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Abstract

Maximum likelihood estimation of a log-concave density has certain advantages

over other nonparametric approaches, such as kernel density estimation, which re-

quires a bandwidth selection. Furthermore, finding the optimal bandwidth gets more

difficult as a dimension increases. On the other hand, the shape-constrained approach

is automatic and does not need any tuning parameters. However, for both the kernel

and log-concave estimators, the rate of convergence slows down as the dimension d

increases. To handle this “curse of dimensionality”, we study an intermediate semi-

parametric copula approach and we estimate the marginals using the log-concave

shape-constrained MLE and use a parametric approach to fit the copula parameters.

We prove
√
n rate of convergence for the parametric estimator and that the joint

density converges at a rate of n−2/5 regardless of dimension. This is faster than the

conjectured rate of n−2/(d+4) for the multivariate log-concave estimators [Cule, 2009].

We examine the performance of our proposed method via simulation studies and real

data example.
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1 Introduction

1.1 Motivation

Multivariate density estimation is a common and much studied problem in statis-

tics. When we have d-dimensional independent and identically distributed (i.i.d.)

data, say X1,X2, . . . ,Xn ∈ Rd, the ideal way to estimate a density f is using para-

metric density estimation in which the true distribution function needs to be known.

However, in several cases, we do not have any clue for the distribution of f . The

general way to estimate f is to use nonparametric approaches, which require fewer

assumptions than parametric approaches and do not need information about the

distributions.

When we have no idea about the distribution of data, we can easily consider the

distribution function as a step function, which jumps up by 1/n at each point of

observation. We call this idea an empirical cumulative distribution function. How-

ever, it is not a density function, so it is not our preferred approach. The popular
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nonparametric density estimation is a kernel density estimation, which requires a

good bandwidth selection in order to have a good density estimation. However, a

bandwidth parameter is not easy to find, but we can choose this smoothing param-

eter by using a cross-validation approach or normal reference rule, (see Wasserman

[2006] for more details). However, the bandwidth selection will be an issue when the

dimension, d, is getting large because, instead of choosing one bandwidth parameter

for one-dimensional data, you need to define a bandwidth matrix with its dimension

according to the data’s dimension. For example, when your data have four dimen-

sions, your bandwidth will be a 4 × 4 matrix, which has a symmetric and positive

definite property. Furthermore, there is a tradeoff between bias and variance, be-

cause, if you choose too large a bandwidth, the bias will be huge while the variance

small. This event is an oversmoothing problem. On the contrary, if your bandwidth

is too small, you will get an undersmoothing density estimation. Further details of

kernel density can be found in Section 1.2.2.3.

To overcome the difficulty of bandwidth selection, a shape-restricted density es-

timation has been introduced and has become more popular in recent years. Instead

of dealing with the additional tuning parameters, the shape-constrained density esti-

mation works with some good characteristics of its functions. Such examples include

monotonic, unimodal, or log-concavity. Among several shape-constrained models,

2



our work focuses on the log-concave densities.

One advantage of the log-concave density estimation above the kernel density es-

timation is that it does not need any tuning parameters. Furthermore, a log-concave

maximum likelihood estimator always exists and is unique, and it can be done auto-

matically. However, the multivariate log-concave MLE is computationally intensive,

which makes the algorithm not friendly in practice. The univariate log-concave ML

estimator converges with rate n−2/5, but the conjectured rate of convergence for mul-

tivariate log-concave ML estimator is n−2/(d+4), which depends on the dimension d

(see Cule [2009]). This makes the estimators from multivariate log-concave distribu-

tions have much slower convergence rate than the univariate log-concave, especially

when d is large.

Sklar [1959] introduced a dependence modeling called “copula”. The copula is

a function, which splits joint distribution function to its one-dimensional marginal

distributions and dependence part with its parameters, which are called the copula

parameters. Suppose we observe n i.i.d. random variables X = (X1, . . . ,Xn) ∈ Rd,

let fj(xj) be the univariate marginal density functions of X in dimension jth with

corresponding cumulative distribution functions Fj(s) = ∫
s

−∞
fj(r)dr; j = 1, . . . , d.

The joint density function with the copula density c and the copula parameter θ can

3



be represented in this form

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd); θ)
d

∏
j=1

fj(xj), (1.1)

where fj can be any parametric or nonparametric univariate density functions. Sim-

ilary, c represents the dependence of d dimensions and its density can be chosen from

several well-known copula families (more details in Chapter 3). Copula models have

been widely used in recent years, for example, in finance, see Jouanin et al. [2011]

and epidemiology, see Chen [2012].

The main objective of this thesis is to improve the rate of convergence and com-

putational time for multivariate log-concave density estimators by using the copula

model with univariate log-concave marginals. We propose the semiparametric den-

sity estimation for Rd, where the main tools of our study are the copula models

together with the univariate log-concave densities. We work on estimating the den-

sity in equation (1.1) by applying the method from Joe [2005], which has been widely

used in recent years. This method has been called an “inference function for mar-

gins” (IFM). It is a two-stage estimation method which estimates marginal densities

and copula parameters separately.

Moreover, we also prove that our proposed semiparametric density estimation

method converges at a rate of n−2/5, and the rate of convergence for the copula

estimator is n−1/2. This rate improves the conjectured rate of multivariate log-concave

4



estimators mentioned in Cule [2009], which is n−2/(d+4). However, the convergence

rate of the copula estimators is never better than a parametric ML estimators, which

converge at a rate of n−1/2.

In this chapter, we will discuss each type of density estimation, which belong

to the parametric density estimations in Section 1.2.1, to the nonparametric density

estimations in Section 1.2.2, and to the semiparametric density estimations in Section

1.2.4. The nonparametric density estimations that we will focus on consist of the

empirical cumulative distribution function, the histogram, and the kernel density

estimation. The log-concave density estimation will be presented in Section 1.2.3.

In addition, the rate of convergence for each method will be summarized in Section

1.3.

1.2 Density estimation

1.2.1 Parametric density estimation

Let X = {X1,X2, . . . ,Xn} ∼ F be the n i.i.d. random variables from a distribution

function, F , with a probability density, f = F ′, the density estimation of f can be

represented as f̂n. A likelihood function of the n observations, x = {x1, . . . , xn}, for

5



the density f with distribution’s parameter(s) θ ∈ Θ can be expressed as

L(x∣θ) =
n

∏
i=1

fθ(xi).

Then, we get a log-likelihood function

`(x∣θ) =
n

∑
i=1

log fθ(xi). (1.2)

To simplify, we denote `(x∣θ) as `(θ). Then, we maximize (1.2) to get a maximum

likelihood estimator θ̂n, which

θ̂n = argmax
θ∈Θ

`(θ).

Hence, the density estimator of f can be expressed as f̂n(x) = fθ̂n(x). In several

distributions, θ̂n has a closed form, for instance, Gaussian, exponential, Poisson,

binomial and also other distributions in exponential family. This makes parametric

approach easy to use. Moreover, the parametric maximum likelihood estimator under

the regularity conditions also satisfies a convergence rate of n−1/2, which is the fastest

rate among other density estimation methods.

1.2.2 Nonparametric density estimation

Knowing the distribution functions of data is hard in practice. Therefore, the

parametric density estimation may not be a good choice. The nonparametric ap-

6



proaches were introduced because they can model the unknown distribution func-

tions. For example, the upcoming method has the fewest assumptions for estimat-

ing distributions by just giving a mass 1/n to each observation. For the follow-

ing nonparametric methods, suppose we observe n i.i.d. random variables, X =

{X1,X2, . . . ,Xn}, from an unknown density f .

1.2.2.1 Empirical cumulative distribution function

Definition of the cumulative distribution function (CDF) is F (t) = P (X ≤ t). We

can estimate F (t) by

F̂n(t) =
1

n

n

∑
i=1

1xi≤t.

We call F̂n(t) an empirical CDF, which can be found by not assuming any underlying

distributions to the data. However, the empirical CDF is a mass function, which is

not a density function. It means that this method may not be a desired answer for

the density estimation.

7



1.2.2.2 Histogram

One of the simple nonparametric density estimations is histogram, which is not

a smooth function. The density estimator for n observations can be represented as

f̂n(x) =
m

∑
j=1

p̂j
h
1Bj(x),

where Bj are the jth bin. B1 = [0, 1
m
) ,B2 = [ 1

m ,
2
m
) , . . . ,Bm = [m−1

m ,1], where m is

the total number of bins. The binwidth h equals 1/m. Let Aj be the number of

observations in Bj, then p̂j = Aj/n.

Theorem 1.1. (Wasserman [2006], Theorem 6.9) Consider fixed x and fixed m, let

Bj be the bin containing x and let pj = ∫Bj f(u)du. Then,

E (f̂n(x)) =
E(p̂j)
h

=
pj
h
=
∫Bj f(u)du

h
≈ f(x)h

h
= f(x) and V ar (f̂n(x)) =

pj(1 − pj)
nh2

.

The expectation and variance in Theorem 1.1 are calculated with respect to the

random quantity f̂n which depends on X1, . . . ,Xn. When h approaches zero, f̂n(x)

will become an unbiased estimator, however its variance will become large. It turns

out that choosing a reasonable h is necessary for histogram.

A convergence rate of this estimator is computed via a risk function, which is

calculated from an expectation of an integrated square loss function. Let R and L

denote a risk function and a loss function, respectively. The risk function is given by

8



R = E(L), where

L = ∫ (f̂n(x) − f(x))
2
dx.

Theorem 1.2. (Wasserman [2006], Theorem 6.11) Suppose that f ′ is absolutely

continuous and that ∫ (f ′(u))2du < ∞. Then

R(f̂n, f) =
h2

12 ∫
(f ′(u))2du + 1

nh
+ o(h2) + o( 1

n
) . (1.3)

A value h∗ that minimizes (1.3) is

h∗ = 1

n1/3
( 6

∫ (f ′(u))2du
)

1/3

.

With this choice of bandwidth,

R(f̂n, f) ≈
(3/4)2/3 (∫ (f ′(u))2du)1/3

n2/3
.

Hence, when we choose the optimal h∗, the risk decreases to zero at a rate of

n−2/3. It means the histogram density estimator converges with a rate of n−1/3,

which is slower than a rate of n−1/2 from the parametric density estimation.

1.2.2.3 Kernel density estimation

A kernel density estimation is another simple and well known nonparametric

density estimation. A kernel is a smooth function K such that K(x) ≥ 0, ∫ K(x)dx =

9



1, ∫ xK(x)dx = 0, and σ2
K = ∫ x2K(x)dx > 0. There are several choices of kernel such

as

Gaussian kernel: K(x) = 1√
2π
e−x

2/2,

boxcar kernel: K(x) = 1
21[−1,1](x),

Epanechnikov kernel: K(x) = 3
4(1 − x2)1[−1,1](x).

One-dimensional density estimation of n observations with a bandwidth h and a

kernel K can be written in this form

f̂n(x) =
1

nh

n

∑
i=1

K (x − xi
h

) .

An effect of the bandwidth selection can be clearly seen in Figure 1.1. Furthermore,

the risk function for a kernel estimator is presented in the following theorem.

Theorem 1.3. (Wasserman [2006], Theorem 6.28) Let R = ∫ E(f(x)− f̂(x))2dx be

the integrated risk. Assume that f ′′ is absolutely continuous and that ∫ (f ′′′(x))2dx <

∞. Then,

R(f̂n, f) =
1

4
σ4
Kh

4
n∫ (f ′′(x))2dx + ∫

K2(x)dx
nh

+O ( 1

n
) +O(h6

n), (1.4)

where σ2
K = ∫ x2K(x)dx. The optimal h∗ that minimizes (1.4) is

h∗ = ( ∫ K(x)2dx

n(∫ x2K(x)dx)2 ∫ (f ′′(x))2dx
)

1/5

.

Plug in h∗ into (1.4), we get

R(f̂n, f) = O(n−4/5).

10



Therefore, the kernel density estimator converges with a rate of n−2/5, which is

faster than n−1/3 from the histogram. However, it is still slower than n−1/2 from the

parametric MLE.

For d > 1, suppose we have n i.i.d random variables Xi = (Xi1, . . . ,Xid); i =

1, . . . , n, then the density estimator with a bandwidth matrix H is given by

f̂n(x) =
1

n

n

∑
i=1

KH(x − xi), (1.5)

where H is a d×d symmetric and positive definite matrix. K is a multivariate kernel

function with KH(x) = ∣H ∣−1/2K(H−1/2x). A popular kernel function is a multivariate

Gaussian kernel, which can be written in this form

KH(x) = (2π)−d/2∣H ∣−1/2 exp{−1

2
xTH−1x} ,

where H plays the role of a covariance matrix. From (1.5), to avoid building the

bandwidth matrix H, we can estimate f at x = (x1, . . . , xd) by using the following

formula

f̂n(x) =
1

nh1⋯hd

n

∑
i=1

{
d

∏
j=1

K (
xj − xij
hj

)} ,

where h1, . . . , hd denote the bandwidth for each dimension.

For multivariate kernel estimator, the risk function can be expressed as

R(f̂n, f) ≈
1

4
σ4
K

⎡⎢⎢⎢⎣

d

∑
j=1

h4
j ∫ f 2

jj(x)dx +∑
j≠k

h2
jh

2
k ∫ fjjfkkdx

⎤⎥⎥⎥⎦
+

(∫ K2(x)dx)d
nh1⋯hd

,
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where fjj denote the second partial derivative of f . The optimal bandwidth satisfies

hi = O(n−1/(d+4)). Therefore, the risk converges to zero at a rate O(n−4/(d+4)), which

leads us to the density estimator with a rate of convergence n−2/(d+4).

To summarize, one-dimensional kernel density estimator converges with the rate

n−2/5, which is slower than n−1/2 of the parametric ML estimator. On the other hand,

the rate of convergence of multivariate kernel density estimator is n−2/(d+4), which is

the slowest density estimation method in our work.

1.2.3 Log-concave density estimation

Suppose we observe n independent random variables X = {X1,X2, . . . ,Xn} from

an unknown density f ∶ R ↦ [0,∞) where f(x) is said to be a univariate log-

concave density if f(x) = expϕ(x) for some concave functions ϕ ∶ R ↦ [−∞,∞).

The corresponding cumulative distribution function of f is F (x) = ∫
x

−∞
f(r)dr.

A maximum likelihood estimation (MLE) of the log-concave density gets more

attention in recent years, because its ML estimator always exists and is unique, (see

Dümbgen and Rufibach [2009]). The MLE of log-concave densities has an obvious

advantage above the kernel density estimation, because it is fully automatic and it

does not need any smoothing parameters. We can clearly see from Figure 1.1 that the

log-concave density estimation works better than the kernel density estimation. The
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studies of log-concave distributions become more popular - see, for example, the work

from Walther [2002]. This is the first paper that discussed the log-concave distribu-

tions in a statistical aspect. They worked on one kind of shape restricted maximum

likelihood inference, called log-concavity. Walther [2009] showed a good explanation

of log-concave distributions and an application in a clustering problem. Moreover,

the class of log-concave distributions contains various common parametric distribu-

tions such as Gaussian, Γ(α,β) with α ≥ 1, β(a, b) with both parameters greater

than 1, Weibull(α) with α ≥ 1, Laplace, and exponential distributions. Moreover,

Dümbgen and Rufibach [2009] showed the uniform consistency of a nonparametric

ML estimator for one-dimensional log-concave densities. Balabdaoui et al. [2009,

Theorem 2.1, page 1305] also showed that the log-concave density estimator f̂n and

the piecewise linear ϕ̂n converge pointwise to the true density f and the true ϕ0

with the rate n−2/5 and characterized the limiting distributions. Furthermore, Doss

and Wellner [2016, Theorem 3.2, page 9] proved that the univariate log-concave ML

estimator has a global rate of convergence at a rate n−2/5 under the Hellinger distance.

For multidimensional log-concave distributions, Cule [2009] studied the limiting

behavior of the log-concave ML estimator and conjectured that the rate of conver-

gence with respect to the Hellinger bracketing entropy is n−2/(d+4) for all d. This rate

is the same as the convergence rate from multivariate kernel density estimator. Since

13



Figure 1.1: Kernel density estimation of standard Gaussian with several bandwidth

selections in the same graph of using log-concave density estimation and true density

this rate depends on d, the multidimensional log-concave MLE is computationally

intensive especially when d is high. Moreover, Cule et al. [2010] presented some

attractive theoretical properties of the multivariate log-concave MLE both when the

model is log-concave and when it is a misspecified model.

1.2.4 Semiparametric density estimation

In between parametric and nonparametric models, we have a semiparametric

model, which is a statistical model in which some parameters do not belong to a

Euclidean space but lie in an infinite dimensional space. A log-concave space, which

is a nonparametric space, is the infinite dimensional space that we work on. In order
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to estimate the joint density function, we integrate the parametric copula model

together with the univariate log-concave densities.

As we discussed in the previous section that finding the multivariate log-concave

density estimator is computationally intensive which is because of the curse of dimen-

sionality problem. To overcome this issue, we use the univariate log-concave density

estimation and the copula model as our proposed density estimation method. Hence,

our proposed semiparametric model is given by

f(x1, . . . , xd;F1, . . . , Fd, θ) = c(F1(x1), . . . , Fd(xd); θ)
d

∏
j=1

expϕj(xj).

Estimating this model will be done in two stages where the first stage is to find the

log-concave ML estimators for each marginal density separately. Then, we estimate

the copula parameter. This is a reason why the proposed method performs faster

than the multivariate log-concave MLE, since it is not depend on the dimension.

Note that all marginals do not depend on the copula parameters. A log-likelihood

function for estimating the copula parameters is given by

n

∑
i=1

log c(F̂1(x1), . . . , F̂d(xd); θ). (1.6)

θ̂ from maximizing (1.6) is also the θ that would solve

n−1
n

∑
i=1

∂θ log c(F̂1(x1), . . . , F̂d(xd); θ) = 0. (1.7)
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Hence, estimating the copula parameter can be viewed as a Z-estimation, which Z

denote the zero from setting the above score function equals to zero. Moreover, the

copula estimator from (1.7) can be called as a “Z-estimator”.

Furthermore, we prove that the Z-estimator is consistent and converges at rate

n−1/2. Moreover, the joint density estimator converges at rate n−2/5 regardless of

dimension. This rate makes our proposed semiparametric density estimator con-

verges faster than the multivariate log-concave MLE and multivariate kernel density

estimation. However, it is still slower than the parametric model.

1.3 Rate of convergence

Table 1.1 shows the rates of convergence for all density estimators that have been

discussed in the previous sections.
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Table 1.1: Convergence rate for density estimators

Estimator from Rate of convergence

parametric model n−1/2

copula model n−1/2

log-concave (d = 1) n−2/5

kernel (d = 1) n−2/5

histogram n−1/3

log-concave (d > 1)∗ n−2/(d+4)

kernel (d > 1) n−2/(d+4)

Note: * is a conjectured rate of convergence for all d.

1.4 Outline

The organization of this thesis is as follows. In Chapter 2, we discuss the log-

concave density estimation both in the univariate and multivariate cases. The avail-

able R packages, logcondens and LogConcDEAD, that use to calculate the log-concave

ML estimators will be mentioned with details of their algorithms. We also show

the theoretical parts, which are pointwise limiting distributions and global rates

of convergence, for the log-concave ML estimators. Moreover, drawbacks of using
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LogConcDEAD package to estimate the multivariate log-concave ML estimators are

presented in the form of computational time.

In Chapter 3, we present the copula model to solve the curse of dimensionality

problem. This chapter will talk about several copula families such as Gaussian

copula and Archimedean copula families. Note that we only focus on parametric

copula families. The details of semiparametric Z-estimation will be summarized, and

the two-stage estimation method will also be discussed. Moreover, some literature

reviews about the asymptotic relative efficiency of the two-stage estimation method

and the MLE method will be presented in this chapter too.

Some simulation studies are shown in Chapter 4. The performance on the den-

sity estimation of our proposed method and other parametric, nonparametric and

semiparametric methods will be presented.

The main theorems and proofs are in Chapter 5. We will show that the copula

estimators under the log-concave marginals satisfy the consitency property and has

√
n convergence rate. Therefore, the joint density estimator by using the copula

model with the log-concave marginals converges at a rate n−2/5, irrespective of the

dimension. Some necessary regularity conditions and assumptions for proving the

main theorems also be demonstrated at the end of this chapter.

We also work on a classification problem with real data example which will be
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shown in Chapter 7 where the background of finite mixture models and expectation-

maximization (EM) algorithm will be presented in Chapter 6. Some further exten-

sions will be discussed in Chapter 8. In this chapter, we focus on vine copulas, which

allow us to account for the multiple dependence structures.

Other than the main part of this thesis, we work on another applied project.

This project works on the univariate log-concave densities. We do some simulation

studies on clustering problems and proposed a new criterion for selecting the number

of subpopulations. We call this criterion as a “proposed BIC”. This application is

presented in Chapter 9.
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2 Log-concave density estimation

2.1 Definitions and properties

A function f is said to be concave if

f(λx + (1 − λ)y) ≥ λf(x) + (1 − λ)f(y)

for all x, y ∈ Rd and λ ∈ (0,1). We also say that a density f will be a log-concave

density if log f is concave. Let X1,X2, . . . ,Xn be independent random variables from

some unknown densities f ∶ R ↦ [0,∞), the log-concave density function can be

expressed as

f(x) = expϕ(x). (2.1)

From (2.1), we also have log f(x) = ϕ(x), for some concave functions ϕ ∶ R →

[−∞,∞). The cumulative distibution function (CDF) can be represented as F (x) =

∫
x

−∞
f(r)dr. The following are examples of log-concave distributions.
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Example 2.1. Gaussian distribution

f(x) = 1

2πσ2
exp{− 1

2σ2
(x − µ)2} ; µ ∈ [−∞,∞], σ2 > 0

log f(x) = − log(2πσ2) − 1

2σ2
(x − µ)2

∂x log f(x) = −(x − µ)
σ2

∂2
x log f(x) = − 1

σ2
concave for all x

Example 2.2. Weibull distribution

f(x) = k
λ
(x
λ
)
k−1

e−(x/λ)
k

; x ≥ 0, k, λ > 0

log f(x) = log
k

λ
+ (k − 1) log

x

λ
− (x

λ
)
k

∂x log f(x) = k − 1

x
− k
λ
(x
λ
)
k−1

∂2
x log f(x) = −k − 1

x2
− k(k − 1)

λ2
(x
λ
)
k−2

not concave when k < 1

F (x) = 1 − e−(x/λ)k ; x ≥ 0, k, λ > 0

logF (x) = (x
λ
)
k

∂x logF (x) = k
λ
(x
λ
)
k−1

∂2
x logF (x) = k(k − 1)

λ2
(x
λ
)
k−2

concave when k < 1
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Example 2.3. gamma distribution

f(x) = βα

Γ(α)
xα−1e−βx; α,β > 0

log f(x) = α logβ − log Γ(α) + (α − 1) logx − βx

∂x log f(x) = α − 1

x
− β

∂2
x log f(x) = 1 − α

x2
concave for α ≥ 1

Moreover, the log-concave shape constraint is attractive for various reasons. Some

of them are as follows.

1. Most common parametric distributions such as Gaussian, gamma with shape

parameter ≥ 1, beta with both parameters ≥ 1, exponential, Laplace, Weibull

with shape parameter ≥ 1 are log-concave. In contrast, some distributions are

not log-concave for all values of parameters, for instance, Cauchy, log-normal,

F, and Student’s t-distribution.

2. The cumulative distribution function (CDF) of all log-concave functions are

log-concave. Nevertheless, some non log-concave densities have log-concave

CDFs such as log-normal, gamma when shape parameter < 1, and Weibull

when shape parameter < 1, (see Example 2.2).

3. All marginal and conditional of log-concave densities are again log-concave.

The reverse is not necessarily true.
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4. All log-concave densities are unimodal, but not all unimodals are log-concave.

According to Birgé [1997, Definition 1], a density f of the realines is called

unimodal if there exists some number M (not necessary unique) such that f

is nondecreasing on (−∞,M) and nonincreasing on (M,+∞). Any such M is

called a mode of the density. The density f is said to be decreasing if f = 0 for

x <M and increasing if f = 0 for x >M .

5. Log-concave is called a strongly unimodal density. (Ibragimov [1956]) A distri-

bution function is called strong unimodal if its composition with any unimodal

distribution function is unimodal.

6. The sum of two independent log-concave random variables is log-concave whereas

a unimodal class does not satisfy this attractive property.

7. The nonparametric ML estimator of the log-concave density always exists and

is unique. The corresponding theorem is shown in Dümbgen and Rufibach

[2009, Theorem 2.1] and its proof is in Dümbgen et al. [2011, Section 2]. On

the contrary, the nonparametric ML estimator of a unimodal density does not

exist, see Birgé [1997].

8. Balabdaoui et al. [2009] proved that the pointwise limiting distribution is

n2/5 (f̂n(x0) − f0(x0)), where f̂n is the univariate log-concave ML estimator.
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Furthermore, Doss and Wellner [2016] showed that the univariate log-concave

ML estimator has a global rate of convergence at a rate of n−2/5. This rate was

proved with respect to the Hellinger metric. On the other hand, the nonpara-

metric ML estimator of the unimodal density converges at a slower rate than

the log-concave ML estimator. The rate is n−1/3.

9. The rate of convergence for univariate log-concave density estimator is better

than n−2/(d+4), which is the conjectured rate of multivariate log-concave density

estimator and multivariate kernel density estimator.

10. The use of log-concave densities appears in several applications. Chang and

Walther [2007] presented clustering with a mixture model. They extend an

EM algorithm to work with the univariate log-concave densities and compare

the simulation results with the Gaussian mixture model (GMM). It shows that

modeling with the log-concave densities has smaller misclassification cases than

the GMM especially when the distributions are non-normal.
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2.2 One-dimensional log-concave density

2.2.1 Log-concave maximum likelihood estimation

According to the density in (2.1), a log-likelihood function can be expressed as

`(ϕ) = 1

n

n

∑
i=1

ϕ(xi).

Then, we add a Lagrange term to `(ϕ) in order to relax a constraint of f being a

density. Moreover, the objective function in (2.2) will be set to maximize over all

concave functions and will still satisfy the equation of ∫ exp ϕ̂(t)dt = 1, see Silverman

[1982]. Therefore, the modified log-likelihood function is given by

`mod(ϕ) =
1

n

n

∑
i=1

ϕ(xi) − ∫
R

expϕ(t) dt. (2.2)

Hence, the nonparametric ML estimator of ϕ is the maximizer of the function

(2.2) over all concave functions, which can be represented as

ϕ̂n = argmax
ϕ concave

`mod(ϕ).

We also show a comparison between the estimated density from the log-concave ML

estimator and the true density in Figure 2.1. Moreover, Dümbgen and Rufibach

[2009] showed that there exists a unique concave function ϕ̂n that maximizes the

`mod(ϕ) function. In the next section, we will present some properties of ϕ̂n.
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Figure 2.1: Estimated density from log-concave MLE with a true density of standard

Gaussian distribution

2.2.2 Log-concave density estimator ϕ̂n

We denote Sn as a set of all knots from some continuous piecewise linear functions

gn ∶ [X(1),X(n)] ↦ R, where X(1) < ⋅ ⋅ ⋅ <X(n) denote an order statistics of X1, . . . ,Xn.

The set of knots can be represented as

Sn(gn) ∶= {u ∈ (X(1),X(n)) ∶ g′n(u−) > g′n(u+)} ∪ {X(1),X(n)}. (2.3)

As we can see, knots occur when the function changes slope. The minimum and

maximum observations always are knots. The density estimation is of the form

f̂n(x) = exp ϕ̂n(x). Figure 2.2 shows the estimated logarithm function of standard

Gaussian distribution where its knots represent at the vertical dashed line. More-
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over, f̂n = 0 outside the data range since ϕ̂n = −∞. The followings are some other

characterizations of knots.

� ϕ̂n occur at some points of data in [X(1),X(n)]. This is different from k-

monotone density for k > 1 where the knots always lie between observations.

� According to Dümbgen and Rufibach [2009], for x ≥X(1), let

F̂n(x) ∶= ∫
x

X
(1)

exp ϕ̂n(u)du,

Ĝn(x) ∶= ∫
x

X
(1)

F̂n(u)du,

Gn(x) ∶= ∫
x

X
(1)

Fn(u)du = ∫
x

−∞
Fn(u)du.

Then, the concave function ϕ̂n is the ML estimator of the log-density ϕ0 if and

only if

Ĝn(x)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

≤ Gn(x) ∀x ≥X(1),

= Gn(x) if x ∈ Sn(ϕ̂n).

� A consequence from the previous characterization of ϕ̂n is that the estimator

of the distribution function F̂n is close to the empirical distribution function

Fn on Sn(ϕ̂n).
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Figure 2.2: Logarithm density of standard Gaussian distribution with the vertical

dotted lines represent the locations of knots

2.2.3 A computational aspect of the univariate log-concave MLE

Theorem 2.4. [Dümbgen and Rufibach, 2009] The nonparametric ML estimator

ϕ̂n exists and is unique. It is linear on all intervals [Xi,Xi+1], 1 ≤ i < n. Moreover,

ϕ̂n = −∞ on R/[X(1),X(n)].

From Theorem 2.4, expϕ(t) from (2.2) can be written as a linear function for

each interval of [Xi,Xi+1]. We define Si+1 as a slope of x ∈ [Xi,Xi+1]. Hence,

Si+1 =
ϕi+1 − ϕi
xi+1 − xi

.
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Then, the second term of `mod(ϕ) in (2.2) can be expressed as

∫
R

expϕ(t) dt =
n−1

∑
i=1
∫

xi+1

xi
eϕi+(t−xi)Si+1 dt

=
n−1

∑
i=1

(eϕi+1 − eϕi) ( xi+1 − xi
ϕi+1 − ϕi

) .

Now we can write (2.2) in an explicit form, which is

`∗(ϕ) = 1

n

n

∑
i=1

ϕ(xi) −
n−1

∑
i=1

(eϕi+1 − eϕi) ( xi+1 − xi
ϕi+1 − ϕi

) .

Finding one-dimensional log-concave ML estimator is quite convenient because

there is an available package in R called logcondens. This package is built by

Dümbgen and Rufibach [2011] and can be accessible from CRAN at http://CRAN.

R-project.org/package=logcondens. According to their work, they presented two

algorithms for calculating the univariate log-concave ML estimator, which are itera-

tive convex minorant algorithm (ICMA) and active set algorithm (ASA). According

to Walther [2009], ASA appears to be an efficient algorithm to calculate the MLE

nowadays. Thus, we decide to use ASA, which is implemented by Dümbgen et al.

[2011], in our thesis. The ASA is a useful tool from optimization theory, see Fletcher

[1987]. The main idea of this algorithm is that it solves a finite number of uncon-

strained optimization problems, see Dümbgen et al. [2011, Section 3]. A function for

finding the log-concave ML estimator in logcondens package with ASA is activeSet-

LogCon. An example code can be found in Appendix A.3.1.
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2.2.4 Auxiliary results for d = 1

Gradient and Hessian matrices of f are also important to be studied. Since the

expressions of these two matrices are complicated, we introduce a new auxiliary

function J , which can rewrite the partial derivatives of (2.2) in terms of the J

functions. The following J functions will be discussed again in Chapter 9 when

we calculate a criterion for choosing the number of subpopulations in the clustering

problem. We will show the expressions of these two matrices only for one-dimensional

data. First, the modified log-likelihood function can be represented in the term of J

function, which is given by

`∗(ϕ) = 1

n

n

∑
i=1

ϕ(xi) −
n−1

∑
i=1

J(ϕi, ϕi+1)(xi+1 − xi).

The J function can be expressed as

J(ϕj, ϕk) = J(ϕk, ϕj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

exp(ϕk)−exp(ϕj)

ϕk−ϕj
if ϕj ≠ ϕk,

exp(ϕj) if ϕj = ϕk,

(2.4)

with the fact that J(ϕj, ϕk) = exp(ϕj)J(0, ϕk − ϕj). In addition, J(0,0) = 1 and

J(0, r) = exp(r)−1
r . Letting Jpq(ϕj, ϕk) = ∂pϕj∂

q
ϕkJ(ϕj, ϕk) and ∆j = xj+1 − xj, then the
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gradient and Hessian matrices of `∗(ϕ) when we have m knots are given by

∂ϕj`
∗(ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n −∆1J10(ϕ1, ϕ2) for j = 1,

1
n −∆jJ10(ϕj, ϕj+1) −∆j−1J01(ϕj−1, ϕj) for 2 ≤ j <m,

1
n −∆n−1J01(ϕm−1, ϕm) for j =m.

(2.5)

−∂ϕj∂ϕk`∗(ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆1J20(ϕ1, ϕ2) for j = k = 1,

∆jJ20(ϕj, ϕj+1) −∆j−1J02(ϕj−1, ϕj) for 2 ≤ j = k <m,

∆n−1J02(ϕn−1, ϕm) for j = k =m,

∆jJ11(ϕk, ϕj) for 1 < j = k + 1 ≤m,

0 for ∣j − k∣ > 1.

(2.6)

More details of J functions are in Appendix A.2.

2.2.5 Pointwise limiting distributions of the log-concave ML estimator

Balabdaoui et al. [2009] derived the pointwise limiting distributions of nk/(2k+1) (f̂n(x0) − f0(x0)),

nk/(2k+1) (ϕ̂n(x0) − ϕ0(x0)) and also nk/(2k+1) (f̂ ′n(x0) − f ′0(x0)), nk/(2k+1) (ϕ̂′n(x0) − ϕ′0(x0)),

where k is the smallest kth derivative of ϕ which ϕ(k) ≠ 0. They showed that these

limiting distributions depend on the lower invelope of an integrated Brownian motion

process starting at 0 minus a drift term tk+2, which depends on the value of k. Fix
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x0 ∈ R, let W (t) be a standard Brownian motion starting from zero and define

Yk(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
t

0 W (s) ds − tk+2, if t ≥ 0,

∫
0

t W (s) ds − tk+2, if t < 0.

(2.7)

Let f0 = expϕ0 denote the true density and satisfies the following assumptions:

(a1) The density function f0 ∈ the class of log-concave densities Flcd.

(a2) f0(x0) > 0.

(a3) The function is at least twice continuously differentiable in a neighborhood of

x0.

(a4) If ϕ
′′

0(x0) ≠ 0, then k = 2, see Groeneboom et al. [2001a] and Groeneboom et al.

[2001b].

(a5) The random continuous function H in Theorem 2.5 satisfying Hk(t) ≤ Yk(t)

for all t ∈ R. Thus, the function H is everywhere below Y .

(a6) Hk has a second derivative in which H ′′
k is concave. On top of that, Hk(t) =

Yk(t), if the slope of H
′′

2 is strictly decreasing at t.

(a7) With probability 1, H is three times differentiable at t = 0 and ∫R {Y (t) −H(t)}dH ′′′(t) =

0.
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According to (a4), we have ϕ
′′

0(x0) ≠ 0, so k = 2. Therefore, we have the process

of Y as

Y2(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∫
t

0 W (s)ds − t4, if t ≥ 0,

∫
0

t W (s)ds − t4, if t < 0.

Moreover, (a1) to (a7) are also true for k = 2. Hence, we get Theorem 2.5.

Theorem 2.5. [Balabdaoui et al., 2009, Corollary 2.2, page 1306] Suppose that

assumptions (a1) - (a7) hold. Then,

n2/5 (f̂n(x0) − f0(x0))
d→ c2(x0, ϕ0)H

′′

2 (0)

and

n2/5 (ϕ̂n(x0) − ϕ0(x0))
d→ C2(x0, ϕ0)H

′′

2 (0),

where H
′′

2 (0) is the second derivative at 0 of the invelope H of Y . The constant c2

and C2 are given by

c2(x0, ϕ0) = ({f0(x0)}3 ∣ϕ′′

0(x0)∣
24

)
1/5

and

C2(x0, ϕ0) = ( ∣ϕ′′

0(x0)∣
24{f0(x0)}2)

1/5

,

where ϕ
′′

0(x0) denote the second derivative of ϕ0(x0).
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2.2.6 Global rates of convergence for the log-concave ML estimator

Doss and Wellner [2016] studied the global rate of convergence for one-dimensional

log-concave ML estimator. They proved that the log-concave ML estimator converges

with a rate of n−2/5 with respect to the Hellinger distance. Let Ω be any measur-

able space, and if f̂n, f0 are the estimated and true densities of the measures P ,

respectively. The Hellinger distance, dH is given by

dH(f̂n, f0) = [∫
Ω
(
√
f̂n −

√
f0)

2

dP]
1/2

. (2.8)

Let logN[](ε,FM,lcd, dH) denote a bracketing entropy of an appropriate subclass

FM,lcd of log-concave densities Flcd with respect to the Hellinger distance dH , where

FM,lcd = {f ∈ Flcd ∶ sups∈R f(s) ≤ M and 1/M ≤ f(s) if s ∈ [−1,1]}. More details of

the bracketing entropy can be found in Definition A.12. Doss and Wellner [2016,

Theorem 3.1, page 8] showed that this bracketing entropy obtains a bound of the

form

logN[](ε,FM,lcd, dH) ≤ AMε
−1/2, (2.9)

where the constant AM depends on M and ε > 0. The equation (2.9) is the main

result to obtain the rate of convergence for the log-concave ML estimator. Under this

bound, we get Theorem 2.6, which is similar to Doss and Wellner [2016, Theorem

3.2].
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Figure 2.3: Tent-like structure for the logarithm of MLE when d = 2 (Figure from

Cule et al. [2010])

Theorem 2.6. Suppose that f̂n is the univariate log-concave ML density estimator

of f0, then

dH(f̂n, f0) = Op(n−2/5). (2.10)

2.3 Multi-dimensional log-concave density

2.3.1 Log-concave maximum likelihood estimation

In multivariate cases, the log-concave MLE was studied by Cule et al. [2010] and

Cule [2009]. Cule et al. [2010] showed that with probability one, the log-concave ML

estimator f̂n of f0 again exists and is unique. Computation of the multivariate log-
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concave ML estimator is different from univariate log-concave ML estimator because

we cannot write an objective function in the terms of slopes. Figure 2.3 shows an

example of a two-dimensional log-concave ML estimator in a log-scale. We can view

this ML estimator as pulling a tent or a sheet in the vertical way, where the heights

of the tent poles represent the values of log f̂n, which is built from bivariate data that

are the black dots in the Figure. However, it will be harder to visualize when we

deal with data more than two dimensions, because the illustrations are not obvious.

Let X1, . . . ,Xn be random samples from f0 on Rd and denote Cn = conv(X1, . . . ,Xn)

as a convex hull of data. According to Cule et al. [2010], an objective function for

finding the ML estimator is

σ(y) = − 1

n

n

∑
i=1

yi + ∫
Cn

exp (h̄y(x))dx. (2.11)

Theorem 2.7. [Cule et al., 2010, Theorem 3] The function σ is a convex function.

It has a unique minimum at y∗ ∈ Rn, say, and log f̂n = h̄y∗.

According to Cule et al. [2010], they called log f̂n as a ‘tent function’, which is a

function h̄y ∶ Rd → R for a fixed vector y = (y1, . . . , yn) ∈ Rn. h̄y is a least concave

function where

h̄y(x) = inf{h(x) ∶ h is concave, h(Xi) ≥ yi, i = 1, . . . , n}.
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2.3.2 A computational aspect of the multivariate log-concave ML esti-

mator

The idea is to use Shor’s r-algorithm, which presented in Cule et al. [2010]. It

is built for solving a convex and non-differentiable problems. This algorithm is to

generate a sequence yt, which σ(yt) →min
y∈Rn

σ(y) as t→∞. σ(yt) and ∂σ(yt) will be

required at each iteration where ∂σ(yt) represents the direction moving from yt to

yt+1.

Maximizing the multivariate log-concave objective function can be viewed as the

infinite dimensional optimization problem. It can be reduced to the problem of

maximizing function h̄y for some suitable vector y. In other words, we can imagine

that the function h̄y is when we place the pole height yi at Xi and pull the sheet

over the top of the pole. Thus, a key for finding the log-concave ML estimator for

multidimensional data is to find an appropriate vector y∗ ∈ Rn, where y∗ comes from

minimizing σ(y) in (2.11). From this minimization problem, we will get a unique

y∗ = (y∗1 , . . . , y∗n) ∈ Rn.

In order to calculate σ(y), we need to evaluate ∫Cn exp (h̄y(x))dx. We can write

the closed form of this integral by triangulating the convex hull of data, Cn. An

example of the triangulations for d = 2 can be found in Figure 2.3. Each simplex

represents an affine function of log f̂n. This step uses much computational time to
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find a proper y∗ which makes h̄y∗ as a tent function that all tent poles touch the

tent.

It can also be noticed that there is an available package in R that builts from

Chen et al. [2015] for finding the multidimensional log-concave ML estimator. The

package is called LogConcDEAD and the useful function is “mlelcd”. In this function,

the stopping criteria after the (r + 1)th iteration are given by

∣yr+1
i − yri ∣ ≤ δ∣yri ∣ for i = 1, . . . , n,

∣σ(yr+1) − σ(yr)∣ ≤ ε∣σ(yr)∣,

∣ ∫
Cn

exp h̄yr(x)dx − 1∣ ≤ η,

for some small values of δ, ε, and η.

In the algorithm, these tolerances has been set to δ = 10−4, ε = 10−8, and η = 10−4.

However, these stopping criteria can be set by a user in the mlelcd function with

parameters ytol, sigmatol, and integraltol, respectively. An example code for finding

the multivariate log-concave ML estimator by using the LogConcDEAD package is in

Appendix A.3.2.

2.3.3 Rate of convergence

Cule [2009] showed that the multivariate ML estimator f̂n is a consistent esti-

mator of the true density f0. Moreover, they conjectured that the optimal rate of
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convergence with respect to the Hellinger distance is n−2/(d+4).

Theorem 2.8. [Cule, 2009, Theorem 5.11] Let f0 be a log-concave density and let

f̂n denote the log-concave maximum likelihood estimator. Then, with probability 1,

dH(f̂n, f0) → 0 as n→∞.

Moreover, Cule [2009, page 97] conjectured that dH(f̂n, f0) = Op(δn) where

δn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−2/(d+4) when d < 4,

n−1/4(logn)1/2 when d = 4,

n−1/d when d > 4.

Then, they use the results from Cule [2009, Section 5.2.6] and conjectured that

dH(f̂n, f0) = Op(n−2/(d+4)) for all d.

Furthermore, Kim and Samworth [2016, Theorem 5, page 2762] proved that the

actual rates of convergence for the log-concave ML estimator with respect to the

Hellinger distance converges up to the logarithmic factors. However, they stated the

results only for d ≤ 3.

Theorem 2.9. [Kim and Samworth, 2016, Theorem 5, page 2762] Let X1, . . . ,Xn

be i.i.d. random vectors with density f0 ∈ Fd, and let f̂n denote the corresponding
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log-concave ML estimator. Then,

dH(f̂n,Fd) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(n−2/5) if d = 1,

O(n−1/3
√

logn) if d = 2,

O(n−1/4
√

logn) if d = 3

where Fd denote the set of upper semi-continuous, log-concave densities on Rd.

2.3.4 Computational time

As we mentioned before, the conjectured rate of convergence of the multivari-

ate log-concave ML estimator is n−2/(d+4), which is computationally intensive. The

running time for four-dimensional data with sample size 1,000 is 18 minutes for a

1.60GHz/8GB RAM desktop PC. Unlike, for one-dimensional data, finding the ML

estimator with the ASA in the logcondens package takes under one second. Because

it is a time-consuming algorithm, we propose a new method that works well with

multivariate density estimation and is also applicable in practice. This method will

combine the knowledge of one-dimensional log-concave MLE with a copula model,

which will be presented in the next Chapter.
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3 Dependence modeling with copulas

3.1 Introduction

Because of the computationally intensive problem when we find the multivariate

log-concave ML estimator with Shor’s r-algorithm, we propose another useful method

that works with the “copula model”. Copula can use to model the dependencies

between variables and allows us to form a multivariate model in which its margins

are modeled separately from the dependence structure. We can find the estimators

of each marginal density separately. Since our marginal densities are univariate log-

concave densities, their ML estimators give us a better convergence rate than the

multivariate log-concave ML estimators. This is how the convergence rate can be

improved.

Copula model has been widely used in several fields such as economics and finance,

see Patton [2012]. He applied the copula model with time series of the stock index

returns and also presented the goodness of fit test for choosing an appropriate copula
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family. Rémillard et al. [2012] presented the copula model with Archimedean copulas

to work with the multivariate time series on the Canadian/US exchange rate and the

values of oil in the future ten-year period.

In this chapter, we show how to find the estimators under the copula model. The

estimation can be done in two steps. First, we estimate the univariate log-concave

marginals. Then, we estimate the copula parameters. This two-stage estimation

is called inference function for margins (IFM). As we mentioned before, univariate

log-concave ML estimator gives the better rate of convergence than multivariate log-

concave ML estimator. Therefore, modeling under the copula model improves the

performance of the density estimation in terms of the convergence rate. Moreover,

it gaurantees that the convergence rate of our proposed method is much faster than

n−2/(d+4), which is from the conjectured rate of multivariate log-concave ML esti-

mator. However, our proposed rate is never better than the convergence rate of

parametric estimator which is n−1/2.

3.1.1 Definitions and properties

Copula is a multivariate function with uniform marginal distribution functions.

Moreover, it can be called as a uniform representation or a dependence function,

which describes the dependencies between each margin. Sklar [1959] introduced a
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concept of copula to work with a d-dimensional distribution function F . We can split

F into two parts, the marginal distribution functions Fj and the copula distribution

function C with its parameters θ ∈ Rk.

Definition 3.1. The joint distribution function F is a function with its domain in

Rd which

� F is nondecreasing.

� F1, . . . , Fd are distribution functions.

� F has margins F1, . . . , Fd such that Fj(x) = F (∞, . . . , xj, . . . ,∞) for j = 1, . . . , d.

� F (x1, . . . ,−∞, . . . , xd) = 0 especially for d = 2. F (x,−∞) = F (−∞, y) = 0 and

F (∞, . . . ,∞) = 1.

Theorem 3.2. (Sklar’s theorem) Let X = (X1, . . . ,Xd) be a random vector with dis-

tribution function F and F ∈ F(F1, . . . , Fd) be a d-dimensional distribution function

with margins F1, . . . , Fd. Then there exists a d-copula C with uniform margins such

that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (3.1)

Theorem 3.2 tells us that every joint distribution function F has at least one cop-

ula function. Moreover, if C is a copula, then it is the distribution of a multivariate
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uniform random vector [Joe, 1997]. Note that a copula, C, is defined as a cumulative

distribution function with support in [0,1]d. Moreover, a copula density function of

the copula distribution function C is given by

c(F1, . . . , Fd) =
∂dC(F1, . . . , Fd)

∂F1⋯∂Fd
. (3.2)

Furthermore, some properties of C are as follows.

1. The copula function is always unique if all marginal functions are continuous.

Conversely, if C is a d-copula with distribution function F1, . . . , Fd, then F

from (3.1) is a d-dimensional distribution function with margins F1, . . . , Fd.

2. For Fj ∈ [0,1]; j = 1, . . . , d, when ∂dC(F1, . . . , Fd)/(∂F1⋯∂Fd) exists, C is ab-

solutely continuous.

3. Every copula C is continuous and satisfies the following inequality

∣C(F1, . . . , Fd)−C(G1, . . . ,Gd)∣ ≤ ∑dj=1 ∣Fj−Gj ∣ when ∀1 ≤ j ≤ d, and 0 ≤ Fj,Gj ≤

1.

4. For all 1 ≤ j ≤ d, 0 ≤ Fj ≤ 1, we have Cj(Fj) = C(1, . . . ,1, Fj, . . . ,1, . . . ,1) = Fj

and Cj(Fj) = C(F1, . . . ,0, . . . , Fj, . . . , Fd) = 0.

5. If g1, . . . , gd are monotone, nondecreasing mappings of R in itself, any copula

function of (X1, . . . ,Xd) is also a copula function of (g1(X1), . . . , gd(Xd)).
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6. For a bivariate copula, there are some interesting properties as follows.

� C(1, u) = C(u,1) = u and C(0, u) = C(u,0) = 0 for all u ∈ [0,1].

� C is nondecreasing in each variable.

� For every s, t, u, v ∈ [0,1], such that s ≤ t and u ≤ v, then

C(t, v) −C(t, u) −C(s, v) +C(s, u) ≥ 0.

� For every s, t, u, v ∈ [0,1], C satisfies the following Lipschitz condition

∣C(t, v) −C(s, u)∣ ≤ ∣t − s∣ + ∣v − u∣.

Moreover, copulas have their universal bound called “Fréchet-Hoeffding bounds

inequality” as given in Theorem 3.3.

Theorem 3.3. Let C be any d-copula with F1, . . . , Fd be marginal distribution func-

tions with support in [0,1]d. Then,

W (F1(x1), . . . , Fd(xd)) ≤ C(F1(x1), . . . , Fd(xd)) ≤ M(F1(x1), . . . , Fd(xd))

where W (F1(x1), . . . , Fd(xd)) = max(F1(x1) + ⋅ ⋅ ⋅ + Fd(xd) − d + 1,0) and

M(F1(x1), . . . , Fd(xd)) = min(F1(x1), . . . , Fd(xd)). Moreover, an independence cop-

ula can be expressed as Π(F1(x1), . . . , Fd(xd)) = F1(x1)⋯Fd(xd).
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Figure 3.1: Graphics of M,W , and Π (figure from Nelsen [2006])

W and M are called lower and upper Fréchet-Hoeffding bounds. The copula

C(F1(x1), . . . , Fd(xd)) =M(F1(x1), . . . , Fd(xd)) represents the most positive depen-

dence. The functions M and Π are d-copulas for all d ≥ 2. On the other hand, W is

a copula only when d ≤ 2. When C(F1(x1), . . . , Fd(xd)) = max(F1(x1)+ ⋅ ⋅ ⋅ +Fd(xd)−

d + 1,0), it represents the most negative dependence. Furthermore when X1, . . . ,Xd

are independent, C(F1(x1), . . . , Fd(xd)) = Π(F1(x1), . . . , Fd(xd)) = F1(x1)⋯Fd(xd).

3.1.2 Dependence

For a set of distributions F(F1, . . . , Fd), there are several statistics for measuring

the level of dependences between random variables. In our work, we first discuss

concordance. Then, we present two famous measures, which are Spearman’s rho and
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Kendall’s tau.

3.1.2.1 Concordance

The random variables with distribution function F and G are said to be concor-

dant if the large values of F are associated with the large values of G and also the

small values of F and G are being small together.

Definition 3.4. (Concordance) Let F andG be distribution functions in F(F1, . . . , Fd)

where X ∼ F,Y ∼ G and X,Y are continuous random variables such that (xi, yi) and

(xj, yj) are the two observations from a vector (X,Y ). Then, (xi, yi) and (xj, yj)

are concordant if xi > xj and yi > yj or xi < xj and yi < yj. Conversely, we say that

they are discordant when xi > xj but yi < yj or if xi < xj and yi > yj. The formula

can be represented as (xi − xj)(yi − yj) > 0 for concordance and (xi − xj)(yi − yj) < 0

for discordance.

Theorem 3.5. [Nelsen, 2006, Theorem 5.1.1] Let (X1, Y1) and (X2, Y2) be indepen-

dent vectors of continuous random variables with joint distribution functions H1 and

H2, respectively, with common margins F (of X1 and X2) and G (of Y1 and Y2).

Let u = F (x), v = G(y), and C1 and C2 denote the copulas of (X1, Y1) and (X2, Y2),

respectively, so that H1(x, y) = C1(F (x),G(y)) and H2(x, y) = C2(F (x),G(y)). Let

Q denote the difference between the probabilities of concordance and discordance of
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(X1, Y1) and (X2, Y2), i.e., let

Q = P [(X1 −X2)(Y1 − Y2) > 0] − P [(X1 −X2)(Y1 − Y2) < 0].

Then,

Q = Q(C1,C2) = 4∫
1

0
∫

1

0
C2(u, v)dC1(u, v) − 1.

3.1.2.2 Spearman’s rho

Spearman’s rho correlation is based on both concordance and discordance. We

will show details of this correlation via examples of three independent random vec-

tors. Let (X1, Y1), (X2, Y2), (X3, Y3) be three independent random vectors from a

joint distribution function H where F and G are the marginal distribution functions

of X and Y , respectively. The Spearman’s rho for (X1, Y1) and (X3, Y2) is given by

ρC = 3{P [(X1 −X3)(Y1 − Y2) > 0] − P [(X1 −X3)(Y1 − Y2) < 0]}. (3.3)

The equation (3.3) represents a probability of concordance minus a probability of

discordance times a normalizing constant. Note that we can also use (X2, Y3) instead

of (X3, Y2). The idea is that one vector has the joint distribution function H, which

is (X1, Y1), and another vector (X3, Y2) is independent. Thus, the joint distribution

function of (X3, Y2) is F (x)G(y). The copula of (X1, Y1) is C and because X3 and
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Y2 are independent, the copula of (X3, Y2) is Π. Then from Theorem 3.5, we get

Q(C,Π) = 4∫
1

0
∫

1

0
uv dC(u, v) − 1. (3.4)

The Spearman’s rho can also be viewed as the measurement of how far from inde-

pendent of the variables. To study the range of Q(C,Π), we work on the boundaries

of (3.4). The lower and upper bounds of Q(C,Π) are given by

Q(W,Π) = 4∫
1

0
∫

1

0
uv dW (u, v) − 1, and Q(M,Π) = 4∫

1

0
∫

1

0
uv dM(u, v) − 1.

Because the support of W is the second diagonal G(y) = 1 − F (x), therefore

∫
1

0
∫

1

0
h(u, v) dW (u, v) = ∫

1

0
h(u,1 − u) du (3.5)

for all integrable function h, which domain is in [0,1]2. Likewise, the support of M

is the main diagonal G(y) = F (x) in [0,1]2. Because M has a uniform margin, then

∫
1

0
∫

1

0
h(u, v) dM(u, v) = ∫

1

0
h(u,u) du. (3.6)

Therefore, we have

Q(W,Π) = 4∫
1

0
u(1 − u) du − 1 = −1

3
and

Q(M,Π) = 4∫
1

0
u2 du − 1 = 1

3
.

Consequently, for any copula C, Q(C,Π) ∈ [−1/3,1/3]. A multiplier 3 in (3.3) is

added to make Q(C,Π) covers the whole possibility range of dependence.
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Theorem 3.6. [Nelsen, 2006, Theorem 5.1.6] Let X and Y be continuous random

variables whose copula is C. Then the population version of Spearman’s rho for X

and Y is given by

ρC = 3Q(C,Π)

= 12∫
1

0
∫

1

0
uv dC(u, v) − 3

= 12∫
1

0
∫

1

0
C(u, v) dudv − 3

= 12∫
1

0
∫

1

0
{C(u, v) − uv}dudv.

Example 3.7. Farlie-Gumbel -Morgenstern (FGM) copula

C(u, v) = uv + θuv(1 − u)(1 − v); θ ∈ [−1,1], (3.7)

then

ρC = 12∫
1

0
∫

1

0
{uv + θuv(1 − u)(1 − v) − uv}dudv

= 12(1

6
)∫

1

0
θv(1 − v) dv

= θ

3
.

Hence, ρC ∈ [−1/3,1/3] .

3.1.2.3 Kendall’s tau

A population version of Kendall’s tau is also related to the concordance and dis-

cordance of random variables. Let (X1, Y1), (X2, Y2) be independent and identically
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distributed random vectors from the same joint distribution function H. Therefore,

the population version of Kendall’s tau is in the form of

τC = P [(X1 −X2)(Y1 − Y2) > 0] − P [(X1 −X2)(Y1 − Y2) < 0]. (3.8)

Theorem 3.8. [Nelsen, 2006, Theorem 5.1.3] Let X and Y be continuous random

variables whose copula is C. Then, the population version of Kendall’s tau for X

and Y is given by

τC = Q(C,C)

= 4∫
1

0
∫

1

0
C(u, v) dC(u, v) − 1

= 4∫
1

0
∫

1

0
C(u, v)c(u, v) dudv − 1.

The lower and upper bounds of Q(C,C) can be calculated from Q(W,W ) and

Q(M,M), respectively. We use the calculations in (3.5) and (3.6), hence we get

Q(W,W ) = 4∫
1

0
∫

1

0
max(u + v − 1,0) dW (u, v) − 1

= 4∫
1

0
0 du − 1 = −1,

Q(M,M) = 4∫
1

0
∫

1

0
min(u, v) dM(u, v) − 1

= 4∫
1

0
u du − 1 = 1.

Therefore, Q(C,C) ∈ [−1,1].
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Example 3.9. Farlie-Gumbel -Morgenstern (FGM) copula

Refer to the FGM copula distribution function in (3.7), we get

∂uC(u, v) = v + θv(1 − v)(1 − 2u)

∂u∂vC(u, v) = 1 + θ(1 − 2u)(1 − 2v) = c(u, v).

Then,

τC = 4∫
1

0
∫

1

0
{uv + θuv(1 − u)(1 − v)} {1 + θ(1 − 2v)(1 − 2u)}dudv − 1

= 4(1

4
+ θ

18
) = 2θ

9
.

Because of θ ∈ [−1,1], therefore τC ∈ [−2/9,2/9]. According to Example 3.7 and

3.9, FGM has restricted usefulness because ρC and τC have the limited ranges of

dependence.

Although, both Spearman’s rho (ρ) and Kendall’s tau (τ) are the measurements

of dependence. There are some differences. First, the range of dependence that ρC

and τC can cover are different as shown in Example 3.7 and 3.9. Second, Nelsen

[2006] showed universal inequality for these two measures.

Theorem 3.10. [Nelsen, 2006, Theorem 5.1.10] Let X and Y be continuous random

variables, and let ρ and τ denote Spearman’s rho and Kendall’s tau, defined by (3.3)

and (3.8), respectively. Then,

−1 ≤ 3τ − 2ρ ≤ 1.
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3.1.3 Copula families

In this thesis, we focus on parametric copula families. However, there are also

nonparametric copulas such as empirical copula and kernel copula. Some parametric

copula families contain one parameter. Some contain more than one parameter, see

Durrleman et al. [2000], Nelsen [2006] and Yan [2007]. We show some examples

of bivariate Gaussian and Archimedean copula families. Gaussian copula has one

parameter but Archimedean copulas contain both one parameter and two parameters

families. In each example, we present the copula distribution function, the copula

density that derives from the representation in (3.2), and also the explicit form of

Spearman’s rho and Kendall’s tau if they can be shown explicitly. For examples

below, let u, v be the uniform representations of F (x) and G(y).

3.1.3.1 Gaussian copula

C(u, v) = Nθ (Φ−1(u),Φ−1(v)) ; u, v ∈ (0,1)

The bivariate Gaussian copula density function can be represented as

c(u, v) = 1√
detR

exp

⎛
⎜⎜⎜⎜
⎝

−1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ−1(u)

Φ−1(v)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

(R−1 − I)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ−1(u)

Φ−1(v)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟
⎠

.
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Let consider the correlation matrix R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 θ

θ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

where det(R) = 1 − θ2, then

R−1 − I = 1

1 − θ2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −θ

−θ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= θ

1 − θ2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

θ −1

−1 θ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore,

c(u, v) = 1√
1 − θ2

exp

⎛
⎜⎜⎜⎜
⎝

−1

2
( θ

1 − θ2
)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

θΦ−1(u) −Φ−1(v)

−Φ−1(u) + θΦ−1(v)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ−1(u)

Φ−1(v)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟
⎠

= 1√
1 − θ2

exp(− θ

2(1 − θ2)
[θ(Φ−1(u))2 − 2Φ−1(u)Φ−1(v) + θ(Φ−1(v))2]) .

Kendall’s tau is given by

τ = 2

π
arcsin(θ), where θ is the Spearman’s rho.

3.1.3.2 The t copula

Let x = (x1, x2)T ,

C(u, v) = ∫
t−1δ (u)

−∞
∫

t−1δ (v)

−∞

Γ( δ+2
2 )

Γ( δ2)πδ
√

1 − θ2
(1 + x

TR−1x

δ
)
−(δ+2)/2

dx,
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where t−1
δ denote the quantile function of a standard univariate tδ distribution with δ

degrees of freedom, and R is the correlation matrix with off-diagonal elements equal

to θ. The density of t copula has a form

c(u, v) =
fδ,θ (t−1

δ (u), t−1
δ (v))

fδ (t−1
δ (u)) fδ (t−1

δ (v))
;u, v ∈ (0,1),

where fδ,θ is the joint density of bivariate standard t-distributed random vectors and

fδ is the standard t density function with degrees of freedom δ. The t copula has the

same Spearman’s rho and Kendall’s tau as the Gaussian copula.

3.1.3.3 Archimedean copulas

Let φ[−1] denote a pseudo-inverse of φ and considers φ as a continuously strictly

decreasing convex function from [0,1] to [0,∞]. The function φ is called a generator

of the copula. Thus, we have

φ[−1](t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ−1(t) for t ∈ [0, φ(0)],

0 for t ≥ φ(0).

Note that φ[−1] is continuous and nonincreasing on [0,∞] but strictly decreasing on

[0, φ(0)]. The distribution function of Archimedean copula is given by

C(u, v) = φ[−1](φ(u) + φ(v)). (3.9)
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We say that C is strict, when φ(0) = ∞ and C(u, v) > 0 for all (u, v) ∈ [0,1]2.

On the contrary, C is non-strict when φ(0) < ∞. When the copula C is strict,

φ[−1] = φ−1. The copula in (3.9) is said to be a strict Archimedean copula, which

equals to φ−1(φ(u)+φ(v)). Kendall’s tau of the Archimedean copula has an explicit

expression, which relates to their generator. An expression is given by

τ = 1 + 4∫
1

0

φ(t)
φ′(t)

dt, (3.10)

where φ′(t) = dφ(t)/dt.

We show some examples of one-parameter Archimedean copula as follows.

Example 3.11. Clayton copula

The generator is

φ(t) = t
−θ − 1

θ
, θ ∈ [−1,∞)/{0}.

Then, the copula distribution function can be expressed as

C(u, v) = {max(u−θ + v−θ − 1,0)}−1/θ
.

The copula density is given by

c(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1 + θ)(uv)−θ−1(u−θ + v−θ − 1)(−1/θ)−2 when u−θ + v−θ > 1,

0, otherwise.
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Kendall’s tau derived by (3.10) can be represented as

τ = 1 + 4∫
1

0

tθ+1 − t
θ

dt when θ ≠ 0

= θ

θ + 2
.

Therefore, τ ∈ [−1,1]. In contrast, the closed form of ρ is complicated to find.

Example 3.12. Gumbel-Hougaard

The generator is

φ(t) = (− ln t)θ, θ ∈ [1,∞).

Thus, the copula function is

C(u, v) = exp [− ((− lnu)θ + (− ln v)θ)1/θ] .

Note that the copula density function has a complex form, which will not be stated

here. There is also no closed form for Spearman’s rho whereas Kendall’s tau has a

simple form, which is

τ = 1 − 1

θ
.

However, there is a restriction that τ does not cover the negative correlations because

when θ ∈ [1,∞), τ ∈ [0,1].
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Example 3.13. Frank copula

The generator is

φ(t) = − ln [e
−θt − 1

e−θ − 1
] , θ ∈ (−∞,∞)/{0}.

Hence, the copula function is

C(u, v) = −1

θ
ln(1 + (e−θu − 1)(e−θv − 1)

e−θ − 1
) .

Then, the copula density function is given by

c(u, v) = θe−θu−θv(1 − e−θ)
[(e−θ − 1) + (e−θu − 1)(e−θv − 1)]2 .

Kendall’s tau and Spearman’s rho can be calculated; however, they depend on the

Debye function Dk(θ), which is defined for any positive integer k by

Dk(θ) =
k

θk ∫
θ

0

tk

et − 1
dt.

Spearman’s rho can be expressed as

ρ = 1 − 12

θ
[D1(θ) −D2(θ)]

and Kendall’s tau is given by

τ = 1 − 4

θ
[1 −D1(θ)] .
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Example 3.14. Joe copula

The generator is

φ(t) = − log(1 − (1 − t)θ), θ ∈ [1,∞).

Hence, the copula function is

C(u, v) = 1 − {(1 − u)θ + (1 − v)θ − (1 − u)θ(1 − v)θ}1/θ
.

The copula density function has a complicated form. Similarly, there are no explicit

formula for Kendall’s tau and Spearman’s rho.

3.1.3.4 Empirical copulas

Sometimes choosing one copula from the parametric copula families is not easy

and may cause a misspecification problem. The nonparametric copulas are another

choice that we can consider. First, we focus on empirical copulas, which first intro-

duced by Deheuvels [1979].

Definition 3.15. [Nelsen, 2006, Definition 5.6.1] Let {(xk, yk)}nk=1 denote a sample

of size n from a continuous bivariate distribution. The empirical copula Cn is given

by

Cn (
i

n
,
j

n
) =

number of pairs (x, y) in the sample with x ≤ x(i), y ≤ y(j)
n
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where x(i) and y(j),1 ≤ i, j ≤ n, denote order statistics from the sample. The empirical

copula frequency cn is given by

cn (
i

n
,
j

n
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
n if (x(i), y(j)) is an element of the sample,

0 otherwise.

Theorem 3.16. [Nelsen, 2006, Theorem 5.6.2] Let Cn and cn be the empirical copula

and the empirical copula frequency function for sample {(xk, yk)}nk=1, respectively. If

r and t denote respectively the sample version of Spearman’s rho and Kendall’s tau,

then

r = 12

n2 − 1

n

∑
i=1

n

∑
j=1

[Cn (
i

n
,
j

n
) − ( i

n
)( j

n
)] ,

t = 2n

n − 1

n

∑
i=2

n

∑
j=2

i−1

∑
p=1

j−1

∑
q=1

[cn (
i

n
,
j

n
) cn (

p

n
,
q

n
) − cn (

i

n
,
q

n
) cn (

p

n
,
j

n
)] .

3.1.3.5 Kernel copulas

Nagler [2017] presented a bivariate kernel copula for n i.i.d. observations, see

Charpentier et al. [2007]. We denote (Ui, Vi) as the i.i.d. observations from the

copula C where i = 1, . . . , n. Ui and Vi are the empirical functions where

Ui =
1

n + 1

n

∑
i=1

1(Xi ≤ x)

and

Vi =
1

n + 1

n

∑
i=1

1(Yi ≤ y).
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An idea of n+1 is to avoid the boundary problems. Hence, the kernel copula is given

by

c(u, v) = 1

nh2

n

∑
i=1

K (u −Ui
h

)K (v − Vi
h

) , where (u, v) ∈ [0,1]2,

with the kernel function K and the bandwidth parameter h as described in 1.2.2.3.

3.2 Copula Selection

Among several copulas, we need some good criteria for the copula selection. We

study Akaike information criterion (AIC), Bayesian information criterion (BIC), and

distance method. AIC and BIC are model selection criteria which penalized the

log-likelihood function by depending on the size of parameters. For n observations

with a copula C and uniform marginal distribution functions u and v, let n ob-

servations be uij where i = 1, . . . , n, and j = 1, . . . , d with a log-likelihood function

∑ni=1 log[c(ui1, . . . , uid∣θ)], the AIC of a d-copula density c with parameter θ is given

by

AIC ∶= −2
n

∑
i=1

log[c(ui1, . . . , uid∣θ)] + 2k,

where k is the size of copula parameters. Similarly, the BIC can be expressed as

BIC ∶= −2
n

∑
i=1

log[c(ui1, . . . , uid∣θ)] + k log(n).
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Copula which has the minimum AIC or BIC values will be chosen. Usually, BIC has

a stronger penalty term than AIC.

The distance method [Durrleman et al., 2000] is a criterion that measure distances

between finite M interested copulas, {Cm}1≤m≤M , and empirical copula, Ĉ(T ). Let us

consider the discrete L2 norm, the distance formula can be represented as

d(Ĉ(T ),Cm) = ∥Ĉ(T ) −Cm∥L2

= [
T

∑
t1=1

⋅ ⋅ ⋅
T

∑
tb=1

⋅ ⋅ ⋅
T

∑
td=1

(Ĉ(T ) (
t1
T
, . . . ,

tb
T
, . . . ,

td
T

) −Cm (t1
T
, . . . ,

tb
T
, . . . ,

td
T

))
2

]
1/2

,

where 1 ≤ b ≤ d. The best copula is the copula that has a minimum distance.

3.3 Density estimation

3.3.1 Estimator

Suppose that we observe X1, . . . ,Xn random variables from an unknown density

f ∶ Rd ↦ [0,∞) with cumulative distribution function F ∶ Rd ↦ [0,1]. Let c represents

the copula density function of a copula distribution function C. For each j where

j = 1, . . . , d, the density fj are modeled as log-concave densities, which has a form

fj(xj) = expϕj(xj) where ϕj ∶ R↦ [−∞,∞) is a concave function for all j = 1, . . . , d,

and Fj(s) = ∫
s

−∞
expϕj(r)dr ∶ R ↦ [0,1]. For simplicity, let x = (x1, . . . , xd) ∈ Rd,
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then the joint density function is given by

f(x, θ) = c(F1(x1), . . . , Fd(xd); θ)
d

∏
j=1

expϕj(xj). (3.11)

c(F1(x1), . . . , Fd(xd); θ) is a copula density function with uniform margins and pa-

rameters θ ∈ Θ ⊂ Rk. To simplify notation, we write c(F1(x1), . . . , Fd(xd); θ) =

c(F (x); θ), likewise functions F1, . . . , Fd denote F1(x1), . . . , Fd(xd). Hence, the log-

likelihood function of (3.11) for n observations can be defined as

`(F1, . . . , Fd, θ) =
n

∑
i=1

log c(F (x); θ) +
n

∑
i=1

d

∑
j=1

ϕj(xj)

= `c(F1, . . . , Fd; θ) +
d

∑
j=1

`j(Fj). (3.12)

We can present the `j as a function of Fj instead of ϕj which is easy to follow

because these Fj are represented as uniform margins for copula density. (3.12) can

be estimated by using the maximum likelihood estimation (MLE). However, this

method is time consuming when the dimension is large. Joe [2005] introduced a

useful method called inference function for margins (IFM), which estimates (3.12)

in two stages. We will discuss the MLE first, after that we will discuss the IFM

method.
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3.3.2 One-stage estimation: maximum likelihood estimation (MLE)

From the log-likelihood in (3.12), let φ = (F1, . . . , Fd, θ) denote a set of parameters

and φ̃ = (F̃1, . . . , F̃d, θ̃) denote a set of corresponding ML estimator. Therefore,

φ̃ = argmax `(F1, . . . , Fd, θ).

3.3.3 Two-stage estimation: inference function for margins (IFM)

IFM method is a two-stage estimation, which estimates each margin and copula

density separately. Steps of IFM can be described as follows.

Step 1: We find the log-concave estimators for each margin by maximizing each

`j(Fj) separately. Then, we get

ϕ̂j ∶= argmax
ϕ concave

n

∑
i=1

ϕj(xij).

We also get the corresponding F̂j. After that, we plug-in F̂1, . . . , F̂d in (3.12). There-

fore, we get

`(F̂1, . . . , F̂d, θ) = `c(F̂1, . . . , F̂d; θ) +
d

∑
j=1

`j(F̂j). (3.13)

Step 2: We can clearly see that θ̂ from maximizing (3.13) is the same as max-

imizing only `c(F̂1, . . . , F̂d; θ) because all marginal densities do not depend on the

copula parameter θ. Hence,

θ̂ ∶= argmax
θ∈Θ

`c(F̂1, . . . , F̂d; θ).
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Generally, IFM procedure is simpler than MLE. However, IFM and MLE are the

same in Gaussian copula with correlation matrix R and Fj corresponds to N(µj, σ2
j ).

3.3.4 Asymptotic relative efficiency of MLE and IFM

MLE is a well-known optimization method with good properties under regularity

conditions. However, IFM is more flexible and consumes less computational time. In

some situations the performance of MLE and IFM are really close to each other. For

example, Kim et al. [2007] presented the simulation study of bivariate data to com-

pare the performance between MLE and IFM via six one-parameter copulas, which

are Ali–Mikhail–Haq (AMH), Clayton, Frank, Gumbel, Joe, and Plackett copulas.

The marginal distributions that were used are assumed to be normal. Moreover,

they studied the misspecification of marginal distribution by considering t and other

skewed distributions, which are skew t and chi-square distributions. Dependences

of the model are from Kendall’s tau and sample sizes to be used are 40, 100, and

500. The performance is measured with an efficiency of estimated mean square error

(MSE), which can be given by an estimated MSE of IFM/an estimated MSE of MLE.

They showed that in a normal case, IFM and MLE are equally good. Similarly, for

misspecification cases, MLE and IFM still give small values of bias.
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Joe [2005] also studied the asymptotic efficiency of IFM. Let η = (α1, . . . , αd, θ)

be a set of parameters in the model where α1, . . . , αd represent marginal parameters

and θ is a copula parameter. We can study the performance of IFM compare to MLE

from asymptotic relative efficiency (ARE) of the IFM estimators η̃ = (α̃1, . . . , α̃d, θ̃)

and the ML estimators η̂ = (α̂1, . . . , α̂d, θ̂) via covariance matrices of IFM (M) and

MLE (I−1), where M and I are given below. Let subscript 1, . . . , d represent each

dimension of the marginal distributions and subscript m is for the copula density

function,

I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I11 . . . I1d I1m

⋮ ⋱ ⋮ ⋮

Id1 . . . Idd Idm

Im1 . . . Imd Imm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Ijk = −E[∂2`/∂αjαTk ] for 1 ≤ j, k ≤ d, Ijm = −E[∂2`/∂αj∂θT ] and Imj = ITjm for

j = 1, . . . , d. Unlike I, matrix M is more complicated.

Let Vjk = E[(∂`j/∂αj)(∂`Tk /∂αTk )]; 1 ≤ j, k ≤ d, so that Vjj equal to the information
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matrix of the jth marginal log-likelihood. We get

−A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V11 . . . 0 0

⋮ ⋱ ⋮ ⋮

0 . . . Vdd 0

Im1 . . . Imd Imm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let D = cov(∂`(α1, . . . , αd, θ)/∂η), so we get

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V11 . . . V1d 0

⋮ ⋱ ⋮ ⋮

Vd1 . . . Vdd 0

0 . . . 0 Imm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore, the covariance matrix of IFM is

M = (−A−1)D (−A−1)T .

For an analytic purpose, an estimated covariance matrix for η̃ and η̂ are n−1M̃ and

(n − 1)−1Î−1, respectively, where M̃ is the consistent estimator of M and Î is the

observed Fisher information matrix of η̂. Hence, the ARE of η̃ and η̂ is given by

ARE(η̃, η̂) = (n − 1)M̃
nÎ−1

.
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Then, the conclusions are

ARE(η̃, η̂)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

< 1, η̃ is more efficient than η̂.

= 1, the efficiency of η̃ and η̂ are the same.

> 1, η̃ is less efficient than η̂.

Furthermore, covariance matrices of IFM and MLE are the same when indepen-

dence copula is approached. Let θI denote the parameter values of independence

copula. Then, Theorem 3.17 is applied.

Theorem 3.17. [Joe, 2005] As θ → θI , under the usual regularity conditions for

maximum likelihood, M − I−1 → 0. That is, the covariance matrix for the IFM esti-

mator becomes the same as the covariance matrix of the MLE when the independence

copula is approached.

3.4 Our work

An objective is to study the performance of multivariate density estimation by

using the copula model and univariate log-concave marginals. We do some simulation

studies, which are in Chapter 4, by using the two-stage IFM as our density estimation

method. As mentioned before, the joint density function is in the form of (3.11) where

its marginal density fucntions are estimated with univariate log-concave distributions
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and the copula density is from one of the six well-known copulas, which are Gaussian,

t, Clayton, Gumbel, Frank, and Joe. Details of all copulas are already stated in

Section 3.1.3.

We also work on the asymptotic behavior of the copula estimator θ̂. Because

the marginal density function is log-concave, which is a nonparametric density, and

we work on the parametric copula. Hence, our problem turns out to be the semi-

parametric model. We prove that the copula estimator θ̂ is consistent and converges

at rate n−1/2. Moreover, we also prove that our proposed joint density estimator is

consistent and converges with rate n−2/5. We will show in Chapter 5 for the details

of our proofs and also some necessary assumptions and regularity conditions.
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4 Simulation study

4.1 Density estimation

A goal of this simulation study is to show the performance of multivariate density

estimation by using parametric copulas with log-concave marginals. Recalling that

our proposed model is given in the form of

f(x, θ) = c(F1(x1), . . . , Fd(xd); θ)
d

∏
j=1

expϕj(xj),

where c(F1(x1), . . . , Fd(xd); θ) is a copula selected with the BIC as described in Sec-

tion 3.2. We use inference functions for margins (IFM) as our density estimation

method, which its details are described in Section 3.3.3. The copula in each simula-

tion is selected from six well-known one parameter copulas, which can be summarized

in Table 4.1. In the simulation studies, we use a Gaussian copula as our true copula.

We compare our proposed method with other density estimation methods. They

consist of parametric, semiparametric, and nonparametric density estimations, which
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Table 4.1: Copulas in the simulation study

Copula C(u, v) = θ ∈

Gaussian Nθ (Φ−1(u),Φ−1(v)) [-1,1]

t ∫
t−1δ (u)

−∞ ∫
t−1δ (v)

−∞

Γ( δ+2
2

)

Γ( δ
2
)Πδ

√
1−θ2

(1 + xTR−1x
δ )

−(δ+2)/2
dx [-1,1]

Clayton {max(u−θ + v−θ − 1,0)}−1/θ [−1,∞)/{0}

Gumbel-Hougaard exp [− ((− lnu)θ + (− ln v)θ)1/θ] [1,∞)

Frank −1
θ ln (1 + (e−θu−1)(e−θv−1)

e−θ−1
) (−∞,∞)/{0}

Joe 1 − {(1 − u)θ + (1 − v)θ − (1 − u)θ(1 − v)θ}1/θ [1,∞)

details of each method are presented below. To simplify, we create the short terms

for each method, which are given in the brackets with italic text after their details.

1. Parametric methods

� We use parametric MLE with parametric marginal densities. (parametric

MLE)

� We do the same as previous method but the IFM method is used instead

of the MLE. (parametric IFM)

2. Semiparametric methods
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� (proposed method) We use IFM method with univariate log-concave

marginals. (log-concave IFM)

� We use IFM method with univariate kernel marginals. We use Gaussian

kernel with least-squares cross-validation bandwidth (h). The copula den-

sities are still selected with BIC. (kernel IFM).

� We use IFM method with univariate kernel marginals. We use Gaussian

kernel with bandwidth from Goldenshluger-Lepski (G-L) method, (see

[Chagny, 2016, Section 4.4, page 115]). (kernel IFM with G-L)

3. Nonparametric methods

� We do multivariate log-concave density estimation. (multivariate log-

concave)

� We do multivariate kernel density estimation with Gaussian kernel and

least-squares cross-validation bandwidth matrix (H). (multivariate ker-

nel)

The concept of G-L method is to select a reasonable bandwidth ĥ among (f̂h)h∈Hn .

The objective is to choose ĥ that satisfies the following criterion;

ĥ = argmin
h∈Hn

CritGL(h),
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with CritGL(h) = A(h) + V (h), where

A(h) = max
h′∈Hn

(∥f̂h′ − f̂h,h′∥2 − V (h′))
+
,

V (h) = (κ′∥K∥2
1∥K∥2)
nh

.

We choose Hn = {2−k;k = 1,2, . . . , log2(n)}, which satisfies the assumptions in

[Chagny, 2016, Theorem 4.5 page 116]. Moreover, there is no systematic way for

choosing a constant κ′, so we use κ′ = 1. The definition of x+, f̂h,h′ , ∥K∥2
1, and ∥K∥2

are as follows.

x+ = max(x,0), f̂h,h′ = ∫
R
Kh(x − x′)f̂h′(x′)dx′

∥K∥2
1 = ∫

R
∣K(x)∣dx, ∥K∥2 = ∫

R
K(x)2dx.

We perform simulation studies for d = 2,4,5, and 6 with various sample sizes

n = 100,200,500,1000 and different levels of dependence τ = 0,0.2,0.6. We consider

both symmetric and skew marginal densities. The details of these simulation studies

are in Table 4.2.

However, in the kernel IFM with G-L, we consider only for d = 2 cases. Each

element in Hn is considered as a candiate for a bandwidth selection. The results are

shown in Figure 4.1 and 4.2.

Furthermore, we also highlight the performance of our proposed method under

misspecification. We choose t distribution because it is not a log-concave distribution
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Table 4.2: Details of specification cases

Dimensions Distributions τ

2 N(0,1), N(0,1) 0,0.2,0.6

N(0,1), Γ(2,1)

Γ(2,1), Γ(2,1)

4 N(0,1), Γ(2,1), N(0,1), Γ(2,1) 0.2,0.6

Γ(2,1), Γ(2,1), Γ(2,1), Γ(2,1) 0.2

Γ(2,1), Γ(2,1), β(2,5), β(2,5) 0.6

5∗ N(0,1), Γ(2,1), Γ(2,1), Γ(2,1), N(0,1) 0.2,0.6

Γ(2,1), Γ(2,1), β(2,5), β(2,5), Γ(2,1)

6∗ N(0,1), Γ(2,1), Γ(2,1), Γ(2,1), N(0,1), Γ(2,1) 0.2,0.6

Γ(2,1), Γ(2,1), β(2,5), β(2,5), Γ(2,1), Γ(2,1)

∗ means there are no multivariate log-concave results because of the computationally intensive problem.

for any degrees of freedom. Details of simulation studies under misspecification are

in Table 4.3.

Moreover, we also perform some simulations when the copula densities are from

two-parameter copula families. In each set of simulation, we choose one copula

from these four copulas, which are BB1 (Clayton-Gumbel), BB6 (Joe-Gumbel), BB7

(Joe-Clayton), and BB8 (Joe-Frank), (see Brechmann and Schepsmeier [2013]). The

simulation results can be found in Figure 4.7.

Because finding the MLE for multivariate log-concave distribution is time-consuming,

so we do 100 sets of simulation. In our simulation, we use some available packages in
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Table 4.3: Details of misspecification cases

Dimensions Distributions τ

2 t2, t2 0

4 N(0,1), Γ(2,1), t2, t2 0.2

5∗ N(0,1), Γ(2,1), Γ(2,1), β(2,5), t2 0.6

6∗ N(0,1), Γ(2,1), Γ(2,1), β(2,5), β(2,5), t2 0.6

∗ means there are no multivariate log-concave results because of the computationally intensive problem.

R. For kernel density estimation, we use “kedd” [Guidoum, 2015] and “ks” [Duong,

2017] packages to find bandwidth estimators for univariate and multivariate kernel

density estimations, respectively. Package “copula” [Hofert et al., 2017] is used for

estimating copula densities and finding copula estimators. For copula selection, we

use “BiCopSelect” in VineCopula package [Schepsmeier et al., 2018], which can be

accessible from CRAN https://github.com/tnagler/VineCopula. For finding the

log-concave MLE, the packages are already stated in Chapter 2.

Steps for these simulation studies can be summarized as follows:

1. We choose the best copula among six well-known copulas with BIC. Copula

which has the smallest BIC will be chosen.

2. We estimate the density by using methods represented above.

3. We calculate the mean integrated square error (MISE), which is our criterion
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for the performance measurement. Let f̂n(x) and f0(x) be the estimated and

the true density functions of x ∈ Rd. The estimated MISE is given by

M̂ISE = 1

n

n

∑
i=1
∫
Rd

(f̂n(x) − f0(x))
2
dx. (4.1)

Moreover, (4.1) can be estimated by Riemann sum. Let ∆x = ∆x1⋯∆xd, xij

be the ith observation of dimension jth, and ∆xj = xij − xi−1,j; i = 1, . . . , n, j =

1, . . . , d, then the estimated MISE can be expressed as

M̂ISE = 1

n

n

∑
i=1

(f̂n(xi) − f0(xi))
2
∆x.

The simulation results from Figure 4.1, 4.2, 4.3, 4.4, and 4.5 can be summarized

in the following bullet points.

� When sample size increases, M̂ISE decreases regardless of the level of depen-

dences and marginal density functions. This makes sense because when the

sample size is large, f̂n of each density estimation method converges to the

true density function f0. This follows by the law of large number (LLN).

� When we consider the results by type of methods, we can conclude that para-

metric models, which are parametric MLE and parametric IFM, perform al-

most the same and they give the best performance. Log-concave IFM performs

better than kernel IFM while nonparametric models, which are multivariate

log-concave and multivariate kernel, are the worst.
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� The best to the worst results are parametric MLE, parametric IFM, log-concave

IFM, and multivariate kernel, regardless of the marginal distributions, levels of

dependence, and sample sizes. The performance of kernel IFM and multivariate

log-concave are close to each other and usually lie between the log-concave IFM

and the multivariate kernel.

� Among the semiparametric and nonparametric models, log-concave IFM pro-

vides the best results. However, it is worse than parametric MLE and para-

metric IFM.

� The kernel IFM with G-L method performs well when sample sizes are moder-

ate (n = 100,200), but gives higher MISE when sample sizes are large. However,

it is still better than multivariate kernel.

� In general, higher dependence gives higher M̂ISE.

For misspecification cases, results are shown in Figure 4.6 which can be summa-

rized as follows:

� It is obvious that the proposed method does not perform as good as the non-

parametric methods which makes sense because the marginal densities are not

log-concave densities. However, it is still better than nonparametric density

estimation for moderate sample sizes. This similar result has been presented
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Table 4.4: % of how often each copula has been selected with BIC

Figure Gaussian t Clayton G-H Frank Joe

4.1 (a) 40.25 0.75 2.25 3 41.75 12

4.1 (b) 54.75 0.25 1.25 13.75 23.5 6.5

4.1 (c) 85 0.75 3.25 7 3.75 0.25

4.1 (d) 40.25 1.25 1.75 2.75 42.5 11.5

4.1 (e) 54.75 0.25 0.75 13.5 24 6.75

4.1 (f) 85 0.75 3.25 7 3.75 0.25

4.2 (g) 40.5 1.25 1 2.75 42.5 12

4.2 (h) 55.25 0.25 0.25 13.25 24 7

4.2 (i) 82.25 1 4 7.25 5.5 0

4.3 (j) 95.75 0 1.5 1.75 1 0

4.3 (k) 97.5 2.25 0 0 0.25 0

4.3 (l) 82 0.25 0.25 3 11.5 3

4.3 (m) 97.5 2.25 0 0 0.25 0

4.4 (n) 98.5 0 0 1.25 0.25 0

4.4 (o) 93.5 6.25 0 0 0.25 0

4.4 (p) 90 4.75 0 0 0.25 0

4.4 (q) 98.5 0 0 1.25 0.25 0

4.5 (r) 98.75 0 0 0.5 0.75 0

4.5 (s) 97.75 2.25 0 0 0 0

4.5 (t) 98.75 0 0 0.5 0.75 0

4.5 (u) 96.25 3.75 0 0 0 0

4.6 (v) 58.5 0.25 0.75 1.75 31.5 7.25

4.6 (w) 96 0 1.5 1.5 1 0

4.6 (x) 94.5 5.25 0 0 0.25 0

4.6 (y) 97.25 2.75 0 0 0 0

before in Cule et al. [2010, Figure 3, 4]. Moreover, this result also stated the

robustness property in Cule et al. [2010, Theorem 4].

Furthermore, Table 4.4 shows percentages of how often each copula has been used

in each Figure. Copulas that have been selected with the highest percentage will be

presented as the bold numbers.
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(a) τ = 0, N(0,1), N(0,1) (b) τ = 0.2, N(0,1), N(0,1)

(c) τ = 0.6, N(0,1), N(0,1) (d) τ = 0, N(0,1), Γ(2,1)

(e) τ = 0.2, N(0,1), Γ(2,1) (f) τ = 0.6, N(0,1), Γ(2,1)

Figure 4.1: MISE for d = 2 MLE, parametric IFM, log-concave IFM,

kernel IFM, kernel IFM with G-L, multivariate log-concave, and multivariate

kernel
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(g) τ = 0, Γ(2,1), Γ(2,1) (h) τ = 0.2, Γ(2,1), Γ(2,1)

(i) τ = 0.6, Γ(2,1), Γ(2,1)

Figure 4.2: MISE for d = 2 MLE, parametric IFM, log-concave IFM,

kernel IFM, kernel IFM with G-L, multivariate log-concave, and multivariate

kernel
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(j) τ=0.2,N(0,1),Γ(2,1),N(0,1),Γ(2,1) (k) τ=0.6,N(0,1), Γ(2,1),N(0,1),Γ(2,1)

(l) τ=0.2,Γ(2,1), Γ(2,1),Γ(2,1),Γ(2,1) (m) τ=0.6,Γ(2,1),Γ(2,1),β(2,5),β(2,5)

Figure 4.3: MISE for d = 4 MLE, parametric IFM, log-concave IFM,

kernel IFM, multivariate log-concave, and multivariate kernel.
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(n) τ=0.2,N(0,1),Γ(2,1),Γ(2,1),Γ(2,1),N(0,1) (o) τ=0.6,N(0,1),Γ(2,1),Γ(2,1),Γ(2,1),N(0,1)

(p) τ=0.2,Γ(2,1),Γ(2,1),β(2,5),β(2,5),Γ(2,1) (q) τ=0.6,Γ(2,1),Γ(2,1),β(2,5),β(2,5),Γ(2,1)

Figure 4.4: MISE for d = 5 MLE, parametric IFM, log-concave IFM,

kernel IFM, and multivariate kernel.
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(r) τ=0.2,N(0,1),Γ(2,1),Γ(2,1),Γ(2,1),N(0,1),Γ(2,1) (s) τ=0.6,N(0,1),Γ(2,1),Γ(2,1),Γ(2,1),N(0,1),Γ(2,1)

(t) τ=0.2,Γ(2,1),Γ(2,1),β(2,5),β(2,5),Γ(2,1),Γ(2,1) (u) τ=0.6,Γ(2,1),Γ(2,1),β(2,5),β(2,5),Γ(2,1),Γ(2,1)

Figure 4.5: MISE for d = 6 MLE, parametric IFM, log-concave IFM,

kernel IFM, and multivariate kernel.
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(v) τ = 0, t2, t2 (w) τ = 0.2,N(0,1),Γ(2,1), t2, t2

(x) τ=0.6,N(0,1),Γ(2,1),Γ(2,1),β(2,5),t2 (y) τ=0.6,N(0,1),Γ(2,1),Γ(2,1),β(2,5),β(2,5),t2

Figure 4.6: MISE from top left to bottom right: d = 2, d = 4, d = 5, and d = 6 MLE,

parametric IFM, log-concave IFM, kernel IFM, multivariate log-concave,

and multivariate kernel.
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τ = 0.2, N(0,1), N(0,1) τ = 0.6, N(0,1), Γ(2,1)

τ = 0.6, Γ(2,1), Γ(2,1) (q) τ = 0.6, Γ(2,1), β(2,5)

Figure 4.7: MISE for two-parameter copula when d = 2 MLE, parametric IFM,

log-concave IFM, kernel IFM, and multivariate kernel.
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5 Main theorem and proof

5.1 Define estimators

Suppose that we observe X1, . . . ,Xn random variables from an unknown density

f ∶ Rd ↦ [0,∞) with cumulative distribution function F ∶ Rd ↦ [0,1]. Let c represents

the copula density function of copula distribution function C with parameters θ ∈

Θ ⊂ Rk. For each j where j = 1, . . . , d, the density fj are modeled as log-concave

densities, which has the form fj(x) = expϕj(xj) where ϕj ∶ R ↦ [−∞,∞) is a

concave function for all j = 1, . . . , d, and Fj(s) = ∫
s

−∞
expϕj(r)dr ∶ R ↦ [0,1]. For

simplicity, let x = (x1, . . . , xd) ∈ Rd. We write c(F1(x1), . . . , Fd(xd); θ) = c(F (x); θ),

likewise functions F = (F1, . . . , Fd) denote F (x) = (F1(x1), . . . , Fd(xd)). Then, the

log-likelihood function is given by

`(F1, . . . , Fd, θ) =
n

∑
i=1

log c(F1(xi1), . . . , Fd(xid); θ) +
n

∑
i=1

d

∑
j=1

log fj(xij)

= `c(F1, . . . , Fd; θ) +
d

∑
j=1

`j(Fj)

86



where

`c(F1, . . . , Fd; θ) =
n

∑
i=1

log c(F1(xi1), . . . , Fd(xid); θ),

`j(Fj) =
n

∑
i=1

log fj(xij).

Let Flcd denote the class of log-concave densities f ∶ R↦ [0,∞). We also let F lcd

denote the class of corresponding CDF where

F lcd = {F ∶ F (s) = ∫
s

−∞
f(r)dr, f ∈ Flcd}

where F lcd is an infinite-dimensional space with supremum norm, that is ∥F ∥∞ =

sup
s∈R

∣F (s)∣. We define the univariate log-concave density estimators for each j =

1, . . . , d as

f̂nj = argmax
fj∈Flcd

`j(Fj)

with F̂nj(s) = ∫
s

−∞
f̂nj(r)dr where s ∈ R. Next, we estimate the copula parameters θ.

Finding the copula estimators from maximizing `c(F̂n1, . . . , F̂nd; θ) is also a solution

of a score function. That is,

Ψn(θ, F̂ ) = n−1∂θ`c(F̂n1, . . . , F̂nd; θ) = 0. (5.1)

We call the estimators θ̂n from (5.1) as Z-estimator.
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Hence, the joint density estimator with copula estimator θ̂n, univariate log-

concave density estimators f̂nj, and corresponding F̂nj can be represented as

f̂n(x) = c(F̂n1(x1), . . . , F̂nd(xd); θ̂n)
d

∏
j=1

f̂nj(xj).

5.2 Main theoretical results

Let f0(x) denote the true joint density function with true copula parameters θ0

and true univariate log-concave marginal f0j. Hence, the true joint density function

is given by

f0(x) = c(F01(x1), . . . , F0d(xd); θ0)
d

∏
j=1

f0j(xj),

where f0j ∈ Flcd and consequently F0j ∈ F lcd.

For asymptotic results, let Ψ(θ,F ) = Ef0 [∂θ log c(F (x); θ)] denote the asymptotic

version of Ψn(θ,F ). We first prove consistency and rate of convergence for θ̂n. Then,

we prove rate of convergence for joint density estimator. To prove these theorems,

we use empirical processes theory and also the covering numbers and bracketing

numbers. The proofs are done under some regularity conditions which have been

stated in Section 5.2.4. From the definition in van der Vaart and Wellner [1996],

let (Ω,A, P ) denote an arbitrary probability space. We use p∗ to denote the “in

outer probability” where the outer probability P ∗ of an arbitrary subset B of Ω is
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P ∗(B) = inf{P (A) ∶ A ⊃ B,A ∈ A}. Our results are in outer probability, as is typical

of empirical process theory results.

First of all, we need to define the notations of derivatives that will be used in the

following theorems. Let ∂FΨn(θ,F )[h] denote the d−dimensional vector with jth

element given by

[∂FΨn(θ,F )[h]]j = n−1
n

∑
i=1

∂uj∂θ log c(F (xi); θ)hj(xij).

The supremum norm ∥F ∥∞ can also be written as

∥F ∥∞ = max
j=1,...,d

sup
s∈R

∣Fj(s)∣.

Also the ∥θ∥∞ = max
l=1,...,k

∣θl∣.

5.2.1 Consistency

Theorem 5.1. The estimators f̂n, f̂n1, . . . , f̂nd and θ̂n are consistent:

1. [Dümbgen and Rufibach, 2009, Theorem 4.2] The log-concave estimators satisfy

∫ ∣f̂nj(s) − f0j(s)∣ds→ 0 and sup
s∈R

∣F̂nj(s) − F0j(s)∣ → 0,

in probability, for each j = 1, . . . , d.

2. Assume that (U), (B) and that the regularity conditions (R1), (R2), (R3) hold.

Then θ̂n → θ0 in outer probability.
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3. Assume that (U), (B) and that the regularity conditions (R1), (R2), (R3),

(R8), (R9) hold. Then,

∫ ∣f̂n(x) − f0(x)∣dx→ 0

in probability.

Proof of Theorem 5.1. Consistency of the log-concave density estimators follows well-

known results from Dümbgen and Rufibach [2009, Corollary 4.2, page 48]. Next, we

prove the consistency result for copula estimator θ̂n. In order to establish the result,

we follow Nan and Wellner [2013, Lemma 1, page 1157]. We need to check three

conditions from this Lemma.

(i) For the first condition, we assume that θ0 is the unique solution to Ψ(θ,F0) = 0

which is the assumption (U).

(ii) Secondly, ∥F̂n − F0∥∞ = op∗(1)

Thus, we need to show that ∥F̂n −F0∥∞ = max
j=1,...,d

sup
s∈R

∣F̂nj(s) − F0j(s)∣ → 0. This

has already been proved in Dümbgen and Rufibach [2009, Corollary 4.2, page

48].

(iii) Finally, we prove that

sup
θ∈Θ,∥F−F0∥≤δn

∣Ψn(θ,F ) −Ψ(θ,F0)∣
1 + ∣Ψn(θ,F )∣ + ∣Ψ(θ,F0)∣

= op∗(1)
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for every sequence {δn} ↓ 0. We will show a stronger version of this condition

by showing that

sup
θ∈Θ,∥F−F0∥≤δn

∣Ψn(θ,F ) −Ψ(θ,F0)∣ = op∗(1).

First, we show that

∣Ψn(θ,F ) −Ψ(θ,F0)∣ = ∣Ψn(θ,F ) −Ψn(θ,F0) +Ψn(θ,F0) −Ψ(θ,F0)∣

= ∣n−1
n

∑
i=1

∂θ log c(F (xi); θ) − n−1
n

∑
i=1

∂θ log c(F0(xi); θ)

+n−1
n

∑
i=1

∂θ log c(F0(xi); θ) −Ef0[∂θ log c(F0(X); θ)]∣

≤ ∣n−1
n

∑
i=1

∂θ log c(F (xi); θ) − n−1
n

∑
i=1

∂θ log c(F0(xi); θ)∣

+ ∣n−1
n

∑
i=1

∂θ log c(F0(xi); θ) −Ef0[∂θ log c(F0(X); θ)]∣ .

We will prove these two terms in the last inequality separately. For the first
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term, we use Taylor’s expansion. Then, we get

∣Ψn(θ,F ) −Ψn(θ,F0)∣ ≤ n−1
n

∑
i=1

∣∂θ log c(F (xi); θ) − ∂θ log c(F0(xi); θ)∣

= n−1
n

∑
i=1

∣
d

∑
j=1

∂uj∂θ log c(F0(xi); θ)(Fj − F0j)(xij)

+ 2−1
d

∑
j,l=1

∂uj∂ul∂θ log c(F ∗(xi); θ)(Fj − F0j)(xij)(Fl − F0l)(xil)
RRRRRRRRRRR

≤ n−1
n

∑
i=1

d

∑
j=1

∣∂uj∂θ log c(F0(xi); θ)(Fj − F0j)(xij)∣

+(2n)−1
n

∑
i=1

d

∑
j,l=1

∣∂uj∂ul∂θ log c(F ∗(xi); θ)(Fj − F0j)(xij)(Fl − F0l)(xil)∣

≤ n−1
n

∑
i=1

d

∑
j=1

∣∂uj∂θ log c(F0(xi); θ)∣ ∥Fj − F0j∥∞

+(2n)−1
n

∑
i=1

d

∑
j,l=1

∣∂uj∂ul∂θ log c(F ∗(xi); θ)∣ ∥Fj − F0j∥∞∥Fl − F0l∥∞

≤ n−1
n

∑
i=1

d

∑
j=1

∣∂uj∂θ log c(F0(xi); θ)∣ ∥F − F0∥∞

+(2n)−1
n

∑
i=1

d

∑
j,l=1

∣∂uj∂ul∂θ log c(F ∗(xi); θ)∣ ∥F − F0∥2
∞.

By assumptions (R1), (R2), and applying law of large numbers, we can show
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that

sup
θ∈Θ

∣Ψn(θ,F ) −Ψn(θ,F0)∣ ≤ sup
θ∈Θ

{n−1
n

∑
i=1

d

∑
j=1

∣∂uj∂θ log c(F0(xi); θ)∣} ∥F − F0∥∞ +

sup
θ∈Θ

⎧⎪⎪⎨⎪⎪⎩
(2n)−1

n

∑
i=1

d

∑
j,l=1

∣∂uj∂ul∂θ log c(F ∗(xi); θ)∣
⎫⎪⎪⎬⎪⎪⎭
∥F − F0∥2

∞

≤
d

∑
j=1

max
j=1,...,d

sup
θ∈Θ

{n−1
n

∑
i=1

∣∂uj∂θ log c(F0(xi); θ)∣} ∥F − F0∥∞ +

d

∑
j,l=1

max
j=1,...,d

sup
θ∈Θ

{(2n)−1
n

∑
i=1

∣∂uj∂ul∂θ log c(F ∗(xi); θ)∣} ∥F − F0∥2
∞

≤ 2dM1∥F − F0∥∞ + d2M2∥F − F0∥2
∞.

Therefore,

sup
θ∈Θ,∥F−F0∥≤δn

∣Ψn(θ,F ) −Ψn(θ,F0)∣ ≤ 2dM1δn + d2M2δ
2
n

≤ Bδn

for constant B = 2dM1 + d2M2δn. Hence, when δn ↓ 0,

sup
θ∈Θ,∥F−F0∥≤δn

∣Ψn(θ,F ) −Ψn(θ,F0)∣ = op∗(1).

For the second term, we use law of large numbers. For a fixed value of θ,

∣Ψn(θ,F0) −Ψ(θ,F0)∣ = ∣n−1
n

∑
i=1

∂θ log c(F0(xi); θ) −Ef0[∂θ log c(F0(X); θ)]∣ = op∗(1).

Next, we will prove that the convergence is uniformly in θ. We need to show

that the class of {∂θ log c(F0(x); θ)}θ∈Θ is Glivenko-Cantelli where θ ∈ Θ ⊂ Rk,
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see Lemma A.4. Hence, we need to show that N[](ε,Θ, L1(P )) < ∞. From the

well-known result in van der Vaart [1998, Example 19.7, page 271],

N[](ε,Θ, Lr(P )) ≤ (2 diam(Θ)
ε

)
k

< ∞,

where k is the dimension of Θ. To prove that this bracketing number is finite,

we need assumption (B) and (R3). Therefore,

sup
θ∈Θ

∣Ψn(θ,F0) −Ψ(θ,F0)∣ = op∗(1).

Then,

sup
θ∈Θ,∥F−F0∥≤δn

∣Ψn(θ,F ) −Ψ(θ,F0)∣ = op∗(1).

This complete all three conditions. Hence, θ̂n → θ0 in outer probability.

Next, we prove consistency for the joint density estimator.

∫ ∣f̂n(x) − f0(x)∣dx

= ∫ ∣c(F̂n(x); θ̂n)
d

∏
j=1

f̂nj(xj) − c(F0(x); θ0)
d

∏
j=1

f0j(xj)∣dx

= ∫ ∣c(F̂n(x); θ̂n)
d

∏
j=1

f0j(xj) − c(F0(x); θ0)
d

∏
j=1

f0j(xj) − c(F̂n(x); θ̂n)
d

∏
j=1

f0j(xj) + c(F̂n(x); θ̂n)
d

∏
j=1

f̂nj(xj)∣dx

≤ ∫ ∣c(F̂n(x); θ̂n) − c(F0(x); θ0)∣
d

∏
j=1

f0j(xj)dx + ∫ ∣
d

∏
j=1

f̂nj(xj) −
d

∏
j=1

f0j(xj)∣c(F̂n(x); θ̂n) dx

= ∫ ∣c(F̂n(x); θ̂n) − c(F0(x); θ0)∣
d

∏
j=1

f0j(xj)dx +
d

∑
j=1
∫ ∣f̂nj(xj) − f0j(xj)∣{∏

i<j

f̂ni(xi)}{∏
i>j

f0i(xi)}c(F̂n(x); θ̂n) dx.

Now, each f̂nj is consistent and each f0j is bounded since it is log-concave, and hence

for large enough n we assume that for some B < ∞,{∏i<j f̂ni(xi)}{∏i>j f0i(xi)} ≤
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Bd−1. Therefore,

∫ ∣f̂nj(xj) − f0j(xj)∣{∏
i<j

f̂ni(xi)}{∏
i>j

f0i(xi)}c(F̂n(x); θ̂n)dx

≤ Bd−1∫ ∣f̂nj(xj) − f0j(xj)∣c(F̂n(x); θ̂n)dx

≤ Bd−1 {∫ ∣f̂nj(xj) − f0j(xj)∣
2

dx}
1/2

{∫ (c(F̂n(x); θ̂n))
2
dx}

1/2

≤ Bd−1 {∫ ∣f̂nj(xj) − f0j(xj)∣∣f̂nj(xj) − f0j(xj)∣dx}
1/2

{∫ (c(F̂n(x); θ̂n))
2
dx}

1/2

≤ Bd−1 {2B ∫ ∣f̂nj(xj) − f0j(xj)∣dx}
1/2

{∫ (c(F̂n(x); θ̂n))
2
dx}

1/2

≤ Bd−1 {2B ∫ ∣f̂nj(xj) − f0j(xj)∣dx}
1/2

{ sup
(F,θ)∈N

∫ (c(F (x); θ))2
dx}

1/2

≤ B
1/2
2 Bd−1 {2B ∫ ∣f̂nj(xj) − f0j(xj)∣dx}

1/2

with the consistency of F̂n, θ̂n, and (R8), sup
(F,θ)∈N

∫ (c(F (x); θ))2
dx is bounded with

B2. Then, we combine this result with the consistency of f̂nj(xj) for each j = 1, . . . , d.

Therefore,

∫ ∣f̂nj(xj) − f0j(xj)∣{∏
i<j

f̂ni(xi)}{∏
i>j

f0i(xi)}c(F̂n(x); θ̂n)dx = op∗(1).

For the first part of the last inequality of ∫ ∣f̂n(x) − f0(x)∣dx, we use Taylor’s
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expansion and the fact that f0j is bounded. Hence,

∫ ∣c(F̂n(x); θ̂n) − c(F0(x); θ0)∣
d

∏
j=1

f0j(xj)dx

≤ ∫ ∣
d

∑
j=1

∂ujc(F ∗(x); θ∗)(F̂nj − F0j)(xj) +
k

∑
l=1

∂θlc(F ∗(x); θ∗)(θ̂n,l − θ0l)∣
d

∏
j=1

f0j(xj)dx

≤ Bd {
d

∑
j=1
∫ ∣∂ujc(F ∗(x); θ∗)(F̂nj − F0j)(xj)∣dx +

k

∑
l=1
∫ ∣∂θlc(F ∗(x); θ∗)(θ̂nl − θ0l)∣dx}

≤ Bd
d

∑
j=1

{∫ ∣∂ujc(F ∗(x); θ∗)∣dx} ∥F̂nj − F0j∥∞ +Bd
k

∑
l=1

{∫ ∣∂θlc(F ∗(x); θ∗)∣dx} ∣θ̂nl − θ0l∣

≤ Bd
d

∑
j=1

{∫ ∣∂ujc(F ∗(x); θ∗)∣dx} ∥F̂n − F0∥∞ +Bd
k

∑
l=1

{∫ ∣∂θlc(F ∗(x); θ∗)∣dx} ∥θ̂n − θ0∥∞

≤ B3 {∥F̂n − F0∥∞ + ∥θ̂n − θ0∥∞} , (5.2)

with a new constant B3 = 2dBdD1 + 2kBdD2. The integral terms are bounded with

(R9). This result combines with the consistency of F̂n and θ̂n. Then,

∫ ∣c(F̂n(x); θ̂n) − c(F0(x); θ0)∣
d

∏
j=1

f0j(xj)dx = op∗(1).

Hence, we can conclude that

∫ ∣f̂n(x) − f0(x)∣dx = op∗(1).

5.2.2 Rate of convergence

Theorem 5.2. Assume that consistency, (U), (B), (LC), and that the regularity con-

ditions (R1), (R2), (R3), (R4), (R5), (R6), (R7) hold. Then, θ̂n is
√
n−consistent
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and

√
n(θ̂n − θ0) =

√
n{−Ψ̇θ(θ0, F0)}

−1 {(Ψn −Ψ)(θ0, F0) + Ψ̇F (θ0, F0)[F̂n − F0]} + op∗(1).

Note that from the simulation study in Section 5.2.3.3, Theorem 5.2 still holds

without (LC).

Theorem 5.3. Assume that the conditions of Theorem 5.1 and 5.2 hold. Then,

∫ ∣f̂n(x) − f0(x)∣dx = Op∗(n−2/5).

Proving Theorem 5.2, we need some lemmas as follows:

Lemma 5.4.

∥F̂n − F0∥∞ = Op∗(n−2/5)

Proof of Lemma 5.4.

∥F̂n − F0∥∞ = max
j=1,...,d

sup
s∈R

∣F̂nj(s) − F0j(s)∣

It is enough to show that sup
s∈R

∣F̂nj(s) − F0j(s)∣ = Op∗(n−2/5) for any j = 1, . . . , d. From

[Gibbs and Su, 2002], we have the relationship of dK(F,G) ≤ dH(f, g) where dK(F,G)

and dH(f, g) are defined in Definition A.6 and (2.8), respectively. Moreover, from

Theorem 2.6, we have dH(f̂nj, f0j) = Op(n−2/5) for each j = 1, . . . , d. Hence,

dK(F̂nj, F0j) = sup
s∈R

∣F̂nj(s) − F0j(s)∣ ≤ dH(f̂nj, f0j) = Op(n−2/5).

Therefore, we can conclude that ∥F̂n − F0∥∞ = Op∗(n−2/5)
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Lemma 5.5. Let FM,c denote the class of functions

FM,c = {∂θ log c(F (x); θ) ∶ θ ∈ Θ, F ∈ FM,lcd},

where

FM,lcd = {f ∈ Flcd ∶ sup
s∈R

f(s) ≤M and 1/M ≤ f(s) if s ∈ [−1,1]}.

and FM,lcd = {F (x) = ∫
x

−∞
f(s)ds ∶ f ∈ FM,lcd}. Assume that (B), (R6), and (R7)

hold. Then there exists a constant A such that

logN[](ε,FM,c, L2(P )) ≤ Aε−1/2.

Proof of Lemma 5.5. We provide the details when k, d = 2, as the proof generalizes

easily. Let ψ(θ,F (x)) = ∂θ log c(F (x); θ). By Taylor’s expansion, we have that

ψ(θ,F (x)) = ψ(θ0, F0(x)) +
2

∑
l=1

∂θlψ(θ∗, F ∗(x))(θl − θ0l) +
2

∑
j=1

∂ujψ(θ∗, F ∗(x))(Fj − F0j)(xj).

Then,

ψ(θ2, F2(x)) − ψ(θ1, F1(x)) =
2

∑
l=1

∂θlψ(θ∗, F ∗(x))(θ2l − θ1l) +
2

∑
j=1

∂ujψ(θ∗, F ∗(x))(F2j − F1j)(xj).

Next, we need to find the bracketing number for the class FM,c. Let N(εθ,Θ, ∥⋅∥∞)

, N(ε,FM,lcd, ∥ ⋅ ∥∞) denote covering numbers of the sets Θ and FM,lcd. Since, we

consider the case where k = 2, we cover the two spaces of Θ. Let θi1, θ
j
2 denote

centers of the balls of the two coverings of Θ with εθ = εθ1 , εθ2 . Also we consider

the case where d = 2. We cover two spaces FM,lcd. Therefore, let F k
1 , F

l
2 denote the
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centers of the balls of the two coverings of FM,lcd with ε = ε1, ε2, respectively. This

differentiation is not technically necessary, but it makes the exposition below slightly

easier to follow. Then,

ψ(θ,F (x))

= ψ(θ1, θ2, F1(x), F2(x))

= ψ(θ1, θ2, F1(x), F2(x)) − ψ(θi1, θj2, F k1 (x), F l2(x)) + ψ(θi1, θj2, F k1 (x), F l2(x))

= ψ(θi1, θj2, F k1 (x), F l2(x)) + ∂θ1ψ(θ∗, F ∗(x))(θ1 − θi1) + ∂θ2ψ(θ∗, F ∗(x))(θ2 − θ
j
2)

+∂u1ψ(θ∗, F ∗(x))(F1 − F k1 )(x1) + ∂u2ψ(θ∗, F ∗(x))(F2 − F l2)(x2).

Let θ1, θ2, F1, F2 be such that each lies in the covering ball with center θi1, θ
j
2, F

k
1 , F

l
2.

From assumption (R6) it therefore follows that

ψ(θ,F (x)) ≥ ψ(θi1, θ
j
2, F

k
1 (x), F l

2(x)) − ξθ1(x)εθ1 − ξθ2(x)εθ2 − ξ1(x)ε1 − ξ2(x)ε2,

ψ(θ,F (x)) ≤ ψ(θi1, θ
j
2, F

k
1 (x), F l

2(x)) + ξθ1(x)εθ1 + ξθ2(x)εθ2 + ξ1(x)ε1 + ξ2(x)ε2.

Hence, ψ(θ,F ) = ψ(θ1, θ2, F1, F2) is inside the bracket [lijkl, uijkl] where

lijkl(x) = ψ(θi1, θ
j
2, F

k
1 (x), F l

2(x)) − ξθ1(x)εθ1 − ξθ2(x)εθ2 − ξ1(x)ε1 − ξ2(x)ε2,

uijkl(x) = ψ(θi1, θ
j
2, F

k
1 (x), F l

2(x)) + ξθ1(x)εθ1 + ξθ2(x)εθ2 + ξ1(x)ε1 + ξ2(x)ε2.
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The size of the bracket is

∫ (uijk(x) − lijk(x))2f0(x)dx

= ∫ (2ξθ1(x)εθ1 + 2ξθ2(x)εθ2 + 2ξ1(x)ε1 + 2ξ2(x)ε2)2f0(x)dx

≤ 16ε2
θ1 ∫ ξ2

θ1
(x)f0(x)dx + 16ε2

θ2 ∫ ξ2
θ2
(x)f0(x)dx + 16ε2

1∫ ξ2
1(x)f0(x)dx + 16ε2

2∫ ξ2
2(x)f0(x)dx

≤ ε2

if ε2
θ1
= ε2/(64 ∫ ξ2

θ1
(x)f0(x)dx), ε2

θ2
= ε2/(64 ∫ ξ2

θ2
(x)f0(x)dx), ε2

1 = ε2/(64 ∫ ξ2
1(x)f0(x)dx),

and ε2
2 = ε2/(64 ∫ ξ2

2(x)f0(x)dx). The bracketing number for the space FM,c is then

N
[]
(ε,FM,c, ∥ ⋅ ∥2,f0)

≤ N(εθ1 ,Θ, ∥ ⋅ ∥∞) ×N(εθ2 ,Θ, ∥ ⋅ ∥∞) ×N(ε1,FM,lcd, ∥ ⋅ ∥∞) ×N(ε2,FM,lcd, ∥ ⋅ ∥∞)

= N (8−1ε/∥ξθ1∥2,f0 ,Θ, ∥ ⋅ ∥∞) ×N (8−1ε/∥ξθ2∥2,f0 ,Θ, ∥ ⋅ ∥∞) ×N(8−1ε/∥ξ1∥2,f0 ,FM,lcd, ∥ ⋅ ∥∞) ×N(8−1ε/∥ξ2∥2,f0 ,FM,lcd, ∥ ⋅ ∥∞)

≤ N
[]
(4−1ε/∥ξθ1∥2,f0 ,Θ, ∥ ⋅ ∥∞) ×N

[]
(4−1ε/∥ξθ2∥2,f0 ,Θ, ∥ ⋅ ∥∞) ×N

[]
(4−1ε/∥ξ1∥2,f0 ,FM,lcd, ∥ ⋅ ∥∞) ×N

[]
(4−1ε/∥ξ2∥2,f0 ,FM,lcd, ∥ ⋅ ∥∞)

≤ N
[]
(4−1ε/∥ξθ1∥2,f0 ,Θ, ∥ ⋅ ∥∞) ×N

[]
(4−1ε/∥ξθ2∥2,f0 ,Θ, ∥ ⋅ ∥∞) ×N

[]
(4−1ε/∥ξ1∥2,f0 ,FM,lcd, dH) ×N

[]
(4−1ε/∥ξ2∥2,f0 ,FM,lcd, dH).

It was shown in Doss and Wellner [2016, Theorem 3.1] that

logN[](ε,FM,lcd, dH) ≤ AMε
−1/2,

where the constant AM depends on M . On the other hand, from the well-known

result

N[](ε,Θ, ∥ ⋅ ∥∞) ≤ (2 diam(Θ)
ε

)
k

,

where k is the dimension of Θ. Therefore, returning to the general case of dimension
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k and d, we get

logN[](ε,FM,c, ∥ ⋅ ∥2,f0) ≤
k

∑
l=1

log(
2(d + k)diam(Θ)∥ξθl∥2,f0

ε
) +

d

∑
j=1

AM { ε

(d + k)∥ξj∥2,f0

}
−1/2

=
k

∑
l=1

2 log(
2(d + k)diam(Θ)∥ξθl∥2,f0

ε
)

1/2

+AM
√
d + k {

d

∑
j=1

√
∥ξj∥2,f0} ε−1/2

≤ 2
√

2(d + k)diam(Θ){
k

∑
l=1

√
∥ξθl∥2,f0} ε−1/2 +AM

√
d + k {

d

∑
j=1

√
∥ξj∥2,f0} ε−1/2

= Aε−1/2

with A = 4
√

diam(Θ)(d+k)1/2 {∑kl=1

√
∥ξθl∥2,f0}+2(d+k)1/2AM {∑dj=1

√
∥ξj∥2,f0} .

Proof of Theorem 5.2. We need to show that all four conditions from Nan and Well-

ner [2013, Corollary 1, page 1159] are satisfied. First, we show that

(i) (stochastic equicontinuity)

∣
√
n(Ψn −Ψ)(θ̂n, F̂n) −

√
n(Ψn −Ψ)(θ0, F0)∣

1 +
√
n∣Ψn(θ̂n, F̂n)∣ +

√
n∣Ψ(θ̂n, F̂n)∣

= op∗(1).

We will show the slightly stronger version of this condition which is

∣
√
n(Ψn −Ψ)(θ̂n, F̂n) −

√
n(Ψn −Ψ)(θ0, F0)∣ = op∗(1).

To prove this condition, we need to show that the class of ∂θ log c(F (x); θ) is

Donsker and appealing to van der Vaart and Wellner [1996, Corollary 2.3.12,

page 115]. Let gF,θ(x) = ∂θ log c(F (x); θ) and Gn =
√
n(Pn − P ) we have that

Gn (gF,θ − gF0,θ0) =
√
n(Ψn −Ψ)(θ,F ) −

√
n(Ψn −Ψ)(θ0, F0).
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Recall that under the assumptions of the theorem, F̂n, θ̂n are both consistent.

Since F0 is such that each density is log-concave, we can assume that for n

large enough each f̂nj ∈ FM,lcd, where

FM,lcd = {f ∈ Flcd ∶ sup
s∈R

f(s) ≤M and 1/M ≤ f(s) if s ∈ [−1,1]}.

FM,lcd is the class of associated cumulative distribution functions. Therefore,

to prove this result, it is sufficient to show that ∥Gn∥FδM,c , where F δM,c = {gF1,θ1−

gF2,θ2 ∶ gF1,θ1 , gF2,θ2 ∈ FM,c, ∥gF1,θ1 − gF2,θ2∥ < δ} and

FM,c = {∂θ log c(F (x); θ) ∶ θ ∈ Θ, F ∈ FM,lcd}.

By van der Vaart and Wellner [1996, Corollary 2.3.12, page 115], it is enough

to show that FM,c is P-Donsker. By (R7), an envelope function for FM,c exists.

Next, by Lemma 5.5, we have that

∫
∞

0

√
logN[](ε,FM,c, L2(P )) dε ≤

√
A∫

B

0
ε−1/4 dε = (4/3)B3/4

√
A < ∞,

since N[](ε,FM,c, L2(P )) = 1 for ε large enough. Thus, by van der Vaart and

Wellner [1996, Theorem 2.5.6, page 130], FM,c is P -Donsker. Then, the result

follows.

(ii)
√
nΨn(θ0, F0) = Op∗(1)

To prove this condition, we use central limit theorem (CLT). From assumption

(U), we have Ψ(θ0, F0) = Ef0[∂θ log c(F0(X); θ0)] = 0 and also Ψn(θ0, F0) =

102



n−1∑ni=1 ∂θ log c(F0(xi); θ0). Thus,

√
nΨn(θ0, F0) = n−1/2 { 1

n

n

∑
i=1

∂θ log c(F0(xi); θ0) −Ef0[∂θ log c(F0(X); θ0)]}

= Op∗(1),

since Ef0[∥∂θ log c(F0(X); θ0)∥2] is finite by (R4).

(iii) (smoothness)

For some β2 > 5/4, we have

∣Ψ(θ,F ) −Ψ(θ0, F0) − Ψ̇θ(θ0, F0)(θ − θ0) − Ψ̇F (θ0, F0)[F − F0]∣

= o(∥θ − θ0∥∞) +O(∥F − F0∥β2∞).

To prove this condition, we need Lemma A.13 for interchanging between abso-

lute value and integration. We use Taylor’s expansion around (θ0, F0). Then,
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∣Ψ(θ,F ) −Ψ(θ0, F0) − Ψ̇θ(θ0, F0)(θ − θ0) − Ψ̇F (θ0, F0)[F − F0]∣

= ∣R(θ∗, F ∗)∣

≤ ∣2−1∫
k

∑
q,s=1

∂θq∂θs∂θ log c(F ∗(x); θ∗)(θq − θ0q)(θs − θ0s)f0(x)dx

+2−1∫
k

∑
s=1

d

∑
j=1

∂uj∂θs∂θ log c(F ∗(x); θ∗)(θs − θ0s)(Fj − F0j)(xj)f0(x)dx

+2−1∫
d

∑
j=1

k

∑
q=1

∂uj∂θq∂θ log c(F ∗(x); θ∗)(θq − θ0q)(Fj − F0j)(xj)f0(x)dx

+2−1∫
d

∑
j,l=1

∂uj∂ul∂θ log c(F ∗(x); θ∗)(Fj − F0j)(xj)(Fl − F0l)(xl)f0(x)dx∣

≤ 2−1
k

∑
q,s=1

{∫ ∣∂θq∂θs∂θ log c(F ∗(x); θ∗)∣f0(x)dx} ∣θq − θ0q ∣∣θs − θ0s∣

+2−1
k

∑
s=1

d

∑
j=1

{∫ ∣∂uj∂θs∂θ log c(F ∗(x); θ∗)∣f0(x)dx} ∣θs − θ0s∣∥Fj − F0j∥∞

+2−1
d

∑
j=1

k

∑
q=1

{∫ ∣∂uj∂θq∂θ log c(F ∗(x); θ∗)∣f0(x)dx} ∣θq − θ0q ∣∥Fj − F0j∥∞

+2−1
d

∑
j,l=1

{∫ ∣∂uj∂ul∂θ log c(F ∗(x); θ∗)∣f0(x)dx}∥Fj − F0j∥∞∥Fl − F0l∥∞.
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Applying (R2) and (R5), therefore we get

∣Ψ(θ,F ) −Ψ(θ0, F0) − Ψ̇θ(θ0, F0)(θ − θ0) − Ψ̇F (θ0, F0)[F − F0]∣

≤ 1

2
k2M3∣θq − θ0q ∣∣θs − θ0s∣ +

1

2
kdM4∣θs − θ0s∣∥Fj − F0j∥∞

+1

2
kdM4∣θq − θ0q ∣∥Fj − F0j∥∞ + 1

2
d2M2∥Fj − F0j∥∞∥Fl − F0l∥∞

≤ 1

2
k2M3∥θ − θ0∥2

∞ + kdM4∥θ − θ0∥∞∥F − F0∥∞ + 1

2
d2M2∥F − F0∥2

∞

≤ (1

2
k2M3 +

kd

2
M4) ∥θ − θ0∥2

∞ + (kd
2
M4 +

1

2
d2M2) ∥F − F0∥2

∞

≤ o(∥θ − θ0∥∞) +O(∥F − F0∥2
∞).

Therefore, β2 = 2 which greater than 5/4. Then, condition (iii) has been proved.

(iv)
√
nΨ̇F (θ0, F0)[F̂n − F0] = Op∗(1)

Letting ψ0(u) = ∂uj∂θ log c(u; θ0), for each j = 1, . . . , d, we get

[
√
nΨ̇F (θ0, F0)[F̂n − F0]]j

= n−1/2
n

∑
i=1

ψ0(F0(xi))(F̂nj − F0j)(xij)

=
√
n(Pn − P0)[ψ0(F0(x))(F̂nj − F0j)(xj)] +

√
n∫ ψ0(F0(x))(F̂nj − F0j)(xj)f0(x)dx.

For the first term, we show that the class of {ψ0(F0(x))F (x) ∶ F ∈ FM,lcd} is P-

Donsker. Since ∣F ∣ ≤ 1 and by (R6), the envelope function of ψ0(F0(x))F (x) ex-

ists. Since, we have the relationship between the supremum norm and Hellinger

metric. Moreover, from the bracketing entropy logN[](ε,FM,lcd, dH) ≤ AMε−1/2.
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The relationship of the bracketing entropy with respect to these two metrics

are

logN[](ε,FM,lcd, ∥ ⋅ ∥∞) ≤ logN[](ε,FM,lcd, dH) ≤ AMε−1/2.

Therefore,

∫
∞

0

√
logN[](ε,FM,lcd, L2(P )) dε ≤

√
AM ∫

D

0
ε−1/4 dε = (4/3)D3/4

√
AM < ∞,

with D < ∞. Since for big enough ε, N[](ε,FM,lcd, L2(P )) is 1. Then, the class

of {ψ0(F0(x))F (x) ∶ F ∈ FM,lcd} is P-Donsker. Hence,

√
n(Pn − P0)[ψ0(F0(x))(F̂nj − F0j)(xj)] = op∗(1).

For the second term, we will show that it is Op∗(1).

√
n∫ ψ0(F0(x))(F̂nj − F0j)(xj)f0(x)dx ≤

√
n{∫ ∣ψ0(F0(x))f0(x)∣dx}∥F̂nj − F0j∥∞

By (R1), ∫ ∣ψ0(F0(x))f0(x)∣dx is bounded. The left of this proof is to show that

∥F̂nj −F0j∥∞ = Op(n−1/2). The proof follows Marshall’s inequality in Kim et al.

[2018, Lemma 2, page 2284] and it satisfies under f0j(xj) = eα0xjh0j(xj), for all xj ∈

[Xj,(1),Xj,(n)], for some α0 ∈ R, and h0 ∶ [Xj,(1),Xj,(n)] ↦ R is concave. Then,

we can show that

√
n∫ ψ0(F0(x))(F̂nj − F0j)(xj)f0(x)dx ≤

√
n{∫ ∣ψ0(F0(x))f0(x)∣dx}ρ(∣κ∣)∥Fn,j − F0,j∥∞

106



where κ = α0(Xj,(n) −Xj,(1)). When α0 ≠ 0, the support of f0j is bounded with

(LC), say [a0, b0], then in particular we have that Xj,(n) ≤ b0 and Xj,(1) ≥ a0 so

that

∣Xj,(n) −Xj,(1)∣ = Xj,(n) −Xj,(1) ≤ b0 − a0 = Op(1).

Therefore,

√
n∫ ψ0(F0(x))(F̂nj − F0j)(xj)f0(x)dx =

√
nO∗

p(n−1/2) = O∗
p(1).

The limitation of this proof under f0j(xj) = eα0xjh0j(xj) is that not all log-

concave densities can be written in this form. However, we will show by the

simulation studies of f0j ∼ Γ(5,1) and also Exp(1.5), and β(5,2) that
√
n

convergence of θ̂n still satisfies even if the true marginal densities are not follow

the form of f0j.

Therefore,

√
nΨ̇F (θ0, F0)[F̂n − F0] =

d

∑
j=1

[
√
nΨ̇F (θ0, F0)[F̂n − F0]]j

= Op∗(1).

Hence, θ̂n is
√
n−consistent.
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Proof of Theorem 5.3. From the consistency proof of the joint density estimator, we

have

∫ ∣f̂n(x) − f0(x)∣dx

= ∫ ∣c(F̂n(x); θ̂n) − c(F0(x); θ0)∣
d

∏
j=1

f0j(xj)dx +
d

∑
j=1
∫ ∣f̂nj(xj) − f0j(xj)∣{∏

i<j

f̂ni(xi)}{∏
i>j

f0i(xi)}c(F̂n(x); θ̂n) dx.

For the first term,

∫ ∣c(F̂n(x); θ̂n) − c(F0(x); θ0)∣
d

∏
j=1

f0j(xj)dx ≤ B3 {∥F̂n − F0∥∞ + ∥θ̂n − θ0∥∞} .

From the result that ∥F̂n − F0∥∞ = Op∗(n−2/5) and ∥θ̂n − θ0∥∞ = Op∗(n−1/2), we can

conclude that

∫ ∣c(F̂n(x); θ̂n) − c(F0(x); θ0)∣
d

∏
j=1

f0j(xj)dx = Op∗(n−2/5).

For the second term,

d

∑
j=1
∫ ∣f̂nj(xj) − f0j(xj)∣{∏

i<j

f̂ni(xi)}{∏
i>j

f0i(xi)}c(F̂n(x); θ̂n) dx

≤ Bd−1 {∫ ∣f̂nj(xj) − f0j(xj)∣
2

dx}
1/2

{∫ (c(F̂n(x); θ̂n))
2
dx}

1/2

≤ Bd−1 {∫ ∣f̂nj(xj) − f0j(xj)∣
2

dx}
1/2

{ sup
(F,θ)∈N

∫ (c(F (x); θ))2
dx}

1/2

.

Since, ∫ ∣f̂nj(xj)−f0j(xj)∣dx = Op∗(n−2/5). Then, ∫ ∣f̂nj(xj)−f0j(xj)∣
2

dx = Op∗(n−4/5).

Therefore, {∫ ∣f̂nj(xj) − f0j(xj)∣
2

dx}
1/2

= Op∗(n−2/5) and the second term is bounded

with (R8). Hence, we can conclude that

d

∑
j=1
∫ ∣f̂nj(xj) − f0j(xj)∣{∏

i<j

f̂ni(xi)}{∏
i>j

f0i(xi)}c(F̂n(x); θ̂n) dx = Op∗(n−2/5).
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Therefore,

∫ ∣f̂n(x) − f0(x)∣dx = Op∗(n−2/5).

5.2.3 Support for the proofs

5.2.3.1 Example of unique solution for Gaussian copula

From assumption of unique solution (U), we will show that it is true for Gaussian

copula. Let x = (x1, . . . , xd) be a d-variate data with Gaussian copula and marginals

u1 = F1(x1), . . . , ud = Fd(xd). The d-dimensional Gaussian copula density can be

represented as

c(u1, . . . , ud) =
1√

detR
exp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ−1(u1)

⋮

Φ−1(ud)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

[R−1 − I]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ−1(u1)

⋮

Φ−1(ud)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where R and R−1 − I are given by

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 θ ⋯ θ

θ 1 ⋯ θ

⋮ ⋯ ⋯ ⋮

θ ⋯ θ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, R−1 − I = 1

detR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B ⋯ B

B A B B

⋮ ⋯ ⋯ ⋮

B ⋯ B A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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with A and B depend on θ. To simplify notations, we denote u0j = F0j(xj),and

y0j = Φ−1(u0j) for each j = 1, . . . , d. Then,

log c(u01, . . . , u0d; θ)

= −1

2
log(detR) − 1

2 detR
{y2

01A + y01(y02 + ⋅ ⋅ ⋅ + y0d)B + ⋅ ⋅ ⋅ + y2
0dA + y0d(y01 + ⋅ ⋅ ⋅ + y0,d−1)B} .

Hence,

∂θ log c(u01, . . . , u0d; θ)

= −1

2
(∂θ detR

detR
) − 1

2 detR
{y2

01∂θA + y01(y02 + ⋅ ⋅ ⋅ + y0d)∂θB + ⋅ ⋅ ⋅ + y2
0d∂θA + y0d(y01 + ⋅ ⋅ ⋅ + y0,d−1)∂θB}

+{y2
01A + y01(y02 + ⋅ ⋅ ⋅ + y0d)B + ⋅ ⋅ ⋅ + y2

0dA + y0d(y01 + ⋅ ⋅ ⋅ + y0,d−1)B} ∂θ detR

2(detR)2
.

Since for each j, u0j are distributed as U(0,1), and Φ ∼ N(0,1). Then, Φ−1(u0j) ∼

N(0,1). Then, Eθ0(y0j) = 0,Eθ0(y2
0j) = var(y0j) = 1, and E(y0jy0l) = corr(y0j, y0l) = θ0

for j, l = 1. . . . , d. Therefore,

Ψ(θ, u01, . . . , u0d)

= ∫ (∂θ log c(u01, . . . , u0d; θ)) c(F0; θ0)g0(x) dx

= −1

2
(∂θ detR

detR
) − 1

2 detR
{d∂θA + d(d − 1)θ0∂θB} + {dA + d(d − 1)θ0B}( ∂θ detR

2(detR)2
) .
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We will show an explicit formula for d = 2 and d = 3. First, we show each part of

Ψ(θ, u01, u02).

detR = 1 − θ2, ∂θ detR = −2θ

A = 1, ∂θA = 0

B = −θ, ∂θB = −1.

Hence,

Ψ(θ, u01, u02)

= −1

2
( −2θ

1 − θ2
) − 1

2(1 − θ2)
(−2θ0) + (2 − 2θ0θ)(

−2θ

2(1 − θ2)2
) .

Then, we set Ψ(θ, u01, u02) = 0. We get

θ3 − θ2θ0 + θ − θ0 = 0

θ2(θ − θ0) + (θ − θ0) = 0

(θ − θ0)(θ2 + 1) = 0

θ = θ0.

Thus, θ0 is a unique solution of Ψ(θ, u01, u02) = 0.
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Next, each term of Ψ(θ, u01, u02, u03) can be expressed as

detR = 1 + 2θ3 − 3θ2, ∂θ detR = 6θ2 − 6θ

A = −2θ3 + 2θ2, ∂θA = −6θ2 + 4θ

B = θ2 − θ, ∂θB = 2θ − 1.

Hence,

Ψ(θ, u01, u02, u03)

= −1

2
( 6θ2 − 6θ

1 + 2θ3 − 3θ2
) − 1

2(1 + 2θ3 − 3θ2)
{3(−6θ2 + 4θ) + 6θ0(2θ − 1)}

+{3(−2θ3 + 2θ2) + 6θ0(θ2 − θ)}( 6θ2 − 6θ

2(1 + 2θ3 − 3θ2)2
) .

Then, we set Ψ(θ, u01, u02, u03) = 0. We get

[12θ4 − 24θ3 + 18θ2 − 12θ + 6] (θ − θ0) = 0.

Thus, θ0 is a unique solution of Ψ(θ, u01, u02, u03) = 0.

5.2.3.2 Study of
√
n rate of convergence for θ̂n

In this chapter, we already proved that the copula estimator is
√
n consistent.

However, it is good to know how the copula estimator performs in the simulation

study. We expect that the simulation results should provide approximately the
√
n

rate of convergence, which represents in the same way as the theory does. We work
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on three methods, which are parametric IFM, log-concave IFM, and kernel IFM.

Moreover, we focus on d = 2, τ = 0,0.2,0.6, and both margins have the same marginal

densities. The simulation results in Figure 5.1 to 5.3 are from 50 sets of simulation.

For finding the copula estimator, we use a “Newton’s-Raphson” method, which needs

the first and second derivatives of the log-likelihood function. In order to make the

simulation simple, we choose the Gaussian copula as our interested copula because

its derivatives can be found easily. A log-likelihood function of the Gaussian copula

is given by

`c =
n

∑
i=1

⎡⎢⎢⎢⎢⎣
− 1

2
log(1 − θ2) − θ2

2(1 − θ2)
(Φ−1(u))2

+ θ

1 − θ2
Φ−1(u)Φ−1(v) − θ2

2(1 − θ2)
(Φ−1(v))2

⎤⎥⎥⎥⎥⎦
.

Then, the corresponding first derivative is

`′c =
n

∑
i=1

⎡⎢⎢⎢⎢⎣

θ

1 − θ2
− θ

(1 − θ2)2
((Φ−1(u))2 + (Φ−1(v))2)

+ 1 + θ2

(1 − θ2)2
Φ−1(u)Φ−1(v)

⎤⎥⎥⎥⎥⎦
.

The expression of the second derivative is

`′′c =
n

∑
i=1

⎡⎢⎢⎢⎢⎣

1 + θ2

(1 − θ2)2
− 1 + 3θ2

(1 − θ2)3
((Φ−1(u))2 + (Φ−1(v))2)

+ 6θ + 2θ3

(1 − θ2)3
Φ−1(u)Φ−1(v)

⎤⎥⎥⎥⎥⎦
.
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Hence, the updating scheme for Newton’s-Raphson method is given by

θ(t+1) = θ(t) − `′c(θ(t))
`′′c (θ(t))

,

where (t) represents set tth of the simulation study.

Next, we plot graphs between log-scale of standard deviations (y-axis) and sample

sizes (x-axis). Then, we fit logarithm of standard deviations of θ̂ with logarithm of

sample sizes by using a least square estimation. After that, we plot slopes, which are

shown as the straight lines in Figure 5.1 to 5.3. These lines are approximately −1/2,

which represent the rate of convergence for the estimator θ̂.

5.2.3.3
√
n convergence for θ̂n when condition (LC) is not satisfied

This section is to show that when f0j does not follow the conditions in Kim et al.

[2018, Lemma 2, page 2284], then
√
n rate of convergence is still satisfied. We will

show by three log-concave distributions, which are Γ(5,1), Exp(1.5), and β(5,2). For

Γ(a, b), when we take α0 = −b, and h0j(xj) = (ba/Γ(a))xa−1
j , h0j(xj) is not concave for

all xj ∈ [Xj,(1),Xj,(n)] when a /∈ (1,2). For Exp(λ), we set α0 = −λ and h0j(xj) = λ.

We can clearly see that h0j(xj) is not concave for all λ. For β(a, b), we take α0 = 0

and h0j(xj) = (xa−1
j (1 − xj)b−1) /(B(a, b)), where B(a, b) = (a− 1)!(b− 1)!/(a+ b− 1)!.

Since the second derivative of h0j(xj) is complicated, so it is hard to find the values

of a and b which h0j(xj) is concave. In the simulation study, we choose β(5,2) as an
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Figure 5.1: Study
√
n rate of convergence for N(0,1)
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Figure 5.2: Study
√
n rate of convergence for Γ(2,1)
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Figure 5.3: Study
√
n rate of convergence for t5
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example of β(a, b) which is not satisfy the form of f0j.

τ = 0.6, Γ(5,1), Γ(5,1) τ = 0.6, Exp(1.5), Exp(1.5)

τ = 0.6, β(5,2), β(5,2)

Figure 5.4: Estimated rate of convergence for θ̂ when f0(x) = eα0xh0(x)

5.2.4 Regularity Conditions

(U) There is a unique solution θ0 to Ψ(θ,F0) = 0.
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(B) The state space of the copula parameter Θ is a bounded subset of Rk.

(LC) The true density has the form f0 = eα0xh0(x) and the support of f0 is bounded

if α0 ≠ 0.

(R1) There exists a finite constant M1 such that

max
j=1,...,d

sup
θ∈Θ

Ef0 [∣∂uj∂θ log c(F0(X); θ)∣] ≤ M1.

(R2) There exists a neighbourhood N such that F0 ∈ N and a finite constant M2

such that for all F ∈ N

max
j,l=1,...,d

sup
θ∈Θ

Ef0 [∣∂uj∂ul∂θ log c(F (X); θ)∣] ≤ M2.

(R3) There exists a function m(x) such that

sup
θ∈Θ

∣∂2
θ log c(F0(x); θ)∣ ≤ m(x),

and m(x) has a bounded moment E[mk(X)] < ∞ for some integer k ≥ 1.

(R4) Ef0[∥∂θ log c(F0(X); θ0)∥2] < ∞

(R5) (i) There exists a neighbourhood N such that (F0, θ0) ∈ N and a finite con-

stant M3 such that for all (F, θ) ∈ N

max
q,s=1,...,k

Ef0 [∣∂θq∂θs∂θ log c(F (X); θ)∣] ≤ M3.
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(ii) There exists a neighbourhood N such that (F0, θ0) ∈ N and a finite con-

stant M4 such that for all (F, θ) ∈ N

max
q=1,...,k

max
j=1,...,d

Ef0 [∣∂uj∂θq∂θ log c(F (X); θ)∣] ≤ M4.

(R6) For j = 1, . . . , d,

sup
F ∈FM,lcd

sup
θ∈Θ

∣∂θl∂θ log c(F (x); θ)∣ ≤ ξθl(x)

sup
F ∈FM,lcd

sup
θ∈Θ

∣∂uj∂θ log c(F (x); θ)∣ ≤ ξj(x)

where Ef0[ξθl(X)2] < ∞ and Ef0[ξj(X)2] < ∞.

(R7)

sup
F ∈FM,lcd

sup
θ∈Θ

∣∂θ log c(F (x); θ)∣ ≤ G(x),

where Ef0[G2(X)] < ∞.

(R8) There exists a neighbourhood N such that (F0, θ0) ∈ N and a finite constant

B2 such that for all (F, θ) ∈ N

sup
(F,θ)∈N

∫ (c(F (x); θ))2
dx ≤ B2.

(R9) (i) There exists a neighbourhood N such that (F0, θ0) ∈ N and a finite con-

stant D1 such that for all (F, θ) ∈ N

max
j=1,...,d

∫ ∣∂ujc(F (x); θ)∣dx ≤ D1.
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(ii) There exists a neighbourhood N such that (F0, θ0) ∈ N and a finite con-

stant D2 such that for all (F, θ) ∈ N

max
l=1,...,k

∫ ∣∂θlc(F (x); θ)∣dx ≤ D2.
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6 Finite mixture models

In several applications, mixture models take part in data analysis; for example,

in finance, customers are segmented into several groups where the financial institu-

itions can treat them accordingly to their needs. In biology, mixture models help

us categorizing flu strains into groups. We can see the evolution over the influenza

seasons which leads to the developing of a vaccine, see Li et al. [2016]. Moreover,

nowadays the trend of big data is booming. Several techniques of clustering and

classification with mixture models have been used. Suppose we observe n random

variables X = {X1, . . . ,Xn} ∈ Rd with the observations represent an existence of

subpopulations. Then, a finite mixture model is given by

f(x) =
k

∑
j=1

πjfj(x), (6.1)

where k denote a number of finite subpopulations, πj are the mixing proportions

for subpopulation jth, where πl = 1 − ∑j≠l πj, and f1, . . . , fk are the densities of

subpopulation kth.
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Since (6.1) has missing values, which is the mixing proportions πj for all j =

1, . . . , k, so we will use an expectation-maximization (EM) algorithm to find the

MLE. First, we present a concept of EM algorithm. Then, we will focus on a Gaussian

mixture model (GMM). After that, we will present the EM algorithm for log-concave

mixture model (LCMM).

6.1 Concept of EM algorithm

The EM algorithm is an iterative method for finding MLE of a model with un-

observed variables. It has two main steps, which are from its short notation E and

M. First, we do the expectation (E-step), which is for filling in the missing group

labels. Then, we maximize the model from E-step with the maximum likelihood

estimation, so we call this step as the maximization (M-step). Suppose each fj in

(6.1) has corresponding parameters αj. We denote λ = {α1, . . . , αk, π1, . . . , πk} as a

set of parameters for (6.1). Then, a likelihood function is given by

L(λ∣x) =
n

∏
i=1

k

∑
j=1

πjfj(xi).

Also, a log-likelihood function can be represented as

`(λ∣x) =
n

∑
i=1

log(
k

∑
j=1

πjfj(xi)) . (6.2)
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However, we cannot find the ML estimator from (6.2) because of their missing values,

so we introduce a new variable which is

wij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if xi is from fj,

0, otherwise,

where 1 ≤ i ≤ n and 1 ≤ j ≤ k. Then, the log-likelihood function of x and w can be

represented as

`(λ∣x,w) =
n

∑
i=1

log(
k

∑
j=1

wijfj(xi))

≥
n

∑
i=1

k

∑
j=1

wij log fj(xi). (6.3)

The last inequality is from using Jensen’s inequality and it is a lower bound of

`(λ∣x,w). To simplify notation, we denote `(λ∣x,w) as `(λ). In E-step, the algorithm

will choose a lower bound that clings to `(λ) and in M-step, that lower bound will

be maximized. Since `(λ) is bigger than the lower bound, `(λ) will be increased too.

We describe details of E and M-steps as follows.

E-step is to take an expectation of (6.3) with respect to the parameter λ that is

Eλ [
n

∑
i=1

k

∑
j=1

wij log fj(xi)∣λ,x] . (6.4)

In (6.4), only wij are random variables, so we can reduce (6.4) to

Eλ (wij ∣λ,x) .
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Since wij follow Bernoulli distribution. The expectation of Bernoulli distribution is

its probability. Hence,

Eλ (wij ∣λ,x) = p = Pλ (wij = 1∣λ,x) =
Pλ(wij = 1)Pλ (Xi∣wij = 1, λ)

∑kj=1Pλ(wij = 1)Pλ (Xi∣wij = 1, λ)
.

Therefore, the membership weights for each data point xi in cluster j are given by

ŵij =
π̂jfj(xi∣λ)

∑kj=1 π̂jfj(xi∣λ)
. (6.5)

Next, we use the membership weights in (6.5) to estimate λ̂. We do the maximum

likelihood estimation, which maximizes the objective function Q in (6.6) with respect

to α1, . . . , αk. This is the M-step where function Q is given by

Q(λ∣ŵ, x) =
n

∑
i=1

k

∑
j=1

ŵij log fj(xi∣λ). (6.6)

Therefore,

α̂j = argmax Q(λ∣ŵ, x) for j = 1, . . . , k.

To summarize, the EM algorithm follows these steps:

1. Start with an initial guess for λ, say λ̂(0)

2. For iteration rth and j = 1, . . . , k,

E-step:

ŵ
(r)
ij =

π̂
(r−1)
j fj(xi∣λ̂(r−1))

∑kj=1 π̂
(r−1)
j fj(xi∣λ̂(r−1))

,
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π̂
(r)
j =

∑ni=1 ŵ
(r)
ij

n
,

M-step:

α̂
(r)
j = argmax Q(λ(r−1)∣ŵ(r), x).

3. Step 2 is iterated until ∣ `(λ̂
(r))−`(λ̂(r−1))

`(λ̂(r−1))
∣ < ε for some small positive values of ε.

6.2 EM algorithm in Gaussian mixture models (GMM)

When fj in (6.1) are estimated with Gaussian distributions, the mixture model

is called GMM. A set of parameters for k subpopulations is λ = {µj, σ2
j , πj} for

j = 1, . . . , k. To estimate λ, we use EM algorithm where its M-step is to maximize

the Q function, which is

Q(λ∣ŵ, x) =
n

∑
i=1

k

∑
j=1

ŵij log fj(xi∣µj, σ2
j ).

The explicit formulas for µ̂j and σ̂2
j can be derived by setting the first derivative of

the Q function with respect to each parameter equals to zero. Therefore, for each j

we get

µ̂j =
∑ni=1 ŵijxi

∑ni=1 ŵij

σ̂2
j =
∑ni=1 ŵij(xi − µ̂j)2

∑ni=1 ŵij
.
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As we can see, for GMM, the estimators µ̂j and σ̂2
j are just the weighted mean and

variance. Since we get ŵij from E-step, the mixing proportions are given by

π̂j =
∑ni=1 ŵij

n
.

6.3 EM algorithm in log-concave mixture models

Estimating (6.1) by using GMM does not perform well when each true density

fj is skewed. Hence, we will estimate fj with log-concave distribution instead of

Gaussian distribution. We call this model a log-concave mixture model (LCMM),

that is given by

f(x) =
k

∑
j=1

πj expϕj(x).

Steps of EM algorithm for LCMM are similar to the EM algorithm of GMM.

The only difference is that each fj is estimated with log-concave distribution instead

of Gaussian distribution. Hence, in the maximization step, the estimator f̂j can be

found by doing the log-concave MLE, which is available in the logcondens packgage

for d = 1.

Note that the mixture models may be unbounded in some cases, for example,

when fj is a Gaussian distribution with µ1 = x1 and σ2 → 0. The likelihood function

will be infinite which is an unboundness issue for the mixture model. Similarly,
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the mixtures of log-concave distributions may have this problem too. Hu et al.

[2016] presented the algorithm, which defines a log-concave MLE on a constrained

parameter space. Moreover, they claimed that if the algorithm starts with a good

initial value, the unboundness problem will be very rare.

6.4 Simulation study

We perform a simulation study for multivariate LCMM by focusing on the per-

fomance of classification results. Chang and Walther [2007] studied multivariate

LCMM via the copula model. They used a Gaussian copula to model dependence

between two dimensions. The EM algorithm has been used where its M-step com-

putes the log-concave ML estimators for each subpopulation. Similarly, our simu-

lation study also use the Gaussian copula with both symmetric and skew marginal

distributions. As we mentioned before, the copula model can solve the computation-

ally intensive problem that occurs when we find the log-concave ML estimators with

Shor’s r-algorithm in the LogConcDEAD package. Our study will show percentages

of misclassification cases of our proposed model compare with GMM, and multivari-

ate log-concave with Shor’s r-algorithm. Suppose we observe n random variables

X = {X1, . . . ,Xn} ∈ Rd. The joint density function of LCMM is given by

f(x) =
k

∑
j=1

πjfj(x),
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where each fj(x) is the d-dimensional data with Gaussian copula and log-concave

marginals. Its joint density function with correlation matrix R can be represented

as

fj(x) = c(F1(x1), . . . , Fd(xd); θ)
d

∏
l=1

expϕl(xl),

where

c(F1(x1), . . . , Fd(xd); θ) =
1√

detR
exp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ−1(F1(x1))

⋮

Φ−1(Fd(xd))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(R−1 − I)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ−1(F1(x1))

⋮

Φ−1(Fd(xd))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The random vectors Φ−1(F1(x1)), . . . ,Φ−1(Fd(xd)) are quantile functions of cumu-

lative distribution function of X1, . . . ,Xd, respectively. Moreover, we consider the

parameter of Gaussian copula when θ = 0. In our study, we compare the simulation

results of three methods, which are

1. Gaussian copula with log-concave marginals (proposed method),

2. GMM, and

3. multivariate log-concave with Shor’s r-algorithm in LogConcDEAD package.

We compare the performance of each method by using percentages of average mis-

classification cases in which a formula can be represented as

1

n
(∑

t
i=1mi

t
) × 100, (6.7)

129



where mi is the number of misclassification cases from simulation set ith for i =

1, . . . , t. t and n denote sets of simulation and sample sizes, respectively. Details

of the simulation study are in Table 6.1 and the corresponding results are shown in

Table 6.2 and 6.3.

Table 6.1: Details for the simulation study

Dimensions (d) 2

Number of subpopulations (k) 2

Mixing proportions (π1, π2) 0.6, 0.4

Distributions 1st subpopulation 2nd subpopulation

case I N(2,2) and N(2,2) N(7,2) and N(7,2)

case II γ(2,2) and γ(5,2) Beta(2,8) and Beta(6,8)

Dependence 0

Sample sizes (n) 50, 100, 300, 500, 1000

Sets of simulation (t) 100
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Table 6.2: Classification results of case I: average number of misclassification cases

from 100 simulation sets where the number in brackets are percentages from (6.7)

n GMM Copula+log-concave margins Multivariate log-concave

50 0.49 (0.98%) 0.49 (0.98%) 0.55 (1.1%)

100 0.87 (0.87%) 0.95 (0.95%) 0.94 (0.94%)

300 1.91 (0.64%) 2.01 (0.67%) 2.55 (0.85%)

500 2.94 (0.59%) 3.16 (0.632%) 3.74 (0.75%)

1000 6.08 (0.61%) 6.17 (0.617%) 7.4 (0.74%)

As expected, the proposed method performs better than multivariate log-concave

especially when the sample size is large. On the contrary, GMM performs the best in

this case but not too far ahead of our proposed method. Hence, GMM is the best for

symmetric distribution. However, the proposed method still performs good results.
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Table 6.3: Classification results of case II: average number of misclassification cases

from 100 simulation sets where the number in brackets are percentages from (6.7)

n GMM Copula+log-concave margins Multivariate log-concave

50 0.55 (1.10%) 0.64 (1.28%) 0.51 (1.02%)

100 0.9 (0.90%) 0.74 (0.74%) 0.73 (0.73%)

300 2.42 (0.81%) 1.81 (0.60%) 2.04 (0.68%)

500 3.84 (0.77%) 3.1 (0.62%) 3.38 (0.68%)

1000 7.95 (0.79%) 5.71 (0.57%) 6.12 (0.61%)

Similar to case I, in case II the proposed method performs better than multivariate

log-concave when the sample size is large. In contrast, GMM for skew distributions

performs the worst unlike GMM for Gaussian distribution in case I. However, for

small sample size, GMM still works well and performs better than the copula model.
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7 Breast cancer data example

For a real data set, we study the performance of our proposed method in clas-

sification problem. We choose the Wisconsin breast cancer data set from http://

archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%

29 as an example. This is also an example that can be found in Cule et al. [2010].

This data set has 30 dimensions with 2 subpopulations, which are benign and ma-

lignant. The sample size is 569 where 357 are benign and 212 are malignant. The

study of breast cancer data set follows these steps.

1. We do principal component analysis (PCA) of 30 dimensions and choose the

first two components for the classification problem. The first two components

can capture 63% of variability of the whole data set (44% in the 1st component,

19% in the 2nd component). A data plot can be found in Figure 7.1. The joint

density function for breast cancer data set can be expressed as

f(x1, x2) = π1f1(x1, x2) + π2f2(x1, x2).
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For our proposed method, fj are modeled as the copula density with log-concave

marginals, which can be represented as

fj(x1, x2, θ) = c(F1(x1), F2(x2); θ)Π2
l=1 expϕl(xl); j = 1,2.

2. Before doing an EM algorithm, we choose a copula density for both subpopu-

lations f1 and f2 with Bayesian information criterion (BIC). It turns out that

Frank copula has been chosen for both subpopulations but with different pa-

rameters θ. Frank copula is one of the Archimedean copulas which its copula

density function is given by

c(F1(x1), F2(x2)) =
θe−θF1(x1)−θF2(x2)(1 − e−θ)

[(e−θ − 1) + (e−θF1(x1) − 1)(e−θF2(x2) − 1)]2 ; θ ∈ (−∞,∞)/{0}.

We use BiCopSelect package for copula selection and the corresponding estima-

tor θ̂ is obtained from MLE. We get θ̂ = −2.44 and 0.18 for the first and second

subpopulations, respectively. We use Frank copula for every iteration in EM

algorithm with updated copula estimators θ̂ from the M step.

3. Then, we do EM algorithm. E-step is for finding wij to estimate proportions

π1, π2. M-step is for estimating the log-concave ML estimators and also copula

estimator θ̂. Hence, we get the group number for each individual observations.

4. Then, we compare our proposed method with GMM and multivariate log-

concave EM.
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We measure the performance of our proposed method by using percentage of mis-

classification cases. The results show that the misclassification cases of our proposed

method, GMM, and multivariate log-concave EM are 49, 59 and 46, respectively.

As expected, our proposed method performs much better than GMM but it is three

more misclassification cases than multivariate log-concave that is 0.5% of the total

569 observations. However, to fit the mixture model, our proposed method uses only

30 seconds which much less computational time than multivariate log-concave that

uses almost 30 minutes. All corresponding plots are given below.

Figure 7.1: Breast cancer data with benign as light grey dots and malignant as dark

grey dots
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(a) (b) (c)

Figure 7.2: Surface plots for Breast cancer data set from (a) Gaussian mixture model (b) mixture

of Frank copula with log-concave marginals (c) multivariate log-concave mixture

(a) (b) (c)

Figure 7.3: Contour plots with misclassification cases (benign as light grey dots and malignant as

dark grey dots) for Breast cancer data set from (a) Gaussian mixture model (b) mixture of Frank

copula with log-concave marginals (c) multivariate log-concave mixture
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(a) (b) (c)

Figure 7.4: Contour plots with misclassification cases for Breast cancer data set from (a) Gaussian

mixture model (b) mixture of Frank copula with log-concave marginals (c) multivariate log-concave

mixture; each symbol is for misclassification cases in ● all methods, ◾ both GMM & multivariate

log-concave mixture, ▴ GMM & copula model, ◆ copula model & multivariate log-concave mixture,

× only multivariate log-concave mixture, + only copula model, ◯ only GMM
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8 Further research

8.1 Vine copulas

Along the thesis, we model dependencies between dimensions with the same cop-

ula family. However, the dependencies can be modeled differently for each pair of

dimensions, which is the idea of vine copula. The first regular vine is introduced from

Joe [1994]. The concept of vine copulas relates to a mixture of both unconditional

and conditional distribution functions. First, we look at the joint density function in

terms of conditional density functions. Suppose we consider the d-dimensional data,

the joint density function is given by

f(x1, . . . , xd) = f(x1∣x2, . . . , xd)f(x2∣x3, . . . , xd)⋯f(xd−1∣xd)f(xd). (8.1)

From Sklar’s theorem, the joint density in (8.1) can be written in terms of the

copula density times the marginal distributions, which is

f(x1, . . . , xd) = c{F1(x1), . . . , Fd(xd)}f1(x1)⋯fd(xd).

138



Moreover, the conditional distribution functions can split into a set of pair-copula

times marginal distribution functions. We present an example of three dimensional

data where their joint density function is

f(x1, x2, x3) = f(x1∣x2, x3)f(x2∣x3)f(x3). (8.2)

Each term of conditional density function in (8.2) is given by

f(x2∣x3) =
f(x2, x3)
f(x3)

= c23{F2(x2), F3(x3)}f2(x2),

f(x1∣x3) =
f(x1, x3)
f(x3)

= c13{F1(x1), F3(x3)}f1(x1),

f(x1∣x2, x3) =
f(x1, x2∣x3)
f(x2∣x3)

=
c12∣3{F1(x1∣x3), F2(x2∣x3)}f(x1∣x3)f(x2∣x3)

f(x2∣x3)

= c12∣3{F1(x1∣x3), F2(x2∣x3)}f(x1∣x3)

= c12∣3{F1(x1∣x3), F2(x2∣x3)}c13{F1(x1), F3(x3)}f1(x1).

Plug in all conditional density functions into (8.2), we gets

f(x1, x2, x3) = c13{F1(x1), F3(x3)}c23{F2(x2), F3(x3)}c12∣3{F1(x1∣x3), F2(x2∣x3)}f1(x1)f2(x2)f3(x3) (8.3)

As we can see, the joint density function can be written as the product of pair

copula densities and marginal densities where the pair-copula densities consist of
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unconditional pairs such as c13, c23 and conditional pair such as c12∣3. More than

that, each pair of copulas can come from different copula families. However, the

decomposition of (8.3) is not unique. There are some other ways of writing the joint

density function for three variables, for instance,

f(x1, x2, x3) = c12{F1(x1), F2(x2)}c23{F2(x2), F3(x3)}c13∣2{F1(x1∣x2), F3(x3∣x2)}f1(x1)f2(x2)f3(x3).

For higher dimensions, the number of pair-copula is d(d − 1)/2, which depends

on the dimension d. Bedford and Cooke [2001] introduced a graphical model called

“regular vine” (R-vine) that helps to organize the complexity of the pair-copula

construction. Moreover, regular vine consists of several ways of writing. We will

concentrate on two famous types, which are drawable vine (D-vine) and canonical

vine (C-vine). In Figure 8.1 and 8.2, there are three notations to be clarified, which

are variables, trees, and edges. The variables are data for each dimension, trees are

represented as Ti and edges are line connected between dimensions. Figure 8.1 shows

an example of six dimensions for the D-vine copula with 5 trees and 15 edges. In

addition, Figure 8.2 represents the C-vine diagram with the same number of trees

and edges as D-vine. Note that when the first tree is decided, the following trees are

straightforward and there is only one way to be assigned.

Definition 8.1. Dibmanna et al. [2012] Let V = (T1, . . . , Tn−1) is an R-vine on n

elements if
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1. T1 is a tree with nodes N1 = {1, . . . , n} and a set of edges denoted E1.

2. For i = 2, . . . , n − 1, Ti is a tree with nodes Ni = Ei−1 and edge set Ei.

3. For i = 2, . . . , n−1 and {a, b} ∈ Ei with a = {a1, a2} and b = {b1, b2} it must hold

that #(a ∩ b) = 1 (proximity condition).

Steps for using vine copulas can be summarized as follows:

1. model selection, i.e., selecting which conditioned and unconditioned pairs to

use,

2. choosing bivariate copula family for each pair from the first step, where details

of the copula families and their corresponding parameters are in Chapter 3,

and

3. estimating all parameters corresponding to the copula family that has been

chosen from the previous step.

For model selection in the first step, it is done tree by tree via some model selection

methods such as optimal C-vines structure selection, see Czado et al. [2012], or the

traveling salesman problem for D-vines. An objective of model selection is to choose

the model that can capture the most dependence of the lower trees. For the copula

selection in the second step, AIC, BIC, or goodness of fit tests can be used. Finally,
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we do the parameter estimation. The MLE can also be done. However, sequential

estimation is another choice where the parameters are estimated sequentially from

the top of the tree. Moreover, sometimes the sequential estimation is used for the

starting values of the MLE.

8.2 Asymptotic normality for copula estimator

We already show that the copula estimator has the
√
n rate of convergence.

However, the asymptotic normality of the copula estimator under the log-concave

marginals still be an open problem to study.
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1 2 3 4 5 6T1
12 23 34 45 56

T2 12 23 34 45 56
13∣2 24∣3 35∣4 46∣5

T3 13∣2 24∣3 35∣4 46∣5
14∣23 25∣34 36∣45

T4 14∣23 25∣34 36∣45
15∣234 26∣345

T5 15∣234 26∣345
16∣2345

Figure 8.1: D-vine with 6 dimensions, 5 trees and 15 edges
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1 2

4

5

6

T1

13 23

34

35
36

13

23

34

35

36

T2

12∣3
14∣3

15∣3

16∣3

12∣3

14∣3

15∣3

16∣3

T3

24∣13

25∣13

26∣13

24∣13 26∣13

25∣13

T4

45∣123

46∣123

45∣123 46∣123T5

56∣1234

Figure 8.2: C-vine with 6 dimensions, 5 trees and 15 edges
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9 Clustering using log-concave densities in d = 1

In this chapter, we focus on a clustering problem with one-dimensional log-

concave densities. Our objective is to study the performance of using the log-concave

MLE for estimating the density of each subpopulation compare with the classical

GMM. We also propose a new criterion for selecting the number of subpopulations.

Our proposed criterion derives from the concept of Bayesian approach which is simi-

lar to the derivation of BIC. We will present the derivation of our proposed criterion,

which is called “proposed BIC”. Then, we will do some simulation studies by using

the log-concave mixture model (LCMM) with this proposed criterion.

9.1 Derivation of proposed BIC under LCMM

Let λ be a set of parameters in a model M , the Bayesian approach for a model se-

lection is to maximize a posterior probability of a modelM given data x = {x1, . . . , xn}.
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We get the posterior probability of the model as

P(M ∣ x) = P (x ∣M)P (M)
P (x)

.

If we assume that all candidate models are equally likely, maximizing the posterior

probability will be the same as maximizing the marginal likelihood P (x ∣ M). Let

p(λ) denote a prior density. Hence,

P(x ∣M) = ∫ f(x ∣ λ)p(λ) dλ

= ∫ exp[log f(x ∣ λ)]p(λ) dλ. (9.1)

Let `(λ) = log f(x ∣ λ) denote a log-likelihood function. Then, we do the Taylor

series around the maximum likelihood estimator λ̂. Therefore, we get

`(λ) = `(λ̂) + (λ − λ̂)T∇λ̂`(λ̂) +
1

2
(λ − λ̂)THλ̂(λ − λ̂) + op(1),

where Hλ̂ = ∂λ∂Tλ `(λ̂). We know that at the ML etimator ∇λ̂`(λ̂) = 0. Thus,

`(λ) = `(λ̂) + 1

2
(λ − λ̂)THλ̂(λ − λ̂) + op(1). (9.2)

Similarly, Taylor’s expansion of the prior density at λ̂ is given by

p(λ) = p(λ̂) + (λ − λ̂)T∂λp(λ̂) + op(1). (9.3)
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Then, substituting (9.2) and (9.3) in (9.1) and ignoring the term of op(1), the

marginal likelihood function can be expressed as

P (x ∣M) ≈ ∫ exp(`(λ̂) + 1

2
(λ − λ̂)THλ̂(λ − λ̂)) (p(λ̂) + (λ − λ̂)T∂λp(λ̂))dλ

≈ exp `(λ̂)p(λ̂)∫ exp(1

2
(λ − λ̂)THλ̂(λ − λ̂))dλ.

Let Jλ̂ = −Hλ̂ denote the Fisher information matrix and let Y = (λ − λ̂). Thus,

P (x ∣M) ≈ exp `(λ̂)p(λ̂)∫ exp(−1

2
Y TJλ̂Y ))dλ.

Since Jλ̂ is a symmetric matrix, we can diagonalize it as Jλ̂ = STΛS for some or-

thogonal matrices S where Λ is a diagonal matrix. S is a unitary matrix where

STS = SST , which det(S) = 1. Then, we make substitution Y = STU. The Jacobian

matrix Jmn(U) = ∂Ym
∂Un

, then J(U) = ST and detJ(U) = 1. Hence,

P (x ∣M) ≈ exp `(λ̂)p(λ̂)∫ exp{−1

2
(UTΛU)}detJ(U)du

= exp `(λ̂)p(λ̂)∫ exp

⎧⎪⎪⎨⎪⎪⎩
−1

2

∣λ∣

∑
j=1

λju
2
j

⎫⎪⎪⎬⎪⎪⎭
du

= exp `(λ̂)p(λ̂)
∣λ∣

∏
j=1
∫ exp{−1

2
λju

2
j}du,

where λj is the jth eigenvalue of the matrix Jλ̂.

Next, we use Laplace’s method for estimating an integral. Laplace’s method hold

when f(x) has a unique global maximum at x0 and it decays to zero away from its
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maximum where M is a large number and f ′′(x0) < 0. Then,

∫
b

a
eMf(x)dx ≈

√
2π

M ∣f ′′(x0)∣
eMf(x0) as M →∞.

Therefore,

P (x ∣M) ≈ exp `(λ̂)p(λ̂)
∣λ∣

∏
j=1

¿
ÁÁÀ 2π

1
22λj

(by M = 1

2
and f(u) = −λu2)

= exp `(λ̂)p(λ̂) (2π)
∣λ∣
2

∏λ
j=1 λ

1
2
j

= exp `(λ̂)p(λ̂)(2π)
∣λ∣
2

∣Jλ̂∣
1
2

. (9.4)

When we take logarithm to the equation (9.4) and multiply by -2, we get

−2 logP (x ∣M) ≈ −2`(λ̂) − 2 log p(λ̂) − ∣λ∣ log(2π) + log ∣Jλ̂∣.

Moreover, when p(λ) is a uniform prior, p(λ̂) = 1. Hence,

−2 logP (x ∣M) ≈ −2`(λ̂) − ∣λ∣ log(2π) + log ∣Jλ̂∣. (9.5)

Each element in the observed Fisher information matrix at the ML estimators λ̂ can

be expressed as

Jpq = −∂λp∂λq` (λ̂∣x)

= −
n

∑
i=1

∂λp∂λq` (λ̂∣xi)

= − 1

n

n

∑
i=1

n∂λp∂λq` (λ̂∣xi) .
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Since the data are i.i.d and n is large, we can apply the weak law of large numbers

on the random variable n`(λ̂∣xi). Hence, we get

1

n

n

∑
i=1

n`(λ̂∣xi)
PÐ→ E[n`(λ̂∣X)].

By using the weak law of large numbers, each element in the observed Fisher infor-

mation matrix is given by

Jpq = −∂λp∂λqE[n`(λ̂∣X)]

= −n∂λp∂λqE[`(λ̂∣X)]

= −n∂λp∂λqE[`(λ̂∣X1)]

= nIpq.

Therefore,

∣Jλ̂∣ = n∣λ∣∣Iλ̂∣. (9.6)

Then, we plug in the result from (9.6) into (9.5). Hence, we get

−2 logP (x ∣M) ≈ −2`(λ̂) − ∣λ∣ log(2π) + ∣λ∣ logn + log ∣Iλ̂∣

= −2`(λ̂) + ∣λ∣{logn − log(2π)} + log ∣Iλ̂∣. (9.7)

For a large n, a classical BIC ignores the terms that do not depend on the sample

size. Hence, the classical BIC can be expressed as

BIC = −2`(λ̂) + ∣λ∣ logn. (9.8)
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On the contrary, LCMM has the form

f(x) =
k

∑
j=1

πj expϕj(x).

The unknown parameters are {k, π1, . . . , πk, ϕ1, . . . , ϕk} where ϕj ∶ R → [−∞,∞) are

concave functions. Since ϕ̂j are the ML estimators for each j = 1, . . . , k, ϕ̂j are

piecewise linear on [X(1),X(n)] and contains mj knots. Recall that knots occurs at

some points of data [X(1),X(n)] and X(1),X(n) always be knots, then 2 < mj < n.

Moreover, Balabdaoui et al. [2009] showed that mj also depends on the sample

size. Let Kji ∈ [X(1),X(n)] denote knot ith of subpopulation jth, then a set of

knots for each subpopulation j is {Kj1,Kj2, . . . ,Kjmj}. At each piecewise linear ϕ̂j,

the slopes can also be denoted as {Sj1, Sj2, . . . , Sj,mj−1} where Sji denote the slope

between ϕ̂j(Kji) and ϕ̂j(Kj,i+1). Hence, the number of knots and the number of

slopes for k subpopulations are p = ∑kj=1mj and s = ∑kj=1(mj −1) = p−k, respectively.

Moreover, we also need one starting point for each subpopulation. Therefore, ∣λ∣

in (9.7) comes from knots K, slopes S, starting points, and mixing proportions π.

Hence, ∣λ∣ = p + (p − k) + k + (k − 1) = 2p + k − 1.

For the last part of (9.7), we need to calculate the ∣Iλ̂∣. The observed Fisher

information matrix for the LCMM consists of three parts which are ϕ, K, and π. For

j = 1, . . . , k, let I(ϕ̂j) denote the Fisher information matrix of the jth subpopulation,

which contains the information about both ϕ and K, M denote the observed Fisher
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information matrix that contains the information for k mixing proportions which

follows a multinomial distribution. Then, Iλ̂ is given by

Iλ̂ = I(λ̂) = diag {I(ϕ̂1), . . . , I(ϕ̂k),M} .

Then,

∣I(λ̂)∣ = ∣M ∣
k

∏
j=1

∣I(ϕ̂j)∣,

where ∣M ∣ = (π1⋯πk)−1. Therefore,

∣I(λ̂)∣ =
∏k
j=1 ∣I(ϕ̂j)∣
∏k
j=1 πj

.

Finally, we get

log ∣I(λ̂)∣ =
k

∑
j=1

log ∣I(ϕ̂j)∣ −
k

∑
j=1

logπj. (9.9)

Substituting (9.9) into (9.7), then

−2 logP (x ∣M) = −2`(λ̂) + ∣λ∣{logn − log(2π)} −
k

∑
j=1

logπj +
k

∑
j=1

log ∣I(ϕ̂j)∣. (9.10)

An objective of the last three terms in (9.10) is for penalizing the log-likelihood

function in the first term. Since when n large, logn always dominates log(2π).

Therefore, we can ignore the log(2π) term. Then, the “proposed BIC” is given by

proposedBIC = −2`(λ̂) + ∣λ∣ logn −
k

∑
j=1

logπj +
k

∑
j=1

log ∣I(ϕ̂j)∣, (9.11)
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where ∣λ∣ = 2p + k − 1.

Next, we discuss how to calculate the observed Fisher information matrix for

the LCMM. As mentioned above, I(ϕ̂j) contains the information of ϕ and K. The

derivatives for ϕ are already presented in (2.5) and (2.6) where the derivatives for

the K are stated below. Note that K ∈ [X(1),X(n)].

We use the directional derivative to derive the observed Fisher information ma-

trix. For simplicity, let ϕ and ϕ0 denote the short terms of ϕ(x) and ϕ(x0), respec-

tively. Then, let ϕ = ϕ0 + ε∆ where ∆ is a suitable basis function. According to

Dümbgen et al. [2011], we use ∆i = min(x − xi,0) where 2 ≤ i ≤m, m is the number

of knots, and xi are locations of the ith knot. Note that ∆1 = 1 and ∫
xm
x1

eϕ0+ε∆dx = 1.

Then, the log function of the subpopulation jth is given by

`(ϕ) = log(eϕ0+ε∆)

= log( eϕ0+ε∆

∫
xm
x1

eϕ0+ε∆dx
)

= ϕ0 + ε∆ − log∫
xm

x1
eϕ0+ε∆ dx.

To get rid of subscript j, let ϕ̂ be the log-concave ML estimators of subpopulation

jth, then

ϕ̃ = ϕ̂ + ε∆ − log∫
xm

x1
eϕ̂+ε∆ dx.
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Therefore, the first derivative can be calculated from

lim
ε→0

`(ϕ̃) − `(ϕ̂)
ε

= lim
ε→0

{∫
xm

x1
∆dFn(x) −

1

ε
log∫

xm

x1
eϕ̂+ε∆ dx}

= ∫
xm

x1
∆dFn(x) − lim

ε→0

1

ε
log∫

xm

x1
eϕ̂+ε∆ dx

= ∫
xm

x1
∆dFn(x) − lim

ε→0

1

ε
(log∫

xm

x1
eϕ̂+ε∆ dx − log 1)

= ∫
xm

x1
∆dFn(x) − lim

ε→0

1

ε
(log∫

xm

x1
eϕ̂+ε∆ dx − log∫

xm

x1
eϕ̂dx)

= ∫
xm

x1
∆dFn(x) − lim

ε→0

∫
xm
x1

∆eϕ̂+ε∆dx

∫
xm
x1

eϕ̂+ε∆ dx

= ∫
xm

x1
∆dFn(x) − ∫

xm

x1
∆eϕ̂ dx.

Then, the second derivative can be represented as

lim
ε→0

1

ε
(∫

xm

x1
∆kdFn(x) − ∫

xm

x1
∆ke

ϕ̂+ε∆idx − ∫
xm

x1
∆kdFn(x) + ∫

xm

x1
∆ke

ϕ̂dx)

= lim
ε→0

1

ε
(∫

xm

x1
∆ke

ϕ̂dx − ∫
xm

x1
∆ke

ϕ̂+ε∆i dx)

= lim
ε→0

(−∫
xm

x1
∆k∆ie

ϕ̂+ε∆i dx)

= −∫
xm

x1
∆k∆ie

ϕ̂ dx

= −
m

∑
i=2
∫

xi

xi−1
∆k∆ie

ϕ̂ dx.

Therefore, for i = k = 1,

∂2
x1`(ϕ̂) = −1,
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for 2 ≤ i = k ≤m,

−∫
xi

xi−1
(∆i)2eϕ̂ dx = −∫

xi

xi−1
(min(x − xi,0))2eϕ̂ dx

= −∫
xi

xi−1
(x − xi)2eϕ̂ dx. (9.12)

By following Dümbgen et al. [2011, page 5], we can rewrite (9.12) as follows:

∂2
xi
`(ϕ̂) = δ3

i−1J11(ϕi−1, ϕi) − δ3
i−1J10(ϕi−1, ϕi).

For 1 ≤ i = k − 1 <m,

−∫
xi

xi−1
∆i∆i+1e

ϕ̂ dx = −∫
xi

xi−1
min(xi−1 − x,0)min(x − xi,0)eϕ̂ dx

= −∫
xi

xi−1
(xi−1 − x)(x − xi)eϕ̂ dx. (9.13)

We can rewrite (9.13) by following Dümbgen et al. [2011, page 17]. Hence,

∂xi∂xi−1`(ϕ̂) = −δ3
i−1J11(ϕi−1, ϕi).
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Finally, we need partial derivatives for knots and locations.

∂ϕi∂xk`(ϕ̂) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J10(ϕ1, ϕ2) for i = k = 1,

J10(ϕi, ϕi+1) − J10(ϕi, ϕi−1) for 2 ≤ i = k <m,

−J01(ϕm−1, ϕm) for i = k =m,

−J10(ϕi, ϕi+1) for 1 ≤ i = k − 1 <m,

J01(ϕi−1, ϕi) for 2 ≤ i = k + 1 ≤m,

0 for ∣i − k∣ > 1.

9.2 Simulation studies

An objective of this simulation is to study the clustering performance of univariate

LCMM by using the proposed BIC in (9.11). We compare our proposed method with

the classical BIC in (9.8), where the mixture models have been considered in two

ways, which are GMM and LCMM. These three methods can be summarized as

follows.
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Table 9.1: Details for simulation study

Number of subpopulations (k) 2

Mixing proportions (π1, π2) 0.6, 0.4

Distribution 1st subpopulation 2nd subpopulation

case I N(2,2) N(8,2)

case II Beta(2,5) Beta(2,5) + 5

Parameters caseI: µ1, µ2, σ
2
1, σ

2
2, π1, π2

caseII: α1, α2, β1, β2, π1, π2

Sample sizes (n) 500, 1000, 2000, 3000

Sets of simulation (t) 200

1. LCMM with proposed BIC (proposed method)

proposedBIC = −2`(λ̂) + ∣λ∣ logn −
k

∑
j=1

logπj +
k

∑
j=1

log ∣I(ϕ̂j)∣

2. LCMM with BIC

BIC = −2`(λ̂) + ∣λ∣ logn

3. GMM with BIC

BIC = −2`(λ̂) + ∣λ∣ logn

Table 9.2 shows percentages of choosing the correct number of subpopulations for

each method. The LCMM with our proposed BIC performs similarly to the GMM
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Table 9.2: Clustering results for univariate case

Sample sizes 500 1,000 2,000 3,000

Case I: Gaussian distribution

GMM with BIC 100% 99.5% 100% 100%

LCMM with proposed BIC (proposed method) 99.5% 100% 99.5% 99.5%

LCMM with BIC 68.5% 97% 95.5% 97%

Case II: beta distribution

GMM with BIC 5.5% 0% 0% 0%

LCMM with proposed BIC (proposed method) 99.5% 100% 100% 100%

LCMM with BIC 98% 100% 99.5% 97%

with BIC in Gaussian case but performs much better than GMM with BIC in beta

distribution. Moreover, when we compare our proosed BIC with classical BIC in the

LCMM, the proposed BIC gives better reults in all cases. Furthermore, GMM with

classical BIC works well with Gaussian distribution as it usually does. Unlike skew

distributions such as beta distribution, GMM provides the worst results since it is

suitable for symmetric distributions.
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A Appendices

A.1 Definitions and Lemmas

Definition A.1. For any probability measure P , let

Lr(P ) = ∥f∥r,P = (∫ ∣f ∣rdP)
1/r

.

For a supremum norm L∞,

∥f∥∞ = sup
x∈X

∣f(x)∣.

For a maximum norm `∞,

∥f∥∞ = max
i

∣xi∣.

Definition A.2. Let y and y0 are the vector of length d. The pth-order Taylor series

expansion around y0 can be represented as

A(y) = ∑
∣α∣≤p

∂αA(y0)
α!

hα +Rp(y∗, h) where h = y − y0 and

Rp(y∗, h) = ∑
∣α∣=p+1

∂αA(y∗)
α!

hα for some y∗ ∈ (y, y0).
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Definition A.3. (P-Glivenko-Cantelli)[van der Vaart, 1998, page 269] LetX1, . . . ,Xn

is a random sample from a probability distribution P on a measurable space (X ,A).

A class F of measurable functions f ∶ X ↦ R is called P−Glivenko-Cantelli if

∥Pnf − Pf∥F = sup
f∈F

∣Pnf − Pf ∣
a.s.Ð→ 0.

Lemma A.4. (Glivenko-Cantelli)[van der Vaart, 1998, Theorem 19.4, page 270]

Every class F of measurable functions such that N[](ε,F , L1(P )) < ∞ for every ε > 0

is P-Glivenko-Cantelli.

Lemma A.5. (Cauchy-Schwarz inequality for integral)

∫ f(x)g(x)dx ≤ (∫ f 2(x)dx)
1/2

(∫ g2(x)dx)
1/2

Definition A.6. Let state space is R. Kolmogorov metric can be represented as the

distance between their distribution functions F and G, which can be represented as

dK(F,G) = sup
x∈R

∣F (x) −G(x)∣.

Definition A.7. (Donsker class)[van der Vaart and Wellner, 1996] A Donsker class is

a set of function for which the empirical distribution with independent and identically

distributed random variables verifies a uniform central limit theorem, with limiting

distribution as a Gaussian process.

Definition A.8. The covering number N(ε,F , d) is the minimum number of balls

of radius ε needed to cover the set F .
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Definition A.9. Given l, u ∶ X ↦ R the bracket [l, u] is the set of all functions f

with l ≤ f ≤ u.

Definition A.10. An ε-bracket in Lr(P ) is a bracket [l, u] with P (u − l)r < εr.

Definition A.11. The bracketing number N[](ε,F , d) is the minimum number of

ε-brackets needed to cover F .

Definition A.12. The bracketing entropy is the logarithm of the bracketing number.

Lemma A.13. Let g be a real function which is continuous on the interval [a, b].

Then,

∣∫
b

a
g(x)dx∣ ≤ ∫

b

a
∣g(x)dx∣ .

Lemma A.14. The Taylor series for an exponential function ex at a = 0 is

∞

∑
i=0

xi

i!
.

A.2 Explicit formulas of J functions

From (2.4), the J(ϕj, ϕk) function can be represented as

J(ϕj, ϕk) =
exp(ϕk) − exp(ϕj)

ϕk − ϕj
.
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Therefore, the partial derivative of J functions are in the following form.

J10(ϕj, ϕk) = ∂ϕjJ(ϕj, ϕk)

=
exp(ϕk) − exp(ϕj) − exp(ϕj)(ϕk − ϕj)

(ϕk − ϕj)2

J01(ϕj, ϕk) = ∂ϕkJ(ϕj, ϕk)

=
exp(ϕk)(ϕk − ϕj) − exp(ϕk) − exp(ϕj)

(ϕk − ϕj)2

J20(ϕj, ϕk) = ∂2
ϕj
J(ϕj, ϕk)

=
2 exp(ϕk) − exp(ϕj)[(ϕk − ϕj + 1)2 + 1]

(ϕk − ϕj)3

J02(ϕj, ϕk) = ∂2
ϕk
J(ϕj, ϕk)

=
2 exp(ϕk) − exp(ϕj)[(ϕk − ϕj + 1)2 + 1]

(ϕk − ϕj)3

Clearly see that J20(ϕj, ϕk) = J02(ϕj, ϕk).

J11(ϕj, ϕk) = ∂ϕj∂ϕkJ(ϕj, ϕk)

=
exp(ϕk)(ϕk − ϕj − 2) + exp(ϕj)(ϕk − ϕj + 2)

(ϕk − ϕj)3

A.3 Sample codes

A.3.1 Sample code for a univariate log-concave MLE (Figure 2.1)
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> library(logcondens)

> set.seed (1)

> x <- rnorm (1000)

> res <- activeSetLogCon(x)

> plot(res$x, exp(res$phi), type=’l’, lwd=2, xlab="x", ylab="y", lty=1)

> lines(res$x, dnorm(res$x), lwd=2, lty=2)

> legend("topright", c("estimated density", "true density"),

> lty=c(1,2), lwd=c(2,2))

> plot(res$x, res$phi , type=’l’, lwd=2, xlab="x", ylab="phi")

> kn <- res$knots

> abline(v=kn , col="red", lty =2)

A.3.2 Sample code for a univariate log-concave MLE showing locations

and values of knots (Figure 2.2)

> set.seed (1)

> n <- 500

> x <- rnorm(n)

> res <- activeSetLogCon(x)

> res$knots

[1] -3.0080486 -2.2852355 -1.5235668 -1.4707524 -0.3836321 -0.3672215

[7] 0.5939013 1.0691615 1.5868335 2.3079784 3.8102767
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> head(res$phi)

[1] -4.828354 -4.587058 -3.986300 -3.603007 -3.480720 -3.372153

> f <- exp(res$phi)

> head(f)

[1] 0.0079997 0.010183 0.018568 0.027242 0.030785 0.034316

> plot(x=res$x, y=res$phi , type="l")

A.3.3 Sample code for a multivariate log-concave MLE

> library(LogConcDEAD)

> library(mvtnorm)

> set.seed (1)

> d <- 2

> n <- 500

> x <- rmvnorm(n, mean=c(0,0), sigma=diag(1,d,d))

> res <- mlelcd(x)

> head(res$logMLE)

[1] -3.109657 -2.399040 -3.635341 -4.660609 -3.019291 -2.094872

> f <- exp(res$logMLE)

> head(f)

[1] 0.044616 0.090805 0.026375 0.009461 0.048836 0.123086
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A.3.4 Sample code for breast cancer example

> library(logcondens)

> library(copula)

> library(LogConcDEAD)

> library(VineCopula)

> set.seed (12345)

> data <- read.csv("BreastCancer.csv", header=F)

> dat <- data [ ,3:32]

> pca <- prcomp(x=dat , center = TRUE , scale. = TRUE)

> plot(pca , type = "l", ylim = c(0 ,15))

> pcadat <- pca$x

> x <- pcadat [,1:2]

> k <- length(table(data [,2]))

> n <- nrow(x)

> d <- ncol(x)

> truecomp <- replace(c <- c(data[,2]),c=="B" ,1)

> prec <- 1e-5

> prec1 <- 1e-8

> # starting values

> mc_start <-hc(modelName="VVV", x)
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> class <- c(hclass(mc_start , k))

> props <-table(class)

> if(min(props )<2){

+ mc_start <-hc(modelName="EEE", x)

+ class <- c(hclass(mc_start , k))

+ }

> cprops <- as.vector(table(class)/length(class))

> q<-matrix(0, nrow=n, ncol=k)

> qcop <-matrix(0, nrow=n, ncol=k)

> mean <- matrix(rep(0,k*d),k,d)

> var <- matrix(rep(0,k*d),k,d)

> corr <- c(rep (0,2))

> for (c in 1:k){

+ mean[c,] <- apply(x[class ==c,],2,mean)

+ var[c,] <- apply(x[class ==c,],2,var)

+ }

> for(i in 1:k){

+ q[,i]<-dmvnorm(x, mean=mean[i,], sigma=diag(var[i,],d,d))

+ qcop[,i]<-dmvnorm(x, mean=mean[i,], sigma=diag(var[i,],d,d))}

> fit <-as.vector(cprops %*% t(q))

> fitcop <-as.vector(cprops %*% t(qcop))

> likold <- -100000000

> likoldcop <- -100000000
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> ###### Copula+Log -concave marginals ######

> propscop <- cprops

> classdat <- class

> # 1. copula selection for each component

> par <- c(0,0)

> for(i in 1:k){

+ sel <- BiCopSelect(pobs(x[classdat ==i,1]), pobs(x[classdat ==i,2]),

+ selectioncrit = "BIC",familyset = 1:10, rotations = F)

+ par[i] <- sel$par

+ if(i==1){

+ copseld1 <- frankCopula(param = par[i], dim = d)

+ }else{

+ copseld2 <- frankCopula(param = par[i], dim = d)

+ }

+ }

> r <- 500

> for(jj in 1:r){

+ ### 2. find copula estimator

+ estpar <- c(0,0)

+ for(i in 1:k){

+ count <- nrow(x[classdat ==i,])

+ FFhat <- matrix(rep(0,count*d),count ,d)
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+ for(j in 1:d){

+ dx <- x[classdat ==i,j]

+ densx <- logConDens(dx, smoothed = F)

+ Fres <- evaluateLogConDens(dx,densx )[,4]

+ FFhat[,j] <- round(Fres ,10)

+ FFhat[,j][which(FFhat[,j]==0)] <- 1/(count +1)

+ FFhat[,j][which(FFhat[,j]==1)] <- count/(count +1)

+ }

+ if(i==1){

+ fitcop <- fitCopula(copula=copseld1 , data = FFhat ,start = par[i],

+ method = "ml",optim.control = list(maxit =1000))

+ estpar[i] <- fitcop@estimate

+ }else{

+ fitcop <- fitCopula(copula=copseld2 , data = FFhat ,start = par[i],

+ method = "ml",optim.control = list(maxit =1000))

+ estpar[i] <- fitcop@estimate

+ }

+ }

+ par <- estpar

+ ### 3. fit marginal density

+ wcop <-t(t(qcop)*propscop)

+ fitcop <-as.vector(propscop %*% t(qcop))
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+ wcop <-wcop/fitcop

+ qcop <-matrix(0, nrow=n, ncol=k)

+ for (i in 1:k){

+ whichxc <-wcop[,i]/sum(wcop[,i]) > prec1/n

+ wcopuse <- wcop[whichxc ,i]

+ count <- nrow(x[whichxc ,])

+ xx <- x[whichxc ,]

+ mle1 <- activeSetLogCon(x=xx[,1], w=wcopuse)

+ mle2 <- activeSetLogCon(x=xx[,2], w=wcopuse)

+ f1hat <- rep(0,count)

+ f2hat <- rep(0,count)

+ for (ii in 1:count ){

+ f1hat[ii] <- exp(mle1$phi)[ which(xx[ii ,1]== mle1$xn)]

+ f2hat[ii] <- exp(mle2$phi)[ which(xx[ii ,2]== mle2$xn)]

+ }

+ fhat <- cbind(f1hat ,f2hat)

+ FF1hat <- rep(0,count)

+ FF2hat <- rep(0,count)

+ for (ii in 1:count ){

+ FF1hat[ii] <- mle1$Fhat[which(xx[ii ,1]== mle1$xn)]

+ FF2hat[ii] <- mle2$Fhat[which(xx[ii ,2]== mle2$xn)]

+ }

+ F1hat <- round(FF1hat ,10)
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+ F1hat[which(F1hat ==0)] <- 1/(count +1)

+ F1hat[which(F1hat ==1)] <- count/(count +1)

+ F2hat <- round(FF2hat ,10)

+ F2hat[which(F2hat ==0)] <- 1/(count +1)

+ F2hat[which(F2hat ==1)] <- count/(count +1)

+ FFhat <- cbind(F1hat , F2hat)

+ ### 4. fit copula density

+ if(i==1){

+ copseld1 <- frankCopula(param = par[i], dim = d)

+ copfit <- dCopula(u=FFhat ,copula = copseld1)

+ }else{

+ copseld2 <- frankCopula(param = par[i], dim = d)

+ copfit <- dCopula(u=FFhat ,copula = copseld2)

+ }

+ ### 5. fit joint density

+ cqcop <- 1

+ for(l in 1:d){

+ cqcop <- cqcop*fhat[,l]

+ }

+ qcop[whichxc ,i] <- copfit*cqcop

+ }

+ #update class of data
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+ classdat <- rep(0,n)

+ for (lc in 1:n){

+ classdat[lc] <- which.max(wcop[lc ,])

+ }

+ propscop <-apply(wcop , 2, sum)/sum(wcop)

+ fitcop <-as.vector(propscop %*% t(qcop))

+ tempcop <-t(log(t(t(qcop)*propscop )))*propscop

+ liknewcop <-sum(tempcop[tempcop >-Inf])

+ changecop <-abs((liknewcop -likoldcop)/likoldcop)

+ if (changecop < prec) break

+ likoldcop <-liknewcop

+ }

> llcop <-sum(log(fitcop ))

> copcomp <- rep(0,n)

> for (lc in 1:n){

+ copcomp[lc] <- which.max(wcop[lc ,])

+ }

> copcomp[which(copcomp ==1)] <- 0

> copcomp[which(copcomp ==2)] <- 1

> copcomp[which(copcomp ==0)] <- 2

> ind <- which(copcomp != truecomp)

> ncopmis <- length(ind)

> ncopmis
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[1] 49

> copmiscase <- x[ind ,]

> res <- cbind(ind ,truecomp[ind],copmiscase)

> write.csv(res , "CopCaseMisclassification.csv", row.names = F)

> ###### Gaussian Mixture Model ######

> GMM <- Mclust(x, modelNames="VVV", G=k)

> GMMcomp <- GMM$classification

> llGMM <- GMM$loglik

> mGMM <- GMM$parameters$mean [1,1]

> GMMcomp[which(GMMcomp ==1)] <- 0

> GMMcomp[which(GMMcomp ==2)] <- 1

> GMMcomp[which(GMMcomp ==0)] <- 2

> ind <- which(GMMcomp != truecomp)

> nGMMmis <- length(ind)

> nGMMmis

[1] 59

> GMMmiscase <- x[ind ,]

> res <- cbind(ind ,truecomp[ind],GMMmiscase)

> write.csv(res , "GMMCaseMisclassification.csv", row.names = F)
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> ###### Multivatiate log -concave by LogConcDEAD ######

> props <- cprops

> for (j in 1:r) {

+ w<-t(t(q)*props)

+ fit <-as.vector(props %*% t(q))

+ w<-w/fit

+ q<-matrix(0, nrow=n, ncol=k)

+ for(i in 1:k){

+ whichx <-w[,i]/sum(w[,i]) > prec1/n

+ wuse <- w[whichx ,i]/sum(w[whichx ,i])

+ if(i==1){

+ mle1 <- mlelcd(x[whichx ,], w = wuse)

+ q[whichx ,i] <- exp(mle1$logMLE)

+ }else{

+ mle2 <- mlelcd(x[whichx ,], w = wuse)

+ q[whichx ,i] <- exp(mle2$logMLE)

+ }

+ }

+ props <-apply(w, 2, sum)/sum(w)

+ fit <-as.vector(props %*% t(q))

+ temp <-t(log(t(t(q)*props )))*props

+ liknew <-sum(temp[temp >-Inf])

+ change <-abs((liknew -likold)/likold)
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+ if (change < prec) break

+ likold <-liknew

+ }

> ll <-sum(log(fit))

> LCcomp <- rep(0,n)

> for (lc in 1:n){

+ LCcomp[lc] <- which.max(w[lc ,])

+ }

> LCcomp[which(LCcomp ==1)] <- 0

> LCcomp[which(LCcomp ==2)] <- 1

> LCcomp[which(LCcomp ==0)] <- 2

> ind <- which(LCcomp != truecomp)

> nLCmis <- length(ind)

> nLCmis

[1] 46

> LCmiscase <- x[ind ,]

> res <- cbind(ind ,truecomp[ind],LCmiscase)

> write.csv(res , "LCCaseMisclassification.csv", row.names = F)

> ########## Contour and surface plots for each method
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> gr <- grey.colors (10)

> level <- seq (0.001 ,0.1 , length.out =21)

> GG <- 100

> s <- c(min(x[,1]), max(x[,1]),min(x[,2]), max(x[,2]))

> g1 <- seq(s[1],s[2], length.out = GG)

> g2 <- seq(s[3],s[4], length.out = GG)

> grid <- expand.grid(X=g1 , Y=g2)

> grid <- as.matrix(grid)

> ###### Copula+Log -concave marginals ######

> xc1 <- x[which(copcomp ==1) ,]

> fitd1 <- logConDens(x=xc1[,1], smoothed = F)

> fitd1res <- evaluateLogConDens(grid[,1],fitd1)

> fd1 <- fitd1res [,3]

> Fd1 <- fitd1res [,4]

> fitd2 <- logConDens(x=xc1[,2], smoothed = F)

> fitd2res <- evaluateLogConDens(grid[,2],fitd2)

> fd2 <- fitd2res [,3]

> Fd2 <- fitd2res [,4]

> copc1 <- frankCopula(param = par[1], dim = d)

> copdens <- dCopula(u=cbind(Fd1 ,Fd2),copula = copc1)

> zc1 <- matrix(copdens*fd1*fd2 ,GG ,GG)
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> xc2 <- x[which(copcomp ==2) ,]

> fitd1 <- logConDens(x=xc2[,1], smoothed = F)

> fitd1res <- evaluateLogConDens(grid[,1],fitd1)

> fd1 <- fitd1res [,3]

> Fd1 <- fitd1res [,4]

> fitd2 <- logConDens(x=xc2[,2], smoothed = F)

> fitd2res <- evaluateLogConDens(grid[,2],fitd2)

> fd2 <- fitd2res [,3]

> Fd2 <- fitd2res [,4]

> copc2 <- frankCopula(param = par[2], dim = d)

> copdens <- dCopula(u=cbind(Fd1 ,Fd2),copula = copc2)

> zc2 <- matrix(copdens*fd1*fd2 ,GG ,GG)

> zhat <- (propscop [1]*zc1 )+( propscop [2]*zc2)

> miscase <- read.csv("CopCaseMisclassification.csv", header=T)

> xpl <- miscase [,3:4]

> Bdat <- xpl[which(miscase [ ,2]==1) ,]

> Mdat <- xpl[which(miscase [ ,2]==2) ,]

> contour(g1 ,g2 ,zc1 ,xlim=c(-15,5), ylim=c(-10,7), levels=level)

> par(new=T)

> contour(g1 ,g2 ,zc2 ,xlim=c(-15,5), ylim=c(-10,7), levels=level)

> par(new=TRUE)
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> plot(Bdat , col=gr[7],type="p", pch=20, cex=1.5, xlim=c(-15,5), ylim=c(-10,7))

> par(new=TRUE)

> plot(Mdat , col=gr[1],type="p", pch=20, cex=1.5, xlim=c(-15,5), ylim=c(-10,7))

> persp(g1 ,g2 ,zhat ,box=F,phi = 0, theta = 0, col=gr [10])

> ###### Gaussian Mixture Model ######

> GMMprop <- GMM$parameters$pro

> mean <- GMM$parameters$mean

> sigmaC1 <- GMM$parameters$variance$sigmasq [1]

> sigmaC2 <- GMM$parameters$variance$sigmasq [2]

> fhat1 <- dmvnorm(expand.grid(g1 ,g2),mean = c(mean[,1]),

+ sigma = cov(x[which(GMM$classification ==1) ,]))

> z1 <- matrix(fhat1 ,GG ,GG)

> fhat2 <- dmvnorm(expand.grid(g1 ,g2),mean = c(mean[,2]),

+ sigma = cov(x[which(GMM$classification ==2) ,]))

> z2 <- matrix(fhat2 ,GG ,GG)

> zmix <- matrix(GMMprop [1]*fhat1+GMMprop [2]*fhat2 ,GG ,GG)

> miscase <- read.csv("GMMCaseMisclassification.csv", header=T)

> xpl <- miscase [,3:4]

> Bdat <- xpl[which(miscase [ ,2]==1) ,]

> Mdat <- xpl[which(miscase [ ,2]==2) ,]
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> contour(g1 ,g2 ,z1 ,xlim=c(-15,5), ylim=c(-10,7), levels=level)

> par(new=TRUE)

> contour(g1 ,g2 ,z2 ,xlim=c(-15,5), ylim=c(-10,7), levels=level)

> par(new=TRUE)

> plot(Bdat , col=gr[7],type="p", pch=20, cex=1.5, xlim=c(-15,5), ylim=c(-10,7))

> par(new=TRUE)

> plot(Mdat , col=gr[1],type="p", pch=20, cex=1.5, xlim=c(-15,5), ylim=c(-10,7)

+ ,xlab="", ylab="")

> persp(g1 ,g2 ,zmix , box=F,phi = 0, theta = 0, col=gr [10])

> ###### Multivatiate log -concave by LogConcDEAD ######

> flc1 <- dlcd(grid ,mle1)

> flc2 <- dlcd(grid ,mle2)

> zlc <- matrix(props [1]*flc1+props [2]*flc2 ,GG ,GG)

> miscase <- read.csv("LCCaseMisclassification.csv", header=T)

> xpl <- miscase [,3:4]

> Bdat <- xpl[which(miscase [ ,2]==1) ,]

> Mdat <- xpl[which(miscase [ ,2]==2) ,]

> cg1 <- interplcd(mle1 , gridlen = 100)

> plot(mle1 , g=cg1 , type="c",

+ xlim=c(-15,5),ylim=c(-10,7),addp=F, main="", col="black",

+ levels=level)
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> par(new=TRUE)

> cg2 <- interplcd(mle2 , gridlen = 100)

> plot(mle2 , g=cg2 , type="c",

+ xlim=c(-15,5), ylim=c(-10,7),addp=F, main="", col="black",

+ levels=level)

> par(new=TRUE)

> plot(Bdat , col=gr[7],type="p", pch=20, cex=1.5, xlim=c(-15,5), ylim=c(-10,7))

> par(new=TRUE)

> plot(Mdat , col=gr[1],type="p", pch=20, cex=1.5, xlim=c(-15,5), ylim=c(-10,7)

+ ,xlab="", ylab="")

> persp(g1 ,g2 ,zlc ,box=F,phi = 0, theta = 0, col=gr [10])
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