Mk)) = 1 for all Mk ∈ M−.

Case 2: For any over-fitting model,Mk ∈ M+, we also prove that lim
n→∞

P (BIC∗(Mk)−

BIC∗(MT ) > 0) = 1. Without loss of generality, assume that θT = (βT
T ,ψT

T , 0, σ2
ϵ,T )

T

and θk = (βk
T ,ψk,1

T ,ψk,2
T , σ2

ϵ,k)
T where ψT has the same dimension as ψk,1 and 0

has the same dimension as ψk,2
T . Let r be the dimension of ψk,2; dim(ψk,2) = r and

all elements of 0 are 0. We have that

BIC∗(Mk)−BIC∗(MT ) = −2
(
l(θ̂k;y)− l(θ̂T ;y)

)
+ (dk − dT ) log(n). (2.4)

Then −2(l(θ̂T ;y) − l(θ̂k;y)) is the likelihood ratio test statistic of the following
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hypothesis test,

H0 : ψk,1 ≥ 0,ψk,2 = 0

H1 : ψk,1 ≥ 0,ψk,2 > 0.

According to Baey et al. (2019), underH0, the asymptotic distribution of−2(l(θ̂T ;y)−

l(θ̂k;y)) is

r∑
i=0

wi(m,ν(θ∗)−1, C∗)χ2
i .

Therefore, −2(l(θ̂k;y)− l(θ̂T ;y)) = Op(1), according to van der Vaart (2000, Theo-

rem 2.4). We also have that,

2(l(θ̂T ;y)− l(θ̂k;y)) = 2
(
l(θ̂T ;y)− l(θ̂1;y)−

[
l(θ̂k;y)− l(θ̂1;y)

])
= −2

(
l(θ̂1;y)− l(θ̂T ;y)

)
−
[
−2

(
l(θ̂1;y)− l(θ̂k;y)

)]
.

⇒ E
[
2
(
l(θ̂T ;Y )− l(θ̂k;Y )

)]
= E

[
−2

(
l(θ̂1;Y )− l(θ̂T ;Y )

)]
− E

[
−2

(
l(θ̂1;Y )− l(θ̂k;Y )

)]
= dT − dk,

where l(θ̂1;y) is the maximum log-likelihood of the simplest model; that is the model

with only the random intercept. Therefore,

E
[
−2

(
l(θ̂T ;Y )− l(θ̂k;Y )

)]
= dk − dT .
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On the other hand, −2
(
l(θ̂T ;y)− l(θ̂k;y)

)
asymptotically has the distribution

which is a mixture of the chi-square distributions. Therefore,

E
[
−2

(
l(θ̂T ;Y )− l(θ̂k;Y )

)]
must be positive and, hence, dk − dT > 0. Thus,

BIC∗(Mk)−BIC∗(MT ) → ∞ as n → ∞ and lim
n→∞

P (BIC∗(Mk)−BIC∗(MT ) > 0) =

1 for Mk ∈ M+. Combining the two cases, we have proved that the proposed BIC of

the true model is less than that of any other model almost surely as n goes to ∞ or

the proposed BIC would correctly identify the true model with probability tending

to 1. This completes the proof of Theorem 1.

2.3 Simulation

In this section, we evaluate the performance of the proposed BIC*. We compare

the performance of the proposed BIC* to the regular BIC. For each candidate model,

we compute BIC* and regular BIC; then for each method we choose the model with

minimum value of BIC* and regular BIC, respectively.

Following the methods used in Gao and Song (2010) and Chen and Chen (2012),

the criteria we used to evaluate and compare the proposed BIC to the regular BIC

are (1) Positive Selection Rate (PSR), (2) False Discovery Rate (FDR), and (3)

Correction Rate (CR).

For each chosen model, the positive selection rate (PSR) is the ratio of the number
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of predictors that are correctly identified as significant in the chosen model to the

number of predictors that are truly significant in the data-generating model, for

which we take the average of the PSRs over all chosen models. The false discovery

rate (FDR) is the ratio of the number of predictors that are incorrectly identified

as significant in the chosen model to the number of predictors that are identified

as significant in the chosen model, for which we take the average of the FDRs over

all chosen models. The correction rate (CR) is the proportion of the times the

true data-generating model is selected in all chosen models. For example, in the

data-generating model, X1,X3 are significant predictors while X2,X4,X5 are not

significant predictors. Therefore, the selected model would include X1,X2,X4,X5

as significant predictors, yielding PSR = 1/2 and FDR = 3/4.

2.3.1 Simulation Settings

Our data is generated from linear mixed model, y =Xβ +Zb+ ϵ.

Scenario 1: With total number of observations n = 500 and number of clusters,

N = 100. X is a n × p matrix with n = 500; p = 2; the first column of X includes

all 1’s. The second column is X1 which is generated from the standard normal

distribution. The vector of fixed effects, β = (1, 2)T . Matrix Z contains the first

two columns z0, z1 which are the same as two columns of matrix X and two more
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columns z2, z3 both are generated from the standard normal distributions. Random

effects, bi, are generated from multivariate normal distribution Nq(0,D) with D is

a 4× 4 diagonal matrix and D = diag(σ2
0, . . . , σ

2
3). To measure the ability to detect

the significance of variance components parameter of the proposed BIC∗, we created

different scenarios for different sizes of σ2
1, σ

2
2, σ

2
3 as shown below. ϵ is generated from

a multivariate normal distribution, N(0, σ2
ϵIn) with σ2

ϵ = 1.

The random intercept, b0, has the standard deviation of σ0 = 5. Random effects,

b1, b2, and b3, have standard deviations σ1, σ2, σ3, respectively. We consider 2 cases.

Case 1: σ1 is a sequence of values from 0 to 0.5 incrementing by 0.05; σ2 is a

sequence of values from 0 to 1 incrementing by 0.1; σ3 is a sequence of values from

0 to 2 incrementing by 0.2.

Case 2: σ1 is a sequence of values from 0 to 0.5 incrementing by 0.05; σ2 is a

sequence of values from 0 to 0.4 incrementing by 0.04; σ3 is a sequence of values from

0 to 0.6 incrementing by 0.06. Repeat all the above cases with n = 1000 (N = 200),

and n = 250 (N = 50).

Scenario 2: With total number of observations n = 500 and number of clusters,

N = 100. X is a n × p matrix with n = 500; p = 3; the first column of X

includes all 1’s. The last two columns of matrix X1 and X2 are generated from the

standard normal distributions. The vector of fixed effects, β = (1, 2, 3)T . Matrix Z
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contains the first three columns z0, z1, z2 which are the same as three columns of

matrix X and three more columns z3, z4, z5 which are generated from the standard

normal distributions. Random effects, bi, are generated from multivariate normal

distribution Nq(0,D) with D is a 6× 6 diagonal matrix and D = diag(σ2
0, . . . , σ

2
5).

To measure the ability to detect the significance of variance components parameter

of the BIC∗, we created different scenarios for different sizes of σ2
1, σ

2
2, σ

2
3 as shown

below; σ2
4 = 0 and σ2

5 = 0. ϵ is generated from a multivariate normal distribution,

N(0, σ2
ϵIn) with σ2

ϵ = 1.

The random intercept, b0, has the standard deviation of σ0 = 5. Random effects,

b1, b2, b3, b4, and b5, have standard deviations σ1, σ2, σ3, σ4, σ5, respectively. σ1 is

a sequence of values from 0 to 0.5 incrementing by 0.05; σ2 is a sequence of values

from 0 to 1 incrementing by 0.1; σ3 is a sequence of values from 0 to 2 incrementing

by 0.2; σ4 = 0 and σ5 = 0. Repeat all the above cases with n = 1000 (N = 200),

and n = 250 (N = 50).

Scenario 3: With total number of observations n = 500 and number of clusters,

N = 100. X is a n × p matrix with n = 500; p = 3; the first column of X

includes all 1’s. The last two columns of matrix X1 are generated from the standard

normal distributions. The vector of fixed effects, β = (1, 2, 3)T . Matrix Z contains

the first three columns z0, z1, z2 which are the same as three columns of matrix
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X and eight more columns z3, . . . , z10 which are generated from the standard

normal distributions. Random effects, bi, are generated from multivariate normal

distribution Nq(0,D) withD is a 11×11 diagonal matrix andD = diag(σ2
0, . . . , σ

2
10),

where σ2
1 = 0.16, σ2

2 = 0.64, σ2
3 = 1, σ2

4 = 1.44 and σ2
5, . . . , σ

2
10 are all 0. The

error term, ϵ, is generated from a multivariate normal distribution, N(0, σ2
ϵIn) with

σ2
ϵ = 1.

The random intercept, b0, has the standard deviation of σ0 = 5. Random ef-

fects, b1, . . . , b10, have standard deviations, σ1, . . . , σ10, respectively. Repeat this

simulation set up with n = 1000 (N = 200), and n = 250 (N = 50).

2.3.2 Simulation Procedure

In scenario 1, for each set of values of σ2
1, σ2

2, σ2
3, B = 1001 simulations are

run using parallel programming with 7 processors to yield 1001/7 = 143 simulation

rounds. In each simulation, all possible candidate models, Mk, are fitted, having

the same fixed effect covariates (including X1 and the intercept); meanwhile the

covariates for random effects part vary in the power set of {1, 2, 3}. The proposed

BIC∗ and regular BIC are calculated for each model. The chi-bar-square weights,

wi(m,ν(θ∗)−1, C∗), are calculated using function “con-weights-boot” in the R pack-

age “restriktor” Vanbrabant et al. (2019). The matrix ν(θ∗) is approximated by
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N−1{IN(θ̂k)} where θ̂k is the maximum likelihood estimator of θk in model Mk and

IN(θ) is the Fisher information matrix as in 1.4, and the cone C∗ is as defined in

2.2. Linear mixed models are run using the “lmer” function implemented in the R

package ‘lme4’ (Bates et al., 2015). The regular BIC is given by

BIC(Mk) = −2l(θ̂k;y) + (p+ k + 1) log(n). (2.5)

For the proposed BIC∗ criterion, we choose the model with minimum proposed

BIC∗. For the regular BIC criterion, we also choose the model with minimum regular

BIC. For each selection criterion, we have a set of 1001 models obtained from 1001

simulations. The correction rate (CR) was calculated for each criterion.

In scenario 2, for each set of values of σ2
1, . . . , σ

2
5, B = 1001 simulations are

run, where for each simulation, all possible candidate models is fitted having the

same fixed effect covariates (including X1, X2, and the intercept); meanwhile the

covariates for random effects vary in the power set of {1, . . . , 5}. The proposed

BIC∗ and regular BIC are calculated for each model. Subsequently, one model

with minimum proposed BIC is selected and one model with minimum regular BIC

is selected. From 1001 simulations, we obtained 1001 models under each selection

criterion. We calculate the means and standard deviations of Positive Selection Rate

and False Discovery Rate. We also calculate the correction rate for each criterion.

In scenario 3, with the given set of values of σ2
1, . . . , σ

2
10, B = 1001 simulations are
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ran. In each simulation, all possible candidate models is fitted with the same fixed

effect covariates (includingX1, X2, and the intercept); meanwhile the covariates for

random effects vary in the power set of {1, . . . , 10}. For each candidate model, the

proposed BIC∗ and regular BIC are calculated. Subsequently, the models with the

minimum proposed BIC and minimum regular BIC are selected, resulting in 1001

models obtained from 1001 simulations for each selection criterion. We calculate the

means and standard deviations of Positive Selection Rate and False Discovery Rate;

and calculate the Correction Rate for each criterion. All simulations are performed

by using R version 4.0.2 (Team, 2000).

2.3.3 Simulation Results

Scenario 1: Table 2.1 summarizes the results of Scenario 1 Case 1 and Table

2.2 summarizes the results of Scenario 1 Case 2. In both cases, we observe that

the correction rate for the proposed BIC∗ is greater than that of the regular BIC.

Furthermore, the difference in the correction rate between these two methods is

bigger when the values of σ2
1, σ

2
2, σ

2
3 are smaller.
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σ1 σ2 σ3

Correction Rate

Proposed BIC Regular BIC

0.00 0.00 0.00 0.00 0.00

0.05 0.10 0.20 0.00 0.00

0.10 0.20 0.40 0.01 0.00

0.15 0.30 0.60 0.04 0.01

0.20 0.40 0.80 0.11 0.02

0.25 0.50 1.00 0.24 0.08

0.30 0.60 1.20 0.36 0.18

0.35 0.70 1.40 0.54 0.32

0.40 0.80 1.60 0.67 0.47

0.45 0.90 1.80 0.78 0.60

0.50 1.00 2.00 0.87 0.72

“Correction Rate” reports the proportion of times the selected model is the
true data-generating model.

Table 2.1: Comparison of the Proposed BIC and Regular BIC methods in terms of
Correction Rate for the simulation in case 1 of Scenario 1 with n = 500 and N =
100.
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σ1 σ2 σ3

Correction Rate

Proposed BIC Regular BIC

0.00 0.00 0.00 0.00 0.00

0.05 0.04 0.06 0.00 0.00

0.10 0.08 0.12 0.00 0.00

0.15 0.12 0.18 0.00 0.00

0.20 0.16 0.24 0.01 0.00

0.25 0.20 0.30 0.03 0.01

0.30 0.24 0.36 0.14 0.03

0.35 0.28 0.42 0.29 0.10

0.40 0.32 0.48 0.49 0.24

0.45 0.36 0.54 0.67 0.39

0.50 0.40 0.60 0.80 0.58

“Correction Rate” reports the proportion of times the selected model is the
true data-generating model.

Table 2.2: Comparison of the Proposed BIC and Regular BIC methods in terms of
Correction Rate for the simulation in case 2 of Scenario 1 with n = 500 and N =
100.

Scenario 2: Table 2.3 summarizes the results of Scenario 2. The simulation results

suggest that the values of Positive Selection Rate (PSR) for the proposed BIC∗ are

higher than the regular BIC when the values of variance components are close to 0.

That is, the ability to choose the significant variance components is higher for the
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proposed BIC∗ than the regular BIC. Almost all of the False Discovery Rate (FDR)

values are within 5 percent in both cases.
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As the values of variance components increase, the PSR increases. From the

results obtained, we also see that the ability to choose the true model also becomes

larger as the values of variance components increase. We also noted that the standard

deviations are small for all cases. This means that the estimated PSR and FDR are

very consistent.
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Figure 2.1: Comparison of the Proposed BIC and Regular BIC methods in terms
of the Positive Selection Rate and Correction Rate for different values of σ1, σ2, σ3,
n = 500(N = 100)

Figure 2.1 shows the comparison of the Proposed BIC and Regular BIC methods

in terms of the Positive Selection Rate and Correction Rate for different values of

σ1, σ2, σ3 when n = 500 and (N = 100) in scenario 2.
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Figure 2.2: Comparison of the Positive Selection Rate and Correction Rate for n =
250(N = 50), n = 500(N = 100), and n = 1000(N = 200)

Figure 2.2 shows the comparison of the Positive Selection Rate (PSR) and cor-

rection rates for Scenario 2 when n = 250, 500, and 1000 with N = 50, 100, 200,

respectively. Given the same set of values of σ2
1, . . . , σ

2
5, we observe that the positive

selection rate increases as the number of clusters N increases.
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Figure 2.3: Comparison of the Positive Selection Rate and Correction Rate for n =
500(N = 100) with different competing methods for different values of σ1, σ2, σ3

with σ4 = 0 and σ5 = 0.

We ran 104 simulations with 3 more competing methods: “cAIC”, “BICJ”, and

“Splmm” using the same setting as in scenario 2. cAIC is the conditional AIC as

introduced in (1.12). “BICJ” is a modified BIC for linear mixed models as introduced

in (Jones (2011)). “Splmm” (Simultaneous Penalized Linear Mixed Effects Models) is

a method for choosing both the fixed effects and random effects for variable selection

using penalized likelihood function. The R-package “Splmm” contains functions that

fit linear mixed models for high-dimensional data (p > n) with penalty functions for
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both the fixed effects and random effects. This method is based on the results

in (Yang and Wu (2022)). Figure 2.3 shows that the modified BIC performs better

than the regular BIC, “BICJ”, and “Splmm” in this scenario in terms of the positive

selection rate and correction rate. The ability to choose correct variables is higher for

cAIC than the modified BIC. However, the correction rates for cAIC are not always

higher than that of the modified BIC. The “Splmm” method does not seem to work

well in this scenario. This may be because the method works better for the case

when the number of parameters is much higher than the number of observations.

Scenario 3: Table 2.4 summarizes the results of Scenario 3. We see that in all

cases for the sample sizes n = 500, 1000, 250, the mean PSR and the correction rates

are higher for the proposed BIC, meanwhile the FDR are kept around 5%.
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The computational time for the proposed BIC: It took about 0.07 second to cal-

culate the complexity, dk and the proposed BIC, using our personal laptop. The

simulation time depends on the number of simulations; number of variances of ran-

dom effects; and number of possible models for each simulation. For example, in

scenario 2, there are 11 sets of different values of variances. For each set of variances,

we ran 1001 simulations. Each simulation has 32 possible models, and the number

of random effects is 6, including the random intercept. The simulation time was

6.458593 hours.

Steps to compute the model complexity, dk:

• Run a linear mixed model using ‘lmer’ function in the R-package ‘lme4’ and

get the covariance matrix of the MLE estimator of model parameters.

• Get the R matrix from the constraints R× θ ≥ 0 that define cone C∗.

• Obtain the weights using the “con-weights-boot” function in the ‘restriktor’

package in R.

• Calculate the expected value of the chi-bar square distribution and obtain the

penalty term to get modified BIC.
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2.4 Real-Data Application

In this section, we apply the proposed BIC to a real data set. We work with a

data set which is a subset of 120 schools of dataset “hsfull” from package ‘spida2’ in

R (Monette et al., 2019). This dataset is originally from the 1982 “High School and

Beyond” (HSB) survey data set in Raudenbush and Bryk’s text on hierarchical linear

models, Raudenbush and Bryk (2002). The data includes mathematics achievement

test scores of 5307 students from 50 Catholic and 70 Public high schools, with the

number of students in each school ranging from 19 to 66 students.

The variables included in the analysis are school identification number, mathe-

matics achievement score (Y ), socioeconomic status (X1), sex (female (0) or male

(1); X2), visible minority status (yes (1) or no (0); X3), school sector (catholic

(0) or public (1); X4). Variables X1, X2, X3 are group-centered. The objective

is to study the relationship between students’ mathematics achievement score and

socioeconomic status, sex, visible minority status in public and catholic schools; and

whether this relationship varies across schools within each sector.

We fit linear mixed models to the data set, where all models have the same

fixed effects which include X1, X2, X3, and X4, while the random effects include

the random intercept and a subset of z1, z2, z3, where z1, z2, and z3 are the

socioeconomic status, sex, and visible minority variables which are group-centered.
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It may be too restrictive to fit linear mixed models with uncorrelated random

effects to this dataset because when we ran a full linear mixed model with all possible

random effects, we obtained the estimated correlation between random slope of z1

and random slope of z3 which is −0.87. However, it is still desirable to assume

uncorrelated random effects and compare the scenario with the scenario obtained in

chapter 3, where the random effects are assume to be correlated.

We calculate the proposed BIC∗ and the regular BIC for each model. We also

use cAIC as presented in Säfken et al. (2018), Greven and Kneib (2010), and Vaida

and Blanchard (2005).

Model Proposed BIC Regular BIC cAIC

Random Intercept (RI) 34379.33 34379.83 34176.92

RI, z1 34380.07 34384.86 34172.44

RI, z2 34383.27 34388.06 34179.66

RI, z1, z2 34384.10 34393.11 34175.22

RI, z3 34377.73 34382.52 34167.84

RI, z1, z3 34379.13 34388.33 34165.13

RI, z2, z3 34381.57 34390.70 34170.34

RI, z1, z2, z3 34383.25 34396.52 34167.60

All values are rounded to two decimal places.

Table 2.5: Results of the proposed BIC, regular BIC, and cAIC for all models con-
sidered in the Real-Data Application section.
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Table 2.5 provides the results of the proposed BIC, regular BIC, and cAIC for all

models considered. The optimal model we obtain using the proposed BIC∗ is the

model with random intercept and random slope of z3; the proposed BIC∗ is 34377.73.

The optimal model we obtain using the regular BIC is the model with random inter-

cept only. The regular BIC of this model is 34379.83. The optimal model we obtain

using the cAIC is the model with random intercept, random slopes of z1 and z3. The

cAIC of the optimal model is 34165.13. We rerun the final model chosen using the

proposed BIC. All fixed effects are highly significant with p-value < 0.001. The esti-

mates of fixed effects coefficients, β̂, are (14.4712, 1.8621, 1.1786,−2.9348,−3.0057)T .

The estimated variance matrix of the random effects is diag(σ̂2
0, σ̂

2
3) where σ̂0 = 2.514

and σ̂3 = 1.509, and the estimated standard deviation of the error term is 5.971. We

observe that the estimated random effects variances are quite small compared to the

estimated variance of the error term. The estimated variance of the random intercept

term is just about 18% of the variance of the random error term and the estimated

variance of random slope term for z3 is just about 6.4% of the variance of the ran-

dom error term. Based on the optimal model chosen by the proposed BIC, there is a

significant linear relationship between students’ mathematics achievement score and

socioeconomic status, sex, visible minority status in public and catholic schools. On

average, students in catholic schools, being male, non-minority, and had high social
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economic status tend to have higher mathematics achievement score. Furthermore,

the mean mathematics achievement score and minority gap effect significantly vary

across schools within each sector.

2.5 Discussion

In this chapter, we have proposed a modified BIC for for choosing random effects

in linear mixed models with uncorrelated random effects. Through the simulation

results and the application results, we see that the proposed BIC∗ performs quite

well in selecting the optimal model, which can capture the amount of information

contained in the data. Compared to the regular BIC, the proposed BIC∗ performs

better when the values of the random effects variances are small.

In chapter 3, we will present the case when the random effects are assumed to be

correlated. That is, the covariance matrix of random effects is a full matrix.
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3 Modified BIC for Linear Mixed Models with

Correlated Random Effects

In this chapter, we propose a BIC model criteria for choosing random effects in

linear mixed models with correlated random effects. In model (1.1), the vector of

random effects, bi, is assumed to follow a multivariate normal distribution. It is quite

natural that its covariance matrix can be a full matrix. For example, the random

effects for subject i is bi = (bi0, bi1), where bi0 is the subject’s random intercept and

bi1 is the subject’s random slope. There may be the case that subjects with higher

random intercept also have higher random slope. That is, there is a positive corre-

lation between subjects’ random intercepts and random slopes. And this correlation

structure should be captured by the model. Therefore, we will consider the case with

correlated random effects in this chapter.
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3.1 Background

When random effects are correlated, the covariance matrix D of random effects

in the linear mixed model (1.1) is a full matrix. Assume that matrix D is written

as D =
[
D11 D12

DT
12 D22

]
where the size of D11 is (q − r) × (q − r) and the size of D22 is

r × r. When D is a full matrix, the number of distinct variances and covariances is

q(q+1)/2. Consider the hypothesis test, H0 :D11 > 0,D12 = 0,D22 = 0 versus H1

: D > 0. That is, D is a positive definite matrix. Let θ∗ be the true value of the

parameter. The parameter space under the null hypothesis is:

Θ0 = {θ ∈ Rm/β ∈ Rp;D11 > 0;D12 = 0,D22 = 0, σ2
ϵ ≥ 0}

= {Rp × Sq−r
+ × {0}r(q−r) × {0}r(r+1) × R+},

where Sq−r
+ is the set of symmetric positive semi-definite matrices of size (q − r) ×

(q − r).

Assume that the null hypothesis is true and θ∗ ∈ Θ0. Applying the result from

(Baey et al., 2019; Proposition 7.1), we obtain the tangent cone to Θ0 at θ∗:

TΘ0(θ
∗) = {Rp × Sq−r × {0}r(q−r) × {0}r(r+1) × R}

= {Rp × R(q−r)(q−r+1)/2 × {0}r(q−r) × {0}r(r+1) × R},

where S(q−r) is the set of symmetric matrices of size (q − r) × (q − r). Also, the
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parameter space under the alternative hypothesis is:

Θ = {θ ∈ Rm/β ∈ Rp;D ∈ Sq
+, σ

2
ϵ ≥ 0}

= {Rp × Sq
+ × R+}.

According to Baey et al. (2019)’s proof of Proposition 1, the tangent cone to Θ at

θ∗ is:

TΘ(θ
∗) = Rp × R(q−r)(q−r+1)/2 × Rr(q−r) × Sr

+ × R,

where Sr
+ is the set of symmetric positive semi-definite matrices of size r × r. Since

TΘ0(θ
∗) is a linear subspace in TΘ(θ

∗), the null asymptotic distribution of the likeli-

hood ratio test statistic for the above hypothesis test is χ̄2(ν(θ∗)−1, C∗) (see Equation

1.18), where C∗ = TΘ(θ
∗)∩ TΘ0(θ

∗)⊥ = {0}p ×{0}(q−r)(q−r+1)/2 ×Rr(q−r) ×Sr
+ ×{0}

(Baey et al., 2019; Proposition 7.1).

When D is a full matrix, under conditions B1 to B5 as in (7.0.1.1), Baey et al.

(2019) pointed out that the asymptotic null distribution of the log-likelihood ratio

test statistic is:

χ̄2(ν(θ∗)−1, C∗) =

r(q−r)+r(r+1)/2∑
i=r(q−r)

wi(m,ν(θ∗)−1, C∗)χ2
i , (3.1)

where wi(m,ν(θ∗)−1, C∗), i = r(q−r), . . . , r(q−r)+r(r+1)/2, are some non-negative

numbers and
∑r(q−r)+r(r+1)/2

i=r(q−r) wi (m,ν(θ∗)−1, C∗) = 1, m is the dimension of θ, χ2
i is
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a chi-square distribution with i degrees of freedom, and ν(θ) is a positive definite

matrix such that N− 1
2 l

′
N(θ)

d−→ Nm(0,ν(θ)) and N−1{−l
′′
N(θ)}

a.s.−−→ ν(θ). Sr
+ is

the set of symmetric positive semi-definite matrices of size r × r (we note that it is

too complex to define Sr
+ using equality and inequality constraints on variance and

covariance components of matrix D). Since Sr
+ ⊂ Rr(r−1)/2 × Rr

+, in our work, we

will approximate C∗ by C = {0}p ×{0}(q−r)(q−r+1)/2 ×Rr(q−r) ×Rr(r−1)/2 ×Rr
+ ×{0}.

And, thus, χ̄2(ν(θ∗)−1, C∗) is approximated by

χ̄2(ν(θ∗)−1, C) =

r(q−r)+r(r−1)/2+r∑
i=r(q−r)+r(r−1)/2

wi(m,ν(θ∗)−1, C)χ2
i , (3.2)

where wi(m,ν(θ∗)−1, C), i = r(q − r) + r(r − 1)/2, . . . , r(q − r) + r(r − 1)/2 + r,

are some non-negative numbers and
∑r(q−r)+r(r−1)/2+r

i=r(q−r)+r(r−1)/2 wi(m,ν(θ∗)−1, C) = 1, χ2
i is

a chi-square distribution with i degrees of freedom, and ν(θ) is a positive definite

matrix such that N− 1
2 l

′
N(θ)

d−→ Nm(0,ν(θ)) and N−1{−l
′′
N(θ)}

a.s.−−→ ν(θ). This is

because C = {0}p × {0}(q−r)(q−r+1)/2 × Rr(q−r) × Rr(r−1)/2 × Rr
+ × {0} which contains

a linear space of dimension r(q − r) + r(r− 1)/2 and is included in a linear space of

dimension r(q−r)+r(r−1)/2+r. Therefore, the weights wi(m,ν(θ∗)−1, C) are zero

for i = 0, . . . , r(q− r)+ r(r− 1)/2− 1 and for i = r(q− r)+ r(r− 1)/2+ r+1, . . . ,m

(7.2).
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3.2 Derivation of Modified BIC for Correlated Random Ef-

fects

In this section, we introduce a modified BIC for selecting linear mixed models

with correlated random effects. We still focus on only selecting random effects.

In the parameter vector θ = (βT , τ T , σ2
ϵ)

T , τ is the parameter of interest; β and

σ2
ϵ are considered as nuisance parameters. We now consider the linear mixed model

(1.1) with the covariance matrix for random effects bi is a full matrix. Therefore, τ

contains all distinct variances and covariances of matrix D.

Assume that model Mk has parameter vector θk = (βk
T , τ k

T , σ2
ϵ,k)

T where βk

represents the parameter vector of fixed effects; τ k contains distinct variances and

covariances of random effect covariance matrixDk and σϵ,k is the parameter from the

variance of the random error term ϵ. Let p be the number of parameters of βk and

qk is the number of parameters of τ k. Model Mk is uniquely defined by its non-zero

parameters in β and non-zero variance components on the diagonal of matrix Dk.

If dii = 0, then all elements on row i and column i of this matrix are set to 0.

Assume that we test the modelMk against modelM1, whereM1 contains only one

random effect which is random intercept and Mk contains k random effects including

random intercept. Assume that the two models contain the same fixed effects part.

In this case, m = dim(θk) = p + qk + 1, r = k − 1, q = k, and q − r = 1. Thus,
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r(q − r) + r(r− 1)/2 = k(k− 1)/2 and r(q − r) + r(r− 1)/2 + r = (k− 1)(k + 2)/2.

Thus, based on (3.2), the asymptotic null distribution of the log-likelihood ratio test

statistic is

χ̄2(ν(θ∗)−1, C) =

(k−1)(k+2)/2∑
i=k(k−1)/2

wi(m,ν(θ∗)−1, C)χ2
i , (3.3)

where C = {0}p × {0} × Rk(k−1)/2 × Rk−1
+ × {0}; m is the dimension of θ,

wi(m,ν(θ∗)−1, C), i = k(k−1)/2, . . . , (k−1)(k+2)/2, are some non-negative numbers

and
∑(k−1)(k+2)/2

i=k(k−1)/2 wi(m,ν(θ∗)−1, C) = 1, χ2
i is a chi-square distribution with i degrees

of freedom, and ν(θ) is a positive definite matrix such thatN− 1
2 l

′
N(θ)

d−→ Nm(0,ν(θ))

and N−1{−l
′′
N(θ)}

a.s.−−→ ν(θ).

For example, M3 is a model with 3 random effects. τ = (d11, d12, d13, d22, d23, d33)

and D =
[
d11 d12 d13
d12 d22 d23
d13 d23 d33

]
. We want to test H0 : d11 > 0; d12 = 0, d13 = 0, d22 = 0,

d23 = 0, d33 = 0 vs. H1 : D is positive definite. In this example, qk = 6,m =

p + 6 + 1, q = k = 3, r = 2. Thus, k(k − 1)/2 = 3 and (k − 1)(k + 2)/2 = 5.

Therefore, the null asymptotic distribution of the log-likelihood ratio test statistic is

approximated by:

χ̄2(ν(θ∗)−1, C) =
5∑

i=3

wi(m,ν(θ∗)−1, C)χ2
i

= w3(m,ν(θ∗)−1, C)χ2
3 + w4(m,ν(θ∗)−1, C)χ2

4 + w5(m,ν(θ∗)−1, C)χ2
5,

where C = {0}p × {0} × R3 × R2
+ × {0}.
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From (3.3), let ck = E(χ̄2(ν(θ∗)−1, C) =
∑(k−1)(k+2)/2

i=k(k−1)/2 wi(m,ν(θ∗)−1, C)i.

We propose the following modified BIC:

BIC∗(Mk) = −2l(θ̂k;y) + dk log(n), (3.4)

where θ̂k is the maximum likelihood estimator of θk in model Mk; n =
∑N

i=1 ni and

dk = p+1.5+ ck for k > 1; dk = p+1.5 for k = 1; and dk = p+1 for k = 0. The first

term, −2l(θ̂k;y), measures the goodness-of-fit for model Mk and the second term,

dk log(n), is the penalty for model complexity, which makes sure that the model

selected is parsimonious. The selected model is the one that minimizes the proposed

BIC.

The proof of this proposed BIC’s consistency is similar to the proof of consistency

presented in Chapter 2.

We will compare the performance of this proposed BIC to the regular BIC. The

regular BIC for the case when matrix D is a full matrix is:

BIC(Mk) = −2l(θ̂;y) + (p+ k(k + 1)/2 + 1) log n, (3.5)

where p is the number of fixed effects parameters; k(k + 1)/2 + 1 is the number

of distinct parameters in the random effects covariance matrix and the error term

variance parameter; and n is the number of observations.
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3.3 Simulation

In this section, we evaluate the performance of the proposed BIC*. We compare

the performance of the proposed BIC* to the regular BIC. For each candidate model,

we compute BIC* and regular BIC; then for each method we choose the model with

minimum value of BIC* and regular BIC, respectively.

3.3.1 Simulation Set up

Our data is generated from linear mixed model, y = Xβ + Zb + ϵ. The total

number of observations is n = 1000 and number of clusters is N = 100. X is a

n× p matrix with n = 1000; p = 3; the first column of X includes all 1’s. The last

two columns, X1 and X2 are generated from the standard normal distribution. The

vector of fixed effects, β = (1, 2, 3)T . Matrix Z contains the first three columns z0,

z1, z2 which are the same as three columns of matrixX and three more columns z3,

z4, z5 are generated from the standard normal distributions. Random effects, bi, are

generated from a multivariate normal distribution Nq(0,D), where D is a 6× 6 full

matrix. The correlation matrix between the random effects in the data-generating

model is:
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R =


1 0.7 0.6 0.5

0.7 1 0.4 0.3

0.6 0.4 1 0.5

0.5 0.3 0.5 1


.

To measure the ability to detect the significance of variance components param-

eter of the proposed BIC∗, we created different cases for different sizes of σ2
0, σ

2
1, σ

2
2,

σ2
3 as shown below. σ2

4, σ
2
5 and covariances corresponding to random effects of z4

and z5 are all 0. ϵ is generated from a multivariate normal distribution, N(0, σ2
ϵIn)

with σ2
ϵ = 1.

Case 1: The standard deviations of random effects are σ0 = 5, σ1 = 1.5, σ2 = 1,

σ3 = 0.5, σ4 = 0, σ5 = 0.

Case 2: The standard deviations of random effects are σ0 = 5, σ1 = 1.0, σ2 = 0.8,

σ3 = 0.4, σ4 = 0, σ5 = 0.

Case 3: The standard deviations of random effects are σ0 = 2, σ1 = 0.8, σ2 = 0.5,

σ3 = 0.4, σ4 = 0, σ5 = 0.

Case 4: The standard deviations of random effects are σ0 = 2, σ1 = 0.8, σ2 = 0.5,

σ3 = 0.3, σ4 = 0, σ5 = 0.

Case 5: The standard deviations of random effects are σ0 = 2, σ1 = 0.5, σ2 = 0.4,

σ3 = 0.2, σ4 = 0, σ5 = 0.
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Case 6: In this case, we keep the standard deviations of random effects the same as

the ones in case 4. However, we increase the correlations by 0.1 for each non-zero

correlation in the correlation matrix to see how this affects the correction rates. The

correlation matrix between the random effects is:

R1 =


1 0.8 0.7 0.6

0.8 1 0.5 0.4

0.7 0.5 1 0.6

0.6 0.4 0.6 1


.

3.3.2 Simulation Procedure

In each case presented above, B = 1001 simulations are run. In each simulation,

all possible candidate models is fitted, with the same fixed effect covariates (including

the intercept, X1 and X2); meanwhile the covariates for random effects part vary in

the power set of {1, 2, 3, 4, 5} and also include random intercept. The proposed BIC∗,

regular BIC, and cAIC are calculated for each model. Models with the minimum

proposed BIC, minimum regular BIC and minimum cAIC are selected, obtaining

1001 models from 1001 simulations for each selection criterion. We calculate the

means and standard deviations of Positive Selection Rate and False Discovery Rate;

and the correction rate for each criterion.
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3.3.3 Simulation results

Table 3.1 shows the comparison of the Proposed BIC, Regular BIC, and cAIC

methods in terms of the Positive Selection Rate, the False Discovery Rate, and

Correction Rate for case 1 to case 6. In all cases, the correction rate for the proposed

BIC is greater than that of the regular BIC. The difference in the correction rate

between these two methods is bigger when the values of σ2
1, σ

2
2, σ

2
3 are smaller. And

in most cases, the two methods seem to perform better than the cAIC method. In

case 5, the values of variances are small except the variance for the random intercept

and we observed that cAIC performs better than the proposed BIC and regular BIC

in this case. As we observed in figure 2.3 of chapter 2, cAIC works better than the

proposed BIC in terms of the positive selection rate. However, cAIC doesn’t work

better than the proposed BIC in terms of correction rate. For some sets of values of

variances, cAIC performs better but for other sets of values, cAIC doesn’t perform

better. The correction rate of cAIC is not high. This may be because cAIC is not a

consistent criterion for model selection.
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3.4 Real-Data Application

In this section, we apply the proposed BIC to the subset of 120 schools of dataset

“hsfull” which is the same dataset as in the previous chapter. Data are on mathe-

matics achievement test scores from 50 Catholic and 70 Public high schools. That

is, N = 120. The number of students in each school ranges from 19 to 66 students.

Total number of students is 5307. That is, n = 5307. Variables included in the

analysis are school identification number, mathematics achievement score (;y), so-

cioeconomic status (X1), sex (female or male; X2), visible minority status (yes/no;

X3), school sector (catholic or public; X4). The candidate variables for random

effects part are z1, z2, and z3, being the socioeconomic status, sex, and visible mi-

nority variables which are group-centered. Assume that the fixed effects includes

X1, X2, X3, and X4, we wish to find significant random effects components. We

can use the proposed method to analyze this data because in this dataset, students

are nested within schools. There are 120 schools in this dataset and each school is

considered as a cluster, thus, there are 120 independent clusters. The mathemat-

ics achievement test scores from the students within the same school are correlated

because these students share the same school environment and teachers. We can

also consider this data as hierarchical data with two levels: the school level and the

student level.
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We first fit a linear mixed model which includesX1,X2,X3, andX4 and random

intercept and compared this model to a linear model which includes X1, X2, X3,

and X4 to test whether the random intercept effect is significant. We found that

the random intercept is very significant with p-value < 0.00001. We then fit linear

mixed models with correlated random effects to the data set. All the models have

the same fixed effects part which includes X1, X2, X3, and X4, meanwhile the

random effects part includes the random intercept and a subset of z1, z2, z3. We

calculate the proposed BIC and the regular BIC for each model. The optimal model

we obtain using the proposed BIC is the model with random intercept; the proposed

BIC is 34379.83. The optimal model we obtain using the regular BIC is also the

model with random intercept only. The BIC of this model is 34379.83. The optimal

model we obtain using the cAIC is the model with random intercept, random slopes

of z1, z2, and z3. The cAIC of the optimal model is 34166.25.

Table 3.2 shows of the proposed BIC, regular BIC, and cAIC for all models with

correlated random effects considered in the Real-Data Application section.
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Model Proposed BIC Regular BIC cAIC

Random Intercept (RI) 34379.33 34379.83 34176.92

RI, z1 34380.61 34385.4 34167.38

RI, z2 34391.38 34396.17 34181.23

RI, z1, z2 34401.4 34410.2 34174.07

RI, z2 34384.58 34389.37 34169.18

RI, z1, z2 34391.03 34400.38 34167.38

RI, z2, z2 34405.59 34414.63 34169.18

RI, z1, z2, z2 34420.4 34433.63 34166.25

All values are rounded to two decimal places.

Table 3.2: Results of the proposed BIC, regular BIC, and cAIC for all models with
correlated random effects considered for the subset of the “hsfull” dataset.

Combine the results obtained for independent random effects in 2.5 and correlated

random effects in 3.2, we see that the model that includes X1, X2, X3, X4, and

independent random effects which are random intercept and z3 is selected using the

proposed BIC method. The model that includes X1, X2, X3, X4 and random

intercept is selected using the regular BIC method. The model that includes X1,

X2, X3, X4, and independent random effects which are random intercept, z1, and

z3 is selected using the cAIC method. Table 3.3 shows the optimal model chosen by

each method when the random effects are assumed to be independent and when the
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random effects are correlated.
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In general, if we have a reason to justify that the random effects are independent,

then we choose the optimal model chosen by this scenario. Otherwise, we choose the

optimal model chosen by the scenario in which the random effects are assumed to

be correlated. In our application, the model that includes X1, X2, X3, X4, and

independent random effects which are random intercept and z3 should be selected

because the estimated correlation between random intercept and random slope of z3

is −0.34 in the full model will all possible random effects and, thus, it is reasonable

to assume that the random intercept and random slope of z3 are uncorrelated.

We also look at the data set “Orthodont” in the nlme package, which is introduced

in chapter 1. The dental data set introduced by Potthoff and Roy (1964), where

dental measurements were made on 11 girls and 16 boys at ages 8, 10, 12 and 14.

The response variable was the distance, in millimeters, from the center of pituitary

to the pterygomaxillary fissure. There are 27 subjects in the data set with the

following variables: Distance is a numeric vector of distances from the pituitary to

the pterygomaxillary fissure (mm). Age is a numeric vector of ages of the subject (in

years). Subject is an ordered factor indicating the subject on which the measurement

was made. Sex is a factor with levels Male and Female The objective is to study the

change in an orthodontic measurement over time for young boys and girls.

We first check if the random intercept is significant by comparing models with and
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without random intercept. We found the random intercept is also very significant

with p-value < 0.00001. We then fit all possible linear mixed models to the data set.

All models contain the same fixed effects part which is Sex, Age, and the interaction

between Sex and Age.

Table 3.4 shows the proposed BIC, regular BIC, and cAIC values of all models

considered for the “Orthodont” dataset. Based on the results, all three criteria (the

proposed BIC, regular BIC, and cAIC) choose the model with fixed effects as Sex,

Age, the interaction between Sex and Age, and the random intercept. This result is

also consistent with the results from Baey et al. (2019) and Potthoff and Roy (1964).

Model Proposed BIC Regular BIC cAIC

Random Intercept (RI) 461.35 461.85 405.47

Age 464.31 464.81 409.97

RI, Age (uncorrelated) 467.77 465.92 405.60

RI, Age (correlated) 467.20 470.04 405.51

All values are rounded to two decimal places.

Table 3.4: Results of the proposed BIC, regular BIC, and cAIC for all models con-
sidered for the “Orthodont” dataset
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3.5 Discussion

In this chapter, we have proposed a modified BIC for choosing random effects in

linear mixed models with correlated random effects. Based on the simulation results,

we see that the proposed BIC performs well in selecting the random effects in all

cases. The proposed BIC performs better than the regular BIC and cAIC methods

in all cases. The performance of the proposed BIC and regular BIC is better when

the magnitude of the variance or correlation values are larger. In Chapter 4, we will

propose a modified BIC for choosing both fixed effects and random effects in linear

mixed models. We also look at two scenarios: when the random effects are assumed

to be independent and when the random effects are assumed to be correlated.
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4 Modified BIC for selecting both Fixed Effects

and Random Effects in Linear Mixed Models

In this chapter, we propose a modified BIC to select both fixed effects and random

effects for linear mixed models. We also divide the situations into two cases: when

the random effects are independent, that is, the covariance matrix, D, of random

effects is diagonal and when the random effects are correlated, that is, the covariance

matrix, D, is a full matrix.

Very often in practice when we consider fitting a linear mixed model to a dataset,

we want to know which variables should be included for fixed effects and which

variables should be included for random effects from a set of candidate variables. For

example, from the set of candidate variables in the subset of 120 schools of dataset

“hsfull” used in chapter 3, which variable(s) should be chosen for fixed effects and

which one(s) should be chosen for random effects. In this case we need to choose

both regression coefficients and random effects variance components.
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4.1 Modified BIC for Selecting Both Fixed Effects and Ran-

dom Effects when Random Effects are Independent

When the covariance matrix, D, of random effects in the linear mixed model

(1.1) is a diagonal matrix, D = diag(d1, . . . , dq−r, dq−r+1, . . . , dq). The fixed effects

parameter in the linear mixed model (1.1) is β = (β0, β1, . . . , βp−1). Without the loss

of generality, assume that we want to test the nullity of s components of β which

are β1, . . . , βs and the nullity of the last r variances components of matrix D which

are dq−r+1, . . . , dq.

Consider the hypothesis test, H0 : β1 = 0, . . . , βs = 0; dq−r+1 = 0, . . . , dq = 0

versus H1 : β1 ̸= 0, . . . , βs ̸= 0; dq−r+1 > 0, . . . , dq > 0, with the variances that are

not tested (d1, . . . , dq−r) are positive. Let θ∗ be the true value of the parameter.

Assuming that the null hypothesis is true and θ∗ ∈ Θ0, we obtain the tangent cones

to the parameter spaces under the null and alternative hypotheses, respectively.

Θ0 = {{0}s × Rp−s × {0}r × Rq−r × R+},

TΘ0(θ
∗) = {{0}s × Rp−s × Rq−r × {0}r × R},

Θ = {Rp × Rq−r
+ × Rr

+ × R},

TΘ(θ
∗) = Rp × Rq−r × Rr

+ × R.

Since TΘ0(θ
∗) is also a linear subspace in TΘ(θ

∗), Baey et al. (2019) pointed out
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that the null asymptotic distribution of χ̄2(ν(θ∗)−1, C∗) is a mixture of chi-squared

distributions with degree of freedom ranging from s to s+ r.

χ̄2(ν(θ∗)−1, C∗) =
s+r∑
i=s

wi(m,ν(θ∗)−1, C∗)χ2
i , (4.1)

where C∗ = TΘ(θ
∗)∩TΘ0(θ

∗)⊥ = Rs×{0}p−s×{0}q−r×Rr
+×{0}; wi (m,ν(θ∗)−1, C∗) , i =

s, . . . , s+ r, are some non-negative numbers and
∑s+r

i=s wi(m,ν(θ∗)−1, C∗) = 1, χ2
i is

a chi-square distribution with i degrees of freedom, and ν(θ) is some positive definite

matrix such that N− 1
2 l

′
N(θ)

d−→ Nm(0,ν(θ)) and N−1{−l
′′
N(θ)}

a.s.−−→ ν(θ).

For example, if we test the nullity of one regression coefficient and the nullity of

one variance component, r = 1 and s = 1, then

χ̄2(ν(θ∗)−1, C∗) =
2∑

i=1

wi(m,ν(θ∗)−1, C∗)χ2
i (4.2)

=
1

2
χ2
1 +

1

2
χ2
2, (4.3)

where C∗ = R × {0} × {0} × R+ × {0}. This result is also obtained in Baey et al.

(2019)’s paper.

In the model selection, we assume that the smallest model (called model M1)

contains only the y-intercept for fixed effects and random intercept for random effects.

Model Mk contains (pk + 1) fixed effects and the covariance matrix, Dk, of random

effects is of order k × k. If random effects are assumed to be independent, then the

number of random effects variances components is qk = k. When we test model
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Mk against model M1, we are testing the nullity of s = pk regression coefficients

and r = k − 1 random effects variance components. Therefore, based on (4.1), the

asymptotic null distribution of the log-likelihood ratio test statistic is

χ̄2(ν(θ∗)−1, C∗) =

pk+k−1∑
i=pk

wi(m,ν(θ∗)−1, C∗)χ2
i , (4.4)

where C∗ = Rpk×{0}×{0}×Rk−1
+ ×{0}; wi (m,ν(θ∗)−1, C∗) , i = pk, . . . , pk+k−1, are

some non-negative numbers and
∑pk+k−1

i=pk
wi (m,ν(θ∗)−1, C∗) = 1,m is the dimension

of θ.

Let uk be the expectation of χ̄2(ν(θ∗)−1, C∗), then uk =
∑pk+k−1

i=pk
wi(m,ν(θ∗)−1, C∗)i.

We propose a modified BIC for this case as:

BIC∗(Mk) = −2l(θ̂k;y) + dk log(n), (4.5)

where θ̂k is the maximum likelihood estimator of θk in model Mk; n =
∑N

i=1 ni and

dk = 2.5 + uk for k > 1; dk = pk + 2.5 for k = 1; and dk = pk + 2 for k = 0. Here, in

the formula dk = 2.5 + uk for k > 1, we add 2.5 to uk to account for the degrees of

freedom of fixed effect intercept (1 degree of freedom), random intercept (0.5 degree

of freedom), and the variance component of the error term, ϵ (1 degree of freedom).

We will later compare the performance of this proposed BIC to the regular BIC.

The corresponding regular BIC is:

BIC∗(Mk) = −2l(θ̂k;y) + (pk + 2 + k) log(n). (4.6)
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The difference between the regular BIC and the proposed BIC is in the model

complexity measurement. The model complexity in the regular BIC is the number

of components in the model parameter vector. The complexity in the proposed BIC

is the total of number of fixed effects, residual variance, and the expected value of

the chi-bar square distribution. Since the sum of the weights in the chi-bar square

distribution is 1, the expected value of the chi-bar square distribution, ck, is always

less than pk+k−1 for k greater than 1. Therefore, ck+2.5 is always less than pk+2+k.

Since the regular BIC does not consider the boundary issue, the complexity in the

regular BIC does not actually reflect the model’s degrees of freedom in this case.

The complexity in the proposed BIC considers the boundary issue and is a corrected

number of degrees of freedom for the model.

To show assess the magnitude of difference between the complexity of model Mk

using proposed BIC and regular BIC in an example, we run a simulation in which

model Mk has 6 fixed effects including the y-intercept and 4 random effects including

the random intercept. The true model contains 4 fixed effects including the fixed

effect intercept with β = (1, 2, 3, 1, 0, 0) and 2 random effects including the random

intercept with standard deviations of 2 and 0.8 for random intercept and random

slope of z1, respectively. We ran all possible models. All models contain the fixed

effect intercept and random intercept. Table 4.1 shows the results of the complexity
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for the proposed BIC and regular BIC of a model with X1, X2, X3, X4, and X5

as fixed effects and random effects as shown in the rows of the table.

Model Proposed, dk Regular

Random Intercept (RI) 7.5 8

RI, z1 8 9

RI, z2 8 9

RI, z1, z2 8.53 10

RI, z3 8 9

RI, z1, z3 8.54 10

RI, z2, z3 8.52 10

RI, z1, z2, z3 9.07 11

Table 4.1: Comparing the complexity, dk of the proposed BIC and regular BIC when
random effects are independent

4.2 Modified BIC for Selecting Both Fixed Effects and Ran-

dom Effects when Random Effects are Correlated

When random effects in the linear mixed model (1.1) are correlated, their covari-

ance matrix, D, is a full matrix. Matrix D can be written as D =
[
D11 D12

DT
12 D22

]
where

the size ofD11 is (q−r)× (q−r) and the size ofD22 is r×r. The number of distinct

variance and covariance components in D is q(q + 1)/2 .
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Consider the hypothesis test, H0 : β1 = 0, . . . , βs = 0,D11 > 0,D12 = 0,D22 = 0

versus H1 : β ∈ Rp,D > 0. That is, D is a positive definite matrix. Let θ∗ be the

true value of the parameter vector. Assume that the null hypothesis holds and

θ∗ ∈ Θ0, then the parameter spaced under the null hypothesis and its tangent cone

at θ∗ are:

Θ0 = {{0}s × Rp−s × Sq−r
+ × {0}r(q−r) × {0}r(r+1) × R+},

TΘ0(θ
∗) = {{0}s × Rp−s × Sq−r × {0}r(q−r) × {0}r(r+1) × R},

= {{0}s × Rp−s × R(q−r)(q−r+1)/2 × {0}r(q−r) × {0}r(r+1) × R},

where Sq−r
+ is the set of symmetric positive semi-definite matrices of size (q − r) ×

(q − r). Also, the parameter space under the alternative hypothesis is:

Θ = {θ ∈ Rm/β ∈ Rp;D ∈ Sq
+, σ

2
ϵ ≥ 0}

= {Rp × Sq
+ × R+}.

The tangent cone to Θ at θ∗ is:

TΘ(θ
∗) = Rp × R(q−r)(q−r+1)/2 × Rr(q−r) × Sr

+ × R.

where Sr
+ is the set of symmetric positive semi-definite matrices of size r × r. Since

TΘ0(θ
∗) is a linear subspace in TΘ(θ

∗), the null asymptotic distribution of the like-

lihood ratio test statistic for the above hypothesis test is χ̄2(ν(θ∗)−1, C∗) where
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C∗ = TΘ(θ
∗) ∩ TΘ0(θ

∗)⊥ = Rs × {0}p−s × {0}(q−r)(q−r+1)/2 × Rr(q−r) × Sr
+ × {0}.

As in chapter 3, it is challenging to define Sr
+ using equality and inequality con-

straints. Since Sr
+ ⊂ Rr(r−1)/2 × Rr

+, we will approximate C∗ by C = Rs × {0}p−s ×

{0}(q−r)(q−r+1)/2×Rr(q−r)×Rr(r−1)/2×Rr
+×{0}. And χ̄2(ν(θ∗)−1, C∗) is approximated

by

χ̄2(ν(θ∗)−1, C) =

s+r(q−r)+r(r−1)/2+r∑
i=s+r(q−r)+r(r−1)/2

wi(m,ν(θ∗)−1, C)χ2
i . (4.7)

where wi(m,ν(θ∗)−1, C), i = s+r(q−r)+r(r−1)/2, . . . , s+r(q−r)+r(r−1)/2+r,

are some non-negative numbers and
∑s+r(q−r)+r(r−1)/2+r

i=s+r(q−r)+r(r−1)/2 wi(m,ν(θ∗)−1, C) = 1, χ2
i

is a chi-square distribution with i degrees of freedom, and ν(θ) is a positive definite

matrix such that N− 1
2 l

′
N(θ)

d−→ Nm(0,ν(θ)) and N−1{−l
′′
N(θ)}

a.s.−−→ ν(θ). In the

model selection, we assume that model M1 contains only the y-intercept for fixed

effects and random intercept for random effects. Model Mk contains (pk + 1) fixed

effects and the covariance matrix, Dk, of random effects is of order k × k. When

random effects are assumed to be correlated, the number of distinct random effects

variance and covariance components is qk = k(k + 1)/2. When we test model Mk

against model M1, applying (4.7) with s = pk and r = k−1, then s+r(q−r)+r(r−

1)/2 = pk+k(k−1)/2 and s+r(q−r)+r(r−1)/2+r = pk+(k−1)(k+2)/2. Thus, the

asymptotic null distribution of the log-likelihood ratio test statistic is approximated
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by

χ̄2(ν(θ∗)−1, C) =

pk+(k−1)(k+2)/2∑
i=pk+k(k−1)/2

wi(m,ν(θ∗)−1, C)χ2
i , (4.8)

where C = Rpk × {0} × {0} × Rk(k−1)/2 × Rk−1
+ × {0}.

Also, let hk be the expectation of χ̄2(ν(θ∗)−1, C), then,

hk =

pk+(k−1)(k+2)/2∑
i=pk+k(k−1)/2

wi(m,ν(θ∗)−1, C)i.

Our proposed modified BIC for this case is:

BIC∗(Mk) = −2l(θ̂k;y) + dk log(n), (4.9)

where θ̂k is the maximum likelihood estimator of θk in model Mk; n =
∑N

i=1 ni and

dk = 2.5 + hk for k > 1; dk = pk + 2.5 for k = 1; and dk = pk + 2 for k = 0.

The corresponding regular BIC that we will use in our simulation is:

BIC(Mk) = −2l(θ̂k;y) + (pk + 2 + k(k + 1)/2) log(n). (4.10)

We also use the same setting for correlated random effects with correlation of

0.7 between random intercept and random slope of z1 in the true model. Table 4.2

shows the results of the complexity for the proposed BIC and regular BIC of a model
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with X1, X2, X3, X4, and X5 as fixed effects and random effects as shown in the

rows of the table.

Model Proposed, dk Regular

Random Intercept (RI) 7.5 8

RI, z1 9 10

RI, z2 9 10

RI, z1, z2 11.52 13

RI, z3 9 10

RI, z1, z3 11.49 13

RI, z2, z3 11.50 13

RI, z1, z2, z3 15.08 17

Table 4.2: Comparing the complexity, dk of the proposed BIC and regular BIC when
random effects are correlated.

Given the same model, we calculate the difference between the complexity of

model Mk using the regular BIC and the complexity using the proposed BIC. Then

we take the average over the models with the same number of random effects. The

average differences between the complexity of the regular BIC and the complexity

of the proposed BIC are 0.5 , 1, 1.494, and 1.968 for k = 1, 2, 3, and 4, respectively,

where k is the number of random effects in the model Mk, including the random

intercept.
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Table 4.3 presents the average difference between the complexity of the regular

BIC and the complexity of the proposed BIC, where k is the number of random

effects in the model Mk, including the random intercept.

Random Effects k = 1 k = 2 k = 3 k = 4

Independent 0.5 1 1.49 1.97

Correlated 0.5 1 1.47 1.89

Table 4.3: Average difference in Model Complexity between Proposed BIC and Reg-
ular BIC

We notice that the difference between the complexity of the regular BIC and

the complexity of the proposed BIC is larger when the number of random effects in

model Mk is bigger.

Theorem 4.1 Theorem 2: Consistency of the modified BIC

Assume that the assumptions (C1)− (C4) are satisfied and BIC∗(Mk) is defined as

in (4.9), then

lim
n→∞

P (BIC∗(MT ) < BIC∗(Mk)) = 1 for all Mk ∈ M+,

and lim
n→∞

P (BIC∗(MT ) < BIC∗(Mk)) = 1 for all Mk ∈ M−.

Please see a proof of Theorem 2 in the section below.
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4.2.1 Proof to Theorem 2

Proof. Case 1: For any over-fitting model, Mk ∈ M+, we also prove that

lim
n→∞

P (BIC∗(Mk)−BIC∗(MT ) > 0) = 1. Assume that model Mk contains pk fixed

effects and qk random effects and the true model MT contains pT fixed effects and

qT random effects. Let s = pk − pT and r = qk − qT with s ≥ 0, q ≥ 0, and s+ r > 0.

Without loss of generality, assume that the covariance matrix of random effects in

model Mk is D =
[
D11 D12

DT
12 D22

]
where D11 is the covariance matrix of random effects

of the true model MT . The size of D11 is qT × qT and the size of D22 is r × r. Let

θT = (0β,βT
T ,ψT

T ,0, σ2
ϵ,T )

T and θk = (βk,1
T ,βk,2

T ,ψk,1
T ,ψk,2

T , σ2
ϵ,k)

T where 0β

has the same dimension as βk,1; and βT has the same dimension as βk,2; ψT has the

same dimension as ψk,1 and 0 has the same dimension as ψk,2. All elements of 0β

and 0 are 0. We have that

BIC∗(Mk)−BIC∗(MT ) = −2
(
l(θ̂k;y)− l(θ̂T ;y)

)
+ (dk − dT ) log(n). (4.11)

Then −2(l(θ̂T ;y) − l(θ̂k;y)) is the likelihood ratio test statistic of the following

hypothesis test,

H0 : βk,1
T = 0;D11 > 0;D12 = 0,D22 = 0,

H1 : βk ∈ Rp,D > 0.

As presented in the Background section of this chapter, under H0, the asymptotic
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distribution of −2(l(θ̂T ;y)− l(θ̂k;y)) is approximated by

χ̄2(ν(θ∗)−1, C) =
s+r∑
i=s

wi(m,ν(θ∗)−1, C)χ2
i , (4.12)

where C = Rs × {0}pT × {0}qT × Rr
+ × {0}; wi (m,ν(θ∗)−1, C) , i = s, . . . , s + r,

are some non-negative numbers and
∑s+r

i=s wi (m,ν(θ∗)−1, C) = 1; χ2
i is a chi-square

distribution with i degrees of freedom and ν(θ) is some positive definite matrix such

that N− 1
2 l

′
N(θ)

d−→ Nm(0,ν(θ)) and N−1{−l
′′
N(θ)}

a.s.−−→ ν(θ).

Therefore, −2(l(θ̂k;y)− l(θ̂T ;y)) = Op(1). We also have that,

2(l(θ̂T ;y)− l(θ̂k;y)) = 2
(
l(θ̂T ;y)− l(θ̂1;y)−

[
l(θ̂k;y)− l(θ̂1;y)

])
= −2

(
l(θ̂1;y)− l(θ̂T ;y)

)
−
[
−2

(
l(θ̂1;y)− l(θ̂k;y)

)]
.

⇒ E
[
2
(
l(θ̂T ;Y )− l(θ̂k;Y )

)]
= E

[
−2

(
l(θ̂1;Y )− l(θ̂T ;Y )

)]
− E

[
−2

(
l(θ̂1;Y )− l(θ̂k;Y )

)]
= dT − dk,

where l(θ̂1;y) is the maximum log-likelihood of the simplest model; that is, the

model with only the intercept for fixed effects and random intercept for random

effects. Therefore,

E
[
−2

(
l(θ̂T ;Y )− l(θ̂k;Y )

)]
= dk − dT .

On the other hand, −2
(
l(θ̂T ;y)− l(θ̂k;y)

)
asymptotically has the distribution

which is a mixture of the chi-square distributions. Therefore, E
[
−2

(
l(θ̂T ;Y )− l(θ̂k;Y )

)]
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must be positive and, therefore, dk − dT > 0. Thus, BIC∗(Mk)− BIC∗(MT ) → ∞

as n → ∞ and lim
n→∞

P (BIC∗(Mk)−BIC∗(MT ) > 0) = 1 for Mk ∈ M+.

Case 2: For any under-fitting model,Mk ∈ M−, we want to prove that lim
n→∞

P (BIC∗(Mk)−

BIC∗(MT ) > 0) = 1. The proof for this part is similar to the proof for case 1 in

theorem 1. We include the proof here for completeness. We have that

BIC∗(Mk) = −2l(θ̂k;y) + dk log(n),

BIC∗(MT ) = −2l(θ̂T ;y) + dT log(n),

BIC∗(Mk)−BIC∗(MT ) = −2
(
l(θ̂k;y)− l(θ̂T ;y)

)
+ (dk − dT ) log(n).

−2
(
l(θ̂k;y)− l(θ̂T ;y)

)
= −2

(
l(θ̂k;y)− l(θk,0;y)− [l(θ̂T ;y)− l(θT,0;y)]

− l(θT,0;y) + l(θk,0;y)
)

= −2
(
l(θ̂k;y)− l(θk,0;y)

)
+ 2

[
l(θ̂T ;y)− l(θT,0;y)

]
+ 2 [l(θT,0;y)− l(θk,0;y)]− 2E [l(θT,0;Y )− l(θk,0;y)]

+ 2E [l(θT,0;y)− l(θk,0;y)] .

We have that l(θ̂k;y)− l(θk,0;y) = op(1) and l(θ̂T ;y)− l(θT,0;y) = op(1) because

θ̂k
p→ θk,0 and θ̂T

p→ θT,0 and function l(θ;y) is continuous with respect to θ. Also,

under assumption C4(ii), 1
N
(l(θT,0;y) − ET,0[l(θT,0;y)])

p→ 0 and 1
N
(l(θk,0;y) −

ET,0[l(θk,0;y)])
p→ 0. Thus,

1

N
(l(θT,0;y)− l(θk,0;y)− E[l(θT,0;y)− l(θk,0;y)])

p→ 0.
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Therefore, l(θT,0;y) − l(θk,0;y) − E[l(θT,0;y) − l(θk,0;y)] = op(N). The last term

can be evaluated as,

E[l(θT,0;y)− l(θk,0;y)] =
N∑
i=1

E[log fi(Y i;θT,0)− log fi(Y i;θk,0)]

=
N∑
i=1

E

[
log

fi(Y i;θT,0)

fi(Y i;θk,0)

]
= Op(N).

This is because E

[
log

fi(Y i;θT,0)

fi(Y i;θk,0)

]
is the Kullback-Leibler distance between fi(Y i;θT,0)

and fi(Y i;θk,0); and is positive and finite by assumption C4. Assume that the clus-

ter sample sizes, n1, . . . , nN are uniformly bounded, then Op(N) dominates (dk −

dT ) log(n) asN → ∞. Thus, BIC∗(Mk)−BIC∗(MT ) > 0. And, lim
n→∞

P (BIC∗(MT ) <

BIC∗(Mk)) = 1 for all Mk ∈ M−. This completes the proof of Theorem 2.

4.3 Simulation

4.3.1 Simulation Set up

We generated data from linear mixed model, y =Xβ+Zb+ϵ with total number

of observations n = 1000 and number of clusters, N = 100. X is a n × p matrix

with n = 1000; p = 6; the first column of X includes all 1’s. The last five columns,

X1 to X5, are generated from the standard normal distribution. The vector of fixed

effects, β = (1, 2, 3, 1, 0, 0)T . Matrix Z contains the first three columns z0, z1, z2

which are the same as three columns of matrix X and three more columns z3, z4,
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z5 are generated from the standard normal distributions. Random effects, bi, are

generated from multivariate normal distribution Nq(0,D) with D is a 6 × 6 full

matrix. The correlation matrix between the random effects in the data-generating

model is:

R =


1 0.7 0.6 0.5

0.7 1 0.4 0.3

0.6 0.4 1 0.5

0.5 0.3 0.5 1


.

To measure the ability to detect the significance of fixed effects and variance compo-

nents parameter of the proposed BIC∗, we explore two different cases for different

sizes of σ2
0, σ

2
1, σ

2
2, σ

2
3 as shown below. σ2

4, σ
2
5 and covariances corresponding to

random effects of z4 and z5 are all 0. ϵ is generated from a multivariate normal

distribution, Nn(0, σ
2
ϵIn) with σ2

ϵ = 1.

Case 1: The standard deviations of random effects are σ0 = 5, σ1 = 1.5, σ2 = 1,

σ3 = 0.5, σ4 = 0, σ5 = 0.

Case 2: The standard deviations of random effects are σ0 = 2, σ1 = 0.8, σ2 = 0.5,

σ3 = 0.3, σ4 = 0, σ5 = 0.
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4.3.2 Simulation Procedure

For each case above, we run B = 1001 simulations. In each simulation, all possible

candidate models are run. All models contains the y-intercept for fixed effect and

random intercept for random effects. The covariates for fixed effects part vary in the

power set of {1, 2, 3, 4, 5} for X1 to X5 and the covariates for random effects part

vary in the power set of {1, 2, 3, 4, 5} for z1 to z5. We also include the models that

includes only y-intercept for fixed effect with varying random effects and the models

that includes random intercept only with varying fixed effects. The proposed BIC∗

and regular BIC were calculated for each model. Then the model with minimum

proposed BIC is selected and the model with minimum regular BIC is selected. For

each selection criterion, we have 1001 models obtained from 1001 simulations. We

then calculate the means and standard deviations of Positive Selection Rate and

False Discovery Rate; and the correction rate for each criterion.

We also run simulations for the case when random effects are assumed to be

uncorrelated and the variances of random effects are the same as the values in case

1 and case 2.
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4.3.3 Simulation results

Table 4.4 shows the comparison of the Proposed BIC, Regular BIC, and cAIC

methods in terms of Fixed Effects Correction Rate, Random Effects Correction Rate,

and Both Effects Correction Rate for both case 1 and case 2 when random effects

are assumed to be correlated.
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Based on the simulation results for the situation when random effects are assumed

correlated in table 4.4, we see that the proposed BIC method performs better than

the regular BIC and the cAIC methods in terms of the correction rate for selecting

the fixed effects, the correction rate for selecting the random effects and also for

selecting both fixed effects and random effects simultaneously. We also see that

when the values of the variances for random effects are smaller, the correction rates

are lower for all methods. However, the performance of the proposed method is still

much better than the other two methods.

When random effects are assumed uncorrelated, based on the simulation results

in table 4.5, we see that the proposed BIC and regular BIC still perform well and

better than the cAIC method. The proposed BIC method performs better than the

regular BIC in case 2 but doesn’t performs better than the regular BIC in case 1.

This may be because the penalty term of the regular BIC is calculated using the

exact chi-square distribution and the calculation of the penalty term is without any

error. However, for the proposed BIC, the weights of the chi-bar distribution are

approximated. Therefore, the penalty term is approximated only.
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From the simulation results, we notice that when the values of the variances for

random effects are smaller, the correction rates are lower for the proposed and regular

BIC methods. However, the correction rates in case 2 are better than case 1 for the

cAIC method.

4.4 Real-Data Application

In this section, we again apply the proposed BIC, regular BIC, and cAIC methods

to the subset of 120 schools of dataset “hsfull” as used in the previous chapters. Data

are on math achievement test scores from 50 Catholic and 70 Public high schools.

The number of students in each school ranges from 19 to 66 students. Total number

of students is 5307.

Variables are school identification number, math achievement score (Y ), socioe-

conomic status (X1), sex (female or male;X2), visible minority status (yes/no;X3),

school sector (catholic or public; X4). We wish to study the relationship between

students’ math achievement score and socioeconomic status, sex, visible minority

status in public and catholic schools; and whether this relationship varies across

schools within each sector.

The candidate variables in the fixed effects part are X1, X2, X3, and X4 which

are group-centered. The candidate variables in the random effects part are z1, z2,
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z3 which are the same as X1, X2, X3.

We first fit a linear mixed model which includes only y-intercept and random

intercept. Then, we fit the models with only y-intercept for fixed effects and all

possible combinations of z1, z2, z3 with random intercept for random effects. Next,

we fit models with all possible combinations ofX1, X2, X3, X4 for fixed effects and

only random intercept for random effects. Lastly, for each combination of X1, X2,

X3, X4 for fixed effects, we fit models with all possible combinations of z1, z2, z3

with random intercept for random effects. For each model, we record the values of

proposed BIC, regular BIC, and cAIC. There are (24) ∗ (23) or 16 ∗ 8 = 128 values

for each method. Now, for each method, we choose the model with minimum value

of the corresponding criterion. We apply this procedure for both cases when random

effects are assumed to be correlated and uncorrelated.

When random effects are assumed to be correlated, the optimal model we obtain

using the proposed BIC is the model with all X1, X2, X3, and X4 and random

intercept; the proposed BIC is 34379.83. The optimal model we obtain using the

regular BIC is also the model withX1, X2, X3, andX4 and random intercept only.

The regular BIC of this model is also 34379.83. The cAIC yields the optimal model

which contains X1, X2, X3, X4 with random intercept, and random slopes of z1

and z3. The cAIC of the optimal model is 34166.25.These results are consistent with
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the results obtained in the in the Real-data Application section of chapter 3.

When random effects are assumed to be uncorrelated, the optimal model we

obtain using the proposed BIC is the model with all X1, X2, X3, and X4, random

intercept, and random slopes of z3; the proposed BIC value is 34378.23. The optimal

model we obtain using the regular BIC is the model with X1, X2, X3, and X4 and

random intercept only. The regular BIC of this model is 34379.83. The cAIC yields

the optimal model which contains X1, X2, X3, X4 with random intercept, and

random slopes of z1, z2, and z3. The cAIC of the optimal model is 34165.13. These

results are also consistent with the results obtained in the Real-data Application

section of chapter 2. Based on the results presented above, we would choose the

model with all X1, X2, X3, and X4 for fixed effects; and random intercept, and

random slope of z3 for random effects assuming that random effects are uncorrelated.

There is a significant relationship between students’ math achievement score and

socioeconomic status, sex, visible minority status in public and catholic schools; and

the school mean math achievement score and minority gap effect vary across schools

within each sector.

111



5 Predictive Models for Diabetes Mellitus using

Machine Learning Techniques

5.1 Abstract

Background: Diabetes Mellitus is an increasingly prevalent chronic disease char-

acterized by the body’s inability to metabolize glucose. The objective of this study

was to build an effective predictive model with high sensitivity and selectivity to bet-

ter identify Canadian patients at risk of having Diabetes Mellitus based on patient

demographic data and the laboratory results during their visits to medical facilities.

Methods: Using the most recent records of 13309 Canadian patients aged between

18 and 90 years, along with their laboratory information (age, sex, fasting blood glu-

cose, body mass index, high-density lipoprotein, triglycerides, blood pressure, and

low-density lipoprotein), we built predictive models using Logistic Regression and

Gradient Boosting Machine (GBM) techniques. The area under the receiver operat-
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ing characteristic curve (AROC) was used to evaluate the discriminatory capability

of these models. We used the adjusted threshold method and the class weight method

to improve sensitivity – the proportion of Diabetes Mellitus patients correctly pre-

dicted by the model. We also compared these models to other learning machine

techniques such as Decision Tree and Random Forest.

Results: The AROC for the proposed GBM model is 84.7% with a sensitivity of

71.6% and the AROC for the proposed Logistic Regression model is 84.0% with a

sensitivity of 73.4%. The GBM and Logistic Regression models perform better than

the Random Forest and Decision Tree models.

Conclusions: The ability of our models to predict patients with Diabetes using some

commonly used lab results is high with satisfactory sensitivity. These models can

be built into an online computer program to help physicians in predicting patients

with future occurrence of diabetes and providing necessary preventive interventions.

The model is developed and validated on the Canadian population which is more

specific and powerful to apply on Canadian patients than existing models developed

from US or other populations. Fasting blood glucose, body mass index, high-density

lipoprotein, and triglycerides were the most important predictors in these models.
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5.2 Background

Diabetes Mellitus (DM) is an increasingly prevalent chronic disease characterized

by the body’s inability to metabolize glucose. Finding the disease at the early stage

helps reduce medical costs and the risk of patients having more complicated health

problems. Wilson et al. (2007) developed the Framingham Diabetes Risk Scoring

Model (FDRSM) to predict the risk for developing DM in middle-aged American

adults (45 to 64 years of age) using Logistic Regression. The risk factors considered

in this simple clinical model are parental history of DM, obesity, high blood pressure,

low levels of high-density lipoprotein cholesterol, elevated triglyceride levels, and im-

paired fasting glucose. The number of subjects in the sample was 3140 and the

area under the receiver operating characteristic curve (AROC) was reported to be

85.0%. The performance of this algorithm was evaluated in a Canadian population

by Mashayekhi et al. (2015) using the same predictors as Wilson et al. (2007) with

the exception of parental history of DM. The number of subjects in the sample was

4403 and the reported AROC was 78.6%. Data mining techniques have been widely

used in DM studies to explore the risk factors for DM as in Iyer et al. (2015), Ioannis

et al. (2017),Kahn et al. (2009), and Lindström and Tuomilehto (2003). Machine

learning methods, such as logistic regression, artificial neural network, and decision

tree were used by Meng et al. (2013) to predict DM and pre-diabetes. The data
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included 735 patients who had DM or pre-diabetes and 752 who are healthy from

Guangzhou, China. The accuracy was reported to be 77.87% using a decision tree

model; 76.13% using a logistic regression model; and 73.23% using the Artificial Neu-

ral Network (ANN) procedure. Other machine learning methods, such as Random

Forest, Support Vector Machines (SVM), k-nearest Neighbors (KNN), and the näıve

Bayes have also been used as in Ioannis et al. (2017), Jayalakshmi and Santhaku-

maran (2010), Kahn et al. (2009), and Meng et al. (2013). Sisodia and Sisodia (2018)

recently used three classification algorithms: Näıve Bayes, Decision Tree, and SVM,

to detect DM. Their results showed that Näıve Bayes algorithm works better than

the other two algorithms.

In this chapter, we present predictive models using Gradient Boosting Machine

and Logistic Regression techniques to predict the probability of patients having DM

based on their demographic information and laboratory results from their visits to

medical facilities. We also compare these methods with other widely used machine

learning techniques such as Rpart and Random Forest. The MLR (Machine Learning

in R) package in R Bischl et al. (2016) was used to develop all the models.
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5.3 Methods

The data used in this research were obtained from CPCSSN (www.cpcssn.ca).

The case definition for diabetes is described in Williamson et al. (2014). “Dia-

betes includes diabetes mellitus type 1 and type 2, controlled or uncontrolled, and

excludes gestational diabetes, chemically induced (secondary) diabetes, neonatal di-

abetes, polycystic ovarian syndrome, hyperglycemia, prediabetes, or similar states

or conditions” (page 4 in Williamson et al. (2014)). The dataset was generated as

follows: 1) Every blood pressure reading (over 6 million) were pulled into a table for

all patients over the age of 17 along with the patient ID, their age on the date of

the exam and their sex. 2) For each blood pressure reading, we joined the following

records that were closest in time, within a specific time period, based on the type

of measurement: BMI ± 1 year, LDL ± 1 year, HDL ± 1 year, triglyceride (TG)

± 1 year, Fasting blood sugar (FBS) ± 1 month, HbA1c ± 3 months. 3) We re-

moved records with missing data in any one of the columns. This left approximately

880000 records, of which approximately 255000 records were from patients who have

diabetes. 4) Patients on insulin, who might have Type 1 diabetes, and patient on

corticosteroids, which can affect blood sugar levels, were removed from the dataset,

leaving 811000 records with 235000 from patients with DM. 5) We then curated a

dataset for records of patients that preceded the onset of DM and identified those
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patients for whom there were at least 10 visits worth of data. For patients who had

not developed DM, we removed the last year of records before the end of the database

to minimize the impact of patients who might be on the verge of becoming diabetic.

There are 215544 records pertaining to patient visits in the dataset. The outcome

variable is Diabetes Mellitus which is encoded a binary variable, with category 0

indicating patients with no DM and category 1 indicating patients with DM. The

predictors of interest are: Sex, Age (Age at examination date), BMI (Body Mass

Index), TG (Triglycerides), FBS (Fasting Blood Sugar), sBP (Systolic Blood Pres-

sure), HDL (High Density Lipoprotein), and LDL (Low Density Lipoprotein). Since

a patient may have multiple records representing their multiple visits to medical fa-

cilities, we took each patient’s last visit to obtain a dataset with 13317 patients. In

the exploratory data analysis step, we found some extreme values in BMI and TG,

and thereafter, excluded these values to obtain a final analysis dataset with 13309

patients. About 20.9% of the patients in this sample have DM. 40% of the patients

are male and about 60% are female. The age of the patients in this dataset ranges

from 18 to 90 years with a median of around 64 years. Age is also encoded as a

categorical variable represented by the four categories: Young, Middle-Aged, Senior,

and Elderly. About 44.6% of patients are middle-aged, between 40 and 64 years old;

47.8% are senior, between 65 and 84; 4.8% are elderly who are older than 85; and

117



2.9% are younger than 40 years old. Body mass index was calculated by dividing

the patient’s weight (in kilograms) by the patient’s height (in meters) squared. The

body mass index ranges from 11.2 to 70 with a median of 28.9. The distributions of

BMI, FBS, HDL and TG are all right-skewed.

Group BMI FBS HDL TG LDL sBP Age

DM 31.16 6.10 1.20 1.56 2.71 130 64.00

No DM 28.32 5.20 1.40 1.24 2.74 130 66.00

All values are rounded to two decimal places.

Table 5.1: Comparing the median of continuous variables between DM and No DM
groups.

Table 5.1 shows that the medians of BMI, FBS, and TG of the group of patients

with DM are higher than those of the group of patients with no DM; the median

HDL is higher for the group of patients with no DM meanwhile the median LDL, me-

dian sBP, and the median Age are similar. The correlation matrix of the continuous

variables (Age, BMI, TG, FBS, sBP, HDL, LDL) shows no remarkable correlation

among the variables, except for a moderate negative correlation of −0.39 between

HDL and TG.

Gradient Boosting Machine is a powerful machine-learning technique that has
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shown considerable success in a wide range of practical applications (Natekin and

Knoll (2013)). In this research study, we used Logistic Regression and Gradient

Boosting Machine techniques in the MLR package in R to build predictive models.

We then compared these methods to two other modern machine-learning techniques

which are Decision Tree Rpart and Random Forest.

Procedure: We first created a training dataset by randomly choosing 80% of all

patients in the dataset and created a test dataset with the remaining 20% of patients.

The training dataset has 10647 patients and the test dataset has 2662 patients. We

used the training dataset to train the model and used the test dataset to evaluate how

well the model performs based on an unseen dataset. Using the training dataset and

the 10-fold cross-validation method, we tuned the model hyperparameters to obtain

the set of optimal hyperparameters that yields the highest area under the receiver

operating characteristic curve (AROC). Since the dataset is imbalanced with only

20.9% of the patients in the DM group, we used different misclassification costs to find

the optimal threshold (or the cut off value) for the DM class (i.e., Diabetes Mellitus

= 1). In the tuning threshold approach, we set up a matrix of misclassification

costs in which the diagonal elements are zero and the ratio of the cost of a false

negative to the cost of a false positive is 3 to 1. We validated the model with the
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optimal hyperparameters using a 10-fold cross validation. In this step, we measured

both AROC values and the misclassification costs. We tuned the threshold for the

positive class (Diabetes = 1) by choosing the threshold that yields the lowest expected

misclassification cost. We obtained our final model by fitting the model with the

optimal set of hyperparameters on the entire training dataset. Finally, using the

optimal threshold we evaluated the performance of the final model on the test dataset.

Sensitivity was calculated by dividing the model-predicted number of DM patients

by the observed number of DM patients. Specificity was calculated by dividing the

model-predicted number of No DM patients by the observed number of No DM

patients. The misclassification rate is the number of incorrectly classified patients

divided by the total number of patients.

We next overview the tuning process for each model. The training data set was

used in the tuning process.

1. GBM model

• The search space: We create a search space by defining a parameter

grid of hyperparameters as follows: the number of trees (n.trees) is an

integer ranging from 200 to 600; the depth of tree (interaction.depth) is

from 2 to 6; the minimum number of observations in the terminal nodes

(n.minobsinnode) is from 30 to 80; and learning rate (shrinkage) is from
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0.01 to 0.3.

• Tuning method: We perform random search on the parameter space

with the maximum number of iterations of 100.

• Evaluation method: We use 10-fold cross validation and use AROC as

the performance measure.

• The tuning results are as follows: the number of iterations (n.trees) is

257; the interaction depth (interaction.depth) is 2; the minimum number

of observations in the terminal nodes (n.minobsinnode) is 75; the shrinkage

rate (shrinkage) is 0.126. The average AROC is 83.6%.

2. Logistic Regression model : There are no hyperparameters for the Logistic Re-

gression models so we do not use the tuning process for Logistic Regression

models.

3. Random Forest model :

• Parameter grid: the number of trees to grow (ntree) is from 80 to 500;

the number of variables should be selected at a node split (mtry) is an

integer ranging from 3 to 6; the number of observations at terminal nodes

(nodesize) is from 20 to 50.

• Tuning method: We perform random search on the parameter space
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with the number of iterations of 100.

• Evaluation method: We use 10-fold cross validation and use AROC as

the performance measure.

• The tuning results are as follows: the number of trees to grow (ntree)

is 407; the number of variables should be selected at a node split (mtry)

is 3; the number of observations at terminal nodes (nodesize) is 22. The

average AROC is 82.9%.

4. Decision Tree model

• Parameter grid: the smallest number of observations in the parent node

that could be split further (minsplit) is from 30 to 50; the smallest number

of observations that are allowed in a terminal node (minbucket) is an

integer ranging from 10 to 50; depth of tree (maxdepth) can be 8, 12, 16,

or 30; the complexity parameter (cp) is from 0.001 to 0.2.

• Tuning method: We perform random search on the parameter space

with the maximum number of iterations of 100.

• Evaluation method: We use 10-fold cross validation and use AROC as

the performance measure.

• The tuning results are as follows: The smallest number of observa-
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tions in the parent node that could be split further (minsplit) is 41; the

smallest number of observations that are allowed in a terminal node (min-

bucket) is 19; depth of tree (maxdepth) is 8; the complexity parameter

(cp) is from 0.001. The average AROC is 76.7%.

5.4 Results

The optimal set of hyperparameters we obtained for this GBMmodel is as follows:

the number of iterations (n.trees) is 257; the interaction depth (interaction.depth) is

2; the minimum number of observations in the terminal nodes (n.minobsinnode) is

75; the shrinkage rate (shrinkage) is 0.126. Since the outcome variable is a binary

variable, we used the Bernoulli loss function and tree-based learners in this GBM

model. Using the cross-validation method to validate this model, we obtained AROC

values ranging from 81.6% to 85.0% with an average AROC of 83.6%, indicating a

high reliability of the method. The optimal threshold for the DM class using the

misclassification cost matrix method is 0.24. We also used the train/test split method

to validate this model and obtained similar results with average AROC of 83.3%.

When testing the model on the test dataset we obtained the following results:

the AROC is 84.7%; the misclassification rate is 18.9%; the sensitivity is 71.6% and

the specificity is 83.7%. We observed that there is a trade off between the sensitivity
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and the misclassification rate. Using a default threshold of 0.5, the misclassification

rate for the GBM model was 15%; the sensitivity was low at 48.3%; the specificity

was 95.2%; and the AROC remained the same at 84.7%. For our Logistic Regression

model, the AROC was 84.0%; the misclassification rate was 19.6%; the sensitivity

was 73.4% and the specificity was 82.3%. The optimal threshold was estimated to be

0.24 and Age was treated as a categorical variable in this model. We validated this

model using the cross-validation method and obtained AROC values ranging from

80.6% to 85.7% with an average AROC of 83.2%. Fasting blood glucose, high-density

lipoprotein, body mass index, and triglycerides were very significant predictors in this

model (P < 0.0001). Interestingly, based on this sample data, we found that age

was also a significant factor (Table 5.2); elderly and senior patients significantly have

lower chance of having DM than the middle-aged patients, given that all other factors

are kept the same. Checking the model assumptions, we found no severe collinearity;

all variables had a variance inflation factor (VIF) values less than 1.5. Variables FBS,

SBP, TG, and BMI were all strongly linearly associated with the DM outcome on

the logit scale. With respect to standardized residuals, there were 9 outliers ranging

from 3.1 to 3.4. Since the number of potential influential observations was not large,

all patients were kept in the dataset.
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Variables Estimated Coefficient OR 95% CI for OR P Value

Intercept -11.816 – – < 0.0001

Age

Middle-Aged (40-64) (Reference) 1.000 – –

Elderly (85-90) -0.829 0.436 (0.31, 0.61) < 0.0001

Senior (65-84) -0.127 0.881 (0.78, 0.99) 0.036

Young (¡ 40) 0.238 1.269 (0.90, 1.79) 0.170

Male -0.250 0.779 (0.69, 0.88) < 0.0001

FBS 1.963 7.122 (6.45, 7.87) < 0.0001

BMI 0.023 1.024 (1.01, 1.03) < 0.0001

HDL -0.894 0.409 (0.34, 0.49) < 0.0001

TG 0.158 1.171 (1.09, 1.26) < 0.0001

sBP -0.001 0.999 (0.96, 1.00) 0.560

LDL -0.011 0.990 (0.93, 1.05) 0.740

OR = Odds Ratio. All values are rounded.

Table 5.2: Predictors associated with the Logistic Regression Model.

Figure 5.1 shows the Information Gain measure from the potential predictors.

Based on the information gain criterion which measures the amount of informa-

tion gained by each predictor, we also found that fasting blood glucose is the most

important predictor, followed by high-density lipoprotein, body mass index, and

triglycerides; then age, sex, blood pressure, and low-density lipoprotein (Figure 5.1).
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To compare the performance of the obtained Logistic Regression and GBM mod-

els with other machine-learning techniques, we used the same training dataset, test

dataset, and procedure on the Rpart and Random Forest techniques. The AROC

values from the models are presented in Table 5.3.

Model Area Under the ROC Curve, AROC

GBM 84.7%

Logistic Regression 84.0%

Random Forest 83.4%

Rpart 78.2%

All values are rounded to two decimal places.

Table 5.3: Comparing the AROC values with other machine-learning techniques.

The results in Table 5.3 show that the GBM model performs the best based on

highest AROC value, followed by the Logistic Regression model and the Random

Forest model. The Rpart model gives the lowest AROC value at 78.2%. Figure

5.2 illustrates the Receiver Operating Curves (ROC) curves of the Rpart, Random

Forest, Logistic Regression, and GBM models.

Our models can be implemented in practice. For the Logistic Regression model,

we outline an algorithm for estimating the risk of DM. sBP and LDL were excluded
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from this model as their contributions were not statistically significant.

Algorithm: Step 1: Calculate the estimated linear predictor, η. Step 2: Calculate

the risk of having DM risk = exp(η)/(1+exp(η)). Step 3: If the risk is 0.24 or more,

then the patient has a high chance of having DM.

Age from 40 to 64
Male η = −12.066 + 1.963FBS + 0.023BMI − 0.894HDL+ 0.158TG

Female η = −11.816 + 1.963FBS + 0.023BMI − 0.894HDL+ 0.158TG

Age from 65 to 84
Male η = −12.193 + 1.963FBS + 0.023BMI − 0.894HDL+ 0.158TG

Female η = −11.943 + 1.963FBS + 0.023BMI − 0.894HDL+ 0.158TG

Age from 85 to 90
Male η = −12.895 + 1.963FBS + 0.023BMI − 0.894HDL+ 0.158TG

Female η = −12.645 + 1.963FBS + 0.023BMI − 0.894HDL+ 0.158TG

Age from 18 to 39
Male η = −11.828 + 1.963FBS + 0.023BMI − 0.894HDL+ 0.158TG

Female η = −11.578 + 1.963FBS + 0.023BMI − 0.894HDL+ 0.158TG

All coefficients are kept to three decimal places.

Table 5.4: Calculation of η.

For the GBM model, it is more difficult to display the equations explicitly. How-

ever, it is feasible to set up an online real-time DM risk predictor program so that

a patients’ risk of developing DM can be reported when the patient’s predictor val-

ues are entered. The trained GBM model can be saved in the Predictive Model

Markup Language (PMML) format, which is an XML-based format, using the pack-
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age r2pmml in R. Thereafter, the model can be deployed to make predictions using

a Java platform (Scoruby and Goscore packages) or the Yellowfin platform.

To compare the performance of the four models, we conducted 10-fold cross val-

idation on the whole dataset with the following steps:

1. Divide data set into 10 parts. Use 9 parts as training data set and the last part

as the testing data set.

2. Train the four 4 models on the training data set.

3. Measure AROC for each model based on the testing data set

4. Repeat for all 10 folds.

Shuffle the whole data set and repeat the above procedure 2 more times.

Based on 30 values of AROC obtained for each model (with age is treated as a

continuous variable), we are able to estimate the mean of their AROC values.

Model Mean of AROC value

GBM 83.9%

Logistic Regression 83.5%

Random Forest 83.0%

Rpart 77.1%

All values are rounded to two decimal places.

Table 5.5: Mean of AROC for the four models from the cross-validation results.
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We also created a box plot to compare the AROC values of the four models.

Figure 5.3 presents a Box plot to compare the AROC values of the four models in

the cross-validation results. The box plot shows that the medians of AROC values

for GBM, Logistic Regression and Random Forest are quite close to each other and

they are all greater than that of the Rpart model.

Due to the independence and normality assumptions of the t-test, it may not be

safe to use the paired t-test for testing equality between the mean AROC values for

any two models based on the AROC values we obtained. Therefore, to estimate the

consistency of the predictive power for each model, we used the DeLong et al. (1988)

to find the standard deviation and the 95% confidence interval for the AROC value

of each model. We also used the DeLong method to compare the AROC values of

two correlated ROC curves. For each pair, we wanted to test the equality of AROCs

of two ROC curves and whether the AROC value of the first mode is significantly

greater than that of the second model. The DeLong method is a nonparametric

method that was implemented in pROC package in R Robin et al. (2011). The

obtained results are presented in Tables 5.6 and 5.7.

Table 5.6 presents the estimated AROC values, Standard Deviations, and 95%

Confidence Intervals of the AROC values for the four models using the DeLong

method. The standard deviations are small and the confidence intervals are not
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wide. This indicates that the values of AROC of the four models are consistent.

Model AROC value Standard deviation 95% CI

GBM 84.5% 0.97% (82.6%, 86.4%)

Logistic Regression 84.1% 1.01% (82.1%, 86.1%)

Random Forest 83.2% 1.05% (81.1%, 85.2%)

Rpart 78.1% 1.10% (76.0%, 80.3%)

All values are rounded to two decimal places.

Table 5.6: Mean of AROC for the four models from the cross-validation results.

Table 5.7 shows the paired one-sided DeLong test to compare the AROC values

of the four models.
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Test Name z-statistic p-value

GBM vs. Logistic Regression 1.392 0.081

GBM vs. Random Forest 3.885 5.13e-05

GBM vs. Rpart 8.914 2.20e-16

Logistic Regression vs. Random Forest 2.038 0.021

Logistic Regression vs. Rpart 8.006 5.95e-16

Random Forest vs. Rpart 7.028 1.05e-12

All values are rounded to two decimal places.

Table 5.7: Paired one-sided DeLong test to compare the AROC values of the four
models.

The results in Table 5.7 show that the AROC value of the GBM model is signifi-

cantly greater than that of Random Forest, and Rpart models (P < 0.001), but not

significantly greater than that of Logistic Regression model (P > 0.05). The Logistic

Regression model also has an AROC value greater than that of Random Forest and

of Rpart. The AROC of Random Forest model is significantly greater than that of

Rpart model, as well. We also noted that the comparison of the tests are statistically

significant but this relative performance may be restricted to the specific population

and data we are dealing with.

To see how our models work on a different data set, we used Pima Indians Dataset
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which is publicly available Patel, Ashish (2018). All patients in this data set are

females at least 21 years old of Pima Indian heritage. There are 768 observations

with 9 variables as followings: Pregnant, number of times pregnant; Glucose, plasma

glucose concentration (glucose tolerance test); BP, diastolic blood pressure (mm/Hg);

Thickness (triceps skin fold thickness (mm)); Insulin (2-Hour serum insulin (mu

U/ml); BMI (body mass index (weight in kg/(height in m) squared)); Pedigree

(diabetes pedigree function); Age (Age of the patients in years); Diabetes (binary

variable with 1 for Diabetes and 0 for No Diabetes). When working on this data

set, we noticed that there are many rows with missing data and the missing values

in Glucose, BP, Thickness, and BMI are labeled as 0. For example, about 48.7%

of Insulin values are missing. For purpose of validating our methods, we chose

not to impute the data but excluded all rows with missing values. There are 392

observations left in the working data set in which 130 patients with diabetes and

262 without diabetes. We applied our methods on this dataset to predict whether

or not a patient has diabetes. We also divided the PIMA data set into the training

data set 80% of the observations) and the testing data set 20% of the observations).

We trained the four models on the training data set and validate the models on the

testing data set. On the testing data set, we obtained the AROC of 84.7% for GBM

model, 88.0% for Logistic Regression Model, 87.1% for Random Forest Model, and
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77.0% for Rpart model.

We also conducted 10-fold cross-validation and repeated the procedure for two

more times. Table 5.8 presents the results based on the 30 AROC values from the

cross-validation results conducted on the PIMA Indian data set.

Model Mean of AROC value

GBM 85.1%

Logistic Regression 84.6%

Random Forest 85.5%

Rpart 80.5%

All values are rounded to two decimal
places.

Table 5.8: Comparing the AROC values of the four models using PIMA Indian data
set.

The results we obtained for this data set are quite consistent with what we ob-

served in our main data set. Based on these results, GBM, Logistic Regression, and

Random Forest are comparable and they all give higher mean AROC than that of

the Rpart model on the testing data set. We also created a box plot to compare the

sampling distributions of the AROC values for the four models. Figure 5.4 shows a

Box plot of AROC values for the Rpart, Random Forest, Logistic Regression, and
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GBM models applied to PIMA Indian data set. The box plot shows that the vari-

ability in the AROC values of GBM, Logistic Regression, and Random Forest are

quite the same and less than that of the Rpart model.

5.5 Discussion

In this research study, we used the Logistic Regression and GBM machine learn-

ing techniques to build a model to predict the probability that a patient develops DM

based on their personal information and recent laboratory results. We also compared

these models to other machine learning models to see that the Logistic Regression

and GBM models perform best and give highest AROC values. During the analysis,

we also used the class weight method for our imbalanced dataset. We first tuned the

class weight for the DM class to find the optimal class weight that minimized the av-

erage classification cost. We found that the optimal class weight for the GBM model

is 3 and the optimal class weight for the Logistic Regression is 3.5. These optimal

class weights are then incorporated into the model during the training process. We

obtained similar results for GBM, Logistic Regression, and Random Forest model.

However, the Decision Tree Rpart model gives a higher AROC at 81.8% compared

to 78.2% when the threshold adjustment method was used. We also applied a nat-

ural logarithmic transformation on the continuous variables, however, this did not
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improve AROC and sensitivity. Compared to the simple clinical model presented

by Wilson et al. (2007), the AROC value from our GBM model was very similar.

The AROC value of our Logistic Regression model was lower, given the fact that

the parental history of the disease was not available in our sample data. We also

note that the characteristics of the sample data used in this study were not the same

as the ones used by Wilson et al. (2007). For example, the age of the patients in

our dataset ranges from 18 to 90, while the patients studied by Wilson et al. (2007)

ranges from 45 to 64. Schmid et al. (2011) conducted a study on Swiss patients

to compare different score systems used to estimate the risk of developing type 2

diabetes such as the 9-year risk score from Balkau et al. (2008), the Finnish Diabetes

Risk Score (FINDRISC) Lindström and Tuomilehto (2003), the prevalent undiag-

nosed diabetes risk score from Griffin et al. (2000), 10-year-risk scores from Kahn

et al. (2009), 8-year risk score from Wilson et al. (2007), and the risk score from the

Swiss Diabetes Association. Their results indicated that the risk for developing type

2 diabetes varies considerably among the scoring systems studied. They also recom-

mended that different risk-scoring systems should be validated for each population

considered to adequately prevent type 2 diabetes. These scoring systems all include

the parental history of diabetes factor and the AROC values reported in these scoring

systems range from 71% to 86%. Mashayekhi et al. (2015) had previously applied
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Wilson’s simple clinical model to the Canadian population. Comparing our results

to the results reported by Mashayekhi et al. (2015), the AROC values suggest that

our GBM and Logistic Regression models perform better with respect to predictive

ability. Using the same continuous predictors from the simple clinical model with

the exception of parental history of diabetes, we also obtained an AROC of 83.8%

for the Logistic Regression model on the test dataset.

5.6 Conclusion

The main contribution of our research study was proposing two predictive models

using machine-learning techniques, Gradient Boosting Machine and Logistic Regres-

sion, in order to identify patients with high risk of developing DM. We applied both

the classical statistical model and modern learning-machine techniques to our sample

dataset. We dealt with the issue of imbalanced data using the adjusted-threshold

method and class weight method. The ability to detect patients with DM using

our models is high with fair sensitivity. These predictive models are developed and

validated on Canadian population reflecting the risk patterns of DM among Cana-

dian patients. These models can be set up in a computer program online to help

physicians in assessing Canadian patients’ risk of developing Diabetes Mellitus.

Abbreviations: DM (Diabetes Mellitus), BMI (Body Mass Index), TG (Triglyc-
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erides), FBS (Fasting Blood Sugar), sBP (systolic Blood Pressure), HDL (High Den-

sity Lipoprotein), LDL (Low Density Lipoprotein), AROC (Area under the Receiver

Operating Characteristics curve), GBM (Gradient Boosting Machine).
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5.7 Figures
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Figure 5.1: Information Gain measure from the potential predictors
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Figure 5.3: Box plot to compare the AROC values of the four models in the cross-
validation results.
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Figure 5.4: Box plot of AROC values for the Rpart, Random Forest, Logistic Re-
gression, and GBM models applied to PIMA Indian data set
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Our second project was published in the BMC Indocrine Disorder journal in 2019.

(Lai et al. (2019))
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6 Conclusions and Future Work

In this chapter, we summarize the conclusions and contributions of this disserta-

tion and discuss potential future work.

6.1 Conclusions

In this dissertation, we have introduced a modified BIC for linear mixed mod-

els that can directly deal with the boundary issue of variance components. First,

we focused on selecting random effects variance components and proposed a model

selection criterion when the random effects are assumed to be independent (the co-

variance matrix of random effects is a diagonal matrix). Second, we proposed a

criterion for choosing random effects variance components when the random effects

are assumed to be correlated. Instead of working with a complex tangent cone to

the alternative parameter space, we approximated the tangent cone using a bigger

but simpler cone. This allowed us to obtain the weights of the chi-bar square dis-
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tribution. Lastly, we presented a model selection criterion for choosing both fixed

effects and random effects simultaneously in both cases: when random effects are

assumed to be independent and when they are correlated. We have also proven the

consistency of the modified BIC.

Based on the simulation studies, the modified BIC performs quite well in terms of

the correction rate. The ability to select the data-generating model of the modified

BIC is better when the size of random effects variance component or the size of

correlation component is bigger. Compared to the regular BIC, the modified BIC

gives higher correction rates, especially, when the variances of random effects are

small. Based on the correction rate, the modified BIC and performs better than the

regular BIC in most cases.

Furthermore, we also present predictive models using Gradient Boosting Machine

and Logistic Regression techniques to predict the probability of patients having Di-

abetes Mellitus based on their demographic information and laboratory results from

their visits to medical facilities. The ability of our models to predict patients with

Diabetes is high with satisfactory sensitivity.

One limitation of the modified BIC is that when choosing the optimal model, the

proposed method looks at all possible models. Since the number of possible models

increases exponentially as the number of fixed effects and random effects increases,
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the model selection process may be increasingly computationally intensive.

6.2 Future Work

There are some potential future directions that we can consider. The first direc-

tion is to extend the modified BIC to the case when the covariance matrix of the

random error ϵ is a general covariance matrix, R. In this work we assume that the

vector of random errors ϵi follows a multivariate normal distribution, N(0, σ2
ϵIni

),

where Ini
denotes the ni × ni identity matrix.

We can also investigate how the performance of the proposed BIC is affected if

the model is misspecified. For example, the normal distribution of random effects

does not hold.

We also look at the case if the first term in the proposed BIC can be replaced by

some other model fitting measurements just as quasi-likelihood.

”Missingness” is also common in clustered data and longitudinal data. We can

investigate how missingness affects the performance of the proposed BIC.

The second direction is to extend the modified BIC for model selection on gen-

eralized linear mixed models or non-linear mixed models. This future direction is

feasible because the theoretical results obtained in Baey et al. (2019) paper are for

non-linear mixed models as well.
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And the final direction is to extend the modified BIC to the case when the number

of random effects, qn, becomes very large. That is, qn → ∞ as n → ∞. How can

we handle the case when the number of variances of random effects is large. Since

the number of candidate model increases exponentially with the number of model

parameters, it may be not possible to compare all possible models. Also, when the

number of variances of random effects is large, the size of the covariance matrix will

be large and this may cause a computational issue. However, we may combine the

proposed BIC with some selection procedure such as shrinkage methods or fence

methods as introduced in Müller et al. (2013). We can first use a fence method to

reduce the number of candidate models. Then we can use the proposed BIC method

to do model selection.
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7 Appendix

7.0.1 Some definitions

Definition 1 Definition of an approximating cone (Chernoff, 1954). Let Θ ⊆ Rp

and θ0 ∈ Θ. The set Θ is said to be approximated by a cone A at θ0 if d(y, A) =

o(||y − θ0||), for all y ∈ Θ, and d(x,Θ) = o(||x − θ||), for all x ∈ A where

d(x,Ω) = infy∈Ω ||x − y||, which is the distance between point x and its projection

onto any space Ω. In this case A is called the approximating cone of Θ at θ0 and Θ

is said to be Chernoff-regular at θ0.

Definition 2 Definition of a tangent cone (Silvapulle and Sen, 2005). A tangent

cone TA(θ0) of a set Θ at a point θ0 in Θ is the set of limits of sequences t−1
n (θn−θ0),

where tn are positive real numbers, tn → 0 and θn in Θ converge to θ0.

Definition 3 Definition of chi-bar square distribution Silvapulle and Sen (2005).

Let C ⊂ Rm be a closed convex cone and let Z ∼ Nm(0,V ), where V is a positive

definite matrix. χ̄2(V , C) is a random variable which has the same distribution as
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[
ZTV −1Z −minθ∈C(Z − θ)TV −1(Z − θ)

]
. So, we write

χ̄2(V , C) = ZTV −1Z −min
θ∈C

(Z − θ)TV −1(Z − θ)

where wi (m,V , C) , i = 0, . . . ,m, are some non-negative numbers and
∑m

i=0wi (m,V , C) =

1.

Definition 4 Results from Baey et al. (2019).

1. Denote by D the covariance matrix of the vector of random effects in model

(1.1). Let r ∈ {1, . . . , p}. We consider general test hypotheses of the following

form, to test the nullity of r variances and of the corresponding covariances in

matrix D:

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ, (7.1)

where Θ0 ⊂ Θ ⊂ Rm. Up to permutations of rows and columns of the co-

variance matrix D, we can assume that we are testing the nullity of the last

r variances. We write D in blocks as follows: D =
[

D11 D12

D12
T D22

]
with D11 a

(q − r) × (q − r) matrix, D12 a (q − r) × r matrix, and D22 a r × r matrix;

and where AT denotes the transposition of matrix A, for any matrix A.

The spaces associated to the null and alternative hypotheses are then:

Θ0 = {θ ∈ Rm/β ∈ Rp;D11 ∈ Sq−r
+ ;D12 = 0,D22 = 0, σ2

ϵ ≥ 0}

Θ = {θ ∈ Rm/β ∈ Rp;D ∈ Sq
+, σ

2
ϵ ≥ 0},
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where Sq−r
+ is the set of symmetric positive semi-definite matrices of size (q −

r)× (q − r).

2. Let us denote by y the joint vector of a N-sample (y1, . . . ,yN) and LN(θ;y)

the joint likelihood. We then define the likelihood ratio test statistics by:

λN = −2

(
sup
θ∈Θ0

lN(θ;y)− sup
θ∈Θ

lN(θ;y)

)
,

3. Let θ∗ be the true value of the parameter and ν(θ) be some positive definite

matrix such that N− 1
2 l

′
N(θ)

d−→ Nm(0,ν(θ)) and N−1{−l
′′
N(θ)}

a.s.−−→ ν(θ).

7.0.1.1 Baey, Cournède, and Kuhn (2019)’s assumptions

(B1). The function LN(θ;y), the joint likelihood of a N-sample (y1, . . . ,yN), is in-

jective in θ. That is, the model is identifiable.

(B2). The first three derivatives of the log-likelihood function with respect to θ exist

and are bounded by a function whose expectation exists. Denote the first

derivatives of lN(θ;y) with respected to θ by l
′
N(θ) and denote the second

derivatives of lN(θ;y) with respected to θ by l
′′
N(θ).

(B3). For all θ, there exists some positive definite matrix ν(θ) such thatN− 1
2 l

′
N(θ)

d−→

N(0,ν(θ)) andN−1{−l
′′
N(θ)}

a.s.−−→ ν(θ); and ν(θ) is a continuous function with

respect to θ.
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(B4). Denote by θ∗ the true value of the parameters. The value θ∗ is in Θ0 and is of

the form θ∗ = (β∗T ,D∗, σ2∗
ϵ )T with D∗ =

[
D∗

1 0
0 0

]
where D∗

1 is positive definite

and σ2∗
ϵ is positive.

(B5). The maximum likelihood estimates on Θ0 and Θ are consistent.

Theorem 7.1 (modified from Theorem 2 in Baey, Cournède, and Kuhn (2019)).

Assume that conditions (B1) to (B5) (from 7.0.1.1) are fulfilled. Consider the test

defined in (7.1). Then:

λN −→
N→∞

χ̄2(ν(θ∗)−1, T (Θ,θ∗) ∩ T (Θ0,θ
∗)⊥),

where T (Θ0,θ) is the tangent cone to Θ at θ, and S⊥ is the orthogonal complement

of S, for any subset S of Rm.

Proposition 7.1 (modified from Proposition 1 in Baey, Cournède, and Kuhn (2019)).

(i) Assume that Θ = {θ ∈ Rm | β ∈ Rp,D ∈ Sq
+,D diagonal, σ2

ϵ ∈ R+}. Then,

T (Θ,θ∗) ∩ T (Θ0,θ
∗)⊥ = {0}p × {0}q−r × Rr

+ × {0}.

(ii) Assume that Θ = {θ ∈ Rm | β ∈ Rp,D ∈ Sq
+,D full, σ2

ϵ ∈ R+}. Then,

T (Θ,θ∗) ∩ T (Θ0,θ
∗)⊥ = {0}p × {0}(q−r)(q−r+1)/2 × Rr(q−r) × Sr

+ × {0}.

Corollary 7.1 (modified from Corollary 1 in Baey, Cournède, and Kuhn (2019)).
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(i) Assume that Θ = {θ ∈ Rm | β ∈ Rp,D ∈ Sq
+,D diagonal, σ2

ϵ ∈ R+}. Then

the distribution of the random variable χ̄2(ν(θ∗)−1, T (Θ,θ∗)∩ T (Θ,θ∗)⊥) is a

mixture of (r + 1) chi-square distributions with degrees of freedom between 0

and r.

(ii) Assume that Θ = {θ ∈ Rm | β ∈ Rp,D ∈ Sq
+,D full, σ2

ϵ ∈ R+}. Then

the distribution of the random variable χ̄2(ν(θ∗)−1, T (Θ,θ∗) ∩ T (Θ,θ∗)T ) is

a mixture of (r(r + 1)/2 + 1) chi-square distributions with degrees of freedom

between r(q − r) and r(q − r) + r(r + 1)/2.

Corollary 7.2 (Shapiro, 1985, 1988). Let V be a positive-definite matrix and C a

closed convex cone of Rm. The polar cone of cone C is denoted by C0 and C0 = {x ∈

Rm | xTy ≤ 0, ∀ y ∈ C}. Some properties for the weights of the chi-bar-square

distribution χ̄2(V, C).

1. For 0 ≤ i ≤ m, wi(m,V,C) = wm−i(m,V, C0),

2. If C is included in a linear space of dimension (m − k), for 1 ≤ k ≤ m, then

the first k weights {wi(m,V, C0), i = 0, ..., k − 1} are zero,

3. If C contains a linear space of dimension l, for 1 ≤ l ≤ m, then the last l

weights {wi(m,V, C0), i = m− l + 1, ...,m} are zero.
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