
MATHEMATICAL AND STATISTICAL ANALYSIS OF
NON-STATIONARY TIME SERIES DATA

HANG DU

A DISSERTATION SUBMITTED TO
THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN MATHEMATICS AND STATISTICS
YORK UNIVERSITY
TORONTO, ONTARIO

Sep 2023

©Hang Du 2023

Abstract

Non-stationary time series, with intrinsic properties constantly changing over time,

present significant challenges for analysis in various scientific fields, particularly in

biomedical signal analysis. This dissertation presents novel methodologies for ana-

lyzing and classifying highly noisy and non-stationary signals with applications to

electroencephalograms (EEGs) and electrocardiograms (ECGs).

The first part of the dissertation focuses on a framework integrating pseudo-

differential operators with convolutional neural networks (CNNs). We present their

synergistic potential for signal classification from an innovative perspective.

Building on the fundamental concept of pseudo-differential operators, the disser-

tation further proposes a novel methodology that addresses the challenges of applying

time-variant filters or transforms to non-stationary signals. This approach enables

the neural network to learn a convolution kernel that changes over time or location,

providing a refined strategy to effectively handle these dynamic signals.

This dissertation also introduces a hybrid convolutional neural network that in-

ii

tegrates both complex-valued and real-valued components with the discrete Fourier

transform (DFT) for EEG signal classification. This fusion of techniques significantly

enhances the neural network’s ability to utilize the phase information contained in

the DFT, resulting in substantial accuracy improvements for EEG signal classifica-

tion.

In the final part of this dissertation, we apply a conventional machine learning

approach for the detection and localization of myocardial infarctions (MIs) in electro-

cardiograms (ECGs) and vectorcardiograms (VCGs), using the innovative features

extracted from the geometrical and kinematic properties within VCGs. This boosts

the accuracy and sensitivity of traditional MI detection.

iii

Acknowledgements

Throughout this journey, I’ve been fortunate to have the support and guidance

of many people. I’d like to take this opportunity to express my heartfelt gratitude

towards them.

As I take a moment to express my deepest appreciation, the first person that

comes to mind is my supervisor, Prof. Steven Wang. Throughout my PhD journey,

his guidance has been instrumental in overcoming both academic hurdles and per-

sonal challenges. I still remember the time when he was brave enough to accompany

me during my first freeway driving experience. His courage and trust in me not only

helped boost my driving confidence but also showed his unwavering support in all

aspects of my life. Besides, our enlightening discussions on the future of statistics

and AI have been invaluable. Combined with his dedication to fostering my statisti-

cal thinking within my applied math program, they have played a significant role in

broadening my academic horizons. In essence, without his support, completing my

PhD would have been a formidable task.

Collaboration has been a cornerstone of my research, and in this light, I’d like to

express my genuine appreciation to my research collaborators, Dr. Shahla Mollaha,

Dr. Rebecca Pillai Riddell, Dr. He Jiang, and Dr. Xiaoxia Li. Working with such

esteemed colleagues has provided invaluable insights and has significantly enriched

iv

my research experience.

Next, I would like to extend my gratitude to Prof. Huaxiong Huang and Prof.

Hongmei Zhu for their time and effort in serving on my dissertation committee. Their

insights and feedback have been invaluable to my research.

I also wish to thank my wife, Qian Zhang, an exceptional researcher herself. Her

unwavering encouragement and support throughout my studies will forever be etched

in my memory.

Additionally, I owe a deep debt of gratitude to my parents, whose constant sup-

port and belief in me strengthened my determination to pursue a PhD.

Lastly, I want to thank all my friends who have accompanied me on this journey.

You have added color to my PhD life, turning what could have been a monotonous

journey into an enriching adventure. Thank you all for your companionship and

unwavering support.

v

Table of Contents

Abstract ii

Acknowledgements iv

Table of Contents vi

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Non-stationary time series . 1

1.2 Electroencephalograph (EEG) and Electrocardiograph (ECG) 2

1.2.1 EEG . 2

1.2.2 ECG . 5

1.3 Main Contributions and Chapter Preview 6

2 A New Neural Network Structre based on Pseudo-Differential Op-

erator 8

2.1 Introduction . 8

2.2 Methodology . 10

vi

2.3 Wirtinger Derivatives . 19

2.4 Pooling Layers and Mappings . 23

2.5 Adaptive Gradient Descent Method 31

2.6 Pseudo-Differential Operators in Neural Networks 39

2.7 Numerical Experiments . 43

2.7.1 Overview . 43

2.7.2 Datasets . 44

2.7.3 Results . 45

2.8 Discussion . 47

3 Time-variant Transform 48

3.1 Introduction . 48

3.2 Methodology, Challenges, and Solutions 50

3.2.1 General Framework and Detailed Insights 50

3.2.2 Challenges and solutions . 53

3.3 Experiments . 55

3.3.1 Simulation . 55

3.3.2 Real-world dataset . 55

3.4 Discussion . 59

4 A Hybrid Neural Network Structure 61

4.1 Introduction . 61

4.2 Methodology . 65

4.2.1 Framework . 66

4.2.2 Discrete Fourier Transform and Its Inverse Transform 67

4.2.3 Backpropagation . 67

vii

4.2.4 Other training details . 70

4.3 Experiments . 71

4.3.1 Simulation Study . 71

4.3.2 Real-World Data . 81

4.4 Discussion . 88

5 VCG Classification Based on Geometrical and Kinematical Proper-

ties 89

5.1 Introduction . 89

5.2 Materials and Methods . 92

5.2.1 Datasets . 92

5.2.2 pre-processing . 93

5.2.3 VCG vector and octant features 94

5.2.4 Morphological and shape features 95

5.2.5 Geometric and kinematics features 98

5.2.6 Variable selection . 105

5.3 Experiments and Results . 107

5.3.1 Experiments on the PTB dataset 107

5.3.2 Experiments on PTB-XL dataset 110

5.4 Conclusions . 115

A Appendix 140

A.1 ECG to VCG transformation matrix 140

viii

List of Tables

2.1 Details of the 5 categories of EEG signals 44

2.2 Accuracy of EEG . 45

3.1 Accuracy comparison for EEG MNIST dataset using EEGNet as the

classifier. 57

3.2 Accuracy comparison for EEG MNIST dataset using EEGNeX as the

classifier. 58

3.3 Accuracy comparison for ERN dataset using EEGNet as the classifier. 59

3.4 Accuracy comparison for ERN dataset using EEGNeX as the classifier. 59

4.1 SYMBOLS AND NOTATIONS . 65

4.2 Parameter details. α: order of Renyi entropy, m: embedding dimen-

sion, τ : time delay, r: threshold value to determine similarity, sd: the

standard deviation of the input time-series data. 73

4.3 The four binary classification tasks we used to compare our approach

and other methods. 78

4.4 Accuracy comparison. 80

4.5 Detailed description of the 5 categories of EEG signals in the Ralph-

Andrzejak EEG dataset . 82

ix

4.6 Accuracies comparison with previous works 84

4.7 Parameter and memory comparison between our method and method

in [85]. C Conv: complex-valued convolutional layer, R Conv: real-

valued convolutional layer, ABS: the layer of taking the modulus (ab-

solute value), Pool: max pooling layer, Fc: fully connected layer. . . . 85

4.8 Classification accuracies comparison for subject S1 to S10. The ac-

curacies obtained using combined-CCA are based on leave-one-out

cross-validation. The accuracies using CCA, CCNN and our method

are based 10-fold cross-validation. 87

5.1 Number of the subject and/or records in the datasets used in our

experiment. 92

5.2 The sign of Vx, Vy, Vz in the corresponding octant. 96

5.3 Details of octant features . 97

5.4 Details of morphological and shape features 99

5.5 Details of curvature, torsion and kinematics features 106

5.6 Details of PTB dataset . 108

5.7 Results comparison with [160] (HC vs MI). 109

5.8 Results comparison (per patient) with [138] (HC vs MI). The results

are based on leave-one-out cross-validation. 109

5.9 Results comparison (per patient) with [138] (HC vs AMI vs IMI) . . . 109

5.10 Details of PTB XL dataset after filter 111

5.11 Classification performances of the proposed method on PTB-XL dataset.

The mean and standard deviation of accuracies, sensitivities and speci-

ficities. ”Kors QO”: Kors Quasi-Orthogonal, ”ID”: inverse Dower . . 116

x

List of Figures

2.1 Neural Network Layers . 27

2.2 Difference in applying convolution operator and pseudo-differential

operator: convolution operator applies a uniform kernel across loca-

tions, while pseudo-differential operator employs different kernels at

different locations . 41

2.3 Average epoch loss of three different data sets 46

2.4 Training and test error rate per epoch: the upper 3 figures shows the

training error rate and lower 3 figures shows the test error rate 46

3.1 Comprehensive Layout of our Neural Network Structure. (NN: Neural

Network) . 51

3.2 The layout of η generator NN . 52

3.3 Simulated EEG and its transformation under a specific function η.

The figure in the upper right corner shows the heatmap of the large

diagonal matrix, where the non-zero values on each row are repre-

sented by the kernel. 56

4.1 The convolution operation (a) on complex numbers, (b) on modulus

(amplitude) only. 62

xi

4.2 Our neural network structure. 66

4.3 An example of the forward propagation in the complex-valued convo-

lutional layer. Zi: a part of the input, k: complex-valued convolution

kernel, b: complex-valued bias, Yi: the modulus of the output of the

complex-valued convolutional layer, Y : the vector whose i’th entry is

Yi. Y is the input to the next real-valued layer. 71

4.4 The effect of β0: (a) the original signal, (b) the analytic signal obatined

by applying Hilbert transform on the original signal. (If we observe

the analytic signal (b) in the direction of the arrow, we can see the

original signal in (a).) (c) the rotation of the analytic signal by β0.

(d) the rotated signal (If we observe the rotated analytic signal (c) in

the direction of the arrow, we can see the signal in (d).) 74

4.5 Simulated single-sided amplitude spectrum: the left graph shows the

probability density function of the Chi-squared distribution, the mid-

dle graph is the single-sided amplitude spectrum generated with the

unmodified AR(1) model, and the right graph shows the single-sided

amplitude spectrum multiplied with the probability density function

of the chi-squared distribution. 75

4.6 The first column shows the single-sided amplitude spectrum generated

using AR(1) model with β0 = 0, β1 = 0.5, V ar(ϵt) = 0.5, the second

column shows the simulated phase information generated using modi-

fied AR(1) formula with β0 = 0,±0.5,±1, β1 = 0.5, V ar(ϵt) = 0.5 and

the last column shows the simulated signals generated from the IDFT

of the amplitude spectrum and phase. 76

xii

4.7 (a) the accuracies of using CNN with phase information only, (b) the

accuracies of using the CNN with the input of simulated signals (time

domain), (c) the accuracies of applying the feature selection method,

(d) the accuracies of using our method on simulated signals (frequency

domain). 77

4.8 (a): the accuracy differences between our method and applying CNN

on the time domain. (b): the accuracy differences between our method

and the traditional method. From (a), we can see that when V ar(ϵ) =

0.8 and β1 = 0.1, our method can outperform CNN on the time domain

the most. As shown in (b), our method can outperform traditional

method the most when V ar(ϵ) = 0.5 and β1 = 0.9. The bottom fig-

ures are the confusion matrices when the accuracy difference achieves

the largest (labels 1 to 5 correspond to β0 = 0, 0.5, 1, −0.5, −1,

respectively). 78

4.9 An example of the peak, noise, and synthetic signal generated ac-

cording to classical theory. (a) Peak: the highest value of the peak

signal shows exactly at 1s with the frequency of 5 Hz. (b) Noise: Ran-

domly generated based on human EEG background signal spectrum.

(c) Synthetic signal: the weighted summation of peak signal and noise

signal. 79

4.10 An example of the signals generated according to phase resetting the-

ory. (a) an example of simulated signals with (top) and without (bot-

tom) phase resetting. (b) Randomly generated noise based on human

EEG background signal spectrum. (c) the synthetic signals, which are

the weighted summation of signals in (a) and (b). 81

xiii

4.11 Five example signals in Ralph-Andrzejak EEG dataset (left) and their

single-sided amplitude spectrum (right). 82

4.12 Evaluation grouping detail. In the 5-fold cross validation, each group

is at least once used as validation set. 83

4.13 Our neural network structure for SSVEP dataset. FC: fully connected

layer, BN: batch normalization layer, DP: dropour layer 86

5.1 (a) Diagram of the pre-processing steps for the PTB dataset. (b)

Diagram of the pre-processing steps for the PTB-XL dataset. We use

the build-in function in ECGDeli[144] in the steps ending with *. . . 94

5.2 Two example VCG signals in health control (HC) and myocardial

infarction (MI) groups. Different colors on the VCG are corresponding

to different octants. The grey and scarlet dotted line are the T and Q

vector with the largest magnitude. 96

5.3 The gray plane is the optimum plane calculated using the least square

method. The solid red line is a QRS complex selected from a recording

in the health control group. The dotted line is the projection of the

QRS complex on the optimum plane. The darker area in the optimum

plane is the QRS complex’s projection area. 98

5.4 The grey color areas in this figure shows the areas under QRS wave,

J wave and T wave. The waveform in this figure is a part of (3.27s

to 4.09s) the Vy lead generated from ”00070 hrm.dat” file using Kors

tranformation matrix. 98

5.5 This left figure shows an example VCG selected from HC groups and

the shaded area in right figure shows the minimum convex hull that

contains this piece of VCG. 100

xiv

5.6 The process of producing an ECG with noise.. The left graph is the

simulated ECG waveform; the middle graph is the white noise; the

right graph is the simulated ECG with noise whose SNR is 60 dB

and it is hard to find the difference between the noised ECG and the

original ECG by visual inspection. 102

5.7 Derivatives approximated using the central difference method and

CWT method under the different cases (with or without noise). From

Figure 5.7a, we can see that the CWT method is stable, and the

approximated derivatives are closer to the ones obtained using the

simulated ECG without noise. The rows from top to bottom are first,

second, and third-order derivatives. 102

5.8 The approximated first, second and third-derivative of the 3-lead VCG

signals, respectively (dilation = 3,6,16). When the dilation is 3, the

third-order derivatives contain more noise. When the dilation is 16,

the third order derivatives are overly smoothed, which results in losing

local features. 104

5.9 Curvature and torsion of an example QRS complex under different

dilation. 104

5.10 15 selected features to classify between MI and HC. The bold abbre-

viations show our newly proposed features. 110

5.11 35 selected features to further classify AMI and IMI. The bold abbre-

viations show our newly proposed features. 111

5.12 The distributions of RMSE for different transformation methods. . . . 113

xv

5.13 This figure shows the reconstruction from ECG to VCG using LSTM

network. The left column shows an example that it has the lowest

RMSE. The middle column shows the reconstruction with median

RMSE and the right column shows the reconstruction with highest

RMSE. These three examples come from test set. 114

xvi

1 Introduction

1.1 Non-stationary time series

A time series is a sequence of data points collected or recorded in a chronological

order at regular intervals over a period of time [1]. It is a crucial type of structured

data in a variety of fields, including economics, finance, weather forecasting, and

engineering [2].

One of the key assumptions in many time series models is stationarity. A time

series Xt is defined as strictly stationary if its joint probability distribution is invari-

ant under time shifts. Formally, for any collection of time points t1, ..., tn and any

time delay h, the joint distribution of the vector (Xt1 , ..., Xtn) is identical to that

of the vector (Xt1+h, ..., Xtn+h) [2]. This means that the statistical properties of a

process generating a time series do not change over time [3].

Often, a weaker form of stationarity, known as weak or wide-sense stationarity,

is considered. A time series Xt is said to be weakly stationary [3] if:

• The mean E[Xt] = µ is constant for all t.

• The variance Var[Xt] = γ0 is constant for all t .

• The autocovariance Cov[Xt+h, Xt] = γh depends only on the lag h and not on

t itself.

1

However, many real-world time series data do not satisfy the stationarity assump-

tion [4]. They may exhibit trends, seasonal patterns, or other changing structures

over time, making them non-stationary. A non-stationary time series is one where

the statistical properties do change over time. A common example is the random

walk, defined as Xt = Xt−1 + ϵt, where ϵt is a white noise process. The mean, vari-

ance, and autocorrelation structure of this process all change over time, making it

non-stationary [5]. Such non-stationary series pose unique challenges in time series

analysis, often requiring specialized models and techniques [1].

1.2 Electroencephalograph (EEG) and Electrocardiograph

(ECG)

An interesting area of application for non-stationary time series analysis is in

the field of medical data analysis. In particular, electroencephalograph (EEG) and

electrocardiograph (ECG) signals, which record the electrical activity of the brain

and heart respectively, are prime examples of non-stationary time series. These

signals often exhibit complex temporal dynamics due to the inherent physiological

processes they capture, making their analysis both challenging and essential. Using

the appropriate time series models and techniques for these non-stationary signals is

vital in enhancing our understanding of neurological and cardiovascular conditions,

leading to more accurate diagnoses and more effective treatments [6, 7].

1.2.1 EEG

Electroencephalography (EEG) is a non-invasive method for measuring the elec-

trical activity of the brain, which provides valuable information about brain func-

2

tions, cognitive processes, and neural dynamics. The technique was first introduced

by Hans Berger in 1929 when he recorded the first human EEG [8]. Since then, EEG

has become a widely used tool in various fields, including clinical diagnosis, cognitive

neuroscience, neuropsychology, and brain-computer interfaces [9, 10, 11].

EEG measures the voltage fluctuations that result from the synchronous activity

of cortical neurons near the scalp surface. The electrical signals are recorded using

electrodes placed on the scalp, which are connected to an amplifier and a recording

device. The recorded signals, known as EEG traces, show the brain’s electrical activ-

ity over time and can be analyzed to investigate the temporal and spatial dynamics

of the underlying neural processes [12].

One of the key features of EEG is its high temporal resolution, which allows

researchers to study the dynamics of cognitive processes on a millisecond timescale.

This is particularly useful in examining the time course of event-related potentials

(ERPs), which are specific patterns of neural activity associated with particular

cognitive events, such as perception, attention, and memory [11].

Despite the excellent temporal resolution, EEG suffers from limited spatial reso-

lution due to the nature of volume conduction, which causes the electrical activity of

neurons to be spread out and mixed on the scalp surface. This makes it challenging

to localize the sources of the recorded activity precisely. However, several advanced

analysis techniques, such as source localization and connectivity analysis, have been

developed to address this limitation [13, 14]. For example, inverse source localization

methods, such as minimum norm estimates and beam forming, have been employed

to estimate the neural generators of the EEG signals [15].

In addition to ERPs, researchers also investigate the oscillatory activity of the

brain, which is considered a fundamental aspect of neural communication and pro-

cessing [16]. EEG signals can be decomposed into different frequency bands, such

3

as delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma

(30-100 Hz) bands, each of which is associated with specific cognitive functions and

states of consciousness [17]. The analysis of these oscillatory activities allows for

a deeper understanding of the complex interactions between different brain regions

and their contributions to various cognitive processes.

EEG has also been employed in the development of brain-computer interfaces

(BCIs), which are communication systems that allow users to control external devices

using their brain activity [18]. BCIs have been applied in various areas, including

assistive technology for people with severe motor disabilities, neurofeedback for the

treatment of neurological and psychiatric disorders, and human-computer interaction

for gaming and virtual reality [19, 20].

Moreover, the combination of EEG with other neuroimaging techniques, such as

functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG),

and near-infrared spectroscopy (NIRS), has led to multimodal approaches that capi-

talize on the strengths of each method to obtain a more comprehensive understanding

of brain function [21, 22]. For example, the high temporal resolution of EEG can be

combined with the superior spatial resolution of fMRI to provide a more accurate

picture of the neural processes underlying various cognitive functions.

Recent advancements in machine learning and artificial intelligence have greatly

enhanced EEG research capabilities. Sophisticated algorithms, such as deep learn-

ing and support vector machines, have been applied to the analysis of EEG data,

enabling the detection of more subtle patterns and improving the accuracy of clas-

sification tasks [23, 24]. This has had a significant impact on various applications,

including BCIs, neurofeedback, and the early detection of neurological disorders,

such as Alzheimer’s disease and epilepsy [25].

4

1.2.2 ECG

Electrocardiography (ECG) is a fundamental tool in cardiovascular medicine that

records the heart’s electrical activity via electrodes placed on the skin, offering a

valuable way to diagnose diverse heart conditions such as arrhythmias, myocardial

infarctions, and structural heart diseases [26]. This method’s genesis is found in

the late 19th century when the first human electrocardiogram was documented by

British physiologist, Augustus Waller. Notably, the field was significantly advanced

by Dutch physiologist Willem Einthoven’s invention of the string galvanometer and

the successful recording of a human electrocardiogram [27, 28].

Vectorcardiography (VCG) is a technique closely related to ECG that records

the heart’s electrical activity using a three-dimensional approach. It represents the

electrical forces generated by the heart as vectors, offering a more comprehensive

view of the cardiac electrical activity. Although VCG has been largely replaced

by modern 12-lead ECG systems in routine clinical practice, it still holds value in

specific diagnostic scenarios, such as pinpointing the precise location of myocardial

infarctions and assessing the cardiac axis [29].

In clinical practice, ECG and VCG have been essential tools for monitoring the ef-

ficacy of treatments and interventions in patients with cardiovascular diseases. They

have also contributed to the optimization of personalized treatment plans and the

identification of patients who may benefit from more aggressive or targeted therapies

[30].

ECG recordings are obtained using a set of electrodes arranged in specific config-

urations, known as leads. A standard 12-lead ECG system comprises 10 electrodes

placed on the limbs and chest, providing a comprehensive view of the heart’s elec-

trical activity from various angles.

5

In contrast, VCG employs a set of three orthogonal leads (X, Y, and Z) to obtain

a three-dimensional representation of the heart’s electrical activity. This technique

enables a more detailed analysis of the spatial aspects of cardiac electrical forces, par-

ticularly when evaluating the cardiac axis and identifying the location of myocardial

infarctions [29].

Over the years, both ECG and VCG techniques have progressed, with the devel-

opment of new lead systems [31], recording methods, and analysis techniques [32].

These advances have improved the diagnostic capabilities of electrocardiography and

vectorcardiography, supplying valuable information for clinical decision-making and

management of cardiac conditions [33].

As technology continues to advance, new frontiers in electrocardiography and

vectorcardiography are emerging, such as machine learning and artificial intelligence-

based ECG interpretation [34]. These innovations have the potential to further im-

prove the diagnostic accuracy, clinical utility, and accessibility of electrocardiography

and vectorcardiography in the coming years.

1.3 Main Contributions and Chapter Preview

Chapter 2 explores the theory of complex-valued neural networks (CVNNs) and

pseudo differential operators. We detail CVNN’s general form and backpropagation,

and introduce a unique architecture that uses varied kernels inspired by pseudo-

differential operators, in contrast to traditional CNNs.

Chapter 3 addresses applying time-variant filters in biomedical EEG signal pro-

cessing. Diverging from conventional methods that use Linear Time-Invariant (LTI)

filters, we propose an approach using time-varying filters governed by a second-order

ODE, where the EEG signal is the driving function. This approach promises en-

6

hanced EEG denoising and potentially improves classification accuracy.

In Chapter 4, we present an advanced EEG classification algorithm that utilizes

both amplitude and phase data using complex-valued CNNs. By integrating real and

complex-valued neural structures, our method achieves higher accuracy with fewer

parameters, outperforming traditional models on benchmark datasets. This chapter

includes published work with Dr. Rebecca Pillai Riddell and Dr. Xiaogang Wang

[35].

Chapter 5 focuses on improving myocardial infarction (MI) detection using the

Frank 3-lead VCG instead of the typical 12-lead ECG. By introducing new features

based on VCG’s kinematic and geometric properties and combining them with prior

research, we enhance MI classification and localization. Our results show significant

improvements in accuracy and sensitivity, demonstrating our method’s adaptability

on VCG signals from 12-lead ECG transformations.

7

2 A New Neural Network Structre based on

Pseudo-Differential Operator

2.1 Introduction

Convolutional neural networks (CNNs) have played a significant role in the ad-

vancement of various fields, including image classification [36, 37, 38], object de-

tection [39, 40, 41], semantic segmentation [42, 43, 44], text classification [45, 46],

and medical image analysis [47, 48]. With the evolution of these networks, complex-

valued neural networks (CVNNs) have emerged, further broadening the scope of

applications and adding a new dimension to the field [49, 50, 51, 52].

In the context of signal processing and imaging, Fourier transform and pseudo-

differential operators are widely employed [53, 54, 55], leading to the need for han-

dling complex numbers for inputs and parameters. Simultaneously, the challenge im-

posed by the uncertainty principle [56], which constrains achieving a high frequency

resolution and high time resolution concurrently, is also addressed by CVNNs.

The traditional approach to CVNNs treats the real and imaginary parts of net-

work parameters separately, drawing on the phase and amplitude information of the

data [57]. However, the evolving need for finer granularity of information, especially

concerning the locations of high and low frequencies, has necessitated the develop-

ment of more sophisticated methods.

8

Building on this background, our study introduces a novel neural network archi-

tecture that shares similarities with CNNs but incorporates a significant deviation:

Instead of applying the same kernel across all locations, as is the case in CNNs,

our proposed framework employs different kernels at different locations, based on

pseudo-differential operators. This framework, rooted in the concept of embedding

and cropping operators, brings a new level of adaptability to the network design.

Under our framework, we extend the input and output layers, convolution layer,

activation function, and pooling layer to operate within the complex domain. Fur-

thermore, we propose a complex backpropagation algorithm, derived using Wirtinger

calculus [58, 52], that applies an adaptive gradient descent method tailored for our

model architecture.

The rest of this chapter is structured as follows: In Section 2, we present the

methodology and introduce the concepts of embedding and cropping operators, which

are essential for subsequent analysis. Section 3 explores the Wirtinger derivative and

provides a detailed description of its specific form for operators. Section 4 focuses

on the introduction of the pooling layer along with definitions for head and tail

mappings. Following this, in Section 5, we derive the adaptive gradient descent

method within our proposed framework. Section 6 explores the pseudo-differential

operator and its relationship with the convolution operator. Results of testing using

our approach with one-dimensional and two-dimensional datasets, is presented in

Section 7. Finally, in Section 8, we present an extensive discussion of our findings

and their implications.

9

2.2 Methodology

Let ZN = {0, 1, . . . , N − 1} be the additive group, where N is a positive integer

greater than or equal to 2. and the group law is addition modulo N . Let L2(ZN)

be the set of all functions z : ZN → C. A function z ∈ L2(ZN) can be completely

specified by its N components z(0), z(1), . . . , z(N − 1). Let z, w ∈ L2(ZN). In fact,

L2(ZN) is a Hilbert space where the inner product is defined

(z, w)L2(ZN) =
∑
n∈ZN

z(n)w(n), z, w ∈ L2(ZN).

Hence, for any z,∈ L2(ZN),

∥z∥L2(ZN) =

{∑
n∈ZN

|z(n)|2
}1/2

.

Similarly, we can define L2(Zn × Zl), be the set of all functions z : Zn × Zl → C.

Remark 2.2.1 We can represent L2(Zn) by the set of all n-tuples with complex

entries, i.e., for every z ∈ L2(Zn), we have

z =



z(0)

z(1)

...

z(n− 1)


∈ Cn

and we can represent L2(Zn×Zl), by the set of all n×l matrices with complex entries,

10

i.e., every z ∈ L2(Zn × Zl) can be represented by

z =



z(0, 0) z(0, 1) · · · z(0, l − 1)

z(1, 0) z(1, 1) · · · z(1, l − 1)

...
...

...
...

z(n− 1, 0) z(n− 1, 1) · · · z(n− 1, l − 1)


∈ Cn×l

and its norm given by

∥z∥L2(Zn×Zl) =

{∑
s∈Zn

∑
t∈Zl

z(s, t)z(s, t)

}1/2

which is also known as Frobenious norm and can be written as

∥z∥L2(Zn×Zl) = {Tr(zz∗)}1/2 ,

where z∗ is the conjugate transpose of the matrix z.

Throughout the chapter, sometimes we will use the matrix representations of these

spaces. Then for all z ∈ L2(Zn×Zl), zT is the transpose of the matrix z and therefore

zT can be considered as a function in L2(Zl × Zn).

Definition 2.2.1 Let n, p, l, q be positive integers such that n ≫ p and l ≫ q. For

any k ∈ Zn−p+1 and m ∈ Zl−q+1,we define the cropping operator Kk,m : L2(Zn×Zl) →

L2(Zp × Zq) by

(Kk,mz)(s, t) = z(s+ k, t+m), (s, t) ∈ Zp × Zq

where z ∈ L2(Zn × Zl).

11

In fact the cropping operator Kk,m, takes an n× l matrix z and returns a sub-matrix

of z of dimension p× q.

Proposition 2.2.1 Let n, p, l, q be positive integers such that n≫ p and l ≫ q. For

any k ∈ Zn−p+1 and m ∈ Zl−q+1, Kk,m : L2(Zn × Zl) → L2(Zp × Zq) is a bounded

linear operator. Moreover,

∥Kk,m∥B(L2(Zn×Zl),L2(Zp×Zq))
≤ 1,

where B (L2(Zn × Zl), L2(Zp × Zq)) is the space of all bounded linear operators from

L2(Zn × Zl) to L2(Zp × Zq).

Proof It is easy to check that Kk,m is a linear operator. Let z ∈ L2(Zn×Zl). Then

∥Kk,mz∥2L2(Zp×Zq)
=

∑
s∈Zp

∑
t∈Zq

|(Kk,mz) (s, t)|2

=
∑
s∈Zp

∑
t∈Zq

|z(s+ k, t+m)|2 .

By the change of variables from s to s̃ = s+ k and from t to t̃ = t+m, we get

∥Kk,mz∥2L2(Zp×Zq)

=

p−1+k∑
s̃=k

q−1+m∑
t̃=m

∣∣z(s̃, t̃)∣∣2
≤ ∥z∥L2(Zn×Zl).

2

Now, we need to define the embedding operator, in order to find the adjoint of

the cropping operators.

Definition 2.2.2 Let n, p, l, q be positive integers such that n ≫ p and l ≫ q.

For any k ∈ Zn−p+1 and m ∈ Zl−q+1, we define the embedding operator Ek,m :

L2(Zp × Zq) → L2(Zn × Zl) by

12

(Ek,mw) (s, t)

=


w(s− k, t−m), if k ≤ s ≤ k + p− 1 and m ≤ t ≤ m+ q − 1,

0, if s ∈ Zn \ {k ≤ s ≤ k + p− 1} or t ∈ Zl \ {m ≤ t ≤ m+ q − 1}

We can easily see that when we apply the embedding operator to a matrix w, it

returns a matrix which has w as a sub-matrix and the other entries are zero.

The following theorem, gives us the adjoint of the cropping operators.

Theorem 2.2.3 Let n, p, l, q be positive integers such that n ≫ p and l ≫ q. For

any k ∈ Zn−p+1 and m ∈ Zl−q+1, the adjoint of the cropping operator Kk,m : L2(Zn×

Zl) → L2(Zp × Zq) is the embedding operator Ek,m.

Proof Let z ∈ L2(Zn × Zl) and w ∈ L2(Zp × Zq). The

(Kk,mz, w)L2(Zp×Zq)
=

∑
s∈Zp

∑
t∈Zq

(Kk,mz) (s, t)w(s, t)

=
∑
s∈Zp

∑
t∈Zq

z(s+ k, t+m)w(s, t)

By the change of variables from (s, t) to (s̃, t̃) where
s̃ = s+ k,

t̃ = t+m,

we get

(Kk,mz, w)L2(Zp×Zq)
=

k+p−1∑
s̃=k

q+m−1∑
t̃=m

z(s̃, t̃)w(s̃− k, t̃−m)

=
n−1∑
s̃=0

l−1∑
t̃=0

z(s̃, t̃)(Ek,mw) (s̃, t̃)

= (z, Ek.mw)L2(Zn×Zl)
.

13

2

We first define the convolutional operator with stride s = 1.

Definition 2.2.4 Let n, p, l, q be positive integers such that n ≫ p and l ≫ q. We

define the convolutional operator C : L2(Zn×Zl)×L2(Zp×Zq) → L2(Zn−p+1×Zl−q+1)

by

C (z, w) (k,m) =
(
w,Kk,mz

)
L2(Zp×Zq)

, k ∈ Zn−p+1, m ∈ Zl−q+1,

for any w ∈ L2(Zp × Zq) and z ∈ L2(Zn × Zl). In fact,

C (z, w) (k,m) =
∑
s∈Zp

∑
t∈Zq

w(s, t)z(s+ k, t+m).

So, by Theorem 2.2.3,

C (z, w) (k,m) = (z, Ek,mw)L2(Zn×Zl)
(2.1)

Definition 2.2.5 Let n, p, l, q be positive integers such that n≫ p and l ≫ q. Let s

be a positive integer. Let n̂ = ⌊n−p
s
⌋+1 and l̂ = ⌊ l−q

s
⌋+1. For any k ∈ Zn̂ and m ∈ Zl̂,

we define the cropping operator with stride s by Ks
k,m : L2(Zn × Zl) → L2(Zp × Zq)

by

(Ks
k,mz)(s, t) = z(s+ ks, t+ms), (s, t) ∈ Zp × Zq

where z ∈ L2(Zn × Zl).

Note that if we let s = 1, we get back the cropping operator Kk,m in Definition

2.2.1.

Similar to Proposition 2.2.1, we have the following proposition about the bound-

edness of Ks
k,m.

14

Proposition 2.2.2 Let s, n, p, l, q be positive integers such that n ≫ p and l ≫ q.

Let n̂ = ⌊n−p
s
⌋ + 1 and l̂ = ⌊ l−q

s
⌋ + 1. For any k ∈ Zn̂ and m ∈ Zl̂, K

s
k,m :

L2(Zn × Zl) → L2(Zp × Zq) is a bounded linear operator. Moreover,

∥∥Ks
k,m

∥∥
B(L2(Zn×Zl),L2(Zp×Zq))

≤ 1,

where B (L2(Zn × Zl), L2(Zp × Zq)) is the space of all bounded linear operators from

L2(Zn × Zl) to L2(Zp × Zq).

Proof It is easy to check that Ks
k,m is a linear operator. Let z ∈ L2(Zn×Zl). Then∥∥Ks

k,mz
∥∥2

L2(Zp×Zq)
=

∑
s∈Zp

∑
t∈Zq

|
(
Ks
k,mz

)
(s, t)|2

=
∑
s∈Zp

∑
t∈Zq

|z(s+ ks, t+ms)|2 .

By the change of variables from s to s̃ = s+ ks and from t to t̃ = t+ms, we get

∥Kk,mz∥2L2(Zp×Zq)

=

p−1+ks∑
s̃=ks

q−1+ms∑
t̃=ms

∣∣z(s̃, t̃)∣∣2
≤ ∥z∥L2(Zn×Zl).

2

Now, we need to define the embedding operator, in order to find the adjoint of

the cropping operators with stride.

Definition 2.2.6 Let s, n, p, l, q be positive integers such that n ≫ p and l ≫ q.

Let n̂ = ⌊n−p
s
⌋ + 1 and l̂ = ⌊ l−q

s
⌋ + 1. For any k ∈ Zn̂ and m ∈ Zl̂, we define the

embedding operator Es
k,m : L2(Zp × Zq) → L2(Zn × Zl) by

15

(
Es
k,mw

)
(s, t) =

w(s− ks, t−ms), if ks ≤ s ≤ ks+ p− 1 and ms ≤ t ≤ ms+ q − 1,

0, if s ∈ Zn \ {ks ≤ s ≤ ks+ p− 1} or t ∈ Zl \ {ms ≤ t ≤ ms+ q − 1}.

We can easily see that when we apply the embedding operator to a matrix w, it

returns a matrix which has w as a sub-matrix and the other entries are zero. It is

easy to check that Es
k,m = Eks,ms and K

s
k,m = Kks,ms.

The following theorem, gives us the adjoint of the cropping operators.

Theorem 2.2.7 Let s, n, p, l, q be positive integers such that n ≫ p and l ≫ q. Let

n̂ = ⌊n−p
s
⌋ + 1 and l̂ = ⌊ l−q

s
⌋ + 1. For any k ∈ Zn̂ and m ∈ Zl̂, the adjoint of the

cropping operator Ks
k,m : L2(Zn×Zl) → L2(Zp×Zq) is the embedding operator Es

k,m.

Proof Let z ∈ L2(Zn × Zl) and w ∈ L2(Zp × Zq). The(
Ks
k,mz, w

)
L2(Zp×Zq)

=
∑
s∈Zp

∑
t∈Zq

(
Ks
k,mz

)
(s, t)w(s, t)

=
∑
s∈Zp

∑
t∈Zq

z(s+ ks, t+ms)w(s, t)

By the change of variables from (s, t) to (s̃, t̃) where
s̃ = s+ ks,

t̃ = t+ms,

16

we get

(
Ks
k,mz, w

)
L2(Zp×Zq)

=

ks+p−1∑
s̃=ks

q+ms−1∑
t̃=ms

z(s̃, t̃)w(s̃− ks, t̃−ms)

=
n−1∑
s̃=0

l−1∑
t̃=0

z(s̃, t̃)
(
Es
k,mw

)
(s̃, t̃)

= (z, Es
k.mw)L2(Zn×Zl)

.

2

Definition 2.2.8 Let s, n, p, l, q be positive integers such that n ≫ p and l ≫ q.

Let n̂ = ⌊n−p
s
⌋ + 1 and l̂ = ⌊ l−q

s
⌋ + 1. We define the convolutional operator Cs :

L2(Zn × Zl)× L2(Zp × Zq) → L2(Zn̂ × Zl̂) by

Cs (z, w) (k,m) =
(
w,Ks

k,mz
)
L2(Zp×Zq)

, k ∈ Zn̂, m ∈ Zl̂,

for any z ∈ L2(Zn × Zl) and w ∈ L2(Zp × Zq). In fact,

Cs (z, w) (k,m) =
∑
s∈Zp

∑
t∈Zq

w(s, t)z(s+ ks, t+ms). (2.2)

So, by Theorem 2.2.7,

Cs (z, w) (k,m) =
(
z, Es

k,mw
)
L2(Zn×Zl)

. (2.3)

Theorem 2.2.9 Let s, n, p, l, q be positive integers such that n ≫ p and l ≫ q. Let

n̂ = ⌊n−p
s
⌋+ 1 and l̂ = ⌊ l−q

s
⌋+ 1. Let z ∈ L2(Zn × Zl). Consider

Cs(z, ·) : L2(Zp × Zq) → L2(Zn̂ × Zl̂)

defined by

(Cs (z, ·)w) (k,m) = Cs (w, z) (k,m).

17

Then the adjoint of Cs(·, z) is

(Cs(z, ·))∗ : L2(Zn̂ × Zl̂) → L2(Zp × Zq),

where for all z̃ ∈ L2(Zn̂ × Zl̂)

(Cs(z, ·))∗ z̃ =
ñ−1∑
k=0

l̃−1∑
m=0

z̃(k,m)Ks
k,mz,

Proof Let w ∈ L2(Zp × Zq) and z̃ ∈ L2(Zn̂ × Zl̂). Then

(Cs(z, w), z̃)L2(Zñ×Zl̃)
=

n̂−1∑
k=0

l̂−1∑
m=0

Cs (z, w) (k,m)z̃(k,m)

=
n̂−1∑
k=0

l̂−1∑
m=0

(
w,Ks

k,mz
)
L2(Zp×Zq)

z̃(k,m)

=

w, n̂−1∑
k=0

l̂−1∑
m=0

z̃(k,m)Ks
k,mz


L2(Zp×Zq)

.

Hence,

(Cs(z, ·))∗ z̃ =
n−1∑
k=0

l−1∑
m=0

z̃(k,m)Ks
k,mz.

2

Theorem 2.2.10 Let s, n, p, l, q be positive integers such that n≫ p and l ≫ q. Let

n̂ = ⌊n−p
s
⌋+ 1 and l̂ = ⌊ l−q

s
⌋+ 1. Let w ∈ L2(Zp × Zq). Consider

Cs(·, w) : L2(Zn × Zl) → L2(Zn̂ × Zl̂)

defined by

(Cs (·, w) z) (k,m) = Cs (z, w) (k,m).

Then the adjoint of Cs(w, ·) is

(Cs(·, w))∗ : L2(Zn̂ × Zl̂) → L2(Zn × Zl),

18

where for all z̃ ∈ L2(Zn̂ × Zl̂)

(Cs(·, w))∗ z̃ =
n̂−1∑
k=0

l̂−1∑
m=0

z̃(k,m)Es
k,mw,

Proof Let z ∈ L2(Zn × Zl) and z̃ ∈ L2(Zn̂ × Zl̂). Then by (2.3)

(Cs(z, w), z̃)L2(Zñ×Zl̃)
=

n̂−1∑
k=0

l̂−1∑
m=0

(Cs (z, w)) (k,m)z̃(k,m)

=
n̂−1∑
k=0

l̂−1∑
m=0

(
z, Es

k,mw
)
L2(Zn×Zl)

z̃(k,m)

=

z, n̂−1∑
k=0

l̂−1∑
m=0

z̃(k,m)Es
k,mw


L2(Zn×Zl)

.

Hence,

(Cs(·, w))∗ z̃ =
n̂−1∑
k=0

l̂−1∑
m=0

z̃(k,m)Es
k,mw.

2

2.3 Wirtinger Derivatives

In the complex case, the loss function is real valued with complex weights. Such

a function is not differentiable everywhere, and its steepest descent direction cannot

be calculated using the gradient. To that end we use the Wirtinger derivatives. Let

f : C → C be a function defined by

f(z) = u(x, y) + iv(x, y)

where i =
√
−1, and z = x + iy, for x, y ∈ R and u(x, y) and v(x, y) are in R. By

using

x =
z + z̄

2
, y =

z − z̄

2i

19

the function f can be rewritten as a bivariate function of z and z̄. If u(x, y) and

v(x, y) are differentiable with respect to real-valued variables x and y, then we say

that f is of class C1 and we can apply Wirtinger calculus to compute ∂f
∂z

and ∂f
∂z̄

by

treating z and z̄ as two independent variables, so

∂z

∂z̄
= 0,

∂z̄

∂z
= 0.

In this way, when taking the partial derivative with respect to z, we consider z̄ as

a constant and calculate ∂f
∂z
. Similarly, ∂f

∂z̄
is derived by considering z as a constant

and taking the partial derivative with respect to z̄. This makes it possible for ∂f
∂z

and ∂f
∂z̄

to be derived in the same manner as for the real-valued case [59]. Hence by

applying the chain rule, we obtain

∂f

∂z
=

1

2

[
∂f

∂x
− i

∂f

∂y

]
∂f

∂z̄
=

1

2

[
∂f

∂x
+ i

∂f

∂y

]
(3.4)

The operators ∂
∂z

and ∂
∂z̄

defined in (3.4) are called Cauchy-Riemann operators. We

note that ∂
∂z

and ∂
∂z̄

can be applied to arbitrary differentiable (not necessarily holo-

morphic) functions. We can see easiliy,

∂f

∂z
=
∂f̄

∂z̄

Hence, if f is a real-valued function, then

∂f

∂z
=
∂f

∂z̄
.

Moreover, f : C → C is a holomorphic function if and only if

∂f

∂z̄
= 0.

20

Let Ω ⊂ Cn. Let C1(Ω) be the class of all functions f : Ω → C such that for all

1 ≤ j ≤ n, ∂f
∂xj

and ∂f
∂yj

exist and are continuous in Ω.

We say that the operator T : L2(Zm) → C is of class C1, if for all 1 ≤ j ≤ m,

∂T
∂xj

and ∂T
∂yj

exists and are continuous. Similarly, we say the operator T : L2(Zm) →

L2(Zn) is of class C1, if for all 1 ≤ j ≤ m and 1 ≤ k ≤ n, ∂Tk
∂xj

and ∂Tk
∂yj

exists and are

continuous where

Tk(f) = (T (f)) (k), f ∈ L2(Zm).

Let z = (z1, z2, . . . , zn) ∈ Cn where zj = xj + iyj, 1 ≤ j ≤ n, then we define the

Cauchy-Riemann operators

Dj =
∂

∂zj
=

1

2
(
∂

∂xj
− i

∂

∂yj
)

Dj =
∂

∂z̄j
=

1

2
(
∂

∂xj
+ i

∂

∂yj
) (3.5)

Let T : L2(Zn) → C be of class C1. Then we define the gradient of T , ∇T :

L2(Zn) → L2(Zn) by

(∇T (z)) (k) = (DkT) (z), k ∈ Zn(
∇T (z)

)
(k) =

(
DkT

)
(z), k ∈ Zn

for all z ∈ L2(Zn), where DkT , k ∈ Zn, are the Wirtinger derivatives of T with

respect to zk = z(k) and z̄k = z(k) respectiely.

Similarly if T : L2(Zn) → L2(Zm) is of class C1, we define ∇T : L2(Zn) →

L2(Zm)× L2(Zn) by

(∇T (z)) (s, t) = (∇Ts(z)) (t), (s, t) ∈ Zm × Zn,

for all z ∈ L2(Zn) where Ts : L2(Zn) → C is defined by

Ts(z) = (Tz) (s), z ∈ L2(Zn),

21

hence

(∇T (z)) (s, t) = (DtTs) (z), t ∈ Zn

Using the same idea, if T : L2(Zn × Zl)× L2(Zp × Zq)) → L2(Zñ × Zl̃) Then we can

define the gradient of T with respect to z ∈ L2(Zn × Zl),

∇zT : L2(Zn × Zl)× L2(Zp × Zq) → L2(Zñ × Zl̃)× L2(Zn × Zl) (3.6)

by

(∇zT (z, w)) (s̃, t̃, s, t) =
(
∇zT(s̃,t̃)(z, w)

)
(s, t), (s̃, t̃, s, t) ∈ Zñ × Zl̃ × Zn × Zl

where T(s̃,t̃) : L
2(Zn × Zl)× L2(Zp × Zq)) → C is defined by

T(s̃,t̃)(z, w) = (T (z, w)) (s̃, t̃)

and hence ∇zT(s̃,t̃) : L
2(Zn × Zl)× L2(Zp × Zq)) → L2(Zn × Zl) is defined by(
∇zT(s̃,t̃)(z, w)

)
(s, t) =

(
∂T(s̃,t̃)
∂z(s,t)

)
(z, w),

and
∂T(s̃,t̃)
∂z(s,t)

is the Wirtinger derivative of T(s̃,t̃) with respect to z(s,t) = z(s, t). Similarly

∇wT , ∇wT and ∇zT are defined. In (3.6), we can think of ∇zT (z, w) as a tensor of

dimension ñ× l̃ × n× l.

The followiong definiton is needed for the chain rule of the composition on func-

tions (see Theorem 2.4.3).

Definition 2.3.1 If A and B are tensors of dimesions n× l× n̂× l̂ and n̂× l̂×p×q.

Then we define AB to be a tensor of dimesion n × l × p × q and its (s, t, k,m)-th

element is defined as folows

AB(s, t, k,m) =
n̂∑
ŝ=0

l̂∑
t̂=0

A(s, t, ŝ, k̂)B(ŝ, k̂, k,m). (3.7)

where (s, t, k,m) ∈ Zn × Zl × Zp × Zq.

22

For the sake of simplicity of notation, we use D for ∇z and ∇ for ∇w, where z is

the input of a layer and w is a parameter(filter). Similarly, we define ∇z = D̄ and

∇w = ∇̄.

We need the followoing chain rule theorem [60].

Theorem 2.3.2 Let Ω be an open subset of Cm and F1, F2, . . . , Fn be in C1(Ω).

Define F : Ω → Cn by

F (z) = (F1(z), F2(z), . . . , Fn(z)), z ∈ Ω.

Let g be in C1(Ω′) where Ω′ ⊂ Cn is an open set containing the range of F . If we let

h = g ◦ F.

Then for all z ∈ Ω,

∇h(z) = ∇g(w)∇F (z) +∇g(w)∇F (z)

and

∇h(z) = ∇g(w)∇F (z) +∇g(w)∇F (z),

where w = F (z).

Note that in the previous theorem, we consider ∇F (z) as a matrix and we use the

matrix multiplication.

2.4 Pooling Layers and Mappings

In a pooling layer, the input is split into patches (using the cropping operator),

and each patch is replaced by one value. In the popular max pooling, this value

is the maximal value of the original patch maxz∈patch z. Since the max operator is

23

not defined for complex numbers, it does not generalize trivially. One choice of the

max-pooling operator suggested in [52] is

argmaxz∈patch|z|

where argmax gives the point in the patch where the maxz∈patch|z| occurs.

Max-by-magnitude pooling generalizes the real valued max pooling only for non

negative inputs, but in typical CNNs, a pooling layer follows a ReLU layer.

Proposition 2.4.1 Let s be a positive integer. Consider Ps : L2(Zs × Zs) → C,

where for all z ∈ L2(Zs × Zs)

Ps(z) = argmax
{
|z(s, t)| : (s, t) ∈ Zs × Zs

}
.

Then the gradient of Ps, DPs : L
2(Zs × Zs) → L2(Zs × Zs) is obtained by

DPs(z) = χs∗,t∗ .

where z ∈ L2(Zs×Zs), (s
∗, t∗) is the index where the maximum of |z(s, t)| occurs and

χs∗,t∗ ∈ L2(Zs×Zs) is the characteristic function on {(s∗, t∗)}, i.e., χ(s∗,t∗)(s
∗, t∗) = 1

and χ(s∗,t∗)(s, t) = 0 for (s, t) ∈ Zs × Zs \ {(s∗, t∗)}.

Remark 2.4.1 In Proposition 2.4.1, if the maximum occurs in more than one point,

we choose the index randomly. or (DPs(z)) (s, t) = 1 for all indices (s, t) where the

maximum of |z(s, t)| occurs.

Definition 2.4.1 Let s be a positive integer. In Definition 2.2.5, let p = q = s.

Then n̂ = ⌊n
s
⌋ and l̂ = ⌊ l

s
⌋. We define the max-pooling operator φs : L

2(Zn × Zl) →

L2(Zn̂ × Zl̂) by (φs(z)) (k,m) =
(
Ps ◦Ks

k,m

)
(z). Then

(φs(z)) (k,m) = argmax
{∣∣(Ks

k,mz
)
(s, t)

∣∣ : (s, t) ∈ Zs × Zs

}
.

24

In fact,

(φs(z)) (k,m) = argmax
{
|z(s+ ks, t+ms)| : (s, t) ∈ Zs × Zs

}
.

Theorem 2.4.2 Let s be a positive integer. In Definition 2.2.5, let p = q = s

and n̂ = ⌊n
s
⌋ and l̂ = ⌊ l

s
⌋. Consider the max-pooling operator φs : L2(Zn × Zl) →

L2(Zn̂ × Zl̂). Then

Dφs : L
2(Zn × Zl) → L2(Zñ × Zl̃)× L2(Zn × Zl)

is given by

(Dφs(z)) (k,m; s, t)

= χ(s∗+ks,t∗+ms)(s, t)

=


1, if (s, t) = (s∗k,m + ks, t∗k,m +ms),

0, otherwise.

for all z ∈ L2(Zn × Zl) and (k,m; s, t) ∈ Zn̂ × Zl̂ × Zn × Zl and (s∗k,m, t
∗
k,m) is the

index where the maximum of |
(
Ks
k,mz

)
(s, t)| occurs.

By using (2.2) and (2.3), we have the following proposition.

Proposition 2.4.2 Let n1 ≫ p1 and l1 ≫ q1, n̂1 = ⌊n1−p1
s1

⌋+1 and l̂1 = ⌊ l1−q1
s1

⌋+1,

where s1 is a positive integer. For any (z, w) ∈ L2(Zn1 × Zl1) × L2(Zp1 × Zq1) and

(k,m) ∈ Zn̂1 × Zl̂1

DCs1(z, w)(k,m, s, t) =
(
Es1
k,mw

)
(s, t) (s, t) ∈ Zn1 × Zl1

and

∇Cs1(z, w)(k,m, s, t) =
(
Ks1
k,mz

)
(s, t), (s, t) ∈ Zp1 × Zq1 .

25

Theorem 2.4.3 Let ψ be a suitable elementwise non-linearity function such as ReLU

and φs be the max-pooling operator defined above. Consider the following diagram

L2(Zn1 × Zl1)× L2(Zp1 × Zq1)

L2(Zn̂1 × Zl̂1)

L2(Zn̂1 × Zl̂1)

L2(Zn2 × Zl2)

Cs

ψ

φs

where n1 ≫ p1 and l1 ≫ q1. Let n̂1 = ⌊n1−p1
s

⌋+1 and l̂1 = ⌊ l1−q1
s

⌋+1, n2 = ⌊ n̂1

s
⌋ and

l2 = ⌊ l̂1
s
⌋ for a positive integer s. For any (z, w) ∈ L2(Zn1 ×Zl1)×L2(Zp1 ×Zq1), let

f(z, w) = φs ◦ ψ ◦ Cs(z, w).

Then

Df(z, w) =
{
Dφs (˜̃z))Dψ(z̃) + D̄φs (˜̃z))Dψ̄(z̃)

}
DCs1(z, w) +{

Dφs (˜̃z)) D̄ψ(z̃) + D̄φs (˜̃z)Dψ(z̃)
}
DCs1(z, w).

and

∇f(z, w) =
{
Dφs (˜̃z))Dψ(z̃) + D̄φs (˜̃z))Dψ̄(z̃)

}
∇Cs1(z, w) +{

Dφs (˜̃z)) D̄ψ(z̃) + D̄φs (˜̃z)Dψ(z̃)
}
∇Cs1(z, w).

where z̃ = Cs(z, w) and ˜̃z = (ψ ◦ Cs) (z, w).

The above formulas are straightforward using the chain rule (Theorem 2.3.2) and

(3.7). In layer i, Let ψi be the elementwise non-linearity function such as ReLU.

26

Figure 2.1: Neural Network Layers

Consider the following diagram for 1 ≤ i ≤ L− 1

L2(Zni
× Zli)× L2(Zpi × Zqi)

L2(Zn̂i
× Zl̂i)

L2(Zn̂i
× Zl̂i)

L2(Zni+1
× Zli+1

)

Csi

ψi

φsi

where ni ≫ pi and li ≫ qi. Let n̂i = ⌊ni−pi
si

⌋+ 1 and l̂i = ⌊ li−qi
si

⌋+ 1 ni+1 = ⌊ n̂i

si
⌋ and

li+1 = ⌊ l̂i
si
⌋ for a positive integer si (note that the stride in the pooling layer does not

have to be the same as the stride in the convolutional layer). Set

fi(z
[i], w[i]) = φsi ◦ ψi ◦ Csi(z

[i], w[i]), (4.8)

for any (z[i], w[i]) ∈ L2(Zni
× Zli)× L2(Zpi × Zqi).

For i = L, we define fL : L2(ZpL ×ZqL)×L2(ZnL
×ZlL) → L2(ZnL+1

) ??? so that

it is fully connected.

Let {(zk, yk)}mk=1 be our m training samples where for all k = 1, 2, . . . ,m, zk ∈

L2(Zn1 × Zl1) and yk ∈ L2(ZnL+1
).

Let z[1] = z1 ∈ L2(Zn1×Zl1) and y = y1 ∈ L2(ZnL+1
). Choose filters w[1], w[2], . . . , w[L]

and the learning rate η ≥ 0. Suppse that we have a regression problem (we can work

27

on the classification problem, later). Define

F : L2(Zn1 × Zl1)×
L∏
k=1

L2(Zpk × Zqk) → L2(ZnL+1
)

by

F (z;w[1], w[2], . . . , w[L])

= fL
(
fL−1

(
. . .

(
f2

(
f1(z, w

[1]), w[2]
)
, . . .

)
, w[L−1]

)
, w[L]

)
. (4.9)

We define a cost function

JR :
(
L2(Zn1 × Zl1)

)m ×
(
L2(ZnL+1

)
)m ×

L∏
k=1

L2(Zpk × Zqk) → C

by

JR(z1, . . . , zm, y1, . . . , ym;w
[1], w[2], . . . , w[L])

=
1

2m

m∑
k=1

∥∥−yk + F (zk;w
[1], w[2], . . . , w[L])

∥∥2

L2(ZnL+1
)

(4.10)

where the network, predicts

ỹk = F (zk;w
[1], w[2], . . . , w[L]), k = 1, 2, . . . ,m.

Let w = (w[1], w[2], . . . , w[L]). We consider

min
w
JR(x, y, w

[1], w[2], . . . , w[L]),

and we want to estimate w for which the minimum of JR occurs. Let

J : L2(Zn1 × Zl1)× L2(ZnL+1
)×

L∏
k=1

L2(Zpk × Zqk) → C

28

defined by

J(z, y;w[1], w[2], . . . , w[L]) =
1

2

∥∥−y + F (z;w[1], w[2], . . . , w[L])
∥∥2

L2(ZnL+1
)
.

Then

JR(z1, . . . , zm, y1, . . . , ym;w
[1], w[2], . . . , w[L])

=
1

m

m∑
k=1

J(zk, yk;w
[1], w[2], . . . , w[L]). (4.11)

Remark 2.4.2 Note that for simplicty we have chosen one filter in each layer, but in

reality, we may choose more filters for each layer. In this case, the depth of the layer

will increase(we also have choosen to work with inputs of depth one, for simplicity

of notations)

Definition 2.4.4 We define the head maps as follows. Let α0 = id, where id is the

identity operator. Define

α1 : L
2(Zn1 × Zl1)× L2(Zp1 × Zq1) → L2(Zn2 × Zl2)

by

α1(z, w
[1]) = f1(z, w

[1]), (z, w[1]) ∈ L2(Zn1 × Zl1)× L2(Zp1 × Zq1)

and define

α2 : L
2(Zn1 × Zl1)×

2∏
k=1

L2(Zpk × Zqk) → L2(Zn3 × Zl3)

by

α2(z, w
[1], w[2]) = f2(f1(z, w

[1]), w[2]),

29

where (z, w[1], w[2]) ∈ L2(Zn1 × Zl1)×
∏2

k=1 L
2(Zpk × Zqk) and similarly, for all 1 ≤

i ≤ L, we define

αi : L
2(Zn1 × Zl1)×

i∏
k=1

L2(Zpk × Zqk) → L2(Zni+1
× Zli+1

)

by

αi(z, w
[1], w[2], . . . , w[i]) = fi

(
fi−1

(
. . .

(
f2

(
f1(z, w

[1]), w[2]
))
. . . , w[i−1]

)
, w[i]

)
,

where (z, w[1], w[2], . . . , w[i]) ∈ L2(Zn1 × Zl1)×
∏i

k=1 L
2(Zpk × Zqk).

Definition 2.4.5 We define the tail map

β1 : L
2(Zn1 × Zl1)×

L∏
k=1

L2(Zpk × Zqk) → L2(ZnL+1
)

by

β1(z
[1], w[1], w[2], . . . , w[L]) = fL

(
fL−1

(
. . .

(
f2

(
f1(z

[1], w[1]), w[2]
))
. . . , w[L−1]

)
, w[L]

)
,

where (z[1], w[1], w[2], . . . , w[L]) ∈ L2(Zn1 × Zl1) ×
∏L

k=1 L
2(Zpk × Zqk). Moreover for

1 ≤ i ≤ L, we define

βi : L
2(Zni

× Zli)×
L∏
k=i

L2(Zpk × Zqk) → L2(ZnL+1
)

by

βi(z
[i], w[i], w[i+1], . . . , w[L]) = fL

(
fL−1

(
. . .

(
fi+1

(
fi(z

[i], w[i]), w[i+1]
))
. . . , w[L−1]

)
, w[L]

)
,

where (z[i], w[i], w[i+1], . . . , w[L]) ∈ L2(Zni
× Zli)×

∏L
k=i L

2(Zpk × Zqk). We define

βL+1 = id : L2(ZnL+1
) → L2(ZnL+1

).

30

As we see above, in fact β1 = F.

For the ease of computations, we suppress the dependency of the function fi on

the parameter w[i], and consider it as a function from L2(Zni
×Zli) to L2(Zni+1

×Zli+1
).

Using the same idea, we can write

αi = fi ◦ fi−1 ◦ · · · ◦ f1

and

βi = fL ◦ fL−1 ◦ · · · ◦ fi

The following proposition is straightforward from the definitions.

Proposition 2.4.3 We have

1) βi = βi+1 ◦ fi, i = 1, 2, . . . , L.

2) F = βi+1 ◦ αi, i = 0, 1, . . . , L.

3) αi = fi ◦ αi−1, i = 1, 2, . . . , L.

4) F = βi+1 ◦ fi ◦ αi−1, i = 1, 2, . . . , L.

It is very important to remember that βi+1 and αi−1 do not depend on the pa-

rameter w[i]. To minimize JR, we will use the gradient descent method.

2.5 Adaptive Gradient Descent Method

Using the Wirtinger derivate, we can define adaptive, gradient descent method

as follows. We fix the learning rate η (can be a complex number) and we initialize

(w
[1]
0 , w

[2]
0 , . . . , w

[L]
0) ∈

∏L
k=1 L

2(Zpk × Zqk) Let N be the number of iterations. Then

for 1 ≤ i ≤ L and for k = 1, 2, . . . , N ,

w
[i]
k+1 = w

[i]
k − η∇

w
[i]
k
JR(z1, . . . , zm, y1, . . . , ym;w

[1]
k , w

[2]
k , . . . , w

[L]
k)

31

Using (4.11),

w
[i]
k+1 = w

[i]
k − η

m

m∑
k=1

∇
w

[i]
k
J(zk, yk;w

[1]
k , w

[2]
k , . . . , w

[L]
k)

So, we need to find J(z, y;w[1], w[2], . . . , w[L]). We give a set of results which will be

used to obtain ∇J(z, y;w[1], w[2], . . . , w[L]).

Proposition 2.5.1 Consider the function J defined in (4.11). Let (x, y;w[1], w[2], . . . , w[L])

be in L2(Zn1 × Zl1)× L2(ZnL+1
)×

∏L
k=1 L

2(Zpk × Zqk) and

ỹ = F (x;w[1], w[2], . . . , w[L]). (5.12)

where F is defined in (4.9) Then for i = 1, 2, . . . , L,

∇w[i]J(x, y;w[1], w[2], . . . , w[L]) :

L2(Zn1 × Zl1)× L2(ZnL+1
)×

L∏
k=1

L2(Zpk × Zqk) → L2(Zpi × Zqi)

is obtained by

∇w[i]J(x, y;w[1], w[2], . . . , w[L])

=
1

2

∑
k∈ZnL+1

(
−yk + ỹk

)
∇w[i]F (x;w[1], w[2], . . . , w[L])(k)

+
1

2

∑
k∈ZnL+1

(−yk + ỹk))∇w[i]F (x;w[1], w[2], . . . , w[L])(k).

Proof Using the product rule,

∇w[i]J(x, y;w[1], w[2], . . . , w[L])

=
1

2
∇w[i]

(
−y + F (x;w[1], w[2], . . . , w[L]),−y + F (x;w[1], w[2], . . . , w[L])

)
L2(ZnL+1

)

=
1

2

∑
k∈ZnL+1

(
−yk + F (x;w[1], w[2], . . . , w[L])(k)

)
∇w[i]F (x;w[1], w[2], . . . , w[L])(k)

+
1

2

∑
k∈ZnL+1

(
−yk + F (x;w[1], w[2], . . . , w[L])(k)

)
∇w[i]F (x;w[1], w[2], . . . , w[L])(k).

32

2

Note that in the above theorem, since

F : L2(Zn1 × Zl1)×
L∏
k=1

L2(Zpk × Zqk) → L2(ZnL+1)

Then

∇w[i]F (x;w[1], w[2], . . . , w[L]) : L2(Zn1×Zl1)×
L∏
k=1

L2(Zpk×Zqk) → L2(ZnL+1)×L2(Zpi×Zqi)

and hence for all k ∈ ZnL+1, we can think of ∇w[i]F (x;w[1], w[2], . . . , w[L])(k) as a

matrix of dimension pi × qi where its (s, t)-th element is defined by

∇w[i]F (x;w[1], w[2], . . . , w[L])(k, s, t).

Proposition 2.5.2 For all i = 1, . . . , L and (x;w[1], w[2], . . . , w[L]) in L2(Zn1×Zl1)×∏L
k=1 L

2(Zpk × Zqk).

∇w[i]F (x;w[1], w[2], . . . , w[L])

= Dβi+1(z
[i+1], w[i+1], . . . , w[L])∇w[i]fi(z

[i], w[i])

+D̄βi+1(z
[i+1], w[i+1], . . . , w[L])∇w[i]fi(z

[i], w[i]).

and

∇w[i]F (x;w[1], w[2], . . . , w[L])

= Dβi+1(z
[i+1], w[i+1], . . . , w[L])∇w[i]fi(z

[i], w[i])

+Dβi+1(z
[i+1], w[i+1], . . . , w[L])∇w[i]fi(z

[i], w[i]).

where

• z[1] = x,

33

• z[2] = α1(z
[1], w[1]) = f1(z

[1], w[1]),

• z[3] = α2(z
[1], w[1], w[2]) = f2(z

[2], w[2])

• and for i = 1, 2, . . . , L,

z[i] = αi−1(z
[1], , w[1], w[2], . . . , w[i−1]) = fi−1(z

[i−1], w[i−1])

Proof By Proposition 2.4.3,

F = βi+1 ◦ fi ◦ αi−1, i = 1, 2, . . . , L.

By the chain rule (Theorem 2.3.2) and the fact that βi+1 and αi−1 do not depend on

w[i].

∇w[i]F (x;w[1], w[2], . . . , w[L])

= Dβi+1(fi(αi−1(z
[1], w[1], . . . , w[i−1]), w[i]), w[i+1], . . . , w[L])

×∇w[i]fi(αi−1(z
[1], w[1], . . . , w[i−1]), w[i])

+D̄βi+1(fi(αi−1(z
[1], w[1], . . . , w[i−1]), w[i]), w[i+1], . . . , w[L])

×∇w[i]fi(αi−1(z
[1], w[1], . . . , w[i−1]), w[i])

= Dβi+1(z
[i+1], w[i+1], . . . , w[L])∇w[i]fi(z

[i], w[i])

+D̄βi+1(z
[i+1], w[i+1], . . . , w[L])∇w[i]fi(z

[i], w[i]).

Similarly since

F = βi+1 ◦ fi ◦ αi−1, i = 1, 2, . . . , L,

and ∇̄F̄ = ∇F , we can get the second part.

2

Note that in Proposition 2.5.2, we have used the product definition in (3.7) for

Dβi+1(z
[i+1], w[i+1], . . . , w[L])∇w[i]fi(z

[i], w[i])

34

and

Dβi+1(z
[i+1], w[i+1], . . . , w[L])∇w[i]fi(z

[i], w[i]).

Theorem 2.5.1 For all i = 1, . . . , L and (x;w[1], w[2], . . . , w[L]) in L2(Zn1 × Zl1) ×

L2(Zp1 × Zq1)× L2(Zp2 × Zq2)× L2(ZpL × ZqL), we have

Dβi(z
[i], w[i], w[i+1], . . . , w[L])

= Dβi+1

(
z[i+1], w[i+1], . . . , w[L]

)
Dfi(z

[i], w[i])

+D̄βi+1

(
z[i+1], w[i+1], . . . , w[L]

)
Dfi(z

[i], w[i]).

and

D̄βi(z
[i], w[i], w[i+1], . . . , w[L])

= Dβi+1

(
z[i+1], w[i+1], . . . , w[L]

)
D̄fi(z

[i], w[i])

+D̄βi+1

(
z[i+1], w[i+1], . . . , w[L]

)
Dfi(z

[i], w[i]).

where z[1], z[2], . . . , z[L] is defined in Proposition 2.5.2.

Proof By Proposition 2.4.3,

βi(z
[i], w[i], w[i+1], . . . , w[L]) = βi+1

(
fi(z

[i], w[i]), w[i+1], . . . , w[L]
)
.

Apply the chain rule,

Dβi(z
[i], w[i], w[i+1], . . . , w[L])

= Dβi+1

(
fi(z

[i], w[i]), w[i+1], . . . , w[L]
)
Dfi(z

[i], w[i])

+D̄βi+1

(
fi(z

[i], w[i]), w[i+1], . . . , w[L]
)
Dfi(z

[i], w[i])

= Dβi+1

(
z[i+1], w[i+1], . . . , w[L]

)
Dfi(z

[i], w[i])

+D̄βi+1

(
z[i+1], w[i+1], . . . , w[L]

)
Dfi(z

[i], w[i]).

2

35

Proposition 2.5.3 Let

e1L = ỹR − y

and

e2L = ỹR − y

and for i = 0, 1, . . . , L, let

e1i = (ỹR − y) ·Dβi+1(z
[i+1], w[i+1], . . . , w[L]),

e2i = (ỹR − y) ·Dβi+1(z
[i+1], w[i+1], . . . , w[L]).

Then for all i = 1, 2, . . . , L

e1i−1 = e1iDfi(z
[i], w[i]) + e2iDfi(z

[i], w[i])

e2i−1 = e2iDfi(z
[i], w[i]) + e1iDfi(z

[i], w[i])

and

∇w[i]J(x, y;w[1], w[2], . . . , w[L])

=
1

2
(e1i + e2i)∇w[i]fi(z

[i], w[i]) +
1

2
(e1i + e2i)∇w[i]fi(z

[i], w[i]).

Proof By Theorem 2.5.1,

e1i−1 =
(
ỹR − y

)
·Dβi(z[i], w[i], . . . , w[L])

=
(
ỹR − y

)
·
{
Dβi+1

(
z[i+1], w[i+1], . . . , w[L]

)
Dfi(z

[i], w[i])

+D̄βi+1

(
z[i+1], w[i+1], . . . , w[L]

)
Dfi(z

[i], w[i])
}

= e1iDfi(z
[i], w[i]) + e2iDfi(z

[i], w[i]).

Similarly, we can find e2i−1. To prove the second part, we use Proposition 2.5.1 and

36

Proposition 2.5.2,

∇w[i]J(x, y;w[1], w[2], . . . , w[L])

=
1

2

∑
k∈ZnL+1

(
−yk + ỹk

)
∇w[i]F (x;w[1], w[2], . . . , w[L])(k)

+
1

2

∑
k∈ZnL+1

(−yk + ỹk))∇w[i]F (x;w[1], w[2], . . . , w[L])(k).

=
1

2

∑
k∈ZnL+1

(
−yk + ỹk

) {
Dβi+1(z

[i+1], w[i+1], . . . , w[L])(k)∇w[i]fi(z
[i], w[i])

+D̄βi+1(z
[i+1], w[i+1], . . . , w[L])(k)∇w[i]fi(z

[i], w[i])
}

+
1

2

∑
k∈ZnL+1

(−yk + ỹk))
{
Dβi+1(z

[i+1], w[i+1], . . . , w[L])(k)∇w[i]fi(z
[i], w[i])

+Dβi+1(z
[i+1], w[i+1], . . . , w[L])(k)∇w[i]fi(z

[i], w[i])
}
.

Using the definition of e1i and e
2
i ,

∇w[i]J(x, y;w[1], w[2], . . . , w[L])

=
1

2
(−y + ỹ) ·

{
Dβi+1(z

[i+1], w[i+1], . . . , w[L])∇w[i]fi(z
[i], w[i])

+D̄βi+1(z
[i+1], w[i+1], . . . , w[L])∇w[i]fi(z

[i], w[i])
}

+
1

2
(−y + ỹ)) ·

{
Dβi+1(z

[i+1], w[i+1], . . . , w[L])(k)∇w[i]fi(z
[i], w[i])

+Dβi+1(z
[i+1], w[i+1], . . . , w[L])(k)∇w[i]fi(z

[i], w[i])
}
.

=
1

2
(e1i + e2i)∇w[i]fi(z

[i], w[i]) +
1

2
(e1i + e2i)∇w[i]fi(z

[i], w[i])

(5.13)

2

We are ready to give the backward and forward propagation algorithm in the

convolutional neural networks.

Inputs: z1, z2, . . . , zm ∈ L2(Zn1×Zl1) and y1, y2, . . . , ym ∈ L2(ZnL+1
). Filters w[1], w[2], . . . , w[L],

37

suitable positive integers s1, s2, . . . , sL and the learning rate η ≥ 0. number of layers

L, stopping criteria

Outputs: Modified w[1], w[2], . . . , w[L] to estimate and calculate the output of a new

z ∈ L2(Zn1 × Zl1) by using the function F (z;w[1], w[2], . . . , w[L]).

Algorithm:

Step 1: For j = 1, 2, . . . ,m

Step 1-1 Set x = zj and y = yj and z
[1] = zj.

Step 1-2 For i = 1, 2, . . . , L, set z[i+1] = fi(z
[i], w[i]) (forward propagation)

Step 1-4 Let ỹ = z[L+1].

Step 1-5 For i = L,L− 1, . . . , 1 (backward propagation)

Step 1-5-1 If i = L, then set

e1L = ỹ − y, e2L = ỹ − y,

else set

e1i = e1i+1Dfi+1(z
[i+1], w[i+1]) + e2i+1Dfi+1(z

[i+1], w[i+1])

e2i = e2i+1Dfi+1(z
[i+1], w[i+1]) + e1i+1Dfi+1(z

[i+1], w[i+1])

Step 1-5-2 Set

∇i
jJ = ∇w[i]J(x, y;w[1], w[2], . . . , w[L])

where

∇w[i]J(x, y;w[1], w[2], . . . , w[L])

=
1

2
(e1i + e2i)∇w[i]fi(z

[i], w[i]) +
1

2
(e1i + e2i)∇w[i]fi(z

[i], w[i]).

38

Step 2: For i = 1, 2, . . . , L, set

w̃[i] = w[i]

and

w[i] = w̃[i] − η

m

m∑
j=1

∇J ji .

Step 3: Repeat Step 1 to Step 2 until stopping criteria are achieved (using the

modified w[1], w[2], . . . , w[L]).

Note that in the above algorithm fi(z
[i], w[i]), Dfi+1(z

[i+1], w[i+1]) and∇w[i]fi(z
[i], w[i])

are obtained by (4.8), Theorem 2.4.3 and Proposition 2.4.2.

2.6 Pseudo-Differential Operators in Neural Networks

Let s, n, p, l, q be positive integers such that n≫ p and l ≫ q. Let n̂ = ⌊n−p
s
⌋+1

and l̂ = ⌊ l−q
s
⌋ + 1. Let σ : L2(Zn̂ × Zl̂) × L2(Zp × Zq) → C. Then we define the

pseudo-differential operator Tσ : L2(Zn × Zl) → L2(Zn̂ × Zl̂) corresponding to the

symbol σ by

(Tσz) (k,m) =
1√
nl

∑
s∈Zn

∑
t∈Zl

e2πis(
ks
n
+mt

l
)σ

(
k,m;

p

n
s,
q

l
t
)
ẑ(s, t)

for any z ∈ L2(Zn × Zl) and (k,m) ∈ Zn × Zl where ẑ is the Fourier transform of z

sometimes is denoted by Fz defined by

(Fz) (s, t) = ẑ(s, t) =
1√
nl

∑
k∈Zn

∑
m∈Zl

e−2πi(ks
n
+mt

l
)z(k,m), (s, t) ∈ Zn × Zl.

39

Lemma 2.6.1 Let w ∈ L2(Zp × Zq). Then

F−1
(
Es
k,mw

)
(s, t) =

√
pq

nl
e2πis(

ks
n
+ tm

l
)
(
F−1w

)
(
p

n
s,
q

l
t)

Proof

F−1
(
Es
k,mw

)
(s, t) =

=
1√
nl

n−1∑
s̃=0

l−1∑
t̃=0

e2πi(
s̃s
n
+ t̃t

l
)
(
Es
k,mw

)
(s̃, t̃)

=
1√
nl

ks+p−1∑
s̃=ks

ms+q−1∑
t̃=ms

e2πi(
s̃s
n
+ t̃t

l
)w(s̃− ks, t̃−ms).

By the change of variables using γ = s̃− ks and η = t̃−ms, we get

F−1
(
Es
k,mw

)
(s, t) =

=
1√
nl

p−1∑
s̃=0

q−1∑
t̃=0

e2πi(
s̃s
n
+ t̃t

l
)w(γ, η).

=
1√
nl
e2πis(

ks
n
+ tm

l
)

p−1∑
s̃=0

q−1∑
t̃=0

e2πi(
s
n
γ+ t

l
η)w(γ, η).

=

√
pq

nl
e2πis(

ks
n
+ tm

l
)
(
F−1w

)
(
p

n
s,
q

l
t).

2

We have the following theoreom known as Parseval’s theorem.

Theorem 2.6.1 Let z, w ∈ L2(Zn). Then

(z, w)L2(Zn)
= (ẑ, ŵ)L2(Zn)

.

Note that the above theorem is true in general for any dimesions. Using Theorem

40

2.6.1 and Lemma 2.6.1, we have

(Tσz) (k,m) =
1√
nl

∑
s∈Zn

∑
t∈Zl

e2πis(
ks
n
+mt

l
)σ

(
k,m;

p

n
s,
q

l
t
)
ẑ(s, t)

=
1

√
pq

∑
s∈Zn

∑
t∈Zl

(
Es
k,mF2σ

)
(k,m, s̃, t̃)z(s̃, t̃)

=
1

√
pq

ks+p−1∑
s̃=ks

ks+q−1∑
t̃=ms

(F2σ) (k,m, s̃− ks, , t̃−ms)z(s̃, t̃)

(6.14)

where F2σ is defined by

F2σ(k,m;u, v) =
1

√
pq

∑
s∈Zp

∑
t∈Zq

e−2πi(us
p
+ vt

q
)σ(k,m, s, t)

The following theorem states that every convolutional operator is a pseudo-differential

operator where its symbol does not depend on time variables (k,m). Refer to Fig-

ure 2.2 for an intuitive illustration showing the differences between Convolution Op-

erator and Pseudo-Differential Operator.

(a) Convolution operator (b) Pseudo-differential operator

Figure 2.2: Difference in applying convolution operator and pseudo-differential operator: convo-

lution operator applies a uniform kernel across locations, while pseudo-differential operator employs

different kernels at different locations

41

Theorem 2.6.2 Let s, n, p, l, q be positive integers such that n ≫ p and l ≫ q. Let

n̂ = ⌊n−p
s
⌋+1 and l̂ = ⌊ l−q

s
⌋+1. Let w ∈ L2(Zp×Zq). Then for all z ∈ L2(Zn×Zl)

and (k,m) ∈ Zn̂ × Zl̂
(Cs(w, z)) (k,m) = (Tσz) (k,m)

where for all (k,m, s, t) ∈ Zn × Zl × Zn × Zl,

σ(k,m; s, t) =
√
pq

(
F−1w

)
(s, t),

and F−1w is the inverse Fourier transform of w on L2(Zp × Zq).

In the algorithm, we replace, Cs(w, z) with Tσz, and every thing works fine. For

clarification let T (σ, z) = Tσz where we can look at the operator T as a function of

z and symbol σ. The we consider our symbol σ as our filter. Then DT (σ, z) is the

the gradient with respect to z and ∇T (σ, z) is the gradient with respect to σ.

Proposition 2.6.1 Let s, n, p, l, q be positive integers such that n ≫ p and l ≫ q.

Let n̂ = ⌊n−p
s
⌋ + 1 and l̂ = ⌊ l−q

s
⌋ + 1. Let σ : L2(Zn̂ × Zl̂) × L2(Zp × Zq) → C. and

let T (σ, z) = Tσz. We have

DT (k,m;u, v) =
1

√
pq

(F2σ) (k,m, u− ks, v −ms)

and

∇T (k,m, s, t) = 1√
nl
e2πis(

k
p
s+m

q
t)ẑ(

n

p
s,
l

q
t)

Note that in fact ∇T is defined on Zn̂ × Zl̂ × Zn̂ × Zl̂ × Zp × Zq, but since for

(k,m) ̸= (k′,m′) ∇(k,m, k′,m′, s, t) = 0, we set ∇(k,m, s, t) := ∇(k,m, k,m, s, t)

42

2.7 Numerical Experiments

2.7.1 Overview

Tensorflow [61] was chosen as our platform for implementing the pseudo convo-

lution layer. In this study, all layer parameters are represented as complex values. It

should be noted, however, that real-valued weights can also be utilized in practical

applications. Our focus on complex-valued weights in this instance is not due to

necessity but serves to substantiate our theoretical discussion about their potential

for convergence. Hence, the examples within this paper are intentionally designed to

demonstrate this particular use case.

Our data sets include both one-dimensional (signals) and two-dimensional (im-

ages) cases. We selected the Ralph-Andrzejak EEG dataset [62], MNIST [63], and

CIFAR-10 [64] as benchmark datasets. We do not compare the results with state-

of-the-art findings, as pseudo convolution is a relatively new concept; rather, our

experiments aim to demonstrate its feasibility. We employed the same training and

testing protocols but used different hyperparameters for these three datasets.

For the pseudo convolution layer, we pre-defined the kernel size, as the image

size and stride could affect the total number of kernels used. Initially, we retained

20% of the data in the training set as a validation set to determine the appropriate

number of epochs, before training the model using the entire training set and the

optimized epoch number. During the training process, we started with initial weights

and a learning rate, optimizing the learning process with an exponential decay rate

of 0.95. We trained the model using mini-batches of sizes 16 or 32. We applied the

initialization for complex-valued weights mentioned in [51].

43

2.7.2 Datasets

The Ralph-Andrzejak EEG dataset[62] includes five signal categories named Z,

O, F, N, S, with detailed descriptions for each category presented in Table 2.1. Each

category contains 100 EEG recordings approximately 23.6 seconds long, sampled

at a rate of 173.61 Hz, yielding 4097 values per record. These data were divided

into 1-second long segments. Despite the dataset containing five classes, this study

focuses solely on classifying S (Seizure) and NS (Non-Seizure). To demonstrate

pseudo convolution for complex values, the Fourier transform of the signals was used

as input. Outputs from the fully connected layer were processed by taking their

absolute value and then applying a softmax classifier.

Category Description

Z Healthy group, recorded with eye open

O Healthy group, recorded with eye closed

F Interictal activity, recorded in the epileptogenic zone

N Interictal activity, recorded at hippocampal location

S Seizure activity

Table 2.1: Details of the 5 categories of EEG signals

The MNIST dataset[63] comprises 70,000 images of handwritten digits, with each

image consisting of 28 × 28 pixels with values ranging from 0 to 255. The dataset

is divided into a default training set with 60,000 images and a testing set of 10,000

images. Preprocessing only involved dividing all pixel values by 255 to normalize the

input range to between 0 and 1.

44

Similarly, the CIFAR-10 dataset[64] includes 60,000 32 × 32 RGB images, dis-

tributed over 10 different classes with each class having 6,000 images. The dataset

is split into a training set with 50,000 images and a testing set comprising 10,000

images. For preprocessing, each pixel value was divided by 255, ensuring that the

input range lies between 0 and 1.

2.7.3 Results

We evaluated the performance of 1 and 5 pseudo differential operator kernels.

In both cases, a ReLu non-linearity activation function and a fully connected layer

followed. Table 2.2 shows that the accuracy increases with the number of pseudo

convolution kernels. Figure 2.3 indicates that as the number of kernels increases,

the average loss per epoch in the training set decreases faster and can reach a lower

average loss. Figure 2.5 shows that as the number of epochs increases, the trend of

test and training error rates is decreasing.

of pseudo convolution kernel 1 5

EEG Seizure 0.9692 0.9807

MNIST 0.9699 0.9806

CIFAR-10 0.4725 0.5679

Table 2.2: Accuracy of EEG

45

Figure 2.3: Average epoch loss of three different data sets

Figure 2.4: Training and test error rate per epoch: the upper 3 figures shows the training error

rate and lower 3 figures shows the test error rate

46

2.8 Discussion

We introduced a new neural network structure based on the theory of pseudo-

differential operator and discussed the specific backpropagation algorithm using

Wirtinger derivative. Furthermore, we have elaborated on the activation functions

and pooling layers necessary for implementing our neural network framework. Our

proposed architecture is highly compatible with the pseudo-differential operator the-

ory, and our numerical experiments on benchmark datasets demonstrate its effec-

tiveness. In our future work, we plan to utilize this framework in the field of signal

processing, with a particular focus on time-variant filtering.

47

3 Time-variant Transform

3.1 Introduction

In the realm of biomedical signal processing, Electroencephalogram (EEG) signals

are notably challenging due to their non-stationary and time-varying nature. While

traditional methods often employ Linear Time-Invariant (LTI) filters, these might

not be optimal for EEG signals inherently characterized by time-varying properties.

Addressing this, this chapter presents a groundbreaking approach: using neural net-

works to model and learn a time-varying filter. This innovative method not only

offers an enhanced representation and denoising of EEG signals but also holds the

potential to bolster the efficiency of subsequent EEG classification tasks.

Time-variant filter applications or transformations have historically been a formidable

challenge. In our approach, we utilize parameterized pseudo-differential operators

combined with neural networks to craft an apt time-variant parameter function,

thus achieving the desired time-variant transformation. Existing literature [65] sug-

gests that, when unconstrained, pseudo-differential operators in discrete scenarios

can be matrix-represented, analogous to a fully connected layer in neural networks.

Yet, representing a specific pseudo-differential operator using solely a fully connected

layer becomes nearly unfeasible due to convergence challenges. A viable workaround

is the adoption of ordinary differential equations (ODEs) to constrain the form of

48

the pseudo-differential operator. As illustrated in [65], a meta-learning technique

was introduced to learn such operators via neural networks to address ODEs.

Ordinary Differential Equations (ODEs) are mathematical expressions involv-

ing functions of one independent variable and their derivatives. Their capacity to

describe the behavior of numerous systems across disciplines, from physics to engi-

neering, makes them indispensable. Specifically, in signal processing, ODEs play a

pivotal role in modeling and designing filters. A widely-used Linear Time-Invariant

(LTI) filter in such applications can be portrayed by an ODE of the form:

a0y(t) + a1
dy(t)

dt
+ . . .+ an

dny(t)

dtn
= b0x(t) + b1

dx(t)

dt
+ . . .+ bm

dmx(t)

dtm
(1.1)

Here, x(t) represents the input signal, y(t) is the output, and ai, bj are the filter

coefficients. This kind of ODE, known as a linear constant coefficient differential

equation, encapsulates a wide spectrum of LTI filters.

However, the non-stationary nature of many signals and systems necessitates the

extension of LTI filters to time-varying filters, which are aptly described by time-

varying ODEs. A typical time-varying ODE for a first-order is given by:

dy(t)

dt
= a(t)y(t) + b(t)x(t) (1.2)

In this equation, the coefficients a(t) and b(t) are time-dependent, reflecting the

ever-changing attributes of the filter. This time-dependence introduces a layer of

complexity, making the analysis and resolution of time-varying ODEs notably intri-

cate. Techniques like Euler’s method or Runge-Kutta methods often come to the

rescue, with advanced mathematical tactics needed to unpack their behavior.

While employing Ordinary Differential Equations (ODEs) offers a robust math-

ematical framework for signal processing, integrating them with neural networks

introduces unique challenges. These complexities arise mainly due to the sensitive

49

nature of ODEs, where slight alterations in inputs can produce substantially differ-

ent outcomes. In this chapter, we delve into strategies designed to overcome these

challenges during the neural network’s training phase. Additionally, the task of gen-

erating functions with a neural network that align with the ODE solver network

is not without its hurdles. A potential mismatch in function distributions could

compromise the system’s effectiveness. Our solution involves utilizing actual EEG

signals as the network’s input, ensuring alignment while preserving the signals’ in-

tricate dynamics. Furthermore, we highlight the importance of refining our function

generator based on classification results. Although this iterative approach promises

optimized generator functions, it also raises concerns related to computational effi-

ciency and loss function definition. We present a comprehensive strategy to navigate

these challenges, emphasizing distinct training phases and safeguarding the ODE

solver network during parameter updates.

The remainder of this section is organized as follows: Section 3.2 presents our

methodology, the challenges we encountered, and the detailed solutions. In Sec-

tion 3.3, we provide a comprehensive overview of the experiments conducted and

their corresponding results. Finally, Section 3.4 delves into an in-depth discussion

and interpretation of our findings.

3.2 Methodology, Challenges, and Solutions

3.2.1 General Framework and Detailed Insights

The general framework of our approach is illustrated in Figure 3.1. Our frame-

work comprises three main parts: the first is the η generator network; the second,

known as the PDO neural network or the ODE solving network in subsequent sec-

50

tions, is designed for solving the ODE; and the third is the classifier.

 Generator NN

Original EEG

Transformed
EEG

EEGNet/EEGNexPDO NN
pretrain and freeze

Original EEG

Figure 3.1: Comprehensive Layout of our Neural Network Structure. (NN: Neural Network)

PDO neural network (ODE solver Network): The ODE Solver Network

we employed is based on the network structure detailed in [66]. This network can be

conceptualized as one that seeks the inverse of an operator. In the discrete case, this

translates to finding the inverse of a given matrix—a task challenging for standard

neural networks. The neural network’s operation can be represented by the following

mapping:

M : η → Gη = L−1
η

Given the above mapping, the solution can be derived as:

u = Gηf

An essential precondition for above process is that the form of Lη is already deter-

mined. using η(x) and f(x) as input, and output u(x) as the solution of Lηu(x) =

f(x). The Lηu(x) we used in this paper is:

Lηu(x) = η(x)u′′(x) + u′(x) + u(x) (2.3)

η(t) generator Network: From examining Figure 3.1, we observe that in the

discrete case, the input f(x) and η(x) must maintain the same length. To meet this

requirement, we have devised a specialized neural network for generating η, which

we refer to as the η generator neural network, depicted in Figure 3.2. The initial

51

*

**

: Fully Connected Layer : Residual Connection : Dropout Layer : Bicubic Interpolation

* **

Figure 3.2: The layout of η generator NN

segment of this network structure comprises two residual blocks. Each block contains

a fully connected layer, designed to facilitate the learning of complex patterns within

the data. These blocks are then connected to another fully connected layer, serving

a crucial role in information compression by distilling the essential features from the

inputs.

Following this compression, the processed data is output as X. This output

undergoes normalization, with each value divided by its maximum to ensure all values

fall within the same scale. The normalized output is then scaled according to the

length of the input f(x), giving us Y . This Y then undergoes bicubic interpolation,

a process that adjusts its length to match that of the original input f(x), thus

producing Ŷ . The final operation ensures the output values don’t get too close to

zero, by subtracting Ŷ from its maximum value and adding 0.5. Across the network,

we consistently employ the Rectified Linear Unit (ReLU) as the activation function

and set a dropout rate of 0.2 to prevent overfitting.

52

3.2.2 Challenges and solutions

Learning to Solve the ODE: Learning to solve the ODE using a neural network

poses its own unique set of challenges. The network is required to learn to approxi-

mate the solution of the differential equation over an extensive range of inputs. This

task involves capturing the intricacies of complex, nonlinear dynamics. Moreover,

the inherent nature of differential equations implies that even small changes in input

or parameters can sometimes lead to substantial changes in the output. This can

render the learning problem ill-conditioned, adding further complexity to the task

[67].

In order to address these challenges, we employ a specific strategy during the

training phase of the network. We carefully adjust the ranges of the randomly

generated η(t) and f(x) to cover as wide a range of cases as possible. By doing so,

we enable the network to learn from a diverse set of scenarios, thereby increasing its

ability to generalize and respond to a wider range of inputs. This approach helps

mitigate the difficulties presented by the nonlinear and potentially unstable nature

of the problem at hand. The specifics of this method will be discussed in further

detail in subsequent sections.

To train the PDO-Net, we also use central difference method with periodical

boundary condition and let the integral of the output to be 1.

Generating η(t) with Neural Network: Generating η(t) with a Neural Net-

work presents a unique set of challenges. The principal task requires the network to

generate functions that can effectively serve as inputs for the ODE solver network. If

the distribution of functions that the η(t) generator network produces is not closely

aligned with the distribution of functions that the ODE solver network has been

trained on, the overall performance of the system could be significantly impaired

53

[68].

In addition to this, the selection of input values to this network is of impor-

tance. A straightforward approach, influenced by the idea of Generative Adversarial

Networks (GAN), might involve using random values as inputs. However, such a

methodology does not capture the time-dependent features intrinsic to specific EEG

signals, creating a potential disparity in the generated η(t).

To counteract these issues, we introduce an alternate strategy. In our proposed

scheme, the EEG signals themselves, denoted as f(x), serve as the input to our

network. This tactic, while seemingly unconventional, allows the network to learn

and reproduce the complex temporal dynamics embedded in the EEG signals. By

using f(x) as the input, we can ensure that the η(t) generated by our network not

only aligns more closely with the true distribution of functions, but also captures the

necessary time-dependent features present in real-world EEG signals.

Updating the η(t) Generator Using Classification Results: Updating the

η(t) Generator using classification results introduces a new set of challenges. The

process necessitates backpropagation through the ODE solver network, a procedure

that can be computationally expensive. Additionally, this step involves the intricate

task of defining an effective loss function. This function needs to skillfully balance

between the seemingly conflicting goals of accurate ODE solution and precise classi-

fication.

In response to these challenges, we propose a two-fold strategy. The first part of

our solution places emphasis on an initial ’offline’ training phase for the ODE solver

network. This phase allows the network to be adequately trained prior to updating

the parameters in the η(t) generator. The second aspect of our solution concerns the

parameter update process itself. During this process, the parameters within the ODE

solver network are ’frozen,’ effectively insulating them from the training of the η(t)

54

generator. This strategy helps to manage the backpropagation process, ultimately

reducing the computational burden and enhancing the stability of the overall system.

3.3 Experiments

3.3.1 Simulation

In this section, we will demonstrate our approach through simulation, providing

a more intuitive understanding of the transformed signals we generate. We pre-

train our ODE solver network to solve equation 2.3 and then freeze it, then we

simulate both η and EEG signals (f(x)), which are shown in Figure 3.3. Next,

we use the generated η and f(x) as input to the ODE solver network, we get the

transformed EEG (u(x)). In this process, the operation in ODE solver network can

be conceptualized as convolution in matrix form, which is a large diagonal matrix,

where the kernel represents the non-zero values on each row of the diagonal, being

applied (via left multiplication) to one-dimensional waveform data. In Figure 3.3,

the brighter regions can be understood as the non-zero portions of the matrix. A

narrower region indicates less smoothing. Consequently, from the narrower locations

corresponding to the left multiplication, we can observe that the transformed signal

retains more high-frequency components, implying that it preserves more noise.

3.3.2 Real-world dataset

We test our approach with two classifier EEGNet [69] and EEGNex [70] on two

benchmark dataset EEG MNIST and Error-related Negativity (ERN).

55

Figure 3.3: Simulated EEG and its transformation under a specific function η. The figure in the

upper right corner shows the heatmap of the large diagonal matrix, where the non-zero values on

each row are represented by the kernel.

3.3.2.1 EEG MNIST

The EEG MNIST dataset, assembled by David Vivancos, is an expansive open-

source collection of over 1.2 million brain signals, each lasting two seconds. Captured

using four commercial EEG devices, these signals are stimulated by the viewing

of digit images (0-9), in a style akin to the traditional MNIST dataset, with any

56

unrelated or noise signals represented as -1. An intriguing characteristic of this

dataset is the consistent phase synchrony exhibited across all channels for each class

of digit stimuli.

Our study is primarily focused on the data derived from the Emotiv EPOC

device, which records raw EEG signals at a sampling rate of 128Hz. Each digit image

prompts around 6,500 trials, each encompassing 256 time steps across 14 channels.

This device, along with the others used, captures signals from a range of 19 brain

locations as per the 10/20 system, resulting in a comprehensive understanding of

brain response patterns.

We’ve adopted common data preprocessing methodologies which involves remov-

ing noise events, applying a Butterworth lowpass filter with a cutoff frequency of

63Hz and a notch filter at 50Hz to all trials. We also trimmed the first 32 time steps

from each trial to mitigate sensor power-on noise. The EEG MNIST dataset, there-

fore, provides an unaltered and detailed perspective of brain activity in response to

digit stimuli, making it a critical asset for in-depth neural signal studies.

The accuracy outcomes using classifiers EEGNet and EEGNeX are depicted in

Tables 3.1 and 3.2. Implementing our framework results in a noticeable boost in

both accuracies.

Data Classifier Accuracy

EEG (bandpass) EEGNet[69] 16.89%

Transformed EEG (our method) EEGNet[69] 19.81%

Table 3.1: Accuracy comparison for EEG MNIST dataset using EEGNet as the classifier.

57

Data Classifier Accuracy

EEG (bandpass) EEGNeX[70] 22.10%

Transformed EEG (our method) EEGNeX[70] 22.42%

Table 3.2: Accuracy comparison for EEG MNIST dataset using EEGNeX as the classifier.

3.3.2.2 ERN dataset

The study at hand involves the ”P300-Speller” paradigm, a renowned Brain-

Computer Interface (BCI) application that utilizes Electroencephalography (EEG)

data and leverages the P300 response, which is evoked by rare and attention-demanding

stimuli on a computer screen. The paradigm operates by flashing screen items in

groups and in a random sequence, where the item with the most likely recognizable

typical target response is selected. This research focuses on identifying instances

when the selected item is not the intended one, a determination made by analyzing

the subject’s brain signals post-feedback.

The dataset being used in this investigation is a 2-class Error-Related Negativity

(ERN) data obtained from the BCI Challenge, hosted by Kaggle. This ERN feedback

is crucial, as it contributes significantly to the enhancement of the P300 speller

application’s performance. The dataset, which consists of data from 26 healthy

participants recorded via 56 passive Ag/AgCl EEG sensors, provides a rich source

of information for this study. The data was initially recorded at 600Hz but was

subsequently down-sampled to 128Hz and applied with a 1-40Hz notch filter for

in-depth analysis.

In this competition, participants are tasked to develop and submit an Error Po-

58

tential detection algorithm. The proposed algorithm should be capable of detecting

erroneous feedbacks in real-time and possess the ability to generalize across subjects,

also known as transfer learning. The overarching aim of this task is to enhance the

reliability and efficacy of BCIs by developing a sound error detection and correction

strategy.

Tables 3.3 and 3.4 present a comparison of accuracy using the same classifiers

(EEGNet and EEGNeX), both with and without the application of our framework.

It is evident that the accuracies improve after implementing our framework.

Data Classifier Accuracy

EEG (bandpass) EEGNet[69] 72.13%

Transformed EEG (our method) EEGNet[69] 76.65%

Table 3.3: Accuracy comparison for ERN dataset using EEGNet as the classifier.

Data Classifier Accuracy

EEG (bandpass) EEGNeX[70] 74.83%

Transformed EEG (our method) EEGNeX[70] 78.49%

Table 3.4: Accuracy comparison for ERN dataset using EEGNeX as the classifier.

3.4 Discussion

In our research, inspired by the principles of meta-learning pseudo-differential

operators using deep neural networks [66], we leverage a neural network as an Or-

59

dinary Differential Equations (ODE) solver. Central to our methodology is the

pseudo-random generation of the time-dependent coefficient η(t) and the forcing

function f(t), together creating diverse ODE instances. Employing the finite differ-

ence method, we determine the solution y(t) for each respective pair. After training

our neural network on these datasets, it effectively learns the interrelationship be-

tween η(t), f(t), and y(t). Consequently, the network can predict y(t) for any η(t)

and f(t) pair. This neural-based approach to ODE solving not only handles the

complexities within the ODE efficiently but also benefits from backpropagation for

error refinement. This process, in turn, refines our η(t) generator network, enhancing

the signal-to-noise ratio crucial for EEG signal processing and classification. Based

on our experiments conducted on real-world datasets, we observed a significant en-

hancement in accuracy.

60

4 A Hybrid Neural Network Structure

4.1 Introduction

EEGs are used in many health care institutions to monitor and record electrical

activity in the brain using electrodes placed on the scalp. Analysis of EEG recordings

is a crucial first step to making a clinical diagnosis of epilepsy, severity of anesthesia,

coma, encephalopathy, and brain death [71]. In addition, EEG can be used as input

for a brain-computer interface (BCI) system to control a device such as a cursor or

robotic limb [72]. Accurate and fast detection of EEG signals is crucial for not only

disease diagnosis but also ensuring the optimal performance of BCIs. Thus automatic

detection systems based on machine learning algorithms have been developed to

evaluate and classify EEG signals [73, 74, 75].

Due to the specific properties of EEG signals, such a classification task can be

more broadly described as non-stationary signal classification. Traditionally, in non-

stationary signal classification, the first step is to extract the useful features and

then use classifiers like Support Vector Machine(SVM), K-Nearest Neighbors(KNN),

Regression, and so on to differentiate classes [76, 77, 78, 79]. Many techniques have

been proposed for EEG signal classification. Hassanpour et al. [80] use modified

B-distribution to characterize low-frequency EEG patterns and apply singular value

decomposition (SVD) on the time-frequency distribution matrix to detect seizures in

61

newborns and obtain encouraging results. In [81], Tzallas et al. extract features using

Cohen’s class Time-Frequency Representation (TFR) and power spectrum density,

then use Artificial Neural Networks as the classifier to identify epileptic seizures in

three benchmark EEG datasets. Boashas et al. [82] use quadratic time-frequency

distributions (TFDs) with extended features and matrix decomposition with SVM

as the binary classifier to detect newborn EEG abnormalities. In [83], the authors

use wavelet energy and wavelet entropy as features and KNN as the classifier. In

[84], the authors propose exponential energy as a new feature, and combine it with

other commonly used entropy and energy features, then use SVM to classify epileptic

EEG signals.

(a) (b)

Figure 4.1: The convolution operation (a) on complex numbers, (b) on modulus (amplitude) only.

In the recent decade, it has been shown that methods based on deep learning

can yield better performance than conventional methods [85, 86, 87, 88, 57]. Most

of these methods utilize real-valued signals in the algorithms. In [85], the authors

use the single-sided amplitude spectrum as input to a CNN. In [57], the authors

concatenate real and imaginary parts of complex spectrum and use it as the input

of a CNN. However, in frequency domain, the signals are represented as complex

values. Such a complex representation contains the power of a specific wave rela-

tive to others (amplitude) and the alignment of different frequency components in

62

time (phase). Using only the amplitude information will lose the phase information,

which might be critical for EEG signals. Figure 4.1 illustrate the core idea of our

argument. In Figure 4.1a, we can see that these two convolution operations use the

same convolution kernel, and all the complex numbers have the same modulus, which

is
√
2; however, the convolution results are different. If we only use the modulus in

this convolution operation (See Figure 4.1b), we can only get one result, which is 4.

Suppose the phase is the only difference between two signals; using amplitude only

as the feature can not differentiate them properly.

We, therefore, propose an algorithm that can utilize the features hidden in the

phase information. To achieve this goal, we may train a real-valued convolutional

neural network whose inputs are the amplitude and the phase as two channels or the

real part and the imaginary part of the complex number as two channels. However,

the traditional convolution operation contains a linear combination of the channels.

It is unclear if such a linear combination is meaningful[52].

With these issues in mind, we believe that using the original complex values

of DFT as input is a better alternative. In [89], the authors also mentioned that

complex-valued neural networks might be suitable for extracting phase information.

Therefore, we exploit a complex-valued neural network for our case, more specifically

complex-valued convolutional neural network. In [90], a complex-valued convolution

neural network was introduced and compared with a real-valued convolutional neural

network on the classification tasks. In [91], complex-valued convolutional neural net-

work was applied to analyze steady-state visual evoked potential (SSVEP) dataset

and the results are very promising. Another notable paper is [92], where the au-

thors applied deep complex networks to audio-related tasks and achieved promising

results; this work also presented batch-normalization and complex weight initial-

ization strategies for complex-valued neural networks. In one of our experiments,

63

we observe that the performance is not improved if all the layers in the network are

complex-valued. The first possible reason is the complex-valued non-linear activation

function is task-specific; an inadequate selection of activation function may lead to

poor transmission of the information between layers[52, 93, 94]. The second possible

reason is that in the loss function of a complex-valued neural network, one usually

needs to calculate the ”distance” between complex numbers and real numbers, which

is not well-defined in mathematics.

Therefore, we develop an algorithm that integrates the real-valued and complex-

valued neural networks to overcome the difficulties mentioned above. Our approaches

builds on the network structures of San-Segundo et al. [85] and Ravi et al. [57]; both

of these two structure contains two convolutional layers for feature extraction and

fully connected layers for classification. We improve their neural network structures

by adding a crucial complex-valued convolutional layer at the beginning or changing

the very first real-valued convolutional layer into complex-valued, and immediately

taking the modulus as non-linear activation (See Section 4.2.1 and Section 4.3.2.3

for details). There are four main advantages of our network architecture: 1) The

complex-valued convolutional layer captures the features in the phase information of

complex-valued input; 2) we only need one universal complex-valued activation func-

tion, which is taking the modulus; 3) The difficulty in distance calculation between

complex numbers and real numbers in the loss function is avoided in our framework;

4) Our network uses about 50% fewer parameters compared with the structure in

[85]. Moreover, our framework can achieve higher classification accuracies than the

conventional feature selection method and the CNN in [85, 57] in both the experi-

ments using a benchmark dataset.

We apply the proposed method to the EEG signal classification problem with

discrete Fourier transform (DFT). We present qualitative results on several classifi-

64

cation tasks, including binary and multi-class classification on two simulated datasets

and two real-world dataset. The simulated datasets consist of synthetic signals of

our own design and signals generated based on well-known theories. The real-world

datasets are the Ralph-Andrzejak EEG dataset [95] and SSVEP dataset [74].

The rest of this paper is structured as follows: Section 2 contains the methodology

in this study, including a description of the discrete Fourier transform (DFT), the

framework of our neural network, the backpropagation algorithm, and some training

details. Section 3 describes the experiments and the results obtained in simulation

and a real-world dataset. Section 4 summaries this paper and discusses the limita-

tions of our method and our future works

The symbols and notations used in this paper are summarized in Table 4.1

R, C Sets of real, complex numbers

i Imaginary unit

z⊺, z∗, zH Transpose, conjugate, conjugate transpose of z

Re(z) Real part of z

abs(z), |z| Absolute value, modulus of z

Table 4.1: SYMBOLS AND NOTATIONS

4.2 Methodology

In this section, we present an overview of our methodology, including the frame-

work of our network, a description of discrete Fourier transform, the backpropagation

65

algorithm, and some training details.

4.2.1 Framework

The neural network frameworks analyzed in this study are based on adding a

complex-valued layer or changing a real-valued layer into complex-valued. Figure 4.2

and Figure 4.13 show our frameworks. Both of these two structures use complex-

valued spectrum as input and use complex-valued convolutional layer as first layer.

We believe this first complex-valued convolutional layer can extract the features in

the phase information in the spectrum.

Here, we introduce the details of the structure shows in Figure 4.2, because we use

this structure on the analysis of the simulated dataset. Details about the structure

in Figure 4.13 will be introduced in section 4.3.2.3. In the structure in Figure 4.2,

the first layer we use is a complex-valued convolutional layer. Immediately after

this layer, we take the modulus (see the part in the dotted line box in Figure 4.2),

making all the outputs real-valued. After this, we add two real-valued convolutional

layers and three fully connected layers with ReLu and max-pooling. Finally, we use

softmax as the last activation function and cross-entropy as the loss function.

Complex Conv

1×5×8

abs Conv+ReLu

1×5×16

Maxpooling Conv+ReLu

1×5×321×3

Flatten
Loss: Cross Entropy

Dense+ReLu Dense+ReLu Dense+Softmax

Figure 4.2: Our neural network structure.

66

4.2.2 Discrete Fourier Transform and Its Inverse Transform

We apply discrete Fourier transform (DFT) on the original EEG signals to obtain

their representations on the frequency domain and apply inverse discrete Fourier

transform (IDFT) to achieve the inverse transform. The formulas of DFT and IDFT

are shown below:

DFT : x̂(k) =
n∑
j=1

x(j)ω(j−1)(k−1)
n , k = 1 ... n (2.1)

IDFT : x(j) =
1

n

n∑
k=1

x̂(k)ω−(j−1)(k−1)
n , j = 1 ... n (2.2)

where x is the original signal of length n, x̂ is the Fourier transform of x of length

n, and ωn = e−2πi/n. This paper implements the DFT and IDFT using MATLAB

command fft() and ifft() . Because our original signals are all real-valued, their

DFTs are conjugate symmetric. We only keep the first half part of the DFTs as the

input to our neural network.

4.2.3 Backpropagation

As we can see from Figure 4.2, our framework contains a complex-valued convolu-

tional layer taking modulus as activation, and after this, all the layers are real-valued.

We use the Adam algorithm [96] with default settings to optimize the kernel and bias

in real-valued layers. To optimize the parameters in the complex-valued convolutional

layer, we also need the backpropagation algorithm in the complex value. The regular

complex derivative only applies to the analytic functions [93]; however, to obtain the

modulus need to evaluate the following the function:

f(Z) = |Z| = (Z∗Z)
1
2 (2.3)

67

which is not analytic. So in backpropagation, the derivative of f(Z) with respect to

Z can not be calculated with a regular complex derivative. In this case, we need to

adopt the Wirtinger derivative.

4.2.3.1 Wirtinger derivative

The following defines the Wirtinger derivatives:

Definition 4.2.1 Consider the complex plane C ≡ R2 = {(x, y) | x, y ∈ R}. The

two operators ∂
∂z

and ∂
∂z∗

are defined by:

∂

∂z
:=

1

2

[
∂

∂x
− i

∂

∂y

]
,

∂

∂z∗
:=

1

2

[
∂

∂x
+ i

∂

∂y

]
.

(2.4)

are referred to as the Wirtinger derivatives [58].

Wirtinger derivative holds standard rules for differentiation known from real-

valued analysis concerning the sum, product, and composition of two functions.

Then from equation (2.4), we can derive another essential property of Wirtinger

derivative:
∂z

∂z∗
= 0 ,

∂z∗

∂z
= 0,

which means we can treat z and z∗ as independent variables. Then based on the

first-order Taylor expansion for multivariable functions, we have:

df =
∂f

∂z
dz +

∂f

∂z∗
dz∗ +O(|dz|2) (2.5)

To further derive the backpropagation algorithm based on the Wirtinger deriva-

tive, we need the following Corollary.

68

Corollary 4.2.1 Derivatives of the conjugate function f ∗(z) satisfy the following

relationships:

∂f ∗(z)

∂z
=

(
∂f(z)

∂z∗

)∗
∂f ∗(z)

∂z∗
=

(
∂f(z)

∂z

)∗

. (2.6)

It is straightforward to derive equation (2.6) from Definition 4.2.1.

In our case, f(z) : C → R, which means f(z) = f ∗(z), equation (2.6) can be

further simplified to the following equations:

∂f(z)

∂z
=

(
∂f(z)

∂z∗

)∗
∂f(z)

∂z∗
=

(
∂f(z)

∂z

)∗

. (2.7)

From equations (2.5) and (2.7), by omitting the lower order term, we then have:

df =
∂f

∂z
dz +

∂f ∗

∂z∗
dz∗

=
∂f

∂z
dz +

(
∂f

∂z
dz

)∗

= 2Re

(
∂f

∂z
dz

) (2.8)

Based on the principles of the gradient descent method, we need to find dz that

maximize
∣∣2Re

(
∂f
∂z
dz

)∣∣. From Cauchy–Schwarz inequality, we know that dz should

have the same direction of
(
∂f
∂z

)∗
. So the direction of the steepest ascent is the

direction of (∂f
∂z
)∗(if f(z) : C → R, from Equation 2.7, we know that ∂f

∂z∗
= (∂f

∂z
)∗).

We can give the general form of the backpropagation algorithm for CVNN:

W (t+1) = W (t) − η

(
∂Loss(W (t))

∂W ∗

)⊺

(2.9)

where W (t) is the set of all the parameters that need to be learned in the complex-

valued layers at t’th iteration. η is the learning rate. We adopt automatic dif-

ferentiation in Tensorflow [61] to calculate the gradients for complex-valued layers

based on the Wirtinger derivative [61]. We use complex Adam [97] as the specific

backpropagation algorithm to optimize the parameters.

69

4.2.3.2 An example of the gradients calculation in complex-valued con-

volution layer

Suppose we have an input sequence data Z and a complex convolution kernel k

(See Figure 4.3). Zi is an arbitrary part of Z, and Z⊺
i k is the convolution result.

Note that here Z⊺
i k is not the Hermitian inner product of two complex-valued vectors.

After adding the bias term b, Yi can be defined as:

Yi = abs(Z⊺
i k + b) = [(Z⊺

i k + b)∗(Z⊺
i k + b)]

1
2 (2.10)

From the backpropagation for the real-valued CNN, we can get ∂Loss/∂Yi. Then

based on the Wirtinger derivative, we need to find ∂Loss/∂k∗ and ∂Loss/∂b∗. Based

on the chain rule, we have:

∂Loss

∂k∗
=

∑
i

∂Loss

∂Yi

∂Yi
∂k∗

=
1

2

∑
i

∂Loss

∂Yi
(Z⊺

i k + b)ZH
i (2.11)

Similarly,
∂Loss

∂b∗
=

∑
i

∂Loss

∂Yi

∂Yi
∂b∗

=
1

2

∑
i

∂Loss

∂Yi
(Z⊺

i k + b) (2.12)

Based on (2.11) and (2.12), we can finally find the proper gradients for k and b.

4.2.4 Other training details

For the real-valued weights and bias, we use Xaiver initialization [98]. For the

complex-valued weights and bias, we use the Rayleigh distribution to generate the

modulus of the complex number (r) and the Uniform distribution (U[−π,π]) to generate

the angle (θ). Then we can get the initialization for complex-valued parameters by

using the formula reiθ.

70

Real valued
Layer

Input Conv
Layer

Figure 4.3: An example of the forward propagation in the complex-valued convolutional layer. Zi:

a part of the input, k: complex-valued convolution kernel, b: complex-valued bias, Yi: the modulus

of the output of the complex-valued convolutional layer, Y : the vector whose i’th entry is Yi. Y is

the input to the next real-valued layer.

4.3 Experiments

In this section, we compare our method against two existing frameworks on the

classification task with two simulated datasets. We then apply our approach to a

real-world dataset and compare it with several previous works.

4.3.1 Simulation Study

In this study, we simulate EEG signals with two different methods to compare

the classification performance between our method and other methods. In the first

simulation, we adopt the first-order autoregression (AR(1)) model to generate the

amplitude and phase separately. We then use the inverse discrete Fourier transform

(IDFT) to obtain the signals on the time domain. The main difference among signals

in different classes in this simulation is the phase. We want to use this simulation to

prove that our algorithm can efficiently utilize the features in phase. In the second

71

simulation, we adopt classical theory and phase resetting theory to generate event-

related potential (ERP) with noise [99, 100], and then we design four classification

task (See Table 4.3). There are two reasons we perform the second simulation: 1)

the signals in the second simulation are closer to the real EEG signals, 2) ERP-signal

classification is crucial in analyzing human EEG activities and can be a promising

tool to study error detection and observational-learning mechanisms in performance

monitoring [101].

We mainly compare our method with real-valued CNN and the conventional fea-

ture selection method in these two classification tasks. For real-valued CNN, the

network structure we choose to compare with is the structure used in [85], which

contains two convolutional layers and three fully connected layers. To compare with

the feature selection method, we choose seven features, which are Shannon entropy

[102], Renyi entropy [103], log-energy entropy [103], approximate entropy [104], sam-

ple entropy [105, 106], fuzzy entropy [107, 108, 109], and exponential energy [84](See

Table 4.2 for detailed parameter settings.). In both simulations, we applied 6th order

Butterworth low pass filter to remove the frequencies over 60 Hz before extracting

the features. We try all 127 combinations of these seven features. For each combi-

nation of the features, we extract them from the pre-processed signal, the first and

second order difference of the pre-processed signal. So the number of features we

select is always a multiple of 3. The classifier we choose is the support vector ma-

chine(SVM) for the binary classification task and the error-correcting output codes

(ECOC) model using SVM binary learners[110, 111] for the multi-class classification

task.

In this simulation study, we use 5-fold cross-validation to obtain accuracy. To

alleviate the accuracy variation, we repeat the 5-fold cross-validation ten times for

each classification task to get the average and standard deviation of the accuracies.

72

Features Parameters Ref.

Renyi Entropy α = 0.5 –

Approximate Entropy m = 2, τ = 1, r = 0.2 ∗ sd [105]

Sample Entropy m = 2, τ = 1, r = 0.2 ∗ sd [105]

Fuzzy Entropy m = 3, τ = 3, r = 0.15 ∗ sd [112]

Table 4.2: Parameter details. α: order of Renyi entropy, m: embedding dimension, τ : time delay,

r: threshold value to determine similarity, sd: the standard deviation of the input time-series data.

The accuracies presented in this simulation study are based on the results with the

highest mean accuracy.

4.3.1.1 EEG signals generated with AR(1) model

In this section, we simulate the signals using AR(1) model because we assume that

neighboring amplitude and phase are not independent. The AR(1) model assumes

that the current value depends linearly on its immediately prior value and a stochastic

term, which complies with our assumptions. The formula for AR(1) model is shown

in Equation (3.13):

xt = β0 + β1xt−1 + ϵt (3.13)

where xt is the present value, xt−1 is the immediately prior value, β0 is a constant,

β1 is the model parameter, and ϵt is the white noise with zero mean and constant

variance.

We first simulate the phase information. We know that the phase θ ∈ [−π, π],

so we modify the Equation (3.13) to ensure the range of θ is limited. The modified

73

Time(s) Time(s)

(a) Original signal (b) Analytic signal (c) Rotated analytic signal (d) Rotated signal

Hilbert
transform Rotation

Time(s)imag

re
al

re
al

imag
Time(s)

Figure 4.4: The effect of β0: (a) the original signal, (b) the analytic signal obatined by applying

Hilbert transform on the original signal. (If we observe the analytic signal (b) in the direction of

the arrow, we can see the original signal in (a).) (c) the rotation of the analytic signal by β0. (d)

the rotated signal (If we observe the rotated analytic signal (c) in the direction of the arrow, we

can see the signal in (d).)

formula is shown in Equation (3.14):

θt = Rem(β0 + β1θt−1 + ϵt, π) (3.14)

where Rem(⋆, π) is a function used to obtain the remainder of ⋆ divided by π. Here,

β0 achieves an overall phase shift, and its effect can be understood as a rotation of

a signal under the Hilbert transform (See Figure 4.4). Suppose we have the Hilbert

transform of a real-valued signal. In that case, we can plot the analytic form of the

signal in three-dimensional Cartesian coordinates with the time axis, the real part

axis, and the imaginary part axis. Then we can rotate this analytic form of the signal

about the time axis(dashed line in Figure 4.4 (b), (c)) to achieve the effect of β0.

From equation (3.14), we can see that, to simulate the phase, we need to deter-

mine three parameters — β0, β1, and the variance of ϵt. Since β1 determines the

correlation between the θt and θt−1 and the variance of ϵt determines the intensity of

the noise, we use different β0 as the baseline to generate signals for different classes

(See the middle column in Figure 4.6). Because we want to compare our method

with other methods in multi-class classification, we generate signals for five classes

74

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

PDF of Chi-square Before After

Figure 4.5: Simulated single-sided amplitude spectrum: the left graph shows the probability

density function of the Chi-squared distribution, the middle graph is the single-sided amplitude

spectrum generated with the unmodified AR(1) model, and the right graph shows the single-sided

amplitude spectrum multiplied with the probability density function of the chi-squared distribution.

by setting β0 as 0,±0.5,±1 (corresponds to the different angle of rotation in Fig-

ure 4.4). To show the effect of β1 and the variance of ϵt for different classes, we let

β1 and V ar(ϵt) be ranged from 0.1 to 0.9 with an interval of 0.1. The accuracy table

in Figure 4.7 contains nine by nine values, and each value corresponds to a specific

pair of β1 and V ar(ϵt).

After we obtain the simulated phase, we use unmodified AR(1) model (3.13) with

β0 = 0, β1 = 0.5, V ar(ϵt) = 0.5 to randomly generate the amplitude for different

groups. We then multiplied the single-sided amplitude spectrum by the Chi-square

distribution to make our simulated signals have the main bandwidth appears in the

range of 0 to 70 Hz (see Figure 4.5), which is close to the bandwidth used by clinical

analysis of EEG [113]. Then we adopt IDFT to obtain the simulated signals on the

time domain using the simulated phase and amplitude (see Figure 4.6). Finally, the

simulated signals last for 1.5 seconds with a 200 Hz sampling frequency.

Figure 4.7 shows the classification results using this simulated dataset. As shown

in Figure 4.7a, it is not surprising that applying CNN on phase-only data can achieve

the highest accuracy no matter the value of β1 and V ar(ϵ). Because based on our

simulation, all the differences among different classes are reflected in the phase infor-

mation, and the random variation in amplitude can be viewed as noise. We also apply

75

IDFT

Single-sided Amplitude Spectrum Phase Time Domain

Frequency (Hz) Time (s)Frequency (Hz)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

IDFT

IDFT

IDFT

IDFT

Figure 4.6: The first column shows the single-sided amplitude spectrum generated using AR(1)

model with β0 = 0, β1 = 0.5, V ar(ϵt) = 0.5, the second column shows the simulated phase infor-

mation generated using modified AR(1) formula with β0 = 0,±0.5,±1, β1 = 0.5, V ar(ϵt) = 0.5 and

the last column shows the simulated signals generated from the IDFT of the amplitude spectrum

and phase.

CNN and the feature selection method to the simulated signals in the time domain

for comparison (see Figure 4.7b and 4.7c). Figure 4.7d shows the result obtained by

using our algorithm. Figure 4.8 shows the accuracy differences between our method

and the two methods for comparison. We can see our method outperforms other

methods in most cases. We also show the confusion matrices in the lower part of

Figure 4.8. These four confusion matrices are selected when the accuracy difference

achieves the largest(V ar(ϵ) = 0.8, β1 = 0.1 and V ar(ϵ) = 0.5, β1 = 0.9).

76

(a) CNN (phase)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Var()

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1

1

1

1

0.9999

1

1

1

1

1

1

1

0.9999

0.9997

0.9995

0.9998

0.9987

0.9999

0.9999

0.9999

0.9999

0.9991

0.998

0.998

0.9977

0.9958

0.9996

0.9996

0.9996

0.9992

0.9969

0.9946

0.9943

0.9889

0.989

0.9989

0.9988

0.9989

0.9982

0.9947

0.9885

0.9827

0.983

0.9746

0.9979

0.9984

0.998

0.9961

0.991

0.9812

0.9706

0.9654

0.9652

0.9968

0.9962

0.996

0.9932

0.9873

0.9759

0.9612

0.9562

0.9464

0.9946

0.9944

0.9937

0.9913

0.9849

0.9693

0.9538

0.9429

0.9374

0.9916

0.9919

0.9903

0.9866

0.98

0.9671

0.948

0.9378

0.9249
0.65

0.7

0.75

0.8

0.85

0.9

0.95

(b) CNN (time)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Var()

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.9881

0.9887

0.9911

0.9933

0.9932

0.995

0.9975

0.9982

0.9992

0.9718

0.9671

0.9793

0.9762

0.9808

0.9804

0.9883

0.9895

0.9952

0.9474

0.9438

0.96

0.9607

0.9633

0.9616

0.9692

0.9738

0.9798

0.9222

0.9287

0.9319

0.9362

0.9261

0.9351

0.9387

0.9438

0.9586

0.9046

0.906

0.9005

0.8969

0.9088

0.8953

0.9085

0.9156

0.9342

0.8756

0.8885

0.8958

0.8794

0.8765

0.8748

0.8741

0.8847

0.9005

0.8445

0.86

0.8555

0.8598

0.8435

0.8338

0.834

0.8502

0.8584

0.8131

0.8336

0.8301

0.8197

0.8108

0.8095

0.809

0.8155

0.8233

0.8074

0.8028

0.8131

0.7917

0.7942

0.7705

0.7728

0.7802

0.7904
0.65

0.7

0.75

0.8

0.85

0.9

0.95

(c) Feature selection method (time)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Var()

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.9998

0.9997

0.9943

0.9299

0.9245

0.9707

0.8745

0.9853

0.9228

0.9971

0.9977

0.983

0.9016

0.9002

0.9063

0.8419

0.9348

0.8736

0.9897

0.9913

0.9716

0.8679

0.905

0.8697

0.8517

0.8423

0.8115

0.9757

0.98

0.9597

0.8186

0.8905

0.8449

0.8352

0.7905

0.957

0.9665

0.946

0.8178

0.8524

0.8257

0.8092

0.9414

0.9475

0.9349

0.8313

0.8126

0.798

0.9252

0.9281

0.916

0.8404

0.7787

0.9054

0.9126

0.8998

0.8443

0.7714

0.8823

0.8892

0.8792

0.8446

0.777

0.7662

0.7652

0.734

0.7668

0.7374

0.7236

0.7588

0.7371

0.7232

0.6893

0.7387

0.7107

0.6975

0.6739

0.72

0.6886

0.6733

0.6598
0.65

0.7

0.75

0.8

0.85

0.9

0.95

(d) Our method (frequency)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Var()

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.9988

0.9979

0.9986

0.9985

0.9971

0.999

0.9995

0.9997

0.9995

0.9955

0.9968

0.9974

0.9959

0.9925

0.996

0.9967

0.9972

0.9963

0.9932

0.9939

0.9929

0.9924

0.9797

0.9906

0.9913

0.9896

0.9868

0.9846

0.9859

0.9848

0.9844

0.9752

0.9675

0.9804

0.979

0.9733

0.9774

0.9807

0.9837

0.9741

0.9551

0.9457

0.956

0.9499

0.9491

0.9682

0.9728

0.9716

0.9634

0.9442

0.9188

0.9219

0.9305

0.9268

0.963

0.9607

0.9533

0.9539

0.933

0.908

0.8831

0.8977

0.9014

0.9476

0.9522

0.9524

0.9385

0.9171

0.8833

0.8661

0.8811

0.8726

0.9407

0.9351

0.9331

0.9195

0.907

0.8732

0.8492

0.854

0.8509
0.65

0.7

0.75

0.8

0.85

0.9

0.95

Figure 4.7: (a) the accuracies of using CNN with phase information only, (b) the accuracies of

using the CNN with the input of simulated signals (time domain), (c) the accuracies of applying the

feature selection method, (d) the accuracies of using our method on simulated signals (frequency

domain).

4.3.1.2 EEG signals generated according to classical theory and phase

resetting theory

In this simulation, we generate EEG signals for the classification task according to

two main theories: classical theory and phase-resetting theory [99, 100]. The former

theory assumes that the ERP signal is buried in the ongoing EEG noise, while the

latter theory believes that the events can reset the phase of ongoing oscillations.

With each theory, we design two binary classification tasks, referred to as the ”Fixed

location” task and the ”Random location” task (see Table 4.3), to compare our

method and other methods.

77

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Var()

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.0107
0.0092
0.0075
0.0052
0.0039
0.004
0.002
0.0015
0.0003

0.0236
0.0296
0.0182
0.0196
0.0117
0.0156
0.0084
0.0077
0.001

0.0458
0.05

0.033
0.0317
0.0164
0.029
0.0221
0.0158
0.0069

0.0624
0.0571
0.053
0.0482
0.0492
0.0324
0.0417
0.0352
0.0147

0.0728
0.0747
0.0831
0.0772
0.0464
0.0504
0.0476
0.0343
0.0149

0.0927
0.0843
0.0758
0.084
0.0677
0.044
0.0478
0.0458
0.0263

0.1185
0.1007
0.0978
0.0941
0.0895
0.0743
0.0491
0.0475
0.043

0.1345
0.1186
0.1223
0.1188
0.1063
0.0738
0.0572
0.0656
0.0492

0.1332
0.1323
0.1199
0.1278
0.1128
0.1027
0.0764
0.0739
0.0605

0

0.05

0.1

0.15

0.2

Our method Our methodCNN on time domain Traditional method

(a) CNN on time domain vs Our method (b) Traditional method vs Our method

1 2 3 4 5
Predict

1

2

3

4

5

G
ro
un

dt
ru
th

0.096

0

0.102

0.002

0.094

0.092

0

0

0

0.107

0

0

0.115

0

0

0.724

0.149

0.002

0

0

0.174

0.789

0.796

0.908

0.849

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
Predict

1

2

3

4

5

G
ro
un

dt
ru
th

0.02

0

0.02

0

0.022

0.039

0

0

0

0.053

0

0

0.023

0

0

0.037

0

0

0

0.048

0.955

0.927

0.961

0.932

0.963

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
Predict

1

2

3

4

5

G
ro
un

dt
ru
th

0.032

0

0.028

0

0.031

0.663

0.076

0.142

0.032

0

0.119

0.694

0.062

0.125

0.042

0.152

0.06

0.645

0.103

0

0.035

0.17

0.123

0.928

0.74

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
Predict

1

2

3

4

5

G
ro
un

dt
ru
th

0.015

0

0.015

0

0.021

0.041

0

0

0

0.05

0

0

0.02

0

0

0.044

0.001

0

0

0.047

0.958

0.935

0.959

0.938

0.955

0

0.2

0.4

0.6

0.8

1

Figure 4.8: (a): the accuracy differences between our method and applying CNN on the time

domain. (b): the accuracy differences between our method and the traditional method. From (a),

we can see that when V ar(ϵ) = 0.8 and β1 = 0.1, our method can outperform CNN on the time

domain the most. As shown in (b), our method can outperform traditional method the most when

V ar(ϵ) = 0.5 and β1 = 0.9. The bottom figures are the confusion matrices when the accuracy

difference achieves the largest (labels 1 to 5 correspond to β0 = 0, 0.5, 1, −0.5, −1, respectively).

classical theory phase resetting theory

Fixed loc Fixed peak loc + noise vs noise only Fixed phase resetting loc + noise vs no phase resetting + noise

Random loc Random peak loc + noise vs noise only random phase resetting loc + noise vs no phase resetting + noise

Table 4.3: The four binary classification tasks we used to compare our approach and other meth-

ods.

In the simulation based on the classical theory, we first randomly generated 10,000

pieces of noise signals with the same power spectrum of human EEG signals using the

MATLAB code downloaded from [114]. Each piece of noise signal lasts for 2 seconds

with a sampling rate of 150 Hz. Then 5000 pieces of these noise signals were randomly

selected to add a peak signal. In the experiment of the ”Fixed location,” we added

78

5 Hz peak signal centered at the middle of each piece of noise (see Figure 4.9), and

in the experiment of the ”Random location,” we change the location of the center of

the peak to be uniformly random distribute on the interval of 0 to 2 seconds.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time(ms)

-3

-2

-1

0

1

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time(ms)

-3

-2

-1

0

1

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time(ms)

0

0.2

0.4

0.6

0.8

1

(a) Peak (b) Noise (c) Synthetic signal

Figure 4.9: An example of the peak, noise, and synthetic signal generated according to classical

theory. (a) Peak: the highest value of the peak signal shows exactly at 1s with the frequency of

5 Hz. (b) Noise: Randomly generated based on human EEG background signal spectrum. (c)

Synthetic signal: the weighted summation of peak signal and noise signal.

In the simulation guided by phase resetting theory, we randomly generate 5000

signals with phase resetting and 5000 signals without phase resetting. For the phase

resetting group, we generate simulated data by summing four sinusoids with frequen-

cies chosen randomly from the range 4 to 16 Hz as in [115]. In the experiment of

”Fixed position,” each of these four sinusoids contains phase resetting at the center

(see Figure 4.10). In the experiment of ”Random position,” each of these four sinu-

soids contains phase resetting at the same random position (uniformly distributed

on the interval of 0 to 2 seconds). Then we add randomly generated human EEG

background noise to all the signals.

We mainly compare our method with the approach that applies CNN on phase

information only, amplitude information only, and the original signal. We also sep-

arated the real and imaginary parts of the FFT and applied the exact structure of

CNN to each of them. Furthermore, we also apply CNN with the input of real and

imaginary parts as two channels. The result shows in Table 4.4. We can see that our

method can outperform others by comparing the accuracy.

79

Method classical theory Phase resetting(with noise)

Fixed

Traditional Features + classifier 0.6464±0.0010 0.6403±0.0012

Phase only 0.9758±0.0018 0.9410±0.0042

Amplitude only 0.9422±0.0023 0.8640±0.0113

Original signal 0.9222±0.0022 0.9025±0.0021

CNN Real part only 0.9801±0.0013 0.9113±0.0028

Imaginary part only 0.6349±0.0096 0.8553±0.0033

Real+Imaginary(two channels) 0.9593±0.0049 0.9305±0.0017

Our method 0.9953±0.0009 0.9679±0.0103

Random

Traditional Features + classifier 0.6504±0.0010 0.6807±0.0010

Phase only 0.9273±0.0029 0.9043±0.0022

Amplitude only 0.8923±0.0056 0.7629±0.0086

Original signal 0.8727±0.0071 0.5371±0.0049

CNN Real part only 0.9488±0.0020 0.8840±0.0070

Imaginary part only 0.9431±0.0027 0.8690±0.0067

Real+Imaginary(two channels) 0.9162±0.0113 0.7926±0.0067

Our method 0.9930±0.0012 0.9369±0.0144

Table 4.4: Accuracy comparison.

80

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time(ms)

-4

-3

-2

-1

0

1

2

3

4

Location of phase resetting

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time(ms)

-4

-3

-2

-1

0

1

2

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time(ms)

-8

-6

-4

-2

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time(ms)

-4

-3

-2

-1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time(ms)

-2

-1

0

1

2

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time(ms)

-6

-4

-2

0

2

4

6

(a) Simulated Signals (b) Noise (c) Synthetic signal

Figure 4.10: An example of the signals generated according to phase resetting theory. (a) an

example of simulated signals with (top) and without (bottom) phase resetting. (b) Randomly

generated noise based on human EEG background signal spectrum. (c) the synthetic signals, which

are the weighted summation of signals in (a) and (b).

4.3.2 Real-World Data

In this section, we analyze two real-world datasets; the first one is Ralph-Andrzejak

EEG dataset [95] and the second one is a public SSVEP dataset [74].

4.3.2.1 Ralph-Andrzejak EEG dataset

The first real-world dataset analyzed here is the Ralph-Andrzejak EEG dataset

[95], which contains five categories of signals named Z, O, F, N and S, respectively

(see Table 4.5). Each category contains 100 EEG records of about 23.6 seconds with

a sampling rate of 173.61 Hz (4097 values per record). Although there are 5 classes

in this dataset, the four most common classification tasks for this dataset are Z vs S

[84], S vs NS (NS=Z+O+F+N) [116, 117], Z vs N vs S [118] and Z vs F vs S [119].

To obtain a comparable result, we use the pre-processed dataset in [120, 121]. In

this dataset, the original signals of 23.6 seconds were divided into 23 non-overlapping

segments. Each segment contains 178 values(about 1 second). Totally, there are

5 × 100 × 23 = 11, 500 pieces of segmental signals. Figure 4.11 shows five example

81

Category Description

Z Healthy group, recorded with eye open

O Healthy group, recorded with eye closed

F Interictal activity, recorded in the epileptogenic zone

N Interictal activity, recorded at hippocampal location

S Seizure activity

Table 4.5: Detailed description of the 5 categories of EEG signals in the Ralph-Andrzejak EEG

dataset

DFT

Frequency(Hz)Time(s)

Original signal Single-sided amplitude spectrum

S

F

N

O

Z

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3
-2
-1
0
1

m
V

0 10 20 30 40 50 60 70 80

20
40
60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

m
V

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-2
-1
0
1

m
V

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

m
V

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1
0
1
2

m
V

0 10 20 30 40 50 60 70 80

20
40
60
80

0 10 20 30 40 50 60 70 80

20
40
60

0 10 20 30 40 50 60 70 80

20
40
60

0 10 20 30 40 50 60 70 80

20
40
60

DFT

DFT

DFT

DFT

Figure 4.11: Five example signals in Ralph-Andrzejak EEG dataset (left) and their single-sided

amplitude spectrum (right).

signals from each category and their corresponding single-sided amplitude spectrum.

To obtain the input to our neural network, we apply DFT on the original signal

and only keep the first half. The right row in Figure 4.11 shows the corresponding

single-sided amplitude spectrum. We also follow the training steps of the 5-fold

82

cross-validation mentioned in [85]. We randomly shuffle the data and divide them

into five groups equally. We use one out of five as the test set, and in the other

four groups, we choose one as the validation set and the other three as the training

set(See Figure 4.12). We then train our neural network with these three training

sets and use the validation set to choose the number of epochs yielding the highest

accuracy. After that, we retrain the neural network on the training sets and the

validation set together and use the number of epochs chosen in the previous step.

We then apply this final model to the test set to get the classification results. For one

round of the above steps, we can get five accuracies and we keep the average of them.

Then we repeat this process ten times to get the mean and standard deviation of

the accuracies for each classification task. The last row in table 4.6 shows the results

obtained from our method.

Training Validation Test

Figure 4.12: Evaluation grouping detail. In the 5-fold cross validation, each group is at least once

used as validation set.

4.3.2.2 Results and comparison

We can see from Table 4.6 that our method can reach the same accuracy (99.8%±0.13%)

on Z vs S and higher accuracy on Z vs N vs S (97.05±0.37%) and Z vs F vs S

(96.36±0.63%) compare with the previous results. Another main concern about our

method is the number of parameters and memory use. We summarize our neural

network framework’s parameters and memory use and the one used in [85] in Ta-

ble 4.7. Our model uses 52% fewer parameters and about 15% more memory than

83

the model used in [85]. The additional memory cost happens in the layer of taking

the modulus since this layer needs to store the modulus for the use of the next layer.

Methods Z vs S S vs NS Z vs N vs S Z vs F vs S

Neural Fuzzy Network[119] – – – 86.0±0.82%

Ensemble Classifier[118] – – 90.0±0.71% –

Local Binary Pattern[117] – 98.3±0.24% – –

Multi-Domain Feature Extraction[116] – 99.0±0.15% – –

Exponential energy + SVM[84] 99.5±0.20% – 91.7±0.65% 89.0±0.74%

Raw data + DNN [85] 99.0±0.29% 98.8±0.20% 89.2±0.73% 89.4±0.73%

only FFT + DNN [85] 99.8±0.13% 99.4±0.14% 96.3±0.45% 95.6±0.48%

All transform + DNN[85] 99.8±0.13% 99.5±0.13% 96.5±0.44% 95.7±0.48%

Our method 99.8±0.13% 98.8±0.23% 97.05±0.37% 96.36±0.63%

Table 4.6: Accuracies comparison with previous works

4.3.2.3 Steady-State Visual Evoked Potential (SSVEP) dataset

This dataset contains multiple 8-channel EEGs collected on the occipital area

from 10 healthy subjects under visual stimulations [74]. The EEGs were recored

using BioSemi ActiveTwo EEG system (Biosemi, Inc.) with sampling frequency of

2048 Hz. The visual stimuli were presented on an LCD monitor 60 cm in front of the

participant, and arranged as four rows and three columns of 6 cm × 6 cm squares (12

squares/stimuli in total), analogous to a phone keypad. These 12 squares (stimuli)

display different flicker frequencies ranging from 9.25 Hz to 14.25 Hz in the interval

of 0.5 Hz.

84

Model in [85] # Para Memory Our method # Para Memory

Input 1×128=0.128k Input 128×2=0.256k

C Conv 48 128×2×8=2.048k

ABS 128×8=1.024k

R Conv 192 128×32 = 4.096k R Conv 656 128×16=2.048k

Pool 42×32 = 1.344k Pool 42×16=0.672k

R Conv 5152 42×32 = 1.344k R Conv 2592 42×32=1.344k

Fc1 241792 128=0.128k Fc1 98688 256 = 0.256k

Fc2 4128 32=0.032k Fc2 16640 32 = 0.032k

Fc3 128 3=0.003k Fc3 256 3 = 0.003k

Total 251392 7.075k 118880 8.163k

Table 4.7: Parameter and memory comparison between our method and method in [85]. C Conv:

complex-valued convolutional layer, R Conv: real-valued convolutional layer, ABS: the layer of

taking the modulus (absolute value), Pool: max pooling layer, Fc: fully connected layer.

During the EEG acquisition, a stimulus program turns one square into red for 1

second as indication and after that the participant was asked to gaze the indicated

square for 4 seconds. The stimulus program will indicate every square only once in

random order. A complete process as above is called a block; for each participant,

the experiment includes 15 blocks.

We use all eight channels, and apply a 4th order Butterworth band-pass filter

with a lower cutoff frequency of 6 Hz and a higher cutoff frequency of 80 Hz on the

85

data, which are consistent with the settings in [74, 57, 122]. Then we divided each 4

s EEG epoch into 1 s non-overlapping segments following the instructions in [122].

Next, we apply FFT on each segment with frequency resolution fixed as 0.2930 and

extract the frequency components between 1 Hz and 50 Hz instead of the suggested

between 3 Hz and 35 Hz [74].

Our input is a Nch × Nfc complex-valued matrix, where Nch = 8 is the number

of channels, Nfc = 169 is the number of frequency components. We adopt the

similar CNN architecture mentioned in [57]. The difference is we change the first

convolution layer into complex-valued and let the kernel size equals to Nch×2 instead

of Nch × 1, and then take the absolute value as activation, then followed by a real-

valued convolution layer and a fully connected layer. Our network architecture is

shown in Figure 4.13. We use Adam algorithm[96] and complex Adam algorithm[93]

with default settings as optimization algorithms. We use a mini-batch size equals to

32 and same dropout rate in both dropout layers. The learning rate is multiplied 0.1

every 75 epochs. The method to obtain the number of training epochs is similar to the

method mentioned in 4.3.2.1; instead of using 60% and 20% of the data as training

and validation sets, we use 80% and 10% of the data as training and validation

sets; the optimal dropout rate is also determined in this step. The accuracies of our

method reported in Table 4.8 is based on the averages of ten-fold cross-validation.

Input size:

complex conv+abs real conv+ReLU FC

Output size:

BN BNDP DP

Figure 4.13: Our neural network structure for SSVEP dataset. FC: fully connected layer, BN:

batch normalization layer, DP: dropour layer

86

Subject CCA [57] combined-CCA [74] CCNN [57] Our method

S1 29.17 78.89 77.92 86.81

S2 26.25 71.67 54.58 70.56

S3 59.44 94.44 94.58 96.94

S4 80.28 99.44 98.47 97.08

S5 52.36 100.00 99.86 99.58

S6 87.22 99.44 99.72 99.81

S7 69.17 98.33 95.00 97.36

S8 96.67 100.00 99.03 99.03

S9 66.39 98.89 97.78 97.92

S10 65.28 86.67 88.89 91.53

Mean(±std) 63.22(±21.67) 92.78(±10.22) 90.58(±14.34) 93.66(±9.07)

Table 4.8: Classification accuracies comparison for subject S1 to S10. The accuracies obtained us-

ing combined-CCA are based on leave-one-out cross-validation. The accuracies using CCA, CCNN

and our method are based 10-fold cross-validation.

Form Table 4.8, we can see that our method has the highest average and the

lowest standard deviation of the accuracies across all ten subjects. We also compare

our accuracies with the results shown in the Figure 6 in paper[91]. We can see that

our average accuracy is almost the same and our accuracy for subject 2 is higher

than the method used in [91].

87

4.4 Discussion

In this paper, we proposed a novel neural network architecture that can capture

the phase information in signals by using a complex-valued convolutional layer at

the very beginning. In simulations, our framework significantly improves the clas-

sification performance compared with other methods; furthermore, our method can

reduce the number of parameters and improve the accuracy simultaneously in the

experiments for the real-world dataset. Besides, our framework can be used to build

a more efficient hybrid complex-valued neural network structure. It can also be ap-

plied to find proper complex-valued filters on the frequency domain without prior

knowledge, which is usually tricky. Currently, all the input signals to our neural

network are relatively short. In the future, we plan to improve our method such that

it can be applied to classify long-term EEG signals.

88

5 VCG Classification Based on Geometrical and

Kinematical Properties

5.1 Introduction

Myocardial infarction (MI), also known as a heart attack, happens when blood

flow to the heart muscle is reduced or blocked. According to an estimate from World

Health Organization (WHO) in 2019, 17.9 million people died from cardiovascular

diseases and 85% of these deaths were due to heart attack and stroke [123]. Therefore,

it is crucial to detect MI accurately and timely, so that medical intervention can begin

as early as possible.

In clinical diagnosis, an electrocardiogram (ECG), as a noninvasive and quick

test, is commonly used at the initial stage to detect and analyze cardiovascular dis-

ease. Among different types of ECGs, the standard 12-lead ECG is the most widely

adopted by cardiologists. The 12 leads are I, II, III, aVR, avL, aVF, V1, V2, V3,

V4, V5 and V6. Among these 12 leads, Lead III, aVR, aVL, and aVF are generated

from Lead I and II using a linear transformation, so the 12 lead ECG contains redun-

dant information [124]. Besides, the standard 12 lead ECG system does not contain

the posterior leads, which may cause difficulties in cardiac monitoring and diagno-

sis [125]. The Frank 3-lead VCG can solve the problems mentioned above. Due to

historical reasons, Frank 3-lead VCG is not used as commonly as the 12-lead ECG

89

in making clinical decisions [126]. Fortunately, by using specific transformation, the

12-lead ECG can be transformed into 3-lead VCG without losing essential knowledge

about the heart dynamics [127, 128], and vice versa[129, 130]. For the above reasons,

using VCG to detect and localize MI can be more reliable and efficient.

Several methods have already been exploited to detect MI using features in VCG

and ECG. Yang et al. [126] and Hafshejani et al. [131] combine VCG morphologi-

cal features and ECG features to classify MI and health control using decision tree

and neural networks. Methods based on the VCG features evaluated using wavelets

transform show promising results in detecting MI. In [124], Tripathy et al. pro-

posed using the complex wavelet sub-band L1 norm and entropy as features and

relevance vector machine as a classifier to detect MI. Khan et al. [125] proposed us-

ing the features captured by Fourier-Bessel series expansion based empirical wavelet

transform with singular value decomposition and using SVM as a classifier. Prab-

hakararao et al. [132] suggested using multiscale eigenfeatures from the stationary

wavelet transform subband matrices to detect posterior MI. In [133], Acharya et al.

extracted 12 nonlinear features from the discrete wavelet transform of 12-lead ECG

and adopted k-nearest neighbour to classify normal and MI ECG beats and localize

inferior posterior infarction.

During the past decade, advances in deep learning have shown strong potential

for the detection and localization of MI . In the work of Tripathy et al. [134], the

authors introduce fixed-order Fourier-Bessel series expansion based empirical wavelet

transform and use convolutional neural networks to localize MI. Karisik et al. [135]

proposed using long-short-term memory (LSTM) network and template adaptation

techniques to detect MI from VCG. Chuang et al. [136] exploited the VCG derived

from Lead-I ECG and using LSTM with spline representation to classify MI auto-

matically. However, models based on neural networks are not interpretable, although

90

they achieved state-of-art results in many areas [137]. Besides, for cardiologists, the

features extracted from the frequency domain are not valid for interpretation [131].

Therefore, we want to propose several new interpretable and observable features

based on VCG. Due to the VCG can be depicted as a movement track in a three-

dimensional Cartesian coordinate with time as the parameter, we can extract fea-

tures based on the VCG’s kinematical and geometrical properties, such as velocity,

acceleration, jolt, curvature and torsion. These properties are intuitive in describing

trajectory. We extract local and global features based on these properties, then com-

bine these newly proposed features and some features mentioned in previous work

[126, 138] to detect MI from healthy control; furthermore, we use these features to

classify anterior and inferior MI. The total number of features before feature selec-

tion is 95 and we give each feature an abbreviation (See Table 5.3, 5.4, 5.5). We test

our method on two public benchmark datasets: PTB [139] and PTB-XL [140]. In

the PTB dataset, compared with previous results obtained using interpretable fea-

tures, our approach can increase the classification accuracies from 94.43% to 96.04%

(sensitivity from 97.08% to 99.01%), and from 95.23% to 97.28% (sensitivity from

95.79% to 98.95%) concerning different data cleaning methods. In the PTB-XL

dataset, we demonstrate our approach in distinguishing between MI and health con-

trol (HC), and distinguishing between anterior MI (AMI) and inferior MI (IMI). Due

to PTB-XL dataset only contains ECG, we also compare our method under different

ECG to VCG transformations, such as Dower transform[127], Kors Quasi-Orthogonal

transform [141, 128], Kors transform [141, 128], QLSV transform [142], and PLSV

transform [142]. Our method can achieve accuracies of 94.02% with Kors transform

in distinguishing MI from HC, and 82.14% with PLSV transform in classifying AMI

and IMI.

The rest of this chapter is structured as follows: section 2 briefly introduces the

91

benchmark dataset we use and the details about the implementation of our methods.

Section 3 shows our experiments and results. Section 4 summaries this chapter and

discusses future work.

5.2 Materials and Methods

5.2.1 Datasets

We use two publicly available datasets: Physikalisch-Technische Bundesanstalt

(PTB) [139] and PTB-XL [140], to evaluate our method on the classification and

localization of myocardial infarction. Both datasets were downloaded from Physionet

[143].

The PTB dataset contains 549 ECG records digitized at 1000 Hz with 16-bit

resolution collected from 290 subjects. This dataset has 80 records from 52 healthy

volunteers and 368 records from 148 MI patients (Table 5.1a). Each record includes

the conventional 12-lead ECG along with a 3-lead Frank VCG.

Diagnostic class # of subjects # of records

Myocardial infarction 148 368

Healthy controls 52 80

Total 200 448

(a) Number of the subjects and records in PTB dataset

Superclass Description # of records

NORM Normal ECG 9528

MI Myocardial Infarction 5486

STTC ST/T Change 5250

CD Conduction Disturbance 4907

HYP Hypertrophy 2655

Total 27826

(b) Five superclasses in PTB-XL dataset

Table 5.1: Number of the subject and/or records in the datasets used in our experiment.

92

The PTB-XL dataset contains 21837 clinical ECG records from 18885 patients.

Each record lasts for 10 seconds and only includes a 12-lead ECG. This dataset

contains five superclasses (Table 5.1b) and provides two sampling frequency choices:

100 Hz and 500 Hz. In our experiment, we only use the ECG records sampled at 500

Hz in the superclasses of NORM and MI. Besides, each ECG record in this dataset

corresponds to one SCP-ECG statement, along with the likelihood information for

the diagnosis, which means one record can have more than one cardiac condition.

5.2.2 pre-processing

Raw VCG signals are usually contaminated by noise, DC offset, baseline drift,

and power line interference. For PTB dataset, we first remove the baseline drift

using a wavelet transform filter, then apply a high pass (0.05 Hz) and low pass (150

Hz) filter to remove the DC offset and artifacts. Next, we apply a Notch filter to

remove power line interference (50/60 Hz). Finally, we subtract the most frequent

amplitude to correct the isoline line. Next, we use ECGDeli [144] to delineate the

VCG signals. ECGDeli contains a voting algorithm that aims to use multi-channels

to refine the delineation process. In our case, we only use the three channels in VCG

(Vx, Vy, and Vz) to delineate the signals (See Diagram 5.1a).

We apply the same pre-processing procedures mentioned above for the ECG

records in the PTB-XL dataset. Next, because the PTB-XL dataset does not contain

Frank 3-lead VCG, we use linear transformation and LSTM network to obtain the

synthesized VCG. We then delineate the signals using ECGDeli [144] and extract

the features (see Figure 5.1b). More details about the transformation can be found

in section 5.3.2.1. Note that when using linear transformation to obtain VCG, we

apply isoline correction again to remove the shift of signals.

93

Raw VCG signals

Baseline removal
(wavelet transform filter)

High Low pass Filter
(0.05/150Hz)

Notch Filter
(50/60Hz)

Isoline correction*

Preprocessed VCG signals

Feature extraction*

(a)

Independent ECG lead

Baseline removal
(wavelet transform filter)

High Low pass Filter
(0.05/150Hz)

Notch Filter
(50/60Hz)

Linear
Transformation LSTM

Isoline correction*

Synthesized VCG Synthesized VCG

Feature extraction* Feature extraction*

Isoline correction*

(b)

Figure 5.1: (a) Diagram of the pre-processing steps for the PTB dataset. (b) Diagram of the

pre-processing steps for the PTB-XL dataset. We use the build-in function in ECGDeli[144] in the

steps ending with *.

5.2.3 VCG vector and octant features

Due to the three axes Vx, Vy, and Vz in VCG signals being perpendicular to each

other, the VCG signals can be drawn in a three-dimensional Cartesian coordinate

containing eight octants. In the 1980s, Laufberger published a series of papers [145,

146, 147, 148] indicating that the octant distribution of VCG signals has the potential

to detect myocardial infarction. In the recent decade, octant distributions have been

used as essential features in the analysis of MI [126, 131]. Figure 5.2 shows an

94

example of HC and MI VCG signals in the Cartesian coordinate where different

color means different octant. Table 5.2 shows the signs of the coordinates of the

points on VCG corresponding to different octants.

We can see from Figure 5.2 that the ratio of VCG components of HC and MI in

different octants are different, therefore, we use the eight ratios as features. More-

over, we can view the amplitudes of VCG in different octants following a specific

distribution, so we take the maximum, average and variance as features to describe

the distribution. Another two important features we use are the octant location

and magnitude of the T-vector which begins at the isoelectric point and ends at the

farthermost point in the T loops. The T-vector location is a discrete value and can

be any integer between 0 and 7; such variable is usually treated as categorical value.

However, based on the discover in [126], the T-vector location exhibits properties of

ordinals, so in our experiments, we treat T-vector as a numeric value. We totally

extract 34 features based on the VCG vectors and their octant distributions (See

Table 5.3).

5.2.4 Morphological and shape features

Morphological and shape features are analyzed and applied to localize heart dis-

ease [149, 138]. We use the same methods mentioned in [138] to calculate the perime-

ter and planar area of the projected QRS-loop (Figure 5.3), and the volume of the

QRS-loop (Figure 5.5). Besides, we use the path length of the original QRS-loop

and the ratio of the path length to the projected perimeter as two new features. We

define the projected height of the QRS-loop as the ratio of the volume to the planar

area. We also define the span of the QRS-loop as the maximum distance of the points

on the QRS-loop projected to the normal vector of the optimal plane. We also use

95

octant Vx Vy Vz

0 − − −

1 − − +

2 − + −

3 − + +

4 + − −

5 + − +

6 + + −

7 + + +

Table 5.2: The sign of Vx, Vy, Vz in the corresponding octant.

Heath Control(HC) Myocardial Infarction(MI)

Figure 5.2: Two example VCG signals in health control (HC) and myocardial infarction (MI)

groups. Different colors on the VCG are corresponding to different octants. The grey and scarlet

dotted line are the T and Q vector with the largest magnitude.

96

Feature description Abbrev. # of features

Octant features (8 octants)

Ratio (percentage of the components) R1 to R8 8

Max magnitude MaxMag1 to MaxMag8 8

Average magnitude AveMag1 to AveMag8 8

Variance of the magnitudes VarMag1 to VarMag8 8

Octant location of T-vector OctT 1

Vector feature Magnitude of T-vector MagT 1

Totol 34

Table 5.3: Details of octant features

the angle between T-vector and Q-vector as an essential feature. The definition of

Q-vector is similar to the T-vector; Q-vector begins at the isoelectric point and ends

at the farthermost point in the Q loops.

For the shape features, we use the areas under QRS wave, J wave and T wave.

Because each VCG contains three channels Vx,Vy and Vz, in each channel, there are

three areas, we totally have 9 shape features. (See Table 5.4)

The total number of morphological and shape features is 19.

97

0.4

0.2

Vx

-0.4
1.5

-0.2

01

0

Vy

V
z

0.5

0.2

0

0.4

-0.2
-0.5

0.6

Figure 5.3: The gray plane is the optimum plane calculated using the least square method. The

solid red line is a QRS complex selected from a recording in the health control group. The dotted

line is the projection of the QRS complex on the optimum plane. The darker area in the optimum

plane is the QRS complex’s projection area.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time(s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

m
V

QRS area

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time(s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

m
V

J area

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time(s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

m
V

T area

Q begin S end/J point S end/J point

J point + 80ms

T begin
T end

Figure 5.4: The grey color areas in this figure shows the areas under QRS wave, J wave and

T wave. The waveform in this figure is a part of (3.27s to 4.09s) the Vy lead generated from

”00070 hrm.dat” file using Kors tranformation matrix.

5.2.5 Geometric and kinematics features

Due to the VCG changes with time, in a 3-dimensional Cartesian coordinate

system, we can regard the trajectory of VCG as a parametrically-defined space curve

with time as the parameter. We can write this space curve and its vector form as

98

Feature description Abbrev. # of features

Morphological features

projected QRS-loop planar area PPA 1

projected QRS-loop perimeter PPL 1

QRS-loop path length/duration of QRS-loop PL 1

The ratio of PPL to PP PPL/PL 1

QRS-loop volume VOL 1

Height (the ratio of VOL to PPA) Height 1

Span (mean, min, max) MeanS, MinS, MaxS 3

The angle between T-vector and Q-vector AngTQ 1

Shape features

Area under QRS segment (Vx,Vy and Vz) AQRSx,AQRSy,AQRSz 3

Area under T segment (Vx,Vy and Vz) ATx,ATy,ATz 3

Area under J segment (Vx,Vy and Vz) AJx,AJy,AJz 3

Total 19

Table 5.4: Details of morphological and shape features

the following:

r(t) = (x, y, z) (2.1)

where t is time, x = x(t), y = y(t) and z = z(t) are independent and corresponding

to the 3 leads of VCG: Vx, Vy and Vz, respectively. In addition to Equation (2.1),

we can use the following curvature (κ) and torsion (τ) uniquely determine a space

99

-0.2

-0.1

0.4

0

1

V
z

0.1

0.2

Vy

0.2

Vx

0.5

0.3

0
0-0.2

-0.2

-0.1

0.4

0

1

V
z

0.1

0.2

Vy

0.2

Vx

0.5

0.3

0
0-0.2

Figure 5.5: This left figure shows an example VCG selected from HC groups and the shaded area

in right figure shows the minimum convex hull that contains this piece of VCG.

curve [150]:

κ =
||r′(t)× r′′(t)||

||r′(t)||3
=

√
(z′′y′ − y′′z′)2 + (x′′z′ − z′′x′)2 + (y′′x′ − x′′y′)2

(x′2 + y′2 + z′2)
3
2

(2.2)

τ =
(r′(t)× r′′(t)) · r′′′(t)

||r′(t)× r′′(t)||2
=
x′′′(y′z′′ − y′′z′) + y′′′(x′′z′ − x′z′′) + z′′′(x′y′′ − x′′y′)

(y′z′′ − y′′z′)2 + (x′′z′ − x′z′′)2 + (x′y′′ − x′′y′)2

(2.3)

where ′, ′′, and ′′′ represent the first, second, and third order derivatives. Curvature

depicts the deviation of the curve from being a straight line, and torsion measures

the intensity of a curve bending out of the osculating plane.

From Equation (2.2) and (2.3), we can find that the curvature and torsion can

be determined by the first, second, and third-order derivatives of r(t) with respect

to time t. Furthermore, first, second, and third-order derivatives have their kine-

matics meanings, which are velocity, acceleration, and jolt, respectively. Equa-

100

tions (2.4), (2.5) and (2.6) show the formulas:

|v| = |r′(t)| =
√
x′2 + y′2 + z′2 (2.4)

|a| = |r′′(t)| =
√
x′′2 + y′′2 + z′′2 (2.5)

|j| = |r′′′(t)| =
√
x′′′2 + y′′′2 + z′′′2 (2.6)

where |v|, |a| and |j| are the magnitudes of the velocity, acceleration and jolt of VCG,

respectively.

The newly proposed features are based on the curvature, torsion, velocity, accel-

eration, and jolt in the QRS complex. From equations (2) to (6), we can see that to

calculate κ, τ , |v|, |a|, and |j|, we only need to evaluate nine derivatives: x′, y′, z′,

x′′, y′′, z′′, x′′′, y′′′ and z′′′. Due to the VCG records being discrete data, we need to

use a numerical method to approximate these derivatives.

5.2.5.1 Approximation method

The regular numerical approximation of the derivatives based on the difference

method is unstable, even if the signals have high signal-to-noise ratio (SNR) [151].

Here we give an example to show the instability of using the central difference

method. We first simulate a piece of ECG signal using the code in [152] and use

the Savitzky-Golay filter to smooth the simulated signal; then we add white noise

(SNR = 60 dB) (See figure 5.6). We apply the central difference scheme on simu-

lated ECG signals to approximate the first, second and third-order derivatives (see

Figure 5.7a and 5.7b for the results). We can see from Figure 5.7b, even such noise

can result in the numerical differentiation method fails in the approximation of the

high order derivatives.

Therefore, we use the continuous wavelets transform(CWT) method to approxi-

101

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time(s)

1

1.5

2

Simulated ECG

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time(s)

1

1.5

2

Simulated ECG with noise (SNR = 60 db)

Figure 5.6: The process of producing an ECG with noise.. The left graph is the simulated ECG

waveform; the middle graph is the white noise; the right graph is the simulated ECG with noise

whose SNR is 60 dB and it is hard to find the difference between the noised ECG and the original

ECG by visual inspection.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.04

-0.02

0

0.02

0.04

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-4

-2

0

2

4
10

-3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time(s)

-5

0

5

10
-4

(a) Without noise (central difference)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.05

0

0.05

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.01

0

0.01

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time(s)

-5

0

5

10
-3

(b) With noise (central difference)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.04

-0.02

0

0.02

0.04

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-4

-2

0

2

10
-3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time(s)

-2

0

2

10
-4

(c) With noise (CWT)

Figure 5.7: Derivatives approximated using the central difference method and CWTmethod under

the different cases (with or without noise). From Figure 5.7a, we can see that the CWT method is

stable, and the approximated derivatives are closer to the ones obtained using the simulated ECG

without noise. The rows from top to bottom are first, second, and third-order derivatives.

102

mate the derivatives [153, 154]. The CWT method can be understood as the deriva-

tive of a signal smoothed by a specific kernel (smoothing function) [155]. Here, we

give the formula and smoothing function used in this chapter. Suppose we have a

signal y(x); the CWT of y(x) can be defined as:

y(x̄)w =

∫ +∞

−∞
y(x)

1√
s
ψ(
x− x̄

s
)dx,

where s is the dilation parameter, x̄ is the translation parameter and ψ(x) is the

mother wavelet. In this context, we let

ψ(x) = −dθ(x)
dx

, θ(x) = −e−x
2 4
√

2/π,

here we choose a modified gaussian function θ(x) as the smoothing function. θ(x)

has nonzero constant integral as:

K =

∫ +∞

−∞
θ(x)dx = − 4

√
2/π

Then, the derivative of y(x) can be approximated by:

dy(x)

dx
≈ y(x̄)w

Ks
3
2

We apply the CWT method on the first-order derivatives to approximate the second-

order derivatives. Similarly, we can approximate the third-order derivatives from

second-order derivatives.

Note that the dilation s (the scale of wavelet kernel) is important in obtaining

the proper derivative. We can find a detailed discussion about how to choose proper

dilation in [151]. Here, based on our experiment, we find that: a small dilation

can result in high noise in the approximated derivative; however, a large dilation

can dilute the local features (See Figure 5.8). We can see from equations (2.2)

and (2.3), the calculation of curvature and torsion use division leads to a noise-

sensitive operation. Figure 5.9 shows the effect of dilation on the approximation of

103

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.2
0

0.2
0.4
0.6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.4
-0.2
0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.2
0

0.2
0.4
0.6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.4
-0.2
0

0.2
0.4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.5

0

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2

-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.2
0

0.2
0.4
0.6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.1

-0.05

0

0.05

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.05

0

0.05

Figure 5.8: The approximated first, second and third-derivative of the 3-lead VCG signals, respec-

tively (dilation = 3,6,16). When the dilation is 3, the third-order derivatives contain more noise.

When the dilation is 16, the third order derivatives are overly smoothed, which results in losing

local features.

0 0.01 0.02 0.03 0.04 0.05 0.06

0

5

10

3
6
16

Wavelet kernel scale

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

3
6
16

Wavelet kernel scale

Curvature Torsion

Figure 5.9: Curvature and torsion of an example QRS complex under different dilation.

curvatures and torsions. Our experiments found that the dilation should be chosen

as an integer number around 8.

5.2.5.2 Features extraction

In our method, we only consider the geometric and kinematics features in each

QRS-complex because the noise severely affects the feature extraction on P and T

loop. Because the features we want to extract contain local features that can not

be directly used in the classification algorithm, so we have to first summarize them.

We can categorize the features we extracted in this section into two categories: ”per

record” and ”on every QRS complex”; ”per record” means the values are collected

104

from all QRS complex, ”on every QRS complex” means the values are collected

on each QRS complex. Take the curvature features as an example: ”per record”

features include sum, standard deviation, maximum, average and variance, which are

calculated from the values from all QRS complex; ”on every QRS complex” features

include average of the maximum, average of the average and standard deviation of

the average, which are first calculated the maximum and the average on each QRS

complex and then based on these value, we further calculate average and standard

deviation. Torsion features are similar to curvature features, except of two features

need to evaluate the absolute value. Due to torsion can be negative or non-negative,

we take the absolute value of it and calculate the sum and standard deviation of them

per record. We also extract quantiles of the curvature and torsion per record for the

cumulative probability are 0.1 to 0.9 with interval equals to 0.1 (See Table 5.5).

5.2.6 Variable selection

The total number of extracted features is 95. We use RliefF [156] to reduce

the dimension of the variables. RliefF is a feature selection algorithm based on

the filter-method approach and is sensitive to feature interactions. RliefF algorithm

first uses the k-nearest neighborhood (KNN) to find the k-nearest observations of

a randomly selected observation, then penalizes the predictors that give different

values to neighbors of the same class and rewards the predictors that give different

values to neighbors of different classes. There are three main parameters in the RliefF

algorithm — m (the number of iterations), k (the number of nearest neighbors), and

τ (the relevance threshold). Because our dataset is relatively small, we set m as the

number of observations [157]. The parameter k is used to calculate the nearest k

hits and k misses, and it is a user-defined parameter that controls the locality of the

105

Feature description Abbrev. # of features

Curvature features

Sum of the curvatures per record SumCur 1

Standard deviation of the curvatures per record SdCur 1

Average of the maximum curvatures on every QRS complex AveMaxCur 1

Average of the average curvatures on every QRS complex AveMeanCur 1

Standard deviation of the averages curvatures on every QRS complex SdMeanCur 1

Maximum curvature per record MaxCur 1

Average curvature per record AveCur 1

Variance of all curvatures per record VarCur 1

10th to 90th quantile of curvatures per record CurQ1 to CurQ9 9

Torsion features

Sum of the torsions per record SumTor 1

Standard deviation of the torsions per record SdTor 1

Sum of the absolute value of torsion per record SumAbsTor 1

Standard deviation of the absolute value of torsion per record SdAbsTor 1

Average of the maximum torsions on every QRS complex AveMaxTor 1

Average of the average torsions on every QRS complex AveQRSTor 1

Standard deviation of the average torsions on every QRS complex SdQRSTor 1

Maximum torsion per record MaxTor 1

Average torsion per record AveTor 1

Variance of all torsions per record VarTor 1

10th to 90th quantile of Torsions per record TorQ1 to TorQ9 9

Kinematics features

The maximum of first derivative per record MaxSpeed 1

The average of the maximum first derivatives on every QRS complex AveMaxSpeed 1

The maximum of second derivative per record MaxAcc 1

The average of the maximum second derivatives on every QRS complex AveMaxAcc 1

The maximum of third derivative per record MaxJolt 1

The average of the maximum third derivatives on every QRS complex AveMaxJolt 1

Total 42

Table 5.5: Details of curvature, torsion and kinematics features

estimates [156]. In our experiment, we set k as the integer equals to the round down

of 15% of the total number of observations. After we set m and k, we can perform

106

RliefF and obtain a weight for each predictor. The weights can be either positive

or non-positive. The features with positive weights are considered relevant features,

and the larger the feature’s weight, the greater discriminating power it contains.

However, not all the features with positive weight should be accepted [158], so we

need to define the relevance threshold τ such that any features with a weight larger

than this threshold should be selected. In the original paper on the theoretical

analysis of the Relief method [159], a suggested range of τ is given by:

0 < τ ≤ 1√
mα

where α is the probability of accepting an irrelevant feature as relevant. In practice,

it is also suggested to choose some number of features instead of choosing a τ [158].

In our experiment, we keep all the features with a weight larger than 15% of the

largest weight.

5.3 Experiments and Results

5.3.1 Experiments on the PTB dataset

We perform two classification tasks based on the PTB dataset. In the first task,

we keep all 448 ECG records (MI: 368 and HC: 80) (See Table 5.1a) and perform

the classification between HC and MI. To compare our results against the results in

the literature [160], we adopt 10-fold cross-validation. In this experiment, we use

a support vector machine (SVM) with the radial basis function (RBF) kernel as a

classifier. In the second experiment, we follow the data filtering method mentioned in

[138]; we only keep the ECG records collected within one week after the MI happened

and then further separate the MI records into anterior-MI and inferior-MI. In this

experiment, we perform the multi-class classification among the individuals with HC,

107

anterior-MI and inferior-MI. To compare with the result in [138], we adopt leave-one-

out cross-validation and build two binary classifiers using SVM (with RBF kernel):

the first classifier is used to classify between HC and MI, and the second classifier

is used to classify between anterior-MI and inferior-MI. For individuals with more

than one record, we first extract features from each heartbeat (R-R interval) and

then combine them.

localization # of subjects # of ECG records

Inferior 23 43

Infero-lateral 17 25

Infero-postero-lateral 6 10

Total 46 78

Anterior 14 21

Antero-septal 24 41

Antero-lateral 10 17

Antero-septo-lateral 1 2

Total 49 81

Table 5.6: Details of PTB dataset

5.3.1.1 Results and discussions

The accuracies comparison with [160] is shown in Table 5.7, which is the average

accuracy of 100 times repeat experiments using 10 percent as the test set and 90

percent as the training set. To compare with the results in [138], we adopted Leave-

one-out cross-validation (Table 5.9a and 5.9b).

108

MI HC Total

[160] 97.08(2.88) 82.50(15.39) 94.43(3.00)

Our method 99.14(0.34) 84.95(1.53) 96.61(0.40)

Table 5.7: Results comparison with [160] (HC vs MI).

Accuracy Sensitivity Specificity

[138] 0.9523 0.9579 0.9423

Our method 0.9728 0.9895 0.9423

Table 5.8: Results comparison (per patient) with [138] (HC vs MI). The results are based on

leave-one-out cross-validation.

HC AMI IMI Total

HC 49(49) 0(1) 3(2) 52

AMI 2(0) 44(48) 3(1) 49

IMI 2(1) 5(6) 39(39) 46

(a) Contingency table: compared with [138](per pa-

tient) HC vs AMI vs IMI. Our results are shown in the

parenthesis.

HC AMI IMI

Sensitivity 0.9423(0.9423) 0.8980(0.9796) 0.8478(0.8478)

Specificity 0.9579(0.9895) 0.9490(0.9286) 0.9406(0.9703)

Accuracy 0.8980(0.9252) 0.8980(0.9252) 0.8980(0.9252)

(b) The comparison (per patient) of sensitiv-

ity, specificity and accuracy with [138]. Our

results are shown in the parenthesis.

Table 5.9: Results comparison (per patient) with [138] (HC vs AMI vs IMI)

Here, we only give the feature analysis based on the second experiment; because

in this experiment, the classification is for individuals and only the ECGs obtained

within the first week after MI was selected, which makes the extracted features be

more representative. Figure 5.10 shows the 15 selected features to classify MI and

HC. We can see that the weight of T vector Magnitude is significantly larger than

109

the weights of other selected features, which is consistent with the previous results in

[126]; we can also see that our newly discovered features AveMaxSpeed, AveMaxTor,

MaxTor and AveMaxJolt play important roles in the classification. Figure 5.11 shows

the 35 selected features to classify Anterior MI and Inferior MI. We can see that

our newly discovered feauters: MaxCur, TorQ7, AveMaxCur, SumCur, VarTor and

MaxJolt are participated into the classification.
Im

p
o

rt
a

n
c
e

 w
e

ig
h

t

Figure 5.10: 15 selected features to classify between MI and HC. The bold abbreviations show

our newly proposed features.

5.3.2 Experiments on PTB-XL dataset

In this dataset, we perform the classification task on differentiating between nor-

mal and myocardial infarction ECG. For normal ECG records, we only keep the ones

with the SCP-ECG statements showing ”NORM” and for MI ECG record, we only

keep the records whose subclasses belongs to ”AMI”, ”IMI”, ”LMI” and ”PMI”.

For both ”NORM” and ”MI”, we only keep the dataset with the 100.0 likelihood.

Note that some records are belonged to different subclasses. As long as the record

shows likelihood of 100.0 in one of these subclasses, we keep it. Next we filter out all

110

Im
p

o
rt

a
n

c
e

 w
e

ig
h

t

Figure 5.11: 35 selected features to further classify AMI and IMI. The bold abbreviations show

our newly proposed features.

the records that are not validated by human. Finally, there are 6004 normal ECG

records come from 5746 patients and 1754 MI ECG records come from 1563 patients

left. See Table 5.10 for more details about the distribution of gender and age in the

selected records.

of records # of patients Gender Age

NORM 6004 5746 M:3014(52.5%) F:2732(47.5%) 59.73(±16.79)

MI 1754 1563 M:789(50.5%) F:774(49.5%) 59.04(±17.71)

All 7758 7309 M:3803(52.0%) F:3506(48.0%) 59.58(±16.99)

Table 5.10: Details of PTB XL dataset after filter

5.3.2.1 ECG to VCG Transformation

Due to this dataset does not provide VCG leads, we need to use transformation

methods to obtain 3-lead VCG from 12-lead ECG. There are linear and non-linear

111

transformation methods. Most linear methods are based on applying the linear

transformation on the independent eight leads (I, II and V1 to V6) and can be

described in the following form:

V = WtE (3.7)

where V represents the transformed VCG signal whose rows are corresponding to Vx,

Vy, Vz lead,Wt is the transformation matrix and E represents the ECG signal whose

rows are formed by independent ECG leads. Nonlinear transformation methods

include using artificial neural network to synthesize VCG signals from leads I, II and

V2 [161] and using long-short-term memory to generate VCG signals from single lead

ECG (I lead) [136].

In our experiments, we test the effect of both linear and nonlinear transformations

on our classification task. In linear transformation, we adopt five transformation

matrices [162], which are inverse Dower [127], Kors Quasi-Orthogonal [141, 128],

Kors [141, 128], QLSV [142] and PLSV [142] (see Appendix for the matrices). Inverse

Dower matrix is the pseudoinversion of the Dower matrix for deriving ECG from VCG

[130, 127]. The idea of Kors Quasi-Orthogonal method is choosing the ECG lead

which shows the highest median correlation with each VCG lead and then adjust the

amplitude of selected ECG lead [141]. The matrix of Kors method was derived from

the regression on the QRS complex using multivariate regression [128]. PLSV and

QLSV are based on least square value (LSV) optimization and focus on the recovery

of P and Q loop respectively [142].

In nonlinear transformation, we train a lstm network using PTB dataset. Our

neural network consists of two LSTM layers with 50 hidden units each and one fully-

connected layer. The input is the eight independent leads and the output is the

3 leads VCG. We fix the input and output sequence length to 5000 by first down-

112

Figure 5.12: The distributions of RMSE for different transformation methods.

sampling the ECG and VCG signals from 1000 Hz to 500 Hz, and then randomly

cutting the signals into the pieces of 10 seconds with overlaps. To prevent over-

fitting, we add two dropout layers with 0.3 dropout rate: the first one is between the

two LSTM layers and the second one is between the LSTM layer and fully-connected

layer. We use Adam as optimizer, and set mini-batch size as 128. We randomly

keep 20% data as test set and use the other 80% data as training set to obtain the

optimal number of epoches. Then we use whole PTB dataset as training set and use

the obtained number of epoches to train our final LSTM network. We then use this

network to obtain 3-lead VCGs from the 12-lead ECG in PTB-XL dataset.

To compare the performances of different transfromation methods, we calculate

the root mean square error (RMSE) of applying all the methods on the test set

mentioned above. Figure 5.12 shows the histograms of the RMSEs. We can see

that the transformation using LSTM and Dower matrix have the lowest and highest

RMSE respectively.

We plot three representative reconstructed VCG signals (See Figure 5.13). These

three VCG signals are generated using LSTM network. We select the VCGs whose

average RMSE are the lowest, the medium and the highest among test set in LSTM

113

network.

0 1000 2000 3000 4000 5000

0
0.2
0.4
0.6

Minimum RMSE

Original
Generated

0 1000 2000 3000 4000 5000

0

0.5

1
Median RMSE

0 1000 2000 3000 4000 5000

0

1

2
Maximum RMSE

0 1000 2000 3000 4000 5000
0

0.1
0.2
0.3

0 1000 2000 3000 4000 5000
-0.3
-0.2
-0.1

0
0.1

0 1000 2000 3000 4000 5000

0

1

2

0 1000 2000 3000 4000 5000

-0.2
0

0.2
0.4
0.6

0 1000 2000 3000 4000 5000

0

0.2

0.4

0 1000 2000 3000 4000 5000

0

1

2

Figure 5.13: This figure shows the reconstruction from ECG to VCG using LSTM network.

The left column shows an example that it has the lowest RMSE. The middle column shows the

reconstruction with median RMSE and the right column shows the reconstruction with highest

RMSE. These three examples come from test set.

We use error-correcting output codes (ECOC) [163] model using SVM binary

learners to classify these three groups.

5.3.2.2 Results and discussions

We also use RliefF to select the variables for this experiment. Table 5.11 shows

the best average accuracies for each transformation method under 100 times 10-

fold cross validation. We can see that our results show lower classification accuracy

compared with the accuracies obtained for PTB dataset (Table 5.7 and Table 5.9a).

There are two main reasons to be concerned: firstly the proportion of the MI in

the selected dataset is about 22.6%; such imbalanced dataset can skew the machine

learning algorithm towards the majority. Secondly, the 12-lead ECG lacks the lead

attached to the back; our newly proposed features may be sensitive to the lack of

back lead, although some papers [127, 128] mention that the 3-lead VCG synthesized

from 12-lead ECG will not lose significant diagnostic information. We can also find

114

HC vs MI

Method Accuracy Sensitivity Specificity

Kors QO 0.9348±0.0014 0.9634±0.0011 0.8149±0.0052

Kors 0.9402±0.0013 0.9684±0.0013 0.8217±0.0044

ID 0.9386±0.0014 0.9674±0.0011 0.8178±0.0046

QLSV 0.9373±0.0012 0.9661±0.0011 0.8162±0.0048

PLSV 0.9391±0.0012 0.9647±0.0010 0.8316±0.0043

LSTM 0.9353±0.0014 0.9637±0.0014 0.8157±0.0040

that by using our features, not the transformation based on LSTM (with minimum

RMSE) shows the best performance, the best performance happens when we use

PLSV transformation.

5.4 Conclusions

In this study, we combine our newly proposed features, based on differential ge-

ometry to capture intrinsic properties, with features used in previous works to classify

and localize myocardial infarction. Experimental results show that our method has

an improvement in both accuracy and sensitivity compared to previous methods.

We also demonstrate our method on the VCG signals synthesized from 12-lead ECG

using different transformation methods. In our future work, we aim to develop a

more efficient method to better summarize the local features, especially the local

information extracted from the curvature and torsion.

115

AMI vs IMI

Method Accuracy Sensitivity Specificity

Kors QO 0.7791±0.0060 0.5403±0.0131 0.8935±0.0066

Kors 0.7847±0.0062 0.5773±0.0129 0.8840±0.0062

ID 0.8149±0.0057 0.6339±0.0123 0.9015±0.0059

QLSV 0.7971±0.0060 0.6168±0.0133 0.8835±0.0064

PLSV 0.8214±0.0060 0.6330±0.0121 0.9117±0.0073

LSTM 0.8044±0.0058 0.5922±0.0138 0.9026±0.0057

Table 5.11: Classification performances of the proposed method on PTB-XL dataset. The mean

and standard deviation of accuracies, sensitivities and specificities. ”Kors QO”: Kors Quasi-

Orthogonal, ”ID”: inverse Dower

116

Bibliography

[1] George EP Box et al. Time Series Analysis: Forecasting and Control. John

Wiley & Sons, 2015.

[2] Peter J Brockwell and Richard A Davis. Introduction to Time Series and

Forecasting. Springer, 2002.

[3] Robert H Shumway and David S Stoffer. Time Series Analysis and Its Appli-

cations: With R Examples. Springer, 2006.

[4] M.B. Priestley. Spectral Analysis and Time Series. Academic press, 1981.

[5] Wayne A Fuller. Introduction to Statistical Time Series. John Wiley & Sons,

1996.

[6] Petre Stoica and Randolph Moses. Spectral Analysis of Signals. Prentice Hall,

2005.

[7] Leif Sörnmo and Pablo Laguna. Bioelectrical Signal Processing in Cardiac and

Neurological Applications. Elsevier, 2005.

[8] Hans Berger. “Über das Elektrenkephalogramm des Menschen”. In: Archiv

für Psychiatrie und Nervenkrankheiten 87.1 (1929), pp. 527–570.

[9] Michael X Cohen. Analyzing Neural Time Series Data: Theory and Practice.

MIT Press, 2014.

117

[10] Paul L Nunez and Ramesh Srinivasan. Electric Fields of the Brain: The Neu-

rophysics of EEG. Oxford University Press, 2006.

[11] Steven J Luck. An Introduction to the Event-Related Potential Technique.

MIT Press, 2014.

[12] Ernst Niedermeyer and Fernando Lopes da Silva, eds. Electroencephalography:

Basic Principles, Clinical Applications, and Related Fields. 5th ed. Lippincott

Williams & Wilkins, 2005.

[13] Sylvain Baillet, John C Mosher, and Richard M Leahy. “Electromagnetic

brain mapping”. In: IEEE Signal Processing Magazine 18.6 (2001), pp. 14–

30.

[14] Cornelis J Stam and Elisabeth CW van Straaten. “Modern network science

of neurological disorders”. In: Nature Reviews Neuroscience 13.10 (2012),

pp. 683–695.

[15] Roberta Grech et al. “Review on solving the inverse problem in EEG source

analysis”. In: Journal of Neuroengineering and Rehabilitation 5.1 (2008), pp. 1–

33.

[16] György Buzsáki and Andreas Draguhn. “Neuronal oscillations in cortical net-

works”. In: Science 304.5679 (2004), pp. 1926–1929.

[17] Wolfgang Klimesch. “EEG alpha and theta oscillations reflect cognitive and

memory performance: a review and analysis”. In: Brain Research Reviews

29.2-3 (1999), pp. 169–195.

[18] Jonathan R Wolpaw et al. “Brain-computer interfaces for communication and

control”. In: Clinical Neurophysiology 113.6 (2002), pp. 767–791.

118

[19] Niels Birbaumer and Leonardo G Cohen. “Brain-computer interfaces: com-

munication and restoration of movement in paralysis”. In: The Journal of

Physiology 579.3 (2007), pp. 621–636.

[20] John H Gruzelier. “EEG-neurofeedback for optimising performance. I: A re-

view of cognitive and affective outcome in healthy participants”. In: Neuro-

science & Biobehavioral Reviews 44 (2014), pp. 124–141.

[21] René J Huster et al. “Methods for simultaneous EEG-fMRI: an introductory

review”. In: Journal of Neuroscience 32.18 (2012), pp. 6053–6060.

[22] Scott Makeig et al. “Mining event-related brain dynamics”. In: Trends in

Cognitive Sciences 8.5 (2004), pp. 204–210.

[23] Yannick Roy et al. “Deep learning-based electroencephalography analysis: a

systematic review”. In: Journal of Neural Engineering 16.5 (2019), p. 051001.

[24] Robin Tibor Schirrmeister et al. “Deep learning with convolutional neural

networks for EEG decoding and visualization”. In: Human Brain Mapping

38.11 (2017), pp. 5391–5420.

[25] Pouya Bashivan, Irina Rish, and Steve Heisig. “Learning Representations

from EEG with Deep Recurrent-Convolutional Neural Networks”. In: arXiv

preprint arXiv:1511.06448 (2016).

[26] Ary L Goldberger, Zachary D Goldberger, and Alexei Shvilkin. Goldberger’s

Clinical Electrocardiography: A Simplified Approach. 9th ed. Elsevier, 2017.

[27] Augustus D Waller. “A demonstration on man of electromotive changes ac-

companying the heart’s beat”. In: Journal of Physiology 8.5 (1887), pp. 229–

234.

119

[28] Willem Einthoven. “The different forms of the human electrocardiogram and

their signification”. In: Lancet 1 (1912), pp. 853–861.

[29] Borys Surawicz and Timothy K Knilans. Chou’s Electrocardiography in Clin-

ical Practice: Adult and Pediatric. 6th ed. Saunders Elsevier, 2008.

[30] Arthur J Moss et al. “Prophylactic implantation of a defibrillator in patients

with myocardial infarction and reduced ejection fraction”. In: New England

Journal of Medicine 346.12 (2002), pp. 877–883.

[31] Pentti M Rautaharju, Borys Surawicz, and Leonard S Gettes. “AHA/ACCF/HRS

Recommendations for the Standardization and Interpretation of the Electro-

cardiogram”. In: Journal of the American College of Cardiology 53.11 (2009),

pp. 982–991.

[32] E Lepeschkin and B Surawicz. “The Measurement of the Q-T Interval of the

Electrocardiogram”. In: Circulation 23.4 (1961), pp. 505–510.

[33] Paul Kligfield et al. “Recommendations for the Standardization and Inter-

pretation of the Electrocardiogram: Part I: The Electrocardiogram and Its

Technology: A Scientific Statement From the American Heart Association

Electrocardiography and Arrhythmias Committee, Council on Clinical Cardi-

ology; the American College of Cardiology Foundation; and the Heart Rhythm

Society”. In: Circulation 115.10 (2007), pp. 1306–1324.

[34] Gari D Clifford et al. “AF Classification from a Short Single Lead ECG

Recording: The PhysioNet/Computing in Cardiology Challenge 2017”. In:

Physiological Measurement 38.5 (2020), pp. 831–848.

[35] Hang Du, Rebecca Pillai Riddell, and Xiaogang Wang. “A hybrid complex-

valued neural network framework with applications to electroencephalogram

120

(EEG)”. en. In: Biomedical Signal Processing and Control 85 (Aug. 2023),

p. 104862. issn: 17468094. doi: 10.1016/j.bspc.2023.104862. url: https:

//linkinghub.elsevier.com/retrieve/pii/S1746809423002951.

[36] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recog-

nition”. en. In: Neural Computation 1.4 (Dec. 1989), pp. 541–551. issn: 0899-

7667, 1530-888X. doi: 10.1162/neco.1989.1.4.541. url: https://direct.

mit.edu/neco/article/1/4/541-551/5515 (visited on 04/06/2023).

[37] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las

Vegas, NV, USA: IEEE, June 2016, pp. 770–778. isbn: 9781467388511. doi:

10.1109/CVPR.2016.90. url: http://ieeexplore.ieee.org/document/

7780459/ (visited on 04/06/2023).

[38] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classi-

fication with deep convolutional neural networks”. en. In: Communications

of the ACM 60.6 (May 2017), pp. 84–90. issn: 0001-0782, 1557-7317. doi:

10.1145/3065386. url: https://dl.acm.org/doi/10.1145/3065386

(visited on 04/06/2023).

[39] Ross Girshick et al. “Rich Feature Hierarchies for Accurate Object Detection

and Semantic Segmentation”. In: 2014 IEEE Conference on Computer Vision

and Pattern Recognition. Columbus, OH, USA: IEEE, June 2014, pp. 580–

587. isbn: 9781479951185. doi: 10.1109/CVPR.2014.81. url: http://

ieeexplore.ieee.org/document/6909475/ (visited on 04/06/2023).

[40] Ross Girshick. “Fast R-CNN”. In: 2015 IEEE International Conference on

Computer Vision (ICCV). Santiago, Chile: IEEE, Dec. 2015, pp. 1440–1448.

121

https://doi.org/10.1016/j.bspc.2023.104862
https://linkinghub.elsevier.com/retrieve/pii/S1746809423002951
https://linkinghub.elsevier.com/retrieve/pii/S1746809423002951
https://doi.org/10.1162/neco.1989.1.4.541
https://direct.mit.edu/neco/article/1/4/541-551/5515
https://direct.mit.edu/neco/article/1/4/541-551/5515
https://doi.org/10.1109/CVPR.2016.90
http://ieeexplore.ieee.org/document/7780459/
http://ieeexplore.ieee.org/document/7780459/
https://doi.org/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386
https://doi.org/10.1109/CVPR.2014.81
http://ieeexplore.ieee.org/document/6909475/
http://ieeexplore.ieee.org/document/6909475/

isbn: 9781467383912. doi: 10.1109/ICCV.2015.169. url: http://ieeexplore.

ieee.org/document/7410526/ (visited on 04/06/2023).

[41] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object De-

tection”. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). Las Vegas, NV, USA: IEEE, June 2016, pp. 779–788. isbn:

9781467388511. doi: 10.1109/CVPR.2016.91. url: http://ieeexplore.

ieee.org/document/7780460/ (visited on 04/06/2023).

[42] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional

networks for semantic segmentation”. In: 2015 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR). ISSN: 1063-6919. June 2015,

pp. 3431–3440. doi: 10.1109/CVPR.2015.7298965.

[43] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. “SegNet: A Deep

Convolutional Encoder-Decoder Architecture for Image Segmentation”. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence 39.12 (Dec.

2017), pp. 2481–2495. issn: 0162-8828, 2160-9292, 1939-3539. doi: 10.1109/

TPAMI.2016.2644615. url: https://ieeexplore.ieee.org/document/

7803544/ (visited on 04/06/2023).

[44] Liang-Chieh Chen et al. “DeepLab: Semantic Image Segmentation with Deep

Convolutional Nets, Atrous Convolution, and Fully Connected CRFs”. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence 40.4 (Apr.

2018), pp. 834–848. issn: 0162-8828, 2160-9292. doi: 10.1109/TPAMI.2017.

2699184. url: http://ieeexplore.ieee.org/document/7913730/ (visited

on 04/06/2023).

[45] Yoon Kim. “Convolutional Neural Networks for Sentence Classification”. In:

Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-

122

https://doi.org/10.1109/ICCV.2015.169
http://ieeexplore.ieee.org/document/7410526/
http://ieeexplore.ieee.org/document/7410526/
https://doi.org/10.1109/CVPR.2016.91
http://ieeexplore.ieee.org/document/7780460/
http://ieeexplore.ieee.org/document/7780460/
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/TPAMI.2016.2644615
https://ieeexplore.ieee.org/document/7803544/
https://ieeexplore.ieee.org/document/7803544/
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/TPAMI.2017.2699184
http://ieeexplore.ieee.org/document/7913730/

guage Processing (EMNLP). Doha, Qatar: Association for Computational

Linguistics, Oct. 2014, pp. 1746–1751. doi: 10.3115/v1/D14-1181. url:

https://aclanthology.org/D14-1181.

[46] Alexis Conneau et al. “Very Deep Convolutional Networks for Text Classifica-

tion”. en. In: Proceedings of the 15th Conference of the European Chapter of

the Association for Computational Linguistics: Volume 1, Long Papers. Valen-

cia, Spain: Association for Computational Linguistics, 2017, pp. 1107–1116.

doi: 10.18653/v1/E17-1104. url: http://aclweb.org/anthology/E17-

1104 (visited on 04/06/2023).

[47] Andre Esteva et al. “Dermatologist-level classification of skin cancer with

deep neural networks”. en. In: Nature 542.7639 (Feb. 2017), pp. 115–118.

issn: 0028-0836, 1476-4687. doi: 10.1038/nature21056. url: http://www.

nature.com/articles/nature21056 (visited on 04/06/2023).

[48] Mohammad Havaei et al. “Brain tumor segmentation with Deep Neural Net-

works”. en. In: Medical Image Analysis 35 (Jan. 2017), pp. 18–31. issn:

13618415. doi: 10.1016/j.media.2016.05.004. url: https://linkinghub.

elsevier.com/retrieve/pii/S1361841516300330 (visited on 04/06/2023).

[49] Akira Hirose. Complex-Valued Neural Networks: Theories and Applications

(Series on Innovative Intelligence, 5). World Scientific Press, 2004. isbn:

9789812384645.

[50] Nitzan Guberman. “On Complex Valued Convolutional Neural Networks”.

In: CoRR abs/1602.09046 (2016). arXiv: 1602.09046. url: http://arxiv.

org/abs/1602.09046.

123

https://doi.org/10.3115/v1/D14-1181
https://aclanthology.org/D14-1181
https://doi.org/10.18653/v1/E17-1104
http://aclweb.org/anthology/E17-1104
http://aclweb.org/anthology/E17-1104
https://doi.org/10.1038/nature21056
http://www.nature.com/articles/nature21056
http://www.nature.com/articles/nature21056
https://doi.org/10.1016/j.media.2016.05.004
https://linkinghub.elsevier.com/retrieve/pii/S1361841516300330
https://linkinghub.elsevier.com/retrieve/pii/S1361841516300330
https://arxiv.org/abs/1602.09046
http://arxiv.org/abs/1602.09046
http://arxiv.org/abs/1602.09046

[51] Chiheb Trabelsi et al. “Deep Complex Networks”. In: CoRR abs/1705.09792

(2017). arXiv: 1705.09792. url: http://arxiv.org/abs/1705.09792.

[52] Patrick Virtue. “Complex-valued Deep Learning with Applications to Mag-

netic Resonance Image Synthesis”. PhD thesis. University of California at

Berkeley, 2019.

[53] Joan Bruna and S. Mallat. “Invariant Scattering Convolution Networks”. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence 35.8 (Aug.

2013), pp. 1872–1886. issn: 0162-8828, 2160-9292. doi: 10.1109/TPAMI.

2012.230. url: http://ieeexplore.ieee.org/document/6522407/ (vis-

ited on 07/20/2021).

[54] David P. Reichert and Thomas Serre. Neuronal Synchrony in Complex-Valued

Deep Networks. 2014. arXiv: 1312.6115 [stat.ML].

[55] Tara N. Sainath et al. “Low-rank matrix factorization for Deep Neural Net-

work training with high-dimensional output targets”. In: 2013 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing. 2013, pp. 6655–

6659. doi: 10.1109/ICASSP.2013.6638949.

[56] W. Heisenberg. “Über den anschaulichen Inhalt der quantentheoretischen

Kinematik und Mechanik”. In: Zeitschrift für Physik 33 (1925), pp. 879–893.

[57] Aravind Ravi et al. “Comparing user-dependent and user-independent train-

ing of CNN for SSVEP BCI”. In: Journal of Neural Engineering 17.2 (Apr.

2020), p. 026028. issn: 1741-2560, 1741-2552. doi: 10.1088/1741- 2552/

ab6a67. (Visited on 01/09/2023).

[58] W. Wirtinger. “Zur formalen Theorie der Funktionen von mehr komplexen

Veränderlichen”. de. In: Mathematische Annalen 97.1 (Dec. 1927), pp. 357–

124

https://arxiv.org/abs/1705.09792
http://arxiv.org/abs/1705.09792
https://doi.org/10.1109/TPAMI.2012.230
https://doi.org/10.1109/TPAMI.2012.230
http://ieeexplore.ieee.org/document/6522407/
https://arxiv.org/abs/1312.6115
https://doi.org/10.1109/ICASSP.2013.6638949
https://doi.org/10.1088/1741-2552/ab6a67
https://doi.org/10.1088/1741-2552/ab6a67

375. issn: 0025-5831, 1432-1807. doi: 10.1007/BF01447872. url: http:

//link.springer.com/10.1007/BF01447872 (visited on 03/17/2021).

[59] Huisheng Zhang and Danilo P. Mandic. “Is a Complex-Valued Stepsize Ad-

vantageous in Complex-Valued Gradient Learning Algorithms?” In: IEEE

Transactions on Neural Networks and Learning Systems 27.12 (Dec. 2016),

pp. 2730–2735. issn: 2162-237X, 2162-2388. doi: 10.1109/TNNLS.2015.

2494361. url: http://ieeexplore.ieee.org/document/7321072/ (visited

on 07/20/2021).

[60] Walter Rudin. Function Theory in the Unit Ball of Cn. Ed. by M. Artin et

al. Vol. 241. Grundlehren der mathematischen Wissenschaften. New York,

NY: Springer New York, 1980. doi: 10.1007/978-1-4613-8098-6. url:

http://link.springer.com/10.1007/978-1-4613-8098-6 (visited on

07/20/2021).

[61] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Systems. Software available from tensorflow.org. 2015. url: https:

//www.tensorflow.org/.

[62] Ralph Andrzejak et al. “Indications of nonlinear deterministic and finite-

dimensional structures in time series of brain electrical activity: Dependence

on recording region and brain state”. In: Physical review. E, Statistical, non-

linear, and soft matter physics 64 (Jan. 2002), p. 061907. doi: 10.1103/

PhysRevE.64.061907.

[63] Y. Lecun et al. “Gradient-based learning applied to document recognition”.

In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.

726791.

125

https://doi.org/10.1007/BF01447872
http://link.springer.com/10.1007/BF01447872
http://link.springer.com/10.1007/BF01447872
https://doi.org/10.1109/TNNLS.2015.2494361
https://doi.org/10.1109/TNNLS.2015.2494361
http://ieeexplore.ieee.org/document/7321072/
https://doi.org/10.1007/978-1-4613-8098-6
http://link.springer.com/10.1007/978-1-4613-8098-6
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1103/PhysRevE.64.061907
https://doi.org/10.1103/PhysRevE.64.061907
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791

[64] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”.

In: University of Toronto (May 2012).

[65] Jordi Feliu-Fabà, Yuwei Fan, and Lexing Ying. “Meta-learning pseudo-differential

operators with deep neural networks”. In: Journal of Computational Physics

408 (2020), p. 109309. issn: 0021-9991. doi: https://doi.org/10.1016/

j.jcp.2020.109309. url: https://www.sciencedirect.com/science/

article/pii/S0021999120300838.

[66] Jordi Feliu-Fabà, Yuwei Fan, and Lexing Ying. “Meta-learning pseudo-differential

operators with deep neural networks”. In: Journal of Computational Physics

408 (2020), p. 109309. issn: 0021-9991.

[67] Christopher Rackauckas et al. “Universal Differential Equations for Scientific

Machine Learning”. In: arXiv preprint arXiv:2001.04385 (2020).

[68] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Adap-

tive computation and machine learning. Cambridge, Massachusetts: The MIT

Press, 2016. isbn: 9780262035613.

[69] Vernon Lawhern et al. “EEGNet: A Compact Convolutional Network for

EEG-based Brain-Computer Interfaces”. In: Journal of Neural Engineering

15 (Nov. 2016).

[70] Xia Chen et al. Toward reliable signals decoding for electroencephalogram: A

benchmark study to EEGNeX. 2022.

[71] Thoru Yamada and Elizabeth Meng. Practical Guide for Clinical Neurophys-

iologic Testing: EEG. Philadelphia, PA: Wolters Kluwer Health, Oct. 2017.

isbn: 9781496383037. url: https://shop.lww.com/Practical-Guide-for-

Clinical-Neurophysiologic-Testing%E2%80%93EEG/p/9781496383020.

126

https://doi.org/https://doi.org/10.1016/j.jcp.2020.109309
https://doi.org/https://doi.org/10.1016/j.jcp.2020.109309
https://www.sciencedirect.com/science/article/pii/S0021999120300838
https://www.sciencedirect.com/science/article/pii/S0021999120300838
https://shop.lww.com/Practical-Guide-for-Clinical-Neurophysiologic-Testing%E2%80%93EEG/p/9781496383020
https://shop.lww.com/Practical-Guide-for-Clinical-Neurophysiologic-Testing%E2%80%93EEG/p/9781496383020

[72] Ujwal Chaudhary, Niels Birbaumer, and Ander Ramos-Murguialday. “Brain–computer

interfaces for communication and rehabilitation”. en. In: Nature Reviews Neu-

rology 12.9 (Sept. 2016), pp. 513–525. issn: 1759-4758, 1759-4766. doi: 10.

1038/nrneurol.2016.113.

[73] Sriram Ramgopal et al. “Seizure detection, seizure prediction, and closed-loop

warning systems in epilepsy”. In: Epilepsy and Behavior 37 (2014), pp. 291–

307. issn: 1525-5050. doi: https://doi.org/10.1016/j.yebeh.2014.

06.023. url: https://www.sciencedirect.com/science/article/pii/

S1525505014002297.

[74] Masaki Nakanishi et al. “A Comparison Study of Canonical Correlation Anal-

ysis Based Methods for Detecting Steady-State Visual Evoked Potentials”.

en. In: PLOS ONE 10.10 (Oct. 2015). Ed. by Dezhong Yao, e0140703. issn:

1932-6203. doi: 10.1371/journal.pone.0140703. (Visited on 01/09/2023).

[75] Xiaotong Gu et al. “EEG-Based Brain-Computer Interfaces (BCIs): A Survey

of Recent Studies on Signal Sensing Technologies and Computational Intelli-

gence Approaches and Their Applications”. In: IEEE/ACM Transactions on

Computational Biology and Bioinformatics 18.5 (2021), pp. 1645–1666. doi:

10.1109/TCBB.2021.3052811.

[76] Berkant Tacer and Patrick J. Loughlin. “Non-stationary signal classification

using the joint moments of time-frequency distributions”. In: Pattern Recog-

nition 31.11 (1998), pp. 1635–1641. issn: 0031-3203.

[77] Manuel Davy et al. “Optimized support vector machines for nonstationary sig-

nal classification”. In: Signal Processing Letters, IEEE 9 (Jan. 2003), pp. 442–

445.

127

https://doi.org/10.1038/nrneurol.2016.113
https://doi.org/10.1038/nrneurol.2016.113
https://doi.org/https://doi.org/10.1016/j.yebeh.2014.06.023
https://doi.org/https://doi.org/10.1016/j.yebeh.2014.06.023
https://www.sciencedirect.com/science/article/pii/S1525505014002297
https://www.sciencedirect.com/science/article/pii/S1525505014002297
https://doi.org/10.1371/journal.pone.0140703
https://doi.org/10.1109/TCBB.2021.3052811

[78] L. Boubchir, S. Al-Maadeed, and A. Bouridane. “On the use of time-frequency

features for detecting and classifying epileptic seizure activities in non-stationary

EEG signals”. In: 2014 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP). 2014, pp. 5889–5893.

[79] Omer Alcin et al. “Multi-category EEG signal classification developing Time-

Frequency Texture Features based Fisher Vector encoding method”. In: Neu-

rocomputing 218 (Aug. 2016).

[80] Hamid Hassanpour, Mostefa Mesbah, and Boualem Boashash. “Time–frequency

based newborn EEG seizure detection using low and high frequency signa-

tures”. In: Physiological Measurement 25.4 (Aug. 2004), pp. 935–944. issn:

0967-3334, 1361-6579.

[81] A. T. Tzallas, M. G. Tsipouras, and D. I. Fotiadis. “Epileptic Seizure De-

tection in EEGs Using Time–Frequency Analysis”. In: IEEE Transactions on

Information Technology in Biomedicine 13.5 (2009), pp. 703–710.

[82] Boualem Boashash, Ghasem Azemi, and Nabeel Khan. “Principles of time–frequency

feature extraction for change detection in non-stationary signals: Applications

to newborn EEG abnormality detection”. In: Pattern Recognition 48 (Mar.

2015), pp. 616–627.

[83] M. R. Islam and M. Ahmad. “Wavelet Analysis Based Classification of Emo-

tion from EEG Signal”. In: 2019 International Conference on Electrical, Com-

puter and Communication Engineering (ECCE). 2019, pp. 1–6.

[84] Fasil O.K. and Rajesh R. “Time-domain exponential energy for epileptic EEG

signal classification”. en. In: Neuroscience Letters 694 (Feb. 2019), pp. 1–8.

issn: 03043940.

128

[85] Rubén San-Segundo et al. “Classification of epileptic EEG recordings using

signal transforms and convolutional neural networks”. In: Computers in Bi-

ology and Medicine 109 (2019), pp. 148–158. issn: 0010-4825.

[86] Dongye Zhao et al. “Learning joint space-time-frequency features for EEG

decoding on small labeled data”. In: Neural Networks 114 (Mar. 2019).

[87] Yunyuan Gao et al. “Deep Convolutional Neural Network-Based Epileptic

Electroencephalogram (EEG) Signal Classification”. In: Frontiers in Neurol-

ogy 11 (2020), p. 375. issn: 1664-2295.

[88] Zhongke Gao et al. “Complex networks and deep learning for EEG signal

analysis”. In: Cognitive Neurodynamics 15.3 (June 2021), pp. 369–388. issn:

1871-4080, 1871-4099.

[89] Akira Hirose and Shotaro Yoshida. “Generalization Characteristics of Complex-

Valued Feedforward Neural Networks in Relation to Signal Coherence”. In:

IEEE Transactions on Neural Networks and Learning Systems 23.4 (2012),

pp. 541–551.

[90] Nitzan Guberman. “On Complex Valued Convolutional Neural Networks”.

In: CoRR abs/1602.09046 (2016). arXiv: 1602.09046. url: http://arxiv.

org/abs/1602.09046.

[91] Akira Ikeda and Yoshikazu Washizawa. “Steady-State Visual Evoked Poten-

tial Classification Using Complex Valued Convolutional Neural Networks”.

en. In: Sensors 21.16 (Aug. 2021), p. 5309. issn: 1424-8220. doi: 10.3390/

s21165309. (Visited on 01/09/2023).

[92] Chiheb Trabelsi et al. “Deep Complex Networks”. In: arXiv preprint: arXiv:1705.09792

(2017).

129

https://arxiv.org/abs/1602.09046
http://arxiv.org/abs/1602.09046
http://arxiv.org/abs/1602.09046
https://doi.org/10.3390/s21165309
https://doi.org/10.3390/s21165309

[93] Simone Scardapane et al. “Complex-Valued Neural Networks With Nonpara-

metric Activation Functions”. In: IEEE Transactions on Emerging Topics in

Computational Intelligence PP (Feb. 2018).

[94] Joshua Bassey, Lijun Qian, and Xianfang Li. A Survey of Complex-Valued

Neural Networks. 2021. arXiv: 2101.12249 [stat.ML].

[95] Ralph Andrzejak et al. “Indications of nonlinear deterministic and finite-

dimensional structures in time series of brain electrical activity: Dependence

on recording region and brain state”. In: Physical review. E, Statistical, non-

linear, and soft matter physics 64 (Jan. 2002), p. 061907.

[96] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-

tion”. In: International Conference on Learning Representations (Dec. 2014).

[97] Andy M. Sarroff. “Complex Neural Networks For Audio”. PhD thesis. Dart-

mouth College, 2018.

[98] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training

deep feedforward neural networks”. In: Proceedings of the Thirteenth Interna-

tional Conference on Artificial Intelligence and Statistics. Vol. 9. Proceedings

of Machine Learning Research. JMLRWorkshop and Conference Proceedings,

May 2010, pp. 249–256.

[99] Nick Yeung et al. “Detection of synchronized oscillations in the electroen-

cephalogram: An evaluation of methods”. en. In: Psychophysiology 41.6 (Nov.

2004), pp. 822–832. issn: 0048-5772, 1469-8986.

[100] Nick Yeung et al. “Theta phase resetting and the error-related negativity”.

en. In: Psychophysiology 44.1 (Jan. 2007). issn: 0048-5772, 1469-8986.

130

https://arxiv.org/abs/2101.12249

[101] Christos E. Vasios. “Classification of Event-Related Potentials Associated

with Response Errors in Actors and Observers Based on Autoregressive Mod-

eling”. en. In: The Open Medical Informatics Journal 3.1 (May 2009), pp. 32–

43. issn: 18744311.

[102] Sutrisno Ibrahim, Ridha Djemal, and Abdullah Alsuwailem. “Electroencephalog-

raphy (EEG) signal processing for epilepsy and autism spectrum disorder

diagnosis”. en. In: Biocybernetics and Biomedical Engineering 38.1 (2018),

pp. 16–26. issn: 02085216.

[103] Anindya Bijoy Das and Mohammed Imamul Hassan Bhuiyan. “Discrimina-

tion and classification of focal and non-focal EEG signals using entropy-based

features in the EMD-DWT domain”. en. In: Biomedical Signal Processing and

Control 29 (Aug. 2016), pp. 11–21. issn: 17468094.

[104] Hansem Sohn et al. “Approximate entropy (ApEn) analysis of EEG in attention-

deficit/hyperactivity disorder (ADHD) during cognitive tasks”. In: vol. 14.

Aug. 2006, pp. 1083–1086. isbn: 978-3-540-36839-7.

[105] Joshua S. Richman and J. Randall Moorman. “Physiological time-series anal-

ysis using approximate entropy and sample entropy”. en. In: American Jour-

nal of Physiology-Heart and Circulatory Physiology 278.6 (June 2000), H2039–

H2049. issn: 0363-6135, 1522-1539.

[106] Peng Li et al. “Assessing the complexity of short-term heartbeat interval

series by distribution entropy”. en. In: Medical & Biological Engineering &

Computing 53.1 (Jan. 2015), pp. 77–87. issn: 0140-0118, 1741-0444.

[107] Samantha Simons, Pedro Espino, and Daniel Abásolo. “Fuzzy Entropy Anal-

ysis of the Electroencephalogram in Patients with Alzheimer’s Disease: Is the

131

Method Superior to Sample Entropy?” en. In: Entropy 20.1 (Jan. 2018), p. 21.

issn: 1099-4300.

[108] Weiting Chen et al. “Measuring complexity using FuzzyEn, ApEn, and Sam-

pEn”. en. In: Medical Engineering & Physics 31.1 (Jan. 2009), pp. 61–68.

issn: 13504533.

[109] Bo Shi et al. “Entropy Analysis of Short-Term Heartbeat Interval Time Series

during Regular Walking”. en. In: Entropy 19.10 (Oct. 2017), p. 568. issn:

1099-4300.

[110] S. Escalera, O. Pujol, and P. Radeva. “On the Decoding Process in Ternary

Error-Correcting Output Codes”. In: IEEE Transactions on Pattern Analysis

and Machine Intelligence 32.1 (Jan. 2010), pp. 120–134. issn: 0162-8828.

[111] Sergio Escalera, Oriol Pujol, and Petia Radeva. “Separability of ternary codes

for sparse designs of error-correcting output codes”. en. In: Pattern Recogni-

tion Letters 30.3 (Feb. 2009), pp. 285–297. issn: 01678655.

[112] Peng Li et al. “Detection of epileptic seizure based on entropy analysis of

short-term EEG”. en. In: PLOS ONE 13.3 (Mar. 2018). Ed. by Maxim Bazhenov,

e0193691. issn: 1932-6203.

[113] Sándor Beniczky and Donald L. Schomer. “Electroencephalography: basic

biophysical and technological aspects important for clinical applications”. In:

Epileptic Disorders 22.6 (Dec. 2020), pp. 697–715. issn: 1294-9361, 1950-6945.

(Visited on 07/27/2022).

[114] Simulated EEG data generator. url: https://data.mrc.ox.ac.uk/data-

set/simulated-eeg-data-generator (visited on 09/12/2021).

132

https://data.mrc.ox.ac.uk/data-set/simulated-eeg-data-generator
https://data.mrc.ox.ac.uk/data-set/simulated-eeg-data-generator

[115] Ville Mäkinen, Hannu Tiitinen, and Patrick May. “Auditory event-related

responses are generated independently of ongoing brain activity”. In: Neu-

roImage 24.4 (Feb. 2005), pp. 961–968. issn: 10538119.

[116] Lina Wang et al. “Automatic Epileptic Seizure Detection in EEG Signals

Using Multi-Domain Feature Extraction and Nonlinear Analysis”. In: Entropy

19.6 (May 2017), p. 222. issn: 1099-4300.

[117] T. Sunil Kumar, Vivek Kanhangad, and Ram Bilas Pachori. “Classification of

seizure and seizure-free EEG signals using local binary patterns”. In: Biomed-

ical Signal Processing and Control 15 (2015), pp. 33–40. issn: 1746-8094.

[118] Khalid Abualsaud et al. “Ensemble Classifier for Epileptic Seizure Detection

for Imperfect EEG Data”. In: The Scientific World Journal 2015 (2015),

pp. 1–15. issn: 2356-6140, 1537-744X.

[119] N. Sadati, H. R. Mohseni, and A. Maghsoudi. “Epileptic Seizure Detection

Using Neural Fuzzy Networks”. In: 2006 IEEE International Conference on

Fuzzy Systems. 2006, pp. 596–600.

[120] Qiuyi Wu and Ernest Fokoue. Epileptic Seizure Recognition Data Set. 2017.

url: https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+

Recognition.

[121] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017. url:

http://archive.ics.uci.edu/ml.

[122] Nicholas Waytowich et al. “Compact Convolutional Neural Networks for Clas-

sification of Asynchronous Steady-state Visual Evoked Potentials”. In: Jour-

nal of Neural Engineering 15 (Mar. 2018). doi: 10.1088/1741-2552/aae5d8.

133

https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
http://archive.ics.uci.edu/ml
https://doi.org/10.1088/1741-2552/aae5d8

[123] Cardiovascular diseases (cvds). url: https://www.who.int/news-room/

fact-sheets/detail/cardiovascular-diseases-(cvds).

[124] R. K. Tripathy and S. Dandapat. “Detection of myocardial infarction from

vectorcardiogram using relevance vector machine”. en. In: Signal, Image and

Video Processing 11.6 (Sept. 2017), pp. 1139–1146. issn: 1863-1703, 1863-

1711. (Visited on 07/01/2022).

[125] Sibghatullah I. Khan and Ram Bilas Pachori. “Automated Detection of Poste-

rior Myocardial Infarction From Vectorcardiogram Signals Using Fourier–Bessel

Series Expansion Based Empirical Wavelet Transform”. In: IEEE Sensors Let-

ters 5.5 (2021), pp. 1–4.

[126] Hui Yang et al. “Identification of myocardial infarction (MI) using spatio-

temporal heart dynamics”. en. In: Medical Engineering & Physics 34.4 (May

2012), pp. 485–497. issn: 13504533.

[127] Lars Edenbrandt and Olle Pahlm. “Vectorcardiogram synthesized from a 12-

lead ECG: Superiority of the inverse Dower matrix”. In: Journal of Electro-

cardiology 21.4 (1988), pp. 361–367. issn: 0022-0736.

[128] J. A. Kors et al. “Reconstruction of the Frank vectorcardiogram from stan-

dard electrocardiographic leads: diagnostic comparison of different methods”.

en. In: European Heart Journal 11.12 (Dec. 1990), pp. 1083–1092. issn: 1522-

9645, 0195-668X. doi: 10.1093/oxfordjournals.eurheartj.a059647. url:

https://academic.oup.com/eurheartj/article/525149/Reconstruction

(visited on 03/26/2021).

134

https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://doi.org/10.1093/oxfordjournals.eurheartj.a059647
https://academic.oup.com/eurheartj/article/525149/Reconstruction

[129] Gordon E. Dower, H. B. Machado, and John A. Osborne. “On Deriving the

Electrocardiogram from Vectorcardiographic Leads”. In: Clinical Cardiology

3 (1980).

[130] Gordon E. Dower. “A lead synthesizer for the Frank system to simulate

the standard 12-lead electrocardiogram”. In: Journal of Electrocardiology 1.1

(1968), pp. 101–116. issn: 0022-0736.

[131] Nastaran Jafari Hafshejani et al. “Identification of myocardial infarction using

morphological features of electrocardiogram and vectorcardiogram”. en. In:

IET Signal Processing 15.9 (Dec. 2021), pp. 674–685. issn: 1751-9675, 1751-

9683. (Visited on 03/12/2022).

[132] Eedara Prabhakararao and Samarendra Dandapat. “Automated Detection of

Posterior Myocardial Infarction From VCG Signals Using Stationary Wavelet

Transform Based Features”. In: IEEE Sensors Letters 4.6 (2020), pp. 1–4.

[133] U. Rajendra Acharya et al. “Automated detection and localization of my-

ocardial infarction using electrocardiogram: a comparative study of different

leads”. In: Knowledge-Based Systems 99 (2016), pp. 146–156. issn: 0950-7051.

[134] Rajesh Kumar Tripathy, Abhijit Bhattacharyya, and Ram Bilas Pachori. “Lo-

calization of Myocardial Infarction From Multi-Lead ECG Signals Using Mul-

tiscale Analysis and Convolutional Neural Network”. In: IEEE Sensors Jour-

nal 19.23 (2019), pp. 11437–11448.

[135] Filip Karisik and Mathias Baumert. “A Long Short-Term Memory Network

to Classify Myocardial Infarction Using Vectorcardiographic Ventricular De-

polarization and Repolarization”. In: 2019 Computing in Cardiology (CinC).

2019, Page 1–Page 4.

135

[136] Yu-Hung Chuang et al. “Automatic Classification of Myocardial Infarction

Using Spline Representation of Single-Lead Derived Vectorcardiography”. en.

In: Sensors 20.24 (Dec. 2020), p. 7246. issn: 1424-8220. (Visited on 05/27/2022).

[137] Xiaofei Sun et al. Interpreting Deep Learning Models in Natural Language

Processing: A Review. 2021.

[138] Raúl Correa et al. “Identification of Patients with Myocardial Infarction: Vec-

torcardiographic and Electrocardiographic Analysis”. en. In: Methods of In-

formation in Medicine 55.03 (2016), pp. 242–249. issn: 0026-1270, 2511-705X.

[139] R. Bousseljot, D. Kreiseler, and A. Schnabel. “Nutzung der EKG-Signaldatenbank

CARDIODAT der PTB über das Internet”. In: Biomedizinische Technik/Biomedical

Engineering (July 2009), pp. 317–318. issn: 0013-5585, 1862-278X.

[140] Patrick Wagner et al. “PTB-XL, a large publicly available electrocardiography

dataset”. en. In: Scientific Data 7.1 (Dec. 2020), p. 154. issn: 2052-4463.

[141] Jan A. Kors, Jan L. Talmon, and Jan H. van Bemmel. “Multilead ECG anal-

ysis”. In: Computers and Biomedical Research 19.1 (1986), pp. 28–46. issn:

0010-4809.

[142] M. S. Guillem, A. V. Sahakian, and S. Swiryn. “Derivation of orthogonal

leads from the 12-lead ECG. accuracy of a single transform for the derivation

of atrial and ventricular waves”. In: 2006 Computers in Cardiology. 2006,

pp. 249–252.

[143] A. L. Goldberger et al. “PhysioBank, PhysioToolkit, and PhysioNet: Com-

ponents of a New Research Resource for Complex Physiologic Signals”. In:

Circulation 101.23 (2000), e215–e220.

136

[144] Nicolas Pilia et al. “ECGdeli - An open source ECG delineation toolbox for

MATLAB”. In: SoftwareX 13 (2021), p. 100639. issn: 2352-7110.

[145] Vilém Laufberger. “Octant vectorcardiography and its data basis”. In: Phys-

iologia bohemoslovaca 30.6 (1981), pp. 481–495.

[146] Vilém Laufberger. “Octant vectorcardiography”. In: Physiologia bohemoslo-

vaca 29.6 (1982), pp. 481–494.

[147] Vilém Laufberger. “Octant vectorcardiography - the evaluation by peaks”. In:

Physiol Bohemoslov 31 (1982), pp. 1–9.

[148] Vilém Laufberger. “Octant vectorcardiography and automatic diagnosis of

coronary artery disease.” In: Physiologia bohemoslovaca 31.6 (1982), pp. 485–

495.

[149] Golriz Sedaghat et al. “Quantitative Assessment of Vectorcardiographic Loop

Morphology”. en. In: Journal of Electrocardiology 49.2 (Mar. 2016), pp. 154–

163. issn: 00220736. (Visited on 06/30/2022).

[150] Manfredo Perdigão do Carmo. Differential geometry of curves and surfaces.

Prentice-Hall, 1976, pp. 21–22.

[151] Lei Nie et al. “Approximate Derivative Calculated by Using ContinuousWavelet

Transform”. en. In: Journal of Chemical Information and Computer Sciences

42.2 (Mar. 2002), pp. 274–283. issn: 0095-2338.

[152] karthik raviprakash karthik. ECG simulation using MATLAB. url: https://

www.mathworks.com/matlabcentral/fileexchange/10858-ecg-simulation-

using-matlab.

137

https://www.mathworks.com/matlabcentral/fileexchange/10858-ecg-simulation-using-matlab
https://www.mathworks.com/matlabcentral/fileexchange/10858-ecg-simulation-using-matlab
https://www.mathworks.com/matlabcentral/fileexchange/10858-ecg-simulation-using-matlab

[153] A. Messina. “Detecting damage in beams through digital differentiator filters

and continuous wavelet transforms”. In: Journal of Sound and Vibration 272.1

(2004), pp. 385–412. issn: 0022-460X.

[154] S. G. Mallat. A wavelet tour of signal processing. 2nd ed. San Diego: Academic

Press, 1999. isbn: 9780124666061.

[155] Jianwen Luo, Bai Jing, and Shao Jinhua. “Application of the wavelet trans-

forms on axial strain calculation in ultrasound elastography”. In: Progress in

Natural Science 16 (Sept. 2006), pp. 942–947.

[156] Marko Robnik-Šikonja and Igor Kononenko. “Theoretical and empirical anal-

ysis of ReliefF and RReliefF”. In: Machine learning 53.1 (2003), pp. 23–69.

[157] Igor Kononenko. “Estimating attributes: Analysis and extensions of RELIEF”.

In: (1994), pp. 171–182.

[158] Ryan J. Urbanowicz et al. “Relief-based feature selection: Introduction and

review”. In: Journal of Biomedical Informatics 85 (2018), pp. 189–203. issn:

1532-0464.

[159] Kenji Kira and Larry A. Rendell. “The Feature Selection Problem: Traditional

Methods and a New Algorithm”. In: (1992).

[160] Hui Yang. “Nonlinear Stochastic Modeling and Analysis of Cardiovascular

System Dynamics - Diagnostic and Prognostic Applications”. Ph.D. thesis.

Oklahoma State University.

[161] Michal Vozda, Tomás Peterek, and Martin Cerný. “Novel Method for Deriving

Vectorcardiographic Leads Based on Artificial Neural Networks”. In: 2014.

138

[162] Rene Jaros, Radek Martinek, and Lukas Danys. “Comparison of Different

Electrocardiography with Vectorcardiography Transformations”. en. In: Sen-

sors 19.14 (July 2019), p. 3072. issn: 1424-8220. doi: 10.3390/s19143072.

url: https://www.mdpi.com/1424-8220/19/14/3072 (visited on 03/26/2021).

[163] T. G. Dietterich and G. Bakiri. “Solving Multiclass Learning Problems via

Error-Correcting Output Codes”. In: Journal of Artificial Intelligence Re-

search 2 (Jan. 1995), pp. 263–286. issn: 1076-9757.

139

https://doi.org/10.3390/s19143072
https://www.mdpi.com/1424-8220/19/14/3072

A Appendix

A.1 ECG to VCG transformation matrix

The following linear transformation matrices (ECG to VCG) are used in chapter 5:

The Kors Quasi-Orthogonal Transformation matrix:
0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 0 −0.5 0 0 0 0


The Dower transformation matrix:

0.156 −0.010 −0.172 −0.074 0.122 0.231 0.239 0.194

−0.227 0.887 0.057 −0.019 −0.106 −0.022 0.041 0.048

0.022 0.102 −0.229 −0.310 −0.246 −0.063 0.055 0.108



140

The Kors transformation matrix:
0.38 −0.07 −0.13 0.05 −0.01 0.14 0.06 0.54

−0.07 0.93 0.06 −0.02 −0.05 0.06 −0.17 0.13

0.11 −0.23 −0.43 −0.06 −0.14 −0.20 −0.11 0.31


The QLSV transformation matrix:

0.199 −0.018 −0.147 −0.058 0.037 0.139 0.232 0.226

−0.146 0.503 0.023 −0.085 −0.003 0.033 0.060 0.104

0.085 −0.130 −0.184 −0.163 −0.190 −0.119 −0.023 0.043



The PLSV transformation matrix:


0.370 −0.154 −0.266 0.027 0.065 0.131 0.203 0.220

−0.131 0.717 0.088 −0.088 0.003 0.042 0.047 0.067

0.184 −0.114 −0.319 −0.198 −0.167 −0.099 −0.009 0.060



141

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Non-stationary time series
	Electroencephalograph (EEG) and Electrocardiograph (ECG)
	EEG
	ECG

	Main Contributions and Chapter Preview

	A New Neural Network Structre based on Pseudo-Differential Operator
	Introduction
	Methodology
	Wirtinger Derivatives
	Pooling Layers and Mappings
	Adaptive Gradient Descent Method
	Pseudo-Differential Operators in Neural Networks
	Numerical Experiments
	Overview
	Datasets
	Results

	Discussion

	Time-variant Transform
	Introduction
	Methodology, Challenges, and Solutions
	General Framework and Detailed Insights
	Challenges and solutions

	Experiments
	Simulation
	Real-world dataset

	Discussion

	A Hybrid Neural Network Structure
	Introduction
	Methodology
	Framework
	Discrete Fourier Transform and Its Inverse Transform
	Backpropagation
	Other training details

	Experiments
	Simulation Study
	Real-World Data

	Discussion

	VCG Classification Based on Geometrical and Kinematical Properties
	Introduction
	Materials and Methods
	Datasets
	pre-processing
	VCG vector and octant features
	Morphological and shape features
	Geometric and kinematics features
	Variable selection

	Experiments and Results
	Experiments on the PTB dataset
	Experiments on PTB-XL dataset

	Conclusions

	Appendix
	ECG to VCG transformation matrix

