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Abstract

This dissertation begins with two introductory chapters to provide some relevant background
information: an introduction on the Laplace transform and an introduction on Generalized
Gamma Convolutions (GGCs). The heart of this dissertation is the final three chapters
comprised of three contributions to the literature.

In Chapter 3, we study the analytical properties of the Laplace transform of the log-normal
distribution. Two integral expressions for the analytic continuation of the Laplace transform
of the log-normal distribution are provided, one of which takes the form of a Mellin-Barnes
integral. As a corollary, we obtain an integral expression for the characteristic function;
we show that the integral expression derived by Leipnik in [45] is incorrect. We present
two approximations for the Laplace transform of the log-normal distribution, both valid in
C \ (−∞, 0]. In the last section, we discuss how one may use our results to compute the
density of a sum of independent log-normal random variables.

In Chapter 4, we explore the topic of risk aggregation with moment matching
approximations. We put forward a refined moment matching approximation (MMA) method
for approximating the distributions of the sums of insurance risks. Our method approximates
the distributions of interest to any desired precision, works equally well for light and
heavy-tailed distributions, and is reasonably fast irrespective of the number of the involved
summands.

In Chapter 5, we study the convergence of the Gaver-Stehfest algorithm. The Gaver-
Stehfest algorithm is widely used for numerical inversion of Laplace transform. In this chapter
we provide the first rigorous study of the rate of convergence of the Gaver-Stehfest algorithm.
We prove that the Gaver-Stehfest approximations of order n converge exponentially fast if
the target function is analytic in a neighbourhood of a point and they converge at a rate
o(n−k) if the target function is (2k + 3)-times differentiable at a point.
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Chapter 1

Introduction

The Laplace transform is a powerful mathematical tool used in various fields, including
engineering, physics, and applied mathematics. It was named after the French mathematician
Pierre-Simon Laplace, who developed the transform in the late 18th century.

The origins of the Laplace transform can be traced back to the work of mathematicians
such as Leonhard Euler and Joseph Fourier. Euler used the notion of a generating function,
which allowed the representation of a sequence of numbers as a power series. Fourier, on the
other hand, discovered that functions can be represented as a sum of sinusoidal functions
through the use of Fourier series.

Pierre-Simon Laplace built upon these ideas and developed the Laplace transform as a
generalization of Fourier series. He published his findings in the treatise "Analytic Theory of
Probability" in 1812. In this work, Laplace used the transform to solve problems in probability
theory, specifically in the study of the central limit theorem and the law of large numbers.

The Laplace transform gained significant attention and popularity in the early 20th century
due to its applications in engineering and physics. The transform allows the simplification
of differential equations, making them more amenable to analysis and solution. Engineers
and physicists realized its potential in solving a wide range of problems, including electrical
circuits, control systems, vibrations, heat transfer, and fluid dynamics.

The Laplace transform operates on a function of a real variable and transforms it into a
function of a complex variable. One of the key advantages of the Laplace transform is its
ability to convert differential equations into algebraic equations. Differential equations that
are difficult to solve directly often become simpler algebraic equations, and, once the solution
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is obtained, it can be transformed back to the original domain using the inverse Laplace
transform.

Similarly, the Laplace transform can be used to convert a convolution of probability
distributions into a product of Laplace transforms. Once the product is evaluated, the result
can be transformed back into a probability distribution using the inverse Laplace transform.

The idea of convolution has a long history in mathematics, with roots in the works of
Laplace, Fourier, and others. Convolution is an operation that combines two functions to
produce a third function, which represents the integration of the product of the two original
functions. In the field of probability, convolution corresponds to the distribution of a sum of
two independent random variables and is extended to a sum of any number of independent
random variables by way of iteration.

The gamma distribution is a flexible probability distribution that has properties allowing it
to model a variety of real-world phenomena. The concept of generalized gamma convolutions
(GGC’s) emerged in the 20th century as researchers sought to extend the applicability of
gamma distributions through convolutions. The foundations of GGC’s can be traced back to
the work of the Swedish mathematician Olof Thorin.

In the 1970’s, Thorin published four papers ([61], [60], [62], and [59]) on the infinite
divisibility of probability distributions. In 1977, Thorin published a paper, [61], titled "On the
infinite divisibility of the lognormal distribution" in the Scandinavian Actuarial Journal. In
this remarkable paper, Thorin introduced the concept of GGC’s (using the term generalized
Γ-convolutions) and used them to show that the log-normal distribution is infinitely divisible.
Thorin’s results laid the groundwork for the study of GGC’s and marked an important step
forward in the theory of infinite divisibility. In 1978, Thorin generalized his results to powers
of gamma variables and extended the class of GGC’s to include distributions on the whole
real line.

Lennart Bondesson, another Swedish mathematician, further developed Thorin’s ideas
and made significant contributions to the theory of GGC’s in the late 20th century. He
published several influential works on this topic, including the book, [15], titled "Generalized
Gamma Convolutions and Related Classes of Distributions and Densities", in 1992.

The class of GGC’s has applications in various fields and contains many important
distributions such as the gamma, inverse gamma, inverse-Gaussian, exponential, Lomax,
log-normal, and Weibull. In actuarial science, they have been used for modeling insurance
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claim severities, lifetime distributions, and other phenomena with heavy-tailed behavior. In
finance, these distributions have been employed to model asset returns and risk measures.

A common problem in mathematical modeling is to strike the right balance between
complexity and simplicity: the mathematical model should be realistic enough to accurately
describe the complicated natural phenomena, yet it should be simple enough and amenable
to analysis that would (hopefully) lead to an insight. In actuarial science and finance, this
problem appears when modeling various risks by random variables.

Quantitative risk management often begins with a set of random variables representing
profit or loss, and models the aggregate financial position as a function of these random
variables. For example, in the Individual Risk Model of actuarial science, the claims of an
insurance company are modeled as a sum of the claims of many insured individuals. The
ultimate objective is to utilize the model to accurately calculate probabilities concerning the
value of this aggregate position or apply a measure of risk to this aggregate position.

Despite being an elementary procedure on a theoretical basis, calculating (or even
approximating) the distribution of a sum of independent random variables can be troublesome.
Indeed, the distribution of the sum is given by an integral (the convolution of the cumulative
distribution functions) that in most cases does not have a known closed form. A number of
numerical techniques have been developed for computing or approximating the aggregate
distribution, including those which make use of the Laplace transform.

This dissertation explores the use of Laplace transforms and GGC’s with applications
to risk aggregation. In Chapter 1 and Chapter 2, we provide some relevant background
information with an introduction on the Laplace transform and an introduction on GGC’s,
respectively.

In Chapter 3, we study the analytical properties of the Laplace transform of the log-normal
distribution. Two integral expressions for the analytic continuation of the Laplace transform
of the log-normal distribution are provided, one of which takes the form of a Mellin-Barnes
integral. As a corollary, we obtain an integral expression for the characteristic function;
we show that the integral expression derived by Leipnik in [45] is incorrect. We present
two approximations for the Laplace transform of the log-normal distribution, both valid in
C \ (−∞, 0]. In the last section, we discuss how one may use our results to compute the
density of a sum of independent log-normal random variables.

In Chapter 4, we explore the topic of risk aggregation with moment matching approximations.
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In the vast majority of situations, insurers are interested in the properties of the sums of the
risks they are exposed to, rather than in the stand-alone risks per se. Unfortunately, the
problem of formulating the probability distributions of the aforementioned sums is rather
involved, and as a rule does not have an explicit solution. As a result, numerous methods to
approximate the distributions of the sums have been proposed, with the moment matching
approximations (MMAs) being arguably the most popular. We put forward a refined MMA
method for approximating the distributions of the sums of insurance risks. The method
approximates the distributions of interest to any desired precision, works equally well for
light and heavy-tailed distributions, and is reasonably fast irrespective of the number of the
involved summands.

In Chapter 5, we study the convergence of the Gaver-Stehfest algorithm. The Gaver-
Stehfest algorithm is widely used for numerical inversion of Laplace transform. In this
chapter we provide the first rigorous study of the rate of convergence of the Gaver-Stehfest
algorithm. We prove that Gaver-Stehfest approximations converge exponentially fast if the
target function is analytic in a neighbourhood of a point and they converge at a rate o(n−k)
if the target function is (2k + 3)-times differentiable at a point.

1.1 Publication information

The contents of Chapters 4, 5, and 6 have been published. The results appearing in Chapter
5 represent joint work Edward Furman and Alexey Kuznetsov and the results appearing in
Chapter 6 represent joint work with Alexey Kuznetsov. A modified version of: Chapter 4 has
appeared in Journal of Computational and Applied Mathematics [48]; Chapter 5 has appeared
in Variance [49]; Chapter 4 has appeared in the IMA Journal of Numerical Analysis [43].
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Chapter 2

The Laplace transform

The Laplace transform is an integral transform named after the famous French scientist
Pierre-Simon Laplace (1749-1827). This transform has a rich history and is widely employed
across many mathematical disciplines. Among its numerous applications, it can be used to
transform a convolution of two (or more) functions into a product of their respective Laplace
transforms. This property is especially useful as a tool in the field of probability, as the
distribution of a sum of independent random variables is the convolution of the underlying
distributions.

In this chapter we review the basic properties of the Laplace-Stieltjes transform, discuss
its inversion, and explore common computational methods.

2.1 The Laplace-Stieltjes transform

Assume the function α : (0,∞) → C is of bounded variation in the interval (0, R), for all
R > 0, and has real and imaginary parts u and v respectively,

α(t) = u(t) + iv(t), t ∈ (0,∞).

If z is a complex variable, it follows that the Stieltjes integral∫ R

0
e−ztdα(t)
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exists for every complex number z = x+ iy and has value∫ R

0
e−xt cos(yt)du(t)−

∫ R

0
e−xt sin(yt)dv(t)

+ i
∫ R

0
e−xt sin(yt)du(t) + i

∫ R

0
e−xt cos(yt)dv(t)

We define the improper integral∫ ∞
0

e−ztdα(t) = lim
R→∞

∫ R

0
e−ztdα(t), (2.1)

and say the integral converges for the complex number z if the limit exists. If the limit
does not exist, we say the integral diverges. When the integral (2.1) converges, it defines a
function of the complex variable z:

Definition 1. The function

L∗{α}(z) :=
∫ ∞

0
e−ztdα(t) (2.2)

is called the Laplace-Stieltjes transform of the function α.

The classic definition of the Laplace transform is included in the definition of the Laplace-
Stieltjes transform. Indeed, if the function α(t) in Definition 1 is absolutely continuous on
(0,∞), (2.2) may be written as a Lebesgue integral. In particular,∫ ∞

0
e−ztdα(t) =

∫ ∞
0

e−ztα′(t)dt,

and the integral takes the form of the classical Laplace transform:

Definition 2. The function

L{f}(z) :=
∫ ∞

0
e−ztf(t)dt (2.3)

is called theLaplace transform of the function f .

In Chapter 6, the Laplace transform as defined by Definition 2 will form the basis of
our study of the convergence of the Gaver-Stehfest algorithm. When working with this
definition, it is common to use capital letters to refer to the Laplace transform of a function,
e.g. F (z) = L{f}(z).

In Chapters 4 and 5, we explore the Laplace transform of the log-normal distribution and
an algorithm for the aggregation of risk random variables, respectively. When we refer to the
Laplace transform of a random variable (or probability distribution) we are referring to the
following definition:
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Definition 3. Let X be a random variable. The function

L{X}(z) := E
[
e−zX

]
(2.4)

is called the Laplace transform of the random variable X.

Since capital letters are often reserved for cumulative distribution functions, in this context
we will refer to the Laplace transform of a random variable using the Greek letter φ, e.g.
φ(z) = L{X}(z).

Note that if X is a positive random variable with cumulative distribution function F (x),
x ≥ 0, we have

E
[
e−zX

]
=
∫ ∞

0
e−zxdF (x)

and Definition 3 corresponds to Definition 1. Furthermore, if the positive random variable X
has probability density function f(x), x > 0, we have

E
[
e−zX

]
=
∫ ∞

0
e−zxf(x)dx

and Definition 3 corresponds to Definition 2. If the random variable X has support on the
negative real line, equation (2.4) corresponds to the bilateral Laplace transform, which we
will not cover in this work.

The domain of the Laplace-Stieltjes transform is determined by the convergence of the
integral defined by (2.1). The following theorem provides a sufficient condition for the
Laplace-Stieltjes transform to be defined on a half-plane:

Theorem 1 ([65]). If

sup
0≤R<∞

∣∣∣∣∣
∫ R

0
e−z0tdα(t)

∣∣∣∣∣ <∞, z0 = x0 + iy,

the integral defined by (2.1) converges for all z ∈ C for which Re(z) > x0.

In particular, we note that if the integral (2.1) converges for z0 = x0 + iy, it converges for
all z ∈ C with Re(z) > x0. Theorem 1 leads us to three possibilities for the domain of the
Laplace-Stieltjes transform of the function α:

i) L∗{α}(z) is not defined for any z ∈ C.

ii) L∗{α}(z) is defined for all z ∈ C.
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iii) There exists a number xc ∈ R for which L∗{α}(z) is defined for all z ∈ C with
Re(z) > xc, and undefined for all z ∈ C with Re(z) < xc.

The number xc is called the abscissa of convergence and the line x = xc is called the axis
of convergence (this notation extends to the first two scenarios by defining xc = ∞ and
xc = −∞, respectively).

It is a relatively simple exercise to construct examples for each of the possible domains.
We leave it to the reader to verify that

α(t) =
∫ t

0
ee
xdx,

and
α(t) =

∫ t

0
e−e

xdx,

result in Laplace transforms with domains i) and ii), respectively. To illustrate the most
interesting case, domain iii), we consider a positive random variable X with cumulative
distribution function F (x), x ≥ 0. The Laplace transform of X is given by

φ(z) =
∫ ∞

0
e−zxdF (x),

in accordance with Definition 3. Since X is a random variable, we have φ(0) = 1 and we
know that φ(z) is defined on C+ := {z ∈ C : Re(z) > 0}. In this example, the abscissa
of convergence may be less than zero, however we require further information about the
function F (x) to make this determination. For example, if X is exponentially distributed
with cdf F (x) = 1− e−λx, λ > 0, the abscissa of convergence is xc = −λ. However, if X is
log-normally distributed with cdf

F (x) =
∫ x

0

1√
2πσ2t

e−
(ln(t)−µ)2

2σ2 dt, µ ∈ R, σ > 0,

the abscissa of convergence is xc = 0.
An important property of Laplace-Stieltjes transforms is that they are analytic in the

half-plane on which they are defined. Furthermore, if the determining function is monotonic,
the Laplace-Stieltjes transform has a singularity at the point where the axis of convergence
intersects the real line.

Theorem 2 ([65]).

i) If L∗{α}(z) converges for Re(z) > x, then L∗{α}(z) is analytic for Re(z) > x.
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ii) If α(t) is a monotonic function, L∗{α}(z) has a singularity at the point z = xc.

Theorem 2 ensures that the Laplace transform of a positive random variable is (at least)
analytic on the right half-plane. Moreover, since the cdf F (x) is monotonic, the Laplace
transform has a singularity at the point z = xc.

The uniqueness of a Laplace transform’s determining function is a distinctive property
which makes the Laplace transform a practical tool. For example, this feature allows us
show that two random variables have the same distribution if they have the same Laplace
transform. The following theorem provides the precise statement for uniqueness; note that
the function α(t) is normalized if α(0+) = 0 and

α(t) = α(t+) + α(t−)
2 , t > 0.

Theorem 3 ([65]).

i) If α1(t) and α2(t) are two normalized functions which satisfy L∗{α1}(z) = L∗{α2}(z)
for all z in some common region of convergence, then α1(t) = α2(t), t ∈ [0,∞).

ii) If f1(t) and f2(t) are two functions which satisfy L{f1}(z) = L{f2}(z) for all z in some
common region of convergence, then f1(t) = f2(t) almost everywhere in [0,∞).

The last property we need to mention is that the Laplace transform of the convolution of
two functions is equal to the product of their transforms:

L{f1 ∗ f2}(z) =
∫ ∞

0
e−zx(f1 ∗ f2)(x)dx = L{f1}(z) · L{f2}(z) (2.5)

In the context of probability, this means that the Laplace transform of the sum of two
independent random variables is equal to the product of their transforms:

L{X1 +X2}(z) = E
[
e−z(X1+X2)

]
= L{X1}(z) · L{X2}(z) (2.6)

2.2 The inverse Laplace transform

In this section, we provide the formula for inversion of the Laplace (-Stieltjes) transform
commonly known as the Bromwich integral or the inverse Laplace transform. We begin with
the classical Laplace transform:
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Theorem 4 ([65]). Assume that the function f(t) belongs to L1((0, R), dt), for each R > 0,
and the Laplace transform

L{f}(z) =
∫ ∞

0
e−ztf(t)dt,

is absolutely convergent on the line Re(z) = c. If f(t) is of bounded variation in a
neighbourhood of t when t ≥ 0, then

lim
T→∞

1
2πi

∫ c+iT

c−iT
L{f}(z)eztdz =


0 t < 0
f(0+)

2 t = 0
f(t+)+f(t−)

2 t > 0

(2.7)

Note that it is not necessary for the integral

1
2πi

∫ c+i∞

c−i∞
L{f}(z)eztdz (2.8)

to exist. Consider the function f(t) = 1, which satisfies the assumptions of Theorem 4. For
each c > 0,

L{f}(z) =
∫ ∞

0
e−ztdt = z−1, Re(z) > c,

but the integral
1

2πi

∫ c+i∞

c−i∞

ezt

z
dz, t ≥ 0,

diverges and only its principal value exists. The inversion formula for the more general
Laplace-Stieltjes transform is similar:

Theorem 5 ([65]). Assume that the function α(t) is a normalized function that belongs to
L1((0, R), dt), for each R > 0, and the Laplace-Stieltjes Transform

L∗{α}(z) =
∫ ∞

0
e−ztdα(t),

has abscissa of convergence xc. If c > 0 and c > xc, then

lim
T→∞

1
2πi

∫ c+iT

c−iT
L∗{α}(z)e

zt

z
dz =


0 t < 0
α(0+)

2 t = 0

α(t) t > 0

(2.9)

Note that Theorem 5 requires the contour of integration to be in the right-half plane and
to the right of the axis of convergence.
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To illustrate the utility of these inversion theorems, we consider a scenario that we will
encounter in Chapter 5. Suppose that we have the Laplace transform of a positive, continuous
random variable X, but the cdf, F , is unknown. Since we are certain that F is a normalized
function that belongs to L1((0, R), dx), for each R > 0, and the Laplace transform of X

φ(z) =
∫ ∞

0
e−zxdF (x),

has abscissa of convergence xc ≤ 0, Theorem 5 guarantees that

F (x) = 1
2πi

∫ c+i∞

c−i∞
φ(z)e

zx

z
dz, x > 0, (2.10)

for any c > 0. Moreover, if we know that X is absolutely continuous, then X has a pdf
f ∈ L(0,∞) and the Laplace transform

φ(z) =
∫ ∞

0
e−zxf(x)dx,

is absolutely convergent on the line Re(z) = c, for any c > 0. In this case, Theorem 4
guarantees that

f(x) = 1
2πi

∫ c+i∞

c−i∞
φ(z)ezxdz, x > 0. (2.11)

2.3 Inversion methods

Methods for computing the inverse Laplace transform of a function fall into two categories:
analytic methods and numerical methods. As the transform is defined by integration, it is no
surprise that we must rely on numerical methods for the majority of functions. Nonetheless,
we begin with an analytic example as it is instructive to see how one may compute the
Laplace transform using analytic techniques.

We illustrate analytic inversion of a simple function using classic techniques from complex
analysis. Consider an absolutely continuous random variable with gamma distribution,
X ∼ Gamma(α, β), where α ∈ N and β > 0. The Laplace transform of X is given by

φ(z) = βα(z + β)−α.

Invoking Theorem 4, we can recover the pdf, f(x), by computing

f(x) = 1
2πi

∫ c+i∞

c−i∞
φ(z)ezxdz = 1

2πi

∫ c+i∞

c−i∞

βαezx

(z + β)αdz, x > 0. (2.12)

11



c− iR

c+ iR

•

•

•
Re (z)

Im (z)

0−β

Figure 2.1: The contour γR

Recognizing that the integrand of (2.12) is a meromorphic function with a single pole at
z = −β, we can deform the contour of integration to the left of the origin. Indeed, when
α > 1 one may show that

f(x) = 1
2πi

∫
Cε(−β)

βαezx

(z + β)αdz, x > 0, (2.13)

where the contour Cε(−β) is the circle of radius ε > 0, centered at −β, with positive
(counter-clockwise) orientation. To show this, one would show that

1
2πi

∫ c+i∞

c−i∞
φ(z)ezxdz = lim

R→∞

∫
γR
φ(z)ezxdz = 1

2πi

∫
Cε(−β)

φ(z)ezxdz,

where γR is the semi-circle of radius R depicted in Figure 2.1. Invoking Cauchy’s integral
theorem we obtain the pdf of X,

f(x) = 1
(α− 1)!

[
dα−1

dzα−1β
αezx

]
z=−β

= βα

Γ(α)x
α−1e−βx, x > 0.

If the parameter α was not an integer, we would have a branch point at z = −β rather than
a pole, and the argument above would not be valid. In this situation, we would deform the

12



c− iR

c+ iR

•

•

•
Re (z)

Im (z)

0−β

Figure 2.2: The contour γ̃R

contour of integration to the left of the origin avoiding the branch cut (−∞,−β) using a
keyhole contour, as in Figure 2.2. In this case, one may show that

1
2πi

∫ c+i∞

c−i∞
φ(z)ezxdz =

∫
H
φ(z)ezxdz,

where H is a Hankel contour, depicted in Figure 2.3. As the Hankel contour converges to the
line segment (−∞,−β) from above and below, one may show that

f(x) = − 1
π

∫ ∞
β

Im [φ(−t+ i · 0)] e−txdt

= βαe−βx
sin(απ)

π
(−1)−α

∫ ∞
β

(−t+ β)−αe(−t+β)xdt

= βα

Γ(α)x
α−1e−βx, x > 0.

Analytic inversion methods often fail because the functions we wish to invert are simply
too complicated. We commonly encounter functions for which integration does not yield a
known closed form or functions for which repeated differentiation becomes unreasonable. In
these cases, the pragmatic approach is to apply a numerical method for inversion.

The most direct method is to apply a numerical quadrature method to the integral

13



•
Re (z)

Im (z)

0−β

Figure 2.3: The contour H.

1
2πi

∫ c+i∞

c−i∞
L∗{α}(z)e

zx

z
dz,

or the integral

1
2πi

∫ c+i∞

c−i∞
L{α}(z)ezxdz.

This approach has several disadvantages:

• this is not an all-purpose method and we must tailor our methodology to suit the
function under consideration.

• the method requires values of the Laplace transform at complex numbers.

• the argument of the exponential term has positive real part.

We can often avoid the last disadvantage by transforming the contour of integration. If the
integrand can be analytically continued to the left of the origin, it may be possible to shift
the contour so that the exponential term has negative real part. Moreover, if the integrand
has sufficient decay in this half-plane as |z| → ∞, we may integrate over the negative real
line as in the preceding example.

14



If we are dealing with a specific function and we can calculate values of the Laplace
transform in the complex plane, this method can be simple to implement and yield excellent
results. However, we often need an all-purpose method that is accurate, applicable to a
wide range of functions, and does not require the values of the Laplace tansform at complex
numbers.

For the remainder of this section, we discuss several popular algorithms for recovering the
target function

f(x) = 1
2πi

∫ c+i∞

c−i∞
F (z)ezxdz, (2.14)

from its Laplace transform
F (z) =

∫ ∞
0

e−zxf(x)dx. (2.15)

2.3.1 Filon’s Method

We can express the Bromwich integral 2.14 in terms of the cosine transformation as follows

2ecx
π

∫ ∞
0

Re [F (c+ iu)] cos (ux)du, x > 0. (2.16)

Since the integral 2.16 is an oscillatory integral, applying a numerical method directly can
be challenging. For example, a numerical method such as the trapezoid rule would require
an increasingly finer mesh for large values of x because the period of the function cos(ux)
decreases as x increases.

Filon’s method applies to oscillatory integrals of the form∫ b

a
g(u)cos(ux)du. (2.17)

By approximating the function g(u) with second order Lagrange interpolating polynomials,
the method avoids the discretization problem since the product of a polynomial and the
cosine function can be integrated explicitly.

The method is implemented by first creating a mesh consisting of 2N + 1 points, uk =
a+ k(b− a)/2N , k = 0, 1, . . . , 2N , and dividing the integral in 2.17 into N sub-integrals as
follows, ∫ b

a
g(u) cos(ux)du =

N−1∑
k=0

∫ u2k+2

u2k
g(u) cos(ux)du

Next, we approximate the function g(u) on each sub-interval [u2k, u2k+2] with a second order
Lagrange interpolating polynomial using the points (u2j, g2j), (u2j+1, g2j+1), and (u2j+2, g2j+2),

15



where gj := g(uj). With g(u) ≈ c
(j)
0 + c

(j)
1 u+ c

(j)
2 u2 on [u2j, u2j+2], we have

∫ b

a
g(u) cos(ux)du ≈

N−1∑
k=0

∫ u2k+2

u2k

(
c

(j)
0 + c

(j)
1 u+ c

(j)
2 u2

)
cos(ux)du

and the expression on the right-hand side is computed explicitly.

2.3.2 The Euler algorithm

With change of variable u 7→ v/x and the change c 7→ c/x, the Bromwich integral 2.14 can
be written as follows

f(x) = ec

2πx

∫
R
F
(
c+ iv
x

)
eivdv. (2.18)

The Euler algorithm approximates the integral in 2.18 by applying the trapezoid rule combined
with the Euler acceleration method to improve the convergence rate. The approximation is
given by

fE(x;M) = 10M
3

x

2M∑
n=0

(−1)nan Re
[
F
((

ln
(
10M

3
)

+ πin
)
x−1

)]
, (2.19)

where the coefficients an are defined by

a0 = 1
2 ,

an = 1, for 1 ≤ n ≤M,

a2M = 2−M ,

a2M−k = a2M−k+1 + 2−M
(
M

n

)
, for 1 ≤ n ≤M.

For the Euler algorithm, it is recommended to set M = d1.7je if j significant digits are
required, and then set the system precision to M [42].

2.3.3 The fixed Talbot algorithm

As with the Euler algorithm, the fixed Talbot algorithm starts with the Bromwich integral
but then the contour of integration is transformed so that Re(z)→ −∞ on this contour. The
benefit of this transformation is that the integrand converges to zero much faster, however,
the method requires that the function can be analytically continued to the complex plane
minus the cut (−∞, 0]. In the case that the Laplace transform corresponds to a GGC random
variable, this condition is satisfied.
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The fixed Talbot approximation is given by

fT (x;M) = 1
x

M−1∑
n=0

Im
[
anF

(
bnx

−1
)]
, (2.20)

where the coefficients an and bn are given by

b0 = 2M
5 ,

bn = 2πn
5

(
cot

(
πn

M

)
+ i
)
, for 1 ≤ n < M,

a0 = i
5e

b0 ,

an =
(
bn −

5
2M |bn|

2
)
ebn

nπ
, for 1 ≤ n < M.

For the fixed Talbot algorithm, it is also recommended to set M = d1.7je if j significant
digits are required, and then set the system precision to M [42].

2.3.4 Expansion using generalized Laguerre polynomials

Several numerical methods adopt the following methodology:

1. Assume the target function f(x) (Laplace transform F (z)) has, or can be approximated
by, some form of expansion. The Laplace transform (inverse Laplace transform) of the
expansion is known.

2. The known Laplace transform F (z) is evaluated on a mesh of points to determine the
coefficients of the expansion.

In their survey and comparison of methods, [23] suggest the expansion of f(x) using
exponential functions seldom yields results with a high accuracy. On the other hand, expanding
the target function using generalized Laguerre polynomials resulted in an all-purpose method
that produces exceptional results for a wide range of functions. The approximate expansion
of f(x) is

f(x) ≈ xαe−cx
N∑
k=0

ak
k!

(α + k)!L
α
k (t/T ), (2.21)
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where α, c, and T are parameters and the generalized Laguerre polynomials are calculated
recursively using the relations

Lα0 (x) = 1

Lα1 (x) = 1 + α− x

kLαk (x) = (2k + α− 1− x)Lαk−1(x)− (k − 1 + α)Lαk−2(x)

The expansion (2.21) has Laplace transform

F (z) ≈
N∑
k=0

ak(z + c− 1)k(z + c)−(k+α+1) (2.22)

Introducing the new variable w = (z + c− 1)/(z + c), we have

G(w) := (z + c)α+1F (z) =
N∑
k=0

akw
k. (2.23)

Setting w = eiθ, the coefficients ak, k = 0, . . . , N , are calculated using trigonometric
interpolation.

2.3.5 Piessens’ Method

Using a similar approach, Piessens’ method assumes the Laplace transform F can be written
as an expansion of Jacobi polynomials. Employing a special case of the Jacobi polynomials,
the Chebyshev polynomials, we have

F (z) ≈ x−α−1
N∑
k=0

akTk(1− bz−1). (2.24)

Inverting the series term-by-term, the target function takes the form

f(x) ≈ xα

α!

N∑
k=0

akφk(bx/2), (2.25)

where φk is a polynomial of degree k. In 1990, Cope [20] showed that the method converges
exponentially fast when the Laplace transform has the form F (z) = z−γG(z) with γ > 0 and
G analytic at ∞.
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2.3.6 The Gaver-Stehfest algorithm

The Gaver-Stehfest algorithm is a popular inversion algorithm that was first developed by
Gaver [31] in 1966 and subsequently improved by Stehfest [54, 55] in 1970. The algorithm
establishes a sequence of approximations which converge to the generating function of the
Laplace transform. The great advantage of the Gaver-Stehfest approximations is that they
only require the Laplace transform to be evaluated on the positive real line. The downside of
this algorithm is that the method requires the use of high-precision arithmetic; a trade-off
that is easily accommodated with modern day computers.

Suppose f : (0,∞) 7→ R is a locally integrable function such that its Laplace transform

F (z) :=
∫ ∞

0
e−zxf(x)dx (2.26)

is finite for all z > 0. The nth Gaver-Stehfest approximation at the point x > 0 is given by

fn(x) := ln(2)x−1
2n∑
k=1

ak(n)F
(
k ln(2)x−1

)
, n ≥ 1, x > 0, (2.27)

where

ak(n) := (−1)n+k

n!

min(k,n)∑
j=[(k+1)/2]

jn+1
(
n

j

)(
2j
j

)(
j

k − j

)
, 1 ≤ k ≤ 2n.

In Chapter 6, we prove that Gaver-Stehfest approximations converge exponentially fast if the
generating function is analytic in a neighbourhood of a point and they converge at a rate
o(n−k) if the generating function is (2k + 3)-times differentiable at a point.
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Chapter 3

Generalized Gamma Convolutions

A probability distribution is infinitely divisible if it can be shown to have the same distribution
as a sum of an arbitrary number of independent and identically distributed random variables.
Since an insurance claim is often viewed as a sum of a number of partial claims, an actuary
should confirm that a probability distribution is infinitely divisible before using it to model
an aggregate claim.

In 1977, Olof Thorin, an actuarial mathematician, introduced the class of probability
distributions called Generalized Gamma Convolutions (GGCs), and he used them to show that
the log-normal distribution was infinitely divisible. The infinite divisibility of the log-normal
distribution was on open question for many years, and Olof Thorin’s work paved the way for
the rich collection of results that followed.

It turns out that several important probability distributions used in the field of actuarial
science are GGCs. In this chapter, we provide the definition of a GGC and review several
characterizations.

3.1 Definition of a GGC

Recall that the Gamma distribution is an absolutely continuous random variable, X ∼
Gamma(α, β), with positive parameters α, and β and probability density function given by

f(x) = βα

Γ(α)x
α−1e−βx, x > 0.
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The Laplace transform of the gamma distribution, X, is given by

φ(z) =
(

β

z + β

)α

Let Sn = X1 +X2 + . . .+Xn be a convolution (i.e., sum) of n independent gamma random
variables. The Laplace transform of Sn is given by

φSn(z) = φX1 · φX2 · . . . · φXn

=
n∏
i=1

βαii (z + βi)−αi

= exp
[
n∑
i=1

αi ln
(

βi
z + βi

)]

Considering the limiting distributions as we take n→∞, we are led to the following definition
of a GGC. In this chapter, we use the moment-generating function rather than the Laplace
transform since this is common practice in the literature. Recall that the moment-generating
function satisfies M(s) = φ(−s).

Definition 4 ([15]). A GGC is a probability distribution F on [0,∞) with moment-generating
function (mgf) of the form

M(s) = exp
[
as+

∫ ∞
0

ln
(

t

t− s

)
U(dt)

]
, s ≤ 0 (or s ∈ C \ (0,∞)),

where a ≥ 0 and U(dt) is a nonnegative measure, called the Thorin measure, on (0,∞)
satisfying ∫

(0,1]
| ln t|U(dt) <∞, and

∫
(1,∞)

t−1U(dt) <∞,

This class of distributions is often denoted by T , in honour of Olof Thorin. The T -class
is a rich class of distributions that is closed with respect to convolutions and weak limits.

Theorem 1 (Closure theorem [15]). If Fn ∈ T , n = 1, 2, . . . ,∞, and Fn → F weakly (with
F non-defective), then F ∈ T .

In fact, the T -class is equal to the class of weak limits of finite convolutions of gamma
distributions. For the remainder of this section, we list several characterizations of GGC’s
that are based on the moment-generating function or the density of the distribution.
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3.2 Moment-generating function characterizations of
GGC’s

The first theorem provides a characterization of GGC’s in terms of the Lévy measure and
shows that every GGC is infinitely divisible. The moment generating function of an infinitly
divisible distribution on [0,∞) can be represented as

M(s) = exp
[
as+

∫ ∞
0

(est − 1)L(dt)
]
,

where a ≥ 0 and the Lévy measure, L, is non-negative and satisfies
∫∞

0 min (1, t)L(dt) <∞.
Note that a function, f , is completely monotone if (−1)nfn(x) ≥ 0, n ∈ N0.

Theorem 2 ([15]). A probability distribution on [0,∞) is GGC if and only if it is infinitely
divisible and the Lévy measure has a density l such that xl(x), x > 0, is completely monotone.

We consider the stable distribution with moment generating functionM(s) = exp [−(−s)α],
0 < α < 1, as an illustrative example. Writing

M ′(s)
M(s) = α(−s)α−1 = a+

∫ ∞
0

esttl(t)dt,

we see that a = 0 and tl(t) = α
Γ(1−α)t

−α is completely monotone. Thus, Theorem 2 ensures
that the stable distribution is a GGC.

A function of a complex variable, ψ, is called a Pick function, denoted by ψ ∈ P , if it is
analytic in the upper half-plane, Im (z) > 0, and has a non-negative imaginary part in the
upper half-plane. Furthermore, if ψ is also continuous up to and on the real interval (a, b), it
is denoted by ψ ∈ P(a, b).

If M is a moment-generating function of a GGC, then

M ′(z)
M(z) = a+

∫ ∞
0

1
t− z

U(dt),

and soM ′(z)/M(z) = ψ ∈ P(−∞, 0). Thus, the following theorem provides a characterization
of GGC’s in terms of Pick functions.

Theorem 3 ([15]). A probability distribution on [0,∞) is GGC if and only if its moment-
generating function, M , is analytic and non-zero in C \ [0,∞) and Im [M ′(z)/M(z)] ≥ 0 for
all Im (z) > 0.
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Returning to our illustrative example, the stable distribution has moment-generating
function M(s) = exp [−(−s)α] and it follows from Theorem 3 that it is a GGC since
M ′(s)/M(s) is a Pick function.

The following theorem is referred to as the inversion theorem. Thorin used techniques
based off the inversion theorem to prove that the log-normal distribution is a GGC.

Theorem 4 ([15]). Let M be the moment-generating function of a probability distribution F
on [0,∞) such that

a) M is analytic and zero-free in C \ [0,∞), and continuously differentiable up to and on
the cut with non-zero boundary values.

b) M ′(z)/M(z)→ a uniformly as |z| → ∞, z ∈ C \ [0,∞)

c) arg (M(z)) is increasing for z > 0, or, equivalently, Im [M ′(z)/M(z)] ≥ 0 for z > 0.

Then F is a GGC with left extremity a. Furthermore, the Thorin measure, U , has density
u(t) = 1

π
· Im [M ′(z)/M(z)] and satisfies

∫
(0,z] U(dt) = 1

π
· arg [M(z)], z > 0.

The following theorem provides a useful test to determine if a moment-generating function
corresponds to a GGC.

Theorem 5 ([15]). A probability distribution on [0,∞) is GGC if and only if its moment-
generating function, M , is analytic in C\ [0,∞) and Im [M ′(z) ·M(z)] ≥ 0 for all Im (z) > 0.

3.3 Densities of GGC’s

Many distributions do not have a moment-generating function (e.g., Pareto distribution) or
have a moment-generating function that is difficult to work with (e.g., log-normal distribution).
In these cases, the theorems of the previous section are not easily employed to verify whether
a distribution is a GGC. In this section, we consider two characterizations of GGC’s in terms
of distribution’s density.

Theorem 6 ([15]). If g(t) is log-concave on (0,∞) and the random variable X has a probability
density function of the form

f(x) =
∫ ∞

0
te−xtg(t)dt, (3.1)

then X ∈ T .
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Theorem 6 can be used to show that the Pareto distribution is a GGC. The Pareto
distribution is a positive distribution with parameters α > 0 and β > 0 and probability
density function

f(x) = αβα

(x+ β)α+1 , x > 0,

which can be written in the form

f(x) =
∫ ∞

0
te−xtg(t)dt, (3.2)

with
g(t) = 1

Γ(α)β
αtαe−βt. (3.3)

Since g′(t)/g(t) = α/t− β is decreasing, g(t) is log-concave and Theorem 6 shows that the
Pareto distribution is a GGC.

The second theorem we consider shows that a distribution with a hyperbolically completely
monotone density is a GGC.

Definition 5. A non-negative function, f , on (0,∞) is hyperbolically completely monotone
(HCM) if, for each u > 0, f(uv) · f(u/v) is completely monotone as a function of w = v+ v−1.

Theorem 7 ([15]). If the random variable X has a probability density function, f , on (0,∞)
such that f is HCM, then X ∈ T .

Theorem 7 can be used to show that the log-normal distribution is a GGC. Since the
general density is obtained by change of scale, we consider the random variable X ∼ LN(0, σ2),
with probability density function given by

f(x) = 1√
2πσx

exp
[
−(ln x)2

2σ2

]
, x > 0.

A function of the form h ◦ g is completely monotone when h is completely monotone and g is
non-negative with a completely monotone derivative. Thus, with

f(uv)f(u/v) = 1
2πσ2u2 exp

[
−(ln u)2

σ2 − (ln v)2

σ2

]
,

it suffices to show that (ln v)2 has completely monotone derivative with respect to w = v+v−1.
Since

d
dw (ln v)2 = ln v − ln (v−1)

v − v−1 ,
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and
ln v =

∫ 0

−∞

( 1
t− v

− 1
t− 1

)
dt,

we have
d
dw (ln v)2 =

∫ 0

−∞

1
1 + t2 − tw

dt,

which is completely monotone with respect to w. Thus, Theorem 7 ensures that the log-normal
distribution is a GGC.
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Chapter 4

The Laplace transform of the
log-normal distribution

In this chapter we study the analytical properties of the Laplace transform of the log-normal
distribution. Two integral expressions for the analytic continuation of the Laplace transform
of the log-normal distribution are provided, one of which takes the form of a Mellin-Barnes
integral. As a corollary, we obtain an integral expression for the characteristic function;
we show that the integral expression derived by Leipnik in [45] is incorrect. We present
two approximations for the Laplace transform of the log-normal distribution, both valid in
C \ (−∞, 0]. In the last section, we discuss how one may use our results to compute the
density of a sum of independent log-normal random variables.

4.1 Introduction

A positive random variable X is said to have a log-normal distribution with parameters
µ ∈ R and σ > 0, written X ∼ LN(µ, σ2), if it has probability density function given by

f(x;µ, σ) = 1√
2πσx

exp
[
−(ln x− µ)2

2σ2

]
, x > 0.

The log-normal distribution has a wide range of applications in the natural sciences and
fields like finance, actuarial science, economics and engineering. Integral transforms, such as
the Laplace and Fourier transforms, of the log-normal distribution have received considerable
attention in the literature for several decades. The Laplace transform of X, henceforth
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denoted by φ, is defined by

φ(z;µ, σ) := E
[
e−zX

]
=
∫ ∞

0
e−zxf(x;µ, σ)dx, Re (z) ≥ 0. (4.1)

The characteristic function of X, henceforth denoted by ϕ, is the restriction of φ to the
imaginary axis:

ϕ(t;µ, σ) := E
[
eitX

]
= φ(−it;µ, σ), t ∈ R. (4.2)

Since these integral transforms have no known closed form, there has been substantial
effort to put forth viable approximation methods (see [6] for a thorough overview and
numerical comparison of several methods). Some authors, such as Barouch and Kaufman
[11], Barakat [10], Holgate [36], and Leipnik [45], have proposed series representations for
(4.2). Others, including Gubner [33] and Tellambura and Senaratne [58], have proposed
numerical integration methods for computing (4.1). Gubner’s numerical integration procedure
reduces oscillations of the integrand by deforming the contour of integration. Tellambura
and Senaratne improved upon Gubner’s method by deriving the steepest-descent contour
and by providing two, related, closed-form contours.

More recently, Asmussen et al. [6] used a modified version of Laplace’s method to derive
an asymptotically equivalent, closed-form approximation for (4.1). Moreover, Asmussen et
al. [6] constructed a Monte Carlo estimator and, based on this framework, Laub et al. [44]
generalized the approach to approximate the Laplace transform of a finite sum of dependent
log-normals.

There are several disadvantages with existing methods in the literature. Examples include:

• The majority of methods are only valid, at most, for arguments in the right half plane,
{z ∈ C : Re (z) ≥ 0}. As a result, one must exclude some efficient paths of integration
when performing an inversion of the Laplace transform.

• It appears that there are no convergent series representations in the literature that
are valid on the entire domain of analyticity. Since φ is not analytic at the origin, the
Taylor series representation centered at any point will have finite radius of convergence.
For example, the formal Taylor series of φ, centered at the origin, is given by

∞∑
n=0

(−z)n
n! eµn+σ2

2 n2
. (4.3)

It is easy to see that the series (4.3) diverges for all z 6= 0.
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• In 1991, Leipnik [45] presented the following expression for the characteristic function:
Let X ∼ LN(0, σ2), then, for t > 0 and 0 < k < 1, the characteristic function is given
by

ϕ(t; 0, σ) ?= 1
2π

∫ k+i∞

k−i∞
sin (πs)Γ(s)e−(ln t+iπ2 )s+σ2

2 s2ds. (4.4)

It has been reported that the right-hand side of (4.4), and the subsequent series for ϕ
derived in [45], are unreliable in numerical computations (see [27], and [6]). We claim
that the result is incorrect. To see that (4.4) is incorrect, observe that the integrand is
entire and that one may take k ∈ R. After shifting the contour of integration to the
left of the origin (taking k < 0), it is easy to see that the expression in (4.4) is O(t|k|),
as t → 0. Hence, the expression converges to 0 as t → 0, violating the fact that the
characteristic function must converge to 1 as t→ 0.

Leipnik obtains (4.4) by first deriving a functional differential equation, and then
solving it using a method due to de Bruijn. In this method, the differential equation
is transformed into a forward difference-differential equation and an ansatz solution
is posed. It appears that Leipnik imposed an inconvenient condition on the ansatz;
specifically, in equation (25) of [45], he imposed the condition S(z − 1) = −S(z) when
he could have taken S(z − 1) = S(z). As a result, Leipnik searched for an anti-periodic
solution for S and ultimately obtained S(z) = sin πz rather than S(z) = 1.

In this paper, we explore the analytic continuation of the Laplace transform of the log-
normal distribution and present new, efficient, series approximations of φ that are valid on
C \ (−∞, 0]. In Sections 4.2 and 4.3, we provide two (integral) expressions of the analytic
continuation to C \ (−∞, 0], one of which takes the form of a Mellin-Barnes integral. As a
corollary, we obtain an integral expression for the characteristic function ϕ (this expression is
stated by Dufresne in [27] without proof). In the third section of this paper, we exploit the
Mellin-Barnes integral expression and use knowledge of the gamma function to derive series
approximations for φ that are valid for arguments in C \ (−∞, 0].

The first approximation we present in Section 4.4 is a convergent series for which the
error term is uniformly bounded on C \ (−∞, 0] by a constant that can be made arbitrarily
small (by choice of a parameter). Furthermore, the approximation is asymptotic to φ as the
magnitude of the argument decreases to zero. The second approximation we present is a
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sum which improves as the parameter σ →∞. The terms of the series/sum are composed
of expressions involving error functions and/or Hermite polynomials. The approximations
are used to compute φ for several real arguments and the results compared to the values
obtained by way of numerical integration.

In Section 4.5, we discuss how one may use the analytic continuation of φ to compute the
density of a sum of independent log-normals via Laplace inversion. By deforming the contour
of the Bromwich integral to a Hankel contour, we obtain a real integral with an integrand
which decays exponentially. The result is an integral which is easily evaluated numerically.

4.2 The analytic continuation of the Laplace transform
of the log-normal distribution

The integral definition of the function φ, given by (4.1), is finite when Re (z) ≥ 0 and it is
well known that it is analytic in the right half plane C+ = {z ∈ C : Re (z) > 0}. It will be
convenient for us to express this function as

φ(z;µ, σ) = C(µ, σ)
∫ ∞

0

1
x

exp
[
−zx− 1

2σ2 (ln x)2 + µ

σ2 ln x
]
dx, (4.5)

where C(µ, σ) := (2πσ2)−1/2 exp (−µ2/2σ2). Noting that the integral in (4.5) is finite for all
µ ∈ C, we define

Φ(z, w;σ) := C(w, σ)
∫ ∞

0

1
x

exp
[
−zx− 1

2σ2 (ln x)2 + w

σ2 ln x
]
dx, (z, w) ∈ C+ × C. (4.6)

Since Φ(z, µ;σ) = φ(z;µ, σ), the function Φ is an extension of φ. Here C+ denotes the closure
of C+, and throughout this paper we take the logarithm to be complex with the principal
branch. The main result of this section is given in the following theorem. It provides us with
an expression for φ(z;µ, σ) which is analytic on C \ (−∞, 0].

Theorem 6. Let σ > 0 and let Φ be defined by (4.6). Then the Laplace transform of
X ∼ LN(µ, σ2) is analytically continued to C \ (−∞, 0] by the equation

φ(z;µ, σ) = Φ(1, µ+ ln z;σ). (4.7)

Proof. Fix σ > 0 and let F (z, w, x) = x−1 exp [−zx− (ln x)2/2σ2 + w ln x/σ2] so that

Φ(z, w;σ) = C(w, σ)
∫ ∞

0
F (z, w, x)dx.
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The function C(·, σ) is entire, and, for each z ∈ C+, F (z, · , ·) is continuous on C× (0,∞),
and, for each pair (z, x) ∈ C+ × (0,∞), F (z, · , x) is entire. Thus, for each n ∈ N, and for
each z ∈ C+, the function Φn(z, · ;σ) defined by

Φn(z, w;σ) := C(w, σ)
∫ n

1
n

F (z, w, x)dx, w ∈ C

is entire. Since Φn(z, · ;σ) → Φ(z, · ;σ) uniformly on compact subsets of C, the function
Φ(z, · ;σ) is entire. To prove the theorem, we make the formal substitution ct = x in (4.6)
which yields

Φ(z, w;σ) = C(w, σ)
∫ ∞

0

1
ct

exp
[
−zct− 1

2σ2 (ln ct)2 + w

σ2 ln ct
]
cdt

= C(w, σ) exp
(
− 1

2σ2 (ln c)2 + w

σ2 ln c
)

×
∫ ∞

0

1
t

exp
[
−zct− 1

2σ2 (ln t)2 + (w − ln c)
σ2 ln t

]
dt

= Φ(cz, w − ln c;σ), (4.8)

where (4.8) holds provided cz ∈ C+. Setting c = 1/z we obtain

Φ(z, w;σ) = Φ(1, w + ln z;σ). (4.9)

Therefore, since Φ(z, · ;σ) is an entire function for each z ∈ C+, setting w = µ yields an
analytic continuation for the Laplace transform of X defined by (4.1). ut

4.3 The analytic continuation of φ as a Mellin-Barnes
integral

In this section we derive an alternate expression for φ, the Laplace transform ofX ∼ LN(µ, σ2),
in the form of a Mellin-Barnes integral. As a consequence, we obtain the corresponding
expression for the characteristic function of the log-normal random variable X. As far as we
are aware, there is no other explicit proof of the result in the literature. For convenience,
we will often write f(x) and φ(z) instead of f(x;µ, σ) and φ(z;µ, σ) with the understanding
that µ and σ are the parameters of X.
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Theorem 7. Let X ∼ LN(µ, σ2) and k > 0. Then the Laplace transform of X has integral
expression

φ(z) = 1
2πi

∫ k+i∞

k−i∞
Γ(s)e−(µ+ln z)s+σ2

2 s2ds, z ∈ C \ (−∞, 0]. (4.10)

Proof. The Mellin transform of φ, denoted by M [φ; · ], is defined by

M [φ; s] =
∫ ∞

0
zs−1φ(z)dz, s = k + it.

Using the definition of the Laplace transform, Fubini’s theorem, and the fact that∫ ∞
0

zs−1e−zxdz = x−sΓ(s), Re (s) > 0,

we have

M [φ; s] =
∫ ∞

0
zs−1

(∫ ∞
0

e−zxf(x)dx
)
dz

=
∫ ∞

0
f(x)

(∫ ∞
0

zs−1e−zxdz
)
dx

= Γ(s)
∫ ∞

0
x−sf(x)dx

= Γ(s)e−µs+σ2
2 s2

, Re(s) > 0.

This also shows that zk−1φ(z) ∈ L1(0,∞) for k > 0. Furthermore, φ is continuous on (0,∞)
and so, by Mellin’s inversion formula ([63] Pg.46, Theorem 28),

φ(z) = 1
2πi

∫ k+i∞

k−i∞
z−sM [φ; s]ds = 1

2πi

∫ k+i∞

k−i∞
Γ(s)e−(µ+ln z)s+σ2

2 s2ds, z ∈ (0,∞).

We can extend this function to take arguments in C \ (−∞, 0], and, in fact, it is analytic
on this set. Therefore, our new expression for φ must agree with the analytic continuation
given in Section 4.2 by the uniqueness of analytic continuation. ut

Since ϕ(t) = φ(−it), we have the following corollary to Theorem 7

Corollary 1. Let X ∼ LN(µ, σ2) and k > 0. Then the characteristic function of X has
integral expression

ϕ(t) = 1
2πi

∫ k+i∞

k−i∞
Γ(s)e−(µ+ln |t|−sgn (t)iπ2 )s+σ2

2 s2ds, t ∈ R \ {0}. (4.11)
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4.4 Series approximations and numerical computation
of φ

In the first subsection we present series approximations which may be used to compute
φ on C \ (−∞, 0]. In the second subsection, we present numerical results using the series
approximations and compare the error using numerical integration as a benchmark.

4.4.1 Series approximations

The following theorem introduces a convergent series that approximates φ with an error
that can be made arbitrarily small. Note that the approximation bears some resemblance
to the results of Barouch and Kaufman [11] who investigated series approximations of the
characteristic function.

Theorem 8. Let X ∼ LN(µ, σ2) and α ≥ 1. Then the Laplace transform of X has expression

φ(z) =
∞∑
n=0

(−z)n
n! eµn+σ2

2 n2 ·12 erfc
(
µ+ ln (z/α) + σ2n√

2σ

)
+O(e−α), z ∈ C\(−∞, 0]. (4.12)

Furthermore,

φ(z) ∼
∞∑
n=0

(−z)n
n! eµn+σ2

2 n2 · 1
2 erfc

(
µ+ ln (z/α) + σ2n√

2σ

)
, as z → 0. (4.13)

The function erfc is the complimentary error function.

Proof. Let α ≥ 1. For Re (s) > 0, we may write Γ(s) = γ(s, α) + Γ(s, α) where γ(·, α) and
Γ(·, α) are the upper and lower incomplete gamma functions defined by

γ(s, α) :=
∫ α

0
ts−1e−tdt, and Γ(s, α) :=

∫ ∞
α

ts−1e−tdt.

Substituting this sum into (4.10), and replacing γ(·, α) with the power series expansion

γ(s, α) =
∞∑
n=0

(−1)n
n!

αs+n

(s+ n) ,

we obtain

φ(z) =
∞∑
n=0

(−α)n
n!

1
2πi

∫ k+i∞

k−i∞

1
(s+ n)e

[lnα−(µ+ln z)]s+σ2
2 s2ds

+ 1
2πi

∫ k+i∞

k−i∞
Γ(s, α)e−(µ+ln z)s+σ2

2 s2ds,
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where k > 0 (when necessary). The interchange of summation and integration in the first
term is justified by Fubini’s theorem and the fact that the integral can be bounded by a
Gaussian integral, independent of n. To complete the proof, we need to:

i) compute 1
2πi
∫ k+i∞
k−i∞

1
(s+n)e

[lnα−(µ+ln z)]s+σ2
2 s2ds, n ∈ N ∪ {0}, and

ii) bound
∣∣∣∣ 1
2πi
∫ k+i∞
k−i∞ Γ(s, α)e−(µ+ln z)s+σ2

2 s2ds
∣∣∣∣.

We compute the integral in i) using differentiation with respect to a parameter. Letting

Fn(w) = 1
2πi

∫ k+i∞

k−i∞

1
(s+ n)e

w(s+n)+σ2
2 s2ds,

we have
F ′n(w) = 1

2πi

∫ k+i∞

k−i∞
ew(s+n)+σ2

2 s2ds = 1√
2πσ

ewn−
w2
2σ2 ,

and so, for w ∈ R,

Fn(w) = Fn(−∞) +
∫ w

−∞
F ′n(y)dy = 0 + e

σ2
2 n2

√
2πσ

∫ w

−∞
e−

(y−σ2n)2

2σ2 dy = e
σ2
2 n2

2 erfc
(
−w + σ2n√

2σ

)
.

It can be shown that the interchange of integration and differentiation is justified, and
Fn(−∞) = 0 using the dominated convergence theorem. Since the complementary error
function is entire, the result extends to arguments in C by analytic continuation. Therefore

1
2πi

∫ k+i∞

k−i∞

1
(s+ n)e

[lnα−(µ+ln z)]s+σ2
2 s2ds = e−[lnα−(µ+ln z)]nFn (lnα− (µ+ ln z))

= α−nzneµn+σ2
2 n2 · 1

2 erfc
(
µ+ ln (z/α) + σ2n√

2σ

)

To bound the integral in ii), observe that the integrand is entire and we may choose any
k ∈ R for the vertical contour. Choosing k ≤ 1, we have |Γ(s, α)| ≤ e−α for s = k+ it, t ∈ R,
and so ∣∣∣∣∣ 1

2πi

∫ k+i∞

k−i∞
Γ(s, α)e−(µ+ln z)s+σ2

2 s2ds
∣∣∣∣∣ ≤ e−α

2π

∫ ∞
−∞

e−(µ+ln |z|)k+Arg (z)t+σ2
2 (k2−t2)dt

≤ 1√
2πσ

e
π2

2σ2 +σ2
2 k2−α−k(µ+ln |z|).

We set k = 0 to obtain the error term in (4.12) and we choose k to be negative to show
(4.13). ut
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The following theorem presents an approximation of φ that improves as the parameter σ
increases.

Theorem 9. Let X ∼ LN(µ, σ2), and M,N ∈ N. Then the Laplace transform of X has
expression

φ(z) =
N∑
n=0

(−z)n
n! eµn+σ2

2 n2 · 1
2 erfc

(
µ+ ln z + σ2n√

2σ

)

+
M∑
m=0

(−1)mam√
2πσm+1

e−
(µ+ln z)2

2σ2 Hm

(
−(µ+ ln z)

σ

)
+O(σ−M−2). (4.14)

The function erfc is the complimentary error function, Hm is the mth Hermite polynomial
defined by

Hm(x) := (−1)mex
2

2
dm

dxm e
−x

2
2 ,

and the coefficients am are defined by

am = Γ(m+1)(1)
(m+ 1)! + (−1)m+1 ·

N∑
j=1

(−1)j
j!

1
jm+1 .

Proof. Let N ∈ N. Recall that the function Γ has a simple pole at s = −n, n = 0, 1, 2, . . .,
with residue Res (Γ,−n) = (−1)n/n!. We may remove the first N + 1 poles of Γ by writing

Γ(s)−
N∑
n=0

(−1)n
n!

1
(s+ n)

to obtain a function, denoted γN , that is holomorphic on {s ∈ C : |s| < N + 1}. Thus, we
write

Γ(s) = γN(s) +
N∑
n=0

(−1)n
n!

1
(s+ n) ,

where, for |s| < N + 1, we may write

γN(s) =
∞∑
m=0

ams
m,

with am = γ
(m)
N (0)/m!. Note that as σ →∞, the mass of the integrand in the integral (4.10)

is increasingly supported on the set {k + it ∈ C : t ∈ (−N − 1, N + 1)}. Thus, we choose
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M ∈ N and write

φ(z) = 1
2πi

∫ k+i∞

k−i∞

(
γN(s) +

N∑
n=0

(−1)n
n!

1
(s+ n)

)
e−(µ+ln z)s+σ2

2 s2ds

=
N∑
n=0

(−1)n
n! · 1

2πi

∫ k+i∞

k−i∞

1
(s+ n)e

−(µ+ln z)s+σ2
2 s2ds

+
M∑
m=0

am ·
1

2πi

∫ +i∞

−i∞
sme−(µ+ln z)s+σ2

2 s2ds+RM(z), (4.15)

where,

RM(z) = 1
2πi

∫ +i∞

−i∞

(
γN(s)−

M∑
m=0

ams
m

)
e−(µ+ln z)s+σ2

2 s2ds.

To complete the proof we need to:

i) compute 1
2πi
∫ k+i∞
k−i∞

1
(s+n)e

−(µ+ln z)s+σ2
2 s2ds, n ∈ {0, 1, . . . , N},

ii) compute am, m ∈ {0, 1, . . . ,M},

iii) compute 1
2πi
∫ k+i∞
k−i∞ sme−(µ+ln z)s+σ2

2 s2ds, m ∈ {0, 1, . . . ,M}, and

iv) bound |RM(z)|

The integral in i) was computed in the proof of Theorem 3. To determine ii), we need to
compute γ(m)

N (0). Note that, for |s| < 1, we may write

Γ(s)− 1
s

=
∞∑
j=0

bjs
j,

where bj = Γ(j+1)(1)/(j + 1)!. So, for |s| < 1, we may write

γN(s) =
∞∑
j=0

bjs
j −

N∑
n=1

(−1)n
n!

1
(s+ n) .

Differentiating, we have

γ
(m)
N (s) =

∞∑
j=m

(j)mbjsj−m + (−1)m+1m!
N∑
n=1

(−1)n
n!

1
(s+ n)m+1

and
γ

(m)
N (0) = m!bm + (−1)(m+1)m!

N∑
n=1

(−1)n
n!

1
nm+1 .
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Therefore,

am = γ
(m)
N (0)
m! = bm + (−1)(m+1)

N∑
n=1

(−1)n
n!

1
nm+1 .

To compute iii), we let

G(w) = 1
2πi

∫ k+i∞

k−i∞
ews+

σ2
2 s2ds = 1√

2πσ
e−

w2
2σ2 .

Then
G(m)(w) = dm

dwm

(
1√
2πσ

e−
w2
2σ2

)
= 1√

2πσ
· (−1)
σm

m

e−
w2
2σ2Hm

(
w

σ

)
,

and therefore,
1

2πi

∫ k+i∞

k−i∞
sme−(µ+ln z)s+σ2

2 s2ds = G(m) (−(µ+ ln z))

= (−1)m√
2πσm+1

e−
(µ+ln z)2

2σ2 Hm

(
−(µ+ ln z)

σ

)
,

where, again, it can be shown that the interchange of integration and differentiation is justified.
Finally, to show iv), we note that∣∣∣∣∣γN(s)−

M∑
m=0

ams
m

∣∣∣∣∣ ≤ C|s|M+1, s ∈ iR,

for some C > 0. To see this, observe that, for |s| < N , we have∣∣∣∣∣γN(s)−
M∑
m=0

ams
m

∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

m=M+1
ams

m

∣∣∣∣∣∣ =
∣∣∣∣∣
∞∑
m=0

aM+1+ms
m

∣∣∣∣∣ · |s|M+1 ≤ C1|s|M+1.

We also have

|γN(s)| =
∣∣∣∣∣Γ(s)− 1

s
−

N∑
n=1

(−1)n
n!

1
(s+ n)

∣∣∣∣∣ ≤
∣∣∣∣Γ(s)− 1

s

∣∣∣∣+
∣∣∣∣∣
N∑
n=1

(−1)n
n!

1
(s+ n)

∣∣∣∣∣ ≤ C2, s ∈ iR,

so that, for |s| ≥ N , we have∣∣∣∣∣γN(s)−
M∑
m=0

ams
m

∣∣∣∣∣ ≤ |γN(s)|+
∣∣∣∣∣
M∑
m=0

ams
m

∣∣∣∣∣ ≤ C2 + C3|s|M ≤ C4|s|M+1.

Thus,

|RM(z)| ≤ C

2π

∫ ∞
−∞
|t|M+1eArg (z)t−σ

2
2 t2 dt = C

2π

∫ ∞
−∞

∣∣∣∣xσ
∣∣∣∣M+1

e
Arg (z)
σ

x−x
2

2
1
σ
dx ≤ C ′σ−M−2.

ut
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4.4.2 Numerical example

We can compute φ(z), z ∈ C \ (−∞, 0], via numerical integration using either of the relations
(4.7) or (4.10) given by Theorems 6 or 7, respectively. If we choose to use the former, then
we need to compute Φ(1, µ+ ln z;σ) as defined by (4.6). For simplicity, we will discuss the
computation of Φ(1, a+ ib;σ), for a, b ∈ R.

Making the substitution x 7→ ex we have

Φ(1, a+ ib;σ) = C(a+ ib, σ)
∫ ∞
−∞

exp
[
−ex − x2

2σ2 + (a+ ib)x
σ2

]
dx.

We can write this integral in the form∫ ∞
−∞

g(x)eitxdx, (4.16)

where
g(x) = exp

[
−ex − x2

2σ2 + ax

σ2

]
, and t = b

σ2 .

The integral (4.16) can be computed numerically using Filon’s quadrature method [29].
First, we determine an interval, [x0, x2N ], which supports most of the integrand’s mass and
create a mesh consisting of 2N + 1 points, xj, j = 0, . . . , 2N . The integral is then written as
a sum of N integrals over [x2j, x2j+2], j = 0, . . . , N − 1:

∫ ∞
−∞

g(x)eitxdx ≈
∫ x2N

x0
g(x)eitxdx =

N−1∑
j=0

∫ x2j+2

x2j
g(x)eitxdx.

On each subinterval [x2j, x2j+2], we approximate g(x) with a second order Lagrange
interpolating polynomial using the data points (x2j, g2j), (x2j+1, g2j+1), and (x2j+2, g2j+2),
where gj := g(xj). Thus, with g(x) ≈ c

(j)
0 + c

(j)
1 x+ c

(j)
2 x2 on [x2j, x2j+2], we have

∫ ∞
−∞

g(x)eitxdx ≈
N−1∑
j=0

∫ x2j+2

x2j

(
c

(j)
0 + c

(j)
1 x+ c

(j)
2 x2

)
eitxdx. (4.17)

The integrals on the right hand side of (4.17) can be computed explicitly. With
an appropriate interval of integration, [x0, x2N ], and N sufficiently large, an accurate
approximation of the integral (4.16) is obtained.

Theorem 8 was used to numerically compute φ(z) for several real values of z; Table 4.1
shows the results corresponding to σ = 0.0625, 0.25, 0.75, and 1 with µ = 0. In each case,
the expression in (4.12) was truncated to 41 terms and evaluated using α = 10. Table 4.2
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Table 4.1: The function φ computed using (4.12), truncated to 41 terms, with α = 10.

σ = 0.0625 σ = 0.25 σ = 0.75 σ = 1

z φ(z) φ(z) φ(z) φ(z)

0.5 0.60624 0.60196 0.57541 0.56171

1 0.36788 0.36804 0.37469 0.38176

1.5 0.22346 0.22825 0.26086 0.2807

2 0.13586 0.14342 0.18984 0.21631

3 0.050369 0.058656 0.10995 0.14025

5 0.0070017 0.011065 0.045898 0.072028

10 3.9289e-05 0.00028124 0.0096044 0.022991

displays the absolute difference (labeled AD) between φ(z) computed using (4.12) and the
value of φ(z) computed by way of numerical integration.

Theorem 9 was used to numerically compute φ(z) for several real values of z; Table 4.3
shows the results corresponding to σ = 1, 1.5, 2, and 2.5 with µ = 0. In each case, (4.14)
was used with N = 5, and M = 10. Table 4.4 displays the absolute difference (labeled AD)
between φ(z) computed using (4.14) and the value of φ(z) computed by way of numerical
integration.
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Table 4.2: absolute difference between φ(z) computed using (4.12) and φ(z) computed using
numerical integration.

σ = 0.0625 σ = 0.25 σ = 0.75 σ = 1

z AD AD AD AD

0.5 6.572520e-14 6.661338e-14 5.155796e-10 1.478849e-08

1 1.110223e-16 4.013456e-14 1.456569e-08 9.738506e-08

1.5 4.440892e-16 2.525757e-14 6.936278e-08 2.349823e-07

2 2.775558e-17 1.468270e-14 1.760354e-07 3.975210e-07

3 1.942890e-16 2.212219e-11 5.105122e-07 7.251790e-07

5 1.756408e-15 6.980607e-08 1.292328e-06 1.225385e-06

10 1.450124e-05 6.055084e-06 2.185399e-06 1.648996e-06
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Table 4.3: The function φ computed using (4.14) with N = 5, and M = 10.

σ = 1 σ = 1.5 σ = 2 σ = 2.5

z φ(z) φ(z) φ(z) φ(z)

0.5 0.56169 0.54186 0.53012 0.523

1 0.38175 0.39772 0.41216 0.42396

1.5 0.28073 0.31674 0.34538 0.36751

2 0.21634 0.26336 0.30039 0.32893

3 0.14024 0.19613 0.24163 0.27744

5 0.072008 0.12725 0.17708 0.21855

10 0.023002 0.062944 0.10844 0.15117
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Table 4.4: absolute difference between φ(z) computed using (4.14) and φ(z) computed using
numerical integration.

σ = 1 σ = 1.5 σ = 2 σ = 2.5

z AD AD AD AD

0.5 3.503349e-05 6.444704e-07 2.668369e-08 3.269640e-09

1 1.716174e-05 3.009667e-08 1.325727e-09 9.603728e-10

1.5 1.196279e-04 8.780255e-07 2.567335e-08 1.195540e-09

2 1.371616e-04 1.352950e-06 4.380613e-08 2.832041e-09

3 6.300887e-05 1.180623e-06 5.771800e-08 4.875454e-09

5 2.828704e-04 7.533040e-07 4.059893e-08 6.225437e-09

10 4.467548e-04 3.262143e-06 4.479331e-08 4.615517e-09
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4.5 The density of a sum of independent log-normal
random variables

We have introduced two integral expressions which analytically continue the Laplace transform
of X ∼ LN(µ, σ2) to C \ (−∞, 0]. We have also provided series approximations which may be
used for numerical computations. In the last section of this paper, we consider an application
which utilizes the analytic continuation of the Laplace transform of X.

In this section we discuss a method to numerically compute the density of a sum of
independent log-normal random variables. In this procedure, we obtain the density function
by inverting the Laplace transform of the sum. Using the analytic continuation of the Laplace
transform, we may deform the contour of the Bromwich integral into a Hankel contour and
obtain an integral for which the integrand decays exponentially.

Proposition 1. Let Xj ∼ LN(µj, σ2
j ), j = 1, . . . , n, be independent and X = ∑n

j=1 Xj. Then
X has density

fX(x) = − 1
π

∫ ∞
0

Im [φ(−t+ i · 0)]e−txdt, x > 0. (4.18)

Here φ and fX denote the Laplace transform and probability density function of X, respectively,
and φ(−t+ i · 0) = limε→0+ φ(−t+ iε).

We will use the following lemma in the proof of Proposition 1

Lemma 1. Let φj denote the Laplace transform of Xj ∼ LN(µj, σ2
j ). For every k > 0,

φj(z) = Ok(|z|−k) as |z| → ∞, z ∈ C \ (−∞, 0]. Consequently, for every k > 0, φ(z) =
Ok(|z|−k) as |z| → ∞, z ∈ C \ (−∞, 0].

Proof of Lemma 1. Let k > 0 and z ∈ C \ (−∞, 0]. By Theorem 7, we have

φj(z) = 1
2π

∫ ∞
−∞

z−(k+it)Γ(k + it)e−µj(k+it)+
σ2
j

2 (k+it)2dt,

and thus,

|φj(z)| ≤ 1
2π

∫ ∞
−∞
|z|−keπ|t|Γ(k)e−µjk+

σ2
j

2 (k2−t2)dt = Mk,j|z|−k.

To prove the second part of the lemma, let k > 0 and take r = k/n. Then, by the
independence of the Xj’s and the first part of the lemma,

|φ(z)| =
n∏
j=1
|φj(z)| ≤

n∏
j=1

Mr,j|z|−r = Mk|z|−k
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where, Mk = ∏n
j=1Mr,j. ut

Proof of Proposition 5. The density function of X, obtained by the inverse Laplace transform,
is given by the Bromwich integral

fX(x) = 1
2πi

∫ c+i∞

c−i∞
φ(z)ezxdz, (4.19)

for any c > 0. Using the analytic continuation of φ, the integrand of (4.19) is analytic on
C\ (−∞, 0] and we can deform the contour to the contour ΓR = γ

(−)
1 +γ

(−)
2 +HR+γ

(+)
2 +γ

(+)
1 ,

shown in Figure 4.1, for any R > 0. The density function is now given by

fX(x) = 1
2πi

∫
ΓR
φ(z)ezxdz. (4.20)

We will show that the contributions of the contours γ(+)
1 and γ(+)

2 go to zero as R→ 0.
Similarly, the contributions of γ(−)

1 and γ(−)
2 go to zero and as a result ΓR → H , as R→∞,

where H is the Hankel contour in Figure 4.2. We first consider the contour γ(+)
1 parametrized
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by z(t) = c+ it, t ∈ [R,∞). For every x > 0, we have∣∣∣∣∣ 1
2πi

∫
γ

(+)
1

φ(z)ezxdz
∣∣∣∣∣ ≤ 1

2π

∫ ∞
R

∣∣∣φ(c+ it)e(c+it)x
∣∣∣ dt

≤ 1
2πe

cxM2

∫ ∞
R
|c+ it|−2dt

= 1
2πe

cxM2

∫ ∞
R

1
c2 + t2

dt −→ 0, as R→∞,

where we have used Lemma 1 with k = 2. Next we consider the contour −γ(+)
2 parametrized

by z(t) = c+Reit, t ∈ [π2 , π − θR], where θR → 0 as R→∞. Since

|z(t)| =
∣∣∣c+Reit

∣∣∣ ≥ R− c =
(

1− c

R

)
R,

there exists R′ > 0 such that |z(t)| ≥ 1
2R when R > R′. So for every x > 0, and R > R′, we

have ∣∣∣∣∣ 1
2πi

∫
γ

(+)
2

ϕ(z)ezx dz

∣∣∣∣∣ ≤ max
z∈−γ(+)

2

{
|ϕ(z)|eRe (z)x

}
· π2R

≤ max
t∈[π2 ,π−θR]

{
Mk|z(t)|−ke(c+R cos t)x

}
· π2R

≤Mk

(1
2R

)−k
e(c+R cos (π2 ))x · π2R

= π2k−1Mke
cxR−k+1 −→ 0, as R→∞,

when we use Lemma 1 with any k > 1. Thus, taking R→∞, we have

fX(x) = 1
2πi

∫
H
φ(z)ezxdz. (4.21)

The contour H is defined ∀δ > 0 and ∀ε ∈ (0, δ) and it is clear that θε → 0 as ε → 0.
Rewriting (4.21) as

fX(x) = 1
2πi

{(∫
h1

+
∫
h2

+
∫
h3

)
φ(z)ezxdz

}
,

where, ∫
h1
φ(z)ezxdz =

∫ ∞
δ cos θε

φ(−t− iε)e(−t−iε)xdt,∫
h2
φ(z)ezxdz = iδ

∫ π−θε

−π+θε
φ(δeit)eδeitx+itdt, and∫

h3
φ(z)ezxdz = −

∫ ∞
δ cos θε

ϕ(−t+ iε)e(−t+iε)xdt,

44



Re (z)

Im (z)

0
Hε θε

δ

Figure 4.2: The Hankel contour H

and using the fact that φ(z) = φ(z), we have

fX(x) = 1
2πi

iδ
∫ π−θε

−π+θε
φ(δeit)eδeitx+itdt− 2i Im

[∫ ∞
δ cos θε

φ(−t+ iε)e(−t+iε)xdt
]

−→ − 1
π

Im
[∫ ∞

0
φ(−t+ i · 0)e−txdt

]
, as ε, δ → 0

= − 1
π

∫ ∞
0

Im [φ(−t+ i · 0)]e−txdt.

The interchange of the limit and integration can be justified by dominated convergence. ut

To utilize Proposition 1, one must first compute φj(−t+ i · 0), j = 1, . . . , n. This can be
performed using the methods from Section 4.4, or any alternative method (for example, see
[16]). Since the random variables, Xj, j = 1, . . . , n, are independent we have

φ(−t+ i · 0) =
n∏
j=1

φj(−t+ i · 0).

We can compute the integral in (4.18) in a similar fashion to the numerical integration method
of Section 4.4.2.

To illustrate the method, we computed the Laplace transform of X ∼ LN(0, 1) using the
Theorem 8 and used the inversion formula of Proposition 1 to obtain the density. Figure 4.3a
shows a plot with both the closed form of fX and our approximation. Figure 4.3b shows the
relative error of the approximation.
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Figure 4.3: Approximating the density of X ∼ LN(0, 1)

4.6 Conclusion

We have presented two derivations of the analytic continuation of the Laplace transform of
the log-normal distribution, which we denote by φ. Since the Mellin transform of φ has closed
form, we used the Mellin inversion formula to express φ in the form of a Mellin-Barnes integral.
As a consequence, we obtained the corresponding expression for the characteristic function of
the log-normal distribution. This expression is slightly different from the expression derived
by Leipnik in [45]; we claim his expression is incorrect.

Using the Mellin-Barnes expression for φ, we obtained two approximations which may
be used in numerical computations. The error of the first approximation (see Theorem 8)
can be made arbitrarily small and the approximation is asymptotic to φ as the magnitude
of the argument goes to zero. The second approximation (see Theorem 9) improves as the
parameter σ goes to infinity. Both approximations were shown to provide accurate results,
however, we note that computation can be difficult if too many terms of the series employed.

In the last section, we showed how one may use the analytic continuation of the Laplace
transform of a sum of independent log-normals to compute the density, via Laplace inversion.
By deforming the vertical contour of the Bromwich integral to a Hankel contour, one may
obtain a real integral for which the integrand decays exponentially. The result is an integral
that can be computed numerically with ease.

The analytic continuation of the Laplace transform of the log-normal distribution has other
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applications. In 1977, Olof Thorin showed that the log-normal distribution is a Generalized
Gamma Convolution (GGC) (see [61]). A GGC is a probability distribution F on [0,∞) with
moment-generating function (mgf) of the form

M(s) = exp
[
as+

∫ ∞
0

ln
(

t

t− s

)
U(dt)

]
, s ≤ 0 (or s ∈ C \ (0,∞)),

where a ≥ 0 and U(dt) is a nonnegative measure, called the Thorin measure, on (0,∞)
satisfying ∫

(0,1]
| ln t|U(dt) <∞, and

∫
(1,∞)

t−1U(dt) <∞,

([15], pg. 29). As Bondesson discusses in [15] and [16], one may compute the density of the
Thorin measure using the analytic continuation of the Laplace transform of the log-normal
distribution. The density, denoted here by U, can be computed using the formula

U(t) = 1
π
Im

[
φ′(−t+ i · 0)
φ(−t+ i · 0)

]
,

where φ(−t+ i · 0) = limε→0+ φ(−t+ iε) (equivalently, as in Bondesson’s derivation, one may
approach the negative real line from below and multiply the result by -1).
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Chapter 5

Risk aggregation: A general approach
via the class of Generalized Gamma
Convolutions

Risk aggregation is virtually everywhere in insurance applications. Indeed, in the vast majority
of situations insurers are interested in the properties of the sums of the risks they are exposed
to, rather than in the stand-alone risks per se. Unfortunately, the problem of formulating the
probability distributions of the aforementioned sums is rather involved, and as a rule does not
have an explicit solution. As a result, numerous methods to approximate the distributions of
the sums have been proposed, with the moment matching approximations (MMAs) being
arguably the most popular. The arsenal of existing MMAs is quite impressive and contains
such very simple methods as the normal and shifted-gamma approximations that, respectively,
match the first two and three moments, only, as well as such much more intricate methods
as the one based on the mixed Erlang distributions [H.Cossette, D. Landriault, E. Marceau,
and K. Moutanabbir (2016). Moment-based approximation with mixed Erlang distributions.
Variance 10(1), 166 – 182]. Note however that in practice the sums of insurance risks can
have numerous and just a few summands; in the latter case the normal approximation is very
questionable. Also, in practice the distributions of the stand alone risks can be light-tailed or
heavy-tailed; in the latter case moments of higher orders (e.g., ≥ 2) may not exist, and so
the approximation based on mixed Erlang distributions is of limited usefulness.

In this chapter we put forward a refined MMA method for approximating the distributions
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of the sums of insurance risks. Our method approximates the distributions of interest to any
desired precision, works equally well for light and heavy-tailed distributions, and is reasonably
fast irrespective of the number of the involved summands.

5.1 Introduction

Risk aggregation is of fundamental importance for insurance. This is because risk aggregation
is in fact a precursor of risk pooling, a principle that is seen by some as the insurance’s
reason d’etre. To see how crucial risk aggregation is for risk pooling, consider a group of
n ∈ N individuals (also, business lines, risk components in a portfolio of risks, etc), where
each one of i ∈ {1, . . . , n} faces a risk represented by the random variable (RV) Xi, then
a sharing rule Y (X1, . . . , Xn) is called risk pooling if it is a function of the aggregate risk
X1 + · · ·+Xn, only, that is Y (X1, . . . , Xn) = Y (X1 + · · ·+Xn) [e.g., 1, for details]. Hence,
it is clear that to reap the benefits of risk pooling, insurers must study and understand risk
aggregation thoroughly. From now and on, X1, . . . , Xn stand for insurance risk RVs, and
X1 + · · ·+Xn := Sn denotes the associated aggregate risk.

Specific examples of risk aggregation are naturally abundant in all areas of insurance
business. For classical applications, one has to go no further than the renowned individual
[e.g., 24] and collective [e.g., 32] risk models. Specifically, in the case of the individual risk
models (IRMs), for a fixed n as hitherto and independent but not identically distributed
risk RVs X1, . . . , Xn, the aggregate risk is as before denoted by Sn. Also, in the case of the
collective risk models (CRMs), the number of risks, denoted by N , is assumed random and
independent of identically distributed and mutually independent (IID) RVs X1, . . . , XN ; the
aggregate risk is then denoted by SN := X1 + · · ·+XN .

In order to comprehend the implications of risk aggregation, and merely comply with
the norms of the risk informed decision making, insurers are concerned with the stochastic
properties of the RVs Sn and SN , that is with the corresponding cumulative distribution
functions (CDFs). Whether the IRM or CRM are considered, it is often tempting to
approximate these CDFs with the use of the Lindeberg – Lévy central limit theorem (CLT).
To this end, arguments like: (i) the number of risks is large, (ii) the risks are not too
heterogeneous, and (iii) the distributions of the risk RVs are not too skewed are quite common.
Unfortunately, none of the above must be true in reality. Furthermore, statements (ii) and
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(iii) are often violated as insurance risk RVs due to distinct risk sources can be very unalike,
and, as a rule, positively skewed. Another problem with the aforementioned variant of the
CLT is that there are situations (not rare) where the risk RVs of interest have infinite second
moments [e.g., 53, and references therein]. We refer to Brockett [18] and references therein
for some interesting examples of how the CLT is misused in insurance applications.

The standard CLT-based approximation of the aggregate risk’s CDF, a.k.a. the normal
approximation (NA), can be considered a moment matching approximation (MMA) that
hinges on the first two moments only. A generalization of NA that incorporates skewness is
the so-called normal-power (NP) approximation [e.g., 51]. An alternative approach to count
for skewness that is of great popularity among practising actuaries is the shifted-gamma
approximation (SGA), which aims to match the first three moments [34]. Clearly, the choice
of how many moments to match is somewhat ad-hoc. Thus more general approximations
that aim at matching an arbitrary number of moments have been proposed [e.g., 22, for a
recent reference].

Admittedly, MMAs, both the ones mentioned above and others alike, are convenient and
intuitive to convey to upper management, yet, rather problematic. For instance, even the two
moments-based NA method requires finite second moments, and it is inapplicable otherwise.
The approach of Cossette et al. [22] achieves better accuracy at the price of requiring the
finiteness of higher order moments. In addition, in the latter case, the method is often rather
computationally intensive.

In this paper, we put forward a new efficient method to approximate the CDFs of the
aggregate risk RVs Sn and SN . Our approach approximates the CDFs of interest to any
desired precision, works equally well for light and heavy-tailed CDFs, and is reasonably fast
irrespective of the number of summands. We organize the rest of this paper as follows: Section
5.2 provides a high-level overview of our approach, and Sections 5.3, 5.4, and 5.5 explain in
detail its three main pillars, which are, respectively, the class of Padé approximations, the
family of Generalized Gamma Convolutions, and the Gaver-Stehfest algorithm. The theory
we propose is then elucidated by a variety of practical examples borrowed from Bahnemann
[8]. More specifically, in Section 5.6 we demonstrate the effectiveness of the new MMA in the
context of stand-alone risk RVs first, and then in the context of aggregate risk RVs with and
without policy modifications.
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5.2 Brief description of the method

In order to outline the essence of our proposed technique in the simplest possible manner, in
this section we consider the framework of the IRM, however the ideas are equally applicable
in the context of the CRM (Section 5.6 of this paper). Let X1, . . . , Xn be positive and
mutually independent RVs with arbitrary corresponding CDFs F1, . . . , Fn. Also denote by
φi(z) := E[exp(−zXi)] the Laplace transform (LT) of the RV Xi, i = 1, . . . , n. Our goal is
to approximate the CDF F of the aggregate RV S = X1 + · · ·+Xn.

Let φ(z) := E[exp(−zS)] (also, L(z)) denote the LT of the aggregate risk RV S, then we
readily have

φ(z) =
n∏
i=1

φi(z) (5.1)

and
F (x) = L−1

{
φ(z)
z

}
(x), x ≥ 0. (5.2)

Hence, by combining (5.1) and (5.2), we are able to obtain the desired approximation of the
CDF F given that there exist reliable methods to: (i) approximate each LT φi(z), and (ii)
invert LTs. Next in Sections 5.3 - 5.5, we demonstrate that (i) and (ii) can be achieved very
successfully. Namely, in Section 5.3, we approximate the Laplace transform φi with the help
of the Laplace transform of certain gamma convolutions, and we utilize the machinery of
Padé approximations to determine the involved shape and rate parameters. In Section 5.4, we
reintroduce the family of Generalized Gamma Convolutions, and, finally, in Section 5.5, we
briefly explain the Gaver-Stehfest method to invert Laplace transforms. The proposed MMA
may at the first glance seem complex, however, when implemented, it is utterly user-friendly
and requires minimal human involvement.

5.3 Padé approximations

To start off, we note that (5.1) requires to approximate the LT of the RV Xi (the CDF
of the RV Xi is then established via (5.2)). We accomplish this with the help of m-fold
convolutions of Gamma-distributed RVs, succinctly Γi ∼ Gamma(αi, βi), i = 1, . . . ,m. In
other words, we seek to choose the parameters {αi}1≤i≤m and {βi}1≤i≤m, so that the CDF
of the approximant of order m RV X̃i,(m) := ∑m

i=1 Γi is close in an appropriate sense to the
CDF of the RV Xi i = 1, . . . , n. In the rest of the paper, we omit the subscript (m) whenever
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the order of the approximation is fixed. Also, for the sake of the expositional simplicity of
the discussion in the present section, and sometimes thereafter, we omit the subscript i and
write X instead of Xi, and φ instead of φi.

In terms of LTs, we seek to choose the parameters {αi}1≤i≤m and {βi}1≤i≤m, so that the
approximant LT

φ̃(z) := E
[
exp

(
−z

m∑
i=1

Γi
)]

=
m∏
i=1

(1 + z/βi)−αi

is close to the function φ(z) = E[exp(−zX)]. Our method is essentially an MMA. Note that
the moments of X can be computed as E[Xk] = (−1)nφ(k)(0), thus matching the first m
moments of X̃ and X is equivalent to matching the derivatives (of order k = 1, 2, . . . ,m) of
φ̃ and φ at z = 0. However, our approach allows for a number of important improvements.

Note 1. A significant innovation of our method is that we match the derivatives of φ̃ and
φ not at z = 0 but at some point z = z∗ > 0. This is crucial if we want our technique to
be applicable to risk RVs with heavy tails, for which the moments (and thus the derivatives
φ(k)(0)) may fail to exist. If the risk RV X has exponentially light tails, we may as well
choose z∗ = 0, but in general z∗ must be strictly positive.

Note 2. Another distinguishing feature of our approach is that φ̃ converges to φ uniformly
and exponentially fast, and in particular the approximant RV X̃ converges in distribution to
the RV X.

Note 3. Our method requires 2m parameters (unique up to permutation) to match the first
2m moments of the RVs X̃ and X. As at least 2m parameters are required to complete this
task, the method we put forward herein is optimal in this sense.

5.3.1 Approximation of order two

In order to explain the main ideas behind our algorithm, let us consider a simple case where
m = 2 and z∗ = 1. In this case the problem reduces to the following one: we want to find four
positive numbers α1, α2, β1 and β2 such that the derivatives of the LT φ at z = 1 coincide
with derivatives of the approximant LT

φ̃(2)(z) = (1 + z/β1)−α1(1 + z/β2)−α2
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also at point z = 1. In order to compute the four constants α1, α2, β1 and β2 we need to
have at least four equations, so now we need to solve the following system

dk

dzk (1 + z/β1)−α1(1 + z/β2)−α2

∣∣∣∣
z=1

= φ(k)(1), k ∈ {1, 2, 3, 4}. (5.3)

If we were to compute the derivatives in the left-hand side of (5.3) and then to simplify the
resulting equations, we would have obtained a fairly complicated system of four nonlinear
equations in α1, α2, β1 and β2. However, analysing these equations theoretically would not
be feasible due to their complexity and even solving them numerically would be a major
problem.

In order to avoid the complexity, we take logarithms before differentiating. Thus, instead
of matching the derivatives φ(k) and φ̃

(k)
(2) for k = 1, 2, 3, 4, we match the derivatives of

ln(φ(z)) and ln(φ̃(2)(z)) of order k = 1, 2, 3, 4. The end result is clearly the same, but
computing α1, α2, β1 and β2 is much simpler, as we demonstrate in a moment. With this
change, the system of four equations for finding α1, α2, β1 and β2 looks as follows:

dk

dzk ln
[
(1 + z/β1)−α1(1 + z/β2)−α2

]∣∣∣∣
z=1

= dk

dzk ln[φ(z)]
∣∣∣∣
z=1

, k ∈ {1, 2, 3, 4}. (5.4)

Let us denote sk := −(1/k!) dk+1

dzk+1 ln[φ(z)]
∣∣∣∣
z=1

. As we see later, it is easy to compute sk
numerically in each case of interest, thus for now we treat these numbers as known quantities.
Computing the derivatives in the left-hand side of (5.4), we obtain a system of four equations

α1

(1 + β1)k + α2

(1 + β2)k + α2

(1 + β2)k + α2

(1 + β2)k = (−1)ksk−1, k ∈ {1, 2, 3, 4}. (5.5)

At this stage, that is in order to solve the nonlinear equations in (5.5) and find α1, α2, β1

and β2, we employ the toolbox of Padé approximations.
Namely, we introduce yet another function ψ(z) := −φ′(z)/φ(z). Then system (5.4) is

equivalent to
dk

dzk
[

α1

z + β1
+ α2

z + β2

]∣∣∣∣
z=1

= ψ(k)(1), k ∈ {0, 1, 2, 3}. (5.6)

Note that we can write
α1

z + β1
+ α2

z + β2
= A+B(z − 1)

1 + C(z − 1) +D(z − 1)2 (5.7)

for some constants A, B, C and D. Now we can express system of four equations (5.6) in an
equivalent way by saying that the first four terms of the Maclaurin expansion of the rational
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function
P (w)
Q(w) := A+Bw

1 + Cw +Dw2

must match the corresponding terms of the Maclaurin expansion

ψ(1 + w) = s0 + s1w + s2w
2 + s3w

3 + . . . ,

in other words we have a single equation

A+Bw

1 + Cw +Dw2 = s0 + s1w + s2w
2 + s3w

3 +O(w4), w → 0, (5.8)

(note that we have introduced here a new variable w := z − 1). Equation (5.8) tells us that
the rational function P (w)/Q(w) is a [1/2] Padé approximation to the function ψ(1 + w). In
general, a [p/q] Padé approximation to a function f is a rational function P (w)/Q(w) (with
deg(P ) = p and deg(Q) = q) that has the same first p+ q + 1 terms in Maclaurin expansion
as the function f(w).

It turns out that single equation (5.8) contains all the information necessary for finding the
constants A, B, C andD. By multiplying both sides of equation (5.8) byQ(w) = 1+Cw+Dw2

we obtain

A+Bw = (1 + Cw +Dw2)(s0 + s1w + s2w
2 + s3w

3 +O(w4)), w → 0. (5.9)

Identifying the coefficients in front of powers of w in both sides of the above equation we
obtain a system of four linear (!) equations

A = s0,

B = Cs0 + s1,

0 = Ds0 + Cs1 + s2,

0 = Ds1 + Cs2 + s3.

(5.10)

Note that this system of four linear equations can be solved very easily by first finding C and
D from the third and fourth equations, and then substituting these results into the first and
second equations would give us the values of A and B.

Now that we have found A, B, C, and D, and so we can compute β1 and β2 by noting
that

(1 + β1 + w)(1 + β2 + w) = 1 + Cw +Dw2,
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and then the constants α1 and α2 can be found by the formula αi = P ′(−1−βi). Remarkably,
all we have done so far is the partial fraction decomposition for the rational function
P (w)/Q(w) as in (5.7). This process, which can be done by hand, has provided us with the
desired constants α1, α2, β1 and β2, and so with the approximant LT φ̃(2).

5.3.2 Extension to the approximation of any order

To generalize the method described in the previous subsection to arbitrary orders m and
arbitrary choice z∗, we follow the same steps and arrive at the problem of finding [m− 1/m]
Padé approximant to the function ψ(z∗ + w), that is, instead of (5.7) and (5.8) we have

m∑
i=1

αi
z∗ + βi + w

= a0 + a1w + · · ·+ am−1w
m−1

1 + b1w + b2w2 + · · ·+ bmwm
(5.11)

= s0 + s1w + s2w
2 + · · ·+ s2m−1w

2m−1 +O(w2m),

where sk := (1/k!)ψ(k)(z∗). This allows us to find the coefficients bi, ai by solving a system of
linear equations similar to (5.10) and then to obtain the required numbers {αi}1≤i≤m and
{βi}1≤i≤m by doing the partial fraction decomposition in (5.11).

The main input for this algorithm is the sequence of coefficients sk = (1/k!)ψ(k)(z∗).
These coefficients are typically not available in closed form, but they can be easily computed
numerically. Indeed, we first compute the numbers

gk := φ(k)(z∗) = (−1)k
∫ ∞

0
xke−z

∗xdF (x), k ≥ 0, (5.12)

to a high precision by a numerical quadrature (the double-exponential quadrature of [56] is
particularly well-suited for such calculations). Next we observe that

d

dz
φ(z) = −ψ(z)φ(z). (5.13)

Rewriting this identity in terms of Taylor series centred at z∗ gives us
∑
k≥0

gk+1(z − z∗)k/k! = −
∑
n≥0

sn(z − z∗)n
×

∑
k≥0

gk(z − z∗)k/k!
 .

Comparing the constant term in the Taylor series in the left-hand side and the right-hand
side of the above equation we find that s0 = −g1/g0, and comparing the coefficients in front
of (z − z∗)k gives us

sk = − 1
g0

(
gk+1

k! +
k−1∑
i=0

si
gk−i

(k − i)!

)
, (5.14)

which allows to compute sk recursively for all k ≥ 1.
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5.3.3 A simple numerical example and a question arising from it

To illustrate our method on a numerical example of actuarial interest, let us assume that X
is distributed Weibull with the probability density function (PDF)

f(x) = (3/4)x−1/4 exp(−x3/4), x ≥ 0.

Weibull distribution has been frequently chosen to model insurance risks [47, 39, for general
discussions].

We fix m = 2 and z∗ = 1; by computing numerically the integral in (5.12) we calculate

g0 ≈ 0.5193711 g1 ≈ −0.2123717, , g2 ≈ 0.2179689, g3 ≈ −0.3665409, g4 ≈ 0.8649004.

Then we use (5.14) to find

s1 ≈ 0.4089017, s2 ≈ −0.0868391, s3 ≈ 0.0630061, s4 ≈ −0.0478247

and solving system of linear equations (5.10) we obtain

A ≈ 0.4089017, B ≈ −0.2292057, C ≈ 0.7729116, D ≈ 0.0100583.

The polynomial Q(w) = 1 +Cw+Dw2 has two roots ≈ −75.526356 and ≈ −1.3163588, thus
we find β1 ≈ 74.526356 and β2 ≈ 0.3163588. Using the formula αi = P ′(−1 − βi) we find
α1 ≈ 22.6439903 and α2 ≈ 0.1435963. Thus we have found an approximation to the Weibull
distribution of interest. Namely, we have approximated X with the help of X̃(2), such that
the latter RV is equal in distribution to Γ1 + Γ2, with Γi ∼ Gamma(αi, βi), i = 1, 2.

We conclude this section with an important observation, which paves the path to the
introduction of the class of GGCs latter on in the next section. Namely, let the RV X be
distributed Weibull with the following PDF (the shape parameter is now greater than one)

f(x) = (3/2)x1/2 exp(−x3/2), x ≥ 0.

For this set-up, we find that α1 ≈ −29.421049 and β1 ≈ −66.009893, which shows that
our algorithm does not always give a legitimate approximation in the form Γ1 + Γ2, with
Γi ∼ Gamma(αi, βi). This outcome is rather unfortunate, but similar inconveniences have
been encountered in the context of other MMAs [e.g. 22].

This raises an important question:
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Does there exist a (rich) class of CDFs for which the Padé approximations described above
always yield meaningful results?

In the next section we show that the answer to this question is in affirmative, and we also
discuss the convergence of our refined MMA method.

5.4 Generalized Gamma Convolutions

The class of Generalized Gamma Convolutions comprises distributions which are weak limits
of the RVs of the form ∑m

i=1 Γi, where Γi ∼ Gamma(αi, βi) and αi > 0, βi > 0, i = 1, . . . ,m.
It seems that GGCs were first used by Thorin in 1977, who employed their properties to prove
that the log-normal distribution is infinitely divisible [e.g., 15, for an excellent discussion].

The most convenient way to describe the class of GGCs is via LTs. Note that for a RV∑m
i=1 Γi := X̃(m), which is our approximant from Section 5.3, we have

E[exp(−zX̃(m))] =
m∏
i=1

E[exp(−zΓi)] =
m∏
i=1

(1 + z/βi)−αi = exp
(
−
∫ ∞

0
ln(1 + z/t)U(dt)

)
,

where U(dt) is a discrete measure having support at points βi with mass U({βi}) = αi. Thus,
the following result is not surprising.

Proposition 1 ([61], see also [15]). The distribution on [0, ∞) of the r.v. X is a GGC if
and only if its Laplace transform is

φ(z) := E[exp(−zX)] = exp
(
− az −

∫ ∞
0

ln(1 + z/t)U(dt)
)
for Re(z) ≥ 0, (5.15)

where a ∈ [0, ∞) is a constant, and U(dt) is a positive Radon measure, also called Thorin
measure, which must satisfy ∫ ∞

0
min(| ln(t)|, 1/t)U(dt) <∞.

It turns out that the algorithm outlined in Section 5.3 always produces meaningful results
when the RV being approximated has a CDF that belongs to the class of GGCs. By meaningful
results we mean that the algorithm produces a set of positive numbers αi and βi that determine
the approximant X̃(m) := ∑m

i=1 Γi, where Γi ∼ Gamma(αi, βi). Moreover, it can be shown [30]
that, as m→ +∞, the LTs E[exp(−zX̃(m))] converge to the LT E[exp(−zX)] exponentially
fast and uniformly in z on compact subsets of C \ (−∞, 0]. One may wonder at this point
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whether the class of GGCs is rich enough. We note in this respect that it comprises, e.g.,
such important distributions for actuarial applications as gamma, inverse gamma, inverse
Gaussian, Pareto, log-normal, and Weibull with the shape parameter less than one, among a
great variety of other distributions.

To summarize the findings of Sections 5.3 and 5.4, we emphasize that our MMA (i)
converges very fast, (ii) always provides legitimate outcomes if the risk RV to be approximated
has a CDF in the class of GGCs ,(iii) yields unique parameters of the approximant CDF,
and (iv) is optimal in the sense that only 2m parameters are required to match the first 2m
moments.

We conclude this section with outlining the cause for the algorithm described in Section
5.3 to be so well-suited for the RVs having CDFs in the class of GGCs. This reason in fact
stems from the fact that the function ψ(z) = −d/dz ln(E[exp(−zX)]) is given by

ψ(z) =
∫ ∞

0

U(dt)
t+ z

, (5.16)

which can be easily obtained from (5.15). Functions of the form
∫∞
0 (t+ z)−1U(dt) are called

Stieltjes functions, and they have been shown to enjoy many nice analytical properties. In
particular, it has been proved that Padé approximations to such functions always exist and
converge exponentially fast and uniformly in z on compact subsets of C \ (−∞, 0] (see [9]).
Since the algorithm outlined in Section 5.3 is essentially a Padé approximation method, this
explains why RVs with CDFs in the class of GGCs fit perfectly within our approximation
scheme.

5.5 Gaver-Stehfest algorithm

At this point of the discussion, we have hopefully convinced the reader that there is a
mathematically sound way to approximate the risk RV X having a CDF in the class of
GGCs with the help of an approximant RV X̃. The solution, however attractive, involves
the corresponding LTs, that is φ̃ ≈ φ(z). However, our ultimate goal is to find the CDF of
the approximant RV X̃, denoted by F̃ . Thus, the remaining step is to rediscover this CDF
from the LT φ̃. Doing that is a classical problem in analysis, and a variety of solutions exist.
One popular method is to use Bromwich integral, which requires integration over a path in
the complex plane. Another method, and this is what we do in the present paper, is via the
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Gaver-Stehfest algorithm. The main difference between the Gaver-Stehfest algorithm and
the one based on the Bromwich integral, as well as most other Laplace inversion methods,
is that it uses only the values of the Laplace transform on the positive real line and does
not require any complex numbers. This method was invented in 1970 by Stehfest [54], by
improving upon the earlier method of Gaver, and since then it has been successfully used in
many areas of Applied Mathematics, including in Probability and Statistics [3, 40], Actuarial
Science [7] and Mathematical Finance [52].

The Gaver-Stehfest algorithm is very simple and easy to implement. To introduce it,
consider a function f and its Laplace transform

φ(z) :=
∞∫
0

e−zxf(x)dx,

where we assume that φ(z) is finite for all z > 0. For all integers m ≥ 1 we define

fm(x) := ln(2)x−1
2m∑
k=1

ak(n)φ
(
k ln(2)x−1

)
, x > 0, (5.17)

where the coefficients are defined as follows:

ak(m) := (−1)m+k

m!

min(k,m)∑
j=[(k+1)/2]

jm+1
(
n

j

)(
2j
j

)(
j

k − j

)
, m ≥ 1, 1 ≤ k ≤ 2m.

It is known [41] that the approximations fm(x) converge to f(x) if f is continuous at x and
of bounded variation in a neighbourhood of x. There is also a lot of numerical evidence that
the approximations fm(x) converge to f(x) very fast, provided that f is smooth enough at
x [e.g., 3, 23]; in Chapter 6 we provide a rigorous proof of this assertion. When using the
Gaver-Stehfest algorithm one should be careful with the loss of significant digits in the sum
(6.2). This is due to the fact that the coefficients ak(m) are very large (for large k and m) and
of alternating signs. This problem is readily solved by using any high-precision arithmetic
package.

5.6 Illustrative examples with log-normal, Pareto and
Weibul risks of varying tail thickness

In this section, we demonstrate the usefulness of our new MMA method by applying it to a
number of examples of actuarial interest. More specifically, motivated by numerical examples
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in Bahnemann [8], we consider applications to risks that are distributed log-normally, Pareto
of the second kind, a.k.a., Lomax, and Weibull. These distributions have been routinely
chosen to model insurance risks [e.g., 38, 47, 39, for a general discussion].

In what follows, we denote the CDFs of the log-normal, Lomax, and Weibull distributions,
by, respectively, FL, FP , and FW . All these CDFs have explicit forms given by

FL(x;µ, σ) = 1
2

[
1 + erf

(
ln x− µ
σ
√

2

)]
, x > 0, µ ∈ R, σ > 0, (5.18)

FP (x;α, β) = 1−
(

β

x+ β

)α
, x ≥ 0, α > 0, β > 0, (5.19)

FW (x; β, δ) = 1− e−(x/β)δ , x ≥ 0, β > 0, δ > 0. (5.20)

In the above, σ, α and δ are shape parameters that determine the tail weight of the
corresponding distribution. Namely, in the case of the log-normal distribution, larger values
of σ imply heavier right tails, whereas in the case of the Lomax and Weibull distributions,
smaller values of α and δ, respectively, suggest heavier right tails. Interestingly, there has
been ample practical evidence that these are the parametrizations that correspond to the
heavier tails that are of particular interest in non-life insurance applications, yet in the
theoretical literature the light-tailed examples prevail [e.g., 22, 57, for recent references]. In
the rest of this section, we consider both heavy-tailed and light-tailed parametrizations of
the CDFs FL, FP , and FW . Our choices of parameters are inspired by Bahnemann [8].

5.6.1 Stand-alone risks

We begin by approximating CDFs (5.18),(5.19), and (5.20). Genuinely speaking, these
approximations are not the ultimate goal of this paper, and hence we remind the reader
that: (i) after we have the approximations for the just-mentioned CDFs of the stand-alone
risks RVs, the CDFs of the aggregate risk RVs are obtained with the help of equations (5.1)
and (5.2), (ii) in the context of the stand-alone risks, we are able to evaluate the accuracy
of an approximation by comparing the approximant CDF with the actual CDF, and thus
the discussion in this subsection can serve as an important evaluation of the various MMAs
tested here.

To explore the effectiveness of the distinct MMAs, we employ the Kolmogorov-Smirnov
(KS) metric to measuring how close the distribution of an approximation is to the desired
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distribution. The KS distance (dKS) of an approximant RV X̃ (with CDF F̃ ) to the RV X

(with CDF F ), denoted dKS(F̃ , F ), is given by

dKS(X̃,X) = sup
x≥0

∣∣∣F̃ (x)− F (x)
∣∣∣ .

This metric yields the worst distance and, thus, small values of dKS suggest the approximation
is good on the entire domain. However, on a different note, relatively large values of dKS do
not necessarily mean the approximation is worthless, as it can turn out very reasonable in
some regions of the CDFs domain.

In the examples below, we illustrate the effectiveness of our approximation by comparing
it with three simple MMAs: the normal approximation, the normal power approximation
(NPA), and the shifted gamma approximation (SGA), when applicable. These three MMAs
are referred to as ‘the most commonly cited in practice’ by Hardy [34]. In addition, we
compare our approximation with the mixed Erlang distribution (MED) approach of Cossette
et al. [22], when applicable. The MED method uses the first m moments of a risk RV to
determine a mixture of Erlang distributions for approximating this RVs CDF. We use the
results in Cossette et al. [22] for the log-normal distribution (µ = 0, σ = 0.5) and apply their
algorithm to our additional cases of interest (Pareto and Weibull), when applicable. (When
implementing the MED method, we only considered moment-matching of orders m = 3 and
m = 4, as with m ≥ 5 the method requires a large number of computations.)

In what follows, we denote the CDF of our approximant RV X̃(m) by F̃(m), we denote the
mixed Erlang CDF by F̃Wm,l

, and the CDFs of the NA, NPA, and SGA methods by F̃NA,
F̃NP , and F̃SG, respectively.

Example 1. To start off, let us consider log-normally distributed risk RVs. The log-normal
distribution has been found appropriate for modelling losses originating from a great variety
of non-life insurance risks [e.g., 47, 39]. More specifically, [38] mention applications in
property, fire, hurricane, and motor insurances, to name just a few [also, e.g., 25, 14, 50].
Furthermore the standard formula of the European Insurance and Occupational Pensions
Authority explicitly assumes the log-normality of insurers’ losses [28].

Table 5.1 provides the KS distances of several approximations for the parameter sets
(µ = 0, σ = 0.5), (µ = 1.5240, σ = 1.2018), and (µ = 5.9809, σ = 1.8). The choice of the
larger value of the σ parameters is motivated by Example 5.8 in Bahnemann [8], whereas the
choice of the smaller one is due to Cossette et al. [22] and Dufresne [26]. As the parameter
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σ gets larger, it becomes increasingly difficult to obtain a valid approximation with any of
the methods (this is perhaps the reason why in the examples manifesting in the academic
literature, smaller values of the σ parameter are very common). With σ = 1.2018 and σ = 1.8,
the MED method does not produce potential solutions using the parameters m = 4 and
l = 70, in the former case, and m = 3, or 4 and l = 70, in the latter case. As suggested in
Cossette et al. [22], this can be remedied by increasing the parameter l; however, increasing
this parameter too much results in the method being computationally infeasible.

Figure 5.1 provides the plots of the approximating CDFs in Table 5.1 as well as the
actual CDF FL (in blue). Figures 5.1 a), c), and e) depict our approximations (dark green
and light green, where light green corresponds to the better approximation) and the MED
approximation (in red, when applicable). Figures 5.1 b), d), and f) depict the simple moment-
matching methods: NA (orange), NPA (salmon), and SGA (black). Apparently, the NA and
NPA approximations are inadequate for the more skewed log-normal cases, that is for the
parametrizations (µ = 1.5240, σ = 1.2018) and (µ = 5.9809, σ = 1.8). This is not surprising,
as it is well-known that the NPA provides fairly accurate results for the skewness values not
exceeding one [e.g. 51], whereas the two aforementioned cases of the log-normal distribution
lead to the skewness values of 11.23 and 136.38, respectively. In the context of the SGA,
higher skewness values imply very small scale parameters, and these in turn result in a nearly
vertical rise in the corresponding CDF, thus aggravating the accuracy significantly.

Example 2. The next distribution we consider is Lomax. As in the case of the log-normal
distribution discussed earlier, there is ample of evidence that the Lomax distribution is an
adequate model to describing non-life insurance risks. We refer to Seal [53] for a list of
references, and in particular to Benckert and Sternberg [12], Andersson [5], and Ammeter [4]
for fire insurance losses, and Benktander [13] for automobile insurance losses.

Table 5.2 provides the KS distances for two parameter sets: (α = 2.7163, β = 16.8759),
and (α = 2, β = 3000) [e.g., Example 5.7 in 8]. Recall that the mth moment of the Pareto
distribution is finite only when m < α. Consequently, most of the existing MMAs are not
applicable for these examples; in the first case, only the NA method and MED method with
m = 2, are applicable. In contrast, our approximation is feasible in both cases and works
well.

Figure 5.2 compares the plots of the CDFs in Table 5.2 against the actual CDF FP (in
blue). Figures 5.2 a), and c) depict our approximations (dark green and light green, where
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Table 5.1: The KS distances, dKS(·, XL), of the approximations to risk RVs distributed
log-normally

Parameters F̃(5) F̃(10) F̃W5,70 F̃NA F̃NP F̃SG

µ = 0, σ = 0.5 9.029e−4 2.950e−6 1.131e−3 9.834e−2 7.165e−2 3.870e−2

Parameters F̃(3) F̃(16) F̃W3,70 F̃NA F̃NP F̃SG

µ = 1.5240, σ = 1.2018 6.070e−3 2.118e−6 3.400e−2 0.290e0 0.730e0 0.5919e0

Parameters F̃(3) F̃(36) F̃W3,70 F̃NA F̃NP F̃SG

µ = 5.9809, σ = 1.8 7.968e−3 1.113e−6 - 0.420e0 0.835e0 0.8015e0

light green corresponds to the better approximation) and the MED approximation (in red,
when applicable). Figure 5.2 b) depicts the normal approximation (orange).

Example 3. The final distribution we consider is Weibull, which is a GGC when δ < 1, and
these are the values of interest when modelling non-life insurance risks [8]. Very much like
the log-normal and Pareto distributions, the Weibull distribution has been commonly chosen
to model insurance data. We refer to Mikosch [47] and Klugman, Panjer, and Willmot [39]
for a general discussion, as well as to Hogg and Klugman [35] for an application to huricane
loss data.

Table 5.3 provides the KS distances for the parameters β = 220.653 and δ = 0.8 [e.g.,
Example 2.13 in 8].

Figure 5.3 compares the plots of the CDFs in Table 5.3 with the actual CDF FW (in
blue). Figure 5.3 a) depicts our approximations (dark green and light green, where light
green corresponds to the better approximation) and the MED approximation (red). Figure
5.3 b) depicts the simple moment-matching methods: NA (orange), NPA (salmon), and SGA
(black).

In summary, we note with satisfaction that the proposed refined MMA method has
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Table 5.2: The KS distances, dKS(·, XP ), of the approximations to risk RVs distributed Pareto

Parameters F̃(2) F̃(10) F̃W2,200 F̃NA F̃NP F̃SG

α = 2.7163, β = 16.8759 1.273e−2 4.320e−5 3.477e−2 0.302e0 - -

Parameters F̃(3) F̃(10) - F̃NA F̃NP F̃SG

α = 2, β = 3000 6.532e−2 9.525e−3 - - - -

Table 5.3: The KS distances, dKS(·, XW ), of the approximations to a risk RV distributed
Weibull

Parameters F̃(3) F̃(10) F̃W3,70 F̃NA F̃NP F̃SG

β = 220.653, δ = 0.8 3.297e−2 5.337e−4 2.075e−2 2.13e−1 3.45e−1 1.374e−1

Table 5.4: Computation times for the CDFs in Tables 5.1, 5.2, and 5.3.

Log-normal F̃(5) F̃(10)

µ = 0, σ = 0.5 19.256 39.120

Log-normal F̃(3) F̃(16)

µ = 1.5240, σ = 1.2018 14.068 71.052

Log-normal F̃(3) F̃(36)

µ = 5.9809, σ = 1.8 15.924 162.052

Pareto F̃(2) F̃(10)

α = 2.7163, β = 16.8759 8.876 43.856

Pareto F̃(3) F̃(10)

α = 2, β = 3000 13.308 40.912

Weibull F̃(3) F̃(10)

β = 220.653, δ = 0.8 12.528 39.852
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(a) The CDFs FL, F̃(5), F̃(10), and F̃W5,70 .
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(b) The CDFs FL, F̃NA, F̃NP , and F̃SG.
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(c) The CDFs FL, F̃(3), F̃(16), and F̃W3,70 .
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(d) The CDFs FL, F̃NA, F̃NP , and F̃SG.
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(e) The CDFs FL, F̃(3), and F̃(36).
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(f) The CDFs FL, F̃NA, F̃NP , and F̃SG.

Figure 5.1: The log-normal CDFs and the corresponding approximations as per Table 5.1.
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(a) The CDFs FP , F̃(2), F̃(10), and F̃W2,200 .
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(b) The CDFs FP , and F̃NA.
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(c) The CDFs FP , F̃(3), and F̃(16).

Figure 5.2: The Pareto CDFs and the corresponding approximations as per Table 5.2.
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(a) The CDFs FW , F̃(3), F̃(10), and F̃W3,70 .
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(b) The CDFs FW , F̃NA, F̃NP , and F̃SG.

Figure 5.3: The Weibull CDF and the corresponding approximations as per Table 5.3.
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performed exactly as expected in all of the three examples discussed above. That is, it
has outperformed all other MMAs in the cases when the latter are applicable (e.g., the
lighter-tailed log-normal CDFs with σ = 0.5, σ = 1.2018 and the Weibull CDF), and it has
provided a feasible and accurate alternative, otherwise (e.g., the heavier-tailed log-normal
CDF with σ = 1.8 and the Pareto CDFs).

We conclude this section by addressing a request of a referee to report the times required
to compute the CDFs in Tables 5.1, 5.2, and 5.3 using the MMA approach put forward herein.
These times are provided in Table 5.4. (All calculations were performed on a laptop computer
with 12 GB of memory and an Intel® CoreTM i5-5200U CPU.) The numbers represent the
time, in seconds, required to perform the Gaver Stehfest algorithm described in Section
5 with m = 25 and arithmetic precision to 300 digits and precomputed coefficients of the
approximant Laplace transforms. Remarkably, the computation speed can be significantly
enhanced (without dramatic drop in accuracy) by reducing the degree of precision and using
a smaller value for m. Specifically, we set m = 10 and the arithmetic precision to 100
digits. Then in, e.g., the log-normal case with µ = 5.9809 and σ = 1.8, F̃(3) and F̃(36) can
be computed in 0.948 and 9.396 seconds, respectively, while achieving the KS distances of
7.968e−3 and 1.123e−6, respectively.

We further turn to the aggregate risk RVs, and we demonstrate that the advantages of
our approximation method carry on.

5.6.2 Aggregate risks with full and partial coverage

We begin by approximating the CDF of the RV Sn = X1 + · · · + Xn - the individual risk
model [e.g., 24], and the CDF of the RV SN = X1 + · · ·+XN - the collective risk model [e.g.,
32]. In the former case, we sum n independent RVs with possibly different distributions. In
the latter case, we sum a random number N of IID RVs. Furthermore, as ceding insurers
often turn to a reinsurer in order to reduce the variability of the underwriting outcomes,
we conclude the discussion in this section with the stop-loss reinsurance set-up. We note
briefly that due to Borch [17], the variance of the cedent insurer’s payouts is the smallest
under the stop-loss reinsurance contract. Irrespective of whether coverage modifications of
the aggregate risks are allowed or not, we assume that the stand-alone risks have CDFs
(5.18),(5.19), and (5.20). As explicit CDFs of the aggregate risks are not available, we use
the Monte-Carlo (MC) method as a benchmark.
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Example 4. Consider the CRM, SN = X1 + · · ·+XN , where N has a Poisson(λ) distribution,
and Xi, i = 1, . . . , N has a log-normal distribution with parameters µ = 5.9809, and σ = 1.8
[8, Example 5.9]. The Laplace transform of the RV SN is given by

φSN (z) = exp [λ(φX1(z)− 1)].

Thus we obtain an approximation for φ(z) := E[exp(−zSN)] as following

φ̃(z) = exp
[
λ(φ̃1(z)− 1)

]
.

Then we evoke the Gaver-Stehfest algorithm to obtain the approximating CDF of the RV SN .
Figure 5.4 summarizes the results. Namely, Figures 5.4 a), c), and e) show the CDFs of

our approximation (dark green; succinctly F̃SN ,(36)) and the CDF produced by means of MC
simulation with 106 samples (blue; succinctly FM), for λ = 5, 10, and 15, respectively. In
each one of our approximations, we used m = 36 to approximate the underlying log-normal
severity distribution. Figures 5.4 b), d), and f) depict the MC CDF (blue), as well as the
CDF obtained via NA (orange), NPA (salmon), and SGA (black).

Example 5. Consider the IRM, Sn = X1 + · · · + Xn, with n = 15. We assume Xi,
i = 1, . . . , 5, are distributed log-normally with parameters µ = 5.9809, σ = 1.8, Xi, i = 6, ..10,
are distributed Pareto with parameters α = 2, β = 3000, and Xi, i = 11, . . . , 15 are distributed
Weibull with parameters β = 220.653, δ = 0.8; all independent. The LT of the aggregate risk
RV Sn, denoted by φ(z) := E[exp(−zSn)], is given by

φ(z) = (φX1(z) · φX6(z) · φX11(z))5.

Thus we approximate the CDF of the RV Sn by first approximating the LTs of the severities
and then evoking the Gaver-Stehfest method on

φ̃(z) = (φ̃1(z) · φ̃6(z) · φ̃11(z))5.

Figure 5.5 shows our approximation of the CDF of Sn (dark green; denoted by F̃Sn,(40),(36),(30))
and the CDF obtained by means of MC simulation (blue). In this case, we used approximation
orders m = 40, m = 36, and m = 30 to approximate the underlying log-normal, Pareto, and
Weibull CDFs, respectively. Note that the RV Sn has only one finite moment and, hence,
other MMAs are not applicable.
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(a) The CDFs F̃SN ,(36) and FM (λ = 5).
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(b) The CDFs FM , F̃NA, F̃NP , and F̃SG (λ = 5).
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(c) The CDFs F̃SN ,(36) and FM (λ = 10).
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(d) The CDFs FM , F̃NA, F̃NP , and F̃SG (λ = 10).
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(e) The CDFs F̃SN ,(36) and FM (λ = 15).
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(f) The CDFs FM , F̃NA, F̃NP , and F̃SG (λ = 15).

Figure 5.4: The collective risk model: SN = X1 + · · ·+XN , N ∼ Poisson(λ), and the Xi’s
are IID log-normally with the parameters (µ = 5.9809, σ = 1.8).
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Figure 5.5: The CDFs F̃Sn,(40),(36),(30) and FM for the individual risk model Sn, with n = 15.

Example 6. In the previous examples we considered aggregate risks with full coverages, that
is there were no deductibles, policy limits, or other policy modifications applied by the insurer
to reduce the payouts of the benefits. However, this is not always the case. Consequently, in
this example, we explorer the so-called stop-loss r.v. Sr,l, which is given, for positive retention
r and limit l, by

Sr,l =


0, X < r

S − r, r ≤ X < r + l

l, r + l ≤ X <∞

where the RV S is the aggregate risk RV within either the IRM or CRM. It is a standard
exercise to show that the CDF of the RV Sr,l is given by

Fr,l(s) =

 P[S ≤ s+ r), s < l

1, l ≤ s
.

Consequently, the CDF of the risk RV Sr,l is approximated similarly to the case in Example 4
(if the RV S refers to the aggregate risk within CRM), and similarly to the case in Example
5 (if the RV S refers to the aggregate risk within IRM). To demonstrate, we consider
the following CRM: S := SN = X1 + · · · + XN , N ∼ Poisson(15), and the Xi’s are IID
with log-normal distribution and the parameters µ = 5.9809, σ = 1.8. For the sake of the
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Figure 5.6: The CDFs F̃r,l and FM for the stop-loss contract with retention r = 45000 and
limit l = 75000

demonstration, we set r = E[N ] · 3000 = 45000, and l = E[N ] · 5000 = 75000. Figure 5.6
depicts the approximating CDF F̃r,l of the risk RV Sr,l (dark green) and the CDF obtained
by means of the MC simulation FM (blue).
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Chapter 6

On the rate of convergence of the
Gaver-Stehfest algorithm

The Gaver-Stehfest algorithm is widely used for numerical inversion of Laplace transform. In
this chapter we provide the first rigorous study of the rate of convergence of the Gaver-Stehfest
algorithm. We prove that Gaver-Stehfest approximations converge exponentially fast if the
target function is analytic in a neighbourhood of a point and they converge at a rate o(n−k)
if the target function is (2k + 3)-times differentiable at a point.

6.1 Introduction and main results

The Gaver-Stehfest algorithm for numerical inversion of Laplace transform has a long history.
In 1966 Gaver [31] has introduced simple (but rather slowly convergent) approximations
for the inverse Laplace transform, and in 1970 Stehfest [54, 55] has applied convergence
acceleration to Gaver’s approximation and thus the Gaver-Stehfest algorithm was born. The
algorithm turned out to be very popular with practitioners due to a number of desirable
properties: it is linear, it is exact for constant functions, all the coefficients can be computed
explicitly and, most importantly, the algorithm does not require the use of complex numbers,
as it needs the values of the Laplace transform only on the positive real line. The price one
has to pay for this latter feature is that the algorithm requires high-precision arithmetic for
its implementation.

Let us present the Gaver-Stehfest algorithm. We start with a locally integrable function
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f : (0,∞) 7→ R, such that its Laplace transform

F (z) :=
∫ ∞

0
e−zxf(x)dx (6.1)

is finite for all z > 0. We want to solve the following inverse problem: given the values of F (z)
for z > 0, compute the value of f(x) at a given point x > 0. Gaver-Stehfest approximations
are given by

fn(x) := ln(2)x−1
2n∑
k=1

ak(n)F
(
k ln(2)x−1

)
, n ≥ 1, x > 0, (6.2)

where

ak(n) := (−1)n+k

n!

min(k,n)∑
j=[(k+1)/2]

jn+1
(
n

j

)(
2j
j

)(
j

k − j

)
, 1 ≤ k ≤ 2n.

In [41] several conditions for convergence of fn(x0) were established. It was proved that if
f has bounded variation or is Hölder continuous in a neighbourhood of x0 > 0, then fn(x0)
converge to (f(x0+) + f(x0−))/2 as n→∞. The question of the rate of convergence was
left open, and until now there were no rigorous results about the rate of convergence of the
Gaver-Stehfest algorithm (although there were many numerical studies of the convergence
of the algorithm – see [2, 23, 37, 46, 64] and the references therein). It is the goal of this
paper to provide the first rigorous treatment of the rate of convergence of the Gaver-Stehfest
algorithm. We establish the following two results:

Theorem 8. Assume that f is analytic in a neighborhood of x0 > 0. Then there exists c > 0
such that

fn(x0) = f(x0) +O(e−cn), n→ +∞. (6.3)

Theorem 9. Assume that m ≥ 5 and f is m-times differentiable at x0 > 0. Set k =
[(m− 3)/2]. Then

fn(x0) = f(x0) + o(n−k), n→ +∞. (6.4)

The above two theorems lead to two natural problems: determine the largest values of c
and k in (6.3) and (6.4). The first problem, that is trying to determine the largest value of c
in (6.3) is likely to be very hard and we do not have any intuition as to what the answer may
be. For the second problem we do have the following conjecture, supported by a number of
numerical experiments
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Conjecture: If f is m-times differentiable at x0 > 0 then

fn(x0) = f(x0) +O(n−m), n→ +∞.

We arrived at this conjecture by investigating the rate of convergence of the Gaver-Stehfest
approximations to functions of the form

f(x) = (x− 1)αe−βx × 1{x>1}, (6.5)

where α > 0 and β ∈ C with Re(β) ≥ 0. This function clearly satisfies f(1) = 0 and is
m-times differentiable at x = 1 for any integer m < α. The corresponding Laplace transform
is easily computed explicitly

F (z) =
∫ ∞

0
f(x)e−zxdx =

∫ ∞
1

(x− 1)αe−(β+z)xdx = Γ(α + 1)(β + z)−α−1e−β−z, z > 0.

To find the optimal value of k in (6.4) we computed Gaver-Stehfest approximations fn(1) for
1 ≤ n ≤ 300 (using high-precision arithmetic) and then we used linear regression to compute
k that provides the best fit for ln |fn(1)| ∼ C − k ln(n), 1 ≤ n ≤ 300. This procedure was
repeated many times with different values of parameters α and β and the above conjecture
seems to hold true for all functions of the form (6.5).

This chapter is organized as follows: In Section 6.2 we state and prove Theorem 10, which
is the foundation of our approach. In Section 6.3 we prove Theorem 8 and in Section 6.4 we
prove Theorem 9.

6.2 Preliminary results

Let us review some properties of the Lambert W-function, which will be needed later. The
principal branch of the Lambert W-function, denoted by W (z), is an analytic function in the
neighborhood of z = 0 that satisfies W (z) exp(W (z)) = z. It is well-known [21] that W is
analytic in C \ (−∞,−e−1], and it has the following Taylor series at z = 0 (see formula (3.1)
in [21])

W (z) =
∑
n≥1

(−n)n−1 z
n

n! , |z| < 1/e, (6.6)
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and a branching singularity at z = −1/e

W (z) = −1 + p− p2

3 + 11
72p

3 − 43
540p

4 + 769
17280p

5 + ... =
∑
n≥0

µnp
n, (6.7)

where p =
√

2(1 + ez) and the series converges for |p| <
√

2 (see formula (4.22) in [21]). The
coefficients µn are certain rational numbers that can be computed recursively (see formulas
(4.23) and (4.24) in [21]).

We define

H(z) := −
(
z
d
dz

)2

W (z) = − W (z)
(1 +W (z))3 . (6.8)

The second equality follows from the identity zW ′(z) = W (z)/(1 + W (z)), which can be
easily derived from the functional equation W (z) exp(W (z)) = z. Since W is analytic in
C \ (−∞,−e−1] and satisfies W (0) = 0, it is clear from (6.8) that H is also analytic in
C \ (−∞,−e−1] and satisfies H(0) = 0.

From (6.7) and (6.8) we derive the series representation

H(z) = p−3 − 11
24p

−1 − 4
135 −

1
1152p−

31
405p

2 − · · · = p−3 − 11
24p

−1 +
∑
n≥0

cnp
n, (6.9)

where, as above, p =
√

2(1 + ez) and the series converges for |p| <
√

2. The coefficients cn in
(6.9) are certain rational numbers that can be computed recursively using values of µn. We
define the following two functions in terms of coefficients cn:

A(u) := 1
2
√

2
− 11

24
√

2
(1 + u) +

∑
n≥0

c2n+12n+1/2(1 + u)n+2, (6.10)

B(u) :=
∑
n≥0

c2n2n(1 + u)n. (6.11)

Since the series in (6.9) converges for |p| <
√

2, we conclude that the series (6.10) and (6.11)
converge for |1 + u| < 1, thus functions A and B are analytic in the disk D1(−1): here and
everywhere else in this chapter we will denote

Dr(a) := {z ∈ C : |z − a| < r},

for r > 0 and a ∈ C. By construction we have an identity

H(z/e) = (1 + z)−3/2A(z) +B(z), (6.12)
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which is valid for z ∈ D1(−1) \ (−∞,−1].
Next, given a function f and x0 > 0 we define

f̃(v) :=
f(x0 log1/2((1 + v)/2))

1 + v
+
f(x0 log1/2((1− v)/2))

1− v , −1 < v < 1, (6.13)

and
φ(x) := 1

π
√

1− x

∫ π
2

0
f̃(
√
x sin(y))dy, 0 ≤ x < 1. (6.14)

We also define w(z) := zez+1 and

Λ(w) = Λ(w;σ) :=
∫ σ

0
(1 + w(1− x))− 3

2A(w(1− x))φ(x)dx, (6.15)

where σ ∈ (0, 1) and A is defined in (6.10). For every σ ∈ (0, 1) the function w 7→ Λ(w;σ) is
well-defined for w ∈ Dδ(−1) \ (−∞,−1] for some δ = δ(σ) > 0 small enough. Finally, for
ε > 0 we denote

Dε := D1+ε(0) \Dε1/4(−1) = {z ∈ C : |z| < 1 + ε and |1 + z| > ε1/4}. (6.16)

The main goal of this section is to establish the following result.

Theorem 10. Assume that f(x0) = 0.

(i) The function
∆(z) :=

∑
n≥1

fn(x0)(−1)nzn, (6.17)

is analytic in Dε for ε < 1/100.

(ii) For any σ ∈ (0, 1) the function ∆(z)−Λ(w(z);σ) is analytic in Dδ(−1) for some δ > 0
small enough.

Theorem 10 will be our main tool in proving Theorems 8 and 9. We will apply it as
follows: suppose we can show that for some σ ∈ (0, 1) the function z 7→ Λ(w(z);σ) is analytic
in Dδ(−1) for some δ > 0. Then Theorem 10 would imply that ∆(z) is analytic in DR(0) for
some R > 1. This latter fact combined with (6.17) would prove that the sequence {fn(x0)}n≥1

converges to zero exponentially fast. Alternatively, if the function Λ(w(z)) is not analytic in
Dδ(−1) for any δ > 0, it must have a singularity at z = −1, and then the behavior of Λ(w(z))
at this singularity (for example, the number of times Λ(w(z)) is differentiable at z = −1)
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(a) (b)

Figure 6.1: The images of three circles |z| = 0.8 (thin line), |z| = 1 (dotted line) and |z| = 1.2
(thick line) under the map z 7→ w = zez+1. Figure (b) magnifies the area near w = −1 of the
figure (a).

would give us information about the singularity of ∆(z) at z = −1, and this informatoin
coupled with (6.17) would again lead to estimates on the rate of convergence of the sequence
{fn(x0)}n≥1 to zero.

Before we prove Theorem 10, we need to establish a number of preliminary results. The
next technical result collects some properties of the map z 7→ w = zez+1 (see Figure 6.1).

Lemma 2. Let w(z) = zez+1.

(i) For any c ∈ (0, 1) there exists R > 1 such that the function c× w(z) maps DR(0) into
C \ (−∞,−1].

(ii) For ε ∈ (0, 1/100] the function w = w(z) maps the domain Dε (defined in (6.16)) into
C \ (−∞,−1].

Proof. First we will establish the following

Fact: If ε ∈ (0, 1/100] and for some y ∈ R we have z = −y cot(y) + iy ∈ D(0; 1 + ε), then
necessarily z ∈ Dε1/4(−1).
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To prove this fact we will need the following two inequalities

0 < 1− y cot(y) < y2/2 for all y ∈ (−1/4, 1/4), (6.18)

1 + y2/6 < y csc(y) for all y ∈ (−π, π). (6.19)

These inequalities can be easily established by examining MacLaurin series of y cot(y) and
y sec(y). Alternatively, these inequalities follow at once from inequalities (17) and (19) in
[19].

Now, if ε ∈ (0, 1/100] and z = −y cot(y) + iy ∈ D1+ε(0) , then

|z|2 = y2 cot(y)2 + y2 < (1 + ε)2,

thus |y| < 1 + ε and from (6.19) we find

(1 + y2/6)2 < y2 csc(y)2 = y2 cot(y)2 + y2 < (1 + ε)2,

which implies that |y| <
√

6ε < 1/4. Then applying (6.18) we estimate

|z + 1|2 = (1− y cot(y))2 + y2 < y4/4 + y2 < 9ε2 + 6ε = ε1/2 × ε1/2(9ε+ 6) < ε1/2,

and this implies z ∈ Dε1/4(−1). This ends the proof of the Fact above.

Let us now prove part (i) of Lemma 2. Since w(−1) = −1 and w is an entire (and thus,
continuous) function, there exists ε ∈ (0, 1/100] small enough such that |z + 1| < ε1/4 implies
|w(z) + 1| < 1/c− 1. Take R = 1 + ε and let z ∈ DR(0). If z = x+ iy for x, y ∈ R, then

Im(w(z)) = ex+1(y cos(y) + x sin(y)).

Thus w(z) ∈ R if y = 0 or x = −y cot(y). For y = 0 it is easy to see that w(z) = w(x) ≥ −1,
thus −1 < c× w(z). If y 6= 0 and w(z) ∈ R then z = −y cot(y) + iy. Since z ∈ D1+ε(0), by
the Fact above we conclude that z ∈ Dε1/4(−1), thus |w(z) + 1| < 1/c− 1, which implies that
−1 < c × w(z). Thus if z ∈ D1+ε(0) and w(z) is real, then necessarily −1 < c × w(z). In
other words, the function c× w(z) maps D1+ε(0) into C \ (−∞, 1].

It remains to prove part (ii) of Lemma 2. Let ε ∈ (0, 1/100] and z = x + iy ∈ Dε for
x, y,∈ R. As we argued above, if w(z) ∈ R then either y = 0 or x = −y cot(y). In the former
case z is real and the minimum of w(z) over real z ∈ Dε is strictly greater than −1 (the
minimum of w(x) over x ∈ R is −1 and is achieved at z = −1, and z = −1 /∈ Dε). In the
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latter case, we use the Fact above and conclude that z ∈ Dε1/4(−1), which is impossible since
by definition Dε does not contain points from Dε1/4(−1). Therefore, the function w(z) maps
Dε into C \ (−∞, 1]. ut

Lemma 3. Let Ω be a compact set in Rn and a(x) be a continuous function and b(x) an
integrable function of x = (x1, x2, . . . , xn) ∈ Ω. Assume that g(z) is analytic in the domain
G ⊂ C and za(x) ∈ G for all z ∈ G and x ∈ Ω. Then the function

Φ(z) :=
∫
Ω

g(za(x))b(x)dx1dx2 . . . dxn (6.20)

is also analytic in G.

Proof. For each x ∈ Ω, the function z 7→ g(za(x)) is analytic in G. By Cauchy’s integral
theorem, for each x ∈ Ω and for any triangle T contained in G we have∫

T
g(za(x))dz = 0.

Since T and Ω are compact and g(za(x)) is continuous on T × Ω, we have

sup
(z,x)∈T×Ω

|g(za(x))| <∞.

Using this fact and the assumption that b is integrable on Ω, we can apply Fubini’s theorem
and conclude that ∫

T
Φ(z)dz =

∫
Ω

[∫
T
g(za(x))dz

]
g(x)dx1dx2 . . . dxn = 0

for any every triangle T contained G. Morera’s Theorem tells us that Φ is analytic in G. ut

Next, we define

G(z) := 2
π

π
2∫

0

H(z sin(t)2)dt, (6.21)

where H was defined in (6.8). As we discussed on page 75, H is analytic in C \ (−∞,−e−1]
and satisfies H(0) = 0. This fact and Lemma 3 applied to the integral in (6.21) implies that
G is also analytic in C \ (−∞,−e−1] and satisfies G(0) = 0.
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Lemma 4. The function ∆(z) defined by (6.17) has integral representation

∆(z) =
∫ ∞

0
G(4e−1−u(1− e−u)w(z))f(x0u/ ln(2))du (6.22)

and it is analytic in Dε for ε < 1/100.

Proof. From [41] we know that Gaver-Stehfest approximants are given by an integral
representation

fn(x) =
∫ ∞

0
qn
(
4e−u(1− e−u)

)
f(xu/ ln(2))du. (6.23)

where
qn(v) :=

n∑
k=1

kn+1(1
2)k

(n− k)!(k!)2 (−1)n+kvk, n ≥ 1. (6.24)

Also, from Proposition 2.2 in [41] we find that for 0 ≤ v ≤ 1 and |z| < 1/(2e)

G (vzez) =
∑
n≥1

qn(v)(−1)nzn. (6.25)

Also, from (6.24) we find (using the Binomial Theorem and the trivial estimates (1
2)k < k!

and kn+1 ≤ nn+1) that

|qn(v)| ≤ vnn+1
n∑
k=1

1
(n− k)!(k!) < v

nn+12n
n! , for all 0 ≤ v ≤ 1. (6.26)

Thus for every |z| < 1/(4e) we have the bound
∑
n≥1
|qn(v)| × |z|n < C × v, 0 ≤ v ≤ 1,

for some C > 0, so that we can apply the Dominated Convergence Theorem to conclude that

∆(z) =
∑
n≥1

fn(x0)(−1)nzn =
∞∫
0

[∑
n≥1

qn
(
4e−u(1− e−u)

)
(−1)nzn

]
f(x0u/ ln(2))du (6.27)

=
∫ ∞

0
G(4zez−u(1− e−u))f(x0u/ ln(2))du.

Thus we have established (6.22) for |z| < 1/(4e). The fact that ∆(z) can be extended to an
analytic function in Dε follows from (6.22), Lemma 2(ii), Lemma 3 and the fact that G(z) is
an analytic function in C \ (−∞,−e−1]. ut
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Next, we define

∆1(z) = ∆1(z;σ) :=
∫ σ

0
G(e−1(1− v2)w(z))f̃(v)dv, (6.28)

where σ ∈ (0, 1) and f̃ is defined in (6.13).

Lemma 5. For any σ ∈ (0, 1) there exists R > 1 such that the function z 7→ ∆(z)−∆1(z;σ)
is analytic in DR(0).

Proof. First we compute

∆(z) =
∫ ln(2)

0
G(4e−1−u(1− e−u)w(z))f(x0u/ ln(2))du

+
∫ ∞

ln(2)
G(4e−1−u(1− e−u)w(z))f(x0u/ ln(2))du (6.29)

=
∫ 1

0
G(e−1(1− v2)w(z))

[
f(x0 log1/2((1 + v)/2))

1 + v
+
f(x0 log1/2((1− v)/2))

1− v

]
dv.

Here we changed variables u = − ln((1 + v)/2) in the integral over u ∈ (0, ln(2)) and
u = − ln((1− v)/2) in the integral over u ∈ (ln(2),∞).

Next, we define g(z) := G(z/e)/z. As we pointed out on page 79, the function G is analytic
in C \ (−∞,−e−1] and satisfies G(0) = 0, thus the function g is analytic in C \ (−∞,−1].
From (6.28) and (6.29) we obtain

∆(z)−∆1(z) = w(z)
∫ 1

σ
g(w(z)(1− v2))b(v)dv

where

b(v) := (1− v2)f̃(v) = (1− v)f(x0 log1/2((1 + v)/2)) + (1 + v)f(x0 log1/2((1− v)/2)).

According to Lemma 2(i), there exists R > 1 such that the function z 7→ (1 − σ2) × w(z)
maps DR(0) into C \ (−∞,−1]. Then for every v ∈ (σ, 1] we have

(1− v2)× w(z) ∈ C \ (−∞,−1], for all z ∈ DR(0).

Note also that the function b(v) is integrable over v ∈ (σ, 1]. Applying Lemma 3, we conclude
that ∆(z)−∆1(z) is analytic in DR(0). ut
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Next we define

∆2(z) = ∆2(z;σ) := 1
π

∫ σ

0

∫ σ2

v2

H(e−1(1− x)w(z))√
(1− x)(x− v2)

dxf̃(v)dv (6.30)

where σ ∈ (0, 1), H was defined in (6.8) and f̃ was defined in (6.13).

Lemma 6. For any σ ∈ (0, 1) there exists R > 1 such that the function z 7→ ∆1(z;σ) −
∆2(z;σ) is analytic in DR(0).

Proof. We define two sets

Ω1 :=
{

(t, v) ∈ R2 : 0 ≤ v ≤ σ, 0 ≤ t < arcsin
(√1− σ2

1− v2

)}
,

Ω2 :=
{

(t, v) ∈ R2 : 0 ≤ v ≤ σ, arcsin
(√1− σ2

1− v2

)
≤ t ≤ π

2

}
.

Using formulas (6.21) and (6.28) we write

∆1(z) = 2
π

σ∫
0

π
2∫

0

H(e−1(1− v2) sin(t)2w(z))dtf̃(v)dv

= 2
π

∫∫
Ω1

H(e−1(1− v2) sin(t)2w(z))dtf̃(v)dv

+ 2
π

∫∫
Ω2

H(e−1(1− v2) sin(t)2w(z))dtf̃(v)dv.

We change the variable of integration t 7→ x = 1− (1− v2) sin(t)2 so that

dt = −1/(2
√

(1− x)(x− v2))dx

and we obtain
2
π

∫∫
Ω2

H(e−1(1− v2) sin(t)2w(z))dtf̃(v)dv = ∆2(z),

which implies

∆1(z)−∆2(z) = 2
π

∫∫
Ω1

H(e−1(1− v2) sin(t)2w(z))dtf̃(v)dv. (6.31)

Note that on the set Ω1 we have (1 − v2) sin(t)2 ≤ 1 − σ2, thus we can use the fact that
H(z/e) is an analytic function in C \ (−∞,−1] and apply Lemma 2(i) and Lemma 3 to
conclude that the integral in the right-hand side of (6.31) is an analytic function of z in the
disk DR(0) for some R > 1. ut
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Proof of Theorem 10: Part (i) of Theorem 10 was established in Lemma 4. To prove part
(ii), it is enough to show that the function z 7→ ∆2(z;

√
σ)− Λ(w(z);σ) is analytic in Dδ(−1)

for some δ > 0, since

∆(z)−Λ(w(z);σ) = [∆(z)−∆1(z;
√
σ)]+[∆1(z;

√
σ)−∆2(z;

√
σ)]+∆2(z;

√
σ)−Λ(w(z);σ),

and both terms in square brackets are analytic in DR(0) for some R > 1 (by Lemmas 5 and
6), thus they are analytic in Dδ(−1) for any δ ∈ (0, R− 1].

We apply Fubini’s Theorem to the double integral (6.30) and interchange the order of
integration to obtain

∆2(z;
√
σ) = 1

π

∫ σ

0

∫ √x
0

H(e−1(1− x)w(z))√
(1− x)(x− v2)

f̃(v)dvdx

=
∫ σ

0
H(e−1(1− x)w(z))

[
1

π
√

1− x

∫ √x
0

f̃(v)√
x− v2

dv
]
dx

=
∫ σ

0
H(e−1(1− x)w(z))

[
1

π
√

1− x

∫ π
2

0
f̃(
√
x sin(y))dy

]
dx

=
∫ σ

0
H(e−1(1− x)w(z))φ(x)dx.

In deriving this formula we have changed variable of integration v =
√
x sin(y) and used

(6.14). Next, we apply (6.12) to the above identity and obtain

∆2(z;
√
σ) =

∫ σ

0
H(e−1(1− x)w(z))φ(x)dx

=
∫ σ

0
(1 + w(z)(1− x))−3/2A(w(z)(1− x))φ(x)dx+

∫ σ

0
B(w(z)(1− x))φ(x)dx,

which is equivalent to

∆2(z;
√
σ)− Λ(w(z);σ) =

∫ σ

0
B(w(z)(1− x))φ(x)dx.

According to the discussion on page 75, the function B is analytic in D1(−1). The function
w(z) is entire and satisfies w(−1) = −1, thus there exists δ > 0 small enough such that
w(z)(1 − x) ∈ D1(−1) for all x ∈ (0, σ) and z ∈ Dδ(−1). Applying Lemma 3 we conclude
that the function

z 7→
∫ σ

0
B(w(z)(1− x))φ(x)dx = ∆2(z;

√
σ)− Λ(w(z);σ)

is analytic in Dδ(−1). ut
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6.3 Proof of Theorem 8

We are working under assumption that f is analytic in a neighbourhood of x0 > 0. We can
also assume, without loss of generality, that f(x0) = 0, since Gaver-Stehfest approximations
are linear in f and they are exact for constant functions.

Our goal is to show that for some σ ∈ (0, 1) and δ > 0 the function Λ(w(z);σ) is analytic
in Dδ(−1). Once this is established, Theorem 10 would imply that the function ∆(z) is
analytic in DR(0) for some R > 1 and then Cauchy estimates for derivatives of analytic
function would give us the desired result: for every r ∈ (1;R) we have |fn(x0)| = O(r−n) as
n→ +∞.

We recall that φ(x) is defined by

φ(x) = 1
π
√

1− x

∫ π
2

0
f̃(
√
x sin(y))dy.

Since f is analytic in the neighbourhood of x0 and satisfies f(x0) = 0, the function f̃ (defined
by (6.13)) is even and analytic in a neighbourhood of x = 0 and also satisfies f̃(0) = 0, which
implies that the function x 7→ f̃(

√
x sin(y)) is analytic in a neighbourhood of x = 0. Applying

Lemma 3 we conclude that the function ϕ(x) := φ(x)/x is analytic in a neighbourhood of
x = 0.

Our problem is now reduced to the following one: given that A(u) is analytic in D1(−1)
and ϕ(x) is analytic in a neighbourhood of x = 0, prove that there exist σ ∈ (0, 1) and δ > 0
such that the function

Λ(w(z)) =
∫ σ

0
(1 + w(z)(1− x))− 3

2A(w(z)(1− x))xϕ(x)dx, (6.32)

is analytic in Dδ(−1).

Since ϕ(x) is analytic in a neighbourhood of x = 0, there exists ε ∈ (0, 1) small enough
such that the function of two variables

(w, u) 7→ ϕ((1 + w − u2)/w)

is analytic in (w, u) ∈ Dε(−1) ×Dε(0). We set σ = ε2/4. Recall that w(z) = zez+1 and it
an entire function that satisfies w(−1) = −1. Therefore we can find δ ∈ (0, 1) small enough
such that the following two conditions hold
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(i) w(z) ∈ Dσ(−1) for z ∈ Dδ(−1);

(ii) 1 + w(z) = 0 for z ∈ Dδ(−1) only if z = −1.

Note that w(−1) = −1, w′(−1) = 0 and w′′(−1) = 1, thus 1 + w(z) = (z + 1)2w̃(z) for
some function w̃(z) with w̃(−1) = 1/2. According to condition (ii) above, w̃(z) 6= 0 for
z ∈ Dδ(−1). Thus we conclude that the function η1(z) :=

√
1 + w(z) = (z + 1)

√
w̃(z) is

analytic in Dδ(−1). It is also clear that η1(z) ∈ Dε(0) for z ∈ Dδ(−1).
From condition (i) above we find that

1 + w(z)(1− σ) ∈ D(1−σ)σ(σ) for z ∈ Dδ(−1), (6.33)

The fact that 0 /∈ D(1−σ)σ(σ) implies 1 +w(z)(1−σ) 6= 0 for z ∈ Dδ(−1), so that the function
η2(z) :=

√
1 + w(z)(1− σ) is analytic and nonzero in Dδ(−1). From (6.33) we also conclude

that
|η2(z)| ≤

√
σ + (1− σ)σ <

√
2σ = ε√

2
< ε for z ∈ Dδ(−1), (6.34)

thus η2(z) ∈ Dε(0) for z ∈ Dδ(−1).
Assume now that z ∈ (−1,−1 + δ), so that 1 + w(z) ∈ (0, σ) and 1 + w(z)(1 − σ) ∈

(σ, σ + (1− σ)σ). We change the variable of integration x 7→ u =
√

1 + w(1− x) in (6.32),
so that x = (1 + w − u2)/w and obtain

Λ(w(z);σ) =
∫ σ

0
(1 + w(z)(1− x))− 3

2A(w(z)(1− x))xϕ(x)dx

= 2
w(z)2

∫ η1(z)

η2(z)

(1 + w(z)
u2 − 1

)
K(w(z), u)du (6.35)

where we defined
K(w, u) := A(u2 − 1)ϕ((1 + w − u2)/w).

Since A is analytic in D1(−1) and ϕ((1 +w − u2)/w) is analytic in (w, u) ∈ Dε(−1)×Dε(0),
we conclude that the function K(w, u) is analytic in (w, u) ∈ Dε(−1)×Dε(0).

Next, we define

L(w, u) := 1 + w

u2

[
K(w, u)−K(w, 0)

]
−K(w, u).

Since the function u 7→ K(w, u) is even and analytic in (w, u) ∈ Dε(−1)×Dε(0) we conclude
that the function u 7→ (K(w, u)−K(w, 0))/u2 is analytic in u ∈ Dε(−1) for each w ∈ Dε(0),
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thus the function L(w, u) is analytic in (w, u) ∈ Dε(−1)×Dε(0). Therefore, there exists a
function M(w, u) that is analytic in (w, u) ∈ Dε(−1)×Dε(0) and satisfies

d
duM(w, u) = L(w, u), for (w, u) ∈ Dε(−1)×Dε(0).

With these definitions of L and M we can rewrite the integrand in the right-hand side of
(6.35) as follows(1 + w

u2 − 1
)
K(w, u) = 1 + w

u2 K(w, 0) + L(w, u) = 1 + w

u2 K(w, 0) + d
duM(w, u).

Now we can evaluate the integral in (6.35):
∫ η1(z)

η2(z)

[1 + w

u2 K(w, 0) + d
duM(w, u)

]
du

=
[
− 1 + w

u
K(w, 0) +M(w, u)

]∣∣∣∣u=η1(z)

u=η2(z)

=
(
− 1 + w

η1(z) + 1 + w

η2(z)

)
K(w, 0) +M(w, η1(z))−M(w, η2(z)),

so that we finally obtain (using the fact that 1 + w(z) = η2
1(z))

Λ(w(z);σ) = 2
w(z)2 ×

[(
−η1(z)+ 1 + w(z)

η2(z)

)
K(w(z), 0)+M(w(z), η1(z))−M(w(z), η2(z))

]
.

(6.36)
So far we have established (6.36) for z ∈ (−1,−1 + δ). However, due to our choice of σ and
δ, the right-hand side in (6.36) is an analytic function of z ∈ Dδ(−1), which proves that the
function Λ(w(z);σ) can be extended to an analytic function in z ∈ Dδ(−1). This ends the
proof of Theorem 8. ut

6.4 Proof of Theorem 9

We are working under assumption that f is m times differentiable at x0 > 0 and f(x0) = 0.
We can also assume, without loss of generality, that f (j)(x0) = 0 for j = 1, . . . ,m. Indeed,
the Taylor expansion of f at x0 gives us

f(x) =
m∑
k=1

f (k)(x0)
k! (x− x0)k + hm(x)(x− x0)m = P (x) +R(x),
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where hm(x)→ 0 as x→ x0. Since Gaver-Stehfest approximations are linear, we have

fn(x) = Pn(x) +Rn(x),

where Pn(x), and Rn(x) are the n-th Gaver-Stehfest approximations of P (x) and R(x),
respectively. The function P is a polynomial, in particular it is analytic and thus Theorem
8 implies that Pn(x0) converge to 0 = P (x0) exponentially fast as n → +∞. Therefore,
fn(x0) = o(n−k) as n→ +∞ if and only if Rn(x0) = o(n−k).

Next, we argue that Theorem 9 will be established if we can show that for some σ > 0
and δ > 0 the function dk

dzkΛ(w(z);σ) is bounded in Dδ(−1) ∩D1(0). Assuming this result,
Theorem 10 implies that the function ∆(k)(z) is continuous on D1(0) \ {−1} and bounded in
D1(0). From (6.17) we find

∆(k)(z) =
∑
n≥k

n(n− 1) · · · (n− k + 1)fn(x0)(−1)nzn−k, |z| < 1.

Thus, for any 0 < r < 1 and n ≥ k, we have

n(n− 1) · · · (n− k + 1)fn(x0)(−1)n = 1
2πi

∫
|z|=r

z−(n−k)−1∆(k)(z)dz

= r−(n−k)
∫ 1

0
e−2πi(n−k)t∆(k)(re2πit)dt.

Taking the limit as r ↑ 1 (and using the Dominated Convergence Theorem) we conclude that

n(n− 1) · · · (n− k + 1)fn(x0)(−1)n−k =
∫ 1

0
e−2πi(n−k)t∆(k)(e2πit)dt.

Since ∆(k)(e2πit) is continuous and bounded on (0, 1/2)∪ (1/2, 1), it follows from the Riemann-
Lebesgue lemma that

n(n− 1) · · · (n− k + 1)fn(x0)→ 0, n→ +∞,

which is equivalent to fn(x0) = o(n−k).
Next, we recall that φ(x) is defined via (6.14). Since f (j)(x0) = 0 for j = 0, 1, . . . ,m,

we also have f̃ (j)(x0) = 0 for j = 0, 1, . . . ,m (see (6.13)), thus f̃(x) = O(xm) as x→ 0 and
therefore φ(x) = O(xm/2) as x ↓ 0.

Our problem is now reduced to the following one: given that m = 2k+ 3, A(u) is analytic
in D1(−1) and φ(x) is an integrable function on (0, 1 − ε) (for any ε > 0) that satisfies
φ(x) = O(xm/2) as x ↓ 0, prove that there exist σ ∈ (0, 1) and δ > 0 such that the function

dk

dzkΛ(w(z);σ) = dk

dzk
∫ σ

0
(1 + w(z)(1− x))− 3

2A(w(z)(1− x))φ(x)dx, (6.37)
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(a) (b)

Figure 6.2: (a) Domain D 1
2
(−1)∩D1(0) and (b) its image Ω 1

2
under the map z 7→ w = zez+1

is bounded in Dδ(−1) ∩D1(0).

For δ ∈ (0, 1) we define

Ωδ := {w ∈ C : w = zez+1, z ∈ Dδ(−1) ∩D1(0)}.

On Figure 6.2 we plot the domains Dδ(−1) ∩D1(0) and Ωδ for δ = 1/2.
Before we can proceed with the proof of Theorem 9, we need to establish three auxiliary

results.

Lemma 7.

(i) As z → −1 we have w(z) = −1 + 1
2(z + 1)2 + 1

3(z + 1)3 +O((z + 1)4).

(ii) Let w ∈ Ωδ and 1 + w = a + ib for real a and b. If a < 0 then b2 > C|a|3 for some
positive constant C = C(δ).

(iii) Let w ∈ Ωδ and (1 + w)/(−w) = a+ ib for real a and b. If a < 0 then b2 > C|a|3 for
some positive constant C = C(δ).

Proof. Part (i) follows by Taylor expansion of w(z) = zez+1. To prove part (ii), we parametrize
the circle |z| = 1 as z(u) = − cos(u)− i sin(u), so that u = 0 corresponds to z = −1. Writing
Taylor series near u = 0 we see that

z(u) = −1 + u2

2 − iu+O(u3),
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and using the result in item (i) we compute

1 + w(z(u)) = 1
2

(
u2

2 − iu
)2

+ 1
3

(
u2

2 − iu
)3

+O(u4) = −1
2u

2 − i16u
3 +O(u4).

Thus we see that the boundary of the domain Ωδ near w = −1 (that is represented by the
dotted line on figure 6.2b) is paramaterized by the curve γ(u) = −1− 1

2u
2− i1

6u
3 +O(u4) near

u = 0. Equivalently, if γ(u) = −1 + a+ ib, then we have parametrization b2 = 2
9 |a|

3 + o(|a|3)
near the point w = −1. Thus if we take C > 0 small enough, then the entire curve
{z = −1 + x+ iy : x < 0, y ∈ R, y2 = C|x|3} will lie outside of the domain Ωδ. This ends
the proof of item (ii).

Item (iii) follows from (i) and (ii). ut

Next, we define
Qα,β(w) :=

∫ σ

0
|1 + w(1− x)|−αxβdx,

where α > 0, β > 0, σ ∈ (0, 1) and w ∈ C \ (−∞,−1].

Lemma 8. Assume that β > 0 and 0 ≤ γ < α. The function w 7→ |1 + w|γQα,β(w) is
bounded in Ωδ if β + 1 ≥ max(α, 3α/2− γ).

Proof. First we need to bound from below the value of |1 + w(1 − x)|, for x ∈ (0, σ) and
w ∈ Ωδ. For s and t ranging over some subsets of (0,∞) we will write s ≈ t if for some
positive constants C1 and C2 we have C1t < s < C2t for all s and t. Thus, for w ∈ Ωδ we
have |w| ≈ 1 and

|1 + w(1− x)| = |w| × |(1 + w)/(−w) + x| ≈ |(1 + w)/(−w) + x|.

Let (1 + w)/(−w) = a + ib for real a and b. It is clear that a = O(1) and b = O(1) when
w ∈ Ωδ. If a > −x/2 then x+ a > x/2 and we have an inequality

|(1 + w)/(−w) + x|2 = |(x+ a) + ib|2 = (x+ a)2 + b2 > x2/4 + b2.

If a ≤ −x/2 (so that a < 0 and x ≤ 2|a|) we have

|(1 + w)/(−w) + x|2 = |(x+ a) + ib|2 = (x+ a)2 + b2 ≥ b2.
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Thus, there exists a constant C > 0 such that

Qα,β(w) =
∫ σ

0
|1 + w(1− x)|−αxβdx < C

∫ σ

0
|(1 + w)/(−w) + x|−αxβdx

< C ×
[
1{a<0}

∫ 2|a|

0
|b|−αxβdx+

∫ σ

0
(x2/4 + b2)−α/2xβdx

]
.

We have ∫ 2|a|

0
|b|−αxβdx = O(|a|β+1|b|−α).

Performing change of variables x = 2|b|y we compute

I :=
∫ σ

0
(x2/4 + b2)−α/2xβdx = 2β+1|b|β+1−α

∫ σ/|b|

0
(1 + y2)−α/2yβdy.

If σ/|b| ≤ 1 the integral in the right-hand side of the above equation is O(1), and since
|b| = O(1) and β + 1 ≥ α we conclude that in this case I = O(1). If σ/|b| > 1, we write∫ σ/|b|

0
(1 + y2)−α/2yβdy =

∫ 1

0
(1 + y2)−α/2yβdy +

∫ σ/|b|

1
(1 + y2)−α/2yβdy.

The first integral is a constant (depending only on α and β). In the second integral, the
integrand can be bounded from above and below by a constant multiple of yβ−α. Thus, when
σ/|b| > 1, the second integral can be estimated as∫ σ/|b|

1
(1 + y2)−α/2yβdy ≈

∫ σ/|b|

1
yβ−αdy = O(1) +O(|b|α−β−1).

Combining these results we obtain an estimate (in the case σ/|b| > 1)

I =
∫ σ

0
(x2/4 + b2)−α/2xβdx = |b|β+1−α× (O(1) +O(|b|α−β−1)) = O(|b|β+1−α) +O(1) = O(1),

where in the last step we again used the fact that |b| = O(1) and β + 1 ≥ α.
It is clear that |1 +w|γ = O(1) in Ωδ. Thus, combining the above estimates, we conclude

|1 + w|γQα,β(w) = O(1) + 1{a<0}O(|1 + w|γ|a|β+1|b|−α). (6.38)

For w ∈ Ωδ we have

|1 + w| = O(|(1 + w)/(−w)|) = O((a2 + b2)1/2) = O(|b|(1 + (a/b)2)1/2).

When a < 0 we have |b|−1 = O(|a|−3/2) (see Lemma 7(iii)), thus we obtain

|1 + w| = O(|b|(1 + |a|−1)1/2) = O(|b| × |a|−1/2). (6.39)
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From (6.38) and (6.39) (and using |b|−1 = O(|a|−3/2)) we estimate for a < 0

|1 + w|γ|a|β+1|b|−α = |a|β+1−γ/2|b|−α+γ = |a|β+1−γ/2|a|−3/2(α−γ) = |a|β+γ+1−3α/2

and this latter quantity is bounded since |a| = O(1) and β + 1 ≥ 3α/2− γ. ut

We leave to the reader the proof of the next result: it can be done by induction or using
Faa di Bruno’s formula.

Lemma 9. For every k ∈ N there exist polynomials {Pk,j(x1, . . . , xk)}1≤j≤k such that for
any smooth functions g and h

dk

dzk g(h(z)) =
k∑
j=1

(h′(z))max(2j−k,0) × g(j)(h(z))× Pk,j(h′(z), . . . , h(k)(z)). (6.40)

Now we are ready to complete the proof of Theorem 9. We recall that all that is left to
do is to establish the fact stated (in italic font) on page 87. To simplify notation, we define
ψ(w) := (1 + w)−3/2A(w). With this notation we have

dk

dzkΛ(w(z);σ) =
∫ σ

0

dk

dzkψ(w(z)(1− x))φ(x)dx.

Invoking Lemma 9, we have

dk

dzkΛ(w(z);σ) =
k∑
j=1

(w′(z))max(2j−k,0) (6.41)

×
∫ σ

0
ψ(j)(w(z)(1− x))(1− x)max(2j−k,0)Pk,j(w′(z)(1− x), . . . , w(k)(z)(1− x))φ(x)dx.

The function A(u) is analytic in D1(−1). We choose σ > 0 and δ > 0 small enough so that
w(1− x) ∈ D 1

2
(−1) for w ∈ Ωδ and x ∈ (0, σ) and |φ(x)| < C1x

m/2 for some C1 > 0 and all
x ∈ (0, σ). We compute

ψ(j)(w(1− x)) =
j∑
l=0

(
j

l

)
×
[
l−1∏
i=0

(−3/2− i)
]
(1 + w(1− x))−3/2−lA(j−l)(w(1− x)).

The terms A(j−l)(w(1− x)) are bounded for w ∈ Ωδ and x ∈ (0, σ). Thus

|ψ(j)(w(1− x))| = O(|1 + w(1− x)|−3/2−j), w ∈ Ωδ, x ∈ (0, σ).
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The functions Pk,j(w′(z)(1− x), . . . , w(k)(z)(1− x)) are bounded for z ∈ Dδ(−1)∩D1(0) and
x ∈ (0, σ), since Pk,j is a polynomial and w an entire function. We observe that w′(z) =
(z+ 1)ez+1 = w(1 + z)/z. This fact coupled with the result 1 +w(z) = 1

2(z+ 1)2 +O((z+ 1)3)
(that was proved earlier in Lemma 7) implies that |w′(z)| = O(|1+w(z)|1/2) in Dδ(−1)∩D1(0).
Combining all these observations and using (6.41) we conclude that there exists C2 > 0 such
that for all z ∈ Dδ(−1) ∩D1(0)

∣∣∣∣ dkdzkΛ(w(z);σ)
∣∣∣∣ < C2

k∑
j=1
|1 + w(z)|max(j−k/2,0)

∫ σ

0
|1 + w(z)(1− x)|−3/2−jφ(x)dx (6.42)

= C1 × C2

k∑
j=1
|1 + w(z)|max(j−k/2,0)Q3/2+j,m/2(w(z)).

We leave it to the reader to check that if m = 2k + 3 then for all j = 1, 2, . . . , k

m/2 + 1 ≥ 3/2 + j and m/2 + 1 + max(j − k/2, 0) ≥ (3/2)× (3/2 + j).

According to Lemma 8, each term |1 + w|max(j−k/2,0)Q3/2+j,m/2(w) in (6.42) is bounded when
w ∈ Ωδ, thus dk

dzkΛ(w(z);σ) is bounded in Dδ(−1) ∩D1(0).
ut
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