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ABSTRACT 

Car sickness is anticipated to occur more frequently in self-driving vehicles because of their design. This 

thesis involved an investigation using machine learning techniques with physiological measures to detect 

and predict the severity of car sickness in real-time every two minutes. A total of 40 adults were exposed 

to two conditions, each involving a 20-minute ride on a motion-base simulator. Car sickness incidence and 

severity were subjectively measured using the Fast Motion Sickness (FMS) and  Simulator Sickness 

Questionnaire (SSQ). Car sickness symptom was successfully elicited in 31 participants (77.5%) while 

avoiding simulator sickness. Results showed that head movement had the strongest relationship with car 

sickness, and there was a moderate correlation between heart rate and skin conductance. The machine 

learning models revealed a medium correlation between the physiological measures and the FMS scores. 

An acceptable classification score distinguishing between motion-sick and non-motion-sick participants 

was found using the random forest model.  
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CHAPTER ONE – INTRODUCTION 

 

1.1 INTRODUCTION 

Motion sickness (also known as kinetosis)  is a common negative reaction to travel in a wide variety of 

vehicles, including ships, trains, spacecraft, airplanes, and cars. Some studies suggest that it dates back to 

shortly after man adopted other transportation modes apart from walking (Dobie, 2019). It is characterized 

by a wide range of symptoms, including pallor, burping, stomach awareness, headaches, fatigue, cold 

sweating, alterations in gastric rhythm, nausea, and vomiting (Bronstein et al., 2020, Reason, 1978). These 

symptoms are often disabling, causing drowsiness, lack of concentration, and disorientation in those who 

experience them (Li et al., 2022). Over 60% of people say they have experienced car sickness at least once 

in their lifetime, with over 50% reporting it happened during the past five years (Schmidt et al., 2020). 

Symptoms are more likely to occur when engaging in tasks like reading or writing (Krueger et al., 2017; 

Schmidt et al., 2020) or when unable to view outside of the car (Turner & Griffin, 1999).  

 

Car sickness is anticipated to occur more frequently in self-driving vehicles because of their design, which 

includes electronics and seating arrangements optimized for work and entertainment (Diels & Bos, 2016; 

Iskander et al., 2019). Therefore, mitigating motion sickness is a crucial research area that is essential to 

the effective use of electronics in autonomous vehicles and, ultimately, their broad adoption. Motion 

sickness commonly occurs in scenarios when sensory information signalling self-motion has unexpected or 

conflicting correlations (Money, 1970). For instance, when reading on a smartphone as a passenger in a 

moving car, the head moves with the device as the outside world passes by. Although the head is relatively 

stable with respect to the device and the car's interior, the head is moving in space as indicated by cues like 

the inner ear's vestibular system during acceleration.  

 

The most prevalent theories of motion sickness are sensory conflict theories. For instance, according to the 

sensory rearrangement theory, motion sickness develops when there is a significant difference between the 

expected pattern of sensory inputs anticipated when we move (based on prior experience) and the actual 

sensory inputs received (Oman, 1990; Reason, 1978). This theory and its adaptations are popular because 

they explain why some conflicts cause motion sickness, why drivers are less susceptible to motion 

sickness than passengers, and how we adjust and become desensitized over time. Additionally, it agrees 

with the observation that having a view of the outside world, especially the view of the road in front of the 

vehicle, helps prevent car sickness while driving (Griffin & Newman, 2004).  
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In line with this theory, several researchers have proposed visual display-based mitigation strategies to 

minimize or eliminate visual conflicts with other senses or enhance sensory input expectations (Karjanto et 

al., 2018; McGill et al., 2017; Cho & Kim, 2022), but results have been mixed (Feenstra et al., 2011; Griffin 

& Newman, 2004). The diversity, location, and quality of the displays probably contribute to some of this 

variability. Stimuli in the visual field can influence car sickness, and these effects can be advantageous or 

detrimental. Similarly, a  type of motion sickness known as visually-induced motion sickness 

(VIMS) can be elicited solely from vision (Keshavarz, 2015). The nature, placement, size, and perceived 

relationship of stationary and moving components of the scene relative to the head are important factors in 

effectively predicting and mitigating motion sickness (Andersen & Braunstein, 1985; Foulkes et al., 2013; 

Harris et al., 2012; Pavard et al., 1976; Stern et al., 1990; Warren & Rushton, 2008; Webb & Griffin, 2003). 

Moreover, it is essential to comprehend this flow parsing and segregation (Koenderink, 1986) to predict 

how additional visual stimuli affect sensory conflict and motion sickness (Vogel et al., 1982).  

1.2 RESEARCH MOTIVATION 

Investigating motion sickness issues in the context of real or simulated driving requires real-time 

measurement of car sickness. However, the real-time, continuous assessment of motion sickness symptoms 

without the user's direct involvement or interference poses a challenge for research and practical mitigation. 

Consequently, there has been a lot of research interest in assessing and monitoring motion sickness from 

physiological and behavioural measures. Numerous potential signals have been studied, including eye 

movements (Flanagan et al., 2004; Krueger et al., 2017; Webb & Griffin, 2002), facial or body temperature 

(Pham Xuan et al., 2021), skin conductance (Dahlman et al., 2009; Himi et al., 2004), heart rate (Cowings 

& Toscano, 1993; Himi et al., 2004; Holmes & Griffin, 2001; Mullen et al., 1998), head and body 

movements (Arcioni et al., 2019; Cloutier, 2006; Palmisano et al., 2020; Riccio & Stoffregen; 1991; 

Stoffregen et al., 2017), and electroencephalogram (Himi et al., 2004, Lin et al., 2007).  

 

Additionally, there are documented commonalities and differences between the etiology, symptoms, and 

susceptibility of the different types of motion sickness (Golding, 2006). These variances are significant 

enough that predicting a person's vulnerability to car sickness based on other types of motion sickness is 

impossible. Similarly, the objective measures applicable to one variant may not necessarily apply 

to another. This research is a step toward establishing the suitability of batteries of objective measurements 

as indicators and predictors of car sickness, including developing and validating such batteries using a 

model. A model can prove useful in determining the likelihood of car sickness severity in individual users, 

allowing intervention before the onset of motion sickness. Therefore, establishing the best physiological 

indicators of simulator sickness could shed more light on the likelihood and exact triggering time of the 
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syndrome, allowing a more accurate description of the temporal characteristics of car sickness and more 

informed interventions. 

1.3 RESEARCH BACKGROUND 

The Greek physician Hippocrates is credited with first describing motion sickness when he stated that 

"sailing on the sea indicates that motion disturbs the body". Irwin used the term "motion sickness" in 1881 

to characterize a condition brought on by frequent oscillatory movements of the body. It refers to a feeling 

of illness or discomfort that occurs while travelling by land, sea, or air as well as while using a car, train, 

elevator, amusement ride, swing, or, less frequently, an animal like a camel (Leung & Hon, 2019; Golding, 

2016; Leung & Coenegrachts, 2011). Similar symptoms are commonly reported on entering and leaving 

space.  

 

However, real motion is not a prerequisite for this malady, as motion perception can also cause motion 

sickness (Gahlinger, 1999). So, even though the affected individuals are not actually moving, they can 

suffer motion sickness symptoms while watching a big moving field or participating in virtual reality rides 

in amusement parks (Koch et al., 2018). For these situations, some authors prefer to use the terms "pseudo 

motion sickness" or "pseudokinetosis" (Schmäl, 2013). Motion sickness can also be referred to as space 

sickness, automobile sickness, seasickness, travel sickness, and simulator/cinema/cybersickness, depending 

on the environment in which it occurs (Koch et al., 2018).  

 

A motion-base simulator provides an ideal scenario for studying motion sickness because it allows for a 

wider range of research that may be risky in a normal car, like the transfer of control in autonomous vehicles. 

Typical autonomous vehicles are designed to facilitate automated driving on certain roads, with a brief 

handover back to the passenger when travelling through an area that does not support automated driving. 

However, as passengers engage in other activities during automated driving, their outside view may be 

restricted, increasing the likelihood or severity of car sickness (Griffin and Newman, 2004). Another area 

of research that can benefit from studying car sickness in a simulator is the development of countermeasures 

against motion sickness. These measures can include providing additional sensory information to reduce 

sensory conflict and improve anticipation of motion (Rolnick and Bles, 1989) and have already been proven 

effective in simulators for flight and ship travel (Tal et al., 2014; Feenstra et al., 2011). 

 

1.4  RESEARCH AIM AND OBJECTIVES 

The specific goals of this thesis included using signal processing, quantitative analysis, and machine 

learning (ML) approaches to (1) detect and identify changes in physiological and behavioural measures 
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linked to the onset of car sickness and (2) categorize participants as sick or not sick based on physiological 

and behavioural measures. Although there were anticipated alterations in participants' physiological 

responses as they experienced car sickness, there were no precise predictions regarding the physiological 

measures that would be the most accurate indicators of car sickness, given the variety of results published 

by earlier research in this domain. Consequently, ML techniques were anticipated to increase the likelihood 

of identifying patterns of physiological measures linked to car sickness. 

 

1.5 STRUCTURE OF THESIS 

This thesis report comprises five chapters; Chapter 1 is this introduction. Chapter 2 reviews related literature 

on motion sickness to understand the epidemiology, types, measurement techniques and state-of-the-art. 

Chapter 3 discusses the research methodology, including the experiment's stimulus, participants, apparatus, 

data collection and data preprocessing techniques. Chapter 4 provides a comprehensive overview of the 

data collection and results of the data analysis, including a correlation of the motion sickness measures and 

a presentation of the developed machine learning models. Chapter 5 covers an extensive discussion of the 

research findings, limitations of the study, suggestions for future work and the conclusion. 
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CHAPTER TWO-LITERATURE REVIEW 

 

2.1  INTRODUCTION 

The preceding chapter detailed the research background while outlining the research objectives this thesis 

aims to address. This chapter builds on this and provides a comprehensive review of relevant and related 

research work in the area of motion sickness. 

This chapter is subdivided into five main sections. Section 2.2 outlines the epidemiology of motion sickness 

to provide valuable insights into the prevalence, incidence, and risk factors associated with this condition, 

while section 2.3 provides a general overview of the most popular motion sickness theories. Section 2.4 

highlights the various types of motion sickness, while the various ways motion sickness can be measured 

are presented in section 2.5, including justifications for the measures chosen in this thesis. The last section 

summarizes the literature review chapter. 

2.2  MOTION SICKNESS EPIDEMIOLOGY 

Many people have experienced motion nausea at least once (Herron, 2010), with seasickness reportedly 

being the most prevalent and well-known type (Koch et al., 2018). The word "nausea", a primary symptom 

of motion sickness, comes from the Greek word naus, meaning "nautical," or a ship. Within two to three 

days following the start of an ocean cruise, up to twenty-five (25) percent of passengers on a large ship will 

develop motion sickness (Leung and Hon, 2019; Leung and Coenegrachts, 2011). With bad weather and 

smaller vessels, the incidence is higher. In the most extreme of cases, as many as sixty (60) percent of 

passengers, including experienced crew members, may be affected (Koch et al., 2018). 

 

The incidence of motion sickness necessitating medical consultations was 4.2 per 1000 people per day, 

according to an extensive study of 2366 passengers who had collectively taken part in 26 cruise voyages 

for 34,501 person-days (Schutz et al., 2014). Up to four percent of drivers of rally vehicles and passengers 

who are reading a book or sitting in the back seats during the trip are likely to experience motion sickness 

(Leung & Hon, 2019; Leung & Coenegrachts, 2011; Koch et al., 2018; Golding & Gresty, 2015). In 

pressurized commercial aircraft, just one percent of passengers experience motion sickness and even fewer 

(0.13%) get sick on trains (Leung & Hon, 2019; Leung & Coenegrachts; Koch et al., 2018; Golding & 

Gresty, 2015). Student pilots report experiencing motion sickness ranging from 10-31%. The overall 

incidence gradually declines as these student pilots gain experience (Samuel and Tal, 2015). Up to eighty 
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(80) percent of astronauts experience space sickness during the first three days of a space mission (Heer 

and Paloski, 2006). 

 

It is believed that motion sickness can occur in anyone if the movements being applied to the body are 

substantial enough. However, there is a high level of individual susceptibility to motion sickness caused by 

gene-environment interaction (Priesol, 2017; Takov and Tadi, 2019; Zhang et al., 2016). This susceptibility 

is connected with particular traits. According to studies by Leung & Hon, 2019; Leung & Coenegrachts; 

Koch et al., 2018; Schmäl, 2013; Lawther & Griffin, 1988; Paillard et al., 2013; and Golding (2016), women 

are more likely than men of the same age to experience greater frequency and intensity of symptoms, 

particularly during menstruation. Similarly, pregnant women are more prone to motion sickness due to 

hormonal changes during pregnancy (Takov & Tadi, 2019; Zhang et al., 2016). Children under two rarely 

experience motion sickness, presumably because of their limited visual experience (Gahlinger, 1999; 

Schmäl, 2013).  

 

Young infants are also frequently in a reclined position, which makes them less prone to motion sickness 

(Gahlinger, 1999). The most vulnerable are children aged six to twelve, peaking between ages nine and ten 

(Golding, 2016; Gahlinger, 1999; Koch et al., 2018; Takov & Tadi, 2019). The susceptibility decreases 

through adolescence and afterward, presumably due to habituation (Gahlinger, 1999; Murdin et al., 2011; 

Takov & Tadi, 2019; Reavley et al., 2006). Motion sickness is less common in adults and rarely happens 

after age 50 (Leung & Hon, 2019; Leung & Coenegrachts, 2011; Schmäl, 2013; Paillard et al., 2013). 

Compared to their age-matched male counterparts, females experience a transient increase in vulnerability 

around menopause (Paillard et al., 2013). 

 

Although people of all races can experience motion sickness, considerable racial disparities exist (Golding, 

2006). Chinese people have been found to be more prone to motion sickness than white people (Zhang et 

al., 2016; Klosterhalfen et al., 2005; Stern et al., 1996). Motion sickness may run in families (Reavley et 

al., 2006), and the likelihood that a child would experience motion sickness is twice as high if either parent 

experienced it as a child (Leung & Hon, 2019; Leung & Coenegrachts, 2011). Car sickness may have a 

hereditary component because monozygotic twins experience it 2.5 times more frequently than dizygotic 

twins (Leung & Hon, 2019; Leung & Coenegrachts, 2011), with estimates of heritability ranging from 57–

70%. Hromatka et al. (2015) conducted a genome-wide study on motion sickness involving eight thousand 

four hundred and ninety-four (80,494) people surveyed about car sickness. The authors found 35 single-

nucleotide polymorphisms associated with motion sickness. The motion sickness genes are located on 

chromosome four. (Peddareddygari et al., 2019). 
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2.3 MOTION SICKNESS THEORIES 

2.3.1 SENSORY CONFLICT THEORY 

There are physiological factors responsible for motion sickness. The sensory conflict theory is currently the 

most widely accepted theory that has withstood over forty years of dispute. The theory initially proposed 

in 1975 in reference to flight simulators (Reason and Brand, 1975) argues that the compelling visual 

sensation of motion, without the associated vestibular or proprioceptive inputs, causes the physiological 

side effects characterizing motion sickness (Stanney and Kennedy, 2009; Groen and Bos 2008; Nichols and 

Patel, 2002; Reason and Brand, 1975). The vestibular system provides information about linear and angular 

acceleration, including the body's position with respect to gravity (Cohen et al., 2005). The visual system 

also offers information about body motion and orientation as it relates to the visual world, and the 

kinesthetic or proprioceptive system offers information about limb and body position (Barratt and Pool, 

2008). Normally, these sensory signals are consistent and provide complementary or redundant information 

about self-motion and orientation. 

 

Reason and Brand's (1975) theory states that a replica of a self-generated movement is combined with the 

resulting sensory inputs to create a predicted pattern of sensory cues or an engram (Reason, 1978). The 

sensory inputs are then compared to the engrams stored in a comparator module. A mismatch signal is 

produced when there is a disparity between the input and the engram, which in turn causes motion sickness. 

The number of sensory modalities in conflict, the extent of the discrepancy and prior exposure to the 

conflicting stimuli decide the strength of the mismatch signal. Similarly, the latency and intensity of motion 

sickness symptoms correlate with the mismatch signal's strength. When people are immersed in situations 

where they perceive self-motion through vection (the illusion of self-motion produced by viewing an optic 

flow pattern), visual cues that suggest movement conflict with vestibular inputs, indicating the user is 

stationary. Consequently, a mismatch signal is issued when no matching engram is detected, resulting in 

motion sickness (Reason, 1978; Reason and Brand, 1975). 

 

While modern versions of Reason and Brand's (1975) theory are widely accepted, it fails to explain motion 

sickness onset and progression. Firstly, this concept lacks a convincing physiological foundation that would 

clarify the significance of mismatch signals in facilitating sickness (Oman, 1988). Secondly, this theory 

cannot explain individual variations in motion sickness (Davis et al., 2014; Warwick-Evans et al., 1995). 

For instance, it is unclear why women are more likely than men to have motion sickness (Chen et al., 2015; 

Flanagan et al., 2005; Kim et al., 2008; Stanney et al., 1999, 2003). Finally, the argument falls short in 

addressing why some sensory cues are more likely to result in sickness than others. It is unknown why 
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certain stimuli are more nauseogenic than others because, according to the theory, any sensory conflict that 

causes a mismatch signal should make a person feel nauseous. For instance, in a VR environment, scenes 

with oscillations are more likely to result in cybersickness than scenes without oscillations (Lo and So, 

2001; So and Lo, 1999).  

 

To address some of the unanswered questions by the sensory conflict theory, Oman (1988) hypothesized 

that desired body states trigger muscle activity and postural adjustments. These modifications provide 

signals that various sensory modalities can detect. Thus, a difference vector is produced by comparing an 

internal model of all sensory modalities with actual sensory inputs. More sensory conflicts result in a larger 

vector, which may reflect severe sickness. Bles et al. (1998) and Bos et al. (2008) presented a more restricted 

description of sensory conflict that built on the ideas of Oman (1988) by proposing that the only salient 

conflict was in the perception of the subjective vertical. The importance of subjective vertical, created from 

integrated sensory data from vision, proprioception, and the vestibular organs, is attributed to its role as a 

frame of reference to successfully interact with the external environment (Barra et al., 2010). 

 

2.3.2 POISON THEORY 

Although it is not apparent how or why sensory conflicts result in sensations like nausea, the Poison 

Hypothesis is one widely cited theory (Treisman, 1977) suggesting that sensory mismatches are a 

component of an early warning system when an animal consumes poisons. Hence, nausea is an evolved, 

adaptive reaction to a sensory conflict that helps an animal eliminate toxic substances (Treisman, 1977). 

Although many experts think this concept is not a convincing or testable explanation for motion sickness, 

it is a viable explanation for the nausea symptoms of the condition. However, it does not account for other 

symptoms, such as oculomotor or disorientation symptoms (Davis et al., 2015; LaViola, 2000; Oman, 

2012). 

 

2.3.3 ECOLOGICAL THEORY 

Over the years, other theories have been proposed to explain motion sickness. The Ecological Theory 

(sometimes referred to as the Postural Instability theory) is one such theory, and it explains that motion 

sickness is caused by prolonged instability in postural control (Riccio and Stoffregen, 1991; Bonnet et al., 

2008). People are likely to experience motion sickness when they encounter novel situations for which they 

have not yet learnt techniques to stabilize their posture (Stoffregen et al., 2000; Villard et al., 2008). For 

instance, Stoffregen and Smart (1998) discovered increases in postural sway preceding visual-induced 

motion sickness symptoms when participants were exposed to low-amplitude optical flow in an immersive 
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environment. In addition, Smart et al. (2002) discovered that pitch velocity and vertical variability of body 

sway could predict which subjects will become sick following exposure to optic flow stimulation.  

 

The causal relationship between motion sickness and postural instability is still unclear. For instance, 

Dennison and D'Zmura (2017) reported that postural sway patterns of participants were similar before and 

during VR exposure, and motion sickness increased alike when participants were seated (and thus unlikely 

to have an unstable posture) and when standing (and thus subject to greater postural demands and the 

potential for instability). Similar findings were made by Warwick-Evans et al. (1995), who found that 

participants experienced motion sickness watching a movie both while standing up and while being 

constrained in a chair. Also, Akiduki et al. (2003) showed that postural instability (specifically, body sway) 

was only substantially different post-exposure to virtual reality, thus, suggesting that instability is more a 

result of cybersickness than a cause. 

 

2.4 TYPES OF MOTION SICKNESS 

2.4.1 CAR SICKNESS 

Cars, the most popular form of land transportation, elicit a specific form of motion sickness known as car 

sickness (Murdin et al., 2011). Car sickness is more common in passengers than in drivers, who are much 

less likely to have symptoms of nausea, dizziness, retching, or vomiting (Diels & Bos, 2015). According to 

studies (e.g., Kuiper et al., 2020; Diels & Bos, 2015; Stoffregen et al., 2014), this may be because driving 

involves controlling the vehicle, and thus the driver can predict the trajectory of the car better than a 

passenger, particularly one in the back. Also, limiting the passengers' field of view and increasing their 

participation in activities unrelated to driving may lead to a sensory conflict between the passengers' visual, 

vestibular, and somatosensory systems (Diels & Bos, 2015; Griffin & Newman, 2004; Salter et al., 2019).  

 

Sensory conflict is frequently cited as the fundamental mechanism causing motion sickness (Dobie, 2019). 

A fixed-base driving simulator illustrates an ideal scenario where such conflicts might occur because, as 

the driving simulation progresses, the user only experiences the visual sensation of self-motion, without all 

other related sensations of an actual driving experience except the hands on the steering wheel. According 

to the sensory conflict theory, motion sickness can also happen when various cues contradict the 

expectations based on prior personal experiences. Regardless of the scenario, vestibular cues play an 

essential role in this theory, as people without functional vestibular systems do not experience motion 

sickness (Money, 1972; Cheung et al., 1991).  
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2.4.2 SEASICKNESS 

Seasickness is a classic form of motion sickness and one that is mentioned in the earliest extant literature 

(Lawther & Griffin, 1986). Typically, subjective symptoms appear between one and twelve hours into a 

sea cruise. After being exposed to ship motion continuously for 12 to 96 hours, adaptation usually takes 

place. Even among those who do not get seasick, the body sways at sea differs from sway on land (Mayo, 

Wade, & Stoffregen, 2011; Stoffregen et al., 2011). According to the postural instability theory of motion 

sickness, there will be disparities in postural activity between those who subsequently experience 

seasickness and those who do not. The postural sway of sick people also changes over time with ongoing 

exposure to a ship's motion. It takes many days for the body to adjust to ship motion. However, according 

to the theory, subjective symptoms should disappear when a person develops stable postural control in 

response to ship motion.  

 

Postural activity in fully adapted individuals will not be the same as prior to the start of subjective symptoms 

or before exposure to a ship's motion, and a return to stable control does not necessarily mean a return to 

previously steady movement patterns as the sway of the same people on land and at sea in properly adapted 

seafarers differ (Mayo et al., 2011; Bos et al., 2008). Mal de debarquement is a re-adaptation process that 

can cause motion sickness-like sensations to persist for several hours (even days or months) after returning 

to the land (Cha, 2009). Consequently, when a person goes ashore after thoroughly adapting to life at sea, 

they must re-adapt to the lack of ship motion. 

 

2.4.3 AIRSICKNESS 

Airsickness is a type of motion sickness. The phenomenon was documented as far back as World War II 

when airborne military personnel were "neutralized" and unable to complete their mission despite arriving 

at their destination (Estrada et al., 2007). The size, structure of the aircraft, flight speed, profile, and weather 

all affect the severity of airsickness symptoms when flying. The relationship between flying direction, the 

subjective vertical, and the true vertical gravity vector also significantly impacts how airsickness develops. 

The low-frequency lateral and vertical motion axes are noted as the most likely to cause symptoms of 

motion sickness (Turner et al., 2000).  

 

Visual cues may contribute to sensory mismatch in aviation (Turner et al., 2000). This situation is further 

complicated when travelling through clouds and air pockets without visual information. Unlike the pilots 

at the controls, passengers who cannot anticipate aircraft movement may experience additional discomfort. 

This experience is similar to how car sickness affects drivers and passengers differently (Rolnick and 
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Lubow, 1991). Due to their frequent, regular flying and control of the aircraft, pilots have a higher potential 

for habituation. Another factor unique to the aerospace environment is hypoxia. Hypoxia is minimal in 

compressed aircraft cabins, but a study shows that even moderate hypoxia can worsen motion sickness 

symptoms induced by optokinetic stimuli (Zhang et al., 1998). 

 

Airsickness is a condition that many passengers have experienced. It is a common source of severe 

discomfort, primarily due to nausea and fatigue, for which pharmacological support is often required. 

Between 1946 and 1947, the most extensive study in the field was carried out on more than a million airline 

passengers (Ledera & Kidera, 1954). According to the study, three of every four travellers experienced 

some form of airsickness. Females were more likely to experience the symptoms than males, and it was 

more prevalent in smaller rather larger aircraft. Subsequent research showed that the prevalence of motion 

sickness on commercial passenger flights was declining, most likely due to advancements in aviation 

technology. According to a British study conducted in 2000 on 923 domestic airline passengers, 48% 

complained of airsickness-related symptoms. Interestingly, those seated near the wing or at the back of the 

plane experienced more severe symptoms (Turner et al., 2000). 

 

2.4.4 VISUAL-INDUCED MOTION SICKNESS AND CYBERSICKNESS 

Visual induced motion sickness (VIMS) differs slightly from traditional motion sickness syndromes like 

car, sea, and air sickness, which are caused by the vehicle's actual movement (Golding, 2016; Reason and 

Brand,1975). However, it does share some similarities with other motion sickness types. VIMS is related 

to or a factor in a number of other syndromes, including cybersickness (McCauley and Sharkey, 1992; 

Davis et al., 2014), simulator sickness (Kennedy et al., 1992; Hettinger and Haas, 2003), gaming sickness 

(Chen et al., 2016; Oldenburg, 2018), and virtual reality sickness (e.g., Guna et al., 2019; Saredakis et al., 

2020). VIMS is a kind of MS predominantly brought on by stimulation of the visual system without actual 

physical movement, and it encompasses some of the above types of motion sickness (Keshavarz et al., 

2014).  

 

Cybersickness is an uncomfortable sensation comprising of nausea, fatigue, eyestrain, and disorientation 

resulting from exposure to immersive virtual reality environments, with display lags historically being a 

major contributor. According to Hill and Howarth (2000), Keshavarz et al. (2015), Reason and Brand 

(1975) and Rebenitsch & Owen (2016), cybersickness is caused by visually-induced illusory motion in an 

immersive VR environment, in which an optic flow provides motion information in the absence of 

corresponding vestibular signals. Cybersickness can be differentiated from other forms of motion sickness 
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using the Disorientation, Nausea and Oculomotor (D>N>O) symptom profile (Rebenitsch & Owen, 2016; 

Stanney et al., 1997). According to this profile, cybersickness is characterized by severe and frequent 

disorientation symptoms, followed by nausea symptoms, and least by oculomotor symptoms. Whereas 

simulator sickness has an O>N>D profile, seasickness is characterized by an N>O>D profile, and space 

sickness by an N>D>O profile (Rebenitsch and Owen, 2016; Stanney et al., 1997).  

 

Many theories have been proposed to explain VIMS, such as those based on the role of postural control or 

eye movements (Riccio and Stoffregen, 1991; Ebenholtz et al., 1994), but the true etiopathogenic and the 

biological mechanisms underpinning VIMS are still unknown. According to the framework of sensory 

conflict theory, arguably the most widely acknowledged theory for the development of VIMS today 

(Reason and Brand, 1975), VIMS is brought on by the following: contradictory information from the visual, 

vestibular, and somatosensory senses or a mismatch between the arrangement of these three senses and 

what would be expected from prior experience. For instance, the vestibular and somatosensory senses 

communicate stasis, yet the visual stimulation in an immersive but stationary driving simulator may specify 

the self-motion of the driver. In certain situations (such as when there are not adequate adaptive 

mechanisms), this visual-vestibular conflict might cause VIMS. 

 

Many VR applications use vection, an optic flow pattern that creates the illusion of self-motion. For 

instance, a VR driving simulator offers precise optic flow patterns of the road, buildings, and other 

environmental features, producing distinct vection sensations. The visual signals inform the user that they 

are travelling with a specific acceleration in a particular direction. However, because the user is not actively 

moving, the vestibular organs provide signals indicating there is no linear or angular acceleration. This 

sensory conflict results in VIMS because visual signals for self-motion are not supported by inertial forces 

communicated through the vestibular system (Keshavarz et al., 2015).  

 

Positional trackers are a common feature of modern VR head-mounted displays (HMD), allowing users to 

walk around physically in the real world while exploring the virtual environment (Harsora et al., 2017). 

Visual cues are supported by vestibular information when moving about in VR, greatly reducing the conflict 

between the sensory modalities and, consequently, causing VIMS. However, vection is considerably 

stronger when users move their heads, possibly contributing to VIMS (Ash et al., 2011). Palmisano et al. 

(2022) proposed that large amplitude, time-varying patterns of differences in virtual and physical head pose 

caused by head movements and motion-to-photon-based display lag during HMD-based VR are the primary 

triggers for cybersickness. 
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2.5 MOTION SICKNESS MEASUREMENT 

 

2.5.1 SUBJECTIVE MEASURES OF MOTION SICKNESS 

 
Motion sickness evaluations have often been measured subjectively using clinical observation, interview 

methods and predefined questionnaires. Traditionally, subjective self-reports have been used to investigate 

the occurrence of motion sickness. The Simulator Sickness Questionnaire (see Figure 2.1) by Kennedy et 

al. (1993) is one of the most frequently used tools, and it is a 16-item questionnaire that assesses various 

symptom categories of MS, with responses given on a 4-point scale (i.e., none, slight, moderate and severe). 

This questionnaire divides symptoms of motion sickness into three main groups: nausea (N), which includes 

stomach awareness, increased salivation, and nausea itself. Disorientation (D) includes symptoms like 

dizziness, vertigo, and difficulty focusing, while Oculomotor (O) includes eyestrain, headache, and blurred 

vision. Based on previous studies, the highest Fast Motion Sickness rating reported during stimulus 

presentation has been found to strongly correlate with the SSQ (Keshavarz and Hecht, 2014; Peck et al., 

2020). 

 

The Motion Sickness Susceptibility Questionnaire (MSSQ) evaluates the number of times participants had 

previously experienced motion sickness when riding in automobiles, buses, coaches, trains, aeroplanes, 

small boats, ships (such as channel ferries), playground swings, playground roundabouts, big dippers, or 

other amusement park rides. Participants are given the options of not applicable/never travelled, never felt 

sick, seldom felt sick, occasionally felt sick, and frequently felt sick. The questionnaire is subdivided into 

two major sections: a section about MS experienced as a child and a second section about adulthood 

experiences in the past ten years. A raw score for the entire MSSQ scale can be derived and converted into 

percentile values based on the population norms listed in Golding (2006), and higher scores indicate a 

stronger susceptibility to motion sickness. This questionnaire was adopted for this thesis because of its 

usefulness in predicting the individual differences in motion sickness caused by various stimuli. 

 

The Fast Motion Sickness(FMS) questionnaire (Keshavarz & Hecht, 2011) is a verbal questionnaire 

designed to specifically measure the nausea aspect of motion sickness (including stomach awareness and 

general discomfort). Its rating scale ranges from 0 (no sickness) to 20 (frank sickness). The FMS 

questionnaire allows for repeated, frequent assessment of motion sickness. It was selected as one of the 

preferred questionnaires for this thesis because it is easy to administer and records the time course of MS 

when applied frequently, for instance, every two minutes. Additionally, because it consists of only one 

question,  it simplifies its repeated use during the experiment and overcomes the drawbacks associated with 
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many motion sickness questionnaires that are either too long or too complex to be utilized during an 

experiment.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. 1 Simulator Sickness Questionnaire (Figure borrowed from Kennedy et al., 1993) 
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Another type of questionnaire, the Misery Scale (MISC) rating scale (Bos et al. 2005), usually ranges from 

zero (0) to ten (10) (see Figure 2.2), and reliable estimates may be given as frequently as every 30 seconds. 

The scores on the scale represent varying degrees of motion sickness symptoms. A score of 1 indicates that 

the participant is experiencing uneasiness, while scores 2-5 represent varying symptom levels such as 

dizziness, warmth, headache, stomach awareness, or sweating. Scores 6-9 are assigned for varying degrees 

of nausea. A major drawback in its use is that querying participants with the MISC may impact other 

experimental task performance and sickness development due to increased retrospection. 

 

 

Figure 2.2. The Misery Scale (MISC) rating scale (Figure borrowed from Bos et al. 2005) 

 

Pensacola Diagnostic Index (PDI) is one of the most popular questionnaires for evaluating motion sickness. 

Although researchers have widely used it for a long time, its major drawback is that it only produces a 

single score based on the combined intensity of the symptoms of nausea, headache, dizziness, warmth, and 

perspiration. These univariate PDI scores suggest that motion sickness is a construct that ranges along a 

single continuum, from a mild encounter to a severe one (Gianaros et al., 2001). Alternatively, it is possible 

to quantify motion sickness more accurately as a multidimensional construct with various symptom 

components using questionnaires like the SSQ. 

 

All these questionnaires rely on individual interpretation and experience (Cain 2007); therefore, the 

repeatability and validity of subjective assessments are frequently questionable due to individual variances 
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in interpretation (Annett 2002; Cain 2007). Additionally, the results of these measurements do not 

adequately consider physiological mechanisms to allow for an accurate interpretation of the phenomenon 

of motion sickness. To avoid the subjective nature of self-report and to better link to mechanisms, many 

researchers have argued that there is a need for objective evaluation measures. 

 

2.5.2 PHYSIOLOGICAL AND BEHAVIOURAL MEASURES OF MOTION  

SICKNESS 

In contrast to subjective rating measures, psychological measurements promise an objective way to evaluate 

motion sickness by considering physiological and psychological processes. The selected physiological 

measures for this thesis are electrocardiogram (ECG) and cardiovascular measures such as heart rate and 

heart rate variability (HRV), Electrodermal activity (EDA), respiration, and participant body movement. 

These physiological measures were selected because they are frequently linked to psychological stressors 

like motion sickness (Chouk'er et al., 2010). Secondly, they best reflect some of the cardinal signs and 

symptoms of motion sickness (e.g., EDA for sweating; respiration; and body movement for general 

discomfort and fatigue), and thirdly, they are some of the more useful markers for classic motion sickness 

based on previous studies and more recent literature suggesting their relevance to car sickness (Irmak et al., 

2021; Pham Xuan et al., 2021; Stoffregen et al., 2017). 

 

SKIN CONDUCTANCE  

Skin conductance on the palm and sole is associated with autonomic responses, anxiety and arousal. It 

involves measuring electrodermal skin conductance levels throughout the session and phasic changes (skin 

conductance responses) in response to significant driving events (accelerations and decelerations). Several 

studies have been conducted to measure electrodermal activity in motion sickness  (e.g., Wan, Hu & Wang, 

2003; Dahlman et al., 2009; Himi et al., 2004) because one of its primary symptoms is cold sweating 

(Lackner,2014). Hence, electrodermal activity has been researched extensively as a potential motion 

sickness correlate. Many studies (Hu et al., 1991; Warwick-Evans et al., 1987) demonstrated an increase in 

skin conductance level as motion sickness severity increased; however, other investigations were unable to 

detect a difference in skin conductance levels between participants who were motion-sick and those who 

were not (Dahlman et al., 2009; Smyth et al., 2021). 

 

HEART RATE 

The electrocardiogram (ECG) has been used to measure heart rate (e.g., Cowings and Toscano 1993; 

Holmes and Griffin 2001; Mullen et al. 1998) and heart rate variability (Holmes and Griffin 2001; Himi et 

al. 2004; Lin et al. 2011; Ohyama et al. 2007; Dahlman et al. 2009) in motion sickness studies. Several 
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studies have shown that car sickness is associated with increased heart rate, particularly during the early 

stages of exposure to motion sickness (Kennedy et al., 1992). One proposed mechanism for the increase in 

heart rate during car sickness is through activation of the autonomic nervous system, specifically the 

sympathetic nervous system. The sympathetic nervous system is responsible for the "fight or flight" 

response, which increases heart rate, among other physiological changes (Ohyama et al., 2007). According 

to Bos et al. (2008), motion sickness can cause an increase in heart rate, particularly in response to certain 

types of motion, such as pitch and roll, thus suggesting that the sympathetic nervous system may be 

involved in response to motion sickness. Similarly, Cowings et al. (1986) suggest that the activation of the 

sympathetic nervous system in response to sensory conflict can lead to increased heart rate and other 

symptoms of motion sickness.  

 

The spectral analysis of heart rate variability examines the components of low-frequency (LF) and high-

frequency (HF) power as well as the ratio of LF:HF power (or "autonomic balance"). For instance, Holmes 

& Griffin (2001) investigated the changes in both heart rate and heart rate variability before and after the 

onset of nausea. Participants in the study sat in an optokinetic drum (a visual stimulus), rotating at five 

revolutions per minute (rpm) for a maximum of 32 minutes. Heart rate variability, heart rate and motion 

sickness ratings were recorded both at rest before the exposure and during optokinetic stimulation. The 

analysis of variance (ANOVA) showed that HF power and LF:HF power varied significantly with the 

subjective ratings of sickness, while the Newman-Keuls tests showed that this result was typically 

attributable to decreasing HF power and increasing LF:HF power with increasing ratings of sickness. 

Pairwise comparisons showed that (1) HF power was lower at ratings four and six (“mild-moderate nausea” 

and “moderate nausea, want to stop”) than at ratings 0 (“no symptoms”), (2) LF:HF power ratio was higher 

at ratings 5 and 6 than at 0, and (3) there were no significant differences in LF power across rating levels 

(Holmes & Griffin, 2001). 

 

RESPIRATION 

Respiration physiology (RSP) has been used in past studies to measure motion sickness (e.g., Keshavarz et 

al., 2022; Kiryu et al., 2008; Kim et al., 2005). Existing studies suggest that the degree of respiratory 

synchronization with motion frequency could be a factor in the development of motion sickness (Denise et 

al., 2009). Sherwood (2006) found that the mechanical frequencies that cause motion sickness are 

interestingly within the range of natural breathing frequency (0.2-0.3 Hz), which raises the possibility of a 

connection between respiration and motion sickness. It has also been proposed that changes in breathing 

patterns may be a physiological response to the stress and discomfort associated with motion sickness and 

that these changes may exacerbate the symptoms of motion sickness. According to a study by Yen Pik Sang 
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et al. (2005), motion sickness can alter breathing patterns, particularly during the onset of symptoms. 

Similarly, a study by Rahimzadeh et al. (2023) found that breathing exercises can improve symptoms of 

motion sickness, suggesting that there may be a connection between respiration and motion sickness. 

 

BRAIN ACTIVITY 

According to Chen et al. (2010) and Schmäl (2013), the multimodal integration of sensory inputs of the 

brain appears to be a major factor in the development of motion sickness. The occipital cortex processes 

visual input, while the parietal integrate vision with proprioceptive and vestibular inputs. The integration 

and coordination of these different areas normally provide a precise and reliable perception of an 

individual's mobility relative to their environment (Schmäl, 2013). Electroencephalography (EEG) is the 

preferred technique for assessing cerebral activity in motion sickness (Chen et al., 2010; Naqvi et al., 2015) 

because of its portability, non-invasiveness and high temporal precision.  

 

Several studies support the hypothesis that the severity of motion sickness symptoms is positively correlated 

with changes in cortical activity, as measured by EEG, in brain regions associated with vestibular 

processing and autonomic regulation. For instance, Lin et al. (2013) found that motion sickness induced 

changes in EEG spectral power in multiple frequency bands, increased delta and theta power in occipital 

and frontal regions, and decreased alpha and beta power in temporal and parietal regions. Moreover, these 

changes were more pronounced in individuals who reported higher motion sickness symptoms than those 

who did not. Another study by Chen et al. (2010) investigated the relationship between motion sickness 

severity and EEG coherence, a measure of functional connectivity between brain regions. The authors found 

that changes in EEG coherence between occipital and temporal regions and between frontal and temporal 

regions were positively correlated with motion sickness severity. 

 

ELECTROOCULOGRAPHY (EOG) 

In recent years, human-computer interaction (HCI) applications have employed EOG signals because they 

are simple to record and non-invasive using surface electrodes positioned around the eye. The EOG signal 

arises from the electrical potential difference between the eye's anterior and posterior poles, which changes 

orientation when the eye rotates (Banerjee et al., 2014). The magnitude of the EOG picked up at electrodes 

on the face changes approximately sinusoidally with the angle between the sensor plane and the gaze 

direction (Chakraborty et al., 2020). Thus, based on the small angle approximation of the sinusoid, there is 

a nearly linear association between eye movement and EOG amplitude for a modest range of eye 

movements (Banerjee et al., 2015). The EOG signal's amplitude typically ranges from 0.05 mV to 3.5 mV 
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per degree of eyeball rotation, with most of the relevant frequency domain energy ranging from 0.1 to 15 

Hz (Banerjee et al., 2015; Erkaymaz et al., 2015).  

 

One hypothesis explaining the relationship between increases in car motion sickness and eye movement is 

that the frequency and intensity of eye movements can exacerbate the sensory conflict that leads to motion 

sickness. According to Reason and Brand (1975), eye movements, such as those made while reading or 

looking at a screen, can increase the likelihood of experiencing motion sickness in a moving vehicle. This 

is because the eyes constantly shift focus and provide new visual information, which can cause a greater 

discrepancy between the visual and vestibular inputs to the brain. Similarly, Golding et al. (2003) suggest 

that increases in eye movement frequency, particularly in the horizontal plane, can lead to greater motion 

sickness susceptibility. Therefore, it can be hypothesized that as eye movement frequency and intensity 

increase, so too does the likelihood and severity of car motion sickness. 

 

HEAD AND BODY MOVEMENT 

Measures of sway magnitude during quiet stances, such as the velocity or positional variability of the head, 

torso, or centre of pressure, have been found to differ between individuals who are motion sick and those 

who are not (e.g., Bonnet et al., 2006, 2008; Stoffregen & Smart, 1998; Stoffregen et al., 2008; Villard et 

al., 2008). In addition to these effects, some studies have discovered disparities between the motion sick 

and healthy in the dynamics of postural activity as demonstrated by detrended fluctuation analysis (e.g., 

Dong et al., 2011; Stoffregen et al., 2010; Villard et al., 2008).  

 

MULTIVARIATE MEASURES 

Numerous studies have measured multiple independent objective and subjective metrics of motion sickness 

(see Table 2.1). For instance, Irmak, Pool and Happee (2021) investigated the objective and subjective 

responses to motion sickness in individuals and groups. They simulated the temporal evolution of motion 

sickness using a very dynamic sickening drive and discovered that motion sickness did not significantly 

impact head roll. Also, motion sickness and time both caused a small electrocardiogram (ECG) variation. 

Furthermore, Electrodermal Activity (EDA) varied with motion sickness, especially where the tonic and 

phasic EDA increased by 42.5 percent and 90 percent over baseline at high Misery scale (MISC) levels, 

respectively. Complicating its use as a motion sickness marker, EDA also increased with time 

independently of motion sickness, accompanied by significant dispersion. 
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Table 2.1. Sample Related Studies on Motion Sickness Measurement 

Author Stimuli Measurement Participants 

Keshavarz et al. (2022)  

 

Projector: First-person 

viewpoint video 

Electrodermal Activity, 

Electrocardiogram, Electrogastrogram, 

Body temperature, Facial skin 

Temperature, Respiration, Body 

Movement, SSQ, 

56 

Henry et al. (2022) Car: Driving Electroencephalography 9 

Irmak et al. (2021) Car: Driving MISC scale, Head roll, Galvanic Skin 

Response (GSR), and 

electrocardiography (ECG) 

24 

Chuang et al. (2016)  

 

Projector(Simulator): 

Driving 

Motor, parietal, occipital alpha, 

gamma, MSSQ 

19 

Malinska et al. (2015) HMD: Virtual Work 

Station  

Heart Rate, Autonomic Balance (LF, 

HF) 

19 

Nalivaiko et al. (2015) HMD: Rollercoaster Temperature, Heart Rate, MSSQ 26 

Zuzewicz et al. (2011) Head-Mounted 

Display (HMD) 

Simulator: Forklift 

Heart Rate, Autonomic Balance (LF, 

HF) 

24 

Kiryu et al. (2008) First-person viewpoint 

video 

Autonomic balance (LF, HF), 

Respiration (RR, HF, RSA), Blood 

pressure (LF), SSQ 

27 

Kim et al. (2005) Projector : 3D Virtual 

Environment 

Heart Rate, Temperature, Skin 

Conductance, Respiration (RR, HF, 

RSA), gastric tachyarrhythmia, F3, 

T3—delta, F3—slow Beta, T3—beta, 

Eye Blink 

61 

 

Additionally, several studies have attempted to establish a psychophysiological connection between 

an individual's subjective experience of MS and physiological parameters, with conflicting and 

inconclusive results (Bertin et al., 2005; Crampton, 1990; Dahlman et al.,2009; Money, 1970; Ohyama et 

al., 2007; Otto et al., 2006). For example, some studies have shown a weak to moderate correlation between 

MS and gastric activity (Cheung and Vaitkus, 1998; Muth et al., 1996), heart rate (Cowings et al., 1986), 

electrodermal activity (Golding, 1992; Warwick-Evans et al., 1987) and respiration rate (Kim et al., 2005). 
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However, we know of no clear and unambiguous pattern of physiological measurements unique to car 

sickness. 

In a recent study, Keshavarz et al. (2022) investigated the possibility of detecting and predicting the severity 

of visually-induced motion sickness (VIMS) in real-time, using a random forest analysis in conjunction 

with physiological measures like ECG, EDA, electrogastrogram (EGG), respiration, body and skin 

temperature, and body movement. The study involved showing a 15-minute VIMS-inducing video to forty-

three (43) participants. The Simulator Sickness Questionnaire (SSQ) and the Fast Motion Sickness (FMS) 

Scale were used to measure the subjective severity of VIMS. According to the findings, variations in facial 

skin temperature and body movement had the strongest correlation with VIMS. Also, ML models showed 

a medium correlation between the physiological measures (ECG, EDA, EGG, respiration) and the FMS 

scores on a one-minute basis. They concluded that although physiological measures may be beneficial for 

measuring VIMS, they are not a reliable stand-alone approach to detecting or predicting the severity of 

VIMS in real-time. 

 

Li et al. (2022) explored the multi-dimensional and objective assessment of motion sickness severity using 

several ML techniques: support vector machine (SVM), random forest (RF), K-nearest neighbour (KNN), 

and multilayer perceptron (MLP). The study involved inducing motion sickness in 51 participants using a 

Coriolis acceleration stimulus. The results showed that the severity of motion sickness is associated with 

increasing levels of gastric electrical activity, facial skin tone, skin temperature, and nystagmus. Also, based 

on these factors, the support vector machine classifier exhibited the best performance among the ML 

assessment models, with an accuracy of 88.24 percent, a sensitivity of 91.43 percent, and a specificity of 

81.25 percent. Pham Xuan et al. (2021) described a methodology to identify changes in facial skin 

temperatures in a real-driving study. It involved adjusting commonly available techniques to meet the 

requirements of in-car recording and objectively estimating variations in facial temperature caused by car 

motion sickness. They concluded that detecting variations in facial skin temperature using thermal infrared 

imaging while driving is challenging. 

 

Stoffregen et al. (2017) investigated the relationship between users' experience driving real automobiles 

and motion sickness when driving virtual automobiles. The study revealed that drivers with approximately 

30 years of driving experience became motion sick more rapidly than non-drivers or drivers with less than 

15 years of experience driving virtual automobiles. However, the driving experience did not affect the 

frequency or intensity of motion sickness during virtual driving. Different movement patterns were 

observed depending on the driver's driving experience. Participants who later experienced motion sickness 

moved differently from those who did not. Specifically, positional variability of the head and torso in the 
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AP and ML  axes was greater among non-drivers than drivers, meaning that approximately 30 years of 

driving experience reduced the spatial magnitude of body movement during virtual driving. Most 

importantly, patterns of postural activity that occurred during the virtual drive and before the onset of 

motion sickness were influenced by the physical driving experience. Their findings support the postural 

instability theory of motion sickness and provide insight into the connections between real and virtual 

vehicle driving controls. 

 

Dennison et al. (2016) exposed 20 participants to a virtual environment and assessed their level of MS using 

the Simulator Sickness Questionnaire and a subjective rating scale. They collected a range of physiological 

measures such as electrocardiograms, electrogastrograms, electrooculograms, pulse oximeter readings, 

respiration, and electrodermal activity (EDA). They found the strongest correlation with the EGG measures 

at r = -0.335, and linear regressions revealed that physiological measures could only account for about 10% 

of the total variance in the SSQ nausea data. Also, correlations between the SSQ nausea subscale and all 

physiological measures were weak to moderate and not statistically significant. 

 

More recently, deep learning and machine learning (ML) approaches have been suggested as a viable way 

to understand better the connection between physiological changes and the subjective experience of 

visually-induced motion sickness (Tauscher et al., 2020). For instance, Li et al. (2019) demonstrated that 

based on measurements of Electroencephalography (EEG), postural sway, and head and waist motion 

tracking, it was possible to classify users in a VR application as sick or non-sick with a high accuracy rate. 

Similarly, Recenti et al. (2021) classified their participants post hoc as sick or not sick by combining EEG 

with postural sway. However, neither study examined whether ML approaches accurately estimate VIMS 

severity during stimulus presentation or the ability to identify the onset of symptoms quickly and reliably. 

 

2.6 LITERATURE REVIEW SUMMARY 

No recent study that the researcher is aware of has investigated how machine-learning techniques can be 

used to detect patterns derived from multiple physiological measures that are diagnostic and predictive of 

an episode of car sickness. Although existing studies have identified a plethora of independent objective 

metrics of motion sickness, it is unknown what the precise relationships are between these measures. 

Additionally, while studies relating motion sickness with physiological measures exist, most recent work 

has focused on VIMS. However, these have not been validated for car sickness, especially device usage in 

a car. Therefore, this thesis aims to bridge this research gap by investigating the correlation between several 

independent objective measures of motion sickness in the context of reading in a car and developing a 
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model that connects these objective measures to predict motion sickness from a combination of these 

signals. 

 

The outcome will be a better understanding of motion sickness symptoms' likelihood and potential impact 

during device use in various automotive scenarios based on so-called "objective measures". The 

measurement of postural instability, specifically the head/body movement, is motivated by the important 

theoretical role of this construct in the seasickness and airsickness literature. Evaluating the head/body 

movement was an important subgoal of this project as it is unclear how well this transfers to car sickness 

and how to measure it in a seated individual best. The specific goals of this research include using 

quantitative analysis and machine learning (ML) approaches to, firstly, detect and identify changes in 

physiological and behavioural measures linked to the onset of car sickness and, secondly, serve as 

foundational research towards categorization of participants as sick or not sick based on physiological and 

behavioural measures using real-time estimates.  
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CHAPTER THREE – METHODOLOGY 

 

3.1  STIMULUS 

3.1.1 APPARATUS (HARDWARE AND SOFTWARE) 

The experiment involved simulated driving using a limited motion-base, left-hand drive, traffic driving 

simulator with three (3) mechanical degrees of freedom (heave, roll, pitch), as shown in Table 3.1. The 

SCANeR® studio simulator software (SCANeR, 2022) was installed on a desktop server with Microsoft 

Windows Professional operating system (version 10.0.19042, build 19042), 64GB memory and model HP 

Z1 G8 tower. The simulator software controlled the motion-base driving simulator and was used to create 

the road geometry, landscape and traffic scenario. It affords a graphical environment that includes modules 

for vehicle dynamics, sensor models, data recording, configuring, preparing, running simulations and 

analyzing results. For these experiments, the visual displays were turned off. 

 

This software could also replicate vehicle dynamics and induce motion sickness sensations like on a real 

road. Kuiper et al. (2019) argue that motion-base simulators can elicit car sickness for research purposes 

using a lateral sinusoidal motion at 0.2 Hz if visual-induced simulator sickness is avoided. As the focus 

here is reading from a mobile device during car rides, it was possible to accomplish this. Consequently, a 

rotation on the pitch axis at a frequency of 0.2 Hz was adopted for the base of the driving simulator during 

the main test as it was confirmed to elicit adequate motion sickness levels during pilot testing. The pitch 

axis was in the simulator base below the participant's feet, and therefore the stimulus included 

forward/backward and up/down translation as the head pitched. The pitch axis was in the simulator base 

below the participant's feet, and therefore the stimulus included forward/backward and up/down translation 

as the head pitched. There was minimal lighting to aid movement around the room, and the simulated car 

cabin was dimly visible. The simulator cabin/room temperature was also controlled and monitored at 24 

degrees Celsius. 

Table 3.1: Limits for the degree of freedom of the motion-base simulator 

 

 

The BiosignalpluxTM signal acquisition system with multiple sensors and the MuseTM S (Gen 2) model 

Headset were adopted for the real-time data collection of the physiological and behavioural measures. These 

devices can also save the data collected in Comma Separated Value (CSV) files at the end of the experiment 
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sessions for subsequent statistical analysis. The data analyses involved using MATLAB, EEGLAB software 

tools, and Python programming language. The reading task was presented using a 10-inch Huawei Mobile 

device with an Android Operating system. 

 

3.1.2 PROCEDURE 

Before starting the experiment, participants sat with sensors attached for about ten minutes to acclimatize 

and stabilize the electrode interfaces after providing informed consent and demographic information, and 

the experiment was explained. After that, the initial response from the Simulator Sickness Questionnaire 

(SSQ) shown in Figure 2.1 was recorded before the participants were directed to sit in the motion-base 

simulator. This pre-exposure SSQ helped to ensure that participants were not already motion sick before 

the experiment and were aware of the subjective symptoms of motion sickness, thus providing a baseline 

against which to compare post-exposure results.  

 

Following checks of biosignal integrity, the experiment commenced with an eye-tracking calibration 

procedure to support subsequent analysis of the EOG data. The calibration was necessary because eye 

movements are measured in degrees while the EOG electrode signals are in volts. Therefore, a calibration 

curve is necessary to determine the relationship between the amplitude of the recorded voltage and the 

actual eye movements generated by participants. The calibration session involved participants sitting 55 cm 

away from a target box with six equidistant markers; each spaced 4.1 cm apart in a cross pattern. Then, 

participants were asked to fixate on each of the six markers for 30 seconds by moving their eyes to the left-

center-right and up-center-down positions of the markers. The eye movements were recorded using an EOG 

sensor at a frequency of 300 Hz 

 

The motion-base simulator was started, and participants experienced a dynamically controlled sinusoidal 

oscillation while accomplishing a Non-Driving Related Task (NDRT) on a mobile device's screen or while 

performing no task. The NDRT task involved reading comprehension passages (Borojeni et al., 2018) on a 

mobile device with recall questions to ensure the participants were attending to the task. This task was 

chosen due to its cognitive similarity to reading, writing text messages, or conversing, which are expected 

tasks in an automated driving context. Participants were required to read comprehension passages and 

answer some follow-up questions related to the comprehension passages to ensure they were attending to 

the reading task. The no-task condition simulated a normal passenger experience with no task to perform; 

participants were required to look straight ahead without focusing on any particular object, thus affording 



26 

 

the participants the flexibility to look at any object within their frontal view while maintaining a standard 

posture with their feet on the floor.  

 

The automatically simulated car drive lasted 20 minutes for each Task condition, with a ten-minute break 

between the conditions to allow any motion sickness symptoms from the first condition to wear off before 

the onset of the second condition. However, participants were permitted to stop if they experienced motion 

sickness symptoms that necessitated stopping. During the ride, objective measures such as 

electroencephalogram (EEG), electrocardiogram (ECG), electrooculogram (EOG) and Electrodermal 

activity (EDA), respiration and behavioural measures such as head/body movement, were recorded and 

analyzed.  

 

Participants were asked to verbally rate their current motion sickness status every two minutes during the 

session using a Fast Motion Sickness (FMS) questionnaire with prompts administered as an audio recording 

via the sound module of the motion-base simulator server. The FMS questionnaire was necessary to assess 

the incidence and degree of car motion sickness. It is a verbal rating scale ranging from 0 (no sickness) to 

20 (frank sickness) and focuses on subjects' general discomfort, nausea, and stomach problems (Keshavarz 

& Hecht, 2011). Participants were instructed to base their ratings on relevant symptoms like nausea, general 

discomfort and stomach problems but ignore likely distorting effects such as nervousness, boredom or 

fatigue.  

 

Participants' incidence and severity of motion sickness using the SSQ were evaluated multiple times. In 

addition to the pre-exposure SSQ administered at the beginning of the experiments, participants were also 

required to give detailed feedback on their motion sickness status using the SSQ at the end of each simulated 

drive. According to Kennedy et al. (1993), simulator sickness differs significantly from motion sickness 

(MS) because it is less severe and affects a smaller portion of the exposed population. Therefore, researchers 

often eliminate from the SS analyses the MS symptoms reported less infrequently or showing no changes 

in frequency or severity reported before and after simulator exposure leaving sixteen (16) symptoms 

grouped into three subscales: oculomotor (O), disorientation (D) and nausea (N). The subscale analysis of 

the SSQ is necessary to confirm that participants experienced car sickness symptomology rather than 

simulator sickness (SS) as symptoms in the nausea (N) subscale, such as general discomfort, stomach 

awareness and increased salivation, should be dominant. 

3.1.3 DESIGN 

The experiment was fully within subjects with the following NDRT task as the independent variable with 

two levels: 
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• No task 

• Reading Task  

The NDRT variable was necessary to ensure adequate data collection and to elicit a suitable range of car 

sickness. The independent variable was assigned alternately with twenty (20) participants per order to 

counterbalance and control for sequence or order effects. 

  

The dependent variables in this experiment were (1) the repeated FMS and SSQ responses, (2) the 

physiological and behavioural time-series measures: electroencephalogram (EEG), electrocardiogram 

(ECG), respiration (RIP), electrooculogram (EOG), electrodermal activity (EDA), and head movement, and 

(3) the measured platform motion profile. 

 
 

3.2 PARTICIPANTS 

A non-probabilistic sampling method, specifically convenience sampling, was used in sourcing the research 

population because of its ease and availability of research volunteers. The study entailed a simulated driving 

scenario, and a pilot test was conducted before the main experiment. The pilot test was necessary to assist 

the researcher in exploring and analyzing various physiological measures in order to adopt the most suitable 

subset for the project based on the outcome of the pilot studies. Ten Huawei employees were recruited for 

the pilot experiments.  

 
 

The main study involved 40 participants, comprising 20 male and 20 female participants recruited from the 

broader York Community. The researcher had no previous relationship with the participants in the main 

experiments. Participants in the main study were required to confirm normal or corrected to normal vision 

using contact lenses or eyeglasses because of the reading task. The study was designed in accordance with 

common ethical research principles and approved by York University's Research Ethics Board. All 

participants provided written consent before the commencement of the study. Participants were also 

informed about their rights to withdraw from the study at any time without negative consequences. A $25 

compensation was given to the participants to reimburse them for their time commitment and travel to the 

study. As part of the demographic information collected, the participants' susceptibility to car sickness was 

assessed based on their self-evaluated subjective ratings using the Motion Sickness Susceptibility 

Questionnaire-Short (Golding, 1998). 

3.3  PHYSIOLOGICAL MEASURES 

The physiological data of the participants were recorded using a number of sensors. The BiosignalspluxTM 

sensor was used to measure the Respiration, EOG and EDA, while the MuseTM Headset was used to record 
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the EEG and head movement. The Biosignalsplux® is a multi-sensor device designed for biosignal 

acquisitions at a selectable sampling frequency ranging from 300Hz to 1000Hz. It can collect and digitize 

biosignals, transmit them via Bluetooth® and is integrated with OpenSignals®, an easy-to-use, versatile 

software useful for real-time biosignals data recording and visualization.  

 

ELECTROCARDIOGRAM (ECG) 

The ECG activity was recorded using three gelled self-adhesive Ag/AgCl electrodes placed on the 

participant's body using BiosignalPlux's recommended configuration. The Biosignalsplux ECG is a triode 

configuration primarily designed to acquire single-lead ECG data using the Einthoven configuration (see 

Figure 3.1), which allows the positioning of the electrode cables using three different ECG leads. Lead I 

was positioned to measure from the right arm (RA) to the left arm (LA), Lead II measured from the RA to 

the left foot (LF), and Lead III measured from the LA to the LF. The electrodes were placed under the right 

clavicle, left clavicle, and below the left rib cage. The ECG signal was then used to calculate heart rate 

(HR) in beats per minute (BPM) and HRV parameters, including the RR interval (RR-I), root mean square 

of successive differences (RMSSD), and percentage of adjacent RR-I's that differ by more than 50 ms 

(pNN50). RR-I represents the time between consecutive heartbeats in the ECG waveform. RMSSD reflects 

the beat-to-beat variance in HR, while pNN50 is a common metric used to measure short-term variability 

within the RR-I series during stimulus exposure. A multi-epoch statistical analysis was performed to extract 

time-domain measures of HRV. 

 

Figure 3.1: Electrode placements for ECG acquisitions in Einthoven configurations using the standard ECG sensor 

(Figure borrowed from BiosignalpluxTM, 2022) 
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ELECTROOCULOGRAPHY (EOG) 

The Electrooculography (EOG) sensor by PLUX is bipolar with two measurement electrodes that can be 

used to detect electrical potentials in the chosen temporal or facial region relative to a reference electrode 

placed in an area of low bioelectrical activity (see Figure 3.2). As the difference between these two leads is 

amplified, the resulting signal eliminates any common unwanted signals. The electrodes of the EOG sensor 

were positioned, as illustrated in Figure 3.2, to measure horizontal eye movements. This positioning allows 

the measurement of conjugate eye movements (yoked movements of the left and right eyes), where 

horizontal eye movement to the left triggers a positive peak, and horizontal eye movement to the right 

triggers a negative peak. The electrode amplifier was AC coupled, and therefore constant signals during 

fixation drifted back to 0 V; as a result, the changes in potential at each fixation were used for calibration 

rather than steady-state levels. The electrodes were arranged to record horizontal eye movements, and 

calibration was based on the horizontally-spaced targets. The vertical calibration targets and fixations were 

used to ensure there was minimal cross-coupling of vertical eye movements. 

 

 

Figure 3.2. Placement of the EOG sensor electrodes to measure horizontal eye movements.  (Figure borrowed from 

BiosignalpluxTM, 2022) 

RESPIRATION 

Respiration patterns were measured using an inductive respiration sensor from PLUX. The sensor is 

embedded in an adjustable nylon fabric belt, spanning the entire chest length. The belt was placed around 

5 cm below the participant's underarm at the maximum respiratory expansion level. The RIP sensor 

measures the overall displacement of the thorax or abdomen, making it less susceptible to motion-induced 

artifacts. The elastic strap can be adjusted in length to accommodate different anatomies and body locations. 

According to Ambekar and Prabhu (2015), healthy adults typically have a resting respiration rate of between 
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12 and 18 breaths per minute. However, the respiratory rate has been found to increase during MS 

symptoms, such as nausea (Javaid et al., 2019). 

 

ELECTRODERMAL ACTIVITY (EDA) 

Two gelled self-adhesive Ag/AgCl surface electrodes (model EL507) were placed on the participant's non-

dominant hand's middle finger (ground electrode) and index finger (active electrode) to measure the EDA. 

The emphasis is on observing changes in skin conductance level (SCL) to reflect stable modifications in 

skin conductance that can be noticed over time. Typically, SCL activity ranges from two micro siemens 

(2μS) to 20μS (Dawson et al., 2007).  

 

ELECTROENCEPHALOGRAM (EEG) 

The MuseTM Headband was employed to measure the electroencephalogram (EEG). The MuseTM Headband 

is a wearable wireless device with five dry electrodes located at AF7, AF8, TP9, TP10 and AUXR with a 

sampling frequency of 256 Hz. These electrodes are roughly equivalent to the analogous electrodes in the 

10-20 International electrode system (Krigolson et al., 2017, Wilkinson et al., 2020, Chan et al., 2021) and 

correspond to placements behind the left ear, on the left and right forehead, behind the right ear and a right 

auxiliary, respectively. The MuseTM headband was chosen for measuring EEG because it is a commercially 

available EEG device with the fewest electrodes, as any real application will be limited in the number of 

placement electrodes incorporated into a wearable device.  

 

The Muse headband was fully charged before its use for most recording sessions, and participants' skin was 

cleaned to remove dirt or the buildup of natural oils on the skin. A thin layer of water was applied to the 

dry electrodes of the MuseTM Headband using a cotton ball for both the frontal metallic sensors and the 

conductive silicone rubber mastoid sensors located behind the ears to improve signal quality and reduce 

impedance. Also, its fit was tightened or loosened as required based on the size of the participant's head 

while ensuring there was no hair between the sensors and the skin, especially behind the ears. In addition, 

participants were made to wear the headband about three minutes before starting the experiment to ensure 

the signals settled into a consistent state. 

 

 The MuseTM also has an onboard digital signal processing (DSP) module capable of noise filtering and 

integrates with the MindMonitorTM software installed on an iPhone 13 device with iOS (iPhone Operating 

System) version 16 for data recording. In addition to data recording, the Mindmonitor app allowed checking 

of electrode contact where a fully coloured circle on the horseshoe display denoted a good and acceptable 
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level of electrode connectivity with the skin. A visual inspection of the raw EEG waveforms was also 

performed, and the headset was re-adjusted if the signal was too noisy. 

 

3.4  BEHAVIOURAL MEASURES 

 

HEAD AND BODY MOVEMENT 

In addition to using the MuseTM Headband to measure EEG, the head movement of the participant was 

recorded using the MuseTM inertial sensors consisting of the triaxial accelerometer and gyroscope sampled 

at 256 Hz. The measurement of head motion was motivated by the significant theoretical role of postural 

stability in the literature on airsickness and seasickness. Therefore evaluating this was a crucial subgoal of 

this project because it is unclear how well it applies to car sickness.  

 

3.5 SUBJECTIVE MEASURES 

Two questionnaire methods were used to measure motion sickness before, during, and after each condition. 

The first method involved participants rating their level of MS every two minutes using the Fast Motion 

Sickness Scale (FMS). The second method involved using the standardized Simulator Sickness 

Questionnaire (SSQ) before each of the conditions and after the last condition (see section 2.5.1). 

 

3.6 DATA PREPROCESSING 

All the physiological signals except the EEG were collected at a sampling rate of 300 Hz and preprocessed 

using Biosppy libraries in Python. In contrast, the EEG was collected at a sampling rate of 256 Hz and 

preprocessed using Matlab and EEGLAB. The raw digital sensor readings from the Biosignalsplux device 

corresponding to the EOG and EDA were converted to the appropriate units using relevant conversion 

factors. Specifically, the raw EDA signals were converted to microsiemens before further processing using 

the Biosspy libraries, while the EOG signals were converted to millivolts. Subsequently, large artifacts in 

the raw signal, such as noise spikes or equipment failures that deviated from the median by at least three 

times the interquartile range, were considered outliers and corrected by interpolating values to replace the 

artifacts in the respective channel(s).  

A Butterworth low-pass digital filter with a cutoff of 5 Hz was applied to the EDA channel to remove high-

frequency noise, while for the respiration signals, a Butterworth bandpass filter with a lower frequency of 

0.1Hz and higher frequency of 0.35Hz was applied to filter the signal. For the ECG signals, a Finite Impulse 

Response (FIR) bandpass filter set at 45Hz with a lower cutoff limit of 3Hz was applied to correct for 

baseline drift and movement in the ECG signal. Analyses were conducted for each physiological measure 
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to extract relevant features such as the mean and standard deviation to observe changes over time within 

the sample. For the EOG data, a lowpass Butterworth filter was employed to remove noise, then artifacts 

such as blinks were removed using visual inspection techniques before applying each participant’s 

calibration values to convert the signals from millivolts to angular degrees.  

 

Perhaps, one of the greatest difficulties faced during this study was in setting up participants with the 

MUSETM Headband for data collection. The EEG, including accelerometer and gyroscope data for 

head/body movement, was recorded using the MuseTM. It was not easy obtaining adequate data quality from 

the MUSETM headband, and this difficulty was largely due to insufficient connection between the 

participants' heads with the respective electrodes' scalp locations on the headband. Specifically, certain head 

shapes, head sizes and hairstyles made data collection quite difficult despite gaining adequate expertise 

with the MUSE headband during the pilot tests. Data was streamed from the Muse headband directly to the 

Mindmonitor application via Bluetooth connection and at a sampling frequency of 256 Hz.  The EEGLAB 

was employed for the pre-processing of the EEG data. Firstly, excessively noisy or faulty electrodes were 

removed, then eye movement artifacts were removed using visual inspection techniques and corrected using 

independent component analysis before employing high-pass filtering. Subsequently, a second round of 

semi-automated and visual inspection-based rejection of bad data segments on the derived components was 

performed before a second ICA (Delorme and Makeig, 2004; Luck, 2014). 

 

The accelerometer and gyroscope data were extracted from the original Muse CSV files containing the EEG 

data by selecting the relevant columns: Accelerometer_X, Accelerometer_Y, Accelerometer_Z, Gyro_X, 

Gyro_Y and Gyro_Z using Python libraries. Subsequently, relevant statistical features such as the standard 

deviation were extracted from the data. 
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CHAPTER FOUR – RESULTS 

4.1 INTRODUCTION 

This chapter is organized into six major sections, with section 4.2 describing the reading task performance 

and section 4.3 reviewing the driving simulator vehicle's dynamics data and conformance with the desired 

motion profiles. Subsequently, the experimental results and analysis for the physiological, behavioural and 

subjective measures, including the correlation between these measures, are provided in sections 4.3 to 4.6. 

Thereafter, the development and performance of machine learning models predicting car sickness are 

presented in section 4.7. 

4.2 TASK PERFORMANCE AND RELATION TO CAR SICKNESS 

The study recruited 40 participants (female=20 and male=20) with a mean age of 29.38 years (SD = 8.80). 

The experiment involved two different conditions: a Non-Driving Related Task (NDRT), which involved 

reading on a mobile device's screen, and a no-task condition. The reading task yielded a higher FMS rating 

(M = 4.34) in comparison with the no-task (M= 4.09, see Figure 4.1). However, this effect was not 

statistically significant (F1,38 = 0.258, p = .615). Also, the effect of the group on the FMS ratings was not 

statistically significant (F1,38 = 0.590, p = .447), which means that counterbalancing of the conditions 

worked and had the desired result of offsetting the task order effect. Finally, the task x group interaction 

effect was not statistically significant (F1,38 = 2.581, p = .116). 

 

Figure 4.1. Results of Mean FMS Rating versus Task Condition. Error bars show ± 1 standard error of the mean 

(SEM). 
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4.3 VEHICLE MOTION 

The specified profile for the motion base simulator for this experiment was 0.2 Hz peak-to-peak sinusoidal 

motion in pitch. To confirm the motion profile moved at a frequency of 0.2 Hz in the pitch axis, the MuseTM 

Headset was strapped to the seat of the motion-base driving simulator during a sample drive with no 

participant to record the actual vehicular motion. In Figure 4.2, the raw and noisy MuseTM gyroscope data 

representing the movement of the motion-base platform in the pitch axis is presented alongside the heavily 

filtered version processed using a cut-off frequency of 0.5 Hz.  

  

 

Figure 4.2. Motion simulator vehicle dynamics measured using an IMU. 

4.4 SUBJECTIVE MEASURES 

The stimulus was provocative in eliciting motion sickness symptoms: 31 participants reported FMS ratings 

of 4 and above (see Figures 4.3 a-c), while 29 participants had an SSQ nausea subscale score of 20 or higher 

across the second and third simulator sickness questionnaires (see Figures 4.4a and 4.4b). Five participants 

recorded a total score of 20 or higher for the first simulator sickness questionnaire. Using a combination of 

the peak FMS ratings and the SSQ nausea subscale score, participants who reported a peak FMS score of 4 

or higher and an SSQ nausea score of 20 or higher across the second and third simulator sickness 

questionnaires were classified as motion sick. Consequently, of the 40 participants, 29 were classified as 

motion sick (72.5%), while 11 were classified as not motion sick (27.5%). The distribution of the peak FMS 

ratings over the course of the experiment is presented in Figure 4.3a. On average, the self-reported sickness 

levels increased with exposure time for both conditions. Additional charts showing the FMS ratings of the 

40 participants as measured every two minutes using the FMS questionnaire for each task condition are 

available in the Appendix section and show this was generally true for individual participants as well, 

although there is considerable intersubject variation in reported sickness (See Appendices A, B and C). 
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Figure 4.3 a. Highest FMS Rating per participant 

 

Figure 4.3 b. Average FMS Rating per FMS count for Condition 1. Error bars show ± 1 SEM 

 

Figure 4.3 c. Average FMS Rating per FMS count for Condition 1. Error bars show ±  

1 SEM 
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Figure 4.4 a. Simulator sickness questionnaire 2 (SSQ2) subscale scores for all participants. The Box-and-Whisker 

Plot includes these parts: the mean (denoted by a square), the median (denoted by a horizontal bar in the box), the 

25th percentile (denoted by the bottom edge of the box), the 75th percentile (denoted by the top edge of the box), the 

5th percentile (denoted by the bottom edge of the whisker), the 95th percentile (denoted by the top edge of the 

whisker), and the dots denote the data distribution. 

 

 

Figure 4.4 b. Simulator sickness questionnaire 3 (SSQ3) subscale scores for all participants. 

 

4.4.1 CORRELATIONS FOR SUBJECTIVE MEASURES 

Pearson's correlations were calculated to explore the relationship between the SSQ subscales, the SSQ total 

score, the FMS score and the MSSQ scores (see Figures 4.5a and b). The strongest correlations with the 
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FMS score were with the third SSQ nausea subscale score (r = 0.85) and the total score (r = 0.80), as shown 

in Figure 4.5b, while the MSSQ subscales for the child (r = 0.01) and adult (r = 0.29) showed weak 

correlations. 

 

Figure 4.5 a. Pearson correlation matrix for the 10th FMS score, second SSQ subscales scores (nausea, 

disorientation, oculomotor and total scores), and the MSSQ subscales (child and adult) for all participants 

 
Figure 4.5 b. Pearson correlation matrix for the 20th FMS score, third SSQ subscales scores (nausea, disorientation, 

oculomotor and total scores), and the MSSQ subscales (child and adult) for all participants 

4.5 PHYSIOLOGICAL MEASURES 

The correlation between physiological measures and subjective motion sickness was analyzed in two ways. 

The first analysis associated the instantaneous physiological and behavioural measures (e.g. heart rate, 

respiration rate, skin conductance, accelerometer and gyroscope readings) with FMS ratings at the time 
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when the FMS was administered. Correlations between these instantaneous signals, the time elapsed since 

the start of the experiment, and the simultaneous FMS ratings were computed using the applicable Python 

programming libraries such as Biosppy, sci-kit, and numpy.  

 

The second analysis involved computing the variability of the physiological and behavioural data over 60-

second time segments centred on the times when the FMS rating was recorded. This analysis was necessary 

to extract time-series data congruent with the FMS ratings of motion sickness for subsequent analysis of 

the relationship between variability (e.g. mean and standard deviation) and FMS ratings. Nine participants 

were removed from the physiological measures analysis because eight reported zero FMS values throughout 

the experiment, and one participant had partially missing physiological data resulting in a final sample size 

of 31 participants and 620 data points corresponding to 20 FMS points per participant across the entire 

experiment. 

 

ELECTROCARDIOGRAM (ECG) 

The raw ECG signals measured in millivolts show the characteristic cardiac potential waveform as shown 

in Figure 4.6, with the key features for heart rate estimation being the R wave peak of the QRS component 

and the interval between subsequent R peaks (RR interval). As discussed in section 3.6, the Biosppy 

package was used to analyze the RR intervals to extract heart rate in beats per minute (bpm) and related 

measures of variability.  

 

Figure 4.6 a. Sample Heart Rate of a participant measured over 6 seconds 

Pearson’s correlations were computed between the FMS scores and the mean of the heart rate over 60 

seconds time intervals surrounding the times when the FMS questionnaire was administered  (see Figures 

4.7a to c). Heart rate showed low correlations with FMS rating (r = 0.029) for condition 1. Similarly, for 

condition 2, heart rate showed little correlation with FMS ratings (r = 0.063). In addition,  heart rate showed 

a moderate correlation with skin conductance at r = 0.37 across the first condition, and this relationship was 

found to be statistically significant (p = .04); however, the combined correlation ( r = 0.32) across both 
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conditions was not statistically significant (p = .08) (see Figures 4.7 a to c).  Interestingly, for the subset of 

participants who had the reading task as the second condition, there is a moderately strong correlation 

between heart rate and FMS rating (r = 0.43), as shown in Figure 4.8. Additionally, a subset of participants 

with FMS ratings of 8 and above (N = 13) showed a statistically significant high correlation between 

conductance and heart rate for the first condition (r (13) = 0.6,  p = .030), moderate correlation for both the 

second condition (r(13) = 0.43, p = .143)  and the combined conditions ( r (13) = 0.52, p = .069) (see Figures 

4.9a to c).  

a)         b)  

c)  

Figure 4.7 a - c. Pearson's correlation chart of the mean of physiological measures with each other, FMS and FMS 

Count across conditions 1, 2 and across both conditions pooled together. 
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Figure 4.8 1. Pearson's correlation charts of physiological measures with each other, time and FMS for participants 

that observed Reading Task as the second condition 

 a)     b)  

c)  

Figure 4.9 a - c. Pearson's Correlation chart of physiological measures with time and FMS across conditions 1, 2 and 

the two conditions pooled together for a subset of participants with FMS ratings > 8 
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 a)           b)  

c)  

Figure 4.10 a-c. Pearson's correlation chart of heart rate variability parameters with each other, time and FMS across 

conditions 1 and 2 and the two conditions pooled together, respectively 

RESPIRATION 

Raw respiration signals were converted to chest displacement in percentage (see Figure 4.11)  and then 

used to calculate respiration rate in Hz (see Figures 4.12 a and b). Respiration rate showed low negative 

correlations with FMS for condition 1 (r = -0.09) and similarly for condition 2 (r = -0.28) for the correlation 

relationships computed between the FMS scores and the mean of the respiration rate over 60 seconds time 

intervals surrounding the times when the FMS questionnaire was administered (see Figures 4.7 a to c), 

 

Figure 4.11.  Chest displacement of a participant over 60 seconds during condition 1 
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SKIN CONDUCTANCE 

Recorded electrodermal activity was directly converted to skin conductance in microSiemens. For the 

Pearson’s correlations computed between the FMS scores and the mean of the skin conductance over 60 

seconds time intervals surrounding the times when the FMS questionnaire was administered (see Figures 

4.7 d to f), skin conductance showed moderately low negative correlations with FMS for condition 1 (r = -

0.1) and similarly for condition 2 (r = -0.31). 

 

ELECTROCULOGRAM (EOG) 

After preprocessing the horizontal eye movements data from the ac-coupled EOG sensor, as discussed in 

section 3.6, eye blinks artifacts were removed via visual inspection techniques using the EEGLAB software. 

The calibration factor for each participant was also computed and used to convert the EOG data from 

millivolts to degrees. A custom algorithm was developed to compute the total number of saccades over a 

60-second time interval when the FMS questionnaire was administered based on whenever the eye velocity 

exceeds a specified threshold of 30 degrees per second (Dai et al., 2021).  

 

This velocity threshold was necessary to filter out noise or small eye movements and ensure only 

meaningful saccades are included in the analysis. Additionally, a minimum duration threshold of 20 

milliseconds was also specified to filter out high-frequency movements that are unlikely to be saccades. 

Pearson correlations were calculated to explore the relationship between the number of saccades computed 

over 60 seconds time intervals centred on when the FMS questionnaire was administered with the FMS 

ratings (see Figures 4.12a to c). The number of saccades and the FMS rating had a moderately low negative 

correlation r = -0.12 (see Figure 4.12c). 

a)  b)                                                                             



43 

 

c)  

Figure 4.12 a-c. Pearson's correlation chart of the number of saccades with FMS rating during the reading task for 

participants in group 1, group 2 and both groups pooled together, respectively. 

 

ELECTROENCEPHALOGRAM (EEG) 

The data processing stage for the EEG data collected using the Muse Headset is shown in Figure 4.13a 

 

Figure 4.13 a. Processing steps for the Muse EEG data (figure borrowed from Delorme and Makeig, 2004) 

The researcher performed the recommended steps by the original equipment manufacturer (OEM) to ensure 

good signal quality on the Muse Headset. However, a preliminary exploration of the recorded EEG data 

using the mind-monitor application revealed frequent bad-fit data markers in individual recordings across 

several participants. A bad fit data marker indicates possible bad recording caused by data quality dropping 

below the minimum requirements. This Area of bad quality data is typically displayed on the chart with the 

markers "BF" for "Bad Fit" or a "J" for "Jaw Clench", which produces a lot of Electromyography (EMG) 

interference that can override the EEG signal and invalidate the results (see Table 4.1 and Figure 4.13b). 

Ideally, for good data quality, the raw EEG data should have a 50uV difference between its minimum and 

maximum values, with large spikes only when blinking.  
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Figure 4.13 b. Sample visualization of the EEG data for a participant using the mind monitor application 

 

Table 4.1: Error Messages from the Muse Headset EEG Data Recordings  
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Although the EEG may be a potential biomarker in determining motion sickness, the use of the Muse 

Headset in measuring EEG is impractical for large-scale experiments. Specifically, data quality issues were 

found in more than half of the participants and data collection was challenging with certain head shapes, 

head sizes, and hairstyles; this is an important factor to consider when using portable EEG equipment like 

the Muse Headset (Krigolson et al., 2017). Consequently, the EEG data is removed from further analysis 

to avoid erroneous results. 

4.6 BEHAVIOURAL MEASURES 

Pearson correlations were computed between the FMS scores and the standard deviation of the 

accelerometer and gyroscope readings over 60 seconds time intervals surrounding the times when the FMS 

questionnaire was administered (see Figures 4.14a to c). Accelerometer_X, Accelerometer_Y and 

Accelerometer_Z refer to the standard deviation of acceleration along the head forward, lateral and vertical 

axes. Thus, they mainly respond to changes in the orientation of the head with respect to gravity; 

specifically, head tilt up and down (X), tilt left and right (Y) and both directions of tilt and vertical motion 

up and down (Z). Gyro_X, Gyro_Y and Gyro_Z provide angular rotation while tilting left and right (roll), 

tilting up and down (pitch) and rotating left and right (yaw), respectively. The strongest correlation with 

the FMS score was found for the Accelerometer_Y axis, and this relationship was statistically significant 

(r = 0.43, p = .015), suggesting that participants tended to vary the tilt of their heads more with increasing 

car sickness. 

a)           b)  

 

Figure 4.14 a – c. Pearson Correlation chart of the standard deviation of accelerometer and gyroscope measures with 

FMS scores for task order 1,2 and combined task, respectively 
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4.7 GENDER COMPARISON 

As shown in Figure 4.15 and Appendices D and E, for the No Task condition, females had a higher mean 

FMS score of 4.74 while males had a lower mean FMS score of 3.47 for the No Task condition; however, 

this effect was not statistically significant (F1,38 = .877, p = .355). Similarly, for the Reading Task condition, 

females had a higher mean FMS score of 4.80 compared to males at 3.88; however, this effect was also not 

statistically significant (F1,38 = .644, p = .427). For the correlation of the physiological measures with FMS 

scores, the females had a higher positive correlation between heart rate and FMS scores with r = 0.24 for 

condition one, r = 0.39 for condition two and r = 0.29 across both conditions pooled together (see Figures 

4.16a to c). While the males had a negative correlation between heart rate and  FMS scores with r = -0.14 

for condition one, r = -0.39 for condition two and r = -0.24 across both conditions pooled together (see 

Figures 4.17a to c).  

 

The final FMS score in a condition should be most comparable with the SSQ scores taken immediately 

following the condition. The Pearson correlation matrix computed between the 10th FMS score, the second 

SSQ subscales score (nausea, disorientation, oculomotor and total scores), and the MSSQ subscales (child 

and adult) are shown in Figure 4.18 a and b grouped by female versus male participants. Similarly, Figure 

4.19 a and b shows the Pearson correlation matrix for the 20th FMS score, the second SSQand the MSSQ. 

In general, all of the SSQ subscale scores correlated with FMS ratings; females had their highest correlation 

score as the nausea subscale score at r = 0.74 and 0.89, while males had the highest correlation score as the 

disorientation subscale score at r = 0.73 and 0.84 (see Figures 4.18 a-b and Figures 4.19 a-b).  

 

Figure 4.15 1. Results of Mean FMS Rating versus Task Condition for Male and Female. Error bars show ± 1 SEM. 
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a)      b)   

c)  

Figure 4.16 a-c. Correlation of physiological measures for female participants across conditions 1, 2 and both 

conditions pooled together 

        

(a)                                                      (b) 



48 

 

c)  

Figure 4.17 a-c. Correlation of physiological measures for male participants across conditions 1, 2 and both 

conditions pooled together 

a)  b)  

Figure 4.18 a-b. Pearson correlation matrix for the 10th FMS score, second SSQ subscales scores (nausea, 

disorientation, oculomotor and total scores), and the MSSQ subscales (child and adult) for  Female participants (left) 

versus Males (right) participants, respectively 
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a)     b)  

Figure 4.19 a-b. Pearson correlation matrix for the 20th FMS score, third SSQ subscales scores (nausea, 

disorientation, oculomotor and total scores), and the MSSQ subscales (child and adult) for Female participants 

versus Male participants, respectively 

4.8  MODELLING 

This section describes the two types of prediction tasks performed: regression and classification. For the 

regression analysis, a model was fitted to estimate the FMS score time series, while for the classification 

model, the goal was to distinguish between motion-sick and non-motion-sick participants based on an 

appropriate threshold selected from the FMS score where a score of four or higher indicated the presence 

of car sickness. 

4.8.1  REGRESSION ANALYSIS 

Multiple linear regressions using a stepwise iterative construction of a regression model with all 

physiological measures as predictors and the FMS score as a dependent variable were calculated to estimate 

the amount of variance explained by the physiological measures and examine each feature's statistical 

significance. The stepwise regression technique is helpful for selecting statistically significant predictors in 

a traditional regression model, removing insignificant variables and preventing multicollinearity. The 

detailed results of the stepwise regression analysis for the FMS score are presented in Figures 4.20 and 

4.21. Based on the Ordinary Least Squares regression (OLS) results, the model consists of a constant and 

five backward-selected predictors: conductance, Accelerometer_X, Accelerometer_Y, Gyro_X and pNN20 

as shown in Figure 4.20.  
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The other predictors of heart_rate, resp_rate, Accelerometer_X, Accelerometer_Z, Gyro_Y and Gyro_Z 

were not included based on p > .05. Therefore, a linear regression model was created using these five 

predictors, and it was confirmed that the selected predictors were still statistically significant at p < .05 (see 

Figure 4.21).  The amount of variance explained was 15% (R2 = 0.149, adjusted R2 = 0.142 and p < .001) and 

similar for both the forward and backward stepwise regression techniques. In addition to the multiple linear 

regressions, a linear mixed-effects model was done to account for the repeated measures (see Figure 4.22). 

 

Figure 4.20. 1 OLS result of the model with all predictors 

 

Figure 4.21. OLS result of the model with selected predictors based on the backward regression technique 
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Figure 4.22. Linear Mixed-Effect Model with selected predictors based on the backward regression technique 

4.8.2  RANDOM FOREST MODEL 

The Random Forest model is an ML technique that is frequently the classification algorithm of choice 

because it performs well with small data sets, is less prone to overfitting even when the number of features 

is very high, can handle unbalanced data, is resistant to outliers and does not require feature normalization. 

The Python scikit-learn module was used for all the ML analyses. A random forest model was trained to 

estimate the FMS score time series based on the physiological and behavioural measures at the instant the 

FMS was administered and in the preceding and subsequent 30 seconds.  

 

Specifically, the physiological and behavioural measures were first processed to extract their instantaneous 

values at the specific times the FMS was administered and divided into one-minute segments to compute 

relevant statistical features such as mean and standard deviation. In total, 30 features were computed for 

the physiological and behavioural measurements. Nine participants were removed from the machine 

learning analysis because eight reported zero FMS values throughout the experiment, and one participant 

had partially missing physiological data resulting in a final sample size of 31 participants and 620 data 

points corresponding to 20 FMS points per participant across the entire experiment. 

4.8.2.1     FEATURE SELECTION 

Feature selection is important because it increases the prediction power of the model by selecting the most 

critical variables and eliminating the redundant and irrelevant ones to avoid overfitting. The available 

features were ranked according to their importance using a Random Forest classifier, and only top-ranking 

features were used for the random forest model's final training and evaluation. Figure 4.23 illustrates the 

result of the feature extraction process where a longer bar corresponds to higher importance. 
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4.8.2.2     CLASSIFICATION ANALYSIS 

For the classification analysis, a cut-off score of 4 (representing the 50th percentile) was selected for the 

FMS scale to separate motion-sick participants with an FMS score of four or higher and non-motion-sick 

participants with an FMS score of three or lower. This cut-off score was chosen to ensure a near-balance 

distribution of the classes in the random forest model. Although having equal classes is not critical in a 

random forest model, it can affect the performance and interpretation of the model. Random forest models 

are generally robust to class imbalance and perform well even when unequal classes exist. However, when 

one class is much smaller than the other, the model may be biased towards the majority class by prioritizing 

features that are more predictive of this class while overlooking features that are important for the minority 

class leading to poor performance on the minority class. Consequently, it is useful to balance the classes to 

improve the model's interpretation and ensure it considers all features equally.  

 

Figure 4.23. Average importance rank of features for Random Forest Model 

The model's overall accuracy is 77% (see Figure 4.25). The confusion matrix is a performance measurement 

for machine learning classifications and is useful for measuring recall, precision, specificity and accuracy. 

The confusion matrix (see Figure 4.24) shows that the number of samples correctly predicted to belong to the 

"High Motion Sickness" class is 79%, while that of the "Low Motion Sickness class is 75%. 
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Figure 4.24: Confusion Matrix for Random Forest Model 

 

Figure 4.25: Classification report for Random Forest Model 
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CHAPTER FIVE – DISCUSSION AND CONCLUSIONS 

This thesis aimed to determine if physiological, behavioural and subjective measures can reliably detect 

and predict the presence of car sickness. The results of the quantitative analysis demonstrated the 

relationship between the psychological and physiological states of car sickness and its associated 

symptoms, with physiological measures accounting for 14.9 % of the variance in the reported FMS ratings. 

The machine learning analysis showed a moderate correlation between some physiological measures and 

the FMS rating.  

 

The ability of the random forest model to classify participants as sick or not-sick can be considered 

acceptable, with an overall accuracy of 77%. Although these results are sufficient to be useful, they 

demonstrate that physiological measures alone cannot be relied upon to reliably detect or predict the onset 

or severity of car sickness. Therefore, these findings are consistent with similar research that reached 

comparable conclusions in other motion sickness contexts (Smyth et al., 2021; Kesharvarz et al., 2022).  

 

Overall, as outlined in the research goals, the ML techniques adopted in this thesis were able to perform the 

following: (1) detect and identify changes in physiological and behavioural measures linked to the onset of 

car sickness and (2) categorize participants as sick or not sick based on physiological and behavioural 

measures. The next section presents the role of each physiological measure in relation to earlier findings 

and underlying theoretical assumptions. 

 

5.1  SKIN CONDUCTANCE 

One of the primary symptoms of motion sickness is cold sweating (Lackner, 2014). As a result, 

electrodermal activity has frequently been examined as a possible correlate of car motion sickness. While 

some investigations (Hu et al., 1991; Warwick-Evans et al., 1987) found an increase in skin conductance 

levels as motion sickness severity increased, other studies (Dahlman et al., 2009; Smyth et al., 2021) were 

unable to detect a difference in skin conductance levels between motion-sick and non-motion-sick 

participants. In this study, skin conductance level was one of the important measures of motion sickness 

and was among the features selected for the machine learning analysis. Skin conductance levels generally 

increased over the experiment for several participants; however, this alone was not a reliable predictor of 

how severe car sickness was, as a few participants who reported zero FMS ratings also had increasing skin 

conductance levels, possibly reflecting drifts in the electrode-skin interfaces. Skin conductance was 

measured by placing gelled electrodes on the participants' fingers, a popular site to identify sweat activity 
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linked to elevated sympathetic nervous system activity. However, some studies have suggested that the 

forehead appears to be more sensitive to changes in motion sickness (Golding, 1992; Wan et al., 2003). 

5.2  ELECTROCARDIOGRAM  

The relevance of cardiovascular measures such as heart rate and heart rate variability for detecting car 

sickness remains inconclusive. While heart rate showed a moderate correlation with skin conductance level, 

its correlation with motion sickness severity measured by the FMS ratings was small and not statistically 

significant. However, it is noteworthy to mention that a subset of participants who performed reading as 

the second condition showed a moderately strong correlation between heart rate and FMS rating. Similarly, 

Graybiel and Lackner (1980) and Mullen et al. (1998) found no relationship between heart rate and the 

level of MS, while some previous studies' results (Dahlman et al., 2009; Holmes et al., 2001; Hu et al., 

1991; Ohyama et al., 2007) found a relationship. Despite the overall weak correlation, average heart rate 

and some heart rate variability parameters such as high-frequency power and average RR peaks (the time 

elapsed between two successive R-waves of the QRS signal on the electrocardiogram RR peaks, which is 

the inverse of instantaneous heart rate) were relevant parameters in the machine learning analyses. This 

suggests that these features carry diagnostically useful information but only in combination with other 

measures.  

5.3  RESPIRATION 

Given the strong relationship between respiration and cardiovascular functions (Grossman, 1983), it is 

plausible that car sickness may also impact respiration. However, in this thesis, respiration measures 

showed no strong correlations with car sickness ratings, although it was one of the influential measures in 

the machine learning analysis. This former finding is similar to some previous studies, such as Cowings et 

al. (1986) and Gianaros et al. (2003), that did not find a relationship between respiration rate and motion 

sickness severity. However, some other studies suggested a role for respiration. For instance, Himi et al. 

(2004), Javaid et al. (2019), and Kim et al. (2005) found that participants who reported motion sickness 

after being exposed to visual stimuli had higher respiration rates than those who did not. Some studies have 

also shown that controlled breathing can delay the onset of motion sickness (Denise et al., 2009; Yen Pik 

Sang et al., 2003). This biofeedback loop complicates the interpretation of respiration rate and may have 

contributed to the mixed findings here and in the literature.  

5.4  ELECTROOCULOGRAM 

According to Reason and Brand (1975), eye movements, such as those made while reading or looking at a 

screen, can increase the likelihood of experiencing motion sickness in a moving vehicle because the eyes 
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constantly shift focus and provide new visual information, which can cause a greater discrepancy between 

the visual and vestibular inputs to the brain. The negative correlation between the number of saccades and 

the FMS scores suggests that participants slowed down their reading pace as they experienced a higher 

severity of car sickness. This finding is similar to studies that suggest that reading increases the incidence 

and severity of motion sickness (e.g., Leung & Coenegrachts, 2011; Koch et al., 2018; Golding & Gresty, 

2015; Krueger et al., 2017; Leung & Hon, 2019; Schmidt et al., 2020) especially because the frequency and 

intensity of eye movements can exacerbate the sensory conflict that leads to motion sickness.  

5.5  BEHAVIOURAL MEASURE 

Head movement had an explanatory role in this study, as shown by the moderately high correlations with 

the FMS ratings. It was also one of the significant measures in the random forest analysis. Previous studies 

have discussed measures of sway magnitude during quiet stances, such as differences in the velocity or 

positional variability of the head, torso, or centre of pressure, between individuals who are motion sick and 

those who are not (e.g., Bonnet et al., 2006, 2008; Stoffregen & Smart, 1998; Stoffregen et al., 2008; Villard 

et al., 2008). In this thesis, there is evidence that head movement does correlate with the intensity of car 

sickness, suggesting that it is a crucial aspect that should be considered when detecting and predicting car 

sickness. 

5.6  SUBJECTIVE MEASURES 

The SSQ nausea subscale score correlated highly with the FMS ratings. This result is similar to findings in 

previous studies where the FMS has been validated to correlate highly with SSQ subscale scores and the 

Total Scores (up to r = 0.80) (e.g., Keshavarz and Hecht, 2011; Keshavarz et al., 2014 and D'Armour et al., 

2017). 

5.7 GENDER COMPARISON 

Although the FMS ratings were greater for females than males across the reading and no task conditions; 

however, this was not statistically significant. The FMS ratings for the females correlated more highly with 

SSQ nausea subscale scores (up to r = 0.89)  in comparison with the male SSQ nausea subscale scores at 

0.76 (e.g., Keshavarz and Hecht, 2011; Keshavarz et al., 2014 and D'Armour et al., 2017). Additionally, 

females had a higher and positive correlation between heart rate and FMS scores in comparison to the 

males, similar to the results in existing studies (e.g., Ryan et al., 1994, Holmes and Griffin, 2001) 

5.8 LIMITATIONS OF THE RESEARCH 

One limitation of the present study is the sample size. We had a significant sample of men and women and 

could compare these groups. However, before testing, we did not know how many participants would get 
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sick. Specifically, the motion-base driving simulator induced motion sickness in most participants, with 

only eight of the 40 reporting no motion sickness at all. Consequently, it was not possible to conduct 

insightful statistical comparisons between these groups and those experiencing some symptoms due to the 

imbalance in participant numbers. Some interesting indicators, such as skin conductance and heart rate, 

might have been able to distinguish between the sick and non-motion-sick participants if a stricter criterion 

for 'not sick' had been used. However, more data is required to corroborate this.  

 

Another limitation of this study is that car sickness was induced in seated participants with limited 

movement under controlled laboratory conditions. This setting was necessary to increase the likelihood of 

detecting physiological changes related to car sickness, given that some physiological measures are known 

to be susceptible to motion artifacts. For instance, the ECG signal is highly prone to motion artifacts caused 

by changes in body position and would be less reliable under real-world conditions. Therefore, the findings 

do not offer conclusive evidence on whether or not physiological changes linked to car sickness are robust 

in situations where participants are actively moving. 

 

Additionally, the use of driving simulators in investigating car sickness because of the limited motion 

envelope or limitations on position, velocity, and acceleration poses a constraint. For example, xy-platforms 

provide a much wider range of motion, while Stewart platforms are constrained in their displacements when 

used in moving base simulators. Motion in the frequency range of 0.2 Hz has repeatedly been shown to be 

most provocative for vertical (O'Hanlon and McCauley, 1972; ISO 2631-1, 1997) and similarly for 

horizontal motion (Golding et al., 2001); therefore, the frequency capabilities of the motion platform are of 

particular interest in terms of motion sickness. Therefore, careful consideration should be given to a motion 

base simulator's frequency and acceleration capabilities to maximize provocativeness, as restricted motion 

might not elicit sufficient levels of motion sickness ratings for investigation (Golding, 2006b). Another 

constraint is the generalization issues with results obtained from driving simulators to real-life scenarios 

and other tasks (Stocco et al., 2022). 

5.9 RECOMMENDATION AND FUTURE WORK 

Although the findings of this study are promising, they suggest that physiological measures alone are not 

an accurate method to detect or predict car sickness in real-time reliably. Heart rate, skin conductance and 

head tilt showed the most promising results of the applied physiological measures. Additionally, the number 

of saccades computed from the EOG data to detect changes in participants' reading rates using custom-

developed algorithms is a promising method for further investigation in the future. Specifically, detailed 

saccade analysis, in combination with measures of heart rate, skin conductance and head tilt, could be 
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particularly interesting and may advise on potential solutions to reduce or prevent the onset of car sickness, 

especially while engaged in tasks such as reading or texting. This is because of their notable effects in the 

current study, their non-invasive nature, and the ease of measurement; a further investigation of these 

measures as potential indicators of car sickness is recommended. 

 

In car sickness studies, eye movement analysis is crucial in understanding the underlying mechanisms and 

psychological impacts of car sickness on individuals. EOG sensors have historically been used to measure 

horizontal eye movements. In this thesis, the EOG sensors used could measure only horizontal eye 

movements. However, adopting EOG electrode configurations that can track both horizontal and vertical 

eye movements can offer additional information and help with a more thorough analysis of car sickness. 

Vertical eye movements, such as upward and downward gaze shifts, can reveal how people visually engage 

with their surroundings while driving by indicating the monitoring of traffic conditions, scanning of the 

environment, or the awareness of visual cues.  

 

Furthermore, integrating vertical eye movement data can improve the precision of detecting oculomotor 

patterns linked to motion sickness. Certain eye movements, such as nystagmus or saccades, in horizontal 

and vertical directions may help to determine the intensity or susceptibility of motion sickness (Golding, 

2003). By examining these multidimensional eye movement patterns, it may be possible to establish more 

precise relationships between ocular responses and subjective symptoms of motion sickness. Additionally, 

integrating vertical eye movement data can facilitate the design of tailored interventions that target 

particular visual processing difficulties based on understanding the interactions between horizontal and 

vertical eye movements during motion sickness. Interventions can optimize visual cues, modify visual 

displays, or give adaptive visual feedback to reduce sensory conflicts. 

 

This study recruited a significant number of men and women for comparison; however, further studies 

could increase the number of recruited subjects, as having more data would allow improvements in the 

performance of the ML model and facilitate conducting insightful statistical comparisons between the 

groups of participants experiencing no motion-sickness symptoms and those experiencing some symptoms. 

Future research may also involve conducting longitudinal validation studies to evaluate the effectiveness 

and reliability of the real-time predictive model and any proposed mitigation solutions, collecting data from 

diverse driving scenarios and various environmental conditions to assess the model's generalizability. Such 

longitudinal studies can provide insights into the long-term efficacy of the designed intervention measures 

and reveal potential issues such as habituation or sensitization. 
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In addition, future studies could combine the predictive capability of the ML model with real-time data 

obtained from smart sensors and Application Programming Interfaces (APIs). The real-time integration of 

physiological signals such as heart rate, skin conductance, and breathing rate, in addition to eye and head 

movement, could improve an understanding of the physiological underpinnings of motion sickness. 

Additionally, combining data on external elements that may affect a person's susceptibility to motion 

sickness through access to real-time environmental data such as traffic updates, weather forecasts, or road 

conditions through APIs could also help to produce more accurate predictions.  

 

Integrating real-time data streaming could also assist with continuous retraining of the model to improve 

its accuracy, responsiveness and adaptive capabilities. Thus ensuring that the model stays up to date and 

can account for individual variations, changes in driving circumstances, and other important elements that 

enhance the model's capacity to forecast the onset of motion sickness in real-time. Further improvements 

can include creating a user-friendly interface that displays real-time predictions and mitigation options. A 

simple, intuitive and friendly user interface providing detailed directions for carrying out suggested 

interventions to lessen motion sickness symptoms can improve passenger safety and comfort during car 

rides. These advancements will bring us closer to developing practical applications for mitigating motion 

sickness during car travel. 

 

Other improvements that could significantly enhance future studies include adopting personalization 

techniques that integrate participants' general well-being and level of discomfort through a routine 

collection of their subjective feedback. Such personalization techniques would enable a more thorough 

study of individual responses to motion stimuli to assist in customizing interventions. Also, establishing 

baseline physiological measurements is crucial for serving as reference points for comparison against 

subsequent data, enabling the identification of patterns and trends related to participants' susceptibility to 

motion sickness and detecting the onset of motion sickness. Thus, researchers could observe how these 

metrics change over time by monitoring physiological indicators before, during, and after exposure to 

motion stimuli.  

 

This information is valuable for understanding an individual's unique physiological response to motion 

sickness and could aid in predicting susceptibility or detecting the early signs of motion sickness. By 

monitoring physiological indicators like heart rate, skin conductance, and pupil dilation, researchers could 

observe how these metrics fluctuate in response to motion stimuli as people develop motion sicknesses, 

thus enhancing evaluation significantly. Implementing improved susceptibility measures may also create a 

better and more dependable way to predict a person's likelihood of experiencing motion sickness using 



60 

 

criteria such as genetic markers, vestibular function, or other important factors. By incorporating these 

improvements, researchers could optimize motion sickness measurement and ultimately contribute to 

designing targeted interventions for improved mitigation of this discomforting condition. 

 

Although motion-base simulators provide controlled and reproducible environments for studying car 

sickness, conducting motion sickness experiments on a real road can offer unique insights and bridge the 

gap between simulated and real-world experiences. Compared to research conducted in simulated 

environments, real-road experiments are more ecologically valid and provide opportunities to capture real-

world driving conditions' complexities and dynamic nature. Therefore, adopting a real road for future car 

sickness research efforts offers several advantages and opportunities for understanding the phenomenon as 

participants will have a more realistic driving experience due to road imperfections, traffic patterns, and 

environmental signals (such as visual scenery and sounds) that are present in their natural context. This 

increased ecological validity improves the generalizability of the findings to real-life scenarios.  

 

Additionally, conducting motion sickness experiments in a real car and on a real road enables the integration 

of a wider variety of sensory inputs. Participants may feel fluctuations in road vibrations, sounds, and 

airflow in addition to visual and motion cues, which can add to the overall sensory experience of driving. 

Investigating motion sickness in various naturalistic driving situations can reveal important details about 

how varied driving conditions affect motion sickness susceptibility and severity. Different road types (e.g., 

highways, urban roads, and winding roads), driving manoeuvres (e.g., acceleration, braking, and turning), 

and traffic conditions (e.g., congested traffic and varying speeds) may also impact how a vehicle behaves 

and ultimately assist in curating targeted interventions for specific driving conditions. 

 

In conclusion, adopting real-road experiments for motion sickness studies could foster collaboration 

between researchers and the automotive industry, thus facilitating access to cutting-edge sensing 

technologies, vehicle instrumentation, and telematics data. This partnership may offer insightful 

information about how car sickness is affected by vehicle design, technologies such as autonomous driving, 

and in-vehicle interventions aimed at improving passenger comfort and reducing motion sickness in future 

vehicle designs and technology. 

5.10 CONCLUSION 

Car sickness is a serious concern for modern technologies, such as self-driving vehicles, as autonomous 

driving can potentially increase its incidence greatly. Thus, detecting and predicting the early onset of car 

sickness is important to prevent users' severe side effects and increase adoption. This thesis involved an 
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investigation into whether or not the objectives measures can assist in the detection of car sickness. Car 

sickness symptom was successfully elicited in participants using a motion-base driving simulator while 

avoiding simulator sickness. Head movement showed the strongest correlation with car sickness, and there 

was a moderate correlation between heart rate and skin conductance. Also, with a subset of participants, 

heart rate had a moderate correlation with car sickness. Interestingly, the number of saccades for 

participants reduced as car sickness increased, suggesting a reduction in the reading rate. Combined with 

other measures, a low variance for the overall severity of car sickness (up to 15%) was explained. Also, the 

Random Forest model had an acceptable accuracy score of 77%, distinguishing between sick and non-sick 

participants. 
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APPENDICES 

Appendix A: FMS Rating versus FMS Count for the 'No Task Condition' 

 

 

Appendix B: FMS Rating versus FMS Count for the 'Reading Task Condition' 
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Appendix C: FMS Rating versus FMS Count for the entire experiment period 

 

 

Appendix D: Comparison of Female versus Male over the No Task Condition 
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Appendix E: Comparison of Female versus Male over the Reading task condition 

 

Appendix F: Correlation chart of heart rate variability parameters with FMS across the two 

conditions combined. 

 


