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Abstract 

Failure to adequately maintain vegetation within a power line corridor has been 

identified as a main cause of the August 14, 2003 electric power blackout. Such that, 

timely and accurate corridor mapping and monitoring are indispensible to mitigate such 

disaster. Moreover, airborne LiDAR (Light Detection And Ranging) has been recently 

introduced and widely utilized in industries and academies thanks to its potential to 

automate the data processing for scene analysis including power line corridor mapping. 

However, today’s corridor mapping practice using LiDAR in industries still remains an 

expensive manual process that is not suitable for the large-scale, rapid commercial 

compilation of corridor maps. Additionally, in academies only few studies have 

developed algorithms capable of recognizing corridor objects in the power line scene, 

which are mostly based on 2-dimensional classification. Thus, the objective of this 

dissertation is to develop a 3-dimensional classification system which is able to 

automatically identify key objects in the power line corridor from large-scale LiDAR data. 

This dissertation introduces new features for power structures, especially for the electric 

pylon, and existing features which are derived through diverse piecewise (i.e., point, line 

and plane) feature extraction, and then constructs a classification model pool by building 

individual models according to the piecewise feature sets and diverse voltage training 

samples using Random Forests. Finally, this dissertation proposes a Multiple Classifier 

System (MCS) which provides an optimal committee of models from the model pool for 

classification of new incoming power line scene. The proposed MCS has been tested on a 

power line corridor where medium voltage transmission lines (115 kV and 230 kV) pass. 
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The classification results based on the MCS applied by optimally selecting the pre-built 

classification models according to the voltage type of the test corridor demonstrate a 

good accuracy (89.07%) and computationally effective time cost (approximately 4 

hours/km) without additional training fees. 

   



iv 
 

Acknowledgments 

I would like to express the deepest appreciation to my supervisor, Dr. Gunho Sohn, 

who provided me with his excellent guidance and great encouragement. Without 

intellectual and financial supports from him, I would never have been able to accomplish 

my research and this dissertation. He is all the time full of the joy and enthusiasm for the 

research achievements. I hope that I could be as lively, enthusiastic, energetic, and 

confident as him at home and work.  

I would like to extend my gratitude to the committee members, Dr. Costas 

Armenakis, Dr. Baoxin Hu, Dr. Regina Lee, Dr. Ruisheng Wang, and Dr. Minas 

Spetsakis, who offered many valuable advices and insightful discussions and suggestions 

on my research. Such great helps from them resulted in a considerable improvement over 

this dissertation. 

I would like to thank all the faculty members and graduate students in ESSE at York 

University, especially Marcia Gaynor who made hard works and dedications as a 

graduate program assistant and collaborators in GeoICT Lab., Yoonseok, Bruce, and 

Solomon. I would like to be more deeply thankful to Connie, who spent her time to 

review the first draft of my dissertation. 

I would also like to acknowledge Ontario Centres of Excellence (OCE), Natural 

Sciences and Engineering Research Council of Canada (NSERC) Discovery, MITACS, 



v 
 

GeoDigital International Inc. (GDI), and Weka developers as important contributors to 

my study with respect to financial support and experimental data and software provision. 

Finally, I am indebted to my family, who encouraged me and prayed for me 

throughout the time of my research. I am grateful to my father who trusted me and 

allowed me to the study abroad. 

  



vi 
 

Table of Contents 

Abstract .............................................................................................................................. ii 

Acknowledgments ............................................................................................................ iv 

Table of Contents ............................................................................................................. vi 

List of Tables .................................................................................................................... ix 

List of Figures .................................................................................................................... x 

List of Abbreviations ..................................................................................................... xiii 

Chapter One: Introduction .............................................................................................. 1 

1.1. Motivations........................................................................................................... 1 

1.2. Objectives ............................................................................................................. 5 

1.3. Contributions ........................................................................................................ 6 

1.4. Overview of the Proposed Approach ................................................................... 9 

1.5. Thesis Outline .................................................................................................... 12 

Chapter Two: Literature Review .................................................................................. 14 

2.1. LiDAR System Introduction .............................................................................. 14 

2.1.1. Airborne Laser Scanning (ALS) system ..................................................... 15 

2.1.2. Applications ................................................................................................ 18 

2.2. Classification ...................................................................................................... 26 

2.2.1. Grid-based approach ................................................................................... 28 

2.2.2. Point-based approach .................................................................................. 29 

2.2.3. Object-based approach ................................................................................ 31 

2.3. Power-line Risk Management ............................................................................ 34 

2.4. Ensemble methods .............................................................................................. 38 

Chapter Three: Classification Using LiDAR Point Features ..................................... 42 

3.1. Point-based Features .......................................................................................... 43 

3.1.1. Feature Extraction Method ......................................................................... 43 

3.1.2. Feature Descriptions ................................................................................... 46 

3.2. Random Forests Classifier ................................................................................. 52 



vii 
 

3.2.1. Basic Principle ............................................................................................ 53 

3.2.2. Statistical Measure ...................................................................................... 55 

3.3. Classifier Optimization ...................................................................................... 57 

3.3.1. Balanced Learning ...................................................................................... 57 

3.3.2. Optimal Feature Subset ............................................................................... 58 

3.4. Experiment Setups .............................................................................................. 59 

3.4.1. Study Area .................................................................................................. 59 

3.4.2. Experiment Environments .......................................................................... 63 

3.4.3. Accuracy Assessment ................................................................................. 63 

3.5. Experimental Results.......................................................................................... 64 

3.5.1. Balanced vs. Unbalanced Learning ............................................................. 64 

3.5.2. Point Feature Refinement ........................................................................... 65 

3.5.3. Sensitivity Analysis to Training Sites ......................................................... 67 

3.5.4. Classification and Results ........................................................................... 68 

3.5.5. Comparison of Point-based and Grid-based Feature Extraction ................. 72 

3.5.6. Computational Complexity ......................................................................... 75 

3.6. Summary ............................................................................................................ 76 

Chapter Four: Classification Using LiDAR Object Features ..................................... 78 

4.1. Pre-processing: Point Segmentation................................................................... 79 

4.2. Object-based Features ........................................................................................ 82 

4.2.1. Feature Variables ........................................................................................ 83 

4.2.2. Unused Points ............................................................................................. 90 

4.3. Ensemble system ................................................................................................ 90 

4.3.1. General combining methods ....................................................................... 91 

4.3.2. Ensemble system design ............................................................................. 92 

4.4. Experimental Results and Discussion ................................................................ 94 

4.4.1. Experiment Setup ........................................................................................ 94 

4.4.2. Linear features vs. Planar features .............................................................. 95 

4.4.3. Combining method selection ...................................................................... 96 



viii 
 

4.4.4. Classification results ................................................................................... 98 

4.4.5. Comparison with classification using point-based features ...................... 102 

4.5. Summary .......................................................................................................... 105 

Chapter Five: Classification using Multiple Classifier System ................................ 107 

5.1. Introduction ...................................................................................................... 108 

5.1.1. General MCS scheme ............................................................................... 109 

5.1.2. Diversity .................................................................................................... 110 

5.1.3. Combining methods in MCS .................................................................... 115 

5.2. MCS development ............................................................................................ 117 

5.2.1. Feature based MCS ................................................................................... 118 

5.2.2. Scene based MCS ..................................................................................... 119 

5.2.3. Extended MCS .......................................................................................... 121 

5.3. MCS based Classification ................................................................................ 122 

5.3.1. Experiment Setup ...................................................................................... 122 

5.3.2. Classification Results of FMCS ................................................................ 125 

5.3.3. Classification Results of SMCS ................................................................ 129 

5.3.4. Classification Results of EMCS ............................................................... 132 

5.4. Summary .......................................................................................................... 137 

Chapter Six: Conclusions ............................................................................................. 139 

Reference ....................................................................................................................... 147 

  



ix 
 

List of Tables 

Table 2-1. Comparison of grid-, point-, and object-based classification approach .......... 27 

Table 3-1. 3D airborne LiDAR features ........................................................................... 44 

Table 3-2. Class-weighted and sample-weighted accuracies of Type I and Type II 

classifier ............................................................................................................................ 68 

Table 3-3. Confusion matrix across all sites (F=3, T=60) ................................................ 72 

Table 3-4. Confusion matrix of the grid-based classifier (F=3, T=60) ............................. 74 

Table 3-5. Subtracted confusion matrix of grid-based classifier from the point-based 

classifier ............................................................................................................................ 74 

Table 3-6. Computational time of point-based and grid-based methods (minutes/km) ... 75 

Table 4-1. Descriptions of linear and planar features ....................................................... 84 

Table 4-2. Classification accuracies for each individual classifier (CL and CP) ............... 96 

Table 4-3. Classification performance comparison of fusion methods ............................ 98 

Table 4-4. Combination operator per classification accuracies ........................................ 98 

Table 4-5. Confusion matrix…………………………………………………………....102 

Table 4-6. Classification accuracy comparison of point-based and object-based 

approaches ....................................................................................................................... 104 

Table 4-7. Computational time of object-based method (minutes/km) .......................... 105 

Table 5-1. Class-relevant characteristics for each training site ...................................... 124 

Table 5-2. Subtracted confusion matrix of C5 to (C1 and C4) ......................................... 128 

Table 5-3. Confusion matrix of C5 .................................................................................. 129 

Table 5-4. Classification accuracies of single classifiers and feature fused classifiers...131 

Table 5-5. Confusion matrix of C1
TR115+TR230 ................................................................. 132 

Table 5-6. Classification accuracies of single classifiers and scene fused classifiers .... 132 

Table 5-7. Confusion matrix of EMCS…………………………………...………….....135 

Table 5-8. Computational cost of EMCS (minutes/km) ................................................. 135 

   



x 
 

List of Figures 

Figure 1-1. Overview of the proposed Multiple Classifier System .................................. 12 

Figure 2-1. An overview of airborne LiDAR system and the basic principle for geo-

location (Bang, 2010)........................................................................................................ 16 

Figure 2-2. Relative misalignment between strips before and after strip adjustment ....... 18 

Figure 2-3. LiDAR application for corridor mapping ...................................................... 25 

Figure 2-4. Compatible vegetation for transmission ROW (Rights Of Way) .................. 35 

Figure 2-5. Detailed zone partitions and criteria for transmission ROW ......................... 36 

Figure 2-6. Vegetation clearance analysis results (VRMesh)...………………………….36 

Figure 3-1. Important feature visualization ...................................................................... 45 

Figure 3-2. Vertical Profile feature; a cylindrical neighbourhood (left) and status (on or 

off) of vertically divided segments (right) for each class ................................................. 52 

Figure 3-3. Logical architecture diagram of Random Forests .......................................... 54 

Figure 3-4. Aerial image (the first row) and LiDAR data (other rows) of the study area; 

LiDAR coverage (white line) and two voltage types of transmission lines (red lines) on 

the aerial image; the LiDAR is a reference data which is subdivided into 16 subsets 

including vegetation, wire, pylon, building, low object and ground; Type II sites (site 

name bounded by a black rectangle) and Type I sites (others). ........................................ 62 

Figure 3-5. Class-weighted accuracies of unbalanced and balanced learning for site T00

........................................................................................................................................... 65 

Figure 3-6. Feature importance and feature selection (black boxed features) .................. 66 

Figure 3-7. Feature generation using PCA (Principle Component Analysis) ................... 66 

Figure 3-8. Class-weighted accuracies for each site: Type I sites and Type II sites (black 

boxed). .............................................................................................................................. 69 

Figure 3-9. Classification results of Type I site (a) and Type II site (b); low object, 

building, vegetation, wire and pylon assigned in the order from light to dark gray ......... 69 



xi 
 

Figure 3-10. Classification map for all sites; vegetation (green), wire (red), pylon (blue), 

building (building), low object (gray) and ground (remainder); Type II sites (site name 

bounded by a black rectangle) and Type I sites (others). ................................................. 71 

Figure 3-11. Classification results of two approaches ...................................................... 75 

Figure 4-1. Considerable classification improvement over building ridges and edges by 

introducing object-based features (Kim and Sohn, 2010) ................................................ 79 

Figure 4-2. Results of line and plane extraction for each class object (building, tree, 

power line, pylon and low object from the top) ................................................................ 81 

Figure 4-3. Classification workflow using an ensemble system composed of multiple 

classifiers (linear and planar classifier) ............................................................................. 93 

Figure 4-4. Class relevant accuracy comparison of classifier CL and CP……………....96 

Figure 4-5. Classification map for all sites; vegetation (green), wire (red), pylon (blue), 

building (building), low object (gray) and ground (remainder) ...................................... 101 

Figure 4-6. Class-weighted accuracies for each site ....................................................... 102 

Figure 4-7. A comparison of classification maps from the point- and object-based 

method………………………………………………………………………………......104 

Figure 5-1. General framework of Multiple Classifier System ...................................... 110 

Figure 5-2. Feature-based MCS fusing classifiers built with point, linear, and planar 

features. ........................................................................................................................... 119 

Figure 5-3. Scene-based MCS fusing classifiers trained from low, medium, and high 

voltage type sample. ........................................................................................................ 120 

Figure 5-4. Extended MCS fusing FMCS and SMCS……………………………….…121 

Figure 5-5. Training samples taken from 69kV, 115kV, 230kV, and 500kV corridor. . 123 

Figure 5-6. Classification accuracy comparison of each classifier……………………125 

Figure 5-7. Accuracy per class of three best classifiers. ................................................. 126 

Figure 5-8. Classification work flow of each MCS (FMCS, SMCS, and EMCS) ......... 133 

Figure 5-9. Accuracy comparison of each MCS ............................................................. 133 

Figure 5-10. Final classification map of EMCS ............................................................. 136 

Figure 6-1. Exemplar database for building, tree, power line, and pylon ....................... 145 



xii 
 

Figure 6-2. Pylon classifier building from exemplars .................................................... 145 

Figure 6-3. Pylon classifier building from exemplars…………………………………145 

 

  



xiii 
 

List of Abbreviations 

ALS Airborne Laser Scanning 
CRF Conditional Random Field 
DTM Digital Terrain Model 
EM Expectation Maximization 
EMCS Extended Multiple Classifier System 
FI Feature Importance 
FMCS Feature-based Multiple Classifier System 
GEOBIA GEographic Object-Based Image Analysis 
GMM Gaussian Mixture Model 
GPS Global Positioning System 
IB In Bag 
IMU Inertial Measurement Unit 
kV kilovolt 
LiDAR Light Detection And Ranging 
MCS Multiple Classifier System 
MLC Maximum Likelihood Classifier 
MLS Mobile Laser Scanning 
MRF Markov Random Field 
OBF Object Based Feature 
OBPA Object-Based Point cloud Analysis 
OOB Out Of Bag 
PBF Point Based Feature 
PCA Principle Component Analysis 
PLS-CADD Power Line System-Computer Aided Design and Drafting 
QA/QC Quality Assurance/Quality Control 
RANSAC RANdom SAmple Consensus 
ROW Right Of Way 
SHOALS Scanning Hydrographic Operational Airborne LiDAR Survey 
SMCS Scene-based Multiple Classifier System 
SVM Support Vector Machine 
TLS Terrestrial Laser Scanning 
UAV Unmanned Aerial Vehicle 
  



1 
 

1. Introduction 

1.1. Motivations 

Inadequate vegetation management within transmission line right-of-way (ROW), a 

segment of land used for the route of a transmission line, has been reported as a main 

cause of 2003 North America blackout (Final Report on the August 14, 2003 Blackout, 

2004). This power outage led us for an awareness of importance of effective vegetation 

managements on and near the ROW. It affected an estimated 10 million people in Ontario 

and 40 million people in eight states in USA. Outage-related financial losses were 

estimated at $7 -10 billion USD. The Final report (Final Report on the August 14, 2003 

Blackout, 2004) submitted to Congress stated that  

“had all trees which contributed to the August 14th outage been adequately pruned 

or removed prior to the event, the blackout would likely not have occurred.”……the 

vegetation and corridor management operations of the offending companies were within 

the range of current “average” industry standards…..we believe and strongly 

recommend that the industry “average” or standard needs to be substantially improved.”  

The failure of vegetation management was also a common factor in contributing 64 

local outages in America since the 2003 Blackout (NERC annual report, 2013). The 

North American Electric Reliability Corporation (NERC) has designed transmission 

vegetation management compliance, FAC-003-1, to improve the reliability of the electric 

transmission systems by preventing outages from vegetation on ROW, minimizing 
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outages from vegetation adjacent to ROW, maintaining clearances between transmission 

lines and vegetation, and reporting vegetation related outages to regional transmission 

organizations (FAC-003-1, 2005). 

Besides the standards, these vegetation related outages could easily have been 

mitigated by early fault diagnosis using remote sensing technology. However, current 

acquisition costs and the related manually intensive process of reviewing the remotely 

sensed data make such a service impractical and commercially unviable. To overcome 

this limitation an automated process is urgently required to determine the potential impact 

on power-line safety by observing changes in clearances to vegetation and other objects, 

operating temperature, the detection of new buildings or structures alongside or between 

towers and their associated line spans, erosion-induced terrain changes, and tree health 

and the detection of physical damage or deterioration of structures, wires or other assets. 

Traditionally such corridor analysis has relied on labour intensive manual approaches that 

entail manual inspection or the capture and inspection of video footage captured on site 

by ground personnel or during airborne patrols. Airborne LiDAR shows great potential 

for the cost effective capture of corridor information for mapping and inspection.  This is 

because they can without the need for extensive ground control provide high dense point 

cloud of corridor objects with high density and three-dimensional information. In 

addition to their efficient and robust geo-referencing capability, the sensors provide a 

wide range of corridor information, including laser intensity, discrete laser echoes, and 

waveform data which provides an almost unlimited number of laser returns and thus 

results in a more detailed description of object structure. LiDAR having these informative 



3 
 

capacities has only very recently been introduced for use in corridor mapping 

applications and consequently research in this area is far from mature (Ussyshkin and 

Smith, 2007).   

The scene analysis for the power-line change monitoring is a tedious task as it 

requires precise detection of all key corridor objects (i.e., power-lines, towers, insulators, 

splices, switches and other components as well as the terrain, buildings, trees, etc). Once 

data related to a line is established, a careful periodic comparison of the model to future 

datasets taken at different times under possibly varying conditions is necessary to detect 

changes. At present, the state-of-the-art technologies still utilize simple processing that 

works with a high level of manual interaction and supervision. Achieving a high level of 

automation in data processing chains is urgently required in order to meet the needs of 

the power-line industry. The complexity of corridor scene content and the huge data size 

currently exceeds the ability of current state-of–the-art machine vision systems or LiDAR 

processing systems to accurately detect corridor objects and safely recognize all possible 

threats to a power-line systems and human intervention and inspection is as such the 

primary methodology, which is costly, slow, tedious and expensive. Even partial 

automation of this task will greatly increase an analyst's productivity and enhance the 

reliability of the results. 

Many utility companies have considerable amount of knowledge obtained through 

repetitive works such as classification, structure modeling, clearance report, etc. However, 

they do not utilize the gained knowledge for future works even though the work is being 
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done in the same area. Such sufficient knowledge contains assigned class labels for 

individual LiDAR points, transmission line model, structure position, structure type, and 

vegetation violation area, and corridor description (e.g., voltage type, topographic 

information, and so on) as well as raw LiDAR data. The knowledge can be categorized 

and analyzed to extract additional information such as features, statistics, and metrics for 

each category. This accumulated knowledge, recently referable as “Big Data” (MIKE 

2.0), in terms of classification problem leads for more accurate and precise mapping of 

unknown data if it is possible to filter out appropriate knowledge according to very 

fundamental information of the data such as, for an example, voltage type, pylon type, 

and so on for power line corridor. Here, an issue on the “Big Data” is how to integrate 

and mine heterogeneous and complex information obtained from different sources, e.g., 

multiple data captured by different sensors at different time and multiple features 

extracted from different samples. A Multiple Classifier System (MCS), also referred as 

an ensemble system, potentially provides advantageous framework for reducing 

computational overhead and complexity (Crawford and Kim, 2009) by not directly 

handling a complex problem but decomposing it into sub-problems and combining 

individual solutions to them. Such consensus decision making of MCS has great strength 

in reducing the risk of leading to poor decisions (Dara, 2007).  

In summary, this study is motivated by following: 

- Demands of power line mapping for effective vegetation management in ROW 

- Potentials of airborne LiDAR emerging with cost-effectiveness 
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- Demands of automated processing 

- Classification ensemble using already gained knowledge 

1.2. Objectives 

Power line mapping today is an on-site surveying process that urgently requires the 

improved capability to quickly and accurately detect, classify and monitor objects within 

the corridor (Flood, 2011). These key corridor objects include terrain, vegetation, towers, 

power lines, buildings, roads and waterways. Traditionally such corridor scene analyses 

have relied on labour-intensive manual approaches that entail investigation of video 

footage captured on site. Recently, however, airborne LiDAR (Light Detection And 

Ranging) has attracted much attention for its potential to automate the complicated data 

processing tasks required for corridor scene analysis (Ituen and Sohn, 2010). This is 

because airborne LiDAR can rapidly provide highly dense and accurate three-

dimensional (3D) information of corridor objects without the use of ground control. 

Having such high quality 3D information will facilitate difficult photogrammetric 

computer vision tasks, such as feature extraction, feature grouping and contextual 

analysis. Despite its potential, thus far not much research effort has been made employing 

airborne LiDAR data to explore classification methods of the corridor scenes. Hence, 

today’s corridor mapping practice still remains an expensive manual process that is not 

suitable for the large-scale, rapid commercial compilation of corridor maps (Liang et al., 

2011). Apart from the automation, another challenging issue of the power line corridor 

classification is to resolve difficulty in handling intra-class variation, particularly 
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electricity pylon exhibiting different shape, size, material (e.g., steel, wood, and concrete), 

and structure (e.g., pole and truss) depending on deploying region and supplying voltage. 

To address the indicated issue, this dissertation aims at developing an automated and 

knowledge-based classification method of power line corridor from LiDAR data. To 

reach the research aim, following achievements are required: 

1. Development and investigation of diverse LiDAR features for the corridor 

objects (i.e., terrain, power line, electric pylon, building, vegetation, and 

remaining objects), each of which is able to distinguish one class object from 

others. 

2. Examination of the potential of a supervised learning classifier, specifically 

Random Forests, in the classification of the corridor objects with airborne 

LiDAR data. 

3. Production of multiple classifiers with considerations of diversity by training 

them using either different feature sets or different training samples. 

4. Construction of an ensemble system which accommodates the built classifiers 

and provides an optimal committee of classifiers for unknown LiDAR data to 

be classified. 

1.3. Contributions 

Three most significant contributions of this dissertation to power line scene 

classification using LiDAR are enumerated. The first is automation in classification 
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which is able to classify large-scale corridors time-effectively. The second is providing a 

robust classification method which is highly flexible about variances within the same 

class object. The third is the use of knowledge-based classification which recycles 

already gained information from the past classification works as cues for future works. 

The aforementioned contributions are detailed as follows: 

Automation in classification: LiDAR system can capture a large region, an entire 

corridor (i.e., station to station) for power line, and represent its scene with massive point 

cloud. For example, raw LiDAR data for a 500kV power line corridor (200km length and 

150m width) near a forest area is recorded approximately 40GB (Giga Bytes) in a binary 

format and 0.2 billion points. Such a huge data can be collected in several days, but 

manually processing it is not achievable in time. To solve the limitation with manual 

processing, this dissertation designs and implements a prototype of classification 

ensemble system which achieves high rate of automation (larger than 90%) in feature 

extraction, classifier building, classifier optimization, classifier selection, and classifier 

fusion. Human hands are only required for converting outputs at the current stage into 

inputs at the next stage. Moreover, the system is able to classify 1km of power line 

corridor in approximately four hours, which is more time-efficient than manual 

classification (8 hours/km from our experience). 

Robust classification: A critical problem with traditional supervised classification 

methods is building training samples for new data and producing reference data by 

manually classifying the selected training samples. This task will be repeated for new 
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data or data showing different characteristics from the training samples, i.e., a classifier 

built with 69 kV samples, which contains distribution lines and small pylons, cannot be 

applied to 500 kV data, which contains bundled transmission lines and complex shaped 

tall pylons. The suggested method in this dissertation constructs an ensemble system and 

obtains diverse classifiers, each of which is built with samples taken in a specific power 

line environment. This study categorizes power line corridors according to their carrying 

voltage. For classification of an unlabeled corridor the ensemble system makes most 

relevant classifiers to the corridor (i.e., classifiers trained using same voltage type of 

training sample as the corridor) greatly involve in the classification by assigning higher 

weight compared to other classifiers when classifiers are combined. For example, the 

weight value for the relevant classifiers is 1, while 0 for others. Without training new 

additional classifiers, the experimental results in chapter 5 present that the ensemble 

system considering characteristics of scene objects yields better classification accuracy 

(89.79%) than the best one (88.05%) among the single classifiers. 

Knowledge-based classification: Considering repetitive working characteristics of 

power-line monitoring, it is important to support a knowledge-based mechanism for 

power line scene classification. However, current state-of-the-art solutions still remain as 

being static and deterministic decision-making process. Moreover, even though power 

utility companies have possessed considerable knowledge obtained from classification 

works carried out in the past for the monitoring, they do not recycle the gained 

knowledge for future classification jobs. The reuse of such knowledge will reduce a great 

amount of workload and financial burden for the companies. Engaging with this study, 
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the knowledge can be used to build a large database where a lot of classifiers live and 

they are able to discriminate the diversities in class, physical shape, size, site, voltage 

type, and so on. An ensemble system selects a committee of classifier by considering 

characteristics of scene objects in new incoming data without additional training and 

manual classification jobs and classifies the data. Due to a difficulty in obtaining 

company’s assets and building the database (numbers of classifiers need to be trained), 

this study develops a proto type of the ensemble system and demonstrates a potential of 

practical use in power utility industries. 

1.4. Overview of the Proposed Approach 

This dissertation examined three different classification approaches to classify 

LiDAR data of power line corridors. However, first two methods (Chapter 3 and 4) are 

developed to construct a Multiple Classifier System (Chapter 5) which is suggested in 

this dissertation. 

Classification using point-based features (Research Phase I): Traditional 

classification methods using airborne LiDAR mostly treat not individual points, but 

individual pixels which are generated by interpolating LiDAR points into a 2D grid space. 

These methods, called grid- or pixel-based classification, perform feature extraction and 

classification for each pixel, which assign a class label to all the membership points in the 

pixel. Thus, they are straightforward and low cost in terms of computation complexity. 

However, they are inappropriate for the power line corridor classification due to a 

limitation with discriminating multiple class objects in case present in the pixel which 
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frequently happens in power line corridors such as a vertical overlap of transmission line 

and terrain. This dissertation therefore suggests point-based classification that extracts 

features and assigns a class label for each single point. 21 LiDAR features are considered 

to characterize each of key corridor objects and supervised learning method, Random 

Forests, is employed for building classification model from the features. This study has 

improved classification performance through the classification model optimization 

including optimal training sample selection, balanced learning, relevant feature selection, 

and feature de-correlation. 

Classification using object-based features (Research Phase II): In the 

aforementioned point-based classification method, the point features extracted from 

neighbors affect the class labeling. For such reason, classification errors are occasionally 

observed over some regions, where neighbors are not sufficiently gathered such as 

building roof edges, tree tops, etc. This error pattern, called “salt and pepper” effect in 

image classification problem, is frequently shown in the pixel-based classification 

method. To remove the pattern, Hay et al. (2005) introduced Geographic Object-Based 

Image Analysis (GEOBIA) which partitions an image into meaningful pixel groups and 

treats the groups as spatial units for classification. Likely, for point cloud Object-Based 

Point cloud Analysis (OBPA) has been introduced by Rutzinger et al. (2006). The OBPA 

concept is employed to lead for classification improvement over class objects having a 

representative spatial characteristic such as plane-likeness. This dissertation produces 

objects (groups of points) by transforming point cloud into two object domains, line and 

plane which are able to characterize line- (e.g., transmission line) and plane-like objects 
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(e.g., building roof) respectively, using a segmentation algorithm. Object features are 

then derived from each point group and interaction with its neighbors. Also, this 

approach utilizes Random Forests to build a classification model and performs same 

optimization procedures introduced in the point-based classification. 

Classification using Multiple Classifier System (Research Phase III): This 

dissertation finally introduces MCS, also referred as ensemble classifier or classifier 

fusion, which combines a committee of pre-built classification models (or classifiers) for 

decision making. The strength of the MCS is that it mostly outperforms any of single 

models if high diversity between its membership models is maintained. For such a great 

advantage this study applies the MCS framework to multiple classification models early 

produced through point- and object-based feature extraction and classification, termed 

Feature-based MCS (FMCS). However, a problem with the FMCS is no guarantee of 

consistent results over power line corridors showing diverse characteristics for a class 

object, i.e., intra-class variations. As a solution, this dissertation builds multiple 

classifiers trained under different environment per carrying voltage: 69kV, 115kV, 

230kV and 500kV. It is supposed that a certain class object, especially transmission line 

and electric pylon, in same voltage corridors presents similar spatial characteristics and 

this assumption is practically convincing due to their construction compliance restricted 

on voltage type. In the MCS, the multiple classifiers are optimally selected depending on 

the voltage type of new incoming corridor and they are combined for classification, 

termed Scene-based MCS (SMCS). This dissertation finally designs a hierarchical MCS 

composed of the FMCS and SMCS, termed Extended MCS (EMCS), which is the 
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suggested classification system through this dissertation. Figure 1-1 shows an overview 

of the EMCS (chapter 5), the classification model pool build-up from models produced 

by the point- (chapter 3) and object-based classification method (chapter 4), and how to 

classify an unknown scene using the model pool. The EMCS optimally selects 115 kV 

and 230 kV models based on prior information that the unknown scene is a medium 

voltage corridor where a range of 115 to 230 kV transmission lines pass. Then it 

combines outputs from the selected classification models to get classification results of 

the corridor. 

 

Figure 1-1. Overview of the proposed Multiple Classifier System 
 

1.5. Thesis Outline 

This dissertation is divided into six chapters: 
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Chapter 1 presents an introduction of this study including motivations, objectives, 

and contributions. 

Chapter 2 addresses backgrounds to understand this thesis and provides a literature 

review to highlight a need of this study. 

Chapter 3-5 introduce methodologies challenged and suggested in this study. Chapter 

3 and 4 introduce two feature sets, point-based and object-based features, to separate 

power line corridor objects, each of which is derived through a specific piecewise 

analysis. Also, in those chapters a supervised learning algorithm, i.e., Random Forests, is 

introduced to build a classification model from each feature set. Chapter 5 introduces a 

Multiple Classifier System (MCS), which is a proposed classification system. The MCS 

combines the pre-built classification models generated from the features addressed in 

chapter 3 and 4 and the training samples per voltage type.  

Chapter 6 summarizes the main conclusion of this dissertation and presents outlooks 

of future works for more improvements.  
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2. Literature Review 

2.1. LiDAR System Introduction 

LiDAR (Light Detection And Ranging) or laser scanning system is a data collection 

method based on the laser mechanism, which leads to direct and cost-effective 3D 

measurement with high accuracy. The data collected from the LiDAR systems is 

commonly a point cloud representing the scanning targets such as a city, forest, coast, 

road, railway, tunnel, building façade, and so on. The point cloud is geo-referenced, i.e., 

positioned by x, y, and z values on a certain coordinate system, with the assistance from 

GPS (Global Positioning System) and IMU (Inertial Measurement Unit). Such geo-

referenced data is utilized for the purpose of mapping, recognition, and classification. 

Depending on how the laser scanner is being mounted, the term of the LiDAR system is 

interchangeable with Airborne Laser Scanning (ALS) on an airplane or helicopter; 

Mobile Laser Scanning (MLS) on a vehicle or train; and Terrestrial Laser Scanning 

(TLS) system on a tripod or other stationary mount. Recently, Unmanned Aerial Vehicle 

(UAV), an aircraft without a human pilot aboard, is becoming the most promising 

platform for a laser scanner for economic reasons. However, the data processing 

techniques needed to produce a point cloud from raw data acquired by the UAV system 

are not concrete. The UAV system requires more carefulness to generate a point cloud 

complete on geometric quality because the UAV is more sensitive to the platform 

fluctuation and vibration than the ALS. Thus, the ALS system has more benefits in data 

quality, collection speed, and scanning coverage compared with other LiDAR systems. 
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Due to the advantages mentioned above, this study utilized LiDAR data acquired by the 

ALS system for the power line corridor classification. 

2.1.1. Airborne Laser Scanning (ALS) system 

Early day ALS system has been introduced in the 1970’s by NASA to use it as a 

prototype for the practical sensor deployment on spaceships (McCormick, 2005). Since 

then, the ALS system evolved with the advancement of GPS and IMU technology. 

Moreover, these days it has been widely applied to various fields such as urban planning 

(Yu et al., 2010; Sohn and Dowman, 2007), forest inventory analysis (Coulston et al., 

2012; Yu et al., 2011), coastal area mapping (Richter et al, 2011; Nayegandhi and Brock, 

2009; Chust et al., 2008), corridor mapping (Jwa and Sohn, 2012; Yao et al., 2011; 

McLaughlin, 2006), DTM (Digital Terrain Model) generation (Lu et al., 2009; Sohn and 

Dowman, 2008) for its advantage of a precise and rapid data collection. The ALS system 

is typically composed of laser scanners, GPS and IMU. The leading manufacturers of the 

laser scanner are RIEGL (RIEGL), Optech (Optech), and Leica Geosystems (Leica) and 

their scanner models are LMS-Q series, ALTM, and ALS, respectively. The GPS and 

IMU are responsible for tracking and attitude measuring of an airplane respectively, 

where Applanix (Applanix) is a major provider of GPS/IMU system named POS AV. 

Also, there are several companies possessing airplanes integrated with the 

aforementioned laser scanner and GPS/IMU (i.e., built-in ALS systems): TopEye, Frugo, 

and TopoSys. And they operate the ALS system and provide LiDAR data for clients.  
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The LiDAR is an active sensor which sends a narrow and high energy ray from a 

laser transmitter to the scene and records the reflected energies. The basic principle of 

LiDAR data acquisition is based on the measurement of the laser ray direction and the 

ray travel distance. First, the laser beam fired from the transmitter on the airplane flying 

at a certain altitude reaches a target (e.g., ground). Secondly, it returns back to the 

receiver after the target reflection. Third, the respective transmission and reflection 

produce transmitted and received signals. As a result, the travel time (ttravel) of the laser 

ray can be derived from the time difference between the signals, and the round trip 

distance (2ρ) of the ray is calculated using the ttravel and laser speed (i.e., light speed), c. 

Finally, the range measurement (ρ) from the laser to the target is obtained as seen in Eq. 

2-1. 

 ρ ൌ
c ൈ t୲୰ୟ୴ୣ୪

2
 (2-1) 

 

 

Figure 2-1. An overview of airborne LiDAR system and the basic principle for geo-location (Bang, 
2010) 
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For more detailed description of the LiDAR geo-location as shown in Eq. 2-2. And 

Figure 2-1, the target coordinate ( Ԧܺீ) is simply computed by the transformations between 

the four reference frames when the LiDAR systematic errors addressed in the following 

section are ignored: the mapping, GPS/IMU body, laser unit, and laser beam frame (Bang, 

2010). The laser unit frame indicates a constant coordinate system of the laser body. 

While, the laser beam frame considers the variations of laser scan angle during scanning, 

so the coordinate system varies every laser transmit. 

 Ԧܺீ ൌ Ԧܺ଴ ൅ ܴ௕
௠ ∙ ሬܲԦீ ൅ ܴ௕

௠ ∙ ܴ௟௨
௕ ∙ ܴ௟௕

௟௨ ∙  Ԧ (2-2)ߩ

where, Ԧܺ଴ coordinates of GPS/IMU body on the mapping frame  
 ሬܲԦீ  relative coordinates between the GPS/IMU body frame 

to the laser unit frame 
 

 Ԧ relative coordinates between the laser unit frame andߩ 
the target on the mapping frame 

 

 ܴ௕
௠ a rotation matrix between the mapping and GPS/IMU 

body frame 
 

 ܴ௟௨
௕  a rotation matrix between the GPS/IMU body and laser 

unit frame 
 

 ܴ௟௕
௟௨ a rotation matrix between the laser unit and laser beam 

frame 
 

However, practically more variables corresponding to random and systematic error 

need to be introduced in the LiDAR equation (Habib et al., 2009). The random errors are 

caused by imprecision of the instrumental measurement, while the systematic errors 

occur due to biases in the mounting parameters of the system components. In order to 

improve data quality by reducing such errors, the ALS system requires calibrations 

before and after a flight. Two calibrations are typically performed: system calibration, 

which ensures that individual hardware (scanner, IMU, and GPS) meets its allowable 

specification and that determines relative offsets between them. Whereas data calibration, 
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which leads to geometric and radiometric correction by conducting Quality 

Assurance/Quality Control (QA/QC) and intensity calibration respectively. The QA/QC 

verifies data coverage and compares elevations in strip overlap areas for the spatial 

correspondence between the strips (Habib et al., 2008). Figure 2-2 illustrates the results 

of the strip calibration by using conjugate points in overlapping two strips (red and blue).  

  

Figure 2-2. Relative misalignment between strips before and after strip adjustment 
 

Such LiDAR data spatially corrected by the QA/QC and calibration is extensively 

used for many applications due to following advantages: (1) high accuracy (vertical 

accuracy of ±15cm and horizontal accuracy of ±25cm at 3000m altitude), (2) fast data 

acquisition and big coverage, (3) weather/light independence, (4) canopy penetration, and 

(5) GCP (Ground Control Point) independence. The next section describes applications 

utilizing the LiDAR. 

2.1.2. Applications  

As the demand of high accuracy and rapid data acquisition increases in a variety of 

surveying and mapping fields, traditional field survey on sites is no longer a solution 

because it does not meet both requirements. On the other hand, the ALS system provides 

3D data with high accuracy, density, and cost-effectiveness. Over the past two decades, 
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the use of the ALS system has incrementally grown in terms of real-world application 

and recently, the LiDAR data is broadly applied for urban planning, forest mapping, 

coastal zone mapping, bathymetry mapping, and corridor mapping.  

Urban planning 

Amongst many LiDAR applications, urban mapping is the most typical application 

and classification of urban facilities based on their location and properties is a primary 

job in the urban mapping. Depending on the purpose and nature of the experiment, the 

facilities are classified into buildings (residential houses, commercial buildings, etc.), 

vegetation (tree, grass, etc.), road facilities (vehicles, roads, road sign, etc.) and so on. 

Such extracted mapping information could be integrated with other supplementary data 

such as digital map (Mason et al., 2007), optical image (Cheng et al., 2011; Lee et al., 

2008), and road network (Yao et al., 2011) to increase information quality and 

complexity. For example, 3D building modeling approaches using a fusion of building 

boundary and height information from the respective digital maps and LiDAR tend to 

bring better results than ones using LiDAR alone (You and Lin, 2011). This fusion 

approach has been introduced in many studies where building roof models are derived 

from LiDAR and building boundary lines are extracted from optical images (Cheng et al., 

2011; Lee et al., 2008; Rottensteiner et al., 2005). Alternatively, LiDAR change detection 

algorithm contributes to modifying and updating existing urban data (Hebel et al., 2013; 

Matikainen et al., 2010) and this automatic data update decreases the need of additional 

data acquisition and brings the cost reduction. Furthermore, 3D full analysis using 

LiDAR allows for 3D city modeling at a highly accurate rate. For vegetation (mostly 
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trees), two of the most popular applications are to classify vegetation types from raw 

LiDAR point cloud (Ko et al., 2013; Yao et al., 2012) and to separate single trees from 

the classified vegetation point cloud (Zhang et al., 2014; Yao and Wei, 2013). The 

individual trees are identified in terms of theirs species based on tree measures such as 

tree shape, height, crown size (Zhang et al., 2014) and then modeled in 3D depending on 

the tree inventories and species (Côté et al., 2009). This information is crucial for 

estimating tree biomass (Hecht et al., 2008) which can be used as a good estimation of 

carbon storage in a city (Raciti et al., 2014). On top of that, LiDAR data can also be 

useful for road extraction (Choi et al., 2008), vehicle detection (Yao and Stilla, 2011a), 

traffic monitoring & flow estimation (Yao et al., 2011), etc. However, recently MLS (Pu 

et al., 2011; Brenner, 2009) attracts more interest for those applications as compared with 

ALS since it produces much denser point cloud and has anticipated for better experiment 

results. 

DTM generation 

The generation of DTM (also referred as bare-earth surface) has been one of the most 

basic usage of LiDAR technology in the past and present. The DTM generation requires 

filtering out the ground (or terrain) from raw LiDAR data so that the above ground points 

can be separated from the ground points. Many terrain filtering algorithms have been 

developed over the past ten years. Examples are simple filtering which assigns a point 

with the lowest elevation in a local region to ground; morphological filtering which 

extends ground points if they are within a distance threshold (planimetric distance) to a 

seeded ground point (Vosselman, 2000); recursive filtering which recursively updates a 
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reference terrain surface by adding ground points obtained from the topological analysis 

between the previous reference surface and unattached points to the surface (Sohn and 

Dowman, 2008); surface-based filtering which removes above ground points from a 

surface model; which is initially constructed using all the points (Brovelli et al., 2004; 

Pfeifer et al.,2001) and segment-based filtering which identifies ground segments (points 

with a homogeneity are grouped as a segment) by comparing surface normal between 

already ground-assigned segments and others (Filin and Pfeifer, 2006; Sithole, 2005). To 

generate DTM, such classified ground points are converted into one of the formats, TIN 

(Triangulated Irregular Network), grid, mesh, and quad-tree. Regions occupied by the 

above ground points before the filtering have no ground point, so their elevations are 

inferred from the elevations of neighborhood for a smooth representation of the bare-

earth surface. This process is called interpolation. 

Vegetation mapping 

In vegetation mapping, the fact that a laser shot can penetrate into the foliage brings 

an extra attention to this study area because LiDAR data can populate randomly 

scattering points over tree stems, branches, leaves, shrubs, and grass which are mostly 

invisible on optical images. Moreover, a single LiDAR pulse is capable of generating 

multiple returns over trees and the returned echo patterns are different from non-

penetrable objects such as open ground and buildings. These characteristic contribute to 

the wide use of LiDAR for the vegetation mapping in both forested (Zhang et al., 2014; 

Ko et al., 2013) and urban areas (Yao and Wei, 2013; Hecht et al., 2008; Rutzinger et al., 

2008). The identified tree points are used for individual tree detection; that is the 



22 
 

grouping of a set of points into a single tree (Zhang et al., 2014; Yao and Wei, 2013). As 

ecological applications, studies for dead tree detection (Kim et al., 2009) and tree habitat 

mapping (Hill et al., 2002; Hyde et al., 2005) have examined. In these applications 

LiDAR is most often fused with optical images. Since LiDAR data over a tree contains 

3D point cloud of tree foliages, tree inventory metrics can be estimated such as Leaf Area 

Index (LAI), tree biomass, tree height, crown size, and diameter. Based on the retrieved 

or inferred information (tree species and tree inventory), 3D tree modeling studies have 

been performed (Côté et al., 2009). In addition to vegetation mapping, LiDAR data can 

be apply to the risk assessment and vegetation management such as the power line 

anomaly detection (Mills et al., 2010), forest fire modeling (Riano et al., 2003), and pest 

control (Coops et al., 2009). 

Coastal zone mapping 

In general, topographic ALS acquires no return over water bodies. This characteristic 

allows experiments such as coast line detection, which is deriving an adjacency between 

water body and land (Smeeckaert et al., 2013; Stockdon et al., 2002). Furthermore, 

remotely sensed LiDAR over inaccessible regions such as coastal cliffs and salt marshes 

is used to investigate an ecosystem in those regions (Kulawardhana et al., 2014). Spatial-

temporal LiDAR can analyze changes in a coastal zone such as erosion caused by sea 

waves on coastal cliffs (Richter et al., 2013), coastal line change by sediments (Adam, 

2006; Hilary et al. 2002), and sand volume variation by winds (Sallenger et al., 2003). A 

fusion with other sensory data, especially multi-spectral imagery, enables to conduct 
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habitat mapping for animals (Chust et al., 2008) and plants (Nayegandhi and Brock, 2009) 

which live near the shore. 

Bathymetry mapping 

As mentioned, topographic ALS system cannot get returns from water surface and 

water bottom because the laser pulse cannot travel through the water column. To 

compensate this limit, Optech Inc. manufactured a new ALS system, SHOALS (Scanning 

Hydrographic Operational Airborne LiDAR Survey) to maximize the laser penetration in 

the water by using a laser scanner emitting a short green pulse. Two bathymetric LiDAR 

systems, SHOALS 1000 and 3000 have been developed and are able to receive laser 

returns from coastal water with the maximum of 50 m water depth. Typically, the 

bathymetric LiDAR records two returns from a laser pulse; the first return occurs from 

water surface (surface return) and the second return is reflected from seabed (benthic 

return). Such two returns are collected and utilized to compute water depths (Durand et 

al., 2008). The water depth obtained from the bathymetric LiDAR is combined with 

DTM from the topographic LiDAR to produce a seamless evaluation model in a coastal 

zone covering shore and sea (Gesch and Wilson, 2001). Another characteristic of the 

bathymetric LiDAR is that the received signal contains a lot of backscattering 

information from the particles in the water as high turbidity weakens the laser penetration. 

By considering such undesirable effect of the water turbidity the depth estimation can be 

improved. The bathymetric LiDAR is also employed for seabed habitat mapping (Chust 

et al, 2010) and benthic classification (Collin et al., 2012; Narayanan et al., 2011) by 

using different benthic return patterns depending on seabed targets. Apart from SHOALS, 
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other popular bathymetry systems includes LADS (Fugro LADS) and Hawk Eye (Leica 

AHAB) manufactured by Fugro and Leica respectively. 

Corridor mapping 

Corridor mapping is the mapping of a region that has a narrow width and long length 

such as the mapping of power line, river, and road. Therefore, ALS systems for corridor 

mapping (<300m) operate at lower altitude compared with ones for urban mapping 

(>1000m). Such low-altitude airborne LiDAR leads for a dense point cloud. The power 

line corridor mapping (Figure 2-3) is one of the most crucial applications in countries 

with a relatively large continent such as United States, Canada, India and China because a 

massive number of power line utilities are needed to be built across the continent and 

regularly monitoring such utilities are too expensive. The main objective of monitoring 

the power line infrastructures is to find in advance potential risks threatening the power 

delivery. For more accurate power line anomaly detection, 3D power line corridor 

classification (Kim and Sohn, 2013) and 3D transmission line modeling (Jwa and Sohn, 

2012) have been studied from airborne LiDAR. Figure 2-3 shows results of classification 

(Figure 2-3(a)) and transmission line modeling (Figure 2-3(b)) from a corridor point 

cloud which is produced from optical images collected by a UAV, called 

photogrammetric point cloud. For another corridor mapping in river environment, the 

aforementioned bathymetric LiDAR is applied to estimate underwater bed elevations 

(Moretto et al., 2014). Furthermore, LiDAR data acquired for the same area on different 

dates is used for detecting changes on the river and its vicinity such as bank erosions (De 

Rose and Basher, 2011) and sediment transport amount estimation (Brasington et al., 
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2003). Along with the river bathymetry, other general applications such as 3D road 

extraction (Choi et al., 2008) and road centerline localization (Cai and Rasdorf, 2008) are 

designed. Additionally, there are road related applications for traffic monitoring such as 

vehicle detection and motion estimation (Yao and Stilla, 2011a; Yao et al., 2011b). 

Typically, MLS is more utilized than ALS for road applications since it collects denser 

and more accurate point cloud. 

(a) Corridor classification results 

(b) Power line modeling results with colorized point cloud (converted from optical images captured 
by UAV) 

Figure 2-3. LiDAR application for corridor mapping 
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2.2. Classification 

The classification of LiDAR points into objects is known as a computer vision 

process for scene understanding. This process transforms remotely sensed data into 

information that can be utilized for application by properly assigning the class labels 

from a finite set of object classes to unknown observations. Supervised classification 

learning is an increasing trend in remote sensing community due to its robustness to 

given data. The literature review demonstrates two approaches in the supervised 

classification: generative and discriminative methods. Generative approach derives a 

posterior probability distribution over the data and class labels based on Bayesian 

theorem, whereas the discriminative approach directly models the data or estimates a 

decision boundary (Bishop, 2006) between the given data. For LiDAR point cloud 

classification, the discriminative approach such as Support Vector Machine (SVM) 

(Samadzadegan et al., 2010; Lodha et al., 2006; Foody and Mathur, 2004), ensemble 

methods (decision tree, boosting, bagging, and Random Forests) (Lodha et al., 2007a; 

Guo et al., 2011; Carlberg et al., 2009), and Conditional Random Fields (CRF) 

(Niemeyer et al., 2011) are popular methods due to the high speed, simple model and 

operational capability to handle large volume of data compared to the generative 

approach such as Bayesian classifier (Neuenschwander, 2009), Gaussian Mixture Model 

(GMM) (Lodha et al., 2007), and Marko Random Fields (MRF) (Zhang and Sohn, 2010) 

according to Niemeyer et al. (2014). On top of these methods, supervised classification 

can be applied with a graph-based representation to examine relevance on the class label 

(in MRF) or on the feature value (in CRF) with the information provided by the 
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neighboring values. This graph-based approach shows a higher classification quality (Lu 

et al., 2009). Another way for classification is to create a classification rule, called rule-

based approach which generates a decision rule (a decision tree or a classifier) by 

recursively partitioning a given data and producing decision boundaries. Most traditional 

rule-based approaches tend to build a single classifier. However, some empirical 

comparative studies demonstrate that such single classifier works for solving some 

classes in learning problems but not all situations (Mitche et al., 1994). Recently 

emerging ensemble system such as bagging, boosting, and RF is able to solve this 

limitation by integrating decisions made by multiple classifiers which are built by using 

different algorithms and tend to be more flexible in diverse situations.  

Table 2-1. Comparison of grid-, point-, and object-based classification approach 
Approach Grid-based Point-based Object-based 

Segment size Points in a pixel A single point Points having similarity 

Segmentation 
Grid generation 

(Forlani et al., 2006) 
- 

Region growing, 
Clustering  

(Pu and Vosselman, 
2006; Filin and Pfeifer, 

2006) 

Feature extraction 
Statistics of 

membership points 
(Guo et al,., 2011) 

Properties of each 
point 

Statistics of 
neighboring points 

(Niemeyer et al., 2011) 

Statistics of membership 
points 

Relationships with 
neighboring segments 
(Lim and Suter, 2009) 

Classification scale A pixel A point A segment 

Advantages Easy segmentation 
3D full analysis 

(Carlberg et al., 2006) 
Fast and cost-effective 
(Yang and Dong, 2013) 

Disadvantages 
Unsuitable for 

multi-objects in a 
pixel 

“salt and pepper” 
High cost in 
computation  

(Niemeyer et al., 2014) 

Segmentation affects 
classification 
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Thus, all the classification algorithms require a feature set measuring characteristic 

properties of the object classes for each observation which provides basic input to 

differentiate one class from others or to group each class into a single cluster based on the 

similarity of the features (Guo et al., 2012; Samadzadegan et al., 2012). As seen in Table 

2-1, typically for LiDAR point cloud classification, the grid-based, point-based and 

object-based approaches are common methods for extracting the features. The following 

sections describe three feature extraction methods for LiDAR classification.  

2.2.1. Grid-based approach 

Grid-based approach considers a 3D laser point cloud as a raster image, which is 

represented as a 2D array. In this method, the raw LiDAR point cloud is interpolated into 

a grid space and each grid (pixel) contains representative information such a mean height, 

number of returns, laser intensity, backscattering coefficient, width of reflected pulse, and 

so on. The classification approaches categorized in section 2.2 can be applied to 

individual pixels or groups of pixels. A classification rule for a specific object can be 

constructed from geometric and topological relations between regions resulted from 

segmentation over grid LiDAR data for detecting buildings (Forlani et al., 2006); 

classifying forest types (Antonarakis et al., 2008); detecting single trees (Zhang and 

Sohn, 2010; Lin et al., 2011); and predicting single tree attributes (Yu et al., 2011). Grid-

based classification has often been used to fuse multiple laser echoes with multi-spectral 

information obtained from optical imagery, for urban classification purposes (Guo et al., 

2011). A set of cues extracted from full-waveform LiDAR data is interpolated into an 

image grid to extract features for each pixel and to classify forest scenes using a Bayesian 
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pair-wise classifier (Neuenschwander, 2009). The utilization of grid data provides an 

advantage in easy implementation of applications based on comprehensive low-level 

computer vision algorithms, such as region growing or other segmentation methods, 

without significant alterations, and another advantage in cost-effective management of 

the huge data volume of a LiDAR point cloud. However, the grid-based classification 

implicitly assumes that a pixel represents only one class, although multiple scatters 

belonging to different classes are vertically distributed within the pixel. This may be a 

critical limitation to the classification of power line corridor scenes, where vertical 

overlaps exist between wire and terrain, vegetation and wire, wire and pylon, or 

vegetation and building. 

2.2.2. Point-based approach 

In contrast to the grid-based classification, the point-based method aims to extract a 

feature set and determine an object class for every single point. This requires a full 

investigation of individual laser points to label its corresponding object class. Each 

individual LiDAR point has geometric, e.g., height, and radiometric properties, e.g., 

intensity. In addition to these properties from individual points, some other features are 

examined through an interaction with neighbors. For instances, 2D point analysis per 

scan line helps one to extract a smooth surface by comparing z values of current, previous 

and next point to find an abrupt surface change (Axelsson, 1999). 3D point distribution 

from neighbors near a certain point provides salient features to identify a local geometry 

of the point such as line- and plane-likeness which are extractable using eigenvalues 
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(Verma et al., 2006) or Hough transform (Vosselman and Dijkman, 2001; Axelsson, 1999) 

or least squares method (Mitra et al., 2004).  

Based on these features, different classification methods addressed in section 2.2 are 

applied for classifying individual points. For graph-based applications, Lu et al. (2009) 

constructed a graph comprising of individual LiDAR points and classified them into 

ground or non-ground points by applying three levels of local features (point, segment, 

and disc) to CRF. Niemeyer et al. (2011) also employed CRF to classify urban scenes; 

the authors created a graph where a node corresponds to a single LiDAR point and an 

edge is represented as a link between a current point and its cylindrical neighbourhood. 

Verma et al. (2006) used local planar properties extracted through principle component 

analysis (PCA) to detect building points on a graph. For rule-based approaches, Carlberg 

et al. (2009) developed a series of binary decision classifiers trained using RF, each of 

which can filter out a particular class from LiDAR points that are not labelled by the 

preceding classifiers. Lodha et al. examined many machine learning methods, Adaboost 

(Lodha et al., 2007a), Expectation-Maximization (EM) algorithm (Lodha et al., 2007), 

and SVM (Lodha et al, 2006) to classify LiDAR into urban key objects. 

The greatest benefit of this point-based approach is the ability to generate multiple 

labels from a single transmitted laser pulse, for example, according to the number of 

scatters and the reflectance information interacted with each pulse, although the 

computational cost of such approach would be expensive. The drawback of point-based 

approach is occasionally assigning an incorrect label to a part of an object where 
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sufficient points are not available, such as building edges and tree tops. This 

misclassification is called “salt and pepper” (Chan et al., 2005). To solve this problem, 

many researchers employ the object-based classification which treats a group of points 

showing similar patterns as an object segment and assigns a class label to the segment.  

2.2.3. Object-based approach 

A conventional way of the object-based approach with LiDAR data (Yu et al., 2010; 

Antonarakis et al., 2008) is to apply object-based image analysis to a 2D grid created 

from LiDAR points. However, as addressed in section 2.2.1, data conversion from point 

cloud to grid could bring serious limitations to classification. To overcome these 

limitations, the object-based approach in this study describes a point set (or a segment) 

having homogeneities and considers it as a group to assign the same label to the set. In 

the object-based method, such segmentation is a pre-processing step before feature 

extraction and classification. Hence, many segmentation algorithms have been introduced 

so far and they can be categorized mainly into two groups: region growing (Sithole and 

Vosselman, 2004; Dold and Brenner, 2004; Pu and Vosselman, 2006) and clustering 

(Filin and Pfeifer, 2006). Region growing gathers neighboring points from a seeded point 

and expands a region containing the points according to a similarity criterion, e.g., 

curvedness (or surfaceness) (Dold and Brenner, 2004; Yang and Dong, 2013) and echo 

related features (Rutzinger et al., 2008). Unlike region growing which starts from seed 

points, clustering directly produces point clusters by considering proximity between 

points which are projected into a feature space. Some application studies employing the 

clustering method utilized various LiDAR features to represent each point in the feature 
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space such as height difference, distance, slope variance, vertical profile feature, and so 

on (Filin and Pfeifer, 2006; Biosca and Lerma, 2008; Lehtomaki et al., 2010). 

As briefly addressed above, mostly segmentation algorithms take geometry property 

representing a point distribution in a local region. For example, the fundamental 

geometric properties such as linearity, planarity, and scatteredness are used to segment 

linear-like, planar-like, and scattered-like objects respectively. This idea is based on the 

fact that objects in man-made or natural environments can be generally represented by 

using those geometries (Biosca and Lerma, 2008). In practice, Hough transformation 

(Jwa et al., 2009) and linearity measure from eigenvalues (McLaughlin, 2006) are 

examined to describe a transmission line as multiple line segments. As well as planarity, 

slope and surface are used to partition terrain (Yao et al., 2009; Wang and Tseng, 2011; 

Yang and Dong, 2013), building roof (Filin and Pfeifer, 2006; Yao et al., 2009; Wang 

and Tseng, 2011) and building façade (Biosca and Lerma, 2008; Yang and Dong, 2013) 

into planar patches. For a complete scene representation piece-wisely, all of the 

aforementioned three features (linearity, planarity, and scatteredness) are employed 

(Lalonde et al., 2006; Lim and Suter, 2009; Bremer et al., 2013) to decompose a scene 

into a mixture of the three geometries. Besides the geometry properties, local height jump, 

echo information, and point density are also investigated to group terrain, vegetation, and 

pole-like object respectively. 

Based on the results of such segmentation and feature extraction, diverse 

classification methods have been used: generative, discriminative, graph-based, and rule-
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based approaches as addressed in the section 2.2. For example, Lalonde et al. (2006) took 

a generative method where saliency features, i.e., scatter, linear, and surface, are 

computed from the spatial point distribution in a local neighborhood and their distribution 

is estimated by GMM and EM. Then, a Bayesian classifier is built using the distribution 

models for the classification of MLS point cloud. Lim and Suter (2009) applied a 

discriminative CRF to classify point segments called super-voxels, which are the results 

of an over-segmentation of 3D point cloud. The size of each super-voxel is differently 

determined according to surface curvature and point density of membership points 

belonging to the super-voxel. As rule-based classification methods, Rutzinger et al. 

(2008) created a classification decision tree to identify vegetation from segments, each of 

which is derived from echo, full-waveform, and point density. Bremer et al. (2013) also 

generated rules to make point groups and to classify the groups based on eigen-related 

features (linear, planar, and volumetric). Additionally, the object-based method has been 

utilized to classify power line corridors containing transmission lines which are 

represented as linear features. This dissertation will give detailed descriptions of power 

line related studies in the next section. 

Compared to the point-based approach, the object-based approach generally shows 

better classification quality for class objects, which are able to be individually described 

using a specific geometric feature, such as terrain (planar), building roof (planar), and 

power line (linear). The “salt and pepper” effect often observable in the point-based 

approach are minimized in the object-based approach. Moreover, the computational cost 

is not expensive compared with the point-based approach. However, there are several 
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limitations with this object-based method. One is that the segmentation results affect the 

classification quality. This is because that once the segmentation is completed, the object-

based method assigns the same label to each segment although some membership points 

of the segment are not same class object as the other points. To solve this problem, some 

researchers applied the top-down approach utilizing a hierarchical class structure on 

multi-scale segmentation maps (Lamonaca et al., 2008). Another disadvantage is that for 

class objects with intra-class variations in shape, size or material, e.g., electric pylons 

with various shapes depending on voltage type, the object-based method produces lower 

classification accuracy than the point-based method. 

2.3. Power-line Risk Management 

A power line system is an interconnecting network of power facilities including 

power plant, transmission lines, and electric pylons. The most important requirement of 

such power line system is to safely and reliably deliver electric power to family and 

business. If not, a power transmission failure brings considerable economic loss and 

inconvenience as experienced from 2003 Blackout in North America. Such a large-scale 

disaster can be preventable in advance by detecting and removing potential risks in 

advance. One of the most potential risks for power lines is the contact of trees with 

transmission lines. For example, growing trees below the transmission lines and snow-

laden and wind-blown trees approaching toward the transmission lines (Figure 2-4) are 

possible threats. Moreover, trees could come in contact with the transmission lines due to 

sagging and swaying of the lines caused by wind or ice load on the power lines (Figure 2-

4). These risks can cause wide-spread power outages and/or fires. As a result, the typical 



35 
 

tasks for power line risk management projects is to manage vegetation within the corridor. 

This ensures the safety for the public and private properties as well as delivering a 

reliable electrical service. The power line risk management is also required to maintain an 

accessibility to the ROW, which indicates a corridor of land where electric transmission 

lines are located (Ituen and Sohn, 2010), for both emergency and routine maintenance of 

the power lines. ROW is commonly divided into “border zone”, where potentially 

dangerous trees may live, and “wire zone”, where transmission line, electric pylon, and a 

clear cut vegetation environment exist, as seen in Figure 2-4. Figure 2-5 illustrates the 

detailed zone partitions and the criteria on trees inhabiting in each partition. Trees 

unsatisfying the criteria are considered as dangerous trees that would touch power lines. 

 

Figure 2-4. Compatible vegetation for transmission ROW (Rights Of Way) 
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Figure 2-5. Detailed zone partitions and criteria for transmission ROW 
 

 

Figure 2-6. Vegetation clearance analysis results (VRMesh) 
 

In the past, these potential trees that are posing threats were identified, reported, and 

eliminated by on site ground patrols requiring human powers. However, such human-

centric method is limited with inaccessible area, small monitoring coverage, high labor 

cost, low processing speed, and low accuracy. For these limitations, recently remote 
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sensing technologies are employed, especially, airborne LiDAR which is a promising 

data source since it allows 3D mapping necessary to find horizontal and vertical 

encroachments (Figure 2-6). Several LiDAR-based mapping systems have been 

commercially developed and utilized for the corridor risk assessment. There are two 

commercial software widely used in power utility companies, Terrascan and PLS-CADD 

(Power Line Systems – Computer Aided Design and Drafting). TerraScan is a 3D LiDAR 

mapping software developed by TerraSolid Inc. (Terrascan), which runs as a plug-in on a 

CAD environment, i.e., Microstation (Microstation). Terrascan also has the ability to 

perform classification automatically (different filtering method for each class) and it is 

able to represent transmission lines as 3D vector models, i.e., catenary line models. 

However, this power line modeling process requires human-interactions; for instance, a 

user has to point out individual power lines at least once. Unlike Terrascan, PLS-CADD 

is a stand-alone program which is designed specifically as a mapping tool for the power 

line management. Distinct features of PLS-CADD are to generate realistic-looking 

models of the power structures including conductors, electric pylons, and insulators. 

Similarly to Terrascan, most of the tasks require manual intervention to localize the 

structures and to select proper models from a database where diverse model templates are 

stored. 

To date, only few studies are able to overcome the limitation as commercial software 

where automating power line classification or modeling has been reported. Jwa and Sohn 

(2012) combined a constrained non-linear least squares adjustment with the model 

selection process for estimating the parameters of catenary curve for reconstructing 
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power line models from airborne LiDAR data. Melzer and Briese (2004) extracted power 

lines by applying iterative Hough transform (HT) to LiDAR data and grouping 

segmented line vectors through the Neural Gas Network. McLaughlin (2006) proposed a 

supervised knowledge-based classification method, where a learning model was 

established by applying Gaussian Mixture Model to eigenvalues computed using ellipsoid 

neighbourhoods from LiDAR data. The above studies have reported success, but are 

limited to only few object classes (wire, vegetation and terrain) and controlled 

environments where the scene contains a specific single type of power line that has little 

contact with vegetation. There are still increasing demands to advance classification 

algorithms to consider more diversified corridor instances including pylons, insulators 

and other power line attachments, and to make classifiers stable to variances within intra-

object classes; for instance, a classification performance over power lines and pylons 

should not to be sensitive according to their voltage types. 

2.4. Ensemble methods 

Ensemble learning for classification is a machine learning method which combines 

the results of multiple classifiers built using different training data or different training 

algorithms. Unlike ordinary learning methods building a classifier from training data, 

ensemble methods construct a set of diverse classifiers and combine them. An ensemble 

is composed of a number of classifiers (or learners), called base learners. The potential of 

the ensemble exceeds the individual base learners. This indicates ensemble methods can 

boost weak learners that are slightly correlated with the true classification to strong 

learners which can make predictions highly correlated with the true classification (Zhou, 
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2012). Here, the base learners are referred to as the weak learners. The ensemble methods 

often make better predictions compared with any membership learners according to the 

empirical examination of Hansen and Salamon (1990) when the ensemble satisfies 

diversity between the base learners. The discussion of diversity has been addressed as a 

critical issue to make an improvement in the classification (Polikar, 2006). Chapter 5 will 

discuss ensemble diversity in further detail. Ensemble has been widely used for problem 

solving in a variety of research fields, especially in the pattern recognition, machine 

learning, and neural network community. Boosting (Schapire, 1990) and bagging 

(Breiman, 1996) are the first generation of ensemble method. Boosting combines weak 

learners to produce a strong learner and the strong learner is iteratively rebuilt by 

assigning a different weight to each weak learner. The weight for each weak learner is 

estimated depending on an error rate assessed by the corresponding weak learner in the 

previous iteration. Freund and Schapire (1997) implemented an algorithm based on such 

boosting procedure, AdaBoost. They first designed the AdaBoost.M1 which is able to 

solve a binary classification problem and upgraded it to the AdaBoost.M2 to handle 

multi-class classification. Unlike boosting that focuses on assigning different weights to 

weak learners, bagging (bootstrap aggregating) concentrates on generating diverse 

subsamples to create independent base learners. Given a training data, bagging employs 

bootstrap sampling (Efron and Tibshirani, 1993) to obtain subsets of the training data, 

each of which is generated by sampling with replacement. Each subset builds a base 

learner and the outputs of the base learners are aggregated for a final decision through 

voting for classification and averaging for regression.  



40 
 

Evolving from bagging, Random Forests (Breiman, 2001) was invented to maximize 

the diversity between base decision trees by injecting randomness, i.e., random sampling 

and random feature selection, into each decision trees. Random Forests has been recently 

studied for land-cover mapping from satellite imagery (Na et al., 2010; Rodriguez-

Galiano et al., 2012; Waske and Braun, 2009), for the prediction of tree inventory 

(Coulston et al., 2012; Yu et al., 2011) from LiDAR, and for the classification of urban 

scenes from LiDAR and color images (Guo et al., 2011). Despite the successful ensemble 

applications, they make an assumption of stationary environment, i.e., prior class 

probability and the conditional distribution of objects in classes do not change while the 

ensemble operation (Jackowski, 2013). Thus, the results are promising under the 

condition if the testing data shows the same characteristics as training data. In practice, 

however, there exist different object types the training data does not contain. When the 

new object types are introduced to the training data, retraining is required for the entire 

dataset. To overcome these drawbacks, new ensemble methods that are capable of 

adapting to the non-stationary environments were developed such as incremental learning 

(Muhlbaier and Polikar, 2007; Elwell and Polikar, 2009) and evolutionary-adapted 

ensemble (Jackowski, 2013). The basic idea of these ensemble methods is to build a new 

classifier using a data sample where new object types appear and to insert the new 

classifier into the classifier pool. Then, a decision is made by the weighted fusion of the 

classifiers based on the discriminating strategies.  

These aforementioned methods work for detecting new type of objects that are found 

in the new data set. However, they are not able to classify diverse objects intra-class 
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variations, i.e., variance in size, shape, material, and so on for an object class, which is a 

critical problem to be solved in scene classification, especially power line corridor scenes 

where different types of power lines could be found. In this dissertation, it is suggested 

that the ensemble system (or MCS) which accommodates a pool of classifiers, each of 

which can discriminate a specific type of object, e.g., 69kv electric pylon made by wood 

and standing in urban area, from others is the solution. Furthermore, the system produces 

an extensible committee of classifiers by adding, removing or replacing certain classifiers 

from the classifier pool depending on scene contents. Additionally this ensemble system 

is feasibly buildable due to a diverse number of data sources produced and processed in 

advance by users, industries, and governments, termed “big data” (MIKE2.0). From the 

big data, the system uses structured data where the classification has been done to 

generate and update the classifier pool. This dissertation follows the MCS framework and 

builds a proto-type of ensemble system which accommodates multiple classifiers trained 

under different corridor environments, i.e., different carrying voltages (chapter 5). 

 

 

 

   



42 
 

3. Classification Using LiDAR Point Features 

 As already addressed in chapter 2, traditional methods of LiDAR classification in 

remote sensing community treat 3D point cloud as raster imagery, called grid-based 

classification where LiDAR points are interpolated into a 2D grid space and each grid 

(pixel) contains representative information. A main drawback of this approach is class 

uncertainty in case that multiple objects are present in a pixel, which typically occurs in 

power line corridor scenes, e.g., vertically overlapped shrubs and transmission lines. This 

chapter introduces point-based feature extraction and classification, which derives 

features for each point and assigns a class label to individual points based on the 

extracted features, suitable for the power line corridor scenes. Section 3.1 addresses such 

features and their extraction methods. Section 3.2 introduces Random Forests, which 

shows high performance in classification thanks to its ensemble technique, to build a 

classification model using the features. Section 3.3 discusses supplementary tips to 

maximize the accuracy in supervised learning with given data: balanced learning, feature 

selection, feature de-correlation, and optimal training sample selection. Section 3.4 and 

3.5 demonstrate experiment results including classifier optimization and comparative 

analysis on grid- vs. point-based approach in terms of classification accuracy and 

computation complexity. Finally, section 3.6 addresses a summary of this chapter. The 

research work of this chapter has been described in the publications:  Kim and Sohn 

(2013) and Kim and Sohn (2010).  
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3.1. Point-based Features  

In general, the five targeted corridor objects are visually distinguishable from each 

other. This is because the objects are differently formed with respect to surface 

characteristics that determine depending on the degree of laser penetration, physical size 

and volume, surface roughness, structural patterns and so forth. These discernible 

characteristics can be seen by examining a spatial distribution of LiDAR points, not only 

horizontally but also vertically. Thus, 21 features for each LiDAR point were considered 

to characterize each object and computed by taking advantage of full 3D analysis. 

3.1.1. Feature Extraction Method 

As shown in Table 3-1, the features are categorized into 8 groups: height, Hough 

Transformation, eigen-related, surface-related, convex hull, echo-related, density-related 

and vertical profile-related feature. Depending on the feature group, a particular 

restricted space is used to collect neighbouring points for each point: a sphere with radius 

r is used for Hough transform, eigen-related, surface-related, echo-related features and 

point density, while a vertical cylinder with radius r and height h is used for analyzing the 

property of vertical distribution of points such as vertical profile-related features. Here, 

the radius r for the cylinder is constant, but the height h varies depending on the z value 

range from neighbouring points, i.e., the lower and upper bound of the cylinder are 

determined by the minimum and maximum values among z values of neighboring points. 

Only density ratio is calculated by using both sphere and cylinder. The sphere and 

cylinder for feature computation are denoted NS and NC respectively, and the number of 

points captured by NS and NC are ns and nc. 
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Table 3-1. 3D airborne LiDAR features 

Category Feature Abbrev Equation Description Reference 

Height Height HG gi ee   Height of each point (ei, elevation) from 
ground (eg) 

Lodha et al. 
(2007) 

Hough 
Transforma
-tion 

Hough 
Transform 

HT 

Sm

n

p q
pqp

nn

vv
m











 

 1

8

1
Voting in Hough space to measure linear-
likeness 

Hough 
(1962) 

Eigen 

Sphericity  SP 13 /   Eigenvalues,λ1> λ2> λ3, a measure of 
spherical-likeness

 

Chehata et al. 
(2009) 

Linearity  LN   121 /   A measure of linear-likeness 

Planarity  PL   132 /   A measure of planar-likeness 

Anisotropy  AN   131 /   Asymmetric volume property of an object
 

Surface 

Plane Slope  PS   Angle difference between plane normal 
vector and z-axis 

Rutzinger et 
al. (2008) 

Orthogonal Dist. OD - 
Root mean square of perpendicular distances 
from each point to plane 

Vertical Dist. VD - 
Root mean square of vertical distances from 
z point values to corresponding z value on 
plane 

Homo. of Surface 
Normal  

SN   T

n

i i nT /
1

2

 
  Variance of Plane Slope (Δϴ) of nT triangles 

in a mesh surface 

Convex 
Hull 

Projection Area  PA  2/ rA   Bounding area of points projected on a 
horizontal plane (A) Developed by 

us Bounding 
Volume  

BV  3/4/ 3rV   Bounding volume of 3D convex-hull (V) 

Echo 

Vegetation Echo  VE   Sirfr nnn /  Proportion of first (nfr) and intermediate (nir) 
returns to all points (ns) 

Developed by 
us 

Building Echo  BE Ssr nn / Proportion of single (nsr) returns 

Terrain Echo  TE   Slrsr nnn /  Proportion of single (nsr) and last (nlr) 
returns 

Power-line Echo  PE Sfr nn / Proportion of first (nfr) returns 

Density 

Point Density  PD 34/3 rnS  Density of points within a sphere 
Rutzinger et 

al. (2008) Density Ratio  DR 
 CS nrn  4/3  

CS nn /  
Ratio of point densities in a sphere and in a 
circle projected on a horizontal plane. 

Vertical 
profile 

On-segment  OS - # of occupied bins 
Developed by 

us 
Con. On-segment COS - Maximum # of sequentially occupied bins 

Con. Off-segment CFS - Maximum # of sequentially empty bins 
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(a) HG (b) HT (c) SP 

(d) AN (e) SN (f) OD 

(g) TE (h) PD (i) DR 

(j) OS (k) COS (l) CFS 

Figure 3-1. Important feature visualization 
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3.1.2. Feature Descriptions 

Height from ground level 

Height (HG) feature is an elevation measured from the terrain surface for each point 

above ground. The elevation of power lines is differently designed depending on the 

maximum voltage carried through them. In addition, the elevation can be considered as a 

useful classification variable to differentiate residential buildings from the other features 

such as pylon and vegetation. Similar to a method suggested by Lodha et al. (2007), HG 

is computed by measuring the vertical distance of each point from an underlying terrain 

surface model that is generated by applying a terrain filter proposed by Sohn and 

Dowman (2008) to LiDAR data. 

Hough Transform 

The geometry of a power line is formed as a catenary curve, but when it is projected 

onto a horizontal plane, the power line can be also represented with a set of line segments 

(Jwa and Sohn, 2012). Thus, analysing linear properties for each point provides important 

information to identify power line. The Hough Transform (HT) feature was designed to 

measure the likelihood that a LiDAR point belongs to a linear structure such as power 

lines or pylon structure. 2D Hough transform (Hough, 1962) was applied to 2D points 

obtained by projecting 3D points within NS onto a horizontal plane. However, there are 

two limitations in applying the traditional Hough transform to power line LiDAR data. 

One is that 2D points corresponding to a cable often are not collinear due to systematic 

errors with airborne LiDAR. This may preclude the points from being mapped into a 

certain cell in the Hough grid, but they may be mapped into close cells to the cell with the 
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highest count. The other is that NS might contain multiple cables such as bundled 

conductors which will produce nm peaks (nm>1). Therefore, for HT it is considered that 

nm peaks (vp is a vote count for each peak) and vpq, vote count in the cells adjacent to each 

peak in the grid. In this way, HT measures total supports by the presence of linear 

features. In Table 3-1, HT feature is computed by summing of all the votes normalized by 

nm and nS, where nm is heuristically determined relying on the site knowledge (assumed 

nm=4 in this study). 

Eigenvalue-related features 

Analyzing eigenvectors and eigenvalues often provides useful information to classify 

objects in an image. For classifying an urban scene using LiDAR data, Chehata et al. 

(2009) defined four eigenvalue-related features including Sphericity (SP), Linearity (LN), 

Planarity (PL), and Anisotropy (AN). In this study, three eigenvectors are computed 

using all LiDAR points in NS centred at a point. According to Chehata et al. (2009), SP is 

a measure of how spherical (round) an object is, while LN and PL are a measure of how 

linear or planar an object is respectively; AN is a measure of the directional anisotropic 

property of an underlying object. The equations of the eigenvalue-related features are 

described in Table 3-1. SP is useful for differentiating vegetations from the other objects, 

while the value of LN and PL would be higher for power lines and buildings respectively. 

AN helps to differentiate power lines and buildings from vegetations by showing an 

inequality of the scalars with three eigenvectors. 
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Surface-related features 

Surface-related features were examined to characterize planar objects such as 

building rooftops. For each point, a plane surface was approximated over a set of points 

captured by NS using the plane fitting algorithm with PCA. Then, Plane Slope (PS), 

Orthogonal Distance (OD), and Vertical Distance (VD) were computed on the basis the 

estimated plane. PS is the angular difference between the surface normal to the plane and 

the z-axis. OD and VD both represent surface residual, but they are different in a residual 

measurement way, orthogonal and vertical residual respectively. The last feature, called, 

Homogeneity of Surface Normal (SN), is defined as a measure of surface roughness of an 

object with respect to the similarity between normal vectors of nT triangles approximating 

the surface of the object. A 3D triangular mesh surface is created from points in NS. PS 

would be expected to show regular slope values over buildings, while arbitrary slopes 

over vegetation. Two surface roughness measures (OD and VD) are useful features to 

differentiate buildings with smooth surfaces from vegetation that shows high surface 

roughness (Rutzinger et al., 2008). However, OD and VD might not be suitable for 

measuring the surface roughness of a region where multiple planes intersect. In this case, 

SN is able to overcome this problem by measuring a local transit between the normal 

vectors of neighbouring surfaces at relatively finer scale compared to the one for 

computing OD and VD.  

Convex hull-related features 

Convex hull-related features are examined to measure the volumetric property of an 

object of interest captured by NS for each point. Two features, Projection Area (PA) and 
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Bounding Volume (BV) are defined. PA is computed by applying a 2D convex hull 

algorithm to 2D points produced by a horizontal projection of the points in NS and then 

normalizing the area of the convex polygon to the area of a circle with radius r of NS. BV 

is computed by applying a 3D convex-hull algorithm directly to 3D points in NS and then 

normalizing the volume of the generated polyhedron to the volume of NS. In general, 

vegetation will show high values in both PA and BA as it usually has large volume, while 

a building will have high PA and low BV as its rooftop occupies a large space in 2D, but 

small in depth. The power lines will show small values in both PA and BA as they 

usually occupy small spaces in both horizontal and vertical space. However, a pylon 

might be difficult to characterize with respect to PA and BA as it has different shapes; 

pole-type towers would show low values in both PA and BA, while steel-frame towers 

would show high values.  

Echo-related features 

LiDAR is able to capture multiple echoes (returns) from a single laser shot. 

According to the number and the order of returns, the echo is classified into single return, 

first return, intermediate return, or last return. This echo information is a well-used 

feature to distinguish penetrable objects (e.g., tree and shrub) from rigid objects (e.g., 

building rooftops and terrain). For instance, most echoes from vegetation (Vegetation 

Echo, VE) are likely to be first returns or intermediate returns (Rutzinger et al., 2008). 

Single returns are predominant for building (Building Echo, BE), while both single and 

last returns are recorded for terrain (Terrain Echo, TE). Thus, the echo-related features 

for vegetation, building and terrain were designed by considering the aforementioned 
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returning patterns. In this study, another feature (Power line Echo, PE) is introduced for 

classifying power lines that usually present first echoes from power cables and other 

echoes from underlying features due to the relatively larger footprint of a laser beam 

compared to the diameter of a power cable. Depending on the pylon type, the echo 

patterns vary; the echo pattern of a steel-framed pylon would be similar to that of 

vegetation, while a pole-typed pylon may show a similar echo pattern to a building. Table 

3-1 summarizes the echo-related features, where nsr, nfr, nir, and nlr are respectively the 

number of points corresponding to single, first, intermediate, and last echoes captured 

within NS.  

Density-related features 

The number of LiDAR points reflected from a unit surface area varies depending on 

the surface characteristic illuminated by the laser beam, which determines the degree of 

laser penetration of the surface. Two density-based features, Point Density (PD) and 

Density Ratio (DR), were investigated as classification features. PD is defined as the 

number of points within NS divided by the volume of a sphere for Ns. In general, a higher 

PD would be usually obtained over a solid surface (e.g., building) than over a penetrable 

object (e.g., vegetation or power line). Also, a PD obtained over vegetation would be 

higher than one from power lines as vegetation usually has more scatters contained 

within a fixed volume size. DR is adopted as an additional feature that was initially 

proposed by Rutzinger et al. (2008) for identifying vegetation using airborne LiDAR 

data. DR is computed as a ratio of PD in 3D, which is the point density in a sphere, to PD 

in 2D, which is a point density in a circle created by projecting the sphere onto a 
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horizontal plane. DR is approximated as a ratio between point counts (nS and nC in Table 

3-1) within NS and NC. As can be seen in Figure 3-1(h) and 3-1(i), PD shows different 

values over rooftops as it is affected by relative view angles between a laser scanner and 

the target’s surface normal. However, DR is relatively less affected by this factor. 

Vertical Profile-related features 

Recently, there has been an increasing interest in detecting vertical objects (tree 

trunk, traffic light, lamp post, etc) from ground-based ranging imagery (Lehtomäki et al., 

2010; Kim and Medioni, 2011; Rabbani and van den Heuvel, 2005). Although the 

proposed methods successfully demonstrated their performance, there are some 

limitations which hinder directly applying them to detecting vertical objects in a corridor 

scene. This is partly due to the diversity of shapes of vertical objects from simple (pole-

typed) to complex (steel-framed) pylon and also partly due to a relatively insufficient 

point density compared to ground-based LiDAR data. Thus, new features called vertical 

profile-related features are devised to characterize the property of vertical distribution of 

LiDAR points reflected from corridor objects. A cylinder with radius r and height h is 

created by NC of a point. Then, the cylinder is vertically divided by a fixed incremental 

height, Δh that produces a number of cylinder segments. A cylinder segment is marked as 

an occupied segment, called on-segment, if it contains more points than a pre-specified 

threshold. Otherwise, it is marked as an off-segment (Figure 3-2). The vertical profile-

related features are computed by measuring three different counts; 1) the maximum 

number of on-segments that are continuously connected, called Continuous On-Segment 

(COS); 2) the maximum number of off-segments that are continuously connected, called 
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Continuous Off-Segment (CFS); and 3) the total number of On-Segments (OS). A pylon 

and vegetation would be expected to show high values in COS, while low in CFS. A 

vertically discontinuous object such as a power line and a building would show high 

value in CFS, while low in COS. The count of On-Segment (OS) is also taken into 

account to characterize the properties of a vertically structure object such as pylon. 

Figure 3-2. Vertical Profile feature; a cylindrical neighbourhood (left) and status (on or off) of 
vertically divided segments (right) for each class 

 

3.2. Random Forests Classifier 

Random Forests (Breiman, 2001) is an ensemble method which is evolved from 

bagging (Breiman, 1996). Using the same sampling strategy as bagging, it generates an 

ensemble of decision trees, each of which is built on a bootstrap sample resampled from 

the original data set. However, unlike bagging it infuses randomness to grow the trees 

differently by using a random feature subset at every tree node split (Breiman, 2001). A 

set of the grown trees is applied to given data for classification. The class of each 

instance is decided by the majority vote over all the trees. Random Forests requires two 
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parameter settings to train a training sample: T is the number of tress to grow and F is the 

number of features to select for each node split. 

As a classification application tool, Random Forests has been recently studied for 

land-cover mapping from satellite imagery (Na et al., 2010; Rodriguez-Galiano et al., 

2012; Waske and Braun, 2009), for the prediction of tree inventory (Coulston et al., 2012; 

Yu et al., 2011) from LiDAR, and for the classification of urban scenes from LiDAR and 

color images (Guo et al., 2011). In this study, Random Forests is treated as a base 

classifier to form an ensemble system. The ensemble system is composed of multiple 

classifiers, each of which is trained by Random Forests using different data sources. 

3.2.1. Basic Principle 

A Random Forests is an ensemble learner having T single descriptors respectively 

trained with T samples called bootstrap replicates. The tth bootstrap sample (St) is 

randomly drawn from training data (S) with replacement. About 1/3 of St is excluded 

from the bootstrap sample and the remaining 2/3 of St is trained to generate a tree. The 

former is called “out-of-bag”, OOB (Sto) and the latter “in bag”, IB (Sti). The OOB is an 

independent test sample used for testing the trees generated. A decision tree (ht) is grown 

based on random variables (x, ŷ) belonging to Sti. Note that x and ŷ indicate the vectors of 

input features and true label. While training, the best split subsets (or nodes) of an IB 

produce a decision tree. At each stage for the node splits, all the possible binary partitions 

of a current node using a random feature subset are considered, and then the one which 

leads to the greatest decrease in a node impurity is chosen as the best split for the node. 
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The impurity with a node is quantified as an impurity function which has a random 

variable on the proportion of instances belonging to possible classes in the node (Sutton, 

2005). The impurity function is minimized when a node is completely pure, while it is 

maximized when the node includes the equal number of instances for all the possible 

classes. Such iterative partitioning to yield a tree continues until all the descendent nodes 

become terminal nodes which have the same class. T number of trees are independently 

grown in the same way using the T IBs. In the training stage, the Random Forests 

internally estimates the training quality of individual trees by testing them using their 

corresponding OOBs: strength of each individual tree, correlation between the trees, 

OOB error presenting trees’ performance, importance of input features, and so on 

(Breiman, 2001). In particular, feature importance allows us to know what features are 

highly relevant to the classification accuracy. This is discussed in more detail in the next 

section. A logical workflow of Random Forests is depicted in Figure 3-3. 

 

Figure 3-3. Logical architecture diagram of Random Forests 
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Random Forests commonly require two options to produce a classifier: T, the 

number of trees and F, the number of selected features. T is equal to the number of 

bootstrap samples and is a crucial factor to reach a good performance. As T increases, the 

generalization error drastically decreases, however it converges at a certain value of T 

(Breiman, 2001). Another variable F indicates the count of features randomly chosen 

from a given feature set of every node split for a single tree generation. This random 

feature selection allows each tree to maintain independence from the others, that is, the 

populated trees have a low correlation with each other. F is computed as the first integer 

less than log2M+1, where M is the number of all input features (Breiman, 2001). 

3.2.2. Statistical Measure 

Feature Importance 

Random Forests can sort the input features according to their contributions to overall 

classification performance. The contribution of a feature is quantified by the permutation 

accuracy in terms of the feature (Breiman, 2001; Guo et al., 2011). This measurement can 

be semantically described as a sensitivity of the performance on observation of a feature. 

To illustrate in more detail, for the importance (FIm,t) of the mth feature at a decision tree 

ht, the Random Forests makes a duplicate of the OOB sample (Sto) and randomly 

permutes the values of the target feature (the permuted values are within a range of the 

original value of the feature) over all the instances in the duplicate, called Sm,to. The 

classifier built from the IB is applied to the respective Sto and Sm,to. Finally, the Random 

Froests investigates an accuracy change between the two OOB samples. As the change is 
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bigger, the feature is more important. Such that, the importance of the mth feature, FIm,t, is 

quantified as presented in the Eq. (3-1). 
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1
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where i is the index of an instance in Sto and I is an indicator function. The ht(xi) 

stands for the predicted class in Eq. (3-1). The importance of the mth feature (FIm) is 

finally averaged over all T trees as follows: 
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The importance score in Eq. (3-2) is converted into a percentage over all the M 

features as shown in Eq. (3-3). 

 
௠ሺ%ሻܫܨ ൌ 100 ൈ ௠ܫܨ ෍ ௜ܫܨ

ெ

௜ୀଵ
ൗ  (3-3) 

The estimated feature importance is used as a criterion for feature selection, which is 

a typical optimization problem in supervised learning, to find an optimal feature subset 

from a given feature set. This is because some of the given features may be uninformative 

and irrelevant to the classification, so they might contribute to over-fitting classification 

model. Therefore, an optimal classification model can be generated by selecting relevant 

features and using only them for the model training. 

Prediction confidence 
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Random Forests is able to output many metrics while training a sample: feature 

importance, out-of-bag error (OOB error), and so on (Breiman, 2001). The metrics are 

often used to estimate the quality of the Random Forests classifier. Also, Random Forests 

can estimate a prediction confidence for each instance as an output produced in the 

classification stage. The prediction confidence is a measure of how confident the 

prediction for each class is. For each instance the confidence value (ci) on a class (yi) is 

simply computed as a percentage of the number of trees (Ti) whose predictions are yi for 

the instance out of all the trees (Eq. 3-4). The prediction confidence has a value between 

[0, 1] and the sum over all the classes is 1. This confidence is crucial in the ensemble 

system as it is used as a key variable to combine the classifiers comprising the system. 

The confidence values coming from the classifiers are combined through various 

operators which are described in the section 4.4.3 and 5.1.3. 
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3.3. Classifier Optimization 

3.3.1. Balanced Learning 

Training classification models with an unbalanced sample, where the number of 

instances per class is seriously biased, is a potential problem in practical classification 

(Chen et al., 2004). Using unbalanced data, most supervised classification algorithms 

tend to learn toward the correct classification of the majority classes, rather than paying a 

special attention to the minority classes. An airborne LiDAR system for power utility 
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management typically collects a laser point cloud along a main centre line of power lines 

and covers tens of meters of a buffer area (approximately 50 m in our data) from the 

centre line. Coverage for wire (4.26%), pylon (0.81%) and low object (15.06%) in the 

buffer area is considerably smaller compared to that for other classes (vegetation, 46.46% 

and building, 33.41%). Here, a number in each bracket stands for the class proportion of 

the test site T00 in Figure 3-4. Such unbalanced data also affects a feature selection 

because the feature importance relies on the overall classification accuracy which might 

be biased to the majority classes. Consequently, features associated with the majority 

classes will be more important in their contributions to classification results. To solve 

such unbalanced problem, balancing our training data is applied by using a combination 

of under-sampling majority classes and over-sampling minority classes, which is 

introduced by Chawla et al. (2002). The sample size for each class is determined as a 

ratio of the total number of instances in the unbalanced data to the number of classes. In 

addition, all the samplings (under- and over-sampling) are done using the sampling 

method with replacement, where a sample is randomly drawn from a population and it is 

put back to the population for next sampling. Thus, the number of instances in the 

balanced data is finally equal for each class. 

3.3.2. Optimal Feature Subset 

 Feature selection is to find an optimal subset from an original feature set which 

considerably affects classification results. It also has the advantage of the decrease in 

computational complexity and the increase in classification accuracy by discarding 

uninformative features. Many feature selection algorithms have been introduced for 
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supervised classification problem and they are categorized into one of three feature 

selectors: filter, wrapper, and embedded approach (Saeys et al., 2007). filter uses an 

evaluation function, e.g., feature relevance and mutual information between features, that 

relies only on properties of the data and that is independent on any particular classifier. 

While, in wrapper classifiers are involved in feature selection. A feature set minimizing 

classification error is chosen as relevant features. Unlike wrapper where algorithms for 

feature selection and classification are separated, in embedded approach classification 

model (classifier) contains the algorithms. The embedded approach has the advantage of 

interaction with the classification model as well as less computation cost. In this study 

most relevant feature selection is done by the embedded approach, i.e., Random Forests. 

Another effort for feature optimization is to remove correlation between features. A 

general feature decorrelation method is Principle Component Analysis, PCA (Rodriguez 

and Kuncheva, 2006). 

3.4. Experiment Setups 

3.4.1. Study Area 

Our study area is a power line corridor of 9.5 km length (electrical substation to 

substation) in Sacramento, California, USA (Figure 3-4). The RIEGL’s LMS-Q560 was 

mounted on a helicopter and scanned along the transmission corridor at an altitude of 300 

m in August 2007. The LiDAR system acquired 24,929,992 points over the entire 

corridor with a point density of 25 to 30 points/m2. An average laser footprint size was 

estimated as of 15 cm. This research selected 10 continuing spans (a span means the 
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region between two consecutive pylons, a length of 1.9 km) from the entire 65 spans in 

the corridor, which are large enough to evaluate a classification model using the selected 

spans and to anticipate its performance over all the entire spans. A reference 

classification map was produced using commercial software, called TerraScan, and in-

house software by data processing expertise at GeoDigital International Inc. (GDI). Two 

days were taken to manually classify the 1.9 km length of the corridor (8 hours/day). The 

selected spans were subdivided into 16 subsets called TL08 to TL01, T00, and TR01 to 

TR07, each of which has an equal size of 125 m × 100 m (length × width). All the subsets 

were grouped into two categories depending on types of power lines and pylons 

contained in the scenes. Type I site is a subset which only has the transmission lines 

(TL08, TL07, TL05-TL01, T00, TR01, and TR02), while Type II site contains both 

transmission and distribution lines (TL06, TR03, TR04, TR05, TR06, and TR07). Class-

dependent site characteristics are described as follows:  

Power lines 

The test corridor scene includes two different voltage types of transmission lines 

(115 kV and 230 kV) running parallel to each other, distribution lines (carrying below 

110 kV) and pylons. The 230 kV transmission system is composed of 6 bundled cables 

and 8 single cables, while the 115 kV system is composed of 7 single cables. The 

transmission cables hang between 10 m to 40 m above ground. The distribution lines are 

present in some of the subsets and running parallel or perpendicular to the transmission 

lines. A tubal type and a steel lattice type of pylons support 230 kV and 115 kV 

transmission lines respectively, while the distribution lines are supported by simple and 
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small pole type pylons, which height is less than 10 m. All the subsets have pylons except 

three sites, that are TL07, TL03 and TR01 containing no pylon structures. 

Building 

The power lines in the test scene run through a residential area where different types 

of buildings exist: mostly residential houses, commercial buildings, storage houses, and 

sun-shield roofs built over parking lots. LiDAR points were captured by reflections from 

rooftops, but occasionally from building walls and chimneys. The overall height of the 

buildings is less than approximately 5 m. Most buildings are well detached from each 

other, but they make contact with trees at their edges on occasion.  

Vegetation 

The test site contains a mixture of deciduous and coniferous trees, where deciduous 

trees are more predominant than coniferous ones. The coniferous trees are tall, narrow, 

and columnar so that they look like a vertical structure such as pylons. The tallest tree is 

15 m high and the largest one has a 20 m diameter of tree crown. 

Low object 

The low object class is defined as a class that include fences, vehicles, and grass. The 

fences are smaller than 2 m in height and are located between adjacent house gardens. 

Most of the vehicles are passenger cars, which have heights of 2 m or less. Large areas in 

TL08, TL07, and TL06 are covered by grass (Figure 3-4). 
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Figure 3-4. Aerial image (the first row) and LiDAR data (other rows) of the study area; LiDAR 
coverage (white line) and two voltage types of transmission lines (red lines) on the aerial image; the 

LiDAR is a reference data which is subdivided into 16 subsets including vegetation, wire, pylon, 
building, low object and ground; Type II sites (site name bounded by a black rectangle) and Type I 

sites (others). 
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Ground 

In the corridor scene, the ground is the most predominant object. The ground surface 

is very flat except for a water region passing through the areas of TL07 and TL08 subsets 

(Figure 3-4). 

3.4.2. Experiment Environments 

Our classification approach is composed of two main processing procedures: feature 

extraction and Random Forests classification. An algorithm with C++ is developed for 

the extraction of the 21 features and Weka software (Weka 3.5) customized by Livingston 

(2005) is utilized for Random Forests. Testing is done on Windows 7 with Intel Core 2 

Quad CPU and 8GB RAM. 

3.4.3. Accuracy Assessment 

In a similar way that Lodha et al. (2007) suggested, the performance of classifiers is 

evaluated by using two types of accuracies by comparing classification results and 

reference data: sample-weighted and class-weighted accuracy. The sample-weighted 

accuracy is the percentage of correctly classified points to entire numbers of points, while 

the class-weighted accuracy for a class is the percentage of points correctly labelled as 

the class to points having the same class label in the reference data. The sample-weighted 

accuracy indicates an overall classification performance regardless of the degree of 

predominance of each class in the entire scene. However, the class-weighted accuracy 

represents the classification performance of a classifier for each class. The averaged 
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class-weighted accuracy is a mean of the class-weighted accuracies over all the classes. A 

good classifier satisfies high accuracy in both measures. 

3.5. Experimental Results 

Classification performance analysis is conducted by the Random Forests trained with 

the proposed features using a corridor scene (16 subsets) shown in Figure 3-4. For 

extracting features shown in Table 3-1, two parameters of r and ∆h for determining the 

size of neighbouring systems of sphere (NS) and cylinder (NC) were fixed as 1.5 m and 

0.75 m respectively. For training the Random Forests, the number of trees T was set to 60. 

These parameter values are independently determined through an individual sensitivity 

analysis on each parameter. Another parameter for Random Forests, the number of 

features F, was differently set to 5 for 21 feature case (Section 3.5.1) and 3 for 7 feature 

case (Section 3.5.3, Section 3.5.4 and Section 3.5.5). The variable is decided based on the 

equation depending on the number of input features (Breiman, 2001). 

3.5.1. Balanced vs. Unbalanced Learning 

Random Forest classifier is built with balanced training sample and its performance 

is compared to the one obtained with unbalanced sample. The training sample was 

arbitrarily chosen as T00 in Figure 3-4. The balanced training sample was produced as 

discussed in Section 3.3.1 from the original T00 (unbalanced). Figure 3-5 presents the 

classification accuracies per class for two classifiers modelled with the balanced T00 and 

the unbalanced T00. The results showed that balanced learning produced more accurate 

classification results (97.95%) than unbalanced learning (96.62%). It is also found that 
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the balanced learning is more effective to avoid biases in classification due to unequal 

class distribution in the unbalanced sample. In the results, the balanced learning produced 

4.4% higher accuracy over the minority classes (i.e., wire, pylon and low object) 

compared to the unbalanced learning. It is critical to reduce the classification errors in 

such key objects for conducting the power line safety analysis. Therefore, all the trainings 

henceforth are performed with balanced training samples. 

 

Figure 3-5. Class-weighted accuracies of unbalanced and balanced learning for site T00 

 

3.5.2. Point Feature Refinement 

The feature refinement process aims to reduce the excessive feature dimensionality 

by selecting the most suitable features containing relevant information of the targeted 

classes and linearly combining those features. The feature selection is done by computing 

the feature importance following the method proposed by Guo et al. (2011). Figure 3-6 

shows the computed feature importance for classification results produced by learning the 

balanced T00: the higher the value, the more important the feature. Each feature is 

categorized into one of five feature groups (vegetation, wire, pylon, building and 

common) according to its relevance to the designated feature group. Note that the 

features for low object class are not specified as it comprises various objects and thus the 
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generalization of its characteristics is difficult. Instead, the low objects would be mostly 

characterized by HG (height from the ground), which is categorized in the common 

feature group. For finding the important features, the features which importance shows 

higher value than a threshold were selected. Among the selected features, a final feature 

set (f12) was determined by selecting two most important features for each class and four 

as common features (black boxed features in Figure 3-6).  

 

Figure 3-6. Feature importance and feature selection (black boxed features)  
 

(a) Feature correlation map (1: positively 
correlated, 0: uncorrelated, -1: negatively 

correlated) 

(b) Information loss rate on principle components 

Figure 3-7. Feature generation using PCA (Principle Component Analysis) 
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Figure 3-7(a) shows a correlation of each pair of features in the selected feature set 

(f12). As shown in the figure, several features including SP-AN and DR-PD are highly 

correlated each other. PCA (Principal Component Analysis) was employed to reduce 

such correlations between the feature pairs. First K principle components maintaining 

95% of information were selected (K=7 is determined as shown in Figure 3-7(b)). 

Finally, 7-dimensional features (f7) were produced. The same procedure for the feature 

selection was applied to all the test sites so that they have an identical feature set f7. 

3.5.3. Sensitivity Analysis to Training Sites 

The classification results would be produced differently even over the same scene 

when the classifier is trained with different sample. For investigating its sensitivity to the 

training samples, four different classifiers (CT00, CTR02, CTL02, and CTR03) were used. Each 

classifier was modelled using Random Forests with the balanced T00, TR02, TL06, and 

TR03 respectively and with the refined feature subsets (f7). This study selected T00 and 

TR02 representing Type I sites, which contains only transmission lines, while TL06 and 

TR03 for Type II containing both distribution and transmission lines.  

Table 3-2 presents class-weighted and sample-weighted accuracies, which were 

computed by Type I (CT00 and CTR02) and Type II classifiers (CTL06 and CTR03). Table 3-2 

suggests that selecting training sites affect the class-weighted classification accuracy. 

Type II classifier yielded better overall class-weighted accuracies than Type I classifier, 

while the opposite result can be observed in sample-weighted accuracy. In particular, 

compared with Type I classifier, Type II classifier resulted in more accurate classification 
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for wire, pylon, and low object. An ideal classifier is able to produce high classification 

performance in both sample-weighted and class-weighted accuracy. In this regard, CTR03 

yielded the highest accuracies in both accuracies. Moreover, corridor scenes often contain 

different types of power lines and pylons. It is critical to correctly classify diverse objects 

with intra-class variations for power line mapping. CTR03 (Type II) showed relatively 

higher class-weighted accuracy in both object classes. This suggests that selecting a 

training site where many different objects within a certain class are present leads for an 

optimal classification model. 

Table 3-2. Class-weighted and sample-weighted accuracies of Type I and Type II classifier 

Classifier 
Class-weighted accuracy (%) Sample-weighted  

Accuracy (%) Vegetation Wire Pylon Building Low object Average 

Type I 
classifier 

CT00 91.79 87.92 86.79 94.05 83.56 88.82 91.11 
CTR02 91.56 90.92 73.18 94.90 86.97 87.51 91.92 

Type II 
classifier 

CTL06 88.58 93.44 88.71 90.59 87.32 89.73 89.34 
CTR03 90.20 93.10 85.49 92.92 88.64 90.07 91.04 

 

3.5.4. Classification and Results 

This study selected CTR03 as the optimal classifier showing the best classification 

performance. Figure 3-10 shows a classification map produced by applying CTR03 to all 

the 16 sites. Figure 3-8 provides the class-weighted accuracy for each site and Table 3-3 

presents a confusion matrix that presents commission and omission errors per class 

produced by CTR03. As shown in Figure 3-8, the proposed classification method achieved 

the class-weighted accuracy in the range of 84.40% to 98.48% for the classes. Its average 

accuracy was estimated as 90.78% with 3.84% standard deviation across the sites. For all 

the sites, wire shows the highest classification accuracy of 93.10% and similar accuracies 
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can be found for building (92.92%) and vegetation (90.20%). The pylon and low object 

class record less accuracy of 90%. Figure 3-9 shows classification maps over TR02 and 

TR06. TR02 (Type I site) obtained the highest class-weighted accuracy of 94.31% except 

the training site (TR03), while TR06 (Type II site) reported the worst class-weighted 

accuracy of 83.61%.  

 

Figure 3-8. Class-weighted accuracies for each site: Type I sites and Type II sites (black boxed). 

 

 

(a) TR02 (b) TR06 

Figure 3-9. Classification results of Type I site (a) and Type II site (b); low object, building, 
vegetation, wire and pylon assigned in the order from light to dark gray 
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In Type II sites, the class-weighted accuracies for wire and pylon are relatively lower 

than those in Type I sites due to the misclassification of distribution lines and small 

pylons into vegetation. It is believed that such accuracy variance was caused due to high-

degree of scene complexity of the test scenes, exhibiting large spatial overlaps between 

different classes and intra-class variations. This causes difficulties for the proposed 

features to differentiate one class from the others. For instance, it was observed that most 

of wire omission errors occurred over regions where the distribution wires pass closely 

over vegetations. This causes some confusion in vertical-related features to differentiate 

wire from vegetation or pylon. For pylon objects, most omission errors were observed 

from small pylons associated with distribution lines, while most commission errors 

appeared on vegetation, especially over treetops. For vegetation, it was discovered that 

deciduous trees were better classified than coniferous ones. This is because coniferous 

trees are narrow and columnar, so some of them were mislabelled as pylon. For building, 

low error rate was estimated in both omission and commission. As shown in Table 3-3, 

the omission error rate is higher than the commission one and the most omitted building 

points, especially building wall points, were misclassified into vegetation or low object. 

Other omission errors locally occurred around building edges where vegetation and 

buildings are partially overlapped. For low object, most of the omission errors were 

observed from container boxes (in TL05 and TL04), which have been misclassified into 

buildings because their surface properties are similar to building rooftops. Other 

misclassification errors occurred at fences located near vegetation, which have been 

mislabelled as vegetation. In addition, some grasses were misclassified into vegetation.  



71 
 

Figure 3-10. Classification map for all sites; vegetation (green), wire (red), pylon (blue), building 
(building), low object (gray) and ground (remainder); Type II sites (site name bounded by a black 

rectangle) and Type I sites (others). 
 

So far, it is confirmed that Random Forests trained with proposed features can be 

considered as an excellent tool to produce high accurate classification map for the 
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purpose of power line risk management. However, this study also observed the 

commission and omission errors produced by the classifier which still requires manual 

editing to eliminate those errors. Random Forests assigns class labels to raw point of 

clouds, mainly relying on location information gathered from individual point with its 

neighbouring system. It does not consider certain contextual relations such as spatial 

arrangement between classes. A Markov Random Field as suggested by Lu et al. (2009) 

would be useful to further eliminate errors produced by Random Forests. In this study, 

different features were selected for each class, but their importance was measured for 

discriminating all the classes, not each class from the others. This would require a future 

investigation to explore new feature selection methods, especially class-dependent feature 

selection that can identify which features among entire features distinguish a particular 

class from the others. 

Table 3-3. Confusion matrix across all sites (F=3, T=60) 

Class 
Predicted Omission 

error (%) Vegetation Wire Pylon Building Low object 

Actual 

Vegetation 1,175,449 9,204 2,171 17,323 99,042 9.80 
Wire 7,154 131,628 1,412 825 372 6.90 
Pylon 944 1,705 16,386 26 107 14.51 

Building 36,767 2,594 71 1,005,384 37,154 7.08 
Low object 30,336 338 50 22,374 414,476 11.36 

Commission error (%) 6.01 9.51 18.44 3.88 24.80  
 

3.5.5. Comparison of Point-based and Grid-based Feature Extraction 

As discussed in the previous section, the classification results shown in Table 3-3 

was produced by Random Forests, which was trained with features that were computed 

by per-point investigation in 3D. In contrast to this, Guo et al. (2011) proposed a grid-
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based approach where all the points contained in each grid cell were treated as one group, 

which has the same feature values and thus same class label.  

This study has compared the performance of two Random Forests classifiers; point-

based and grid-based classifiers. Both classifiers were trained on the same class-balanced 

TR03. To construct a point-based Random Forests, LiDAR points were projected into a 

grid space, where each cell size was set to 25 cm by 25 cm. A cylinder (NC) with its 

radius of r was created centred at each grid cell for collecting its neighbouring points. To 

make a fair comparison, the same r value (1.5 m) for both classifiers was applied, with 

which the same features are shown in Table 3-1. Note that DR feature was excluded in 

this experiment because it is not applicable for a grid-based method. Following the same 

manner used for the point-based method (Section 3.5.2), the experiment selected the 

important feature set for the grid-based method of {SP, VE, LN, PE, OS, COS, OD, VD, 

HG, AN, PD, TE}. These features were reduced to five principle components by PCA. 

The grid-based classifier trained on the refined feature set classified each grid cell. Then, 

this study assigned the cell’s label to all the points within the cell and finally used the 

labelled points to produce a confusion matrix (Table 3-4). 

Table 3-4 summarizes classification result over all the test sites produced by the grid-

based classifier. It was estimated that the grid-based classifier produced the sample-

weighted accuracy of 86.18% and the class-weighted accuracy (an average of accuracies 

of all the classes) of 84.32%. Table 3-5 describes a confusion matrix of classification 

produced by the grid-based classifier subtracted from that of the point-based classifier. 
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The positive value of diagonal element in the matrix means that the point-based classifier 

has more correct classification result than the grid-based classifier. The negative value of 

off-diagonal elements indicates that more misclassifications were caused by the grid-

based classifier. The point-based classifier resulted in 4.86% and 5.74% higher than the 

grid-based classifier in the sample-weighted and class-weighted accuracy respectively. 

This study found that the point-based classifier is superior to the grid-based classifier 

across all the error assessments with respect to the omission and commission error rate. 

As can be seen in Figure 3-11, the grid-based classifier produced many classification 

errors over vegetation which is placed right under transmission lines, while the point-

based classifier well classified the area.  

Table 3-4. Confusion matrix of the grid-based classifier (F=3, T=60) 

Class 
Predicted Omission 

error (%) Vegetation Wire Pylon Building Low object 

Actual 

Vegetation 1,133,569 37,067 2,363 28,570 101,620 13.02 
Wire 8,758 130,309 1,035 520 823 7.87 
Pylon 1,004 3,111 15,020 3 30 21.64 

Building 64,158 6,370 82 969,285 42,075 10.41 
Low object 67,345 11,191 739 39,645 348,654 25.43 

Commission error (%) 11.08 30.70 21.93 6.62 29.31  
 

Table 3-5. Subtracted confusion matrix of grid-based classifier from the point-based classifier 

Class 
Predicted Omission 

error (%) Vegetation Wire Pylon Building Low object 

Actual 

Vegetation 41,880 -27,863 -192 -11,247 -2,578 -3.21 
Wire -1,604 1,373 377 305 -451 -0.97 
Pylon -60 -1,406 1,366 23 77 -7.13 

Building -27,391 -3,776 -11 36,099 -4,921 -3.34 
Low object -37,009 -10,853 -689 -17,271 65,822 -14.08 

Commission error (%) -5.07 -21.19 -3.49 -2.75 -4.51  
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(a) Grid-based method (b) Point-based Method 
Figure 3-11. Classification results of two approaches 

 

3.5.6. Computational Complexity 

The computational times of two classification methods (point-based and grid-based 

classification), which were compared in Section 3.5.5, was estimated. Consequently, the 

point-based classifier requires 233 minutes per kilometre for computing the features and 

classifying the data, while the grid-based classifier took 181 minutes (52 minutes faster) 

as seen in Table 3-6. However, the grid-based method misclassified 219,215 points per 

kilometre, while the point-based misclassified 142,089 points. This suggests that the grid-

based method requires additional time to manually re-classify 77,126 misclassified points 

compared to the point-based classifier. Moreover, implementing a parallel data 

processing with multiple computing systems will decrease the importance of time factor 

and consequently allow our approach to be applied to a rapid classification of power line 

scenes. 

Table 3-6. Computational time of point-based and grid-based methods (minutes/km) 

Method 
Feature extraction Random Forests 

Total 
Height 

Hough 
Trans. 

Eigen Surface
Convex 

Hull 
Echo Density

Vertical 
Profile 

Training Testing

Point-based 9.61 175.69 0.55 8.06 16.67 0.06 0.02 0.66 4.05 4.02 232.93
Grid-based 6.78 137.68 0.44 6.72 10.42 0.04 0.01 0.21 4.37 4.02 180.89
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3.6. Summary 

In this chapter, the potential of a supervised classification method, especially 

Random Forests, was investigated for classifying corridor scenes from airborne LiDAR 

data. The point-based method which extracts total 21 LiDAR point features to build 

Random Forest classifiers was applied. The experimental results suggested that it is 

important to train the classifier with class-balanced training samples, which produced 

1.33% and 4.44% higher accuracies in respective measures compared to a classifier 

trained from class-unbalanced data. Additionally, the balanced learning resulted in almost 

equivalent accuracy across all the classes. Besides balancing training samples, optimal 

training sample selection, which chooses samples containing many different objects 

observed over test sites, led to more uniform and higher classification accuracy over the 

classes. In the comparison of point- and grid-based approach, the classification model 

trained from point-based features showed 4.86% and 5.74% higher in the respective 

sample-weighted and class-weighted accuracy than one from grid-based features. This 

result suggests that the point-based classifier is more suitable for discriminating vertical 

overlapping of multiple objects. All the procedures done in this chapter were taken 

approximately 4 hours to classify LiDAR data of 1.0 km power line corridor, which is 

much more efficient against manual classification. Even though the proposed supervised 

classifier has demonstrated its success in corridor scene classification, the classifier still 

produced misclassification errors, especially regions where sufficient neighboring points 

are not collected to exhibit their distinctive characteristic such as building roof ridges, 

hips, and eaves. Thus, future investigation is necessary to further rectify those errors by 
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introducing more features, called object-based features described in chapter 4, extracted 

with different perspectives. 
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4. Classification Using LiDAR Object Features 

In chapter 3, a point-based approach is applied to classify power line corridor scenes, 

where LiDAR features are extracted for every single point and a class label is 

individually assigned to each point. The method is more appropriate for power line 

corridors compared with conventional grid-based approach. However, as the class label 

assignment depends on features derived from neighbors, it occasionally shows 

classification errors when insufficient neighbors are collected as seen in Figure 4-1(a). 

Similarly to GEOBIA (Hay et al., 2005) which partitions optical imagery into meaningful 

image objects (groups of pixels, also called image segments) and treats the objects as 

spatial units for classification, this chapter introduces an object-based approach for 

LiDAR data where a point cloud is decomposed into a set of point groups (termed as 

point segmentation in this dissertation), each group (or point segment) is formed by 

gathering points based on a specific homogeneity. Plane-likeness is mostly-utilized 

homogeneity in detecting surface-like objects such as terrain (Yao et al., 2009; Wang and 

Tseng, 2011; Yang and Dong, 2013) and building roof (Filin and Pfeifer, 2006; Yao et 

al., 2009; Wang and Tseng, 2011). In addition to the plane-likeness, this dissertation 

considers line-likeness in the point segmentation so that linear objects such as 

transmission line and pole-type pylon are highlighted. A detailed description of the point 

segmentation methods is addressed in section 4.1. Section 4.2 describes object-based 

features, i.e., linear and planar features, derived from each segment or contextual 

properties with its neighboring segments. Section 4.3 introduces an ensemble system 

which combines classification models built from the respective linear and planar features. 



79 
 

Section 4.4 evaluates the ensemble system and compares it with the point-based approach 

addressed in chapter 3. Finally, section 4.5 summarizes this chapter. The research work 

corresponding to this chapter has been addressed in Kim and Sohn (2010) and partly 

(Section 4.1 and 4.2) described in Sohn et al. (2012). 

(a) Classification results using point 
features 

(b) Classification results using point and 
object feature 

Figure 4-1. Considerable classification improvement over building ridges and edges by introducing 
object-based features (Kim and Sohn, 2010) 

 

4.1. Pre-processing: Point Segmentation  

Point segmentation is a common preprocessing procedure to object-based 

classification and OBPA. Two ways for segmenting 3D point cloud have been used to 

handle LiDAR data. The first one is the partition of given points into many clusters, each 

of which represents an object. For instance, unorganized points can be clustered into a 

mixture of inherent shape models, i.e., plane, sphere, cylinder, cone, and torus (Schnabel 

et al., 2007). The second method is the grouping of points according to a specific 

homogeneity attribute. Individual point is assigned to one of the groups as a membership. 

In general, surface feature is used to cluster more points over planar objects such as 
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terrain and building roofs than non-planar ones from Airborne LiDAR data (Sampath and 

Shan, 2010; Verma et al., 2006) and Terrestrial LiDAR data (Lim et al., 2009). 

The segmentation method in this dissertation follows the second method which 

involves the gathering of meaningful point groups. In this chapter the point segmentation 

is performed twice to the LiDAR data independently: in the first point segmentation 

neighboring points with a similarity are grouped together by the measure of their 

linearity, while the second one is based on a planarity. The 3D line and plane models are 

approximated from point sets captured by a voxel space. This is because the object 

approximation is straightforward and computationally simple compared with point 

clustering from seed points. The membership points for each of the generated object 

models are considered as an object segment. Before extracting the object models, this 

chapter produces a 3D cubical voxel grid with the given LiDAR points. Denote that the 

ground points are excluded from our LiDAR data by an existing ground filter (Sohn and 

Dowman, 2008), that is, the voxel grid includes only above ground points. A sequential 

RANSAC (RANdom Sample Consensus) which repeats traditional RANSAC for outliers 

remained in the previous stage was applied to points within each voxel. The modeling 

fitting algorithm based on PCA is employed to produce line or plane models from inliers. 

Such iterative model approximation ends when it does not generate any model or n0 

models are already generated for a voxel. This chapter limits the maximum number of 

models to reduce the complexity in feature variable computation and set n0=20 through 

visual inspections where few models (mostly 10 below models) were populated from 

power line and pylon (see the third and fourth row of Figure 4-2(b)) compared to models 
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from building, vegetation, and low object (see the first, second, and fifth row of Figure 4-

2(c)).  

 

  

  

 
(a) point cloud (b) line extraction (c) plane extraction 

Figure 4-2. Results of line and plane extraction for each class object (building, tree, power line, pylon 
and low object from the top) 
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4.2. Object-based Features 

The point cloud over a power-line corridor scene is applied into deriving geometric 

primitives (i.e., either line or plane in this study) through the point segmentation 

described in Section 4.1. Figure 4-2 presents the targeted corridor objects which are 

visualized as geometric primitives by the point segmentation. As shown in Figure 4-2(b), 

power line and pylon are visually well formed into regular line segments, especially 

individual power lines are modeled without any missing parts. On the other hand, 

building, tree, and low object (mostly grass) are unrecognizable and line segments over 

these objects have irregular line vectors compared to those over power lines and pylons. 

For the plane primitive depicted in Figure 4-2(c), relatively large and regular-shaped 

plane segments are produced over a building rooftop. Moreover, they have mostly equal 

surface slopes with their neighbors when they are not near roof edges where the surface 

slope varies. Unlike the building rooftop, plane segments coming from a tree are more 

irregular in terms of the size, shape, and slope. Power line and pylon mostly produce 

small sized plane segments, but for pylon, the segment size would be various depending 

on pylon type. A low object shows similar characteristics as the building rooftop. Based 

on these distinguishable characteristics between the power line corridor objects, this 

chapter designed object-based features extractable from the line and plane segments, 

termed linear features and planar features respectively. Linear features discriminate linear 

shaped objects such as power line and pylon from non-linear shaped objects such as 

building and vegetation, while planar features distinguish planar shaped objects like 

building rooftop from non-planar shaped objects such as power line, pylon, and 
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vegetation. Lastly, a low object is obviously characterized by its height rather than 

features from the geometric primitives because it includes a mixture of various objects, 

grass, fence, vehicle, and container box, so finding representative characteristics is not 

straightforward. Nevertheless, these object-based features help to rectify classification 

errors caused due to insufficient neighbors in the point-based classification. As seen in 

Figure 4-1(a), the areas near intersection edges (i.e., building ridges) over building roofs 

are misclassified into the wire or vegetation class, but they are mostly corrected in Figure 

4-1(b) thanks to a contribution from the object-based features. The detailed description of 

the features is addressed in the following section. 

4.2.1. Feature Variables 

The object-based features (Table 4-1) are composed of unary and contextual features. 

The contextual features have been highlighted in grey colour in Table 4-1, and the others 

are unary features. A unary feature is an attribute representing shape, area, length, colour, 

etc. which is a single object segment (i.e., a line or plane segment), while a contextual 

feature indicates a spatial correlation between the segments and their neighbours. For 

example, neighbours (݈ݏ௜) for a certain line segment (݈ݏ) are line segments within voxels 

surrounding a voxel where ݈ݏ lies. For the ݈ݏ, the unary features are computed from the 

line segments (݈ݏ) and the contextual features are computed as averages of differences in 

feature values between line segment pairs (݈ݏ,  ௜). The linear features are stored in a 1Dݏ݈

array vector (fL). For a plane segment (ݏ݌), unary and contextual feature values (fP) are 

derived in the same way. As another neighbouring system, this chapter regards segments 

as co-neighbours when they lie within a voxel column. This neighbouring system is used 
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to calculate contextual features in a vertical direction like Deviation of line vector (DLV) 

introduced in Table 3-1. 

Table 4-1. Descriptions of linear and planar features 

Feature Abbrev Equation Description 

Linear 
features 

Line height LH Height from ground at the midpoint of a line segment (ls) 

Line slope LS Angle between the line vector of ls and the XY horizontal plane.

Line residual LR 
 

Root mean square of perpendicular distances from membership 
points to ls. 

In-out cylinder IOC 
n୭ െ n୧
n୭  

Ratio of point counts in two coaxial cylinders (inner and outer 
cylinder) with radius ri and ro (ri>ro) produced from an axis, ls. 
The number of point is ni in the inner cylinder and  no in the 
outer cylinder. 

Line count LC  
The number of line segments in a voxel. All the line segments 
within the voxel have the same value. 

Orientation 
variation 

OV ෍
ฬαെ α

୧
ฬ

n୪

୬ౢ

୧ୀଵ
 

Variation of horizontal orientation angle difference between 
(ls,lsi). α and αi are the orientation angles for ls and lsi 
respectively. |α- αi| = [0, π/2) 

Collinearity CL ෍
|∆θ୪|

n୪

୬ౢ

୧ୀଵ
 Δθl is an angle between (ls,lsi). | Δθl | = [0, π/2) 

Deviation of line 
vector 

DLV ඨ
∑ ∆θ୪

ଶ୬ౢ
୧ୀଵ

n୪
 Standard deviation of Δθl 

Coplanarity CP ෍
d୧
4

ସ

୧ୀଵ
 

Denote (p1,p2) is two endpoints for ls and (p3,p4) for lsi. when a 
plane is produced using three points except pi, di is a 
perpendicular distance from pi to the plane. 

Vertical space-
occupying 

VSO  
Analyze the measure of space occupied by line segments present 
above and below ls. 

Horizontal 
space-occupying 

HSO  
Analyze the measure of space horizontally occupied by line 
segments from ls. 

Planar 
features 

Plane height PH Height from ground at the centroid of a plane segment (ps) 

Plane residual PR  
Root mean square of perpendicular distances from membership 
points to ps. 

Ground presence GP The number of ground points below ps. 

Plane area PA Area of ps. 

Plane count PC  
The number of plane segments in a voxel. All the plane 
segments within the voxel have the same value. 

Plane normal 
variation 

PNV ෍
ห∆θ୮ห

n୮

୬౦

୧ୀଵ
 Δθp is Variation of plane normal between (ps,psi). 

Deviation of 
plane normal 

DPN ඨ
∑ ∆θ୮

ଶ୬౦
୧ୀଵ

n୮
 Standard deviation of Δθp 
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Linear features 

From a line segment (ls) and membership points of ls, following unary features are 

computed: line height (LH), line slope (LS), line residual (LR), in-out cylinder (IOC), 

and line count (LC). LH is the elevation from ground surface to the midpoint of ls, and 

LH is a useful feature over all the classes, especially for objects that have a constant 

height such as grass and vehicle, i.e., the low object class. Line slope (LS) is an angle 

between the line vector of ls and the XY horizontal plane, and LS is expected to show 

slant slope values over power transmission conductors because pylons typically hold the 

conductors horizontally, while approximately 90 degrees over pole type pylons and 0 to 

90 degrees slope values over frame type pylons composed of horizontal bracing, truss 

bar, and vertical steel beam. LS for buildings shows regular slope values (mostly flat or 

slant slopes) depending on the rooftop slopes, while arbitrary slopes over vegetation. Line 

residual (LR) is the root mean square of orthogonal distances from each membership 

point to ls. Linear objects such as power line and pylon would have low values in LR 

compared with non-linear objects. In this chapter it is anticipated that LR values exhibit a 

discrete distribution over all class objects (power line < pylon < building, vegetation, low 

object). In-out cylinder (IOC) is a ratio of point counts captured by two coaxial cylinders 

(inner of radius r1=15cm and outer of r2=50cm) extended from a ls. The length of the 

cylinders is the same as the line length of the ls and IOC directly checks if ls originates 

from a linear like object by investigating the presence of points in a gap between inner 

(Ci) and outer cylinder (Co).  
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Denote the point count ni in Ci and no in Co, points in Ci are completely regarded as 

membership points used for approximating ls, hence there exist few points in the space 

(ΔC=Co-Ci) if ls is produced over a linear like object (i.e., power line or pole type pylon). 

Thus, power line and pole type pylon are expected to show low values in IOC due to their 

proximity clearance. On the other hand, ΔC for line segments generated over the 

building, vegetation, and low object contains some neighboring points because of their 

planar or volumetric characteristic. This leads to high values in IOC for them. As 

addressed in Section 4.1, the segmentation algorithm would generate either single or 

multiple line segments over a voxel depending on regularity in the spatial distribution of 

the points in the voxel. Line count (LC) is the number of the line segments populated 

within each voxel. As shown in Figure 4-1, linear like objects (i.e., power line and pylon) 

demonstrate relatively fewer number of line segments compared with non-linear like 

objects (i.e., building, vegetation, and low object). 

In addition to unary features, this chapter examines contextual features whose values 

are computed from line segment pairs. Orientation variation (OV) indicates a mean 

variation of 2D orientation angles between pairs of line segments (݈ݏ, ௜ݏ݈ ) which are 

projected onto a horizontal XY plane. Power lines typically run parallel with each other 

to maintain the clearance between them, so OV values for power lines might be close to 0 

degree. Pylon would show arbitrary OV values because its line segments have random 

tangent values. Also, the other class objects are expected to have arbitrary OV values, but 

this chapter observed that building roofs mostly produce parallel line segments coming 

along each scan line. Collinearity (CL) indicates the mean of 3D angles between pairs of 
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lines segment and values range between 0 to 90 degrees. CL over power line has the 

smallest values which are close to 0 degree, while CL values over pylon vary depending 

on the pylon type and shape. A pole type pylon could have almost 0 degree around the 

pole, but larger values around intersecting areas between the pole and cross arms. 

Furthermore, CL values over a frame type pylon depend on the pattern of the steel bar (or 

truss) arrangement. For building the CL values are low due to the same reason addressed 

in the OV feature. The other class objects could have large CL values because of random 

line vectors of populated line segments.  

Deviation of line vector (DLV) is the root mean square of 3D angles between the line 

vectors of line segment pairs (ls, lsi) in a height direction. DLV values are small when the 

line vectors placed in a vertical direction are parallel, so power line and pylon are 

expected to be small in DLV. If line segments populated over building roofs are parallel 

because of the scanning direction patterns, DLV value is small. Otherwise, its value is 

large. For vegetation mostly large values might be derived because of random line 

segments over trees. Coplanarity (CP) investigates whether a pair of line segments lies on 

an infinite plane, which is able to distinguish line segments over planar objects (i.e., 

building roof) from ones over non-planar objects. A common way to measure it is to 

select three points out of the end points (two from each segment) from a line segment pair 

and to produce an infinite plane using the chosen points. An orthogonal distance from a 

remaining point to the plane is computed. This task repeats for each end point of the line 

segments, and CP is then an average value of the distances. Vertical space-occupying 

(VSO) is motivated from Continuous On-Segment (COS) described in the section 3.1.2 in 
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order to characterize vertical like objects (i.e., pylon) by investigating the number of 

continuous occupied voxels with line segments in a height direction. Horizontal space-

occupying (HSO) tends to highlight objects horizontally occupying a large space such as 

building rooftops. When a voxel contains ls, HSO of the ls is the number of occupied 

voxels among 8 neighbours around the voxel in a horizontal direction. HSO shows a high 

value over building rooftop having relatively larger surface area and tree crown having 

larger volume compared with power lines and pylons. 

Planar features 

For a plane segment (ps), unary features, i.e., plane height (PH), plane residual (PR), 

ground presence (GP), plane area (PA), and plane count (PC), are measured. PH is a 

height value from ground to the centroid of ps. Similar to LH, PH is useful to 

discriminate over all class objects, especially in separating the low objects. PR is the root 

mean square of perpendicular distances from points to the ps. PR is expected to be 

helpful to recognize planar like objects such as building roofs and walls from objects 

having large volumes. However, linear like objects would be also highlighted because 

plan segments populated from a point group shown as a line are too much supported by 

the points which means that most points are involved in the plane model fitting. This 

brings almost zero value in PR. A feature to separate these objects (i.e., linear and planar 

like objects) is ground presence (GP), which investigates the presence of ground points 

under each plane segment. GP values changes according to the surface characteristics 

reflected by the laser beam, which determines the degree of laser penetration. The laser 

pulse which passes through the linear like objects produces multiple returns (including 
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reflections from ground surface) because their surface area is relatively smaller than the 

laser footprint size. Therefore, ground points are mostly observed under them. Vegetation 

(i.e., tree and shrub) is also a well-known penetrable object, so also ground points may be 

present. However, from building rooftops with a large rigid surface no laser penetration 

brings no ground points. Plane area (PA) indicates the area of the plane segment. For 

example, larger plane segments are populated over building rooftops because the rooftops 

occupy large spaces, while smaller plane segments are produced over power lines and 

pylons. PA values for vegetation vary because random plane segments in size are 

generated over trees. Similarly to LC, plane count (PC) is the number of plane segments 

produced in each voxel. Relatively high PC values are shown over vegetation as many 

plane segments are necessary to represent a volumetric object like a tree, while low PC 

values are expected from building rooftops and power lines as they can be modeled using 

a few plane segments. 

As a contextual feature for a plane segment and its neighbours, plane normal 

variation (PNV) is a mean of angle differences between normal vectors of plane segment 

pairs (ݏ݌, ௜ݏ݌ ). Plane segments formed over a building rooftop tend to have uniform 

normal vectors except for regions where the roof surface changes such as intersection 

edges and step edges. On the contrary, vegetation randomly produces plane segments 

with arbitrary normal vectors, so it is expected to show high PNV values. Like the DLV, 

deviation of plane normal (DPN) is a root mean square of angle difference between 

normal vectors of plane segment pairs lying on a voxel colume in a height direction. A 

zero DPN value is observed over building rooftop since a single plane segment would 
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typically come from it, which means a zero deviation for only one sample. Unlike 

building rooftop, vegetation produces many plane segments whose normal vectors are 

arbitrary in the vertical direction. Such that, vegetation shows higher DPN values than 

building rooftop. 

Finally, this chapter summaries features introduced so far: 11 linear features, 

fL={LH, LS, LR, IOC, LC, OV, CL, DLV, CP, VSO, HSO}, from a line segment and 7 

planar features, fP={PH, PR, GP, PA, PC, PNV, DPN}, from a plane segment. 

4.2.2. Unused Points 

The linear feature values fL computed from a line segment are assigned to each of the 

membership points of the segment. 90.2% points across all the sites have been used to 

produce the line segments, that is, 10.8% points not belonging to any line segments do 

not have fL. Note that this chapter does not treat ground points, so this statistic does not 

include the ground points. To assign fL to each of the remaining unused points, this 

chapter measures the spatial proximity between the point and the line segments. Then, the 

fL of the closest segment is assigned to the point. In the same way, this chapter assigns fP 

to 9.4% points unused for the plane segmentation. In consequence, all the points have the 

object features, fO={ fL, fP}. 

4.3. Ensemble system 

An ensemble system is a committee of experts (i.e., classifiers), each of which is 

supposed to make a independent decision individually and the system decreases a risk to 

reach to a bad decision by combining the opinions from the experts even if the decision 
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of each one may not be the best. Many classification problems are always faced with the 

decision making and problem solving and it is believed that combining several decisions 

yield better classification quality. Ensemble methods utilize the same strategy which 

combines results from multiple classifiers for a final decision. According to a literature 

review, the ensemble methods are mostly superior to a single classifier (Kittler et al., 

1998; Dietterich, 2000). In general, the ensemble methods are categorized into two 

groups, the first one selects the best expert amongst given an ensemble of classifiers and 

the selected classifier is used for decision making. The second one uses all the given 

classifiers by combining their results. In conventional ensemble methods, local decisions 

from individual classifiers are combined in parallel (parallel structure) or sequential 

(sequential structure). The sequential structure is mainly employed when each of the 

classifiers has a different role such that a classifier is able to identify a specific class, i.e., 

a binary class problem, while the parallel structure is used when all the classifiers work 

for all the classes, i.e., a multi-class problem. Random Forests used in this study follows 

the parallel structure. In such ensemble systems especially built with the parallel structure, 

what and how to combine is a critical issue. The following section will discuss this issue 

in further detail. 

4.3.1. General combining methods 

The combining methods are divided into two groups according to combining source 

and combining rule. The combining sources are typically data, feature, and classifier and 

they are termed data-level, feature-level, and classifier-level fusion respectively. The 

data-level fusion produces a new data by fusing different kinds of raw data, which is 
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different from original data. As an example, a high resolution color image can be 

generated by combining a panchromatic image and a multispectral image. The feature-

level fusion combines the respective feature sets extracted from different sensory data. 

The individual feature sets can be produced from a data by extracting them under 

different circumstances. Data analysis using features from LiDAR and optical images is 

one example of the feature-level fusion. Finally, the classifier-level fusion is to combine 

outcomes of classifiers which are built with different training samples or different feature 

sets. In general, the classifier outcome is either a predicted class label or prediction 

confidence per class (described in the section 3.2.2). The classifier-level fusion has 

various combination rules depending on the classifier outcome. When the outcome is the 

predicted class label, typically majority voting is employed as well as weighted-majority 

voting, behavior knowledge space (BKS), and borda count. For the class-per prediction 

confidence, algebraic combining rule (average, weighted average, trimmed mean, 

minimum, maximum, median, product, generalized mean rule and so on), decision 

template and Dempster-Shafer based combination can be applied (Polikar, 2006). 

However, there is no best combination rule because it only depends on the particular 

problem. Therefore, finding the best combining method suitable for our ensemble system 

is necessary. A detailed description on the combining rule is addressed in the section 

5.1.3. 

4.3.2. Ensemble system design 

The previous section describes the general combining methods and this section will 

discuss the ensemble design applied for this study. A summary of the design can be found 
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in Figure 4-3, as shown in the figure, an ensemble system has a parallel structure by 

combining two classifiers built with the feature set, fL and fP addressed in the section 

4.2.1. The fL and fP are extracted by segmentation and feature extraction from a training 

sample where terrain has been filtered out. Then, Random Forests builds classifiers (CL 

and CP) using the respective fL and fP. The classifiers are applied to the corresponding 

feature sets of test samples, which are extracted from the same feature extraction method. 

Finally, prediction confidence values are combined based on the average rule for each 

class. A class label with highest confidence value is assigned. The average rule is 

typically used when the same kind of classification model (i.e., Random Forests) is 

applied in an ensemble system. 

 

Training sample

Linear features 
(fL)

Planar features 
(fP)

Classifier CL Classifier CP

Test samples
with {fL,fP}

Confidence
from CL

Confidence
from CP

Final decision
Training procedures

Testing procedures
 

Figure 4-3. Classification workflow using an ensemble system composed of multiple classifiers (linear 
and planar classifier) 
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4.4. Experimental Results and Discussion 

4.4.1. Experiment Setup 

In this chapter, some of the classification model optimization methods addressed in 

the section 3.5.1 and 3.5.2 are taken, which are the balanced learning and feature de-

correlation. The feature selection is not done in this chapter due to a difficulty in 

categorizing the features according to the class relevance. Instead, for treating features 

efficiently, this chapter rescales all features using a bipolar sigmoid function so that their 

values are in range of [-1, +1]. In order to maintain original values for the height related 

features (i.e., LH and PH), the actual value of the height is radically used as a 

classification variable to separate objects with different size rather than its rescaled value. 

In addition to the feature rescaling, this section conduct a Principal Component Analysis 

(PCA) to eliminate correlations between the features. According to (Kim and Sohn, 

2013), this section has chosen K principal components to maintain 95% of information 

from an original feature set. The PCA sets K=9 and K=6 for fL and fP respectively. 

Ideally, training samples require more diverse objects representing intra-class 

variations to produce optimal classification models (Kim and Sohn, 2013). Hence, in this 

section, the same training sample is being used, TR03 is optimally selected in the 

preceding study since it contains both distribution and transmission lines. TR03 has 

unbalanced class distribution which is categorized into majority (building and vegetation) 

and minority classes (power line, pylon, and low object). As training from such 



95 
 

unbalanced sample causes biases in classification, this section will balance TR03 by 

under-sampling the majority classes and over-sampling minority classes (Chawala et al., 

2002; Kim and Sohn, 2013). Thus, this chapter produce two balanced TR03 samples, one 

is bTR03L having fL and another is bTR03P having fP. 

4.4.2. Linear features vs. Planar features 

This chapter has built two Random Forests classifiers, CL and CP, which are trained 

by bTR03L and bTR03P respectively. The CL is expected to discriminate linear-like 

objects, while the CP is expected to identify planar-like objects. The aim of this 

experiment is to investigate the relevance of the examined object features (fO) to each 

class. Table 4-2 presents the averages of the class-weighted accuracies and the sample-

weighted accuracies for the classifiers CL and CP when the classifiers are applied to the 

entire sub sites (TL08 to TL01, T00, and TR01 to TR07). CL which leads to 4.2% higher 

in the class-weighted accuracy than CP, and is a better classifier over all the classes, 

whereas the CP has 1.48% better accuracy over all the points regardless of their class 

labels compared to the CL. Figure 4-4 depicts the class-weighted accuracies of the CL and 

CP to represent the class relevance of the linear features and the planar features (i.e., fL 

and fP). As expected, linear like objects such as power line and pylon have been better 

classified by the CL rather than the CP (5.44% higher for power line and 19.67% for 

pylon). However, the accuracies of the two classifiers for pylon are relatively lower 

compared to ones for other class objects due to its various types, from pole typed to steel 

framed. Building, planar like object, shows better classification accuracy (3.77% higher) 

using the CP than the CL. For vegetation, two classifiers yield similar accuracies as it is 
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categorized into neither linear like object nor planar like. However, since low object 

includes a mixture of various types of objects, i.e., grass (neither linear nor planar), fence 

(linear), vehicle (planar), and container box (planar), obtaining principle features 

accommodating such diverse objects is difficult. After all, both CL and CP produce less 

than 70% accuracy for low object. In this section, it is concluded that CL is able to 

classify linear like objects, while CP can identify planar like objects. 

Table 4-2. Classification accuracies for each individual classifier (CL and CP) 
Classifier Average of class-weighted accuracy (%) Sample-weighted accuracy (%) 

CL 81.02 86.48 

CP 76.82 87.96 

CL - CP +4.20 -1.48 

 

 

Figure 4-4. Class relevant accuracy comparison of classifier CL and CP 
 

4.4.3. Combining method selection 

As mentioned in the section 2.4, the selecting combining methods in an ensemble 

system is a crucial task as it directly affects the classification performance. This 

experiment finds the optimal methods to fuse information from two feature sets (i.e., fL 

and fP). In this chapter, the sensitivity analysis on two categories for the combining 
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methods (i.e., combining source and combining rule) is performed. Table 4-3 shows the 

accuracy assessments of two fusion methods with respect to combining source: feature-

level and classifier-level fusion. For the feature-level fusion, Random Forests trained a 

classifier, CA from bTR03A with fO produced by combing fL and fP. Then, CA was applied 

to the entire sub sites. While, the classifier-level fusion is a combination of results from 

two classifiers, CL and CP built in the section 4.3 over all the sub sites. The variable used 

for combining two classifiers is the prediction confidence described in the section 3.2.2, 

which is an outcome of Random Forests. The respective confidence values from CL and 

CP were combined by the average rule that is typically used in the parallel ensemble 

system. In Table 4-3, the feature-level fusion (83.82%) is superior to the classifier-level 

fusion (82.04%) for the class-weighted accuracy. The opposite result (88.99% for the 

feature-level fusion and 89.92% for the classifier-level fusion) is produced on the sample-

weighted accuracy. Thus, the two methods are evaluated that their performances on the 

given feature sets are approximately equal. However, on the processing time the 

classifier-level fusion is much better than the feature-level fusion. This is because the 

feature-level fusion leads to more complicated classification system as the number of the 

combined features becomes larger, while the classifier-level fusion is more time efficient 

by building classifiers from small separated feature sets. Consequently, this section select 

the classifier-level fusion which is able to effectively handle a vast amount of data by 

splitting the data into smaller subsets, building classifiers using the subsets, and 

combining the outcomes from the classifiers to derive a final decision. This section also 

investigated the combining rules (i.e., average, maximum, and multiplication) in order to 
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find the optimal rule (Table 4-4). It is found that the multiplication rule is the best rule 

which demonstrates the highest performance in both class-weighted and sample weighted 

accuracy. Therefore, it is the best to multiply two confidence values corresponding to the 

class yi, ܿ௜
୐ from CL and ܿ௜

୔ from CP, and assign a class label (y*) having the maximum 

value of the multiplication to the instance (Eq. 4-1). 

 y∗ ൌ argmax
୷೔
൫ܿ௜

୐ ൈ ܿ௜
୔൯ (4-1) 

 

Table 4-3. Classification performance comparison of fusion methods 
Fusion level Feature-level fusion Classifier-level fusion 

Average of class-weighted accuracy (%) 83.82 82.04 

Sample-weighted accuracy (%) 88.99 89.92 

Processing time (minutes/km) 8.23 4.70 

 

Table 4-4. Combination operator per classification accuracies 
Operator Average Maximum Multiplication 

Average of class-weighted accuracy (%) 81.85 81.41 82.04 

Sample-weighted accuracy (%) 89.81 89.55 89.92 

 

4.4.4. Classification results 

This chapter built a classification ensemble system composed of CL and CP, which 

are trained with the balanced TR03L and balanced TR03P. Then this section makes 

predictions for all the 16 sub sites by applying the Eq. 3-4 to the prediction confidences 

from the two classifiers. Table 4-5 shows a confusion matrix where omission and 

commission error rates for each class have been estimated. Figure 4-5 demonstrates a 

classification map produced by the ensemble system for all the sub sites and the 
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classification accuracies per class for each site are plotted in Figure 4-6. As presented in 

the figure, our classification system provides 74.89% to 99.17% in the averages of class-

weighted accuracies over all the sites. As well, it presents uniform and high accuracies 

across all the sites for the wire, building, and vegetation classes, while it shows relatively 

low accuracies (below 50%) in some sites for the pylon and low object classes. It 

achieves the highest classification accuracy for the wire class (95.85%), the second 

highest (94.29%) for the vegetation class, and the third (91.99%) for the building classes. 

The low object and pylon classes show the classification accuracies of 72.52% and 

55.52%, respectively. The large accuracy discrepancy between these two class groups is 

due to an inherent difficulty in describing the low object and pylon classes as either a 

linear or planar primitive. Additionally, it is caused by the spatial overlap with other 

classes which leads for a point segment produced over multiple classes and the intra-class 

variation which hinders to extract salient characteristics of the class. In practice, the low 

object (e.g., fences), wire (e.g., distribution wires) and pylon classes touching trees are 

occasionally misclassified as vegetation. As the low object and pylon classes include 

various types of objects within the class, they are difficult to be characterized by the 

suggested features. For such a reason (i.e., spatial overlap), most omission errors of the 

wire class are observed over distribution lines passing through Type II sites and they have 

been mostly misclassified as vegetation. Our classification system tends to classify 

horizontal linear structures as the wire class. Hence, some of pylon parts looking 

horizontally linear such as cross arms arranged perpendicularly to power lines are 

misclassified, which are omission errors for the pylon class. Nevertheless, the wire class 
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demonstrates the lowest omission and commission error rates amongst the targeted 

classes. Other omission errors for the pylon class are discovered over bodies of steel 

frame pylons where the extracted line segments have similar patterns as ones from trees, 

so our classification system assigns the vegetation class to those. As well, most pylons for 

distribution lines result in omission errors due to not enough line segments extracted over 

them to recognize them as the pylon class. Mostly, deciduous trees are well classified by 

our classification system, while coniferous trees are occasionally mislabelled as the pylon 

class because of their narrow and columnar shape. For the building class, omission errors 

mainly occurred from the rooftops of commercial buildings in TL08 and TL07, which are 

not treated by the classifiers due to their absence in the training sample (TR03). The 

commercial buildings have smaller roof patch and more slanting roof slope compared to 

residential buildings. Here, a roof patch indicates a polygonal roof part with an identical 

slope. Such discriminating characteristic makes the errors appeared near intersection 

regions with adjacent roof patches or with building walls, so those are mislabelled as 

vegetation. For the low object class, considerable amount of omission errors occurred in 

TL08 and TL07 where most grasses are misclassified as the building class. The small 

grasses (less than 30 cm) are widely distributed; hence the plane segments extracted over 

them have small surface roughness and smoothness like ones from the building class. For 

the same reason, the misclassification as the building class appears on container box 

rooftops, car tops, and car bonnets. 
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Figure 4-5. Classification map for all sites; vegetation (green), wire (red), pylon (blue), building 
(building), low object (gray) and ground (remainder) 
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Figure 4-6. Class-weighted accuracies for each site 
 

Table 4-5. Confusion matrix 

Class 
Predicted Omission 

error (%) Vegetation Wire Pylon Building Low object 

Actual 

Vegetation 1,228,831 489 459 8,133 65,277 5.71 
Wire 3,284 135,573 684 804 1,100 4.15 
Pylon 6,202 1,939 10,643 70 314 44.48 

Building 55,669 428 14 995,341 30,518 8.01 
Low object 73,926 511 47 53,998 339,092 27.48 

Commission error (%) 10.17 2.42 10.16 5.95 22.28  

 

4.4.5. Comparison with classification using point-based features 

As mentioned in the section 2.2.2 and 2.2.3, two approaches are typically used for 

extracting features for classification from 3D point cloud; the first is the extracting point-

based (PBF) and the second is the object-based feature (OBF). To investigate the 

relevance between the power line scene classification and the two feature sets, this 

chapter has compared two classification models which are built using the PBF and OBF 

respectively. As addressed in Kim and Sohn (2013), for each point the PBF has been 
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computed using neighboring points captured by either a vertical cylinder or sphere (one 

of the two is used depending on the feature group) generated from the targeted point. 

Then all the computed features are assigned to the point. This section constructed a 

classification model composed of a Random Forests classifier trained from a training 

sample (i.e., the balanced TR03) with the PBF. This system has been compared with our 

ensemble classification system suggested in this study by examining the classification 

performance of the two approaches. 

Table 4-6 demonstrates the classification results produced by the two classification 

model. The PBF model, the column (1) in the table, presents better classification 

performance in an overall accuracy (i.e., the sample-weighted accuracy) compared to the 

OBF model, the column (2). Moreover, for the class-weighted accuracies the PBF model 

results in uniform accuracies with 3.18% standard deviation across all the classes, while 

the OBF model yields 4.09%, 3.75%, and 1.13% higher accuracies for the vegetation and 

wire classes than the PBF model. A 0.93% lower accuracy for the building class is shown 

in the OBF model. For the other classes the PBF model is considerably superior, 29.97% 

and 16.12% higher for the pylon and low object class respectively, to the OBF model. 

This comparative analysis indicates that the PBF is useful for all the classes and the OBF 

works for class objects representable as geometric primitives such as the wire class as 

line segment and the building class as plane segment. Figure 4-7 shows that the OBF 

model made a great improvement over a building ridge which is misclassified into the 

wire class by the PBF model. As the vegetation class is not likely to describe as either 

line segment or plane segment, it is distinguishable from the wire and building classes. 
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On the other hand, the OBF is not useful for a class object showing various geometric 

patterns such as the pylon class showing wire like pattern (e.g., pole type pylons) and 

vegetation like pattern (e.g., steel frame pylons), and the low object class showing 

building like pattern (e.g., widespread young or fresh-cut grasses, container rooftops, and 

car tops), wire like pattern (e.g., fences), and vegetation like pattern (e.g., grown grasses). 

Such that, if the two systems complement each other such as that the OBF model more 

focuses on identifying the wire, building, and vegetation classes, while the PBF model 

concentrates on distinguishing the pylon and low object classes from other three classes, 

this chapter would achieve an improvement in the classification results. An extended 

ensemble system is constructed by combining the PBF and OBF models in the same 

method used to fuse the outcomes of the CL and CP in the section 4.3.2. 

Table 4-6. Classification accuracy comparison of point-based and object-based approaches 
Feature type Point-based feature (1) Object-based feature (2) (1) - (2) 

Class-weighted 
accuracy (%) 

Vegetation 90.20 94.29 -4.09 
Wire 93.10 95.85 -3.75 
Pylon 85.49 55.52 +29.97 

Building 92.92 91.99 +0.93 
Low object 88.64 72.52 +16.12 

Average 90.07 82.04 +8.03 
Sample-weighted accuracy (%) 91.04 89.92 +1.12 

 

 

(a) Point-based method (b) Object-based Method 
Figure 4-7. A comparison of classification maps from the point- and object-based method 
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The computation cost of the object-based method is also estimated to compare it with 

one of the point-based method. As a result, the object-based method takes 54.18 minutes 

for 1 km power line corridor from the feature extraction to the classification using 

Random Forests as seen in Table 4-7. As aforementioned in the accuracy comparison, the 

point-based method shows better classification quality than the object-based method. 

However, the object-based method is a winner on the computation efficiency (178.75 

minutes faster).  

Table 4-7. Computational time of object-based method (minutes/km) 

Steps 
Feature extraction Random Forests 

Total 
Linear Planar Training Testing 

Processing time 24.55 18.72 4.70 6.21 54.18 
 

4.5. Summary 

In this chapter, it is found that the object features including the linear and planar 

features are an excellent salience to discriminate the wire (linear-like), building (planar-

like), and vegetation class (neither linear nor planar). A comparative analysis 

demonstrates that the classification quality of the object-based method is not better than 

one of the point-based method introduced in chapter, but the computation cost is much 

cheaper. On the accuracy per class, the classification accuracy for linear-like structure is 

95.85% and the classification accuracy for planar-like structure is 91.99%. For pylon and 

low object classes an identification difficulty is still present due to their intra-class 

variations. To overcome the limitation, an ensemble system accommodated various 

classifiers and is able to distinguish such intra-class variations and have improved overall 

classification accuracy. Therefore, it is concluded that in order to efficiently classify the 
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low object and pylon class, there is a need to build the classifiers from different training 

samples which contain such class objects in various sizes, shapes, and so on. As a 

prototype of such ensemble system, next chapter successfully builds a MCS where each 

classifier has been built from a training sample of a specific voltage corridor and has 

increased the diversity in such situation. The overall classification accuracy have 

improved from 83.29% to 85.88% due to the inclusion of different physical 

characteristics of the class objects present in various voltage type transmission 

infrastructure. Moreover, the object-based method introduced in this chapter is compared 

with the point-based method from chapter 3 in terms of accuracy and computation time.  
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5. Classification using Multiple Classifier System 

Information fusion stands for combining information extracted from different 

sources for data processing such as classification and recognition. The sources include 

sensory data, patterns, features, decisions, knowledge, classifiers and so on. Multiple 

Classifier System (MCS) is classified as classifier fusion. In the early section, MCS is 

described as an ensemble system which appeared as different names in different literature, 

such as classifier fusion (Dybowski et al., 2010; Geurts et al., 2006), classifier ensembles 

(Hamby and Hirst, 2008; Kuncheva, 2004), combination of multiple classifiers (Kittler et 

al., 1998; Ho et al., 1994), mixture of experts (Jordan and Jacobs, 1994; Jacobs et al., 

1991), composite classifier system (Dasarathy and Sheela, 1979; Skalak, 1997), 

consensus aggregation (Benediktsson and Swain, 1992), committee of neural networks 

(Drucker et al., 1994). The above studies have reported that the MCS performs better 

than single classifier-based methods. This chapter employs the MCS constructed by 

aggregating the classifiers that have trained earlier. This chapter is organized as follows: 

section 5.1 describes the fundamentals of MCS and following section introduces our 

customized MCS. Section 5.3 demonstrates and analyzes the classification results 

produced by the MCS. Finally, conclusion and summary remarks are addressed in section 

5.4. A part of the research work of this chapter (Section 5.2.1) has been addressed in Kim 

and Sohn (2011). 
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5.1. Introduction 

MCS is a classification system composed of a group of classifiers, where each 

classifier makes an independent decision, and the final decision is combined by the MCS 

Compared to the single classifier-based method, the MCS is more accurate and reliable 

with the contributions of the base classifiers making different decisions. The advantage of 

MCS is to reduce the risk of choosing a poor decision classifier and could be a common 

mistake with single classifier-based method (Dara, 2007). The fact that the classification 

accuracy could be increased from multiple base classifiers that makes different decisions 

is called diversity and diversity between classifiers is one of the critical goal for a 

successful MCS. Any MCS without any diversity indicate all the classifiers are identical 

and hence have no advantage in combining these classifiers and will be further discussed 

in section 5.1.2. The MCS in general follows two basic structures to construct itself: 

parallel and cascade (section 5.1.1 for more details) where the parallel MCS is a more 

common architecture. In parallel MSC, all classifiers comprising of the MCS operate in 

parallel and their predictions are combined to reach a final decision. On the contrary, 

classifiers of the sequential MCS are applied in sequence, that is, an output of a classifier 

is used as an input of next classifier. This decreases a problem complexity, but the 

performance of each classifier extremely depends on that of its previous classifier.  

Another subject to be discussed in the MCS is how to efficiently combine diverse 

information extracted from different sources. For example, a majority vote selects most 

frequent class label as a prediction over all classifiers is a common combination way in 
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basic ensemble methods such as bagging and Random Forests. Various combining 

methods are introduced depending on different circumstances of the MCS. 

5.1.1. General MCS scheme  

Two fundamental architectures have been introduced to build a MCS. Most studies 

using MCS employed a parallel structure in the literature addressed early as illustrated in 

Figure 5-1(a). Each classifier in the parallel MCS is trained with a subset of the same 

input data (i.e., the same original sample). Each subset is independent of each other, 

which means its components are different from those of other subsets, these subsets can 

be produced by random selection from the original sample. Hence, all classifiers make 

different predictions for an instance of test data and they can be mutually complementary 

through combining the predictions. The parallel MCS can employ different combination 

strategies depending on the type of information produced by the classifiers as addressed 

in the section 5.1.3. Unlike the parallel MCS, the sequential MCS applied individual 

classifiers in sequence and each classifier is making its decision from the output of the 

previous classifier (Figure 5-1(b)). The classifier output could be a modified data set with 

some kind of ranking over possible classes or pre-predicted class labels (Wozniak et al., 

2014; Dara, 2007), finally, the last classifier makes a final decision. This mechanism 

decreases the overall problem complexity by introducing a classifier at each step and 

each classifier refines the information in the data set. For an instance, a current classifier 

reduces candidate class label sets necessary to be treated by a next classifier (Xu et al., 

2009). Stacked generalization (Wolpert, 1992) and cascade generalization (Gama and 

Brazdil, 2000) are representative MCSs following the sequential structure. 
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(a) Parallel MCS 

 
(b) Sequential MCS 

Figure 5-1. General framework of Multiple Classifier System 
 

5.1.2. Diversity 

The diversity is one of the most important characteristic of a successful MCS, it is 

one of the reasons why MCS demonstrates better classification compared to the single 

classifier-based method. MCS with high diversity allows the synthesis of different 

decisions from the membership classifiers whereas low diversity MCS makes similar 

decisions from the membership classifiers and therefore final decisions cannot be 

benefited from the aggregation. In this situation, the MCS works like a single classifier-

based method. A key idea to maintain the diversity in the MCS is to increase the diversity 

between available data sources such as 1) training samples, 2) features, and 3) classifiers. 

To infuse such important diversity into the MCS, a traditional approach is to have diverse 

training subsets taken from an original data (Breiman, 1996), where diverse classifiers are 

trained with the respective subsets. Secondly, diverse feature sets which are extracted 
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under different circumstances from the original training sample produce diverse 

classifiers and also increase diversity. Thirdly, different types of supervised classification 

models such as SVM, decision tree, and others can be applied to the original data. A 

detailed discussion on diversity generation will be discussed in the next section. 

Unfortunately, there is no formal proof of a dependency between diversity metric 

(computed from diversity measuring methods) and accuracy improvement (Wozniak et 

al., 2014; Ko and Sabourin, 2013) but the diversity could be measured in a few ways.  

Diversity in data subsets 

Diversity can be increased in data subsets which are obtained through random 

sampling with a given data set. From the data set including n instances, D={x1, x2, …, xn}, 

ns instances (ns < n) are randomly drawn to create a subset. Repeating this procedure T 

times yields T subsets. To have diversity, each subset needs to be different from any of 

other T-1 subsets. In other words, for two arbitrary subsets, Di and Dj, which are the ith 

and jth sampled subsets of D respectively, diversity between the subsets can be achieved 

on following occasion as seen in Eq. 5-1 (Ko and Sabourin, 2013): 

 ∀௜,௝, 1 ൑ ݅, ݆ ൑ ܶ,۲௜, ۲௝ ⊂ ۲ 

∀௜,௝, ݅ ് ݆, ۲௜, ⊈ ۲௝, ۲௝, ⊈ ۲௜ 
(5-1) 

 

 Any supervised classification model can be applied to a data subset, Di to train a 

classifier, Ci. However, typically the same kind of model is used over subsets which are 

taken samples from a data set. Using different types of model leads to another type of 
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diversity which will be discussed in the section “Diversity in classification models”; an 

abused mixture of diversity would cause unexpected distraction from decision making. 

Thus, T diverse classifiers are finally generated using the T subsets taken from the 

original data set, D. 

Bagging (Breiman, 1996) is one of the most conventional ensemble learning method, 

it maintains the diversity by randomly subsampling a given data. K-fold cross validation 

can also increase diversity by splitting an original data set into K equal size subsets, then 

generates K models through the K times cross-validation. In each validation, a subset is 

used for testing a model trained with the other K-1 subsets. In K-fold cross validation a 

certain instance belonging to a subset cannot exist in other subsets, which is different 

from the Bagging. For classification problem, Bagging makes a final prediction by using 

the majority vote over the trained models, while K-fold cross-validation chooses the best 

model to classify given test data. Such combining strategies are addressed in more detail 

in the section 5.1.3.   

Diversity in feature sets 

Another way to incorporate and increase diversity in a MCS is to use diverse feature 

sets that are extracted from different data sources or being produced by applying different 

feature extraction methods to one data source. For example, multiple feature sets 

investigated from a hyper spectral image, each of which comes from a specific band of 

the image (Benediktsson et al., 2005; Jimenez et al., 2005; Foody and Mathur, 2004). 

Typically there are two ways to handle T multiple feature sets (f1, f2, …, fT) in supervised 
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classification approaches. One is to combine the multiple feature sets into a feature group 

(f), then, a classification model (C0) is built using the new feature group as shown in the 

Eq. 5-2. This method is traditionally used to produce land-cover (LC) or land-use (LU) 

classification maps from optical images (Na et al, 2010; Waske and Braun, 2009). 

Considering all the features as a group makes a feature treatment straightforward. On the 

other hand, a generated model would be complex due to overtraining too many 

undeserved features, e.g., a decision tree with high depth. Consequently, a strict model 

tends to be generated. Therefore, a feature refining step to reduce down the feature 

dimension would be essential to prevent the model from overtraining. 

 ݂ ൌ ଵ݂ ∪ ଶ݂ ∪ ⋯ ∪ ்݂  

C଴ ൌ trainሺ݂ሻ 
(5-2) 

 

The second way is the training of multiple classification models (C1, C2, …, CT) 

from corresponding feature sets, and the outcome of the models (C) are combined for a 

final classification as done by the MCS (Eq. 5-3). Unlike the previously described 

method produces a strict model, this one leads to weak models (or weak learners), each of 

which yields different and incomplete classification results. According to many studies 

(Kittler et al., 1998; Dietterich, 2000; Polikar, 2006; Dara, 2007), fusing such weak models 

produce better classification results compared to a single strict model. 

 C௜ ൌ trainሺ ௜݂ሻ, 1 ൑ ݅ ൑ ܶ 

C ൌ Cଵ ∪ Cଶ ∪ ⋯ ∪ C் 
(5-3) 
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As aforementioned in chapter 3 (3.3), feature refining is required to handle large 

numbers of features because having more features than needed leads to model over-fitting. 

Feature selection, which selects an optimal feature subset amongst a given features, and 

feature de-correlation, which remove correlations between the features, are representative 

ways to reduce the number of features. For examples, Random Forests is able to compute 

feature importance over all the features that can be further analyzed to serve this purpose. 

Based on the importance, irrelevant features are eliminated and the remaining features are 

used to build a classification model. PCA can be applied to calculate a metric that 

describe the relationships between feature pairs. A given feature set is then converted into 

a new feature set through a linear projection using the metric calculated and this feature 

refining can be employed for the MCS depending on its necessity. 

Diversity in classification models  

Applying various types of classification models to a given data set also encourages 

diversity. This is because different classification models potentially exhibits different 

biases, this principle produces different classification hypothesis (Wolpert, 2001). Any 

classification algorithms or models can be employed such as SVM, MLC (Maximum 

Likelihood Classifier), Random Forests, or others. For example, SVM and MLC were 

applied to high resolution images to detect buildings (Erener, 2013). Moreover, classifiers 

produced by applying the same classification model also promote diversity if the base 

classifiers are built using different model parameters. According to Samadzadegan et al. 
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(2010), combining one-against-one SVM and one-against-all SVM yielded better 

classification accuracies on ALS data than using a single model. 

5.1.3. Combining methods in MCS 

Chapter 4 has already addressed on combining methods at three levels: data-level, 

feature-level, and classifier-level. Apart from some of the common ways for information 

fusion, this section describes additional combining strategies that are commonly used in 

the MCS. Denote that this chapter introduces only basic fusion methods which are 

practically used in this research. For an instance in a sample to be classified, x is a feature 

vector of the instance. Let a committee of classifiers in the MCS C={C1, C2, …, Ci, …, 

CT}. A prediction confidence value on a class (yj) for the instance, cij(x) can be estimated 

by a classifier Ci: 

 c௜௝ ൌ ܲ൫y୨หܠ, C௜൯  (5-4) 

 

If Random Forests is taken as a classification model, cij is calculated from 

classification results provided by the classifier Ci using the Eq. 5-4. 

Majority voting 

Majority voting is the most common method to combine classifiers in the MCS. The 

prediction confidence values are not used, instead, the most frequently appearing class 

label is assigned over all the classifiers. If each classifier has a different reliability on its 

performance, weighted majority voting can be employed by applying different weights to 

votes made by the individual classifiers. The final decision is made by selecting a class 
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label corresponding to the highest vote, for example, Random Forests classifies with 

majority voting scheme. 

Product rule 

In product rule, a prediction confidence (cj) on a class yj is represented as a product 

of the confidence values (cij) of the classifiers. This method would be useful when 

membership classifiers of the MCS are independently built (Kittler et al., 1998). If the 

confidence value of a certain classifier equals 0, the overall prediction confidence 

becomes 0. To prevent such case, all the confidence values should be larger than 0 by 

adding a small decimal, Δ. The final decision is made by selecting a class label with the 

highest prediction confidence. 

 c௝ ൌෑc௜௝
௜

 (5-5) 

 

Sum rule 

Sum rule (Eq. 5-6) adds up the confidence values over all the classifiers for a class yj. 

This rule could be used for improving classification using similar classifiers that are 

mutually independent (Kittler et al., 1998). Sum rule is the same as average rule when the 

prediction confidence cj is divided by the number of classifiers. Weighted sum rule (Eq. 

5-7), where different weights (wi) are assigned to the confidence values of the individual 

classifiers (Ci), is a more general form. Assigning an identical weight leads for sum rule. 

Similarly, the final decision is made by selecting a class label with the highest prediction 

confidence. 
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 c௝ ൌ෍c௜௝
௜

 (5-6) 

 c௝ ൌ෍w௜ ൈ c௜௝
௜

 (5-7) 

 

Maximum and minimum rule 

Unlike all the confidence values across classifiers that affects the final decision in 

produce rule and sum rule, maximum rule (Eq. 5-8) and minimum rule (Eq. 5-9) select 

the best and the worst classifier respectively for each class. Then the confidence value of 

the selected classifier is regarded as the prediction confidence per class. The final 

decision is made the same way as the early introduced rules. 

 c௝ ൌ max
௜
ሼ c௜௝ሽ (5-8) 

 c௝ ൌ min
௜
ሼ c௜௝ሽ (5-9) 

 

5.2.  MCS development 

Several prototypes of the MCS have been investigated to achieve a better 

classification quality against single classifier based methods. These prototypes includes 

Feature based MCS, Scene based MCS, and Extended MCS which is a combination of 

Feature based MSC and Scene based MSC. The following sections will discuss these 

MCSs in more details. 
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5.2.1. Feature based MCS  

Feature based MCS (FMCS) is associated with the “diversity in feature sets” 

described in the section 5.1.2. It accommodates classifiers built from two different feature 

sets, each of which has been extracted from a single training sample but under different 

circumstances: point-based (PBF) and object-based feature set (OBF) introduced in the 

chapter 3 and 4 respectively. As discussed before (Chapter 4), classification accuracy 

improvement by fusing linear and planar feature set belonging to OBF, combining PBF 

and OBF can further enhance performance. Figure 5-2 illustrates a structure of the FMCS 

with the given training and testing data. Point-based, linear-based, and planar-based 

features are extracted on the training data. The feature extraction method was previously 

described, for point-based feature in chapter 3 and for linear-based and planar-based 

feature in chapter 4. Then, classifiers are built from the respective features using any 

classification model (Random Forests in this study). For an instance in the testing data 

each classifier estimates a confidence value per class, based on the confidence values, a 

final decision of the instance is made by one of the combining methods addressed in the 

previous section (section 5.1.3). This study employs sum rule, which anticipates better 

performance by using similar classification model, as Random Forests has been used over 

the feature sets. 
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Figure 5-2. Feature-based MCS fusing classifiers built with point, linear, and planar features. 
 

As discussed in chapter 3 and 4, the classifier (Po-Classifier) trained with point-

based features is successful over all the classes, while the classifiers (Li-Classifier and Pl-

Classifier) for linear-based and planar-based are successful for highlighting linear objects 

(i.e., the wire class) and planar objects (i.e., the building class) respectively. Thus, it is 

expected that the classification quality can be improved with the contributions to better 

identifying the wire class using the Li-Classifier, the building class using the Pl-Classifier, 

and the remaining classes using the Po-Classifier.  

5.2.2. Scene based MCS 

Scene based MCS (SMCS) increases the “diversity in data sets” by building diverse 

classifiers from different training samples with different voltage types. A basic concept of 

the SMCS is invented by an idea that electric structures (i.e., mostly transmission line and 

electric pylon) in a power line corridor have different physical characteristics, such as 

shape, size, material, and so on depending on carrying voltage type of the corridor. 

Practically, bundled wires and huge pylons are typically constructed for over 500kV 

corridors, while single wires and small pylons for less 69kV corridors according to the 
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design and construction standards of electric utilities. Such that, assuming similar scene 

characteristics live in similar voltage type of corridors is reasonable, this research 

categorize power line corridors into Low voltage (<69kV), Medium voltage (>69kV and 

<350kV), and High voltage (>350kV). A training data is taken from each type of 

corridors and same feature extraction method is applied to the individual training data. 

Then, classifiers are built using the extracted features (L-Classifier working better on low 

voltage, M-Classifier on medium voltage, and H-Classifier on high voltage) as seen in 

Figure 5-3. Again, a final classification on a given testing data is made by combining 

confidence values from each classifier. To combine prediction, this research employ 

weighted sum rule (Eq. 5-7) depending on the voltage type of the testing data. A higher 

weight is given for a classifier with similar voltage type to the testing data, lower weights 

for other classifiers. These weights can be estimated through learning validation sets 

partially taken from corresponding training data and can be empirically calibrated.  

 

Figure 5-3. Scene-based MCS fusing classifiers trained from low, medium, and high voltage type 
sample. 

From the SMCS, it is expected to improve classification accuracy for the wire and 

pylon class having intra class variations according to the voltage type. However, it would 
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not work for the other classes (the building, vegetation and low object classes) which are 

present regardless of the voltage type. 

5.2.3. Extended MCS 

Extended MCS (EMCS) is designed by fusing the FMCS and SMCS addressed in the 

previous sections (Section 5.2.1 and 5.2.2) for simultaneously improving the 

classification accuracies and solving the intra-class variations. As seen in Figure 5-4, the 

FMCS is applied to three training data with different voltage types (low, medium, and 

high voltage type). L-FMCS (low), M-FMCS (medium), and H-FMCS (high voltage 

FMCS) are generated by training the respective low, medium and high voltage training 

data as described in the section 5.2.2. As intermediate results, each FMCS makes a local 

decision on a given testing data. Then, a final decision is made by combining the 

weighted sum rule from the local decisions. 

 

Figure 5-4. Extended MCS fusing FMCS and SMCS 
 



122 
 

5.3. MCS based Classification 

5.3.1. Experiment Setup 

This experiment uses multiple training samples taken from different voltage types of 

power line corridors: 69kV, 115kV, 230kV, and 500kV subset as shown in Figure 5-5. 

They are also independent from the regions (TL08 to TR07 located in Sacramento, 

California) from the test site and termed TR69, TR115, TR230, and TR500 respectively. 

The scene characteristics are described as follow: 

69kV subset 

The TR69 is a residential area where distribution lines and small pole-type pylons 

are constructed beside in-line houses. Buildings are detached from each other but some of 

them are contacted by trees at their roof edges. Trees are relatively older and larger in 

size compared to other samples and most of them are deciduous. Low vegetation, fence 

and vehicle are partially seen over the site, this site carries a different site characteristic 

from other samples where power line cables are in contact with trees. 

115kV subset 

Deciduous and coniferous trees are mixed in the TR115, but deciduous trees are 

predominant. It is observed that some trees touch the houses and grasses are present over 

the entire site, while fences and vehicles are rarely visible. Steel frame pylons support 

single (non-bundled) transmission lines and transmission lines and pylons are well 

separated from trees. 

230kV subset 



123 
 

In this site, two pylon lines (one pylon line indicate a set of transmission lines and a 

pylon which are physically attached) pass in parallel. The individual transmission lines 

are a single (non-bundled) cable and pylons are pole type (or tubal type). Not many trees 

are present in this site and most of them are smaller deciduous trees compared to ones in 

the TR69 and TR115. Building wall is visible as well as fence and vehicle, while grass is 

not visible. There is no any touch of trees with the transmission lines. 

500kV subset 

This site contains only transmission lines, a pylon, grasses, and trees excluding 

buildings, fences, and vehicles. A big steel frame pylon stands with bundled transmission 

lines (a bundle of two cables). Trees in the TR500 among all the training samples are the 

smallest and the transmission lines are clearly separated with trees.  

69kV subset 115kV subset 

 
230kV subset 500kV subset 

Figure 5-5. Training samples taken from 69kV, 115kV, 230kV, and 500kV corridor. 
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Table 5-1 shows a comparison of class-dependent characteristics over all the training 

sites and the test site. The bold letters in the cells represents the characteristic similarity 

and the symbol indicates a frequency of the corresponding class object, i.e., X (not 

present), ∆ (<25%), ∆ ∆ (<50%), and O (≥50%). 

Table 5-1. Class-relevant characteristics for each training site 
 Class 69kV site 115kV site 230kV site 500kV site Test site 

vegetation 

coniferous X ∆ X X ∆ 

deciduous O O O O O 

height (ft) 3 to 62 10 to 60 3 to 25 3 to 15 3 to 50 

crown (ft) 3 to 30 3 to 30 1 to 12 3 to 15 3 to 65 

wire 

single O O O X O 

multiple X X X O O 

height (ft) 15 to 56 30 to 100 35 to 100 50 to 115 20 to 130 

pylon 

tubal O X O X O 

lattice X O X O O 

touch tree ∆ X X X ∆ 

height (ft) 35 to 56 100 100 115 85 to 130 

building 

residential O O O X O 

commercial X X X X ∆ 

sunshield X X X X ∆ 

chimney ∆ ∆ X X ∆ 

TV antenna ∆ ∆ X X ∆ 

touch tree ∆ ∆ X X ∆ 

height (ft) 10 15 15 to 25 - 15 

low object 

grass X ∆ ∆ ∆ ∆ 

fence O O ∆ X O 

vehicle ∆ ∆ ∆ X ∆ 

container box X X X X ∆ 

 

The experiments were completed in the previous chapters (Chapter 3 and 4), where 

Random Forests is employed as a classification model to produce a classifier with given 

feature set. The parameters on Random Forests are set to be the same as before (T is 60 



125 
 

and F is dependent on given feature number). This chapter also perform the feature 

optimization and balanced learning for each training sample. 

5.3.2. Classification Results of FMCS 

In this study, two kinds of feature sets are extracted from the point cloud under 

different circumstances that have introduced to distinguish the targeted class objects: 

point-based and object-based feature. The object-based features are divided into the linear 

and planar. The section 4.4.3 has addressed the classifier-level fusion is more efficient in 

terms of the accuracy and the computational complexity compared to the feature-level 

one. This experiment shows an accuracy improvement by fusing the classification outputs 

from the classifiers, each of which is built using each feature set. For this experiment, 

TR03 was used as a training sample and TL08 to TR07 were used as test samples.  

 

Figure 5-6. Classification accuracy comparison of each classifier 
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In Figure 5-6, the C1 is a classifier trained using the PBF. The C2 and C3 are built 

from the linear and the planar features respectively, termed the OBF. The C4 stands for a 

fusion of the C2 and C3. Finally, the C5 is combining C1 and C4. The C5 has the highest 

accuracy in both sample-weighted and averaged class-weighted accuracy, 2.58% and 

2.17% higher in the sample-weighted and the averaged class-weighted accuracy. It is 

believed that a classification uncertainty has been decreased thanks to cooperation 

between each classifier. 

 

Figure 5-7. Accuracy per class of three best classifiers. 
 

Figure 5-7 shows class-weighted accuracies resulted in by each classifier, C1, C4, and 

C5. Compared to the C1 and C4, the C5 produced the highest accuracies over all the 

classes except the vegetation and wire classes which had the highest accuracies in the C4. 

C1 and C4 cooperated to reach to an agreement in terms of assigning the same class label 

to each instance, but for some instances confusions occurred by disagreements between 

the C1 and C4 led to the misclassification. As a result, the C5 yielded 1.15% and 1.12% 
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lower accuracy for the vegetation and wire class than the C4. Nevertheless, the C5 

recorded the highest accuracies for the other classes, 2.53% for the pylon, 3.11% for the 

building, and 0.63% higher for the low object class than the C1 which showed the second 

highest accuracies for the three classes after the C5. 

This experiment explored the confusion matrices over the C1, C4, and C5 to study a 

contribution of the MCS to the classification accuracy improvement. Given an element 

m୧୨
୩  in a confusion matrix M୩, k={C1, C4, C5} and i,j={vegetation, wire, pylon, building, 

low object}, an element ∆m୧୨ of a subtracting matrix ∆M is computed as follow: 

 ∆m୧୨ ൌ m୧୨
େହ െ min൫݉௜௝

஼ଵ,݉௜௝
஼ସ൯ for i=j 

∆m୧୨ ൌ m୧୨
େହ െ max൫݉௜௝

஼ଵ,݉௜௝
஼ସ൯ for i≠j 

(5-10) 

 

By subtracting the matrix it shows the number of instances that are misclassified by 

either the C1 or C4 and the number of correctly classified by the C5 in Table 5-2. As 

discussed for confusion matrix comparison in section 3.5.5 the positive value of diagonal 

elements indicates that the C5 reassigned correct class labels to more instances and the 

negative value of off-diagonal elements indicates corresponding number of misclassified 

instances in the previous step that were corrected by the C5. For examples, 7,103 out of 

9,204 vegetation points which were misclassified into the wire class by the C1 have been 

correctly classified as the vegetation class due to the contribution of C4 (see the cell with 

i=vegetation and j=wire in Table 5-2). As a contribution of the C1, for 73,926 low object 

points mislabelled into the vegetation class by the C4, the C1 helped to reassign the low 
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object class label to 44,188 points (see the cell with i=low object and j=vegetation in 

Table 5-2). Thus, combining the C1 and C4 (i.e., the C5) led to a classification 

improvement over all the classes. 

Table 5-2. Subtracted confusion matrix of C5 to (C1 and C4) 

Class 
Predicted 

Vegetation Wire Pylon Building Low object 

Actual 

Vegetation 38,399 -7,103 -296 -8,869 -22,131 
Wire -1,655 2,307 -811 170 -739 
Pylon -5,156 -791 6,229 -69 -213 

Building -28,290 -2,531 -13 43,675 -21,700 
Low object -44,188 -370 -4 -33,745 78,304 

 

Table 5-3 shows a confusion matrix of the classification result performed by the C5 

over all the test sites (TL08 to TR07). The C5 resulted in 93.62% sample-weighted and 

92.24% class-weighted accuracy, which are higher than those of the C1 (91.04%, 

90.07%) and C4 (89.92%, 82.04%). However, it is observed that some classification 

errors caused by confusion between class objects. As addressed in the early sections 

(section 3.5.4 and 4.4.4) and shown in Table 5-3, most confusion occurred when two 

different class objects locate adjacent to each together such as shrubs living under trees, 

power line cables intersecting with pylons, buildings surrounded by trees, and so on. In 

addition, other confusion happened from a class object showing complex spatial features, 

i.e., the low object class containing grass (vegetation-like), container box (building-like), 

fence (partially wire-like) and vehicle (partially building-like). Finally, insufficient points 

to extract salient features confused the classifier such as regions of tree tops and power 

lines with a low point density. 
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Table 5-3. Confusion matrix of C5 

Class 
Predicted Omission 

error (%) Vegetation Wire Pylon Building Low object 

Actual 

Vegetation 1,213,848 2,101 1,875 8,454 76,911 6.86 
Wire 5,499 133,989 601 995 361 5.27 
Pylon 1,046 1,148 16,872 1 101 11.98 

Building 27,379 63 58 1,039,016 15,454 3.97 
Low object 29,738 141 46 20,253 417,396 10.73 

Commission error (%) 4.98 2.51 13.26 2.78 18.19  
 

5.3.3. Classification Results of SMCS 

The previous experiment verified that combining multiple classifiers built using 

various sets of features extracted from same training sample contribute to improving 

classification quality. This experiment suggests a classifier fusion to overcome the intra-

class variations by fusing classifiers trained with training samples with different scene 

characteristics: TR69, TR115, TR230, and TR500 sample. As seen in the metrics from 

Table 5-1, each training sample presents disparate characteristics on a shape and size for 

a class object and is taken in a different corridor independently from the test sites (TL08 

to TR07). To explore an effectiveness of the scene based combination, this experiment 

excluded the feature based combination, hence it is only using the point feature set, that 

is, all the classifiers were made from TR69, TR115, TR230 and TR500 with point 

features: C1
TR69, C

1
TR115, C

1
TR230 and C1

TR500. As notified in the early section, a C1 is a 

classifier built with the point feature set. Then, it is applied to all the test sites (TL08 to 

TR07). 

Table 5-4 summarizes the class-weighted and sample-weighted accuracies for all the 

single classifiers and the combined classifiers. “All” in the table presents a combination 

across all the classifiers, i.e., w୘ୖ଺ଽ ൌ w୘ୖଵଵହ ൌ w୘ୖଶଷ଴ ൌ w୘ୖହ଴଴ ൌ 1 in the Eq. 5-7, 
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while “C1
TR115+TR230” indicates combining the C1

TR115 and C1
TR230, i.e., w୘ୖ଺ଽ ൌ

w୘ୖହ଴଴ ൌ 0 and w୘ୖଵଵହ ൌ w୘ୖଶଷ଴ ൌ 1. For the C1
TR115+TR230, it is combined based on 

prior information on the test sites where 115kV and 230kV transmission lines run 

together. The spatial characteristics of an object in a corridor scene are associated with its 

voltage type are regarded. For an instance, it is expected that the transmission lines from 

two power line corridors have similar geometric features if the voltage type of the 

corridors is same. As seen in Table 5-4, the best classifier is the C1
TR69 for the vegetation 

and wire class, the C1
TR500 for the pylon class, and the C1

TR115 for the building and low 

object class. The combined classifiers (i.e., “All” and “C1
TR115+TR230”) do not seem to be 

the best for any specific class, but they show somewhat good accuracies over all the 

classes. As it is expected, the C1
TR115+TR230 demonstrates the best performance in both a 

sample-weighted and an average of class-weighted accuracies which is a requirement for 

a good classifier. For the vegetation class, the C1
TR69 and C1

TR115, whose training samples 

(TR69 and TR115) mainly contain tall and widely branched deciduous trees similarly to 

the test sites, therefore, resulted a higher classification accuracies compared to the other 

classifiers whose training samples have mostly small trees as seen in Figure 5-5. On the 

other hand, the wire class showed mostly equable accuracies over the classifiers. The 

C1
TR69 failed to identify the pylon class because it can detect only small pylons which is 

not similar to the ones found in the test sites, while the others work well. Especially, the 

C1
TR500 is the best for the pylon class because it is corresponding to the training sample 

(TR500) includes a pylon showing similar metric in the size to ones in the test sites. The 

building class was better classified by the C1
TR69 and C1

TR115 compared to the C1
TR230. 
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This is because some of buildings in the TR69 and TR115 touched the surrounding trees 

like ones found in the test sites, unlike the test sites, buildings in the TR230 are well 

separated from tree. Additionally, the C1
TR500 is not able to identify the building class due 

to no building point in the TR500. For the low object class, the C1
TR69 and C1

TR115 

demonstrated an impressive performance compared to the others. As addressed in the 

section 3.5.3, like the test sites, the TR69 and TR115 have more various objects (i.e., 

grass, fence, and car) than the other two samples having only grass. 

 
Table 5-4. Classification accuracies of single classifiers and feature fused classifiers 

Classifier C1
TR69 C1

TR115 C1
TR230 C1

TR500 All C1
TR115+TR230 

Class-
weighted 

accuracy (%) 

Vegetation 88.23 84.59 58.35 37.27 87.10 86.58 
Wire 71.63 69.21 65.08 51.41 73.44 68.14 
Pylon 0.00 79.34 88.02 94.27 81.89 84.19 

Building 86.17 92.34 80.54 0.00 88.09 91.71 
Low object 88.11 88.50 51.63 50.68 85.94 87.42 

Average 86.13 87.22 65.78 27.00 86.60 87.67 
Sample-weighted accuracy (%) 66.83 82.80 68.72 46.73 83.29 83.61 

 

Table 5-5 gives a confusion matrix on the classification result produced by the 

C1
TR115+TR230. It yielded 87.67% class-weighted and 83.61% sample-weighed accuracy 

which is relatively lower compared to classifiers trained with a training subset taken from 

the test sites. As aforementioned, it is observed that confusion mostly happened between 

two class objects touching each other. Especially, this classifier made considerably many 

commission errors on the pylon class. This is because of overtraining the pylon class 

which caused misclassifying trees and transmission lines when they are vertically 

overlapped.  
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Table 5-5. Confusion matrix of C1
TR115+TR230 

Class 
Predicted Omission 

error (%) Vegetation Wire Pylon Building Low object 

Actual 

Vegetation 1,128,249 4,987 55,542 20,180 94,231 13.42 
Wire 13,602 96,380 28,170 3,120 173 31.86 
Pylon 886 2,026 16,137 53 66 15.81 

Building 61,843 2 445 992,228 27,452 8.29 
Low object 42,495 80 1,135 15,121 408,743 12.58 

Commission error (%) 9.53 6.86 84.09 3.73 22.98  
 

5.3.4. Classification Results of EMCS 

This section calculated the accuracy assessment over all the FMCSs produced from 

the training sample (the TR69, TR115, TR230, and TR500), which are the C5
TR69, C

5
TR115, 

C5
TR230, and C5

TR500. This experiment is done in order to explore which classifier or 

which classifier combination is the best in using the PBF and OBF. As the same results 

showed in the section 5.3.3, a classifier fusion (C5
TR115+TR230) is the highest in both 

sample-weighted and averaged class-weighted accuracy (see table 5-6). Hence, this 

experiment has selected TR115 and TR230 as training samples to classify the test sites. 

Table 5-6. Classification accuracies of single classifiers and scene fused classifiers 
Classifier C5

TR69 C5
TR115 C5

TR230 C5
TR500 C5

TR115+TR230 

Class-
weighted 

accuracy (%) 

Vegetation 89.74 85.43 75.84 72.88 90.42 
Wire 79.88 71.13 70.65 59.63 73.32 
Pylon 0.00 77.78 89.07 94.98 84.80 

Building 88.14 92.59 84.05 0.00 91.40 
Low object 89.22 90.13 52.96 55.51 89.46 

Average 69.40 83.29 74.51 50.60 85.88 
Sample-weighted accuracy (%) 88.05 88.01 75.08 30.56 89.79 

 

Then, a prototype of an EMCS by fusing the FMCS and SMCS for a classification 

performance improvement based on the selected training samples is built. The 

performance of each MCS is evaluated. For the FMCS, this experiment fused two 
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classifiers trained with the PBF and OBF from the TR115 which shows the highest 

classification accuracy (Figure 5-8(a)). For the SMCS, two classifiers trained with the 

PBFs from the respective TR115 and TR230 (Figure 5-8(b)) are combined. The EMCS 

combined the FMCSs made from the respective TR115 and TR230 (Figure 5-8(c)). 

 

(a) FMCS (b) SMCS (c) EMCS 
Figure 5-8. Classification work flow of each MCS (FMCS, SMCS, and EMCS) 

 

 

Figure 5-9. Accuracy comparison of each MCS 
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Figure 5-9 depicts the sampled-weighted and averaged class-weighted accuracy 

produced from each MCS by applying it to the test sites. As expected, the EMCS 

maintained the highest values in two accuracies, 89.79% sample-weighted and 85.88% 

class-weighted accuracy. The classification performance is somewhat satisfactory even if 

the test set is independent of the training set, which means they are taken from different 

power line corridors. This typically happens in a practical classification requiring no 

training on a new data set to be classified. However, as shown in the confusion matrix of 

the classification on Table 5-7 and the classification map on Figure 5-10 done by the 

EMCS, the EMCS (C5
TR115+TR230) caused considerable commission errors of the pylon 

class as the C1
TR115+TR230 committed in the section 5.3.2. Nevertheless, the EMCS 

decreased 15% commission error rate compared to the C1
TR115+TR230 (compare the 

commission error rates for the pylon class in Table 5-3 and Table 5-7). Most of the errors 

occurred over transmission line and tree which are overlapped each other in vertical as 

seen in Figure 5-10. This is because the training samples selected in the early step, the 

TR115 and TR230, do not treat such overlaps in height, which means transmission line 

and tree in the samples maintain adequate clearance each other. Such overlaps 

occasionally happen in the test sites. Unlike the TR115 and TR230, the TR69 includes 

trees closely living under transmission lines. As seen in Table 5-7, this led to relatively 

higher classification accuracies for the vegetation and wire class than classifiers trained 

from other training samples. For other classes, similar main confusion observed from the 

results in the chapter 3 and 4 has occurred. Some of tree trunks close to the ground 

surface were misclassified into the low object class. On the contrary, the EMCS 
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incorrectly assigned the vegetation class to some fences surrounding with trees. Most 

omission errors of the building class were observed over building walls, while most 

commission errors happened over container box roofs. Minor errors have been found 

over distribution lines and small pylons holding them.  

Table 5-7. Confusion matrix of EMCS 

Class 
Predicted Omission 

error (%) Vegetation Wire Pylon Building Low object 

Actual 

Vegetation 1,178,400 687 14,311 10,359 99,432 9.58 
Wire 11,452 103,713 22,827 3,119 334 26.68 
Pylon 827 1,814 16,254 36 237 15.20 

Building 42,967 2 168 988,881 49,952 8.60 
Low object 35,449 68 370 13,381 418,306 10.54 

Commission error (%) 7.15 2.42 69.86 2.65 26.39  
 

On the computational cost, the EMCS takes 258.93 minutes to classify 1 km of the 

power line corridor as seen in Table 5-8. For each test site, the feature extraction is 

performed once and the computational cost linearly increases depending on the number 

of selected classification models to classify the test site. Apart from the classification, it 

takes 246.67 minutes to build a single classification model from the corresponding 

training sample, that is, 986.68 minutes (16.44 hours) are estimated for producing a 

classification model pool accommodating four classifiers. However, the suggested MCS 

system supposes that the model pool is already built, so the processing time for building 

the model pool is excluded from the computational cost estimation.  

Table 5-8. Computational cost of EMCS (minutes/km) 

Steps 
Feature extraction 

Classification 
for each classifier MCS 

Total 
(Two classifiers)

Point Object Point Object 
Processing time 194.65 43.27 4.02 6.21 0.55 258.93 
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Figure 5-10. Final classification map of EMCS 
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5.4. Summary 

This chapter employed MCS to achieve an improvement in classification by 

cooperating the classifiers built from features described in chapter 3 and 4, called FMCS. 

According to the experimental results, FMCS outperformed any single classifiers 

amongst the committee of classifiers and brought 2.58% and 2.17% increase in the 

respective sample-weighted and class-weighted accuracy. In spite of such successful 

classification performance, FMCS has a limitation in treating intra-class variations which 

are typically observed over power line corridors, e.g., variance in size, shape, material, 

and so on for an object class. To solve the problem, this chapter therefore constructed 

SMCS where each of membership classifiers is trained with samples taken from different 

power line environments, i.e., corridors with different carrying voltages. An optimal 

combination of the voltage-dependent classifiers according to the voltage type of an 

incoming corridor led to better classification accuracy than any other single classifiers. In 

addition, a hierarchical parallel combination of FMCS and SMCS as seen in Figure 5-8, 

termed EMCS, which is the suggested classification system in this dissertation, 

outperformed all other classification models, single classifiers, FMCS, and SMCS. 

Moreover, the EMCS resulted in 89.79% sample-weighted and 85.88% class-weighted 

accuracy without additional training samples. A benefit of the EMCS is to select optimal 

pre-trained classifiers and apply them to a new power line corridor. Nevertheless, it 

results in a similar classification quality as using training samples taken from the new 

corridor to be classified. In addition to the accuracy, once a classification model pool is 

already constructed, the processing time takes 4.3 hours to process 1 km power line 
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corridor, which is more cost-efficient compared with manual classification works. The 

processing time for manual classification depends on human knowledge and experience, 

but as aforementioned in section 3.4.1, two days were taken to manually produce the 

classification reference of 1.9 km corridor LiDAR, which means 8.4 hours taken per 

kilometer. 
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6. Conclusions 

This study examined three classification approaches to identify key corridor objects, 

power line, pylon, building, vegetation, and remaining objects (named low object), from 

LiDAR data. The first two methods utilized two different feature sets, called point- 

(chapter 3) and object-based feature set (chapter 4), extracted by applying the feature 

extraction in different circumstances and built a classifier from each set. Ensemble 

technique is employed to make a more intelligent decision by fusing the classifiers 

already built in chapter 3 and 4 (chapter 5).  

In chapter 3, diverse LiDAR features were developed and investigated and the 

potentials of a supervised classification method was examined for identifying power line 

corridor objects. Random Forests was employed to build a supervised classifier using the 

features. A point-based method, which extracts total 21 features for each single LiDAR 

point, was proposed. Some of feature groups including the vertical-related feature were 

newly designed, particularly for characterizing pylons and wires. The experimental 

results suggested that it is important to train the classifier with class-balanced training 

samples. Compared to unbalanced learning, training from balanced data showed 1.33% 

and 4.44% higher learning performance in sample-weighted and class-weighted accuracy 

respectively. It is realized that balanced learning resulted in almost equivalent accuracy 

across all the classes. A sensitivity analysis of classifiers trained with different samples 

has been conducted. This study found that an optimal classification model needs to be 

trained with a training sample containing more diverse objects representing intra-class 
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variations. The optimal classifier showed high classification results in both sample-

weighted (91.04%) and class-weighted (90.07%) accuracy. The performance of point-

based classifier was compared to a grid-based classifier. The experiments confirmed that 

the point-based classifier shows 4.86% and 5.74% higher in the respective sample-

weighted and class-weighted accuracy than the grid-based classifier. This result suggests 

that the point-based classifier is more suitable for discriminating vertical overlapping of 

multiple objects. Even though the proposed supervised classifier has demonstrated its 

success in corridor scene classification, the classifier still produced misclassification 

errors, especially regions where sufficient neighboring points are not collected to exhibit 

their distinctive characteristic such as building roof ridges, hips, and eaves. Thus, future 

investigation is necessary to further rectify those errors by introducing more features, 

called object-based features described in chapter 4, extracted with different perspectives. 

Unlike chapter 3 utilizing the point-based features, chapter 4 proposed to use object-

based features extracted from point groups, each of which is produced by partitioning a 

point cloud into meaningful point groups (or point segments). This object-based method 

is expected to mitigate “salt and pepper” effect which is typically observed in the point-

based method and improve classification accuracy for class objects exhibiting 

homogeneity such as building roof and transmission line. For generating meaningful 

point groups, this study performed point segmentation twice (in terms of linearity and 

planarity) and derived different features (i.e., linear and planar features) from each 

segmentation result. Those features are excellent salience to separate power line (linear-

like), building (planar-like) and vegetation (neither linear nor planar). Practically, the 
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experiments demonstrated higher classification accuracies for the wire (95.85%), and 

building (91.99%), and vegetation class (94.29%) compared to other classes having an 

identification difficulty due to their intra-class variations. This chapter introduced an 

ensemble system where the combining method selection is critical. For the classification 

ensemble system built in this study, the classifier-level fusion, which combines classifiers 

built from multiple feature sets, is more efficient than the feature-level fusion, which 

groups multiple feature sets into a new feature set, considering both high accuracy and 

low computation cost. A comparative analysis with classification using point-based 

feature (chapter 3) and object-based feature (chapter 4) indicated that the point-based 

feature is useful for all the power line corridor objects, while the object-based feature 

better works for class objects showing line-likeness, planar-likeness, and randomness 

geometry such as power line (+3.75% better), building (-0.93% similar), and vegetation 

(+4.09% better). In addition to the class per accuracy, the classification method in this 

chapter resulted in 89.92% sample-weighted and 82.04% class-weighted accuracy overall. 

Even though the classification method in chapter 3 showed higher accuracy than one in 

chapter 4, the major goal of this study is to achieve more classification improvement by 

combining their results based on ensemble framework, referred as MCS (Multiple 

Classifier System) which is introduced in chapter 5. 

Chapter 5 introduces MCS, also referred as classifier fusion, to improve 

classification quality by cooperating pre-built classifiers each other, one classifier trained 

from point-based features (PBF) in chapter 3 and another classifier from object-based 

features (OBF) in chapter 4. Consequently, MCS, termed as FMCS, yielded 2.58% and 
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2.17% higher in respective sample-weighted and class-weighted accuracy compared to 

the best one amongst the single classifiers. Another issue in this chapter is unavailability 

of pre-classified training samples to build new classifiers for every incoming datasets. 

Therefore, this study applies an ensemble of pre-built classifiers (SMCS), each of which 

is trained with samples from different power line environments, i.e., corridors with 

different carrying voltages, to unlabeled corridors. An experiment demonstrates that the 

SMCS, where voltage-dependent classifiers are optimally combined according to the 

voltage type of the incoming corridor, produced the best classification results in both 

sample- (0.81% higher) and class-weighted accuracy (0.45% higher) compared to any 

other single classifiers. In addition, a hierarchical parallel combination of FMCS and 

SMCS as seen in Figure 5-8, termed EMCS, which is the suggested classification system 

in this dissertation, outperformed all other classification models, single classifiers, FMCS, 

and SMCS. Moreover, the EMCS resulted in 89.79% sample-weighted and 85.88% class-

weighted accuracy without additional training samples. A benefit of the EMCS is to 

select optimal pre-trained classifiers and apply them to a new power line corridor. 

Nevertheless, it results in a similar classification quality as using training samples taken 

from the new corridor to be classified. 

This study provides a pipeline for classification of power line corridor LiDAR: 

segmentation, feature extraction, feature de-correlation, feature selection, balanced 

learning, outcome combining, and decision. These procedures have been over 90% 

automated for efficient data processing against massive point cloud. According to a 

throughput test in chapter 3, approximately 4 hours are taken to classify 1km of corridor. 
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However, the computation cost can be dramatically decreased by General-Purpose 

Graphic Process Unit (GPGPU) integrated computing system. In addition to the 

automation in classification, the suggested ensemble system demonstrated the robustness 

in classification if optimal classifiers are chosen from a classifier pool depending on 

scene characteristics of new incoming dataset. Combining the optimal classifiers 

achieved similar classification performance without any additional training over the new 

dataset. Moreover, this dissertation showed a potential which the classifier pool based 

system is applicable for practical classification if a plenty of existing knowledge obtained 

from past classification works is available. A database accommodating more diverse 

classifiers can be constructed using the knowledge so that it classifies power line 

corridors where objects with diversity live. 

There are two limitations with the method suggested in this dissertation: an empirical 

feature categorization relevant to class and the utilization of only Random Forests as a 

base classifier. In chapter 3, for the relevant feature selection, the point-based features 

have been categorized into four groups depending on their class relevance, which means 

a feature presents a salient characteristic for a specific class. However, the categorization 

has been done by an empirical experience obtained through visual investigations and 

analyses for each class. As a future work, therefore, this study takes a class dependent 

feature selection method which measures the feature-feature and feature-class 

correlations based on the mutual information theory (Zhou and Wang, 2009) for the 

feature selection. Secondly, this dissertation takes only Random Forests as a base 

classifier to build a classification model without any comparative analysis with other 
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classification algorithms such as SVM, bagging, boosting and so on. This is because the 

dissertation more focuses on developing features suitable for the power line corridor 

objects rather than the comparison of the algorithms. This is remained as another future 

work. Besides the limitation, this dissertation suggested developing an ensemble system 

(or MCS) with numbers of diverse classifiers for power line corridor classification. 

However, a difficulty in obtaining sufficient pre-classified training samples brought 

limited number of classifiers; for now each classifier is able to treat a categorized corridor 

by its carrying voltage, i.e., three voltage typed classifiers. A future work is to categorize 

the classifiers in more detail by collecting much larger samples and introducing 

exemplars, an exemplar indicates a sample including a class object with a specific 

characteristic criterion. For example, pylon exemplars (Ep) in Figure 6-1 are categorized 

into pole-typed, lattice-typed, H-shaped, and other-shaped exemplars and diverse pylon 

classifiers are individually built from those exemplars as seen in Figure 6-2. For new 

corridor data best relevant classifiers to the corridor are selected and its classification is 

done by the same mechanism of MCS addressed through chapter 4 and 5 (Figure 6-3). 

This optimal combination of exemplar-based classifiers is expected to bring more 

accurate and precise classification results compared to that of voltage-based classifiers 

introduced in chapter 5. 
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Figure 6-1. Exemplar database for building, tree, power line, and pylon  
 

 

Figure 6-2. Pylon classifier building from exemplars 
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Figure 6-3. Classification of new corridor data using optimally selected classifiers  
   



147 
 

Reference 

Adam P. Young and Scott A. Ashford, 2006. Application of Airborne LIDAR for Seacliff 

Volumetric Change and Beach-Sediment Budget Contributions. Journal of Coastal 

Research: 22 (2): pp. 307 – 318 

Antonarakis, A.S., K.S. Richards, and J. Brasington, 2008. Object-based land cover 

classification using airborne LiDAR, Remote Sensing of Environment, 112(6): 2988-

2998 

Applanix, Applanix-A Trimble Company. www.applanix.com (accessed on June 22, 

2013) 

Axelsson, P. (1999). Processing of laser scanner data—algorithms and applications. 

ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 138-147 

Bang, K., 2010. Alternative methodologies for LiDAR system calibration, PhD thesis. 

Biosca, J. M. and J. L. Lerma, 2008. Unsupervised robust planar segmentation of 

terrestrial laser scanner point clouds based on fuzzy clustering methods, ISPRS Journal of 

Photogrammetry & Remote Sensing, 63, 84-98 

Bishop, C.. 2006. Pattern Recognition and Machine Learning. Springer. 2006. 

Benediktsson, J. A., Swain, P. H., 1992. Consensus theoretic classification methods, 

IEEE Trans. on Systems, Man and Cybernetics, vol. 22, no. 4, pp. 688–704 



148 
 

Benediktsson J.A., Palmason, J.A., Sveinsson, J.R., 2005. Classification of hyperspectral 

data from urban areas based on extended morphological profiles, IEEE Transactions on 

Geoscience and Remote Sensing, 42 (2005), pp. 480–491 

Brasington J, Langham J, Rumsby B. 2003. Methodological sensitivity of morphometric 

estimates of coarse fluvial sediment transport. Geomorphology 53(3/4): 299–316 

Breiman, L., 1996, Bagging Predictors, Machine Learning, Vol. 24, No. 2, pp. 123-140 

Breiman, L., 2001. Random forests, Machine Learning, 45(1): 5-32 

Bremer, M., Wichmann, V. and Rutzinger, M., 2013. Eigenvalue  and graph-based object 

extraction from mobile laser scanning point clouds. ISPRS Annals of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. II-5/W2, pp. 

55–60 

Brenner, C., 2009. Extraction of Features from Mobile Laser Scanning Data for Future 

Driver Assistance Systems. Advances in GIScience, Lecture Notes in Geoinformation 

and Cartography, Springer (2009) pp. 25–42 

Brovelli, M., Cannata, M., and Longoni, U. 2004. Lidar data filtering and DTM 

interpolation within GRASS. Transactions in GIS 8(2), 155–174 

Cai, H., Rasdorf, W., 2008. Modeling road centerlines and predicting lengths in 3-D 

using LIDAR point cloud and planimetric road centerline data, Computer-Aided Civil 

and Infrastructure Engineering, 23(3), 157–73 



149 
 

Carlberg, M., P. Gao, G. Chen, and A. Zakhor, 2009. Classifying urban landscape in 

aerial LiDAR using 3D shape analysis, Proceeding of Image Processing (ICIP), 2009 

16th IEEE International Conference, 7-10 November 2009, pp. 1701-1704 

Chan, R. H., Ho, C. W., & Nikolova, M. (2005). Salt-and-pepper noise removal by 

median-type noise detectors and detail-preserving regularization. Image Processing, IEEE 

Transactions on, 14(10), 1479-1485 

Chawla, N.V., K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer, 2002. Smote: Synthetic 

minority oversampling technique, Journal of Artificial Intelligence Research, 16, pp. 

321–357 

Chen, C., A., Liaw, and L. Breiman, 2004. Using Random Forests to learn imbalanced 

data, Technical Report, Department of Statistics, University of California 

Cheng, L., J. Gong, M. Li, Y. Liu, 2011. 3d building model reconstruction from multi-

view aerial imagery and LIDAR data, Photogrammetric Engineering and Remote 

Sensing, 77 (2) (2011), pp. 125–139 

Chehata, N., L. Guo, and C. Mallet, 2009. Airborne lidar feature selection for urban 

classification using Random Forests, Proceeding of Laser scanning 2009, IAPRS, Vol. 

XXXVIII, Part 3/W8, 1-2 September 2009, Paris, France, pp. 207-212 

Choi, Y. W. , Y. W. Jang , H. J. Lee and G. S. Cho, 2008. Three-dimensional LiDAR 

data classifying to extract road points in urban area, IEEE Geosci. Remote Sens. Lett.,  

5(4),  pp.725 -729 



150 
 

Chust, G., Maitane Grande, Ibon Galparsoro, Adolfo Uriarte, Ángel Borja, 2010. 

Capabilities of the bathymetric Hawk Eye LiDAR for coastal habitat mapping: A case 

study within a Basque estuary, Estuarine, Coastal and Shelf Science, 89(3), pp. 200-213 

Chust, G., I. Galparsoro, A. Borja, J. Franco, A. Uriarte, 2008.Coastal and estuarine 

habitat mapping, using LIDAR height and intensity and multi-spectral imagery, 

Estuarine, Coastal and Shelf Science, 78 (4) (2008), pp. 633–643 

Collin, A., Bernard Long, Phillippe Archambault, 2012. Merging land-marine realms: 

Spatial patterns of seamless coastal habitats using a multispectral LiDAR, Remote 

Sensing of Environment, Volume 123, pp. 390-399 

Coops, N.C., A. Varhola, C. W. Bater, P. Teti, S. Boon, N. Goodwin, and M. Weiler, 

2009. Assessing differences in tree and stand structure following beetle infestation using 

lidar data, Canadian Journal of Remote Sensing, 35(6), pp. 497-508 

Côté, J.F., J.L. Widlowski, R.A. Fournier, M.M. Verstraete, 2009. The structural and 

radiative consistency of three-dimensional tree reconstructions from terrestrial lidar, 

Remote Sensing of Environment, 113 (5) (2009), pp. 1067–1081 

Coulston, J.W., G.G. Mosen, B.T. Wilson, M.V. Flnco, W.B. Cohen, and C.K. Brewer, 

2012. Modeling percent tree canopy cover: A pilot study, Photogrammetric Engineering 

& Remote Sensing, 78(7):715–727 



151 
 

Crawford, M., Kim, W., 2009. Manifold learning for multi-classifier systems via 

ensembles. In: Benediktsson, J.A., Kitller, J., Roli, F. (Eds.), MCS, Lecture Notes in 

Computer Science, vol. 5519. Springer, Berlin, pp. 519-528 

Dara, R.A., 2007. Cooperative Training in Multiple Classifier Systems; thesis :Doctor of 

Philosophy; Waterloo, Ontario, Canada 

Dasarathy, B. V. and Sheela, B. B., 1979. Composite classifier system design: Concepts 

and methodology,  Proceedings of the IEEE,  vol. 67,  no. 5,  pp.708 -713 1979 

De Rose, R.C., Les R. Basher, 2011. Measurement of river bank and cliff erosion from 

sequential LIDAR and historical aerial photography, Geomorphology, 126(1-2), pp. 132-

147 

Dietterich, T., 2000,. Ensemble methods in machine learning. In J. Kittler, & F. Roli 

(Eds.), Multiple classifier systems, Vol. 1857 of Lecture Notes in Computer Science (pp. 

1–15). Cagliari, Italy, Springer 

Dold, C. and Brenner, C., 2004. Automatic Matching of Terres-trial Scan Data as a Basis 

for the Generation of Detailed 3D City Models. In: O. Altan (ed.), Proc. of the XXth 

ISPRS Congress, IAPRS, Vol. XXXV-B3.   

Drucker, H., Cortes, C., Jackel, L. D., LeCun, Y., Vapnik, V., 1994. Boosting and other 

ensemble methods, Neural Computation, vol. 6, no. 6, pp. 1289–1301 



152 
 

Durand, M., K. M. Andreadis, D. E. Alsdorf, D. P. Lettenmaier, D. Moller, and M. 

Wilson, 2008. Estimation of bathymetric depth and slope from data assimilation of swath 

altimetry into a hydrodynamic model, Geophys. Res. Lett., 35, L20401 

Dybowski, J. N., Heider, D., Homann, D., 2010. Prediction of co-receptor usage of HIV-

1 from geno-type. PLoS Comput Biol 6: e1000743. doi: 10.1371/journal.pcbi.1000743 

Efron B. and Tibshirani, R.J, 1993. An Introduction of the Bootstrap. Chapman and 

Hall/CRC: New York 

Elwell, R., and Polikar, R., 2011. Incremental learning of concept drift in nonstationary 

environments. IEEE Transactions on Neural Networks 22 (10), pp. 1517–1531 

Erener, A., 2013. Classification method, spectral diversity, band combination and 

accuracy assessment evaluation for urban feature detection, International Journal of 

Applied Earth Observation and Geoinformation, 21 (2013), pp. 397–408 

Filin, S., and Pfeifer, N. 2006. Segmentation of airborne laser scanning data using a slope 

adaptive neighborhood. ISPRS Journal of Photogrammetry and Remote Sensing 60, 

71.80 

Flood, M., 2011. Workflow challenges on airborne lidar electrical transmission projects, 

Photogrammetric Engineering & Remote Sensing,77(5): 438-443 

Foody, G.M., Mathur, A., 2004. Toward intelligent training of supervised image 

classifications: Directing training data acquisition for SVM classification, Remote 

Sensing of Environment, 93 (2004), pp. 107–117 



153 
 

Forlani G., C. Nardinocchi, M. Scaioni, and P. Zingaretti, 2006. Complete classification 

of raw LIDAR data and 3D reconstruction of building, Pattern Analysis and Applications, 

8(4): 357-374 

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line 

learning and an application to boosting. Journal of computer and system sciences, 55(1), 

119-139 

Fugro LADS, Airborne LiDAR Bathymetry manufactured by Fugro. 

http://www.fugrolads.com/download/datasheets/Fugro-LADS-Mk3 (accessed on July 10, 

2013) 

Gama, J., Brazdil, P., 2000. Cascade generalization, Machine Learning, vol. 41, no. 3, pp. 

315-343 

Gesch, D., Wilson, R., 2001. Development of a seamless multisource 

topographic/bathymetric elevation model of Tampa Bay, Marine Technology Society 

Journal, 35 (4), pp. 58–64 

Geurts, P., Ernst, D., Wehenkel, L., 2006. Extremely randomized trees. Machine 

Learning 63 (1), 3–42 

Guo, L., N. Chehata, C. Mallet, and S. Boukir, 2011. Relevance of airborne lidar and 

multispectral image data for urban scene classification using Random Forests, ISPRS 

Journal of Photogrammetry and Remote Sensing, 66(1): 56-66 



154 
 

Guo, Q., Li W., Liu, D. and Chen, J., 2012. A framework for supervised image 

classification with incomplete training samples, Photogrammetric Engineering & Remote 

Sensing, 78(6): 595-604 

Habib, A; Bang, K; Kersting, A; Lee, D-C, 2009. Error Budget of Lidar Systems and 

Quality Control of the Derived Data. Photogramm. Eng. Remote Sensing 2009, 75, 

1093–1108 

Habib, A., A.P. Kersting, A. Ruifanga, M. Al-Durgham, C. Kim, D.C. Lee, 2008. Lidar 

strip adjustment using conjugate linear features in overlapping strips, International 

Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 37 (Part 

B1) (2008), pp. 385–390 

Hamby S. E., Hirst J. D., 2008. Prediction of glycosylation sites using random forests. 

BMC Bioinformatics. 9(1):500 

Hansen, L. K., and P. Salamon, 1990. Neural Network Ensembles. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 12(10), pp. 993–1001 

Hay, G.J., Castilla, G., Wulder, M.A., Ruiz, J.R., 2005. An automated object-based 

approach for the multiscale image segmentation of forest scenes International Journal of 

Applied Earth Observation and Geoinformation, 7 (4), pp. 339–359 

Hebel, M., Arens, M., Stilla, U., 2013. Change detection in urban areas by object-based 

analysis and on-the-fly comparison of multi-view ALS data, ISPRS Journal of 

Photogrammetry and Remote Sensing, Volume 86, pp. 52-64 



155 
 

Hetcht, R., Meinel, G., and Buchroithner, M. F., 2008. Estimation of urban green volume 

based on single-pulse LiDAR data. – IEEE Transactions on Geoscience and Remote 

Sensing, Vol. 46 (11): 3832-3840 

Hilary F. Stockdonf, Asbury H. Sallenger Jr., Jeffrey H. List and Rob A. Holman, 2002. 

Estimation of Shoreline Position and Change Using Airborne Topographic Lidar Data, 

Journal of Coastal Research, 18(3) , pp. 502-513 

Hill, R.A., S. A. Hinsley, and D. L. A. Gaveau, 2002. Mapping forest pattern and 

structure at a landscape scale using airborne laser scanning technology, Avian Landscape 

Ecology: Pure and Applied Issues in the Large-Scale Ecology of Birds, pp. 60-67 

Ho, T.K., Hull, J.J., Srihari, S.N., 1994. Decision combination in multiple classifier 

systems, IEEE Trans. on Pattern Analy. Machine Intel., vol. 16, no. 1, pp. 66–75, 1994 

Hough, P., 1962: Method and Means for Recognizing Complex Patterns. U.S. Patent 

3.069.654 

Hyde, P., R. Dubayah, B. Peterson, J. B. Blair, M. Hofton, C. Hunsaker, R. Knox, and W. 

Walker, 2005. Mapping forest structure for wildlife habitat analysis using waveform 

lidar: Validation of montane ecosystems, Remote Sensing of Environment, 96(3-4), pp. 

427-437 

Ituen, I. and Sohn, G., 2010. The Way Forward: Advances in Maintaining Right-Of-Way 

of Transmission Lines. GEOMATICA, 64(40):451-462 



156 
 

Jackowski, K., 2013, Fixed-size ensemble classifier system evolutionarily adapted to a 

recurring context with an unlimited pool of classifiers, Pattern Analysis and Application, 

1-16 

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., Hinton, G. E., 1991. Adaptive mixtures of 

local experts, Neural Computation, vol. 3, pp. 79-87 

Jimenez, L.O., Rivera-Medina, J.L., Rodriguez-Diaz, E., Arzuaga-Cruz, E., Ramirez-

Velez, M., 2005. Integration of spatial and spectral information by means of unsupervised 

extraction and classification for homogenous objects applied to multispectral and 

hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing, 43 (2005), 

pp. 844–851 

Jordan M. J., Jacobs, R. A., 1994. Hierarchical mixtures of experts and the EM algorithm, 

Neural Computation, vol. 6, no. 2, pp. 181-214 

Jwa, Y., and G. Sohn. 2012. A piecewise catenary curve model growing for 3D power 

line reconstruction. Photogrammetric Engineering & Remote Sensing, 78(12): 1227 – 

1240 

Jwa, Y., Sohn, G., Kim, H. B., 2009. Automatic detection and modeling of powerline 

from airborne laser scanning data. ISPRS Laserscanning 2009, September 1-4, Paris 

Kim, E., and G. Medioni, 2011. Urban Scene Understanding from aerial and ground 

LIDAR data, Machine Vision and Applications (MVA), 22(4): 691 – 703 



157 
 

Kim, H. B., Sohn, G., 2013, Point-based Power Line Corridor Scene Classification using 

Random Forests, Photogrammetric Engineering & Remote Sensing, 79(9): 821-833 

Kim, H.B. and Sohn, G., 2011. Random forest based multiple classifier system for 

power-line scene classification. ISPRS Workshop on Laserscanning 2011, 29-31 August 

2011, the University of Calgary, Calgary, Alberta, Canada. International Archives of 

Photogrammetry and Remote Sensing, 38(5/W12) 

Kim, H.B. and Sohn, G., 2010. 3D Classification of Power-line Scene from Airborne 

Laser Scanning Data. Photogrammetric Computer Vision (PCV) 2010, September 1-3, 

Paris, France. International Archives of Photogrammetry and Remote Sensing, 

38(3A):126-132. 

Kim, Y., Z. Q. Yang, W. B. Cohen, D. Pflugmacher, C. L. Lauver, and J. L. Vankat, 

2009. Distinguishing between live and dead standing tree biomass on the north rim of 

grand canyon national park, USA using small-footprint lidar data, Remote Sensing of 

Environment, 113(11), pp. 2499-2510 

Kittler, J., Hatef, M., Duin, R., & Matas, J. 1998. On combining classifiers. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226–239 

Ko, A. H., Sabourin, R., 2013. Single Classifier-based Multiple Classification Scheme for 

weak classifiers: An experimental comparison, Expert Systems with Applications, 40(9), 

pp. 3606-3622 



158 
 

Ko, C., Sohn, G. and T.K., Remmel, 2013. A spatial Analysis of Geometric Features 

Derived from High-Density Airborne LiDAR Data for Tree Species Classification. 

Canadian Journal of Remote Sensing. 39(s1): S73-S85, 10.5589/m13-024 

Kulawardhana, R.W., Sorin C. Popescu, Rusty A. Feagin, 2014. Fusion of lidar and 

multispectral data to quantify salt marsh carbon stocks, Remote Sensing of Environment, 

Volume 154, pp. 345-357 

Kuncheva, L. I., 2004. Classifier ensembles for changing environments, 5th Int. 

Workshop on Multiple Classifier Systems, Lecture Notes in Computer Science, F. Roli, J. 

Kittler, and T. Windeatt, Eds., vol. 3077, pp. 1–15 

Lalonde, J., N. Vandapel, D. Huber and M. Hebert, 2006. Natural terrain classification 

using three-dimensional ladar data for ground robot mobility, Journal of Field Robotics, 

23(10): 839 – 861 

Lamonaca, A., Corona, P., Barbati, 2008. A. Exploring forest structural complexity by 

multi-scale segmentation of VHR imagery. Remote Sensing of Environment, 

doi:10.1016/j.rse.2008.01.017 

Lee, D.H., K.M. Lee, S.U. Lee, 2008. Fusion of lidar and imagery for reliable building 

extraction, Photogrammetric Engineering and Remote Sensing, 74 (2) (2008), pp. 215–

225 



159 
 

Leica AHAB, Airborne LiDAR Bathymetry manufactured by Leica. 

http://www.airbornehydro.com/sites/default/files/Leica%20AHAB%20HawkEye%20III.

pdf (accessed on July 10, 2013) 

Leica, Leica Geosystems. http://www.leica-geosystems.us (accessed on June 22, 2013) 

Lehtomäki, M., A. Jaakkola, J. Hyyppä, A. Kukko, and H. Kaartinen, 2010. Detection of 

Vertical Pole-Like Objects in a Road Environment Using Vehicle-Based Laser Scanning 

Data, Remote Sensing, 2(3): 641-664 

Liang, J., Zhang, J., Deng, K., Liu, Z. and Zhi, Q. 2011. A new power-line extraction 

method based on airborne LiDAR point cloud data, International Symposium on Image 

and Data Fusion, 9-11 Aug., 2011, pp. 1-4 

Lim, E.H. and D., Suter, 2009. 3d terrestrial lidar classifications with super-voxels and 

multi-scale conditional random fields, Computer-Aided Design, 41(10): 701-710 

Lin, C., G. Thomson, C.S. Lo, and M.S. Yang, 2011. A Multi-level Morphological 

Active Contour Algorithm for Delineating Tree Crowns in Mountainous Forest, 

Photogrammetric Engineering & Remote Sensing, 77(3): 241-249 

Livingston, F., 2005. Implementing Breiman’s Random Forest Algorithm into Weka, 

ECE591Q Machine Learning Conference Papers, Nov. 27 

Lodha, S.K., D. Fitzpatrick and D.P. Helmbold, 2007. Aerial lidar data classification 

using expectation-maximization, Proceedings of SPIE Conference on Vision Geometry, 

XIV, volume 6499, January 2007 



160 
 

Lodha, S. K., Fitzpatrick, D. M. and Helmbold, D. P., 2007a. Aerial Lidar Data 

Classification using AdaBoost. In:  International Conference on 3-D Digital Imaging and 

Modeling, Montreal, pp. 435–442. 

Lodha, S. K., Kreps, E. J., Helmbold, D. P. and Fitzpatrick, D., 2006. Aerial LiDAR Data 

Classification Using Support Vector Machines (SVM). In: International Symposium on 

3D Data  Processing, Visualization and Transmission, IEEE, Chapel Hill, NC, pp. 567–

574. 

Lu, W. L., K.P. Murphy, J.J. Little, A. Sheffer, and H. Fu, 2009. A hybrid conditional 

random field for estimating the underlying ground surface from airborne Lidar data, 

IEEE Geoscience and Remote Sensing, 47(82): 2913-2922 

Mason, D.C., M.S. Horritt, N.M. Hunter, P.D. Bates, 2007. Use of fused airborne 

scanning laser altimetry and digital map data for urban flood modelling, J Hydrol 

Process, 21 (2007), pp. 1436–1447 

Matikainen L, Hyyppä J, Ahokas E, Markelin L, Kaartinen H, 2010. Automatic Detection 

of Buildings and Changes in Buildings for Updating of Maps. Remote Sensing. 2010; 

2(5):1217-1248 

McCormick, M.P.,  2005. Airborne and spaceborne lidar. In: Weitkamp CE Lidar Range-

resolved optical remote sensing of the atmosphere. Springer series in Optical sciences, 

vol 102, chap 13. Springer Science, Heidelberg, UK, pp 355–397. 



161 
 

McLaughlin, R. A., 2006. Extracting transmission lines from airborne LIDAR data, IEEE 

Geoscience and Remote Sensing Letters, April 2006, Vol. 3, No. 2, pp. 222-226 

Melzer, T., and C. Briese, 2004. Extraction and modeling of power lines from ALS point 

clouds, Proceedings of 28th Workshop of the Austrian Association for Pattern 

Recognition, pp.47-54 

MIKE2.0, Big Data Definition, 

http://mike2.openmethodology.org/wiki/Big_Data_Definition#Read_More (accessed on 

July 10, 2013) 

Mills, S.J., M. P. Gerardo , Z. Li , J. Cai , R. Hayward , L. Mejias and R. Walker, 2010. 

Evaluation of aerial remote sensing techniques for vegetation management in power line 

corridors, IEEE Trans. Geosci. Remote Sens., 48(9),  pp.3379 -3390 

Mitche D., Spiegielhalter C.J., Taylor C., Machine Learning, Neural and Statistical 

Classification, Ellis Horwood 1994 

Mitra, N. J., Nguyen, A., Guibas, L. (2004). Estimating surface normals in noisy point 

cloud data. International Journal of Computational Geometry & Applications, 14(04n05), 

261-276 

Moretto, J., E. Rigon, L. Mao, F. Delai, L. Picco, M.A. Lenzi, 2014. Short-term 

geomorphic analysis in a disturbed fluvial environment by fusion of LiDAR, colour 

bathymetry and dGPS surveys, CATENA, Volume 122, pp. 180-195 



162 
 

Muhlbaier, D., and Polikar, R., “An ensemble approach for incremental learning in 

nonstationary environments,” in  Lecture Notes in Computer Science, M. Haindl and F. 

Roli, Eds. Berlin: Springer-Verlag, 2007, vol. 4472, pp. 490-500 

Na, X., S. Zhang, X. Li, H. Yu, and C. Liu, 2010. Improved Land Cover Mapping using 

Random Forests Combined with Landsat Thematic Mapper Imagery and Ancillary 

Geographic Data, Photogrammetric Engineering & Remote Sensing, 76(7): 833-840 

Narayanan, R., Sohn, G., Kim, H.B. and Miller, J.R., 2011. A soft classification of mixed 

seabed objects based on fuzzy clustering analysis using airborne LiDAR bathymetry data. 

Journal of Applied Remote Sensing. 5, 053534 (2011); doi:10.1117/1.3595267 

Nayegandhi, A., and J. C. Brock, 2009. Remote Sensing and Geospatial Technologies for 

Coastal Ecosystem Assessment and Management, pp.365 -389 

Neuenschwander, A.L., L.A. Magruder, and M. Tyler, 2009. Landcover classification of 

small-footprint, full-waveform lidar data, Journal of Applied Remote Sensing, 

3(1):033544-033544 

Niemeyer, J., J.D. Wegner, C. Mallet, F. Rottensteiner and U. Soergel, 2011. Conditional 

Random Fields for Urban Scene Classification with Full Waveform LiDAR Data. In: 

Stilla, Rottensteiner, Mayer, Jutzi, Butenuth (eds.), Photogrammetric Image Analysis 

(PIA), LNCS 6952, Springer, Heidelberg, pp. 233-244 



163 
 

Niemeyer, J., F. Rottensteiner, U. Soergel, 2014. Contextual classification of lidar data 

and building object detection in urban areas, ISPRS Journal of Photogrammetry and 

Remote Sensing, Volume 87, pp. 152-165 

Optech, Optech company. http://www.optech.com (accessed on 22 June, 2013) 

Pfeifer, N., Stadler, P., and Briese, C. 2001. Derivation of digital terrain models in the 

SCOP++ environment. OEEPE Workshop on Airborne Laserscanning and 

Interferometric SAR for Detailed Digital Elevation Models, Stockholm 

Polikar, R., 2006, Ensemble Based Systems in Decision Making, IEEE Circuits and 

Systems Magazine, 6(3), pp. 21-45 

Pu, S., Martin Rutzinger, George Vosselman, Sander Oude Elberink, 2011. Recognizing 

basic structures from mobile laser scanning data for road inventory studies, ISPRS 

Journal of Photogrammetry and Remote Sensing, 66(6), pp. S28-S39 

Pu, S. and Vosselman, M.G., 2007. Extracting windows from terrestrial laser scanning, 

ISPRS workshop : Laser scanning 2007 and SilviLaser 2007 International Society for 

Photogrammetry and Remote Sensing (ISPRS), Espoo, Finland, pp. 320-325 

Rabbani, T., F. van den Heuvel, 2005. Efficient Hough Transform for Automatic 

Detection of Cylinders in Point Clouds. International Archives of Photogrammetry, 

Remote Sensing and Spatial Information Sciences XXXVI–3/W19, pp. 60-65 

Raciti, S.M., Lucy R. Hutyra, Jared D. Newell, 2014. Mapping carbon storage in urban 

trees with multi-source remote sensing data: Relationships between biomass, land use, 



164 
 

and demographics in Boston neighborhoods, Science of The Total Environment, 

Volumes 500–501, 1 December 2014, Pages 72-83 

Riano, D., E. Meier, B. Allgower, E. Chuvieco, and S. L. Ustin, 2003. Modeling airborne 

laser scanning data for the spatial generation of critical forest parameters in re behavior 

modeling,  Remote Sensing of Environment, vol. 86(2), pp. 177-186 

Richter, A., D. Faust, and H. Maas, 2013. Dune cliff erosion and beach width change at 

the northern and southern spits of Sylt detected with multi-temporal lidar, Catena, 103, 

103–111 

RIEGL, RIEGL USA. http://www.rieglusa.com (accessed on 22 June, 2013) 

Rodriguez, J. J., and Kuncheva, L. I., 2006. Rotation Forest: A New Classifier Ensemble 

Method. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, pp. 1619-

1630. 

Rodriguez-Galiano, V.F., B. Ghimire, E. PArdo-Iguzquiza, M. Chica-Olmo, and R.G. 

Congalton, 2012. Incorporating the Downscaled Landsat TM Thermal Band in Land-

cover Classification using Random Forest, Photogrammetric Engineering & Remote 

Sensing, 78(2): 129-137 

Rottensteiner, F., Trinder, J., Clode, S., Kubik, K., 2005. Using the Dempster Shafer 

method for the fusion of LIDAR data and multi-spectral images for building detection, 

Information Fusion 6(4), 283-300 



165 
 

Rutzinger, M., B. Höfle, M. Hollaus, and N. Pfeifer, 2008. Object-Based Point Cloud 

Analysis of Full-Waveform Airborne Laser Scanning Data for Urban Vegetation 

Classification. Sensors, 8(8): 4505-4528 

Rutzinger, M., Höfle, B., Pfeifer, N., Geist, T. & Stötter, J., 2006. Object-based analysis 

of airborne laser scanning data for natural hazard purposes using open source components. 

In: International Archives of Photogrammetry, Remote Sensing and Spatial Information 

Sciences. Salzburg, Austria Vol. 36(part 4/C42), pp. digital media. 

Saeys, Y., Inza, I., & Larra ̃naga, P., 2007.  A review of feature selection techniques in 

bioinformatics. Bioinformatics, 23, pp. 2507–2517. 

Sallenger, A.H, Jr., W. B. Krabill, R. N. Swift, J. Brock, J. List, Mark Hansen, R. A. 

Holman, S. Manizade, J. Sontag, A. Meredith, K. Morgan, J. K. Yunkel, E. B. Frederick 

and H. Stockdon, 2003. Evaluation of Airborne Topographic Lidar for Quantifying Beach 

Changes, Journal of Coastal Research, 19(1) , pp. 125-133 

Samadzadegan, F., Bigdeli, B., and Ramzi, R., 2010. A Multiple Classifier System for 

Classification of LIDAR Remote Sensing Data Using Multi-class SVM, Multiple 

Classifier Systems 9th International Workshop, MCS 2010, Cairo, Egypt, April 7-9, 

Proceedings 

Samadzadegan, F., Hasani, H. and Schenk, T., 2012. Determination of optimum classifier 

and feature subset in hyperspectral images based on ant colony system, Photogrammetric 

Engineering & Remote Sensing, 78(12): 1261-1273 



166 
 

Sampath, A. and Shan, J., 2010. Segmentation and reconstruction of polyhedral building 

roofs from aerial Lidar point clouds, IEEE Transactions on geoscience and remote 

sensing 48(3): 1554-1567 

Schapire, R. E.. 1990. The Strength of Weak Learnability. Mach. Learn. 5, 2 (July 1990), 

pp. 197-227. 

Schnabel, R., Wahl, R. & Klein, R., 2007, Efficient RANSAC for point-cloud shape 

detection, Computer Graphics Forum, 26 (2), 214–26 

Sithole, G. 2005. Segmentation and classification of airborne laser scanner data, 

Dissertation, TU Delft, ISBN 90 6132 292 8, Publications on Geodesy of the Netherlands 

Commission of Geodesy, Vol. 59 

Sithole, G. and Vosselman, G., 2004. Experimental comparison of filter algorithms for 

bare-Earth extraction from airborne laser scanning point clouds. ISPRS Journal of 

Photogrammetry & Remote Sensing, 59(1-2): 85-101. 

Skalak, D., 1997. Prototype selection for composite nearest neighbor classifiers, Ph.D. 

dissertation. Dept. of Computer Science, Technical Report 96-89, University of 

Massachusetts, Amherst, Massachusetts 

Smeeckaert, J., Clément Mallet, Nicolas David, Nesrine Chehata, Antonio Ferraz, 2013. 

Large-scale classification of water areas using airborne topographic lidar data, Remote 

Sensing of Environment, Volume 138, Pages 134-148 



167 
 

Sohn, G., Jwa, Y., Kim, H.B., 2012. Automatic power line scene classification and 

reconstruction using airborne LiDAR data. ISPRS Annals of the Photogrammetry, 

Remote Sensing and Spatial Information Sciences, Volume I-3:167-172. 

Sohn, G., Dowman, I., 2007. Data fusion of high-resolution satellite imagery and LiDAR 

data for automatic building extraction. ISPRS J Photogramm Remote Sens 62:43–63 

Sohn, G. and Dowman, I., 2008. A Model-based Approach for Reconstructing Terrain 

Surface from Airborne LiDAR Data. The Photogrammetric Record, 23(122):170-193 

Stockdon, H.F., A.H. Sallenger, J.H. List, R.A. Holman, 2002. Estimation of shoreline 

position and change from airborne scanning LIDAR data, Journal of Coastal Research, 18 

(2002), pp. 502–513 

Sutton, C.D., 2005. Classification and regression trees, bagging, and boosting, Handbook 

of Statistics: Data Mining and Data Visualization (C. R. Rao et al., editors), Elsevier 

Publishing, Amsterdam, Netherlands, Vol. 24, pp. 303-329 

Terrascan, Terrasolid Inc. http://www.terrasolid.com/home.php (accessed on June 22, 
2013). 
Microstation, Bentley. http://www.bentley.com/en-US/Products/MicroStation (accessed 

on June 22, 2013) 

Ussyshkin, R. V., Smith, R. B., 2007. A new approach for assessing lidar data accuracy 

for corridor mapping applications. 5th International Symposium on Mobile Mapping 

Technology, 29-31 May, Padua, Italy, CD-ROM. 



168 
 

Verma, V., R. Kumar and S. Hsu, 2006. 3D building detection and modeling from aerial 

lidar data. IEEE Conference on Computer Vision and Pattern Recognition, October 2006, 

pp. 2213-2220 

Vosselman, G. 2000. Slope based filtering of laser altimetry data. IAPRS XXXIII, B3/2, 

Amsterdam 

Vosselman, G., and Dijkman, S., 2001. 3D building model reconstruction from point 

clouds and ground plans. International Archives of Photogrammetry Remote Sensing and 

Spatial Information Sciences, 34(3/W4), 37-44 

Wang, M. and Tseng, Y., 2011. Incremental segmentation of lidar point clouds with an 

octree-structured voxel space. Photogramm. , 26, 32–57 

Waske, B., and M. Braun, 2009. Classifier ensembles for land cover mapping using 

multitemporal SAR imagery, ISPRS Journal of Photogrammetry and Remote Sensing, 

64(5):  450–457 

Wolpert, D. H., 1992. Stacked Generalization," Neural Networks, vol. 5, no. 2, pp. 241-

260 

Wolpert, D.H., 2001. The supervised learning no-free-lunch theorems. In: Proceedings of 

the 6th Online World Conference on Soft Computing in Industrial Applications, pp. 25–

42 

Wozniak, M., Graña, M., Corchado, E., 2014. A survey of multiple classifier system as 

hybrid systems, Information Fusion, 16 (2014), pp. 3–17 



169 
 

Xu, J.-W., Singh, V., Govindaraju, V., Neogi, D., 2009. A cascade multiple classifier 

system for document categorization. In J. Benediktsson, J. Kittler, and F. Roli, editors, 

Multiple Classifier Systems, volume 5519 of Lecture Notes in Computer Science, pages 

458-467. Springer Berlin / Heidelberg 

Yang, B., and Dong, Z., 2013. A shape-based segmentation method for mobile laser 

scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 81, pp. 

19-30. 

Yao, W., Y. Wei, 2013. Detection of 3-D individual trees in urban areas by combining 

airborne LiDAR data and imagery, IEEE Geoscience and Remote Sensing Letters, 10 

(2013), pp. 1355–1359 

Yao, W., Krzystek, P., Heurich, M., 2012. Tree species classification and estimation of 

stem volume and DBH based on single tree extraction by exploiting airborne full-

waveform LiDAR data, Remote Sensing of Environment, Volume 123, pp. 368-380 

Yao, W., S. Hinz, U. Stilla, 2011. Extraction and motion estimation of vehicles in single-

pass airborne LiDAR data towards urban traffic analysis, ISPRS Journal of 

Photogrammetry and Remote Sensing, 66 (3), pp. 260–271 

Yao, W., and U. Stilla, 2011a. Comparison of two methods for vehicle extraction from 

airborne lidar data toward motion analysis,  IEEE Geosci. Remote Sens. Lett., 8(4),  

pp.607 -611 



170 
 

Yao, W., Hinz, S., Stilla, W., 2009. Object extraction based on 3d-segmentation of 

LiDAR data by combining mean shift with normalized cuts: two examples from urban 

areas. In: Proceedings of 2009 Joint Urban Remote Sensing Event (URBAN2009 - 

URS2009), Shanghai, China 

You, R., Lin, B., 2011. A quality prediction method for building model reconstruction 

using lidar data and topographic maps, IEEE Trans. Geosci. Remote Sens., 49(9), 

pp.3471-3480 

Yu, B., H. Liu, J. Wu, Y. Hu, L. Zhang, 2010. Automated derivation of urban building 

density information using airborne LiDAR data and object-based method, Landscape and 

Urban Planning, 98 (3–4) (2010), pp. 210–219 

Yu, X., J. Hyyppä, M. Vastaranta, M. Holopainen, and R. Viitala, 2011. Predicting 

individual tree attributes from airborne laser point clouds based on the random forests 

technique, ISPRS Journal of Photogrammetry and Remote Sensing, 66(1):28–37 

Zhang, J., Sohn, G. and Bredif, M., 2014. A hybrid framework for single tree detection 

from airborne laser scanning data: a case study in temperate mature coniferous forests in 

Ontario, Canada. ISPRS Journal of Photogrammetry and Remote Sensing, 98:44-57 

Zhang, J. and Sohn, G., 2010. A Markov Random Field Model for Individual Tree 

Detection from Airborne Laser Scanning Data. Photogrammetric Computer Vision (PCV) 

2010, September 1-3, Paris, France. International Archives of Photogrammetry and 

Remote Sensing, 38(3A):120-125. 



171 
 

Zhou N, Lipo W (2009) Class-dependant feature selection for face recognition. Adv 

Neuro-Inf Process Lecture Notes Comput Sci 5507, pp.551-558 

Zhou, Z., 2012. Ensemble Methods: Foundations and Algorithms. Boca Raton, FL, USA: 

Chapman & Hall/CRC 

 

 


