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Abstract 

Misperceptions are common in everyday conversation. Previous work shows that misperception 

derives from a weak neural representation of sounds that deviate from prior expectations 

(prediction error). Attention enhances the encoding of prediction error and supports speech 

perception in challenging listening conditions, suggesting that increased attentional engagement 

might reduce the rate of misperceptions driven by plausible yet misinformative expectations. We 

induced frequent misperception in a word discrimination task with degraded spoken words 

preceded by matching, mismatching, and partially mismatching written text, using monetary 

incentives to manipulate listeners’ attention. Contrary to our predictions, incentives increased 

misperception on partial mismatch trials but improved perceptual accuracy on match trials. 

Pupillometry showed that incentives loaded both proactive and reactive control, suggesting 

increased involvement of top-down predictive processes. We conclude that higher attentional 

engagement increases reliance on prior knowledge when sensory detail is insufficient, which 

only exacerbates prediction-induced mishearing—at least in word discrimination tasks. 

 

Keywords:  pupillometry, misperception, prior expectations, attention, motivation, reward, 

incentives, speech perception 
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Chapter 1: Introduction 

1.1 Perception and misperception of speech 

1.1.1 The effects of prior knowledge in speech perception 

Perception is an active process. Predictive coding, a major theory of brain function 

(Friston, 2005; Rao & Ballard, 1999), posits that our perceptual experiences are the result of 

Bayesian inference—our brain’s attempt to predict what happens next given what we already 

know. As we go about life being exposed to a myriad of sounds, our brain constructs a predictive 

model of expected sensory inputs based on the knowledge of past events (Clark, 2013; Friston, 

2005). As these sensory signals unfold, model predictions—“virtual” inputs generated by the 

expected causes—are compared to the sensory evidence. The difference between predictions and 

observations—the prediction error—is calculated at each processing stage and propagated to the 

higher levels of the cortical hierarchy. These prediction errors are then used to update perceptual 

hypotheses. In this way, the predictive model adapts to the incoming sensory inputs, constantly 

fine-tuning itself so that it can make better predictions in the future. Perception is thus effectively 

achieved by minimizing the error between the predicted and the observed, the known and the 

seen, the expected and the heard (Feldman & Friston, 2010; Friston, 2010; Hohwy, 2012). 

Crucially, prior knowledge and expectations are pivotal for perceptual inference (de Lange et al., 

2018; den Ouden et al., 2012).  

Speech perception is no different: listeners routinely make use of prior expectations to 

help constrain perceptual interpretation (Davis & Johnsrude, 2007; Kuperberg & Jaeger, 2016). 

Preceding sentence context is used to predict upcoming words: we get surprised if an utterance 

like “the day was breezy so the boy went outside to fly a…” suddenly ends with a word “plane”, 

expecting to hear something more like “kite”. As in more general cases of perception, violation 
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of such contextual expectations evokes a strong neural response to mismatch (DeLong et al., 

2005). The degree of neural surprisal depends on the certainty of current predictions: violation of 

highly constraining contexts (e.g., “to fly a... plane”) triggers additional neural processing, above 

and beyond the normal response to surprise evoked by less constraining contexts (“the boy went 

outside and saw a… plane”) (DeLong et al., 2005; Kutas & Hillyard, 1984). On the other hand, 

expected, semantically-predictable words, such as “kite” in the sentence above, tend to be 

processed faster and elicit lower neural activity (DeLong et al., 2005; Kutas & Hillyard, 1980, 

1984), consistent with the “silencing” effect of prediction (Feldman & Friston, 2010; Friston, 

2005).  

While most of the time we are barely conscious of making perceptual inferences during 

listening, facilitatory effects of prediction become transparent when listening conditions degrade. 

When the sensory inputs are ambiguous or unreliable—due to acoustic distortion or hearing 

impairment,—informative prior knowledge enhances speech clarity (Signoret et al., 2018; 

Sohoglu et al., 2012), improves speech comprehension (Corps & Rabagliati, 2020; Davis et al., 

2005; Obleser et al., 2007; Remez et al., 1981), reduces listening effort (Winn, 2016), and 

facilitates perceptual learning of barely intelligible speech (Davis et al., 2005). One way to 

induce strong prior expectations with degraded speech is identity priming—revealing the identity 

of the degraded sentence by presenting listeners with its written or clearly-spoken version just 

before its auditory replay. In cases of severely degraded speech, knowing the content of the 

distorted utterance prior to hearing it completely transforms the perceptual experience, leading to 

a perceptual “pop-out” in which a previously incomprehensible speech becomes perfectly 

intelligible (Davis et al., 2005; Hervais-Adelman et al., 2008). The perceptual effect of 

informative prior knowledge is akin to hearing an acoustically clearer speech, yet their neural 
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signatures could not be more different. Clearer speech increases neural activity in peri-auditory 

regions—matching written text, on the contrary, decreases it (Blank & Davis, 2016; Sohoglu et 

al., 2012; Sohoglu & Davis, 2016).  

1.1.2 Misperception as overreliance on prior knowledge 

Informative prior knowledge improves speech perception both in the short term 

(perceptual inference) and in the long run (perceptual learning) (Sohoglu & Davis, 2016). 

Misinformative prior knowledge (such as mismatching written primes), on the other hand, can 

further reduce the subjective intelligibility of an already degraded speech (Signoret et al., 2018; 

Sohoglu et al., 2012, 2014; Wild, Davis, et al., 2012). Unsurprisingly, when prior expectations 

conflict with the sensory evidence, listeners’ word recognition performance tends to suffer 

(Sohoglu et al., 2012, 2014). Oftentimes, however, our prior expectations neither fully match nor 

fully mismatch reality. In ideal listening conditions, a clear, high-precision sensory signal easily 

overrides a misinformative prior and ensures veridical perception. When acoustics is poor, 

though—be it due to hearing deficits, noisy background, or mechanical distortion—the precision 

of the sensory signal decreases due to masking or the loss of spectro-temporal detail. Given a 

low sensory precision, any surprise about the mismatch between prior expectations and the 

sensory evidence is often correspondingly low, which may lead to an erroneous confirmation of 

the prior. In its turn, a failure to adjust or reject strong yet erroneous predictions ensues auditory 

illusions (Blank et al., 2018).  

One classic and ubiquitous example is misheard lyrics (Bond, 2005). In most cases, this 

type of misperception is the outcome of relatively low-precision acoustics: together, background 

music and atypical pronunciation often create a strong basis for ambiguity and perceptual 

confusion. This explains why the chorus of R.E.M.’s The Sidewinder Sleeps Tonite—“Call me 
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when you try to wake her up”—is easier perceived as “calling Jamaica” rather than the original 

refrain. However, misperceptions can be just as easily triggered by contextual cues. Presenting 

erroneous yet plausible captions—or other types of visual context—along with almost any song 

is a reliable way to induce a strong perceptual bias that can lead to misperception of a target 

passage (Beck Lidén et al., 2016). Eric Carmen’s All by myself accompanied by a playful 

animation of a gnome sitting on the shoulder of an American ex-president stubbornly triggers 

“Obama’s elf, don’t wanna be… Obama’s elf, anymore”1. Interestingly, such perceptual illusions 

may persist even when the original lyrics are known. Perceptual ambiguity simply leaves both 

interpretations of the signal plausible (Beck Lidén et al., 2016). 

While misperceptions are more common when speech clarity is reduced in one way or 

another, the famous McGurk illusion demonstrates that prior expectations can affect the 

perception of even clearly spoken stimuli. Hearing a person say [ba] while seeing his mouth 

pronounce [ga] leads one to believe in hearing [da] (McGurk & MacDonald, 1976). A partial 

phonetic overlap between expected and sensory inputs further increases the likelihood of 

misperception and the strength of the auditory illusion (Blank et al., 2018; Sohoglu et al., 2014). 

Naturally-occurring “slips of the ear” also tend to be phonetically close to the target: the mean 

edit distance between the “slip” and the target is three phonemes (Felty et al., 2013). 

Misperceptions of isolated words most often involve mishearing and substitution of syllables, or 

deletions and additions of individual segments (Felty et al., 2013). In the context of sentences, 

slips of the ear tend to be a combination of misheard individual words and a subsequent 

“rationalization” of these initial perceptual errors (Winn & Teece, 2021). Indeed, as the speech 

 

 

1 A reader is invited to personally attest these effects: https://www.youtube.com/shorts/6mfFHWIYPKM 
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unfolds, a single misperceived item may cause a strong semantic incoherence with upcoming 

words. An attempt to resolve this ambiguity may trigger a re-analysis of other parts of the 

sentence, transforming the original utterance—e.g., “she made the bed with clean sheets”—into 

something entirely different, such as “she made the bagel with cream cheese” (Winn & Teece, 

2021).  

All these factors—poor acoustics, auditory deficits, and erroneous yet plausible prior 

expectations—make speech misperceptions more common. Frequent misperceptions may result 

in a failure of speech comprehension, breakdowns in communication, and, in extreme cases, 

even social withdrawal—with severe consequences for cognition, well-being, and quality of life 

(Pichora-Fuller et al., 2015). And while sentence context can often disambiguate misheard 

words, acoustic distortion and hearing impairment slow down the processing of contextual cues, 

particularly in natural speech, when the misperceived sentence is immediately followed by 

another utterance (Winn, 2016; Winn & Moore, 2018). The speed of speech processing tends to 

be particularly disrupted in individuals with sensorineural hearing loss and cochlear implant 

users (Winn, 2016)—the exact category of listeners who heavily rely on contextual information 

to offset reduced audibility (Dingemanse & Goedegebure, 2019; Signoret & Rudner, 2019). 

These listeners may “repair” misperceptions at the end, but their inefficient use of contextual 

cues coupled with the already compromised auditory encoding makes speech comprehension 

effortful and leads to listening fatigue—a common complaint of people with hearing aids (Winn 

& Moore, 2018). Chronically elevated listening effort has severe health consequences in itself: it 

has been associated with cortical thinning and gray matter loss in the prefrontal brain regions 

(Rosemann & Thiel, 2020). These two, in turn, have been linked to the development and 

progression of dementia (Bakkour et al., 2009; Dickerson et al., 2009; Zarei et al., 2013), a 
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neurodegenerative disease that tends to be predominant among hearing-compromised individuals 

(Gurgel et al., 2014; Lin et al., 2013). It is therefore important to study factors that affect the 

frequency of perceptual confusion in speech in order to guide hearing rehabilitation approaches 

to facilitating communication repairs and reducing listening effort for people with hearing loss. 

1.1.3 Prediction error as a neural index of (mis)perception 

The result of poor acoustics and misinformative prior expectations, misperceptions can be 

easily induced in the lab (Beck Lidén et al., 2016; Blank et al., 2018; Sohoglu et al., 2014). 

Blank and colleagues (2018) presented listeners with spoken noise-vocoded words preceded by 

written words that either matched, partially mismatched, or completely mismatched the 

acoustics. Partial phonetic overlap between a prior (induced by written text) and a low-fidelity 

sensory signal resulted in a high percentage of misperceptions. On about 40% of partial 

mismatch trials, listeners mistakenly reported that the distorted word they heard (e.g., /pIt/ ‘pit’) 

was identical to one they saw (e.g., PICK). An fMRI analysis revealed that the overall magnitude 

of the BOLD signal in the bilateral superior temporal sulcus (STS) increased when listeners 

correctly perceived the mismatch between written and spoken words. Total mismatch pairs and 

detected partial mismatch pairs evoked elevated neural responses of a similar magnitude. 

Multivoxel pattern analysis decoded this increased activity as reflecting enhanced neural 

representations of mismatching (i.e., -/k/, +/t/)—rather than common (/pI/)—sounds. This pattern 

of activity suggests that a stronger neural representation of mismatch (i.e., the prediction error) 

causes larger updates to the sensory prediction, leading to a timely rejection of the prior and 

ensuing veridical perception. This interpretation is supported by the fact that word pairs 

perceived as “same”, both correctly (matching pairs) and incorrectly (partial mismatch pairs), 
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elicited equally suppressed neural activity, reflecting the “silencing” effect of confirmed 

expectations (Feldman & Friston, 2010; Friston, 2005).  

Thus, the strength of prediction error distinguishes veridical and erroneous perception of 

speech: weak neural representation of mismatching sounds results in misperception, while a 

stronger representation of mismatch leads to more accurate perceptual outcomes. However, the 

strength of prediction error might depend on multiple factors. One possibility is that a stronger 

prediction error signal was due to purely physical traits of the stimuli, such as higher acoustic 

dissimilarity between written and spoken words. That is, some written/spoken pairs were 

correctly perceived as “different” more often because they were more acoustically dissimilar 

than other pairs. Blank and colleagues (2018) indeed report that acoustic dissimilarity strongly 

correlated with the rate of accurate perception on partial mismatch trials. The nature of sounds 

that distinguish written and spoken words (e.g., -k/+p for the kit-pit pair), in particular, was 

predictive of the likelihood of misperception—more so than the nature of common sounds (e.g., 

/_it/ for the kit-pit pair). There is, however, another possibility: perceptual outcomes could be 

determined by dynamic shifts in attentional engagement during listening, including momentary 

lapses of attention. 

Under the predictive coding framework, prediction errors reflect not only the content of 

sensory inputs but also the level of uncertainty about predictions, or “inverse precision” 

(Feldman & Friston, 2010; Friston, 2010; Hohwy, 2012). Sensory evidence is weighed according 

to the precision of prediction error: a stronger mismatch signal reflects greater reliability of 

sensory inputs—a weaker one signals uncertainty. A recent version of the predictive coding 

theory assumes that this function of “scaling” prediction error is taken on by attention (Feldman 

& Friston, 2010; Friston, 2010). Attention optimizes the expected precision of sensory 
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predictions by increasing the synaptic gain of prediction error units (Feldman & Friston, 2010). 

This attentional scaling, in turn, leads to a heightened selectivity for the attended information 

and, by consequence, a stronger neural response to mismatch (Auksztulewicz & Friston, 2015). 

Since stronger prediction errors were linked to veridical perception, this model predicts that 

increased attentional engagement could strengthen the neural representation of mismatch and 

thus decrease the rate of expectation-induced misperceptions. Momentary lapses of attention or 

even longer periods of mind wandering, on the other hand, are likely to induce more frequent 

misperceptions. Perceptual outcomes could thus be determined by the level of attentional 

engagement during listening rather than solely by the acoustic (dis)similarity of predictions and 

sensory inputs. The present thesis sets out to investigate this possibility. 

 

1.2. Attention and cognitive control in speech perception 

1.2.1 Attention and its effects on speech processing 

Speech perception critically depends on attention. Yet, our attention to the external 

environment tends to wax and wane over time. Not only is mind wandering recognized as the 

brain’s default mode of operation (Mason et al., 2007), but people may pay no attention to what 

they are doing about 50% of the time—even when purportedly “on task” (Smallwood et al., 

2008). This general pattern endures during listening and other language-related tasks. For 

instance, Boudewyn & Carter (2018), who combined the probe-caught method—a common 

index of mind wandering—with an ecologically valid listening task, report that people find 

themselves “zoned out” about 30% of the time while listening to a story. Another listening study 

investigated attentional dynamics in a multispeaker context using eye tracking. It found that 

participants shift their gaze—together with their locus of attention—from the target speaker to 
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other places in the environment, including an interfering talker, for over 10% of the time (Shavit-

Cohen & Zion Golumbic, 2019). Predictably, withdrawing one’s attention, even momentarily, 

has negative consequences for speech recognition and language comprehension performance. 

Both studies report that brief lapses of attention negatively affect speech comprehension since 

listeners are more likely to miss key information in the target speech stream while attending 

elsewhere (Boudewyn & Carter, 2018; Shavit-Cohen & Zion Golumbic, 2019). 

Yet another, perhaps more extreme, piece of evidence comes from a pharmacological 

neuroimaging study by Davis and colleagues (2007) who empirically demonstrated that language 

processing in the brain is impaired at reduced levels of awareness. Instead of observing the 

consequences of the naturally occurring “ebb and flow” of attention, this study investigated what 

happens when listeners are physically unable to attend to speech due to sedation. They found that 

neural responses in the bilateral temporal lobe remained robust regardless of the level of 

sedation, suggesting that lower-level, perceptual processes stay relatively intact even at the 

minimal level of conscious awareness. Reduced neural activity in the inferior frontal and 

posterior temporal areas, however, indicated that this is not the case for higher-order language 

processes, such as comprehension and memory for speech, which start to suffer at the lightest 

level of sedation and come to a halt at deep sedation. This fMRI evidence was corroborated by 

behavioural report, as listeners were unable to recall sentences they heard while deeply sedated. 

Thus, when people fail to sustain their attention during listening—be it because of mind 

wandering or extreme drowsiness—their speech processing capacity is reduced.  

1.2.2 Attention and effortful listening 

Attention becomes even more important as listening conditions degrade. Wild and 

colleagues (2012) directly compared the perception of clear and distorted speech under 
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distraction. In this study, memory for clearly spoken sentences remained sharp even when 

listeners were distracted by a parallel task, while recognition and recall of degraded speech 

strongly depended on attention. Distorted speech was highly intelligible when attended, but 

processing and subsequent recognition of distorted sentences decreased as a function of 

intelligibility when listeners’ attention was directed elsewhere. This attentional modulation of 

perception was reflected in neural activity. Brain responses to degraded speech along the STS 

were enhanced under direct attention, irrespective of intelligibility. When listeners were 

distracted, however, STS activity correlates with (self-reported) intelligibility, demonstrating that 

speech-selective temporal regions lose speech sensitivity when the auditory input is neglected or 

ignored (see also Sabri et al., 2008; Ritz et al., 2021). Frontal regions, including the cingulo-

opercular network and left inferior frontal gyrus (LIFG), showed an elevated response to 

degraded compared to clear speech, but engaged only when this speech was attended (Wild, 

Yusuf, et al., 2012). This noise-elevated response in putative attentional networks suggests that 

attentional control systems engage to support speech perception in a top-down fashion when 

listening conditions degrade.  

Cingulo-opercular network (CON), in particular, comprised of anterior cingulate cortex 

and anterior insula, frequently exhibits increased neural response when speech comprehension 

becomes effortful (Adank et al., 2012; Alain et al., 2018; Erb & Obleser, 2013; Hervais-Adelman 

et al., 2012; Ritz et al., 2021; Vaden et al., 2013). CON is counted as one of the task-positive 

attentional networks, responsible for attentional monitoring, tonic alertness (i.e., mentally 

effortful, endogenously driven vigilance), and optimization of performance on challenging tasks 

(Dosenbach et al., 2008; Kerns et al., 2004; Sadaghiani & D’Esposito, 2015; Weissman et al., 

2005). Cingulo-opercular activity and connectivity increase in response to growing task 
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demands—often upon error detection—when it is clear that optimal performance calls for 

sustained cognitive control. CO network is also thought to be responsible for redirecting 

attention back to the task after periods of brief disengagement (Eichele et al., 2008). During 

listening, elevated cingulo-opercular activity was attested both in response to a higher cognitive 

load (due to a parallel task) and in response to an increased listening effort (e.g., due to degraded 

speech with lower acoustic detail), indicating a domain-general rather than a language-specific 

function (Ritz et al., 2021).  

In speech perception tasks, elevated cingulo-opercular activity has been associated with 

better recognition of degraded speech in younger and older adults, both with and without hearing 

loss (Erb & Obleser, 2013; Vaden et al., 2013, 2015, 2016). The magnitude of CO activity can 

predict word recognition performance on subsequent trials: elevated CO activity increases the 

likelihood of accurate perception—low activity predicts an impeding perceptual difficulty 

(Vaden et al., 2013, 2015, 2016). Interestingly, the degree to which CO engagement predicts 

speech recognition performance in older listeners is determined not by the severity of hearing 

loss—which directly affects the quality of the incoming sensory input,—but rather by the age-

related declines in cognitive function, including attention (Vaden et al., 2015). Relatedly, 

elevated cingulo-opercular activity anticipates the subsequent engagement of the frontoparietal 

network—a functional system responsible for phasic alertness, that adaptively adjusts attentional 

control on a case-by-case basis (Dosenbach et al., 2008; Kerns et al., 2004). In challenging 

listening conditions, the frontoparietal regions are thought to support speech comprehension 

through the top-down use of higher-order linguistic information, such as semantic and contextual 

cues (Peelle, 2018; Smirnov et al., 2014). The extent to which these domain-general intentional 

and attentional networks engage during effortful language processing often determines 
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perceptual outcomes of listening (Obleser et al., 2007; Ritz et al., 2021; Rysop et al., 2021; 

Vaden et al., 2013). 

Attention proved critical for other top-down processes, such as perceptual learning for 

speech. Perception of degraded, yet still intelligible, speech rapidly improves with exposure, 

even if the task involves no more than passive listening (Davis et al., 2005; Hervais-Adelman et 

al., 2011). Yet, no perceptual learning occurs when listeners actively attend elsewhere, e.g., to a 

competing auditory or visual stream (Huyck & Johnsrude, 2012). Interestingly, these more 

robust, longer-lasting changes in performance associated with perceptual learning appear to be 

driven by the same neural mechanism—the minimization of prediction error—as the more 

immediate effects of prior knowledge, i.e., the aforementioned perceptual “pop-out” (Sohoglu & 

Davis, 2016). Both prior knowledge and perceptual learning lead to reduced neural responses in 

a region of the superior temporal gyrus (STG). The magnitude of this reduction for prior 

knowledge effects predicts the degree to which STG activity drops once perceptual training is 

complete and correlates with achieved behavioural improvements. Crucially, if perceptual 

learning, being the end result of prediction error minimization, critically depends on attention, 

then attention must play a key role in the computation of prediction error for the accurate 

perceptual inference “online”. 

1.2.3 Neuroeconomics of cognitive control 

As the sensory precision of speech declines with distortion, listeners experience an 

increased need to suppress background noise, selectively focus attention on relevant acoustic 

cues, and inhibit competition from phonetically-similar lexical alternatives. However, the 

escalation of listening demand alone does not warrant an automatic (and prolonged) engagement 

of domain-general attentional control systems. To benefit from upregulated cognitive control, 
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listeners must actively attend to the speech stream in question (Ritz et al., 2021; Wild, Yusuf, et 

al., 2012). They must also command sufficient cognitive resources to support a high listening 

load: if attention is divided between competing tasks, for example, the processing of degraded 

speech will be blocked by parallel task demands (Ritz et al., 2021). The intelligibility of speech 

also matters. Cognitive control tends to be at its highest at the moderate levels of speech clarity: 

if speech is too easy or too hard to comprehend, control is withdrawn, and activity in frontal and 

CO networks dwindles (Obleser et al., 2007; Poldrack et al., 2001; Rysop et al., 2021; Zekveld et 

al., 2006). This inverted U-shaped response reflects adaptive control. This mechanism, much like 

a thermostat, activates in response to decreasing task performance and allocates additional 

cognitive resources to bring it back to acceptable levels—as long as the task utility is sufficiently 

high.  

Indeed, cognitive control is effortful, and the benefit of engaging additional resources 

must outweigh the costs (Botvinick & Braver, 2015; Shenhav et al., 2017; Westbrook & Braver, 

2015). In the case of listening-in-noise, these costs manifest as a feeling of increasing effort and 

fatigue—a frequent complaint of listeners impacted by hearing loss (Eckert et al., 2016; 

McGarrigle et al., 2017; Pichora-Fuller et al., 2016). The cingulo-opercular network, implicated 

in adaptive control, is thought to perform such cost-benefit analysis (Aston-Jones & Cohen, 

2005; Peelle, 2018; Shenhav et al., 2013). Cingulate neurons weigh the benefit arising from the 

improved task performance against its expected effort-related costs (Holroyd & McClure, 2015). 

They then signal the frontoparietal network to implement control on high-utility tasks (Eckert et 

al., 2016). In listening tasks, utility is determined by the expected benefits of successful 

comprehension relative to the effort required to achieve this level of performance. An illustrative 

example comes from Eckert and colleagues (2016) who modeled how the relative value of 
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speech recognition would change depending on speech content: listening to one’s grandchildren 

is more rewarding an activity than listening to a documentary about lint. Despite equal speech 

intelligibility, participants in a more valuable listening condition are expected to sustain 

increased levels of cingulo-opercular activity for a longer period of time before experiencing 

listening fatigue. 

The informational or emotional value of speech determines both the degree of adaptive 

gain—i.e., the flexible adjustment of control for the purpose of improving recognition 

performance—and listeners’ ability to maintain higher attentional engagement (Eckert et al., 

2016; Herrmann & Johnsrude, 2020; Peelle, 2018; Pichora-Fuller et al., 2016). External sources 

of motivation, such as a monetary reward, can also modulate the perceived utility of listening 

tasks and thereby affect cognitive control (Carolan et al., 2021; Koelewijn et al., 2018; Plain et 

al., 2021; Richter, 2016). Performance-contingent rewards increase arousal, enhance the level of 

alertness and decrease the likelihood of attentional lapses (Esterman et al., 2014). Reward has 

clear effects on listening engagement, particularly in challenging tasks: participants were shown 

to exert the highest levels of effort and adaptive control when completing a high-difficulty/high-

reward listening task compared to high-difficulty/low-reward or low-difficulty/high-reward tasks 

(Koelewijn et al., 2021; Richter, 2016).  

It is worth noting, however, that the effects of reward on perceptual outcomes of listening 

are less clear. In some studies, when a reward is at stake, participants report exerting higher 

listening effort (Carolan et al., 2021) or show physiological signs of doing so, as measured by 

pupillometry and cardiovascular reactivity (Koelewijn et al., 2018, 2021; Richter, 2016)—

without, however, experiencing corresponding performance benefits. Plain and colleagues 

(2021), on the contrary, report small behavioural improvements associated with monetary 
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incentives with no corresponding physiological evidence for the effect of reward on listening 

effort. A positive effect of reward on both listening effort and recognition of perceptually 

difficult speech was attested in only one study (Zhang et al., 2019)—but these effects pertain to 

spectrally-intact and unmasked time-compressed speech. At the same, there is abundant evidence 

that monetary reward improves the key aspects of performance in a variety of cognitive tasks 

(Botvinick & Braver, 2015; Krebs & Woldorff, 2017; Notebaert & Braem, 2016; Pessoa, 2015), 

including the accuracy of perceptual decision making with degraded visual stimuli (Blank et al., 

2013; Engelmann et al., 2009). It is therefore of interest whether similar reward effects can be 

obtained on a perceptual decision task involving degraded spoken stimuli—that is, whether the 

increased engagement and listening effort associated with reward can translate into a more 

accurate perception of degraded speech. 

The present study uses monetary incentives to manipulate listeners’ attentional 

engagement on a rewarded version of the same/different task—the classic induced-misperception 

set-up used in previous studies with noise-vocoded speech (Blank et al., 2018; Sohoglu et al., 

2014). To induce misperception on a subset of trials, we provide prior expectations by presenting 

matching, mismatching, or partially mismatching written text just before the degraded speech. 

We further manipulate the relative value of accurate perception in a block- and trial-by-trial 

basis. A fixed monetary bonus is offered for correct response on some—but not all—trials in a 

reward block. A baseline block, performed without any knowledge of incentives and before the 

reward block, serves as a control measure of intrinsic motivation, unaffected by external reward 

manipulations. Incentive trials in the reward block were expected to have higher utility than non-

incentive and baseline trials. We, therefore, predicted that these trials would strongly engage 

attentional resources and cognitive control, enhancing listeners’ sensitivity to mismatching prior 
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information. In the case of partial mismatch trials, this was expected to translate into a lower rate 

of misperception on incentive trials—relative to non-incentive and baseline trials. But since 

behavioural measures in speech perception tasks do not always accurately reflect the degree of 

attentional engagement and exerted listening effort, and since these two tend to dynamically 

change even over the course of a single trial, we chose to use pupillometry as an additional, time-

sensitive measure of attention during listening.  

1.3 Pupillometry as an index of attentional engagement 

Previous studies have linked elevated listening effort to increased pupil dilation 

(Alhanbali et al., 2020; Miles et al., 2017; Winn, 2016; Winn et al., 2015; Winn & Teece, 2021; 

Zekveld et al., 2010, 2018; Zhao et al., 2019). Under controlled luminance, pupil dilates in 

response to growing task demands, reflecting changes in cognitive load and task engagement 

mediated by locus coeruleus (Aston-Jones & Cohen, 2005; Gilzenrat et al., 2010; Jepma & 

Nieuwenhuis, 2011). The locus coeruleus-norepinephrine (LC-NE) system controls changes in 

the attentional state via two modes of function (Aston-Jones & Cohen, 2005). Phasic LC-NE 

activity facilitates task-relevant behaviours and optimizes within-task performance through 

adaptive gain. Tonic LC-NE activity optimizes performance across tasks by increasing neuronal 

sensitivity to task-irrelevant stimuli. The neuromodulatory activity of the LC-NE system is 

receptive to the ongoing evaluation of task utility: phasic LC-NE activity supports task 

performance only while the task utility remains reasonably high. Once the utility of the current 

task drops below a certain threshold, the LC-NE system withdraws adaptive gain support and 

shifts into the tonic mode of function, facilitating other, more “exploratory” forms of behaviour 

(Aston-Jones & Cohen, 2005). Pupil dilation dynamics closely track these changes in LC-NE 

activity (Gilzenrat et al., 2010), serving as a physiological marker of exerted mental effort across 
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a range of cognitive tasks (van der Wel & van Steenbergen, 2018). A stimulus-driven peak pupil 

dilation corresponds to a phasic NE release and reflects focused attention and adaptive control 

(Gilzenrat et al., 2010; Jepma & Nieuwenhuis, 2011). Elevated baseline diameter coupled with a 

suppressed peak dilation response reflects high tonic NE, associated with scanning attention and 

mind wandering. As such, pupil size is considered a reliable measure of effort and attentional 

engagement during listening—more reliable than accuracy and intelligibility scores (Winn et al., 

2015). 

Pupil dilation predictably follows the same inverse U-shaped response function as other 

indices of adaptive control processes, including neural activity in cingulo-opercular and 

frontoparietal regions and behavioural performance measures (Zekveld et al., 2018). On 

listening-in-noise tasks, mean pupil dilation response and peak dilation (i.e., phasic response) 

increase with decreasing speech intelligibility—up until the point when speech recognition 

becomes practically impossible (Miles et al., 2017; Zekveld et al., 2010; Winn et al., 2015; 

Winn, 2016). Very low speech intelligibility is conversely associated with a considerably smaller 

phasic response relative to baseline (i.e., the resting-state pupil diameter)—which is frequently 

interpreted as an index of task withdrawal (Zekveld et al., 2010). Because the role of cognitive 

control is to support optimal performance on challenging tasks, pupil size often reflects not only 

listening demand and listening effort but also perceptual outcomes. Stronger peak dilation and 

larger pre-stimulus pupil size have been linked to higher accuracy on speech recognition tasks 

(Alhanbali et al., 2020; Zekveld et al., 2010). In contrast, smaller pre-stimulus pupil size and 

elevated baseline diameter are associated with poor performance, listening fatigue, and 

subsequent task disengagement (Alhandbali et al., 2020; Gilzenrat et al., 2010; Zekveld et al., 

2010). Like cognitive control, pupillary response is affected by changes in motivation and task 



  

 

18 

 

utility. High monetary rewards drive larger stimulus-evoked dilations than low monetary 

rewards, reflecting stronger adaptive gain support for higher-utility tasks (Knapen et al., 2016). 

Pupillometry has been shown to reflect even momentary fluctuations of attention, and as such 

represents a reliable, objective, and, more importantly, time-sensitive measure of attentional 

engagement on listening trials (Kang & Wheatley, 2015; Wierda et al., 2012; Zénon, 2017; Zhao 

et al., 2019)—the perfect tool for the present study. 

We, therefore, used pupillometry as an index of moment-to-moment attentional 

engagement during the rewarded version of the same/different task—a perceptual decision task 

with degraded spoken words that were preceded by matching, mismatching, or partially 

mismatching written text. We recorded listeners’ pupil size as they approached each trial, thus 

tracking perceptual processing at different levels of motivation—i.e., being intrinsically 

motivated throughout the baseline block, extrinsically motivated on incentive trials within the 

reward block, and mildly demotivated on non-incentive trials within the same block. This 

allowed us to investigate how monetary incentives affected listeners’ attentional engagement 

during the trial and how pupil dilation trajectories reflected perceptual outcomes on partial 

mismatch trials (i.e., misperception vs veridical perception). We hypothesized that incentive 

trials would exhibit stronger phasic dilation relative to both baseline and non-incentive trials, 

regardless of the perceptual outcome. Misperceived trials were expected to be preceded by 

smaller pre-stimulus dilation, than correctly perceived trials. We had no specific hypotheses 

concerning the reward-by-accuracy interaction, so we used generalized additive mixed models 

(GAMM) to map the time course of pupil dilation for misperceived and correctly perceived 

partial mismatch trials across the three incentive conditions (baseline, incentive, non-incentive) 

and compare these effects directly.  
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Chapter 2: Methods 

2.1 Design 

To investigate the effect of attention and prediction on (mis)perception of degraded 

speech, perceptual and pupillary responses were acquired in an experiment using a mixed 

block/event 3x3 within-subject design (Chiew & Braver, 2013); see Figure 1 for an illustration of 

the experimental design. Attention to stimuli pairs was manipulated at both block and trial levels 

by setting three conditions: baseline, incentive, and non-incentive. Participants performed 

separate baseline and reward blocks, in this fixed order. The baseline block was performed 

without any knowledge of incentives. Within the reward block, incentive trials were randomly 

intermixed with non-incentive trials. This design allows us to examine trial-based effects of 

reward (by contrasting incentive with non-incentive trials within the reward block) while 

controlling for block-based changes in attention and motivation (by contrasting non-incentive 

trials against the baseline trials). The main reason for using these contrasts was that previous 

research demonstrated that these block- and trial-level incentive effects are accompanied by a 

rather different pupil dilation profiles and may correspond to different underlying mechanisms 

(Chiew & Braver, 2013; Jimura et al., 2010). 

Prior expectations were induced by presenting written words before degraded spoken 

words. The validity of predictions was manipulated in three conditions: (1) matching written text 

(cap–cap), (2) mismatching written text (cap–win), or (3) partially mismatching written text 

(onset mismatch: cap–map, and offset mismatch: cap–cat). Thus, global (experiment-wise) prior 

validity was set to 0.25—a prior matched the following degraded word only on 25% of trials. 

Each condition involved 32 different word pairs that were repeated three times throughout the 
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experiment—once within each condition (baseline, incentive, non-incentive). Partial mismatch 

trials, which comprised half of the dataset, were the main target of analyses. 

Behavioural responses were collected in a 2AFC same/different task. In each trial, 

listeners indicated whether they thought that the degraded word matched the presented written 

word by pressing one of two buttons (s = “same”, d = “different”). Pupil size was recorded while 

participants performed the task to investigate how reward affected perceptual processing. 

 

Figure 1. Experimental design. Listeners heard degraded spoken words preceded by matching, mismatching, or partially 

mismatching written text and responded whether the two words were the same or different. There were two blocks: a baseline 

block performed without any knowledge of  incentives and a reward block where incentive and non-incentive trials were 

randomly intermixed. In the reward block, the color of the written word reflected the trial type (incentive vs non-incentive). 

2.2 Participants  

Fifty-one native English speakers (40 females, 9 males, 2 non-binary; mean age 22.14 ± 

4.49) were recruited using email solicitation. All participants provided informed consent and 

reported having normal or corrected-to-normal vision and no history of hearing, linguistic or 

cognitive impairments. Participants were paid at the fixed rate of C$15/hour, plus a C$2.8– C$9 
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(M = $6.34 ± 1.20) bonus based on their task performance. Ethics approval was provided by the 

Research Ethics Board of York University (Certificate #: STU 2022-014). 

Due to poor tracking quality during testing, data from four participants were discarded. 

Subsequent analyses were performed using data from 47 participants (37 females, 8 males, 2 

non-binary; mean age 22.11 ± 4.44). 

2.3 Stimuli 

The stimulus set consisted of 32 monosyllabic English words presented in written and 

spoken format. The words were recorded by a native speaker of North American English at 16 

bit with a sampling rate of 44.1 kHz. The duration of spoken words ranged 609–829 ms (M = 

703.6 ms, SD = 50.7 ms). Recorded stimuli were intensity-scaled (60 dB) and then noise-

vocoded in Praat (Boersma & Weenink, 2021), using a modified version of a script originally 

written by Darwin (n.d.) and following the previously described protocol (Davis et al., 2005). 

The words were first filtered into six logarithmically spaced frequency bands spanning between 

50 and 8000 Hz. Contiguous band-pass filters were constructed in the frequency domain: 

passbands were 3 dB down at 50, 229, 558, 1161, 2265, 4290 and 8000 Hz with a roll-off of 22 

dB per octave. The amplitude envelope from each frequency band was extracted using a standard 

Praat algorithm (squaring intensity values and convolving with a 64-ms Kaizer-20 window, 

removing pitch-synchronous oscillations above 50 Hz). The resulting envelope was then applied 

to band-pass filtered noise in the same frequency ranges. Finally, the resulting bands of 

modulated noise were recombined to produce the degraded word. These parameters were chosen 

based on the previous work that has shown high accuracy for match and mismatch conditions 

and high response variability on partial mismatch trials (Blank et al., 2018; Sohoglu et al., 2014). 
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In line with Blank et al (2018), the 32 words formed two sets of 16 words, each set 

containing four quadruplets of words deviating in either onset or offset sounds (see Figure 2A for 

the illustration). Written and spoken words were combined in three conditions: (1) 32 match 

pairs (e.g., cap–cap), (2) 32 mismatch pairs (cap–win), and (3) 64 partial mismatch pairs (32 

onset mismatch: cap–map, and 32 offset mismatch: cap–cat; see Table 1 for a full list of partial 

mismatch pairs). Each written-spoken pair was repeated three times throughout the experiment—

once at each level of reward (baseline, incentive, non-incentive). Each word occurred in its 

written or spoken form with equal probability, 24 times in total (twelve times as a prior, twelve 

times as a spoken degraded word). 

 

Table 1. Full list of partial mismatch pairs. 

   
onset mismatch 

  
offset mismatch 

  

word 

pair 

vowel 

number 

quadrupl

e 

written 

word 

spoken 

word 

deviating 

sound 

common 

sound 

written 

word 

spoken 

word 

deviating 

sound 

common 

sound 

1 1 1 cap pap k/p æp cap cat p/t kæ 

2 1 1 cat pat k/p æt cat cap t/p kæ 

3 1 1 can pan k/p æn can cam n/m kæ 

4 1 1 cam Pam k/p æm cam can m/n kæ 

5 1 1 pap cap p/k æp pap pat p/t pæ 

6 1 1 pat cat p/k æt pat pap t/p pæ 

7 1 1 pan can p/k æn pan Pam n/m pæ 

8 1 1 Pam cam p/k æm Pam pan m/n pæ 

9 1 2 bap map b/m æp bap bat p/t bæ 

10 1 2 bat mat b/m æt bat bap t/p bæ 

11 1 2 ban man b/m æn ban bam n/m bæ 

12 1 2 bam mam b/m æm bam ban m/n bæ 

13 1 2 map bap m/b æp map mat p/t mæ 

14 1 2 mat bat m/b æt mat map t/p mæ 

15 1 2 man ban m/b æn man mam n/m mæ 

16 1 2 mam bam m/b æm mam man m/n mæ 

17 2 3 tip kip t/k ɪp tip tit p/t tɪ 

18 2 3 tit kit t/k ɪt tit tip t/p tɪ 

19 2 3 tin kin t/k ɪn tin Tim n/m tɪ 

20 2 3 Tim Kim t/k ɪm Tim tin m/n tɪ 

21 2 3 kip tip k/t ɪp kip kit p/t kɪ 

22 2 3 kit tit k/t ɪt kit kip t/p kɪ 

23 2 3 kin tin k/t ɪn kin Kim n/m kɪ 

24 2 3 Kim Tim k/t ɪm Kim kin m/n kɪ 

25 2 4 whip lip w/l ɪp whip wit p/t wɪ 

26 2 4 wit lit w/l ɪt wit whip t/p wɪ 
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27 2 4 win Lynn w/l ɪn win whim n/m wɪ 

28 2 4 whim limn w/l ɪm whim win m/n wɪ 

29 2 4 lip whip l/w ɪp lip lit p/t lɪ 

30 2 4 lit wit l/w ɪt lit lip t/p lɪ 

31 2 4 Lynn win l/w ɪn Lynn limn n/m lɪ 

32 2 4 limn whim l/w ɪm limn Lynn m/n lɪ 

 

2.4 Procedure    

Stimulus presentation and data collection were controlled using a custom Python script 

built upon PsychoPy (Peirce et al., 2019) and PyGaze (Dalmaijer et al., 2014) libraries. 

Participants were seated in front of a 23.8” monitor in a moderately-lit laboratory of 

approximately 250 lx, with their head stabilized with a chinrest. Monitor height was adjusted 

such that participants’ eyes were positioned halfway on the screen when looking straight ahead 

(Ooms et al., 2015). Visual stimuli were presented at the center of the screen, subtending 

approximately 3 degrees of visual angle. Auditory stimuli were presented binaurally through 

over-ear Sennheiser HD 400S headphones, at a comfortable volume. 

Participants completed two blocks of the same/different task, presented in a fixed order: a 

baseline block followed by a reward block. The baseline block consisted of 128 trials. This block 

was performed without any knowledge of incentives. The reward block consisted of 256 trials 

(128 incentive trials and 128 non-incentive trials, randomized). In this block, participants could 

either earn or lose a $0.1 bonus by giving, respectively, a correct and incorrect response on a 

subset of trials (specified by the color of the written word: red or green). Each set of 128 trials 

(baseline, incentive, non-incentive) consisted of 32 match trials, 32 mismatch trials, and 64 

partial mismatch trials, randomized. 

Each trial began with a central fixation cross (1000 ms), followed by a visually presented 

“prior”, or written word (1500 ms). In the reward block, its color (red or green) served as an 

incentive cue signaling incentive and non-incentive trials. In the baseline block, the text color 
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was kept constant (i.e., all words were either red or green). The mapping between text color and 

the three levels of incentive (baseline, incentive, non-incentive) varied randomly across 

participants. The duration of the presentation of the prior—1500ms—was chosen to ensure that 

listeners had sufficient time to process both the meaning and the incentive information encoded 

in written text (Chiew & Braver, 2016). Previous research demonstrated that the effects of prior 

knowledge remain robust regardless of stimulus onset asynchrony, as long as the written text is 

presented before the degraded speech (Sohoglu et al., 2014). Therefore, following a 500 ms 

delay, participants heard a degraded spoken word and were prompted to respond whether the two 

words were same or different. Listeners responded by pressing one of two buttons on a keyboard 

(“s” – same; “d” – different) in the next 5000 ms window. Trials were separated by a 1000 ms 

inter-trial interval. 

To minimize any feedback-related changes in motivation and motivation-induced 

learning effects (Notebaert & Braem, 2016), participants were not given trial-by-trial feedback. 

Instead, feedback was presented every 32 trials (every 2-3 minutes). In the baseline block, the 

feedback message read “Set over. Starting the next set”. In the reward block, the feedback 

message read “Your bonus so far is $X”, indicating the amount earned by a participant by that 

point. 

Subjective intelligibility of noise-vocoded speech is highly dependent on experience 

(Davis et al., 2005), so prior to the experimental blocks, all participants completed a practice 

session that was identical—in all respects—to the baseline block. The purpose of this session 

was to familiarize listeners with noise-vocoded speech, allow initial perceptual learning to take 

place, and ensure asymptotic performance. A short 8-trial training session also preceded the 
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reward block, allowing participants to practice the association between the color of written word 

and trial type (i.e., incentive vs non-incentive).  

The entire experiment took about 50 minutes to complete. Participants were given self-

timed breaks between the blocks. 

2.5 Pupillometry data collection and preprocessing 

 Pupil size was continuously recorded from each eye using a Gazepoint GP3-HD infrared 

eye-tracker at a sampling rate of 150 Hz. The eye-tracker was mounted directly under the screen, 

situated 60 cm away from the participant. Screen brightness was adjusted to intermediate levels 

(50%) to approximately match the luminance of the room and avoid discomfort glare. All text 

colors used in the experiment (green, red, gray) were matched for relative luminance (Y = 0.293 

± 0), perceived lightness (L* = 61.1 ± .027) and perceived contrast against a light-beige 

background (-0.569 ± .001)2.  

At the beginning of each experimental run, the eye-tracker was calibrated using a nine-

point calibration procedure. Calibration was accepted only when average accuracy in vertical and 

horizontal dimensions for both eyes was below 40 px (about 1 degree of visual angle), with all 

points valid.  

Before analysis, pupil data were preprocessed in R (R Core Team, 2020). Samples tagged 

as invalid by the eyetracker were removed. Trials with more than 30% of invalid data points 

were excluded from the analysis (n = 671, 2.85%). Since Gazepoint GP3-HD eyetracker does not 

 

 

2 Relative luminance (Y) is a linear measure of light. It is based on spectral sensitivity of human vision, so 

it reflects how human eye perceives different wavelengths of light (color). However, luminance is not adjusted for 

the non-linear perception of lightness. Y ranges from 0  to 1, with 0 being black and 1 being white. Perceptual 

lightness (L*) reflects visual perception of luminance and can be approximated from Y. Contrast refers to the 

difference between two Y or L* values, for foreground and background colors respectively (MyndexTM Web Help - 

Luminance Contrast and Perception, n.d.). Here, perceived contrast was calculated. 
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automatically detect blinks, a simple velocity filter (Mathôt, 2013) was used for deblinking. The 

remaining artifacts were removed using the approach described in Kret & Sjak-Shie (2019). 

Dilation speed outliers—samples at which dilation speed exceeded a threshold based on median 

absolute deviation (MAD) from dilation speed series—were detected and removed. Clusters of 

samples that strongly deviated from the signal trend line, generated by interpolating and 

smoothing filtered data, were identified and removed in a similar fashion. Blinks (continuous 

stretches of missing data lasting 75–500ms) were extended 25ms forward and backward. Finally, 

a sparsity filter was applied to reject “islands”—short (<50ms) clusters of temporally isolated 

samples, likely attributed to noise, that remained after previous filtering steps. Visual inspection 

followed automatic artifact rejection. 

Because right and left pupil sizes are highly correlated (Jackson & Sirois, 2009), the 

analyses were based on mean pupil data (Kret & Sjak-Shie, 2019). To generate these times 

series, a dynamic offset between the left and right pupil diameter was calculated when samples 

were available for both eyes. To estimate mean pupil diameter in the presence of missing 

samples, this offset was interpolated to the time points that only had data from one eye. Next, to 

reduce autocorrelation in the subsequent GAM analysis (van Rij et al., 2019), these averaged 

pupil time series were filtered using a 5-th order zero-phase low-pass Butterworth filter with a 

cut-off frequency of 10 Hz and downsampled to 50 Hz by taking the mean per time-bin in. In the 

process, all stretches of missing data shorter than 400ms were interpolated. Downsampled pupil 

data were baseline-corrected, using the subtractive method (Mathôt et al., 2018). The baseline 

was calculated per trial as the median pupil size during the 100 ms following the onset of the 

written word. Since the latency of the fastest pupil response is about 200 ms (Mathot, 2018), 

pupil size in this period was not affected by any experimental manipulation, while its relatively 
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short duration reduced the likelihood of artifacts and pupil-size fluctuations. If baseline 

correction could not be performed due to missing data (e.g., because of a blink during the 

baseline period), the trial was removed. Trials with extreme baseline pupil sizes (with the z-

scored baseline being larger than 3 or smaller than -3) were likewise removed (Mathôt & 

Vilotijević, 2022). Finally, the velocity filter was reapplied to remove the remaining recording 

artifacts. A total of 1078 trials (5.97%) were excluded from the analysis. 

The data were aligned to the onset of the written word (2000 ms before the presentation 

of degraded speech). The pupil dilation in the period of 4000 ms from the onset of the prior (i.e., 

2000 ms before and 2000ms after the onset of the degraded word) was analyzed. 

2.6 Analyses  

All analyses were performed in R (version 4.1.3: R Core Team). To assess whether 

perception was influenced by reward, behavioural responses on partial mismatch trials were 

analyzed using a mixed logistic model. Pupillometry time series were analyzed using generalized 

additive mixed models. 

2.6.1 Acoustic similarity analysis 

 Acoustic similarity between degraded spoken words was computed following the 

previously described protocol (Billig et al., 2013; Blank et al., 2018). First, a gammatone-based 

spectrogram-like time-frequency matrix was computed for each degraded word, to approximate 

the frequency analysis performed by the human ear. Then, for each pair of tokens, a spectral 

similarity matrix was generated by comparing gammatone spectral profiles of all time slices. We 

chose to compute the spectral similarity between six-channel vocoded versions of written and 

spoken pairs because it was shown to have a higher correlation with perceptual outcomes than 

the similarity between noise-vocoded and clear words (Blank et al., 2018). Dynamic time 
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warping was used to compute the maximum similarity path through each similarity matrix. 

Finally, the summed similarity values along this path were computed and normalized. Resulting 

(dis)similarity scores ranged from 0 (for the two most similar sound files) to 1 (for the two most 

dissimilar sound files). Acoustic similarity analysis was performed in MATLAB using existing 

gammatone spectral analysis and dynamic time warp functions supplied by Ellis (2003, 2009).  

Figure 2B illustrates the computed spectro-temporal similarity between noise-vocoded versions 

of tokens in each written/spoken pair. 

 

Figure 2. Stimulus similarity and behavioural confusion matrices. (A) Word similarity matrix. 32 written and spoken words were 

combined in three different conditions:32 match pairs (3 overlapping segments), 64 partial mismatch pairs (2 overlapping 

segments: in onset and offset respectively), 32 total mismatch pairs (no overlapping segments). (B) Acoustic similarity between 
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noise-vocoded versions of written and spoken words. (C) Mean behavioural responses. Mismatching pairs were more often 

reported as “different” (green), matching pairs—as “same” (blue), while responses to partial mismatch pairs were a mix of 

“same” and “different”. (D) SD of responses. Responses to mismatching and matching pairs were more consistent (blue), 

responses to partially mismatching pairs—more variable (green). 

 

2.6.2 Logistic mixed-effects regression analysis of the behavioral data 

First, we used a logistic mixed model in lme4 (Bates et al., 2015) to analyze all 

behavioural responses. This model aimed to (1) estimate how (mis)informative prior knowledge 

affected perception of noise-vocoded words and (2) investigate whether incentives affected 

perceptual outcomes of listening beyond the prediction effects. To do so, we modeled trial-by-

trial accuracy as a function of prior (matching, mismatching, partially mismatching), reward 

condition (baseline, incentive, non-incentive), and their interaction. We further included random 

intercepts for item and participant to account for the lack of independence on the participant- and 

item levels. 

Perceptual outcomes of partial mismatch trials—the main target of our analyses—were 

analyzed using another mixed logistic model. This model was fitted using the following lme4 

specification: 

correct ~ reward + sim.z + (reward  | id) + (1 | pair) 

Here, the dependent variable was accuracy on a single trial  (0: incorrect/misperception, 

1: correct/veridical perception). The model included the fixed effects of reward and acoustic 

similarity. The 3-level factor of reward (baseline vs incentive vs non-incentive) was coded using 

repeated contrasts. This allowed us to test both the trial-based effect of reward (by comparing 

baseline and non-incentive trials) and the block-based effect of reward (by comparing incentive 

and non-incentive trials). Acoustic similarity, a continuous predictor, was standardized: centered 

at 0 and divided by 2 standard deviations (Gelman, 2008). Standardization placed this term on 

the same scale as binary input variables, allowing for a more intuitive interpretation of model 
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coefficients. To test whether an interaction term (between reward and acoustic similarity) was 

necessary, we fitted a model with this interaction term and performed model comparison using a 

likelihood ratio test. The test indicated that the interaction was not necessary (χ2 = 0.16, p = 

0.92), so this term was not included in the final model. 

To capture the multilevel structure of the data (repeated measures for both participants 

and items), the model included the maximal random effect structure justified by the data: random 

intercepts for participants and items, as well as a random slope for reward within participants. 

This random effect structure captured intrinsic variability in perception among participants, 

individual differences in reward sensitivity, as well as varying perceptual difficulty of stimuli. 

For items, although the same 32 words appeared as both written primes and spoken words (see  

Figure 2A), it was decided to collapse them into a single 64-level random factor coding a 

written/spoken “pair”, instead of fitting separate random effects for written priors and spoken 

words. Timed-out trials were removed from the analysis (1.4% data loss).  

Since regression allows us to test the influence of potential confounding variables, we fit 

another model including two of such nuisance factors: time-within-experiment and reaction time. 

Given that the order of baseline and reward blocks was fixed, the effects of time-within-

experiment are particularly important to consider as a potential confound. Previous work (Davis 

et al., 2005) has shown robust perceptual learning effects after the first few minutes of exposure 

to noise-vocoded speech. Perceptual learning tends to follow a power-law curve with most 

learning happening rather quickly, and we included a practice session to stabilize performance 

and mitigate these effects. However, it is still possible that slower learning-related changes 

affected performance in the rest of the experiment, since the dataset was rather small, and 

listeners heard (and saw) each word multiple times. In a similar vein, reaction time is an 



  

 

31 

 

important source of concern because reward manipulations in other experiments were shown to 

speed up reaction times, to the detriment of accuracy (Bogacz et al., 2006; Dambacher et al., 

2011; Drugowitsch et al., 2015)—the effect known as speed-accuracy trade-off (SAT). 

Therefore, we fit another model that included these potential sources of variability. As before, 

both continuous variables were standardized: centered and divided by 2 standard deviations. RT 

was standardized within participant. 

The models were fit using maximum likelihood (Laplace Approximation). Likelihood 

ratio tests were used to test statistical significance of predictors, as implemented in lme4 (Bates 

et al., 2015). Since Bayesian models offer more robust estimation, especially in the context of 

clustered binary data (Fong et al., 2010), confidence intervals and point estimates of the final 

model coefficients were obtained by fitting analogous Bayesian models in Stan and R using brms 

package (Bürkner, 2017). To improve model convergence and guard against overfitting, we 

specified independent Cauchy priors on all logistic regression coefficients, each centered at 0 and 

with scale parameter 10 for the intercept and 2.5 for all other coefficients (Gelman et al., 2008). 

These prior distributions can be directly interpreted as a constraint on the coefficients: in 

combination with standardization, they imply that the absolute difference in logit probability 

when moving from one SD below the mean to one SD above the mean, should be less than 5 for 

any given input variable. In logistic regression, a change of 5 on the logit scale corresponds to 

48% increase in log odds—a shift in probability from 0.02 to 0.5 or from 0.5 to 0.98. Since it is 

highly unlike that any single term changes the probability of the outcome from 0.02 to 0.98, we 

reflect this in the model by assigning low probabilities to changes of 10 and higher on the logit 

scale. We further specified half-Student-t priors with 3 degrees of freedom, center 0, and scale 

2.5 on all variance parameters. While still being weakly informative, this prior has lighter tails 
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than the recommended half-Cauchy prior (Gelman, 2006; Polson & Scott, 2012). This, in turn, 

leads to better convergence and more robust estimates in the case of logistic regression, where 

the likelihood is highly sensitive to large values of the underlying linear predictor. The model 

was sampled using 4 chains, 8000 iterations each, with 2000 iterations used for warmup—

returning a total of 24000 post-warmup samples. Samples were drawn using the No-U-Turn-

Sampler (NUTS: Hoffman & Gelman, 2014). Visual model diagnostics was performed using 

bayesplot package (version 1.9.0: Gabry et al., 2018). All R-hat values were < 1.005, and all 

ratios of the effective sample size to the total sample size were above 0.1, with most above 0.5, 

indicating good convergence. 

2.6.3 GAMM analysis of the pupil data 

Pupil time series were analyzed with a generalized additive mixed model using mgcv R 

package (version 1.8.39: Wood et al., 2013) and visualized using itsadug R package (version 2.4: 

Rij et al., 2022). Generalized additive models (Wood, 2017) are an extension of linear regression 

in that they assess the relationship between a dependent variable and a number of available 

predictors. But while linear regression assumes this relation to be linear, GAMs allow us to 

model it as a smooth function—a continuous, potentially wiggly, line that changes over time to 

fit the (non-linear) pattern of the data. These models do not require pre-defined non-linear 

function specification—instead, smooths are approximated from the data as a weighted sum of 

multiple base functions, such as cubic and thin plate regression splines. GAMs use penalized 

regression methods (i.e., they penalize wiggliness—model complexity—in favor of simpler 

(non)linear trajectories) to obtain the maximum likelihood estimation of the smooths. Smoothing 

parameters of multiple predictors are estimated using cross-validation, which allows GAMs to 

avoid both overgeneralization and overfitting. Generalized additive mixed models, in particular, 



  

 

33 

 

are well suited for analyzing the time-course of pupillometric data, because of their flexibility 

and ability to detect non-linear effects, while simultaneously accounting for variation in both 

participants and items (van Rij et al., 2019). 

Here, to examine the possibly (non-linear) effects of reward and perceptual outcome on 

the pupil dilation trajectory over time, we looked at the time-locked baseline-corrected pupil size 

in the time range of -2000 to 2000 ms before/after audio onset. Note that our dependent variable 

(the change in pupil size relative to baseline) is expressed in pixels as reported by GazePoint; 

currently, there is no straightforward way to reliably convert these values to the metric scale.  

The model was fitted using the bam() function from the mgcv package (version 1.8-39) 

with fREML estimation and discretized covariates for faster computation (i.e., with arguments 

method="fREML" and discrete = TRUE). The model was specified in the following way: 

PD ~ s(timebin, by = correct, k = 20) + correct 

+ s(timebin, by = Is1B)  

+ s(timebin, by = Is1I)  

+ s(timebin, by = Is0B)  

+ s(timebin, by = Is0I)  

+ s(timebin, id, by = correct, bs = "fs", m = 1)  

+ s(timebin, id, by = Is1B, bs = "fs", m = 1)  

+ s(timebin, id, by = Is1I, bs = "fs", m = 1)  

+ s(timebin, id, by = Is0B, bs = "fs", m = 1)  

+ s(timebin, id, by = Is0I, bs = "fs", m = 1)  

+ s(timebin, pair, by = correct, bs = "fs", m = 1)  

+ s(timebin, pair, by = Is1B, bs = "fs", m = 1)  

+ s(timebin, pair, by = Is1I, bs = "fs", m = 1) 

+ s(timebin, pair, by = Is0B, bs = "fs", m = 1)  

+ s(timebin, pair, by = Is0I, bs = "fs", m = 1)  

 

This specification indicates that we are modeling non-linear effects of reward and 

subsequent perceptual outcome on pupil dilation within the trial. Essentially, we are fitting these 

effects for three types of reward trials and for both misperceived and correctly perceived word 

pairs. But instead of obtaining separate dilation trajectories for each of these six combinations, 

we model both trial- and block effects of reward directly, using binary difference smooths 
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(Sóskuthy, 2017; Wieling, 2018). Binary difference smooths integrate the constant and non-

linear difference between two categories into a single term and evaluate whether this term is 

necessary (i.e., whether the difference wave between two categories is significantly different 

from 0). Modeling target differences with binary smooths produces the highest power compared 

to other methods of significance testing (such as model comparison), without increasing 

computational cost or Type I error rate (Sóskuthy, 2021). To implement by-factor binary 

smooths, we converted Reward into a set of binary predictors corresponding to each of our four 

differences of interest: Is1B (1: correct baseline trials; 0 otherwise), Is1I (1: correct incentive 

trials; 0 otherwise), Is0B (1: misperceived baseline trials; 0 otherwise) and Is0I (1: misperceived 

incentive trials; 0 otherwise). The first term in the model specification, then, fits two reference 

curves corresponding to pupil trajectories for misperceived and correctly perceived non-incentive 

trials. The second term is a constant; it models the parametric difference between correct and 

incorrect non-incentive trials. The next four terms correspond to difference curves: they directly 

model the block-level and trial-level effects of incentive that we are interested in. Essentially, 

s(timebin, by = Is1B) estimates the difference between correct baseline and non-incentive trials, 

s(timebin, by = Is1I)—between correct incentive and non-incentive trials, while s(timebin, by = 

Is0B) and s(timebin, by = Is0I) model respective differences for incorrect trials.  

To account for the hierarchical structure of the data, the model included random smooths 

for participants and items (the last ten terms in the model specification). Random smooths are 

analogous to random intercept and slope adjustment in linear mixed effect models but are more 

flexible because they adjust the entire shape of a (non-)linear regression line (which may or may 

not involve adjustment of the intercept and/or slope). The ten random smooths fitted here 

estimate the individual variability in the pupil dilation trends per participant and word pair 
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(separately for the reference curve and four difference curves, due to by-factor specification). 

Such a “random reference/difference” approach is optimal when modeling within-unit random 

effects, such as those attested here. It offers higher power under the same nominal Type I error 

rate compared to other random effect structures, such as item*effect smooths and item-by-effect 

smooths (Sóskuthy, 2021). Note that Sóskuthy (2021) referred to ordered factor random 

difference smooths instead of binary ones, although these are essentially the same, given that the 

random-effect smooths—regardless of whether they are binary or ordered factor—are not 

centered (i.e., they always include intercept: Sóskuthy, 2017; Wieling, 2021a). 

Both fixed and random smooth terms were constructed using thin plate regression 

smooths. The maximum number of basis functions was set to 19 for the fixed reference smooth 

and to 9 for all binary difference smooths (i.e., k = 20 and k = 10 respectively). Model checking 

with gam.check() indicated that these numbers were sufficient. To correct for autocorrelation in 

residuals, which is rather extreme in pupillometric signal (van Rij et al., 2019), the fitted model 

included an AR1 autoregressive error model. This model directly estimates the effect of an 

immediately preceding data point on the current one. The correlation parameter (rho) for an AR1 

model was estimated using the residual autocorrelation at lag 1 of an identical model fitted to the 

same data without an AR1 component (Sóskuthy, 2021). Finally, since the distribution of the 

measured pupil signal was non-normal, resulting in non-normal residuals, the model was re-fitted 

using the scaled t-distribution, better suited for heavy-tailed response variables (family = ‘scat’). 

As a result of this change, the residuals substantially improved. Diagnostic plots for the model 

are provided below (Figure 3). 
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Figure 3. Diagnostic plots for the GAMM model. ACF = autocorrelation function ; QQ = quantile-quantile. 

To assess whether the differences between reward conditions for correct and incorrect 

trials were constant (i.e., a difference in height only) or non-linear (i.e., a difference in the shape 

of the curves), we refit the model above using ordered factors (Sóskuthy, 2017; Wieling, 2018, 

2021b). Every binary smooth (Is1B, Is1I, Is0B, and Is0I) was therefore converted into a 

corresponding ordered factor (Is1B.o, Is1I.o, Is0B.o, and Is0I.o) and re-entered in the model as a 

parametric effect and an ordered factor difference smooth. Essentially, in this second model, the 

four binary difference factor smooths were split into four parametric terms and four ordered 

factor smooths. The random-effects specification is essentially the same as that of the previous 

model: ordered factors were included as random smooths to account for individual differences in 

the pupil trajectories for participants and word pairs. As noted earlier, in this case, it does not 

matter whether random effects are fitted using ordered factor smooths or binary difference 

smooths since both are not centered. The full model specification is provided below; all 

differences from the binary curve model are in bold: 

 

PD ~ s(timebin, by = correct, k = 20) + correct 

+ s(timebin, by = Is1B.o) + Is1B.o 

+  s(timebin, by = Is1I.o) + Is1I.o 

+ s(timebin, by = Is0B.o) + Is0B.o 
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+ s(timebin, by = Is0I.o) + Is0I.o 

+ s(timebin, id, by = correct, bs = "fs", m = 1)  

+ s(timebin, id, by = Is1B.o, bs = "fs", m = 1)  

+  s(timebin, id, by = Is1I.o, bs = "fs", m = 1)  

+ s(timebin, id, by = Is0B.o, bs = "fs", m = 1)  

+ s(timebin, id, by = Is0I.o, bs = "fs", m = 1)  

+ s(timebin, pair, by = correct, bs = "fs", m = 1)  

+ s(timebin, pair, by = Is1B.o, bs = "fs", m = 1)  

+ s(timebin, pair, by = Is1I.o, bs = "fs", m = 1) 

+ s(timebin, pair, by = Is0B.o, bs = "fs", m = 1)  

+ s(timebin, pair, by = Is0I.o, bs = "fs", m = 1) 

 

The p-values for the parametric and smooth difference terms were obtained from the 

model summary; note that these are only approximations (S. Wood, 2013). 
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Chapter 3: Results 

3.1 Behavioural performance 

3.1.1 Overall perception 

Figure 4A shows overall behavioural performance, including timed-out responses, across 

all conditions. Overall, this pattern of results is consistent with the findings of the previous study 

(Blank et al., 2018): listeners correctly reported most matching written/spoken word pairs as 

“same” (78.7% ± 4.1%) and mismatching word pairs as “different” (94.6% ± 2.3%). Responses 

in the partial mismatch condition were more variable: on 37.3% of these trials (SD = 4.9%), 

participants erroneously perceived that the degraded word they heard matched the expected 

written word (see also Figure 2, Panels C and D). Some participants were more prone to 

Figure 4. Behavioral performance. (A) Listeners provided more “same” responses in the match than in mismatch or partial 

mismatch conditions. “Different” responses were more prevalent in the mismatch conditions. Partial mismatch conditions show 

a large proportion of both “same” and “different” responses, indicating frequent misperception. (B) Perceptual accuracy was 

lowest in partial mismatch condition (35–40% misperception), followed by match condition (15-23% misperception). Incentive 

decreased perceptual accuracy on partial mismatch trials but improved perception of matching pairs. Error bars represent SEM. 
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misperception—others, on the contrary, were deceived less often: individual rates of 

misperception on partial mismatch trials ranged from as little as 27.8% to as much as 62.9%.  

Figure 4B illustrates the interaction between prior knowledge and incentive conditions, 

focusing specifically on misperception across different types of trials (baseline, incentive, non-

incentive). Incentive trials resulted in a lower overall rate of incorrect responses for matching 

written/spoken pairs (15.3% ± 0.01) and a slightly higher rate of misperception for partial 

mismatch pairs (39.9% ±  0.01) relative to baseline trials (matching pairs: 23.4% ± 0.01; partial 

mismatch pairs: 37.2% ± 0.01) and non-incentive trials (matching pairs: 22.0% ± 0.01; partial 

mismatch pairs: 36.3% ± 0.01) respectively.  

To investigate whether incentives had a significant influence on the effects of prior 

knowledge (i.e., on the likelihood of misperception induced by (mis)matching written text), a 

mixed logistic model was fitted to all behavioural responses. Wald chi-square tests of effects 

revealed that there was a significant interaction between prior and reward (χ2(4)  = 59.7, p < 

0.000), as well as a significant main effect of prior knowledge on perception (χ2(2)  = 112.7, p  < 

0.000), but no significant main effect of reward (χ2(2)  = 4.5, p = 0.11). Table 2 reports the 

results of post hoc pairwise comparisons for simple main effects (Bonferroni-adjusted for 12 

tests). There were significant differences between matching and mismatching priors, as well as 

between partially matching and mismatching priors, across all three levels of incentive (all p < 

0.0001). Both partially mismatching and, interestingly, truly matching written text increased the 

odds of misperception relative to a clearly mismatching prior that was easy to reject. This 

suggests that listeners placed relatively low confidence in written text, doubting its reliability 

even when it was truly informative. Incentives had no clear influence on perceptual outcomes 

except in one sense: incentive trials appear to have increased listeners’ reliance on prior 
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knowledge. This resulted in fewer “misperceptions” triggered by mistrusting a truly matching 

text (p < 0.0001) and a somewhat higher rate of misperception triggered by failing to reject a 

partially mismatching text. The latter effect did not, however, reach significance in this omnibus 

model (p = 0.19).  

 

Table 2. Post-hoc pairwise comparisons for the Incentive * Prior Knowledge interaction in a logistic mixed model fitted to all 

behavioural responses. P-values are Bonferroni corrected. 

 

3.1.2 Perception on partial mismatch trials 

Next, we analyzed partial mismatch trials separately, using a logistic mixed model that 

directly assessed the relative effects of incentives and acoustic similarity on the rate of 

misperception. Table 3 reports the results of this model fitted using lme4 and brms (full model 

output can be found in Appendix A for the frequentist model fitted with lme4 and Appendix C 

for the Bayesian model fitted with brms). The effect of incentives on the perception of partially 

mismatching pairs was significant (χ2  = 13.06, p = 0.001) but its direction was opposite to that 

predicted. Namely, participants were more likely to be deceived into reporting that written and 

spoken words were “same” on incentive trials than on non-incentive trials (z = -3.893, p = 

0.0001). The odds of misperception were 26% higher for incentive trials in the reward block 

Incentive Prior Contrast Odds Ratio SE Z ratio P-value 

baseline . match / mismatch 42.055 21.795 7.215 <.0001 

baseline . partial / mismatch 69.116 32.555 8.993 <.0001 

non-incentive . match / mismatch 223.945 164.904 7.349 <.0001 

non-incentive . partial / mismatch 365.723 257.364 8.387 <.0001 

incentive . match / mismatch 43.839 24.942 6.645 <.0001 

incentive . partial / mismatch 161.953 84.945 9.699 <.0001 

. mismatch non-incentive / baseline 0.171 0.107 -2.827 0.06 

. mismatch incentive / baseline 0.509 0.211 -1.627 1 

. match non-incentive / baseline 0.909 0.089 -0.976 1 

. match incentive / baseline 0.53 0.056 -6.005 <.0001 

. partial non-incentive / baseline 0.903 0.066 -1.402 1 

. partial incentive / baseline 1.192 0.087 2.413 0.19 
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compared to non-incentive trials in the same block (b = -0.30 ± 0.08). On non-incentive trials, 

the odds of misperception were 15% lower than in the baseline block (b = 0.11 ± 0.08), although 

these differences in performance were not statistically significant (z = 1.313, p = 0.19). Inter-

subject variability for reward was only minor (SD = 0.28 ± 0.12, 95%CrI = [0.05; 0.51]), 

particularly for incentive vs non-incentive contrast (SD = 0.15 ± 0.10, 95%CrI = [0.01, 0.38]). 

 

Table 3. Results of behavioural analyses with logistic mixed models. Parameter estimates are given in log-odds. B = baseline, I 

= incentive, N = non-incentive. 

 GLM (lme4) Bayesian GLM (brms) 

(Intercept) 0.99 (0.28) *** 0.99 (0.30) [0.41; 1.60] * 

Reward: N vs B 0.11 (0.08) 0.11 (0.09) [-0.06; 0.28] 

Reward: I vs N -0.30 (0.08) *** -0.30 (0.08) [-0.45; -0.14] * 

Acoustic similarity (standardized) 1.26 (0.53) * 1.18 (0.54) [0.13; 2.26] * 
*** p < 0.001, ** p < 0.01, * p < 0.05 (or 0 outside the 95% credible interval for the Bayesian model). 

 

Acoustic similarity between expected and heard words was also predictive of 

misperception (χ2  = 5.35, p = 0.021). The odds of misperception were 3.5 times higher for 

written/spoken word pairs whose six-channel vocoded versions were more acoustically similar (b 

= 1.26 ± 0.53, 95%CrI = [0.13, 2.26]) than for more acoustically distinct words (z = 2.363, p = 

0.018). Note that, because of standardization, this coefficient reflects a change in 2 standard 

deviations, which, in the current dataset, approximates the acoustic difference between the most 

dissimilar and the “average” word pair—or between the “average” word pair and the most 

similar one. Indeed, some partial mismatch pairs were consistently misperceived, while others 

were almost always judged correctly (see also Figure 2C). 

Finally, we additionally investigated the effects of potential confounding factors: time-

within-experiment (i.e., practice, fatigue, or perceptual learning effects) and reaction time. 

Neither effect was statistically significant and neither improved model fit (Likelihood ratio test: 
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χ2 = 0.08, p = 0.78 for trial effects, and χ2 = 1.31, p = 0.25 for reaction time). The estimated 

effect of time was essentially zero (b = 0.03 ± 0.11), while slower RT had an overall negative 

effect on accuracy, increasing the odds of misperception by 11% (b = -0.12 ± 0.11, 95%CrI 

=[0.34, 0.10]). Since neither of these nuisance factors had a significant impact on the pattern of 

results reported above, these terms were not included in the final model reported in Table 3. The 

full model output for the nuisance-factor model can be found in Appendix B. 

3.1.3 Consistency of responses 

We further sought to verify the conclusion of the previous study, namely, that the 

likelihood of misperception on partial mismatch trials depends on the acoustic similarity of 

deviating, rather than matching, sounds (Blank et al., 2018). To determine that, we used 

previously described methods and computed the sum of squared differences between the rate at 

which each written/spoken pair (e.g., kit–tit) was misperceived as “same” with the rate of 

misperception within its “common sound” group (i.e., three other word pairs that share the same 

common sounds; here, _it: tit–kit, wit–lit, lit–wit) and its “deviating sound” group (i.e., three 

other word pairs that share the same deviating sounds; here, -k/+t: kip–tip, Kim–Tim, kin–tin). 

This analysis is concerned with the consistency of behavioural responses within each group. Low 

sum squared difference indicates that the rate of misperception was similar for all items in a 

group. It means that all four words pairs were either consistently misperceived as “same”, or 

consistently reported as “different”, or some mix of the two—as long as responses for all items 

are similar, the sum squared difference for this group will be low. High sum squared difference 

means the opposite: that the rate of misperception for one pair tells us little about the perception 

of other pairs in the group. 
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Figure 5. Perceptual outcome on partial mismatch trials is better predicted by the identity of deviating sounds. (A) Mean sum 

squared differences in the rate of “different” responses for common and deviating sounds groups: responses were more 

consistent (i.e., lower sum squared difference) for word pairs sharing the same deviating sounds (e.g., -k/+t: kit-tit, kip–tip, Kim–

Tim, kin–tin) than for word pairs sharing the same common sounds (e.g., /_it/: kit-tit, tit–kit, wit–lit, lit–wit). (B) Mean sum 

squared differences for common and deviating sound groups split by incentive condition: incentive did not affect consistency of 

responses within deviating sound groups but further reduced it within common sound groups. Error bars show the SEM. 

 

As in the previous study, we found that partial mismatch pairs sharing the same deviating sounds 

had lower sum squared difference than pairs sharing the same common sounds (paired t-test: 

t(63) = 9.582, p < 0.001); see Figure 5A. This means that perceptual outcomes are better 

predicted by the sounds that deviate between prior expectations and reality, compared to sounds 

that are consistent with prior expectations.  

Figure 6 provides the rate of misperception within each deviating sound group (Panel A) 

and within each common sound group (Panel B). While the sum squared differences analysis 

showed that responses within each deviating sound group were consistent, their perceptual 

difficulty turned out to be quite different. Some deviating sounds were consistently perceived 

correctly (see Figure 6A “P/T”)—others were more perceptually difficult, leading to more 

frequent misperceptions (see, e.g., Figure 6A “N/M”). Interestingly, perception of some “mirror” 

deviating sound groups, such as -k/+p (cap–pap, cat–pat, can–pan, cam–Pam) and -p/+k (pap–

cap, pat–cat, pan–can, Pam–cam), also differed substantially: the former was misperceived 
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72.6% of the time, the latter—only 13.2% (see Figure 6A “K/P”). This suggests that the 

perceptual difficulty of a given acoustic contrast might depend on the exact nature of deviating 

sounds, rather than simply the position (onset vs offset) and type (e.g., N/M vs P/T) of mismatch. 

 

 

Figure 6. The rate of misperception across all common and deviating sound groups. (A) The rate of misperception varied 

substantially from one deviating sound group to another, depending both on the type and the exact nature of each acoustic 

contrast. (B) The mean rate of misperception across common sounds groups was relatively consistent. Error bars show SEM. 
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To investigate the effect of incentives on the consistency of behavioural performance, we 

conducted two separate ANOVAs on sum squared differences for common and deviating sound 

groups. For the common sound group, there was a significant effect of reward: F(2, 189) = 4.718, 

p = 0.01; for the deviating sound group, this effect was not significant: F(2, 189) = 0.179, p = 

0.836. Post-hoc Tukey’s test showed that, when a reward was at stake (incentive trials), 

perception within common sound groups became even less consistent than it was on non-

incentive (p = 0.04) and baseline trials (p = 0.01). There was no difference between non-

incentive and baseline trials (p = 0.90); see Figure 5B. This is consistent with the overall effect 

of incentives on the critical perception of the prior in our experiment: on incentive trials, 

plausible priors (both matching and partially mismatching) were more often accepted as “true” 

relative to other conditions. More confidence in the prior resulted in a larger proportion of 

correct responses on truly matching trials (kit–kit) but a higher rate of misperception on partial 

mismatch trials (kit–tit).  

For the sake of completeness, we ran an additional exploratory analysis investigating 

whether the effect of motivational incentives depended on the perceptual difficulty of the partial 

mismatch contrast. Since perceptual outcomes were better predicted by the nature of deviating, 

rather than common, sounds, we modelled the proportion of misperceived trials within each 

deviating sound group as a function of the incentive condition (baseline, incentive, non-

incentive) and perceptual difficulty (low, high) using a simple linear regression in lme4 (Bates et 

al., 2015). Perceptual difficulty was estimated from the mean rate of incorrect responses within 

each deviating sound group. “Low” perceptual difficulty was assigned to groups that were 

misperceived less than 50% of the time—“high” difficulty was assigned to groups misperceived 

more often than that. This model showed that while incentives did not affect perception of 
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“easier” sound groups (b = -0.01, SE = 0.03, t = -0.570, p = 0.57), they increased the risk of 

misperception for more perceptually difficult groups (b = 0.09, SE = 0.04, t = 2.208, p = 0.029); 

see also Figure 7. 

  

 

Figure 7. The effects of incentive on misperception of individual deviating sounds groups. Blue represents a more perceptually 

difficult contrast within each sound group, green—an easier one (cf Figure 6A) 

 

3.2 Pupillometry 

Tables 4 and 5 summarize the results of the GAMM model investigating the effects of 

time and reward on pupil dilation during perception and misperception of partial mismatch pairs 

(see Appendix D for the full model output). Table 4 gives estimates for the parametric 
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coefficients reflecting the difference in height for correct and incorrect non-incentive trials (non-

incentive trials being the reference level of the reward term). Row 2 shows that pupil dilation 

during misperception and veridical perception of partial mismatch non-incentive pairs was 

essentially the same. Note, however, that parametric coefficients are not very informative, as 

they only model the constant difference between conditions (i.e., height adjustment) and account 

neither for the effects of time within trial nor for the effects of reward. Table 5 reports smooth 

terms for the same model. Rows 1 and 2 illustrate the significance of non-linear pupil trajectories 

corresponding to misperceived and correctly perceived non-incentive trials (the two reference 

curves). Significant difference, in this case, merely means that these two curves are significantly 

different from 0. Our main interest, however, is the difference between non-incentive and 

baseline trials (corresponding to the block effect of reward), and that between non-incentive and 

incentive trials (the trial effect of reward), so we focus on Rows 3 to 6 instead. These correspond 

to smooth parameters that estimate how pupil trajectories change over time as a result of 

different reward conditions during perception and misperception of mismatch. Specifically, 

Rows 3 and 5 indicate that the difference over time between baseline and non-incentive trials 

(i.e., the block effect of reward) was significant for both accurately perceived (F = 1.99, p = 

0.04) and misperceived word pairs (F = 3.43, p = 0.03). The estimated degrees of freedom, or 

edfs, represent an estimate of the wiggliness of the pattern. Higher edf estimates correspond to 

more wiggly (more complex) smooths. Here, we see that this difference is rather complex during 

veridical perception but is close to linear during misperception. In a similar vein, Rows 4 and 6 

show that the difference between pupil dilation trajectories on non-incentive vs incentive trials 

(i.e., the trial effect of reward) was significant for both perceptual outcomes: F = 2.85, p = 0.002 

for correctly perceived trials and F = 2.18, p = 0.04 for misperceived trials. As before, the low 
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edf number indicates that the non-linear pattern during misperception is less complex relative to 

veridical perception, although this difference is not as dramatic as before. Still, this lack of 

complexity in the shape of the “misperception” curves suggests that the difference between 

conditions during misperception is constant, rather than non-linear. 

 

Table 4. Parametric coefficients of the generalized additive mixed model on perceived and misperceived partial mismatch trials, 

across the three levels of incentive (baseline, non-incentive, incentive).  

Parametric terms Estimate SE t-value p-value  

Intercept (misperceived N) 0.225 0.059 3.827 0.0001 *** 

correct N -0.072 0.081 -0.893 0.372  

 

 
Table 5. Smooth function terms of the generalized additive mixed model on perceived and misperceived partial mismatch trials, 

across the three levels of incentive (B = baseline, N = non-incentive, I = incentive). The first two lines show the smooth terms for 

the reference level (non-incentive trials). Lines 3–6 represent binary smooths—smooth difference curves comparing pupil 

trajectories for incentive and baseline trials against the non-incentive reference curves—both for correctly perceived (lines 3–4) 

and misperceived (lines 5–6) trials. Note that binary smooth factors collapse constant and smooth difference into a single term. 

The edf column shows the estimated degrees of freedom, reflecting the wiggliness, or complexity, of each curve. The maximum 

allowed wiggliness (controlled by the k-parameter in model settings) was set to 19 for the reference curves and to 9 for the 

difference curves. 

Smooth terms edf F-value p-value  

s(timebin) : misperceived (N) 18.008 38.241 < 0.000 *** 

s(timebin) : correct (N) 18.177 56.35 < 0.000 *** 

s(timebin) : correct B vs correct N 8.729 1.988 0.040 * 

s(timebin) : correct I vs correct N 7.763 2.851 0.002 ** 

s(timebin) : misperceived B vs misperceived N 2.007 3.416 0.032 * 

s(timebin) : misperceived I vs misperceived N 4.463 2.184 0.039 * 

 

To investigate whether this is indeed the case, we followed up this analysis with an 

analogous GAMM fitted using ordered factors. The results of this model are summarized in 

Tables 6 and 7. Parametric coefficients in Rows 3 and 5 of Table 6 indicate that there is a 

significant difference in height between baseline and non-incentive curves, both during 

perception (t = 2.13, p = 0.03) and misperception (t = 2.24, p = 0.02). Coefficients in Rows 4 and 

6 of Table 6 indicate that the same holds true for the incentive vs non-incentive difference, 

during perception (t = 2.68, p = 0.007) and misperception (t = 1.98, p = 0.048) alike. This pattern 
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of results suggests that pupil diameter during baseline and incentive trials is larger than during 

non-incentive trials, regardless of the perceptual outcome. Turning to smooth terms, reported in 

Table 7, the shape of pupil trajectory over correct incentive trials is significantly different from 

the dilation pattern observed over correct non-incentive trials (F = 2.56, p = 0.008). A relatively 

high number of edfs suggest that this difference wave is also rather complex in shape. At the 

same time, there are no significant non-linear differences between pupil trajectories for baseline 

vs non-incentive trials (both perceived and misperceived) or during misperceived incentive vs 

non-incentive trials (all p > 0.05). 

 

Table 6. Parametric coefficients of the ordered factor GAM model investigating whether the difference between the pupil 

trajectories during (mis)perception was constant or non-linear. 

Parametric terms Estimate SE t-value p-value  

Intercept (misperceived N) 0.224 0.059 3.809 0.0001 *** 

correct N -0.072 0.081 -0.88 0.379  

correct B vs correct N 0.131 0.061 2.132 0.033 * 

correct I vs correct N 0.168 0.062 2.684 0.007 ** 

misperceived B vs misperceived N 0.175 0.078 2.244 0.025 * 

misperceived I vs misperceived N 0.164 0.083 1.976 0.048 * 
 

 

Table 7. Smooth function terms of the ordered factor GAM model investigating whether the difference between the pupil 

trajectories during (mis)perception was constant or non-linear. As in the previous model, lines 1–2 describe to the reference 

smooths (pupil dilation pattern during non-incentive trials), while lines 3-6 show the difference wave between incentive–non-

incentive (lines 4 and 6) and baseline–non-incentive (lines 3 and 5) pupil trajectories. 

Smooth terms edf F-value p-value  

s(timebin) : misperceived (N) 18.009 36.662 < 0.000 *** 

s(timebin) : correct (N) 18.177 56.806 < 0.000 *** 

s(timebin) : correct B vs correct N 7.736 1.637 0.098  

s(timebin) : correct I vs correct N 6.748 2.561 0.008 ** 

s(timebin) : misperceived B vs misperceived N 5.260 0.495 0.81  

s(timebin) : misperceived I vs misperceived N 3.867 1.132 0.29  
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Visualization allows for a more intuitive interpretation of these parameters. Figure 8 

illustrates these non-linear differences for correctly perceived (Panels B1 and C1) and 

misperceived (Panel B2 and C2) trials. Areas of significant differences between pupil trajectories 

over time are highlighted in red. Note that significant difference over a small period of time does 

not imply that the entire corresponding difference wave is significant. Model summary (Table 7) 

indicates that there is only one significant non-linear difference—between correct incentive and 

non-incentive trajectories (Panel C1). All other panels simply illustrate where in time pupil 

dilation patterns start to significantly diverge between conditions. Panel A shows fitted effects 

for this model, or the estimated pupil trajectories for each condition. Note that these are the 

summed effects, as they include the intercept. Random effects are set to zero. 

Back to difference curves, Panels B1 and B2 of Figure 8 show the difference between 

pupil trajectories during baseline vs non-incentive trials (the block effect of reward), separately 

for each perceptual outcome. As can be seen on Panel B1, pupil is more dilated during correct 

baseline trials over the pre-stimulus interval (1697-1939 ms into the trial, just before the onset of 

the spoken word). Panel B2 shows that this pattern changes only slightly during misperception: 

pupil again is more dilated during the pre-stimulus interval (1373-2262 ms) of baseline vs non-

incentive trials. (Note that while ostensibly we pit baseline trials against non-incentive trials, we 

are essentially interested in the opposite pattern—how non-incentive trials differ from baseline 

trials. The binary difference smooths on Figure 8 Panels B1 and B2, then, should be interpreted 

in reverse: pupil is more constricted over 1697-1939 ms interval (for correctly perceived pairs, 

Panel B1) and over 1373-2262 ms interval (for misperceived pairs, Panel B2) during non- 

incentive trials relative to baseline trials. Modeling the reverse pattern was necessary for 

estimating trial- and block- effects of reward with a single reference curve.) Figure 8 Panels C1 
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and C2 illustrate respective differences for incentive vs non-incentive trials. We can see that 

dilation amplitude rises for incentive relative to non-incentive trials over a period right after the 

presentation of spoken word (2262-4000 ms for correct trials, 2222-3555 ms for incorrect trials). 

Because of the latency of the pupil dilation response, the earliest pupillary effects develop at 

least 220 ms after the manipulation that induced them (Mathôt et al., 2018). Thus, the main trial 

effect of incentive appears to lie in the reactive, or transient, engagement of control, as opposed 

to the proactive, or preparatory one. The latter would be expected to occur during the pre-

stimulus interval—before the presentation of degraded spoken words. Interestingly, 

misperception is associated not only with a shortened time window of differences but also with 

lower dilation magnitude. All in all, phasic differences between incentive and non-incentive 

dilation trajectories appear to be less dramatic during misperception. 

Figure 8. Estimates of the ordered factor GAMM fit to pupil data. Left: Summed effects for all conditions (random effects set to 

zero). Right: Ordered factor difference curves derived from the model, with pointwise 95% confidence intervals. Significant 

differences (deviations from the 0 line) are marked in red. 0 ms mark correspond to the onset of written text, 2000 ms—t0 the 

onset of degraded word. I = incentive; B = baseline; N = non-incentive. 
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To test whether this was the case and better understand how incentives affected pupil 

dilation patterns during perception and misperception, we fitted another ordered factor GAM 

model. This model compared pupil trajectories for correctly perceived vs misperceived trials 

separately for each level of incentive. The results of this model are reported in Table 8 

(parametric terms) and Table 9 (smooth terms). Here, we focus specifically on Rows 4–6 of each 

table, as these describe the differences between pupil dilation trajectories corresponding to 

accurate and inaccurate perception for each type of trial. None of these terms reached statistical 

significance. Figure 9 illustrates non-linear patterns that model the difference between pupil 

trajectories during perception and misperception at each level of incentive. While there are 

interesting differences in the overall patterns across reward conditions, the differences curves for 

the Correct–Misperceived contrasts do not in themselves significantly differ from zero. In other 

words, while pupil trajectories associated with each perceptual outcome vary across baseline, 

incentive, and non-incentive conditions, as revealed by the previous model, there is a common 

pupil dilation pattern that models the difference between correctly perceived and misperceived 

trials. This difference wave does not appear to be influenced by incentive manipulations. 

 

Table 8. Parametric coefficients of the ordered factor GAM model investigating the pupil trajectories for correctly perceived and 

misperceived trials differ within each incentive condition. Line 1 refers to the height of the reference curve (pupil dilation pattern 

during misperceived non-incentive trials), lines 2–3 model the constant difference between baseline–non-incentive and incentive–

non-incentive pupil trajectories during misperception. Lines 4–6 represent the difference in height for pupil dilation patterns 

during veridical perception and misperception—separately for non-incentive, baseline and incentive trials. 

Parametric terms Estimate SE t-value p-value  

Intercept (misperceived N) 0.219 0.053 4.119 <0.000 *** 

misperceived B vs misperceived N 0.215 0.071 3.022 0.003 ** 

misperceived I vs misperceived N 0.185 0.071 2.604 0.009 ** 

correct N vs misperceived N -0.057 0.074 -0.77 0.441  

correct B vs misperceived B -0.140 0.080 -1.764 0.078 . 

correct I vs misperceived I -0.062 0.068 -0.919 0.358  
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Table 9. Smooth function terms of the ordered factor GAM model investigating the pupil trajectories for correctly perceived and 

misperceived trials differ within each incentive condition. Line 1 describe to the reference curve (pupil dilation pattern during 

misperceived non-incentive trials), lines 2–3 correspond to the non-linear difference waves between baseline–non-incentive and 

incentive–non-incentive pupil trajectories during misperception. Lines 4–6 represent the non-linear difference between pupil 

dilation trajectories during veridical perception and misperception—separately for non-incentive, baseline and incentive trials. 

None of these smooths were significantly different from 0 or exhibited substantial wiggliness (as evident from low edf values) 

Smooth terms edf F-value p-value  

s(timebin) : misperceived (N) 18.311 77.494 <0.000 *** 

s(timebin) : misperceived B vs misperceived N 7.634 1.654 0.084 . 

s(timebin) : misperceived I vs misperceived N 5.843 2.24 0.032 * 

s(timebin) : correct N vs misperceived N 2.986 1.095 0.350  

s(timebin) : correct B vs misperceived B  1.55 0.597 0.536  

s(timebin) : correct I vs misperceived I 3.023 0.326 0.875  

 

The deviance explained by this and previous models is 12.3%. Although this estimate is 

relatively low, this is due to the large inter-individual variability common to pupillometric data. 

 

 

  

Figure 9. Ordered factor difference curves derived from the GAMM modeling correct–incorrect pupil trajectories within each 

level of incentive. Gray shading reflects pointwise 95% confidence intervals. All three CIs contain 0 across the entire time series, 

suggesting that pupil dilation trajectories associated with each perceptual outcome do not significantly differ. 
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Chapter 4: Discussion 

Listening conditions of our daily life are rarely perfect, and mishearing is a common 

occurrence in everyday conversation. While most slips of the ear are relatively benign and can be 

easily resolved on the spot—often with a shared amusement,—other perceptual blunders may 

lead to serious misunderstanding. Hearing-impaired individuals are particularly prone to frequent 

misperception. Recurring communication breakdowns and chronically elevated listening effort 

associated with frequent misperception put their social lives at substantial risk, with predictably 

negative consequences for general health and cognitive well-being (Pichora-Fuller et al., 2015). 

In this study, we investigated several factors that affect misperception of degraded speech, 

including (mis)informative prior expectations, the degree of acoustic similarity between expected 

and heard words, and the level of attentional engagement during listening. Previous evidence 

suggests that increased attention and cognitive control are both crucial and beneficial for 

comprehension of degraded speech. However, these effects were never tested in interaction with 

prior knowledge. At the same time, while it is well-established that misinformative expectations 

are conducive to misperception—especially when they are acoustically close to the degraded 

target,—it is less clear to what extent such expectation-induced misperceptions may be due to 

inattentive listening.  

Here, we were able to test this hypothesis in a rewarded version of the same/different 

task, using pupillometry as a proxy of moment-to-moment attentional engagement. We used 

written text to create prior expectations about the upcoming degraded spoken word, thus 

“priming” listeners to misperceive it for the visually presented word. We additionally varied the 

relative importance of correct perception on each trial via motivational incentives in order to 

manipulate listeners’ attentional engagement on a trial-to-trial basis. In addition to behavioural 
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report, we tracked listeners’ pupil size to assess the effect of incentives and prior knowledge on 

perceptual processing that leads up to each perceptual outcome (correct perception vs 

misperception). 

4.1 (Mis)informative prior expectations trigger misperception 

Our behavioural results were generally in line with previous studies (Blank et al., 2018; 

Sohoglu et al., 2014). Listeners confidently rejected misinformative priors on total mismatch 

trials (kit–ban), slightly less confidently accepted informative priors on total match trials (kit–

kit), and were often deceived to report “same” on partial mismatch trials (kit–tit). We also 

confirmed the previous observation that the perceptual outcome for a given partial mismatch pair 

(such as kit–tit) is better predicted by the perception of word pairs that share the same deviating 

sounds (in this example, -k/+t onset: kip–tip, Kim–Tim, kin–tin) as opposed to word pairs that 

share the same common sounds (i.e., /-it/ offset: tit–kit, wit–lit, lit–wit).  

At the same time, while the overall rate of misperception on partial mismatch trials 

(37.3%) was close to that reported by Blank and colleagues (~40%), we observed a much higher 

percentage of misperception on total match trials (20%,—vs less than 10% reported in the 

previous study). This two-fold increase in the likelihood of misperception persisted across all 

three levels of incentive (ranging from 15% on incentive trials to 23% on baseline trials). We 

attribute this discrepancy to the differences between our datasets and experimental setups. Our 

task required a categorical same-or-different response—Blank and colleagues (2018), on the 

other hand, asked for a more nuanced report that additionally included confidence judgement 

(e.g., “definitely same” vs “possibly same”, “definitely different” vs “possibly different”). It is 

possible that this task setup allowed them to better accommodate response uncertainty, leading to 

a more accurate report on matching trials. More importantly, though, these findings indicate that 
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even informative prior knowledge is not always beneficial to perception. Whether prior 

expectations are employed to inform perceptual inference or discarded in favor of sensory signal 

appears to depend on their expected validity and the task set.  

In both studies, global, experiment-wise validity of the prior was relatively low—the 

written text matched spoken words on just one-quarter of trials, with half of the written/spoken 

pairs varying in only one segment. The datasets were also small (each comprised of just 32 

words), and participants heard—and saw—each word multiple times throughout the experiment, 

becoming increasingly aware that the task set was fixed. Thus, both groups of listeners have, in 

all likelihood, strategically lowered their confidence in written priors to avoid being tricked. In 

addition, the same/different task itself essentially pitted prior expectations against sensory input, 

asking listeners to decide between trusting their ears (that heard barely intelligible speech) and 

going with their predictions (which were invalid 3 out of 4 times). In current experimental 

settings, this was akin to choosing the lesser of two evils. Such a perceptual dilemma is unlikely 

to occur in real listening situations that require open-set word recognition rather than simple 

discrimination. In open-set identification, prior expectations—even if mildly misinformative—

help to acoustically approximate the target, while perhaps hindering listeners’ ability to home in 

on the exact version of what was said. Word recognition “task” is rarely performed in isolation: 

some sentence- or situational context is always available to support speech perception. 

Furthermore, the sheer diversity and unpredictability of real-life listening scenarios make it 

harder to compute the expected “validity” statistics for prior expectations and adjust one’s 

confidence in priors. Thus, the discounting of prior knowledge observed here is likely an artifact 

of the experimental setup. In real listening situations, prior expectations (e.g., from the semantic 

context) are not only relied upon but often applied inflexibly. Older adults and hearing-impaired 
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individuals, in particular, show an increased bias to respond consistently with the context 

(Rogers et al., 2012; Rogers & Wingfield, 2015; Signoret & Rudner, 2019). They also report 

higher confidence when responding in line with contextual cues, even when it results in 

misperception (Rogers et al., 2012; Rogers & Wingfield, 2015).  

4.2 Incentives increase reliance on prior knowledge 

Incentives did influence perception, but not in the expected direction. Trial-level 

incentives not only failed to improve perceptual inference on partial mismatch trials but made it 

worse. When offered a bonus for accurate perception, listeners were 26% more likely to 

misreport that written and spoken words were “same” relative to when they had no knowledge of 

reward (baseline trials) or had no particular incentive to exert additional effort during listening 

(non-incentive trials). Concurrently, we observed a significant increase of “same” responses for 

total match pairs—which, in this case, actually improved perceptual accuracy. This pattern of 

results is uniquely consistent with an account of speech perception where improved attentional 

engagement increases reliance on prior expectations. From the predictive coding perspective 

then, incentives appear to have increased attention to the written text, essentially improving 

precision of predictions rather than enhancing sensitivity to the upcoming auditory input. Thus, if 

degraded speech signal is not sufficiently informative to generate a strong prediction error signal, 

the prior is accepted. Notably, this strategy makes a lot of sense for the perceptual discrimination 

task employed here. In the same/different judgement task, the prior remains task-relevant 

regardless of its informativeness (i.e., even if mismatching). Unfulfilled predictions 

straightforwardly bias listeners toward a correct decision: the degraded spoken word is 

“different”, even if it cannot be accurately recognized, as long as the signal contains sufficient 

acoustic information to cast a doubt on the (mis)informative prior. Indeed, as demonstrated in 
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Figure 7, incentives increased the risk of perceptual confusion for more difficult word pairs, 

without affecting perception of easier discriminable words. The outcomes of total mismatch 

trials were also not affected by motivational manipulation—when the written text clearly 

mismatches the auditory signal, listeners reliably make accurate perceptual decisions. 

Thus, while incentives increase reliance on prior knowledge in more ambiguous cases, 

they do not affect perceptual inference when the sensory signal is sufficiently strong to override 

misinformative prediction. This response is consistent with the inverted U-shaped relationship 

between cognitive control and task difficulty, predicting greater allocation of cognitive resources 

on more challenging listening conditions (Eckert et al., 2016; Poldrack et al., 2001; Zekveld et 

al., 2006). Although all words in our study were noise-vocoded with the same number of bands, 

prior knowledge and acoustic similarity between written and spoken words directly affected the 

perceptual difficulty of the task. As evident from the behavioural report, total mismatch trials 

were the easiest, while partial mismatch trials with acoustically similar word pairs were the most 

challenging. And it is at this highest difficulty level that the effect of incentives became apparent. 

In fact, similar results were reported by Richter (2017) for a rewarded tone discrimination task, 

which was conceptually analogous to ours. In that study, participants listened to sequences of 

tones that were either identical, differing by 3Hz or differing by 20Hz. They then reported 

whether these tones were the same or different. Monetary reward increased exerted listening 

effort, but only in a difficult condition—when participants performed discrimination in a block 

that consisted of identical and 3Hz trials. On the other hand, several studies that failed to detect 

the behavioral effects of incentives during listening in noise also failed to investigate these 

effects across a sufficient range of difficulty levels (Koelewijn et al., 2018, 2021). Admittedly, 

our study was also limited in this respect, since the small number of stimuli made it challenging 
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to probe the interaction between incentives and acoustic similarity (listening demand) beyond 

(mis)perception of individual word pairs. Overall, however, our results are entirely consistent 

with the neuroeconomic account of cognitive control (Brehm & Self, 1989; Shenhav et al., 

2017), in which additional cognitive resources are allocated to accommodate increasing task 

demands, as long as the costs of engaging control do not outweigh its benefits.  

Effortful speech comprehension in challenging listening conditions frequently evokes 

elevated activity in cingulo-opercular and frontoparietal attentional networks (Adank et al., 2012; 

Alain et al., 2018; Erb & Obleser, 2013; Hervais-Adelman et al., 2012; Ritz et al., 2021; Vaden 

et al., 2013). This neural activity is often interpreted as reflecting a top-down compensatory 

mechanism. It is thought to engage a range of predictive processes that use lexical, syntactic, and 

contextual cues to compensate for the impoverished auditory encoding and correspondingly 

imprecise representations of speech in auditory short-term memory. In the context of degraded 

sentences, these predictive processes often benefit speech comprehension, particularly when the 

sentence context itself is sufficiently rich (Obleser et al., 2007; Obleser & Kotz, 2010; Rysop et 

al., 2021). In the context of isolated words, however, top-down contextual predictions are both 

relatively useless and difficult to generate. Instead, listeners appear to rely on abstract 

phonological representations of previously presented speech stimuli (priors), using these 

representations as high-precision templates against which to compare degraded sensory inputs. 

Motivational incentives enhance cognitive control, further increasing reliance on these top-down 

predictive mechanisms. In our task, this strategy turned out to be of questionable utility. While 

higher confidence in prior knowledge clearly improved perceptual accuracy on total match trials, 

it promptly backfired by worsening perception of partial mismatch trials. It is possible that 

adjusting the intensity of cognitive control via incentives could be more efficacious in tasks that 
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directly benefit from increased use of contextual, semantic, and other higher-order linguistic 

cues—such as sentence comprehension or listening to a coherent story. 

4.3 Acoustic similarity measure fails to capture perceived acoustic differences 

The analysis of response consistency within common and deviating sound groups 

revealed that, while incentives did not affect perceptual processing of word pairs sharing the 

same deviating sounds (e.g., kit–tit, kip–tip, Kim–Tim, kin–tin), they decreased the consistency of 

responses within common sound groups (e.g., kit–tit, tit–kit, wit–lit, lit–wit). This pattern of 

results is likely driven by “mirror” written/spoken pairs (such as kit–tit and tit-kit). Perception of 

such pairs differed quite substantially, as listeners easily rejected the prior in one direction (e.g., -

k/+p) but could hardly detect the opposite difference (-p/+k); see Figure 6A. Unfortunately, our 

acoustic similarity measure was not sensitive to such differences: gammatone spectral analysis 

simply compared spectral profiles of noise-vocoded words that comprised each written/spoken 

pair. Thus, pairs cat/pat and pat/cat, for example, received the same acoustic similarity ratings—

but listeners perceived them very differently. The former was always misperceived as “same” 

(misperception rate: 97.1%), the latter—as “different” (misperception rate: 0.8%); see also  

Figure 2C. Despite this fact, acoustic similarity still had a large impact on perceptual outcomes 

driving a 3.5-fold increase in the likelihood of misperception between the most acoustically 

dissimilar partial mismatch pair and an “average” pair. In comparison, motivational incentives 

accounted for just 1/13th of this effect size. Nonetheless, future research might benefit from 

finding a more precise metric of acoustic similarity that directly reflects perceived acoustic 

differences between degraded tokens. 
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4.4 Incentives affect perception via reactive and proactive control 

Our GAMM analyses showed that motivational incentives strongly affected pupil dilation 

trajectories during perceptual decision-making on partial mismatch trials. First, we observed a 

constant difference in height of pupil trajectories associated with each type of trial (baseline, 

incentive, non-incentive). Specifically, when listeners were intrinsically motivated (baseline 

trials) and extrinsically motivated (incentive trials), their pupil was consistently more dilated 

relative to periods of mild disengagement (non-incentive trials). Non-incentive trials, in general, 

were associated with low tonic/low phasic dilation pattern. Second, incentive trials additionally 

showed a dramatic increase in phasic dilation in comparison to non-incentive trials. Importantly, 

these transient incentive effects were present only after 2200 ms, i.e., in response to the 

presentation of degraded words. This high tonic/high phasic pattern of results suggests that 

incentive-related control mechanisms were operating in both proactive and reactive fashion. 

Proactive, or preparatory, control is implemented in anticipation of the target and requires 

maintenance of task-related information in working memory. Reactive mechanisms, on the other 

hand, engage in response to changing task demands and flexibly adjust control on a case-by-case 

basis. Interestingly enough, there was no difference in phasic dilation between misperceived and 

correctly-perceived incentive trials, suggesting that implementing control “just in time” does not 

improve perceptual inference. In fact, veridical perception was generally associated with lower 

tonic dilation. Notably, this pattern persisted across all levels of incentives (see Figure 9)—

highlighting the fact that enhanced cognitive control had rather counter-productive effects on our 

perceptual judgment task.  

These findings are not entirely consistent with the predictions of the adaptive gain theory 

of LC-NE (locus coeruleus-norepinephrine) function (Aston-Jones & Cohen, 2005). According 
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to AGT, the LC-NE system, considered to be the main driver of cognitive pupillary response 

(Aston-Jones & Cohen, 2005; Gilzenrat et al., 2010; Murphy et al., 2011, 2014), operates via two 

modes of function: phasic and tonic. The adaptive gain theory posits that elevated tonic activity 

without pronounced phasic bursts (reflected in larger baseline pupil size) corresponds to 

distractible attentional state and task disengagement. Phasic activity (reflected in transient, 

stimulus-driven pupil dilation), on the contrary, facilitates goal-driven behaviours and enhances 

within-task performance. Here, we observed the opposite pattern: intrinsically- and extrinsically-

driven attentional engagement were both associated with greater tonic dilation, while the lack of 

monetary incentives conversely drove tonic activity down. And while monetary incentives did 

lead to a profound increase in transient activity, this hardly improved within-task performance. 

At the same the time, these results are in line with Chiew and Braver (2013, 2014), who found a 

similar high tonic/high phasic response profile during incentive trials. It is possible that these 

effects are driven by other neurotransmitter systems known to affect pupil size (Costa, 2016; de 

Gee et al., 2014; Naicker et al., 2016; Reimer et al., 2016). Since our task involved reward 

processing, it could have engaged dopaminergic activity, thus altering the expected 

noradrenergic response dynamics predicted by the AGT and raising these rather complex 

interactions. Future work might benefit from explicitly modeling these interactions. 

4.5 Summary 

In this study, we investigated how increased attentional engagement might affect the 

likelihood of prediction-induced misperceptions. Listeners performed a perceptual decision task 

with degraded speech stimuli under three levels of incentive: baseline, incentive, non-incentive. 

We induced frequent perceptual confusion by presenting listeners with noise-vocoded words 

preceded by matching, mismatching and partially mismatching text. Contrary to our predictions, 
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listeners increased their reliance on prior expectations when a reward was at stake. This strategy 

resulted in a higher rate of misperception when prior expectations were plausible yet incorrect 

but improved perceptual accuracy when predictions were truly informative. These incentive-

related control processes operated in both the reactive and the proactive modes of function, 

engaging both sustained attentional control and “just in time” attention. In sum, our work 

indicates that increased attention is not always beneficial during effortful listening. Recruitment 

of cognitive control processes increases reliance on prior knowledge when sensory detail is 

insufficient, which only exacerbates the problem of prediction-induced mishearing—at least in 

auditory discrimination tasks with isolated words. Future work should focus on investigating 

these effects on listening tasks with more linguistically complex stimuli, as these are expected to 

directly benefit from the use of higher-order predictive processes observed here. 
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Appendices 

Appendix A: Full model output for the logistic mixed model 
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Appendix B: Full model output for the logistic mixed model with nuisance factors 
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Appendix C: Full model output for Bayesian logistic mixed model 
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Appendix D: Full model output for GAMM pupil dilation analysis 

 

 


