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Abstract—With the advent of the advanced metering infras-
tructure, electricity usage data is being continuously generated at
large volumes by smart meters vastly deployed across the modern
power grid. Electric power utility companies and third party
entities such as smart home management solution providers gain
significant insights into these datasets via machine learning (ML)
models. These are then utilized to perform active/passive power
demand management that fosters economical and sustainable
electricity usage. Although ML models are powerful, these remain
vulnerable to adversarial attacks. A novel stealthy black-box
attack construction model is proposed that targets deep learning
models utilized to perform non-intrusive load monitoring based
on smart meter data. These attacks are practical as there
is no assumption of the knowledge of training data, internal
parameters, and architecture of the targeted ML model. The
profound impact of the proposed stealthy attack constructions on
energy analytics and decision-making processes is shown through
comprehensive theoretical, practical, and comparative analysis.
This work sheds light on vulnerabilities of ML models in the
smart grid context and provides valuable insights for securely
accommodating increasing prevalence of artificial intelligence in
the modern power grid.

I. INTRODUCTION

Today’s electric grid is experiencing a major paradigm
shift due to the information deluge induced by the prolif-
eration of advanced monitoring and control devices. Grid
measurements are generated continuously and in abundance
by a large number of sensors (e.g. smart meters and phasor
measurement units) deployed across the power grid. In order
to capitalize on the insights contained in these datasets, data-
driven approaches that leverage on machine learning (ML)
constructs are becoming widely utilized by grid operators to
perform analytics, predictions, and actuation.

This paper introduces a novel stealthy black-box attack con-
struction that targets a ML model that performs non-intrusive
load monitoring (NILM) on smart meter measurements. A
smart meter reports the aggregate power consumption over
an interval (e.g. minutely, hourly, etc.) of a dwelling. NILM
disaggregates these readings into specific appliances that were
active in the dwelling over the period under consideration
without requiring the installation of sensors for individual
appliances to detect the statuses of these devices. NILM
offers tremendous insights into the power usage patterns of
consumers and allows for the automation in energy appli-
cations that include home energy management systems and
demand response programs that aim to increase economical

J. Wang is with the Department of Electrical and Computer Engineering,
Western University, ON, Canada. P. Srikantha is with the Department of
Electrical Engineering and Computer Science, York University, Toronto, ON,
Canada.; E-mails: jwan577 @uwo.ca and psrikan@yorku.ca.

and sustainable power usage [1]-[4]. NILM also allows for the
detection of fraudulent activities such as illegal operations (e.g.
marijuana growing) and electricity theft. NILM systems are
typically implemented via ML models and these offer tremen-
dous potential for enabling elevated situational awareness and
timely incidence response in the power grid. However, these
are also associated with vulnerabilities that can be exploited by
adversaries to induce debilitating effects on power consumers
and grid operations [5].

The ML-based NILM model considered in this paper takes
in as input the power consumption of a household over an
one-hour period (available through smart meter measurements)
and operates on it to identify or compute the probabilities of
specific appliances that have been active at the last minute
of the input period. The proposed attack construction is
not limited to the specific application of NILM and can be
applied to any deep learning based ML model that takes
in as input smart meter data and outputs discrete labels or
class probabilities. The attack is constructed for the black-
box scenario where the attacker does not rely on any in-
ternal knowledge of the ML model (e.g., parameters and/or
architecture of the ML model) to craft the attack. This is a
more generalized scenario as this eliminates the assumption
that detailed knowledge of the attacked model is available.
This is a practical adversarial attack pertinent to common
smart grid applications (e.g., demand response, smart home
energy management systems, etc.) that utilize deep learning
based ML constructs for information processing and actuation.
Moreover, the proposed attack construction is stealthy as it
is designed to craft adversarial perturbations that can lead
to the misclassification of targeted ML models without being
detected by anomaly detection and error checking mechanisms
deployed to identify malicious smart meter datasets.

There are two main phases involved in the proposed attack
construction process: 1) Substitute model training that attempts
to mimic the original ML model; and 2) Crafting perturbations
to inputs using the substitute model that pass error checking
mechanisms but result in erroneous outputs by the original ML
model. As the attacker does not have access to the internal
model parameters, he/she will strategically design a finite
number of queries to the original ML model to construct the
substitute model. As only a finite number of queries will be
made to avoid attack detection, these must be augmented in
a manner that allows the efficient recovery of the decision
boundaries in the original ML model. Once the substitute
model is trained, it is utilized to design minimal perturbations
to real inputs to stealthily fool the targeted ML model.

Thus, the contributions of this paper are five-fold: 1) The
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inputs of ML models targeted by the proposed black-box
attack are smart meter readings, and outputs of these ML
models are either discrete labels or probabilities which allows
the proposed attack mechanism to target a wide range of ML
models deployed in the smart grid context; 2) For the training
of the substitute model, the proposed novel algorithm for aug-
menting the training dataset using a momentum-based method
is more effective in identifying decision boundaries than the
traditional Jacobian-based method proposed in [6]; 3) This
work presents insights into the cost function selection, model
selection and transferability for emulating the targeted model
by the proposed black-box attack; 4) Adversarial perturbations
to smart meter data are designed using the trained substitute
model so that these are stealthy and successfully result in
rendering incorrect outputs from the targeted ML model via
a novel projected gradient based technique that incorporates
confidence margins; and 5) The experiment section performs
comprehensive comparisons with existing work (e.g. [6] and
[7]) where the performance of the proposed attack construction
for smart meter datasets is demonstrated.

The remainder of this paper is organized as follows. In
Section II, a literature survey is presented that provides an
exposition pertaining to existing work in the area of stealthy
attack construction for deep learning models. Then in Section
III, the methodology utilized in this paper is presented where
details on the threat model and proposed attack strategy are
described in detail. In Section IV, comprehensive results that
demonstrate the efficacy of the proposal on different datasets
along with comparisons to state-of-the-art are presented. Fi-
nally, the paper is concluded in Section V by discussing key
insights from this work and future extensions.

II. RELATED WORK

The notion of adversarial examples in the context of ML
was initially identified in [8] where discontinuities in input-
output mappings of image classification ML models were
exploited to construct imperceptible perturbations to input
data that will lead to misclassifications by the targeted ML
model. Following this, a wide body of literature that includes
[9]-[11] focussed on white-box ML attack constructions. The
main assumption made by these white-box attack constructions
is that the full knowledge of the targeted ML model is
available to adversaries. Various techniques utilized for attack
constructions include: iterative local linearization of the ML
model to craft effective input perturbations [9]; construction of
a saliency map using the Jacobian of the targeted ML model to
perturb the most sensitive input components (e.g. [10] [11]).
A more practical mode of attack is the black-box attack where
internal parameters or architectures of the ML models being
attacked are not known. As such, in [6], the authors attempted
to convert the black-box problem into a white-box problem
by training a substitute model that mimics the original ML
model using a Jacobian data augmentation algorithm. Then,
this is utilized to construct adversarial perturbations via the fast
gradient sign method (FGSM). A vast majority of literature
on black-box attacks focuses on the application of image
classification and few studies in the smart grid context exist.

http://dx.doi.org/10.1109/TSG.2021.3062722

As such, there are several recent proposals in the literature
focusing on adversarial distortion of power signals generated
in the smart grid [7], [12]-[14]. Niazazari and Livani [14]
directly apply the technique proposed in [6] for attacking
power event diagnostics ML models. Zhou et al. [7] propose
white-box attacks on regression ML models designed for
power grid load prediction which is a modified version of
[6]. S. Ali, et al. [12] targets the power state estimation
system by applying two existing adversarial example crafting
algorithms. Y. Chen, et al [13] adopts local gradient estima-
tion for both maximizing and minimizing load forecasting
results by only tampering with weather features. The attack
construction proposed in this paper fundamentally differs from
existing work as it designs black-box adversarial perturbations
targeting ML models operating on smart meter data. There
exist fundamental differences in the properties of input datasets
(e.g. images versus real power readings), outputs from the
ML model under attack (e.g. classification versus regression)
and the attack model (e.g. black-box versus white-box) which
entail novel techniques for the crafting of successful stealthy
attacks on the targeted ML model. The proposal is divided into
two parts. The first part proposes a novel data augmentation
technique to train an effective substitute model that adequately
mimics the targeted ML model using finite number of queries.
In the second part, a projected gradient approach is proposed
that allows for the construction of adversarial perturbations
that are both effective and stealthy. These are discussed in
detail in the remainder of this paper.

III. METHODOLOGY

In this section, the threat model is first presented which
highlights the system settings, assumptions and targeted ML
model utilized in the construction of the proposed stealthy
attack construction. Then, the proposed attack construction
algorithm is detailed where specifics on the attack strategy
and various elements of the black-box attack are described.

A. The Threat Model

In order to execute an adversarial attack, it is necessary to
exploit an existing vulnerability in the system under consid-
eration. A vulnerability is a system flaw that can be accessed
and exploited via external entities [15].

In the system settings under consideration, aggregate power
consumption by each consumer entity is recorded by smart
meters and sent to the electric power utility companies (EPUs).
EPUs then store this measurement data locally or in cloud
locations. In the literature, assumptions that include the con-
trolling single or a set of devices (e.g., smart meters) to tamper
reading data [7] [16], compromising the communication infras-
tructure [17] [18], and directly infiltrating into the control/data
centres of EPUs to modify locally stored data [19] [20] are
commonly made. Attackers can launch proposed adversarial
construction by exploiting any one of the assumptions of
vulnerabilities. Thus, this paper aims to strategically craft
perturbations that will be applied to smart meter readings
via these access mechanisms to exploit vulnerabilities in ML
models. These perturbations will bypass existing checks that
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are utilized by EPUs to ensure the integrity of the smart meter
data (e.g. data filters, and pre-processing).
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Fig. 1: The threat model.

Adversarial Perturbations

This threat model is illustrated in Fig. 1 where the flow
of smart meter measurements from the source (e.g., con-
sumer home) to the EPU and various points of attacks are
illustrated. The adversary will be a remote individual who
is able to exploit vulnerabilities in communication protocols
and software systems. NILM is typically employed to process
smart meter data for making informed decisions. Adversaries
will act to cause misinformation from NILM that will lead
to erroneous decision-making in the power system. Three
different modes of impacts of the proposed attack are outlined
in the following. First is the adverse impact on demand
response programs. NILM is used to measure the flexibility
of consumers participating in demand response programs [2].
EPUs transmit demand side management signals to customers
and remotely control flexible appliances identified by NILM
[2]-[4]. Goals of demand response programs include the
reduction of peak demands in the system via load shedding and
appliance rescheduling. Misleading information regarding the
active statuses of appliances will drive EPUs to misestimate
the load flexibility in the grid and miscalculate control signals
that can drive imbalance in demand and supply and contribute
to the overloading of the distribution networks that can eventu-
ally result in cascading outages. The second mode of impact
is related to HEMS that use NILM to schedule appliances’
usage in residential buildings for reducing energy consumption
[21] during peak periods. The proposed attack can lead HEMS
systems to operate inefficiently. The third mode of impact is
related to surveillance programs that use NILM to aid with
identifying fraudulent activities (e.g. detect energy theft [22]
and indoor marijuana growing operations [23]).

Due to the growing trend of ML being provisioned as a
service in cloud computing, EPUs are empowered to train
their ML models on the cloud and make them available in
public hosts such as Google Al platform [24] without exposing
original training data, internal parameters, and architecture
(black-box model). A limited number of input-output queries
to these ML models can be made by the general public.
These queries are utilized by the adversary to train a local
substitute model. This substitute model is then used to craft
stealthy perturbations to smart meter readings. The adversary
then applies these perturbations to smart meter measurements
which are either in transit from the original source or stored in
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a cloud location by capitalizing on existing vulnerabilities in
software and communication protocols. In practice, EPUs de-
ploy error checking mechanisms to detect anomalies in smart
meter readings. These involve the measuring of distances be-
tween actual readings and historical data distribution. Machine
learning constructs such as regression [25] [26], clustering [27]
[28], and generative [29] [30] based techniques are utilized
to design these anomaly detection mechanisms. One-class
SVM [31] and Autoencoder Forest [32] are real-world use
cases deployed in Europe and Asia which are clustering-based
and generative-based algorithms respectively. These utilize
distance based measures to flag anomalous entries. These are
associated with a threshold that distinguishes tampered data
from legitimate data. Fraudulent activities such as power theft
and meter tampering entail high thresholds that detect spikes
or significant drops in the readings. For example, Liu and
Nielsen [25] proposed a prediction-based anomaly detection
framework to measure the distance between the prediction data
and observed data. These techniques will be able to detect
unusual outliers in the smart meter readings. There are still
large margins between predicted data and the set thresholds
even when the confidence parameter is set to be 95%. With
our proposal, the crafted perturbation is designed to have
minimal perturbations and fall within a specific deviation ratio
across all dimensions of the data. This prevents the tampered
data points from being flagged as outliers and the underlying
patterns in the data will not be modified. Thus, existing error
checking mechanisms deployed by EPUs will not be effective
in flagging the perturbations generated by our attack strategy.

This threat is a practical reality and is illustrated via the
following example. Consider the mobile application called
Trickl that is released by London Hydro which is an EPU
company in Ontario [33]. This application supports NILM
in the pre-production phase and allows new queries to be
executed every minute to infer the active status of appliances
in a consumer’s household. As such, an attacker can execute
one query every minute and be well within the minimum query
allocation for each minute. Even if 2000 queries are required
to train the substitute model that approximates the targeted
ML model, these queries can be easily executed over a period
of 33 hours. This approximated model will then be utilized to
craft stealthy adversarial perturbations.

1) Vulnerability, Access and Exploitation: The specific vul-
nerability considered in this paper is the inherent ambiguity
between decision boundaries of ML models and the true
decision boundary as illustrated in Fig. 2. Supervised ML
models are trained using a finite number of training examples
which are manually collected by domain experts to represent
the “ground truth”. Thus, generalization errors and feature
selection problems reflect the inability of perfectly capturing
the actual decision boundaries of the ground truth by the ML
model being trained. These issues introduce “blindspots” or
ambiguities that we capitalize on for the attack construction
presented in this paper [34]. Fig. 2 conceptually illustrates this
phenomena where for the same dataset, the ML model and the
ground truth results in different outputs (i.e., regions lying in
the non-overlapping areas). In these regions, adversaries can
strategically modify target points so that these geometrically
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Fig. 2: Ambiguity in decision boundaries.

travel across a decision boundary and enters a ’blind zone’.
These perturbations will be difficult to detect by the operator
or error checking mechanisms while rendering the output to
be different from ground truth. For instance, consider points
a and b which are perturbed to be o’ and b'. These adversarial
perturbations will result in misclassification by the targeted
ML model. Thus, in this paper, we treat the output from the
targeted ML model when unperturbed/legitimate input data
is passed to be the ground truth. In the specific application
of NILM, strategic perturbations applied to the smart meter
inputs can result in the corresponding ML model reporting
appliances that were not active as active and vice versa. This
can impose significant ramifications in smart grid applications
such as billing, demand response and analytics.

2) Assumptions: This paper adopts the black-box attack
model which is a more practical attack paradigm than the
white-box paradigm. As such, ML models are typically trained
internally by solution providers and public access to the inputs
and corresponding outputs are made available to third-party
entities that can access these models for various smart grid ap-
plications [35]. This public querying access is typically made
available via cloud systems or application program interfaces
(API) [35]. HTTP request-response protocol is one typical
method by which queries can be executed [36]. For example,
consider an ML model residing in the Google Al platform. For
sending a query to this model by the general public, an HTTP
request will be constructed where the credentials, ML model
information, and a JSON format query payload consisting of
the input to the ML model are included. Then, the ML model
will return an HTTP response which will include the JSON
format payload containing the prediction output corresponding
to the input query. The internal components of the ML models
along with the original training dataset are hidden from the
public.

This implies that an adversary can pose as a third-party
entity and query the targeted ML model (i.e. obtain the output
for a specific input). The targeted ML model will be referred
to as the Oracle in the remainder of this paper. Limited queries
are made by the attacker to construct a substitute model that
adequately imitates the Oracle. Training a substitute model
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transforms the attack construction from a black-box problem
to white-box problem. Internal parameters of this substitute
model are then utilized to construct stealthy perturbations that
are applied to valid smart meter data to fool the Oracle.
Next, in order to apply the perturbations to smart meter
data, an assumption is made that mechanisms for exploiting
existing cyber-security flaws are available and this assumption
is commonly made in smart grid security literature [37],
[38]. Thus, this paper focused on the adversarial crafting of
stealthy perturbations to smart meter data that successfully
fool the Oracle. The perturbations are applied to smart meter
measurements collected over an interval of 60 minutes when
either in transit or in storage. The specific smart meter mea-
surements attacked depends on the end goal of the adversary.
For instance, if the sole purpose of the attack is to cause
erroneous outputs from the Oracle, then the attacker will aim
to perturb as many legitimate measurements possible. This
work also makes no assumptions regarding the complexity of
the targeted ML model. In fact, the NILM model considered
for illustration purposes is based on a deep learning model.
3) Targeted ML Model for NILM: Next, the specific Oracle
considered in this paper is presented. Although the proposed
algorithm is applicable in the general smart grid context,
this paper focuses on the NILM problem for demonstration
purposes. In the literature, ML has been leveraged to perform
NILM, and Wang et al. [1], Lan et al. [39], Mauch and Yang
[40] are examples of some recent work in this area. This paper
focuses on [1] for the Oracle. This NILM system is a deep
learning based model which cannot be replicated easily when
the parameters are unknown and thus allows us to showcase
the efficacy of the proposed attack mechanism. Although this
NILM model can be designed to be more efficient (i.e. output
representation, etc.), improving it is not in the scope of this
work and will be investigated in future work. This ML model
takes in an interval (i.e. one hour) of minutely smart meter
reading obtained for a household. Two different types of
outputs are supported: one indicates the operational statuses
of appliances (discrete) and the second is the probabilities. As
a black-box approach is adopted, the only set of information an
adversary will have of the Oracle is the dimension of the input
Z and the type of output . Thus, the model can be defined as
a mapping f : £ — y where & is the smart meter time-series
reading and the output y is either discrete or probabilistic.

B. Stage 1: Substitute Model Construction

Here, the first stage of the attack construction is presented
which is the construction of the substitute model (i.e. the
approximation of the Oracle model). Considering a black-
box attack construction, the internal details of the Oracle are
unavailable to the adversary. In order to overcome this issue,
a substitute model is constructed by the adversary to imitate
the Oracle. When the substitute model closely represents the
Oracle, the original black-box problem is transformed into a
white-box problem. In this case, the internal parameters of the
substitute model can be readily utilized by the adversary to
fine-tune perturbations applied to legitimate smart meter read-
ings that stealthily evade traditional validation mechanisms
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and successfully fool the Oracle. However, the design and
training of the substitute model is not a trivial task as the
amount of information available to the adversary about the
Oracle is scarce. The only access an adversary has to the
Oracle will be a limited number of queries. These queries
are limited as the adversary will prefer not to draw attention
to him/her via a large number of queries. Thus, these queries
must be carefully crafted to obtain useful insights regarding
the decision boundaries of the targeted ML model which can
then be utilized to construct a representative substitute model.

1) Substitute Model Selection: First, the architecture of the
substitute model constructed by the adversary is presented. As
highlighted in recent literature, various internal architectures
that include convolutional neural networks [39] [41] [42],
recurrent neural networks [40] [43] [44], and auto-encoders
[45] have been leveraged to construct ML models for NILM
applications. One important objective is that the substitute
model must be able to imitate any Oracle operating on
smart meter data. To achieve this, the universal approximation
theorem (UAE) is evoked which states that a feed-forward
neural network (FFNN) will be able to approximate any
smooth decision boundary given that a sufficient number of
layers and nodes are incorporated into the network [46]. Thus,
the internal architecture of the substitute model is selected
to be FFNN. The output of the substitute model, ¥, is the
probability of each appliance being active over the last minute
of the interval under consideration and thus is continuous.
As the output layer of the substitute model is selected to
be the softmax function, y will range between 0 and 1 (i.e.
9 € (0,1)). Due to the continuous nature of the output, the
adversary can utilize gradient-based approaches for computing
the adversarial perturbations as discussed later in this paper.

Although the UAE justifies the use of FFNN, it does not
provide any insights on the learnability of the substitute model
[46]. Thus, the perturbations computed using the substitute
model may result in fooling the substitute model but not the
Oracle. When a perturbation results in successfully fooling
both the substitute model and the Oracle, it is referred to
as a transferable attack construction. The more similar the
substitute model is to the Oracle, the greater will be the trans-
ferability of the attack construction. However, since the attack
is a black-box construction, the similarity between the substi-
tute and original models cannot be verified by the adversary.
This paper draws upon the insights provided by [47] which
demonstrates that the attack transferability depends on the
complexity of the substitute model. The lower the complexity
of the substitute model, the greater the transferability will be.
This is illustrated in Fig. 3 where Fig. 3a illustrates the targeted
ML model and its decision boundary. Fig. 3b illustrates the
decision boundary computed by a more complex substitute
model and Fig. 3c represents a less complex substitute model.
It is clear from this example that the more complex model
is composed of local optima where data points will not be
transferable to the original model and this is not the case with
the simpler model.

Next, the cost functions utilized by the adversary to tune
the weight parameters in the substitute model are presented.
The substitute model is an approximation of the Oracle by the
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Fig. 3: Transferability based on model complexity.

adversary as the internal parameters, architecture and training
construction of this model are not made available to the public.
Thus, a generalized approach is necessary for the proposed
attack mechanism to successfully approximate a wide variety
of ML models that operate on smart meter data. As such, in
the training of the substitute model, the loss function should
be selected so that penalty is imposed for the output of the
substitute model deviating from that of the Oracle. Including
specific features such as consistency and temporal attributes
will render the cost function specific for the application of
the Oracle and this will not allow for generalizability. Two
different loss functions are defined for the two different types
of outputs considered. For the first type, the output of the
Oracle is discrete (i.e. outputs 1 for the active class, while
other classes are set to zero). The cost function for this case
is selected to be the cross-entropy cost C' defined in Equation
1:

N M
1 . )
C=-% D> wiglog(@ig) + (1= yij) log(1 — i ;)

i=1 j=1

(1
where N denotes the total number of samples in the training
set, M denotes the total number of appliances under consider-
ation. y; ; is the discrete output representing whether the j-th
appliance is actually active (label of 1) or not (label of 0)
for the input z;. §; ; is the corresponding probabilistic output
from the substitute model. As the softmax function is used in
the output layer, %; ; will not take values O and 1.

The second type of output from the Oracle is probabilistic
indicating the confidence of each appliance being active. Thus,
the output for each appliance is a value ranging from 0 to 1.
One example of a NILM model with four appliances is the set
of outputs: y;1 = 0.9, y;2 = 0.88, y; 3 = 0.01, y; 4 = 0.38.
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We use a different loss function for the probabilistic case.
If we use Eq. 1, then information will be lost when the
probabilistic outputs are converted into discrete labels. Accord-
ing to reference [48], the Kullback-Leibler divergence metric
allows for better transferability and knowledge distillation for
probabilistic outputs. For this reason, we use this for training
the substitute model for the case where the output from
the Oracle is probabilistic. This cost function is defined in
Equation 2:

N M

1 i
C=5 2D v log(gi—j) )

i=1 j=1

where y; ; is the probabilistic output from the Oracle, and §; ;
is the substitute model’s output.

2) Training Data Augmentation: In order to construct the
training dataset, the adversary will execute a limited number
of queries to the Oracle and utilize the output from the Oracle
to augment or expand the training dataset to train the substitute
model. A brute-force approach will require an infinite number
of queries and will not be appropriate. A more efficient
approach is utilized where the training dataset is initially
populated with a small number of data points which are then
utilized to iteratively craft synthetic data points that explore the
decision boundaries in the targeted ML model more efficiently.
The Jacobian dataset augmentation technique introduced in [6]
is leveraged as a baseline for comparison purposes in this paper
and this is referred to as the vanilla augmentation algorithm
in the remainder of the paper. This algorithm is modified in
order to propose the novel data augmentation algorithm that
better suits the smart meter data.

Initial Dataset Collection Adversarial black-box attack
constructions in the literature typically target image classifica-
tion ML models. There exists an abundance of background
knowledge on images which can be utilized to reconstruct
representative initial data points. For instance, in a handwriting
recognition model, the general structure of letters and numbers
is common knowledge and can be easily utilized to construct
a set of images that represent each class for the initial training
points. However, with smart grid applications like NILM,
insights regarding power signals are not readily available.
Thus, in this case, the data points forming the initial dataset
cannot rely on prior knowledge.

In order to overcome this issue, this work refines the
goal of the data augmentation process. Instead of extracting
a high-fidelity surrogate, the proposed augmentation process
aims to iteratively draw better representation of the decision
boundaries of the Oracle. Hence, the goal is not to recover the
original training set to reproduce the Oracle model. The initial
dataset will consist of simple data points that include constant
power consumption over the 60 minute interval and power
consumption that changes over 10 minute intervals. The only
condition imposed on these data points is that when these are
passed as queries to the Oracle, the outputs must be a balanced
representation of various states of each appliance identified by
the Oracle.

Vanilla Augmentation Algorithm Dataset augmentation
algorithms utilized in the literature for adversarial blackbox
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attacks are generally composed of the following steps: 1)
Iteratively generate synthetic datapoints, 2) Identify the output
labels for these by passing these as inputs to the Oracle; and
3) Calibrate the substitute model to adjust to the augmented
dataset. These three steps are repeated until the threshold set
by the adversary for the maximum number of queries to the
Oracle is met so that the decision boundaries in the substitute
model approach the Oracle model.

The vanilla data augmentation algorithm introduced in [49]
crafts synthetic training inputs by first identifying the direc-
tions in which the substitute model’s output is varying and then
applying an adjustment along the opposite of these directions
to selected data points in the training set. The Jacobian matrix
J i of the function f , where f represents the substitute model,
contains information about these directions of change and is
defined in Equation 3 [50]:

ofr ofr
oxq oz,
Ji=| o 3)
fi ofi
oxq oz,

where k is the number of output units in this model, and the
(,7) entry in J; is the partial derivative of f with respect to
the i*" output class and ;" component of the input & € RP.
The new training sample crafted should represent the decision
boundary of the Oracle. In order to realize this, it is necessary
to identify the direction in which the output of the substitute
model is least confident (i.e. direction in which the probability
of an input belonging to the current class selected by the
Oracle is lower). Let f denote the Oracle. The afore-mentioned
logic results in the following rule in Equation 4 for the vanilla
data augmentation technique:

Spp1 — {T+ /\sign(Jf[f(a?)]) :reS,pUS, 4

where S,y1 is the training set that is being currently aug-
mented, p denotes the augmentation iteration, X is a training
point obtained from S,, f(Z) is the label obtained from the
Oracle for the input Z, sign is the function that returns 1 if
the input is positive and —1 if the input is negative, J ;[ f(Z)]
is the row of the gradient whose index corresponds to the
class the Oracle maps to for input # and A is a tuneable
parameter which alternates between a negative and positive
value every 3 iterations that allows for better exploration of
the decision boundaries. When the output of the Oracle is
probabilistic, a threshold is used to select the class label (i.e.
if the probability is above the threshold, this class is active and
inactive otherwise). This newly synthesized data point is then
passed as input to the Oracle in order to obtain the label or
confidence of the classes that this point belongs to. After every
augmentation, the substitute model is retrained to account for
the new point.

There are two main issues with the vanilla data augmen-
tation algorithm. The exploration of decision boundaries is
highly dependent on 1) The initial training dataset; and 2)
Distribution of the original training set utilized for the Oracle.
These pose a significant problem as constructing representative
initial data points for the NILM problem is not trivial and the
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adversary has no knowledge of the dataset used to train the
Oracle. Another issue is striking a balance with A which is a
parameter utilized to explore the decision boundaries. Smart
grid problems like the NILM problem are composed of highly
unbalanced data points (e.g. inactive state of an appliance like
the furnace occurs majority of the time (i.e. more than 90%)
compared to the active state). Thus, smaller values of A will
add incremental noise to the original training points and will
not be effective in escaping the majority class for exploring
the decision boundaries. On the other hand, larger values of
A will result in overshooting and not be able to explore the
decision boundaries as dictated by the gradient directions.

Proposed Data Augmentation Algorithm This paper over-
comes the afore-mentioned challenges by proposing a novel
data augmentation algorithm that attempts to discover data
points around the decision boundaries of the Oracle. When the
training dataset is composed of sufficient data points around
the decision boundaries, the substitute model can be trained to
behave like the Oracle. Unlike the vanilla data augmentation
algorithm proposed in [49], the proposal differs in three main
regards: 1) A new data point is not augmented in only one
step; 2) Momentum in addition to the gradient is considered
in the augmentation step; and 3) A static change that is
dictated by the fixed parameter A\ is not utilized to perform
the augmentation of a new data point.

As per the first difference, the proposed algorithm starts
with a randomly selected point in the current training set and
keeps adjusting it in the direction of least confidence so that
this point crosses over from the current class to the next
class in the currently trained substitute model. The vanilla
algorithm applies only one update and does not search the
space to find points that cross the decision boundary. This
is illustrated in Fig. 4 (a). In Step 1, the vanilla algorithm
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Fig. 4: Vanilla vs proposed data augmentation algorithm.

identifies the direction in which the confidence of belonging
to the current class decreases. When an update is made in this
direction, due to the fixed parameter A\, the update overshoots
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and lands at a point that is more confident than the original
point. With the proposed algorithm, as illustrated in Fig. 4 (b),
the point is repeatedly revised until it crosses over the decision
boundary. As momentum is also considered in the updates and
the updates are not forced to have a specific amplitude, the
revised point is able to move across the decision boundary in
a dynamic and accelerated manner without being stuck at local
points with zero gradient. The proposed algorithm is detailed
in Algorithm 1.

The intuition behind Algorithm 1 is illustrated via a simple
example presented in Fig. 5. The initial training set of 5
random points are depicted as red and green dots in Fig. 5
(a). These are labeled via queries made to the Oracle model
and used to train the initial substitute model presented in Fig.
5 (b) using solid curves. The goal to generate new points in
Fig. 5 (c) is to discern ambiguous regions between decision
boundaries of the two models, so each point moves in the
direction of reduced confidence of belonging to the original
class label as determined by the gradient of the substitute
model. These points are adjusted until different output labels
result from the substitute model. The yellow points in Fig. 5 (c)
represent the final resting place of these points, and and shall
be labeled appropriately using the Oracle, as shown in Fig. 5
(d). Unless the substitute model closely represents the Oracle,
these newly augmented points can belong to either class as per
the Oracle. The substitute model is then refined using the ten
training points and the resultant decision boundary illustrated
in Fig. 5 (d). It is clear through visual inspection that the
refined substitute model better represents the Oracle’s complex
decision boundary. Thus, Algorithm 1 identifies differences
between two models (i.e. two decision boundaries) and then
retrains the model to eliminate them and better represent the
Oracle.

In Algorithm 1, A and « are parameters that represent step-
size and the weight of the momentum, « is typically set
to 0.9 to balance the contribution of the gradient term and
the momentum, # is the stopping criteria based on accuracy
(i.e. performance of the substitute model on the synthetically
generated dataset), and Z is a training example contained
within the current iteration of the training dataset S,. At
each augmentation iteration, the newly augmented data points
in S, are labeled by the Oracle. max, is a parameter that
imposes an upper limit on the number of queries that can be
made to the Oracle. This limit can be made available by the
hosting service (e.g. [24]) or be self-imposed by the adversary
to prevent detection of the ongoing attack. These new points
are utilized to retrain the substitute model f and points that
result in misclassifications in the re-trained substitute model
are discarded. Then, in the subsequent search for a new point
within the nested while loop, the adjustment to the current data
point is iteratively computed using the momentum term v and
gradient J¢[y]. It is important to note that in this update, the
actual gradient is utilized for the update rather than the sign
(e.g. vanilla algorithm). This update is applied in the direction
of lower confidence of the updated point belonging to the
current class. After the point crosses the decision boundary
or if the maximum search iteration n is reached, the current
augmentation iteration ends. If the new point results in a
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Fig. 5: Intuition behind Algorithm 1.

Algorithm 1 Substitute model training and data augmentation:

Input: f, S, A, o, 0

1: Define f
22 p=0
3: loop
4 D+ (Ty« f(@)):TeS, > Label the data
5: if accuracy(f,D) > 0 or p > max, then
6: break
7: end if
8 trainSubstitute(f, D), discardPoints(S,, f)
9: for each 7 € S, do
10: G f(@),0=0,i=0
11 while f(Z) == § and i < n do
12: b < ab + AVaJ;ly]
13: T+ T—10
14: t+i+1
15: end while
16: if f(Z)! = ¢ then
17: S, TUS,
18: end if
19: end for
20: p=p+1
21: end loop

22: return S, f

change of class, the new point is added to the training set.
This is repeated until the accuracy threshold 6 is met.

C. Stage 2: Adversarial Perturbations

The main objective in the design of these perturbations to
input data is to cause misclassifications by the Oracle with
minimal detectability. Thus, these perturbations should not be
apparent to error checking mechanisms that vet the smart me-
ter measurements and this can be achieved by minimizing the
magnitude of the perturbations. Mathematically, this problem
amounts to the following:

min |07
5
s.t. f(Z+9%) # f(2)
where dx is the adversarial perturbation applied to the original

input #. In the following, the fast gradient sign method
(FGSM) proposed in [6] that is widely utilized in the literature

to craft these adversarial perturbations is presented. Then, the
problems associated with FGSM for the NILM problem is dis-
cussed. Then, the proposed adversarial perturbation algorithm
is introduced.

FGSM utilizes the sign of the gradient of the cost function
C of the substitute model f which is taken around the ori ginal
input to devise the adversarial perturbations in Equation 5.

®)

where A is the parameter that is tuned so that the label
produced by the substitute model for the perturbed input data
(i.e. £+ dz) changes from the original label to a different one
and fools the Oracle. Although this is a very straightforward
method, there exist three main problems with this approach for
the NILM problem. One is that the magnitude of perturbation
applied to each component or feature of Z will be the same.
Thus, even if one component of Z need not be perturbed as
much as the other component, it will experience the same
magnitude of perturbation which can result in detection. The
second issue is with the parameter A which can be increased
until the substitute model misclassifies the perturbed point
resulting in easy detection of the attack. Thirdly, as there is
no constraint imposed on ), these perturbations can result in
infeasible outputs (e.g. negative power readings) which can be
easily detected.

Thus, in order to prevent detection, it is necessary to craft
adversarial perturbations in a stealthy manner so that these
attacks are not obvious and cannot be easily detected by error-
checking mechanisms. Stealthiness is incorporated into the
proposed attack algorithm via three main approaches. Firstly,
in the proposed algorithm, the perturbations are constructed
using actual cost gradients of the substitute model rather than
the signs of these gradients. Secondly, the magnitude of pertur-
bations that can be applied to the smart meter measurements is
limited to a ratio threshold r. This way, there are no distinctive
spikes or dips in the smart meter readings that can be detected
by error checking mechanisms. Thirdly, a confidence margin
constraint m is applied to ensure the transferability of the
perturbation to the Oracle model from the substitute model.
These are detailed in the following.

A projected gradient ascent (PGA) method is proposed that
imposes a limit on the values each dimension of input & can
take. The perturbation dz; applied to each component i of &
depends on the value taken by the gradient of the cost function

0z =\ sign(Vfo)
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C. The gradient can now be exactly calculated according to
Equation 6 as the attacker has access to the internal parameters
and architecture of the substitute model.

0z = AVC; (6)

where )\ is the step size parameter. Then, each component of
dx is subjected to an upper limit dictated by the maximum

deviation ratio 7. The maximum perturbation J;__ that can
be applied to dimension ¢ is defined in Equation 7.
Oivpw = Ti *T @)

Input perturbations are applied iteratively so that these remain
within the boundaries defined by r while moving in the
direction that increases the cost incurred by the substitute
model. The updating rule is defined in Equation 8.

T fp(Z+6z,7) ®)

where f, is projection of the perturbed Z onto the stealthy
space defined by r. These updates are repeated until either
the substitute model output changes from the original class to
another class or the algorithm exceeds the maximum number
of iterations n.

In reality, however, the substitute model is not an exact
copy of the Oracle. In order to ensure that the effect of the
perturbations applied to the substitute model transfer over to
the Oracle, the notion of confidence margin m is introduced
where the probability of the dominant output class of the
perturbed input is higher than that of the dominant output class
of the original unperturbed input by m. When constructing
perturbations, this confidence margin is maintained. Algorithm
2 summarizes the proposed perturbations applied to smart
meter data as outlined in the above.

Algorithm 2 Adversarial Perturbation Crafting:

Input: f , A, C, m, n, r, target example
11§« f(2) > Save the original result
2: repeat n times
3 0z = )\V;;*Cf
4: T fp(Z+6z,71)
5: until argmax f () # argmax(§), max f (&) — max § > m
6: return ¥

IV. RESULTS

In this section, the performance of the proposed attack
construction algorithm is evaluated via practical experimental
studies conducted on Oracle models trained on various datasets
and comprehensive comparisons with recent work.

A. Experimental Setup

All studies presented in this paper are implemented using
Tensorflow 2.2.0 and Keras 2.3.0 and are run on the Google
Colab Cloud Tensor Processing Unit infrastructure [51]. Deep
learning based NILM proposed in [1] is utilized as the
target application for evaluating the efficacy of the proposed
algorithm which supports six active appliances: washer, dryer,
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dish washer, furnace, oven, and heat pump. This work focuses
on altering the specific state of the furnace with the proposed
attack algorithm so that the efficacy of the algorithm can be
demonstrated. It is important to note that NILM is one of
many ML applications in the smart grid context. The proposal
in this paper is not limited to NILM applications as it is
designed for any ML applications that operate on smart meter
measurements.

In order to showcase the versatility of the proposed attack
construction algorithm, two NILM Oracle models are consid-
ered, which are trained using two different datasets: Almanac
of Minutely Power (AMP) [52] and Pecan Street (PS) [53].
The AMP dataset is composed of eleven attributes (e.g. real
power, current, voltage, energy, etc.) measured for each one
of the 20 common appliances present in a household located
in British Columbia over a two year period at a granularity
of I-minute. The PS dataset consists of power measurements
of individual appliances present in 25 households located
across New York, California and Austin. These are recorded at
various granularities (e.g. 1-second, 1-minute, and 15-minutes)
over a 6 month period. This work utilizes the PS dataset
recorded at a granularity of 1-minute to maintain consistency
with the AMP dataset. The ML models constructed for the
AMP and PS datasets are referred to as AMP and PS Oracles
respectively. These are composed of long-short term memory
units (LSTM) and 5 hidden layers. The total number of model
parameters present in the AMP and PS Oracles are 77,606
and 94,577 respectively. More parameters are used for the PS
Oracle to account for the greater complexity of the PS dataset.

The proposed attack construction algorithm is compared
with two recent proposals in the literature. The first is the
vanilla FGSM algorithm proposed in [6] that performs black-
box attacks with specific examples pertaining to images and
the second is the £; FGSM algorithm proposed in [7] which
is a white-box attack construction in the smart grid context.
Performance evaluation is divided into two parts where the
following components of the proposal are considered indi-
vidually: 1) substitute model construction and 2) adversarial
perturbations. The proposed substitute model construction is
compared with the vanilla data augmentation algorithm pro-
posed in [6]. This work does not compare with the proposal in
[7] as it is a white-box attack construction that assumes that
the full parameter set of the Oracle model is available to the
attacker. Hence, there is no need to approximate the Oracle via
a substitute model for this proposal. The proposed adversarial
perturbation algorithm is compared with both FGSM and ¢,
FGSM algorithms proposed in [6] and [7] respectively.

B. Substitute Model Construction

In this section, the performance of the proposed substitute
model construction algorithm is evaluated. As discussed in
Section III-B1, the substitute model is a FFNN. Substitute
models that approximate the AMP and PS Oracle models are
composed of 4 hidden layers with 18,426 parameters and
6 hidden layers with 84,746 parameters respectively. Both
discrete and probabilistic outputs are considered for the AMP
substitute model whereas for the PS substitute model only
discrete outputs are considered.
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As such, the first step in the construction of the substitute
model is the augmentation of the initial training set which
is composed of five training points. For illustrative purposes,
Table I lists the initial set of five data points utilized for the
appliance class Furnace. Columns 71 to T'6 represent six
consecutive 10-minute intervals and the numerical values listed
in these columns indicate aggregate power consumption in
kilowatts (KW) for a household. The last two columns indicate
the outputs from the AMP and PS Oracles (i.e. whether the
furnace was active or inactive over the intervals 7’1 to 7°6).

TABLE I: Initial dataset for substitute construction (KW).

Sample | TI T2 T3 T4 T5 T6 | AMP PS
0 0 0 0 0 0 inactive | inactive
05 05 05 05 05 0.5 | inactive | active
45 55 45 55 | active active

0 05 0 1 15 3
2 10 8 1 15 7

inactive
active

active
active

[ N S
~
[
w
[}

Next, the performance of the vanilla data augmentation
algorithm presented in [6] is considered. As discussed in
Section III-B2, this algorithm depends on the parameter A.
The performance of this algorithm is firstly investigated by as-
sessing the accuracy of the AMP substitute model constructed
using the training set generated by this algorithm for various
values of A. The accuracy metric captures the percentage of
outputs from the substitute model that matches the outputs
from the Oracle model. The test data is composed of 10,000
points where 50% of the data points belong to the active
state for each appliance class and the remainder belong to
the inactive state. This allows for a balanced representation
of the two states an appliance can take. The results obtained
from the vanilla augmentation algorithm are plotted in Fig. 6.
It is evident that the highest accuracy of 78% is achieved for
A=0.2.

0.8
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B =05
g =02
& 06 - =01
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Fig. 6: Impact of A\ on substitute model accuracy.

The accuracies of the AMP and PS substitute models trained
using the substitute model training algorithm proposed in this
paper are listed in Table II. The first row in this table is directly
comparable to the vanilla augmentation algorithm as the same
AMP Oracle model is approximated by both algorithms. The
AMP substitute model has an accuracy of 92.99% which is
much higher than the best performance of 78% from the
vanilla algorithm. Another accuracy is also included when the
output of the AMP Oracle is probabilistic which is comparable
to the discrete case. However, more queries to the Oracle were
necessary for the probabilistic case when compared to the
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discrete case. This is expected as the probabilistic outputs
capture more information and the training process of the
substitute model will be more nuanced requiring more training
data points. The last row in the table consists of the results for
the PS substitute model for the probabilistic case. The accuracy
is lower, however, this is expected as the PS dataset is much
more complex (i.e. more households) in comparison to the
AMP dataset (i.e. one household). This is still higher than the
substitute model resulting from the vanilla algorithm for the
simpler AMP dataset. Also, another interesting observation is
that the number of epochs needed to train the substitute models
for reaching the accuracies listed in the table increases as the
complexities of the associated datasets and outputs increase.

TABLE II: Substitute model accuracy with proposal.

Dataset Condition Epochs | Queries | Accuracy
AMP Discrete 7 1,210 92.99 %
AMP Probabilistic 8 2,174 90.79 %

PS Probabilistic 11 2,816 83.88 %

C. Adversarial Perturbations Crafting

Next, PGA which is the proposed adversarial perturbations
crafting algorithm is evaluated in this section. As imposing
a limit on the magnitude of the perturbations applied to
increase the stealthiness of the proposed attack, these attack
perturbations may not successfully fool the substitute or Oracle
models. For this reason, two metrics are introduced: success,
and transfer rates. Success rate R refers to the percentage
of adversarial examples that results in fooling the substitute
model while satisfying all underlying constraints (e.g. maxi-
mum deviation ratio r and confidence interval m). Transfer
rate I, refers to the percentage of adversarial examples that
fool the Oracle ML model. The test set is composed of 2,000
labeled data points with a balanced representation of the active
and inactive states.

Comparisons are made with the FGSM and £,-FGSM algo-
rithms. With the FGSM algorithm, the perturbation amplitude
€ is iteratively increased until the resulting perturbations fool
the substitute model or the maximum number of iterations
is reached. PGA and /,-FGSM algorithms search adversarial
perturbations until the maximum allowable deviation ratio 7 is
reached in addition to the two other criteria used for FGSM.
The ¢y norm constraint used in the £,-FGSM algorithm is set
to be 30% of the total number of input dimensions which is
same as the setup presented in the original paper.

It is important to note that FGSM is a black-box attack
algorithm with no constraints imposed on the magnitude of
perturbations that can be applied to the input data. This implies
that these perturbations are not stealthy and can be easily
detected by error checking mechanisms. On the other hand,
the ¢o-FGSM algorithm is a white-box attack algorithm with
constraints imposed on the perturbations crafted. The internal
parameters of the model under attack are available to the
attacker and thus the crafted adversarial perturbations will be
tailored to the attacked Oracle model. With the proposal, the
attacker has access to limited knowledge regarding the model
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Fig. 7: Training based on the AMP dataset.

100%

80%

60% { — PGA 10% margin
—+— LOFGSM
—+— FGSM

40%

20%

Success Rate on Substitute

10% 20% 30% 40% 50%
Allowed Maximum Deviation Ratio

(a) Comparison of Rs with Different » on PS Dataset

100%

—*— PGA 10% margin
80% =+ L0 FGSM

—*— FGSM

60%

40% ﬁ
20% //

10% 20% 30% 40% 50%
Allowed Maximum Deviation Ratio

Transfer Rate

(b) Comparison of R; with different r.

Fig. 8: Training based on the PS dataset.

under attack and constraints on perturbations are enforced for
attack stealthiness.

As such, results from these comparative studies are pre-
sented in Fig. 7 and Fig. 8 for the AMP and PS datasets.
For all cases, the maximum deviation ratio (e.g. perturbation
limit) r is modified and the resulting values of R, and R
are recorded. As no constraints on perturbations are imposed
with the FGSM algorithm, the outcomes for this algorithm do
not change with various values of r. This algorithm exhibits
superior performance with the success rates as unlimited
perturbations can be applied until the substitute model is
fooled. However, the resulting lack of stealthiness will be
problematic. It is also interesting to observe that the transfer
rate of the FGSM algorithm are very low in comparison to the
other two algorithms compared.

With the ¢y-FGSM, the attacks are designed using the
internal knowledge of the trained parameters of the substitute
and Oracle models. For the AMP dataset, this algorithm results
in slightly lower success, transfer rate in comparison to the
PGA algorithm (i.e. Fig. 7a-7b). For the PS dataset, this
algorithm performs slightly better than the PGA algorithm
for transfer rate (i.e. Fig. 8b). This is not the case for the
success rate (i.e. Fig. 8a). Overall, even though the proposed
attack construction algorithm is privy to much less information
in comparison to the ¢p-FGSM, it results in comparable and
mostly better performance than the ¢,-FGSM algorithm.

Next, the impact of the confidence margin m on the success
and transfer rates of the PGA algorithm are analyzed for fixed
r = 0.3. m is utilized to increase the likelihood of the success
of the adversarial example crafted using the substitute model
on the Oracle model. These results are tabulated in Table III.
It is clear that as m increases, the transfer rate increases and
this is as expected. However, the success rates are declining.
This is mainly due to the increasingly stringent constraints
imposed by larger values of m that must be satisfied by the

crafted adversarial perturbations.

TABLE III: Performance with different confidence margins.

Confidence Margin (%) | Success Rate (%) | Transfer Rate (%)
m = 10 38.46 61.43
m = 20 35.71 64.61
m = 30 30.77 71.43
m = 40 28.02 72.55
m = 50 21.42 74.36

The impact of the distribution of the active and inactive
states on the success rates of PGA is also presented in
Fig. 9. The confidence margin m is fixed (10%) for results
presented in this figure. Adversarial perturbations that result in
transitions from active to inactive states result in high success
rates which increase with r and reach values close to 100%.
On the other hand, transitioning from inactive to active states
indicate increasing rates of success with increasing values of r.
However, these success rates are not as high as the transition
from active to inactive states. This can be attributed to the
distribution of the active and inactive states. The active states
are more concentrated whereas the inactive states are more
dispersed. This implies that greater perturbations are necessary
for successful transition from the inactive to active states than
the opposite case.

D. Stealthiness of Attack Construction

Next, the stealthiness of the proposed attack construction,
which pertains to the ability to bypass visual or existing check-
ing mechanisms (e.g. abnormal power readings) is presented.
Fig. 10 illustrates the smart meter reading for a household over
a 24 hour period where perturbation (crafted using r = 20%
and m = 10%) is applied to a single one hour window
highlighted by the orange curve. It is clear that the perturbed
data is not distinguishable from actual smart meter readings
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Fig. 9: Success rates for active and inactive states.

and results in successfully directing the targeted ML model
to produce incorrect outputs over the attacked interval. These
erroneous outputs by the Oracle will lead to serious conse-
quences that include: over-billing (e.g. consumer extortion) or
under-billing (e.g energy theft) for specific use of particular
appliances; incorrect computation of direct load control, and
SO on.
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Fig. 10: Stealthiness of 24 hour smart meter readings.

E. Impact of the Proposed Attack

First, the impact of incorrectly classifying a flexible appli-
ance in a real-time HEMS system proposed in [54] is studied.
For illustration purpose, the targeted appliance in this case
study is a furnace. The scheduling algorithm is based on
the Markov Decision Process (MDP) which selects the best
policy to minimize total power consumption and costs over a
time interval. However, if adversaries manipulate the furnace’s
state and return ’off” state to the HEMS when it is actually
on’, the MDP will start at the wrong system state and lose
control of the furnace. In this case, the furnace will remain in
operation even during the peak periods. Assuming the targeted
furnace consumes 600 watts, applying the time-of-use prices
for Ontario in 2019 as listed in Table IV will result in the
contribution of the furnace to the monthly bill to be $99.72.

TABLE IV: Time-Of-Use weekday price in Ontario, Canada

TOU Price Period 2019 TOU Price
Off-peak (7 p.m. - 7 a.m.) 10.1¢/kWh
Mid-peak (11 a.m. - 5 p.m.) 14.4¢/kWh
On-peak (7 am. - 11 am. and 5 p.m. - 7 p.m.) | 20.8¢/kWh

Next, the impact of the proposed attack on demand response
programs is studied. Load flexibility is first evaluated by EPUs
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to evaluate the potential for peak shaving in the system.
This involves the disaggregation of smart meter data using
NILM [4]. The proposed attack can be used to lead to the
incorrect estimation of load flexibility in the system. If a
flexible appliance is classified as ’off” although it is actually
“on’, it will not be actuated by the EPU. This will affect the
ability of the EPU to shave demand peaks when a large number
of flexible loads are attacked. For example, if it is estimated
that 100 kW of the demand during peak hours in a day stem
from furnaces and the NILM misclassifies the state of these
appliances, then this peak reduction potential is lost. When
the system is overloaded, this loss in flexibility can lead to
cascading outages and failures.

V. CONCLUSIONS

This paper presents a novel black-box attack construction
algorithm targeting ML models operating on smart meter data.
The efficacy of the proposed stealthy adversarial perturbation
algorithm on a deep-learning based ML model that performs
appliance disaggregation on smart meter readings has been
successfully demonstrated. The proposal in this paper out-
performs state-of-the-art black-box attack paradigms proposed
in the literature. This work sheds light onto new attack modes
that are introduced due to inherent vulnerabilities in ML
models and these attacks can fool sophisticated ML models
with minimal information at hand. As the modern smart grid
is moving towards increased automation with the integration of
ML constructs, this poses a real threat to the reliable operations
of the power grid. As future work, we intend to investigate
how ML models deployed in the smart grid settings can be
designed to be inherently robust to adversarial attacks such as
that presented in this paper. In a more broader context, we also
aim to design more efficient ML models for performing tasks
in the smart grid context such as appliance disaggregation.
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