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4. SIMPLIFYING EXPRESSIONS AND PROPOSITIONS

The ability to check that a proposition is a tautology doesn’t by itself provide
sufficient logical power to verify interesting properties of computational expressions or
pieces of code, as evidenced by the example 0 = 0 from 3.2, which reminds us that even
“self-evident” mathematical truths aren’t necessarily tautologies, if no meaning has been
given to the symbols.  What’s missing is a way to introduce such meanings into the
proof process.  The purpose of this chapter is to introduce a technique which can be
easily implemented computationally to do this. It involves rewriting complex
expressions as mathematically equivalent but simpler ones—an approach which you
may find quite natural, as it mimics to some extent the approach high-school students
are taught for solving certain kinds of problems in algebra and arithmetic.  This sort of
simplification process has many applications in verification which we will explore in the
following chapters. For the moment, we focus on what simplification does and how it is
implemented.

To see how rewriting can be used to make a proof, consider the example

  not(x < 0 and x > 0).

If  we know from the definition of >, that  x > 0 can be rewritten as not x < 0 and not x =
0, then we can rewrite the entire proposition as the equivalent not (x< 0 and  not x < 0
and not x = 0 ) , which is easily seen to be a tautology.

An arithmetic example: the proposition x = x + (x - x) can be simplified through several
steps to true, by first replacing (x-x) to 0, then rewriting x+0 as the equivalent term x,
and finally, rewriting x = x  as true.

An example combining logic and arithmetic simplification: the proposition

x > 0 implies a + a = a*2

can be simplified to

x > 0 implies  a*2 = a*2, and then to x > 0 implies true

which is valid since any proposition of the form T implies true is a tautology.

Simplifying propositions in this way greatly extends the usefulness of the wang
tautology checker since it allows us to apply known theorems in logic and arithmetic to
establish a much wider class of true propositions. Instead of having all non-logical terms
treated as Boolean variables by the tautology checker, terms can be converted to truth
values or eliminated by simplifying the input prior to checking it.

The process of simplification is implemented computationally by specifying a set of
simplification rules (also called rewrite rules) which are applied by a rule-interpreter to
replace or rewrite any term matching the pattern on the left-hand side of one of the rules
by a simpler but mathematically or logically equivalent term given on the right-hand
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side of the rule. This process is repeated over and over again on the newly generated
terms until no rule applies1.  For the example above, the rules might be:

X + X  ->>  X*2
X = X  ->>  true.

(We will use the operator ->> to separate the left and right-hand sides of a simplification rule
to avoid confusion with other arrows such as -> , --> and >>.)

Simplification rules which refer to a particular area of mathematics can be grouped into
separate files, analogous to the division of a program into modules. We will call such
files of related simplification rules theory files. Using just the rules in files which are
relevant to a specific problem domain speeds up the matching process, since irrelevant
rules are omitted.

4.1 The Structure of Simplification Rules

Here are some  rules from a theory file arithmetic.simp:

X * 0 ->> 0.
X * 1 ->> X.
M * N ->> P if P is M*N.

X + 0 ->> X.
X - X ->> 0.
X + Y = 0 ->> X = -Y.
(X + Y) * N ->> X*N + P if P is Y*N.

X**0 ->> 1.
X**1 ->> X.
0**X ->> 0.

X*Y*X ->> Y*X**2.
X**N * Y * X ->> X**(N+1)*Y.

As you can see, there are two sorts of simplification rules:

• Rules of the form left ->> right assert that any occurrence of the pattern on the
left can be replaced by the pattern on the right.

• Rules of the form left ->> right :- condition state that the simplification is
performed only if the condition can be determined to be true.2

Terms beginning with upper-case letters are rule variables.  In the left side of a
simplification rule, these variables are matched to terms in the expression to be
simplified.  If the entire left side can be matched to a term or subterm, the variables are
                                                                        
1 [Sperschneider, Ch. 13] provides an introduction to the formal theory of simplification and
rewriting.  See also [Dahl,  Section 2.2.6, p.30] and [Eisinger, 1989].  In [Wos, 1992], simplification
rules are called demodulators. [Bouma. 1989] reviews Prolog implementations of rewrite rules.
2 Conditional rewrite rules are an implementation of conditional equations, which are discussed
in [Thatcher, 1982.]
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given the values determined by the match, and these values are used in the expression
on the right to construct the replacement for the term or subterm being simplified.
(Note that the expressions being simplified should not contain rule variables; in the
expressions to which the rules are to be applied, such as x + 0, symbols representing
mathematical variables begin with lower-case letters.)

Conditions

The condition in a conditional rule must  evaluate to either true or false, usually  by
evaluating the values of the variables appearing in the condition.

Conditional rules are useful for evaluating numeric quantities.  In the example above,

M * N  ->>  P :- P assigned M*N.

the conditional rule uses the special operator assigned. This operator takes a variable as
a left argument and an expression as a right argument and assigns the variable the
value of the  expression if it can be evaluated numerically.  If not, the rule fails to apply.
Thus, the rule

M * N ->> P :-  P assigned M * N.

will simplify -2 * 5 to  -10, but will leave x * 7 alone.

In the rule

X > Y ->> true :-  number(X), number(Y), X > Y.

the term matching the pattern X > Y is rewritten as  true if X and Y are numbers and X >
Y.  Similarly, the comparison operations <>, >, =, <=, and => are used to compare
numerical values in a condition.

Another use of conditional rules is to incorporate type information into a rule. In the
following example,  the variable i is asserted to be of type int (integer), and a rule is
asserted which is applicable to X <= 0 only if X is of type int.

|: assert(int(i)).
|: assert(( X <= 0 ->> X < 1  :- int(X) )).
|: i <= 0.

i<=0 ->>
   i<1

|: x <= 0.

x<=0 ->>
       x<=0

Syntax note:  asserting a conditional rule requires wrapping it in an extra set of parentheses.
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What makes a valid simplification rule?

Unconditional simplification rules must satisfy a simple property: if the  ->> is
replaced by = , the resulting equation must be true in the intended mathematical theory.
Thus,

X - 0 ->> X.

is a valid simplification rule if X is a number and - is the usual minus operation, because
the equation

X - 0 = X

is true in ordinary arithmetic.  Similarly, a conditional rule

Left ->> Right  :- Condition.

is valid if the proposition

Condition implies Left = Right

is valid.

A significant problem which must be taken into account when rules are added to a
theory file, or asserted at the terminal, is that the rules must not combine to form an
infinite loop, in which some rules undo the effects of others to produce the original term
again3.

Suppose, for example, we added the rule

Y * X ->> X *Y

so that a rule such as X * 1 ->> X could be used to simplify 1 * X . Unfortunately the new
rule is no help as it rewrites a product into a form to which it can then reapply, so the
rewrite process will never terminate. The next section shows how we can handle the
problem of commutative operators like * without running the risk of non-terminating
rules.

4.2 Canonical ordering of subterms

Terms have no intrinsic meaning; as a result, in the absence of any rules to give a
mathematical meaning to  operators and functions, terms are only equal if they are
identical as terms — a*b is not interpreted as equal to b*a. But to do ordinary arithmetic,
we will want to simplify equations between mathematically equivalent expressions to
true.

                                                                        
3 See [Manna, Chapter 6] for a discussion of conditions which guarantee termination of rewrite
rules.  In the research literature on term-rewriting systems,  terminating sets of rules are
sometimes called Noetherian.
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Consider a term such as x + a*b  = b*a+ x.  In order to simplify this equation to true, we
need a way of putting subterms in expressions with commutative operators into a
standard order, so that their identity with other subterms can be detected, thus allowing
further simplification through a rule such as

X = X ->> true.   

which tests for the identity of the terms on the left and right sides of an equation. We
accomplish this by means of a standardized or canonical ordering of subterms, which
rearranges subterms involving commutative operators into a fixed order4.  Thus,

x + a*b

 is rearranged to

a*b + x,

and then to

b*a + x.

The algorithm in the simplify program uses a built-in ordering of terms to re-order any
expression of the form X op Y where op is commutative, so that the left subterm is
‘greater’ in the term ordering than the right.  This choice of reordering has the small
advantage that expressions such as

x + x + x  = (x + x) + x

are not reordered into a form such as x + (x + x) which requires parentheses.  A slight
disadvantage is that equalities such as x = y * 2 get turned around to become

            y * 2  = x.

Associativity

Reordering expressions with commutative operators is not sufficient to match all
equivalent expressions. For example, it won't enable us to simplify

(y + x) + 1 = (x  + 1) + y

because each sum is already in canonical order and will not be simplified further.

In order to be able to properly simplify terms involving arithmetic operators, we need to
pay attention also to the effect of associativity.

At the purely syntactic level, if parentheses can be omitted, then a binary operator is
either left- or right-associative, that is, either

a ° b ° c = (a ° b) ° c,

                                                                        
4 Simplifying  both sides of an equation to the same canonical form is sometimes called
‘normalization’.  For an example of a verification system based on normalization, see [Srivas,
1990.]
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or
a ° b ° c = a ° (b ° c).

This is just a feature of the parser which constructs terms from strings — it has no
semantic significance. The choice of left- or right- associativity is arbitrary; in the
verification tools discussed here, binary operators are all declared to be either left-
associative, or non-associative (parentheses cannot be omitted).

If a binary operator is also associative  (this is now a semantic, not a syntactic concept),
then

  a ° b ° c = (a ° b) ° c = a ° (b ° c).

As part of the reduction of a term to canonical form, right associations are rewritten as
left-associations so that parentheses are removed when left-associative terms are
printed.  Thus

c + (b + a)

gets rewritten as

(c + b) + a

which prints as

 c + b + a.

In addition, terms composed entirely of subterms with the same functor which is both
commutative and associative (such as + and *) are arranged into a sequence of terms in
descending order, so

(x  + 1)+ y  is rearranged into y + x + 1,

and

(y + x) + 1 =  (x  + 1)+ y

simplifies to

y + x + 1 =  y + x + 1

which can then be simplified to true using the rule X = X ->> true.

As well as rearranging commutative and associative operations, the transformation into
canonical form reverses terms of the form  X > Y  and   X >= Y   into  Y < X  and   Y <= X.

Equalities of the form X = -Y are also rearranged into canonical form, so that, for example,
x = -y can be recognized as being the same (for the purpose of simplification) as y = -x.

When designing simplification rules, we need to keep in mind that reordering is done
before the left-hand side of a simplification rule is matched to the expression.  For
example, a rule of the form

X > X ->> false
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would never be applicable, since expressions of the form X > X are automatically
rewritten as X < X  prior to simplification.

Computing Additional Rules for Commutative and Associative
Patterns

Suppose we have a simplification rule of the form

    X ° Y --> Z .

If the operation ° is commutative, then Y ° X also simplifies to Z.

If ° is associative, then  W ° X ° Y =  (W ° X) ° Y = W ° (X ° Y)  which simplifies to W ° Z.

To handle these additional cases, the simplify program generates the required
additional simplification rules automatically. For example, if we assert the rule

1*A  ->> A.

simplify generates the additional rules

A*1 ->> A.
A*1*B ->> A*B.
A*B*1 ->> A*B.

 as demonstrated in the following output:

% simplify

Version 1.4.6, August 21, 2000.
|: assert(1*A ->> A).

|: x*1.
x*1 ->>
   x

|: p*1*q.
p*1*q ->>
   q*p

|: a*b*1.
a*b*1 ->>
   b*a
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Cancellation

For associative and commutative operators which have an inverse, further
simplification can be accomplished through cancellation. For example, in the term

(a + b + c) - a  = ((a + b) + c) - a

the commutativity and associativity of + imply that

((a + b) + c) - a = ((b + c) + a)  + (- a) = ((b + c) + (a + (-a)) = b + c.

This is not easily handled by rewrite rules since the term to be cancelled can be
embedded arbitrarily deep in a larger term, so no finite set of simple patterns can
recognize the range of cases in which cancellation is possible.  But by adding
cancellation to the preprocessing before simplification rules are applied, expressions
such as a + b + c - a - c and a -  c + b - a + c simplify to b.

Similarly, an expression such as a * b * c /  a / c is automatically simplified to b by
cancellation.

To allow cancellation of terms involving unary minus in the same way as reciprocals,
expressions of the form -X are represented in canonical form as 0-X.  This allows -X + X to
cancel to 0, in the same way as 1/X*X cancels to 1.

4.3 Testing simplification rules

The program simplify lets you test simplification rules on a list of terms which
are input either from the terminal or from a data file. Rules are either entered
interactively in response to the prompt by typing

assert(Rule).5

or are loaded from a theory file by entering the term

theory('file specification ').

A theory file whose name is of the form name.simp can be loaded by entering the term
theory(name)— the file extension simp is assumed if none is given.  The program looks for
the file first in your current directory and if not found, it uses a path specified in an
initialization file  in your home directory. (The form of the initialization file depends on the
version of SVT used.)

As many theory files as desired can be loaded.

Rules entered using the theory or assert predicates are automatically checked to ensure
that terms matching the right-hand pattern do not contain sub-terms which can also
match the  left-hand side, as in the following example:

                                                                        
5 A syntactic note: if Rule is a conditional rule,  it must be enclosed in an extra set of parentheses.
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|:assert(X-Y ->> -(Y-X)).

!! $VAR(0)- $VAR(1)->> - ($VAR(1)- $VAR(0)) is circular.

(As in the tautology program, pattern variables are renamed internally.)

The following example illustrates the interactive use of simplify.

|: a/1.

a/1 ->>
   a/1 (since no simplification rules are loaded, the input is not simplified.)

|: assert(X/1 ->> X).
|: a/1.

a/1 ->>
   a
|: a - (a/1).

a-a/1 ->>
   a-a
|: assert((X - X ->> 0)).
|: a - a/1.

a-a/1 ->>
   0

To  load data from a file, use the command:

%simplify <data file

The theory files to be included should be specified within the data file by terms of the
form theory('file specification '). In the following  example, the file testdata
includes a directive to load a file named arithmetic.simp, and simplify locates one
in a course directory,  which contains appropriate rules to simplify the input expression.
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% cat testdata
theory(arithmetic).
3*a + 5*a + a.
% simplify <testdata
% loading file /cs/fac/bin/simplify
% simplify loaded in module user, 0.020 sec 78,768 bytes
Version 1.4.7, September 5, 2000.
Loading /cs/dept/course/2000-01/F/3341/arithmetic.simp

3*a+5*a+a ->>
   a*9

If the rules being tested contain a loop, it may be necessary to interrupt the program with a
control-C.  At this point you are in the Prolog interpreter’s debugger; to exit, type ‘a’ (for
‘abort’), and then at the |-? prompt, type  ‘halt.’ as illustrated in the following example:

% simplify < loopy.data
^C
Prolog interruption (h for help)? a
[ Execution aborted ]

| ?- halt.
%

Exercise 4.1:  Create a file equality.simp with rules for equalities and inequalities,
and a file logic.simp with rules for logic operators which will simplify a + b = b+
a to true, a < b < a to false, and a+ b = b+ a implies a < b < a to  false.  Demonstrate
how to use simplify to do the simplifications.

Exercise 4.2 :  Use the program simplify in interactive mode to enter a rule which
can simplify expressions of the form  x**a/x**b to x**(a - b) and use it to simplify
w**(3+b)/w**(b+1) to w**2.

Exercise 4.3:  Without the additional simplification rules automatically generated for
commutative and associative operators,  the rule

0 * X  ->>  0.

would fail to simplify the expressions x*y*0 and x*0*y to 0.  Why?

4.4 Tracing the rewriting process

The interaction among simplification rules, together with the rearrangement produced
by canonical forms, the effect of cancellation, and the generation of commutative and
associative rules can make it difficult to see why a specific simplification occurs or fails
to occur.  The simplify program has a trace feature which shows the effect of each
simplification step.
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To turn on the trace, include the term

traceOn.

in the data. To turn it off, include the term traceOff.  (The preprocessing into
canonical form and cancellation steps are not separately traced.)

Here is an example:

% simplify
Version 1.4.2SWI, January 6, 2007
|:theory(arithmetic).
Loading /cs/dept/course/2006-07/W/3341/arithmetic.simp
|:traceOn.

        true
traceOn ->>
   true
|:2*q+q*((a+8-a)-7) + q.

        2*q+q* (8-7)+q
        2*q+q*1+q
        2*q+q+q
        2*q+q*2
        q*4
2*q+q* (a+8-a-7)+q ->>
   q*4

4.5 Proving equalities

We can directly apply simplification to one common type of proof problem:
proving an equality by reducing both sides to an identity. To illustrate, we use
simplify to establish some arithmetic equalities, using appropriate
arithmetic.simp and equality.simp theory files.  (We omit presenting the rules
themselves, since they are all rather obvious mathematical facts.)

The data file is

theory(arithmetic).
theory(equality).
traceOn.

(2 + b) * ( b - 2) = b*b - 4.
(x - (a - 1)) * 3 = 3*(x-a)+ 3.
z**(k mod 2) * (z*z)**(k div 2) =  z **k.

   

and the output from simplify is:
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indigo 331 % simplify < testdata
Version 1.4.2SWI, January 6, 2007
|:Loading /cs/dept/course/2006-07/W/3341/arithmetic.simp
Loading /cs/dept/course/2006-07/W/3341/equality.simp

        true
traceOn ->>
   true

        b**2-2**2=b*b-4
        b**2-4=b*b-4
        b*b-4=b*b-4
        true
(2+b)* (b-2)=b*b-4 ->>
   true

        (x-a+1)*3=3* (x-a)+3
        (x-a)*3+3=3* (x-a)+3
        true
(x- (a-1))*3=3* (x-a)+3 ->>
   true

        z** (2* (k div 2))*z** (k mod 2)=z**k
        z** (2* (k div 2)+ (k mod 2))=z**k
        z**k=z**k
        true
(z*z)** (k div 2)*z** (k mod 2)=z**k ->>
   true



5. APPLYING SIMPLIFICATION

5.1 Computing  with ADTs

Simplification rules can be usefully applied to abstract data types  (ADTs).  The
fit between simplification and proving properties of ADTs is a natural one, since ADTs
are specified by axioms in the form of equations which specify how various functions
apply to instances of the datatype; and as we have seen,  equations can often be proved
fairly directly by an appropriate set of simplification rules.

The constraints established by the axioms determine the ADT; any object which satisfies
the equations counts as an instance of that data type.  As an example, the abstract data
type stack satisfies the following equations6:

pop(push(X, S)) = S
top(push(X, S)) = X

In these equations

• S denotes a stack,
• X is a data value that can be pushed on or popped off the stack,
• top is a function that returns the top value of a stack,
• push returns a stack with a new element on the top, and
• pop returns a stack with the top element removed.

A specific stack can be represented by an expression which constructs it; for example,
the stack containing a single element a is constructed by pushing a onto the empty stack
nil; so it is represented by push(a, nil).

Additional functions which are useful in programming stack calculations can be defined
in terms of the basic ones.  For example:

dup(S) =  push(top(S), S)
swap(S)= push(top(pop(S)), push(top(S), pop(pop(S))) )
over(S)  = push(top(pop(S)), S)

plus(S) = push(top(pop(S)) +  top(S), pop(pop(S)) )
times(S) = push(top(pop(S))  *  top(S),  pop(pop(S)))
minus(S) = push(top(pop(S)) -  top(S),  pop(pop(S)))
divide(S) = push(top(pop(S)) / top(S),  pop(pop(S)))

In order to use the simplify tool to verify stack calculations, we create a file
stack.simp in which these equations are converted to simplification rules by
replacing the '=' with '->>''.  The rules are used to replace terms matching the left-hand
side of an equation by the corresponding term on the right.7

                                                                        
6 See, for example, the discussion in Meyer, B., Object-Oriented Software Construction, Prentice-
Hall: 1988, pp. 55-58.
7 The equations for the stack operations describe a very rudimentary functional programming
language . Indeed, simplification rules  provide a simple mechanism for adding a form of



Here is a simple example which verifies that we can construct an expression which
doubles the value on the top of a stack, by composing plus with dup and push:

% simplify
% loading file /cs/fac/bin/simplify
% simplify loaded in module user, 0.010 sec 26,224 bytes
Version 1.3.3, April 20, 1997
|:
|: theory('stack.simp').
|: plus(dup(push(a, nil))).

plus(dup(push(a,nil))) ->>
   push(a+a,nil)
|:

In this example, the value nil is interpreted as the empty stack, so push(x, nil)
represents the stack consisting of the value x .  The simplification verifies that the stack
expression plus(dup(push(a, nil))) returns a stack containing the single element a + a.

For a more complex example, consider the following sequence of stack operations (the
stack itself is not explicitly mentioned):

push a
push b
over
dup
times
minus
divide

To verify that these operations compute a / b - a*a, we convert the operations to an
equivalent stack expression, and simplify it:

|: divide(minus(times(dup(over(push(b, push(a, nil))))))).

divide(minus(times(dup(over(push(b, push(a, nil))))))) ->>
      push(a/ (b-a*a),nil)

                                                                                                                                                                                                                        
functional programming to Prolog, which does not otherwise support it.  For a more
comprehensive implementation of functional programming in Prolog using conditional rewrite
rules, see Michael Newton, “A Combined Logical and Functional Programming Language”,
California Institute of Technology, CS Technical report 5172:TR:1985.

For an extended discussion of stack expressions and term evaluation, see [Wand, 1980, Ch. 3.]
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Simplification can also be used to diagnose some errors in a stack calculation:

|: over(minus(dup(push(t, nil)))).

over(minus(dup(push(t, nil)))) ->>
   push(top(nil), push(0, nil))

The fact that the expression for the resulting stack fails to simplify any further is due to
the erroneous attempt to compute top(nil).

We can summarize the verification of ADT expressions as follows:

evaluate an ADT expression

context: ADT defined by axioms in the form of identities

method: input ADT axioms and definitions to the simplify tool in the form of

simplification rules; input an expression to be checked and see if it simplifies to

the expected result.

background: mathematical simplification rules.  The correctness of the

evaluation is relative to the assumed correctness of the simplification rules and

the correctness of the ADT axioms and definitions.

Exercise 5.1  Add rules to the theory file stack.simp described above, so that the
erroneous stack operations top(nil) or pop(nil) simplify to a special value error.  All
operations on the error value should also yield error.



Exercise 5.2 The programming language Forth8 is stack-based. References to
constants and variables implicitly push the values onto the stack, and operations are
applied to values popped from the top of the stack.  The arithmetic operations plus,
minus, times, divide  are written as the usual arithmetic operators +, -, *, /.  Stack
operations like DUP and OVER are used to avoid repeated memory references to
variables, since stack operations are assumed to be faster.

As an example, the expression 1 + a/(b - a * a) would be computed in Forth by

1 A B OVER DUP * - / +.

Suppose the following Forth expression is intended to compute w - (x*x - 10*v)*x.
Translate the Forth into a stack expression, and use a stack theory file based on the
equations on p. 15 to verify that it  leaves right thing on the resulting stack. If it
doesn’t, modify the Forth code to make it correct:

W X DUP *  10 V  * - OVER * -

(Remember to make the variables and operation names lower-case in the stack-
expression.)

Translating Forth to stack expressions

Translating Forth to stack expressions, as asked for in exercise 5.2, is a rather
tedious process - it's exactly the sort of chore which should done by computer.
Fortunately, we have a “secret weapon” ready to hand, in the form of simplification
which can be easily adapted to the requirements of this problem!

Here's a forth.simp file that interprets a list as a Forth expression and translates it into
a stack expression:

forth(S) ->> forth1(R) :- reverse(S, R).
forth1([dup | Rest]) ->> dup(forth1(Rest)).
forth1([over | Rest]) ->> over(forth1(Rest)).
forth1(['+' | Rest]) ->> plus(forth1(Rest)).
forth1(['-' | Rest]) ->> minus(forth1(Rest)).
forth1(['*' | Rest]) ->> times(forth1(Rest)).
forth1(['/' | Rest]) ->> divide(forth1(Rest)).
forth1([X | Rest]) ->> push(X, forth1(Rest)).
forth1([]) ->> nil.

                                                                        
8 See Brodie, L., Starting Forth,  Prentice-Hall: 1981.  Forth has been used by vendors such as Sun
and Apple to program Fcode device drivers (http://www.firmworks.com/www/plug-in.htm)
and has served as the programming language for developing Open Firmware packages.  See
“Fundamentals of Open Firmware”, Technical Note 1061, Apple Computer: 1996,
http://developer.apple.com/technotes/tn/tn1061.html   

A modern and more practical stack-language is Factor.  See http://factorcode.org/index.fhtml.
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Since Forth is a postfix language,  evaluation of Forth expression works right to left, but lists
are much easier to manipulate left-to-right, so the first rule reverses the input list, using a
predicate reverse defined elsewhere.

The input routine for simplify requires elements of a list to be separated by commas.
In addition,  we need to down-case the variable names for the simplification rules; so the
Forth expression

1 A B OVER DUP * - / +

gets entered as  [1, a, b, over, dup, *, -, /, +].

And here's what simplify does with it:

|: theory(stack).
|: theory(forth).
|: forth([1, a, b, over, dup, '*', '-', '/', '+']).

forth([1,a,b,over,dup,*,-,/,+]) ->>
   push(a/ (b-a*a)+1,nil)

Exercise 5.3:  Java programs are typically compiled to a sequence of  bytecodes
which are interpreted by a Java Virtual Machine (JVM).  The JVM  is stack-based.
Among its stack operations are the following, as described in [Ingram, 1997]:

   "pop=87  Stack: ..., VAL -> ...
    pop2=88  Stack: ..., VAL1, VAL2 -> ...

    dup=89     Stack: ..., V -> ..., V, V
    dup2=92    Stack: ..., V1, V2 -> ..., V1, V2, V1, V2
    dup_x1=90  Stack: ..., V1, V2 -> ..., V2, V1, V2
    dup2_x1=93 Stack: ..., V1, V2, V3 -> ..., V2, V3, V1, V2, V3
    dup_x2=91  Stack: ..., V1, V2, V3 -> ..., V3, V1, V2, V3
    dup2_x2=94 Stack: ..., V1, V2, V3, V4 -> ..., V3, V4, V1, V2, V3, V4

    swap=95    Stack: ..., V1, V2 -> ..., V2, V1

    iadd=96  Stack: ..., INT1, INT2 -> ..., INT1+INT2

    isub=100 Stack: ..., INT1, INT2 -> ..., INT1-INT2

    imul=104  Stack: ..., INT1, INT2 -> ..., INT1*INT2"

Suppose the two top values of the stack are a, b. Construct a bytecode sequence of
operations from the above list  which computes b4 - a, and verify that the sequence
is correct. (The bytecodes are the integers associated with each stack operation. For
example, the bytecode for pop is 87.)  Try to make your sequence as short as possible.



Exercise 5.4  Queues can be represented by terms whose functor is a left-associative
operator ; we will use ‘--’. To add an element X at the end of a queue Q, we just write
Q -- X. More formally:

add(X, Q) = Q -- X.

Unlike stacks which have elements added and removed at the same end, in a queue,
items are removed from the front, so, with the aid of the conditional function9 if,  we
define a function drop which returns a queue with its first element removed (if it is
non-empty), and  a function first which returns the first element of a non-empty
queue.

drop(Y -- X) = if(empty(Y), nil, drop(Y) -- X)
first(Y -- X) = if(empty(Y), X, first(Y))

(a) What is Y’s datatype in these axioms? Can X be a queue? How many elements
does a queue of the form first(Y) -- X have?

(b) Construct a theory file queue.simp for queues with simplification rules for if ,
empty, drop, and first. For example,

empty(nil) ->> true.
empty(Y -- X) ->> false.

(c) Use queue.simp to verify that

first(nil -- a -- b) is a.   

(d) Verify that the value of first(drop(nil -- a -- b) -- c)  is b.

5.2 The prover program
Simplification together with a tautology checker such as wang  provides a basis

for putting together a ‘grow-your-own’ theorem prover, which is easy to construct but is
limited to just whatever mathematical knowledge you can supply in the form of
simplification rules.10

The program prover is a theorem prover of this limited sort.  It reads input terms in the
same way as simplify does, and checks if the result of the simplification is a tautology,
using Wang’s algorithm. As a convenience, prover assumes that the theory files
arithmetic.simp. equality.simp, and logic.simp will be needed and loads them
automatically.  It looks for  these files in the current working directory; if there are no
files with these names, it expects a Prolog initialization file prolog.ini in your home
directory to specify a path to the simplification files.

Additional rules can be loaded using theory('file specification ') or assert((rule)), in
the same way as in simplify.
                                                                        
9 if(B, X, Y) = X , if B; else Y.
10 For a discussion of the role of simplification rules in a complete program verification system,
see [Waldinger, 1974].
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The prover program includes a further feature which allows it to verify propositions
containing equalities.  For example,

x=0 implies x<7

is shown to be a tautology by using the equality to replace the variable in the consequent
term, yielding x=0 implies 0<7, which the equality.simp module will simplify to
true.

Notice that not all equalities can be used to replace variables by values; in the false
implication

not x<7 implies x=0,

it is obvious that we cannot replace the first x  by 0, since that will change the truth value
of the proposition. Instead of being false as the original proposition was, the implication

not 0<7 implies x=0

is trivially true.

So when is it legitimate to use an equality to eliminate an occurrence of a variable in a
proposition?  One case in which it works is if the equality occurs in the form:

          (V = Expression) and P implies Q.

where V represents a variable and Expression does not contain V.

In this case, we can prove (V = Expression) and P implies Q. if we can prove the
proposition that results from replacing occurrences of V by Expression in P and Q. To
express this formally, we introduce some notation to describe substitutions, which will
also be useful later:

e[r / x] = the expression resulting from substituting r for each occurrence of the
variable x in the expression e (where x does not occur in r.)11

Now
(V = E)  implies (X iff X[E/V]),

so if we can prove that  P[E/V] implies Q[E/V] , it follows that

(V = E) and P implies Q.

(You can use wang  to show that from

(V = E implies (P iff P[E/V])), and
(V = E implies (Q. iff Q[E/V])) and
(V = E and P[E/V]) implies Q[E/V] ),

one  can conclude that (V = E and P implies Q).)

                                                                        
11 This operation has the technical name β-reduction.   See, for example, [Kubiak, p. 45].



This suggests where the checking for and application of equalities should take
place—namely, at that point in the tautology checking where Wang’s algorithm has
reduced the sequent entirely to non-logical terms (see Section 3.5).  If any of the terms on
the left side of the sequent are equalities of the form V = Expression (where Expression
does not contain V), then V is replaced by Expression in the other terms in the sequent.
Each term in the resulting equivalent sequent is simplified and the result is checked to
see if it is a tautology.

The techniques used in the prover program are not sufficiently powerful to deal with
the complexities of mathematically  interesting theorems, but as it happens, the logic of
software verification is in many cases much less demanding than that required for
interesting mathematics. Verification typically requires proving a series of small results
involving many tedious details but no deep mathematical ideas. This makes them quite
suitable for ‘mechanical’ proof using the ad-hoc techniques of simplification rules,
together with variable replacement through equalities, followed by tautology checking.

Where do rules come from?

The verification tools discussed in subsequent chapters rely on simplification
rules supplied by the user to prove propositions about computations.  If the rules are
inadequate, the proof attempt fails and the proposition which was not reducible to a
tautology is displayed.  But the failure of the proof attempt does not mean that what we
were trying to prove cannot be proved. We could always force a proof—just  create a
simplification rule to reduce the proposition to true!  But of course this is “cheating”;
verification must be based on rules which have a genuine justification, not just wishful
thinking that what we are trying to verify must be the case.

So what should count as a legitimate justification for a simplification rule?  We can
distinguish three kinds of sources for rules:

1. General mathematical theories which describe the basic functions and operations used
in the computation, such as arithmetic and logical operations.  Arithmetic rules are
usually derived from equalities  between  complex expressions and simple ones, e. g.
X +  0 ->> 0.   Rules involving relational or logical operators transform one
proposition into another proposition:

 0 <= x and 0 < x ->> 0 <= x,

or simplify a proposition to true,:

 x < 0 or x = 0 or x > 0  ->> true.

These  are usually based on “facts” we have learned about arithmetic relations or on
theorems and lemmas which we can find proved in textbooks.

2. Special theories about  abstract datatypes used in a computation, such as stacks and
arrays.  These rules are based on the axioms for a datatype in the form of identities, or
on theorems which can be proved about the datatype, e. g.

push(top(S), pop(S)) ->> S (for non-nil S).
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3. Definitions

 e. g., first(Y -- X) = if(empty(Y), X, first(Y)).

In this case, the rule does not act as a simplification since the right-side is usually more
complex than the left. The definition is used to expand a term in the hope that other
rules will be able to simplify the expansion.

In each case, the rule is derived from concepts which we or someone else have
constructed. The test for whether a rule is “correct” is not “is it true?“ but “does it  reflect
the intended meaning of the concepts which it uses? does it say what we want it to say?”

Examples

The following examples show prover in action on some very simple
propositions entered from the keyboard (and echoed in the output):

% prover
. . .
Version 1.6.2, September 5, 2000.
Loading /cs/dept/course/2000-01/F/3341/arithmetic.simp
Loading /cs/dept/course/2000-01/F/3341/equality.simp
Loading /cs/dept/course/2000-01/F/3341/logic.simp

|: x**(a-a) = 1.
x** (a-a)=1

* Valid.

|: x*(a-a) = 0.
x* (a-a)=0

* Valid.

|: x=3 and x=y+3 implies y=0.
x=3 and x=y+3 implies y=0

* Valid.

|: traceOn.
traceOn

        true
* Valid.

|: x < x+1.
x<x+1

        0<1
        true
* Valid.

By loading an appropriate theory file, we can prove simple properties of functions on
datatypes. As an example, the function dup is intended to have the properties that



top(dup(s)) = top(pop(dup(s))) and top(dup(s)) = top(s).

This can be verified directly by prover, using an appropriate theory file for the stack
functions:

|: top(dup(s))=top(pop(dup(s))) and top(dup(s))=top(s).
top(dup(s))=top(pop(dup(s)))and top(dup(s))=top(s)

   top(pop(dup(s)))=top(dup(s))and
top(push(top(s),s))=top(s)
        top(push(top(s),s))=top(s)and
top(pop(dup(s)))=top(push(top(s),s))
        top(push(top(s),s))=top(pop(dup(s)))and
top(s)=top(s)
        top(push(top(s),s))=top(pop(dup(s)))and true
        top(push(top(s),s))=top(pop(dup(s)))
        top(push(top(s),s))=top(pop(push(top(s),s)))
        top(push(top(s),s))=top(s)
        top(s)=top(s)
        true
* Valid.

Using the prover tool gives us another verification scenario for ADTs:

verify an intended property of an ADT

context: ADT defined by axioms and function definitions, and an intended

property represented by a proposition involving the ADT functions, equalities,

and additional mathematical functions and relations.

method: input ADT axioms and definitions to the prover tool, together with

appropriate mathematical theories; input the proposition describing the

intended property and show that it is valid.

background: prover’s default mathematical simplification rules, or user-defined

theories.
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Exercise 5.5:  Create simplification rules based on the following mathematical
‘facts' which will allow you to use prover to prove that 0 <= sqrt(x) <= x, for x a
non-negative integer.

X <= sqrt(Y) iff X*X <= Y
sqrt(X) <= Y iff X <= Y*Y

Some additional rules may be needed as well. (Hint: use traceOn to see what
effect your rules have on the simplification of the input.)

Exercise 5.6:  If the functions which define an abstract datatype give exactly the
same results on two objects, then the objects are equal, as far as the theory of that
datatype is concerned. Use prover and the theory file stack.simp from
Section 5.1 to show that if s is not nil, then

     push(top(s), pop(s)) = s.

Exercise 5.7:  The stack function over(s) is intended to have the property that its
top element  is equal to the second  element below the top, and is equal to the
first element below the top of s.  Construct a proposition which expresses this
property and verify it using  prover and a stack theory file which contains just
the basic axioms for push, top, and pop, and the definition of over.

5.3 Verification through induction
As a variation on prover, we can construct a program which uses simplification

and tautology checking to implement a much more powerful proof
technique—mathematical induction—in a form which is directly applicable to the
verification of certain kinds of functional programs12. Functional programs are written in
functional languages, such as Lisp, whose notation is directly translatable into the
specification of a mathematical function which gives the meaning or denotation13 of the
program. Thus, verification of a functional program involves proving an equality
between the function computed by the program and an  intended function14.

Suppose we wish to verify the Lisp program:

(DEFUN product (n) (IF (zerop n) 0 (+ (product (1- n)) m)))

with respect to the specification that:

product(n) = n * m .

The Lisp function is easily converted into term notation: in general, (F X) represents a
function call F(X); zerop is a Boolean function that checks if its argument is 0 and 1-

                                                                        
12 The ideas in this section are found in  [McCarthy, 1962] — perhaps one of the earliest papers on
proving properties of programs.  It is reprinted in [Colburn, 1993].
13 See [Mueller, 1988, Ch. 1] for a discussion of the connection between denotational and
functional programming languages.
14 The use of intended functions in specification and verification is discussed in [Stavely, 1999].



subtracts 1 from its argument. So we can write an equivalent term expression for
product(n) as

if( n=0, 0, product(n - 1) + m).

That is, if the argument is 0, then the value of the function is 0, otherwise the value is
product(n - 1) + m.

How could we prove that, given this definition, the specification holds for all integers n
≥ 0?

The principle of mathematical induction provides the needed inference rule15—it states
that if a proposition P(n) is true for integer n = 0, and in addition, that

(n > 0 and P(n - 1)) implies P(n)

then P(n) is true for all n ≥ 0.

In this example, we can take P(n) to be the proposition:

product(n) = n*m .

So to verify the definition of product with respect to the specification, we need to
establish the two propositions required by the principle of mathematical induction:

(i)  product(0) = 0 * m .
(ii)  product(n - 1) = (n - 1) * m  implies  product(n) = n * m.

These are both easily proved using the definition of the product function given by either
the Lisp code or the term expression. By definition, product(0) = 0, so (i) is satisfied, and
if n > 0, then

product(n -1) = (n - 1) * m implies product(n - 1) + m =  (n - 1) * m + m = n * m

which establishes (ii).

The general pattern of the verification is as follows:

• identify the variable V  in the if-condition and the function name F;

• show that if 0 is substituted for V in the specification, then the result equals the
second argument of the if-expression (this corresponds to the induction basis).

• substitute V - 1 for V in the specification, and then substitute the  result for any
occurrences of the term F(V - 1) in the recursive definition of the function (this
corresponds to the inductive hypothesis). Show that the result is equal to the value
required by the specification. This corresponds to the induction step16.

More formally, to verify

                                                                        
15 See [Kubiak, 1991, Ch. 9, and 10] for a more extended discussion of mathematical induction in
the context of verification.
16 Compare [Backhouse, 1986, p. 118]  where it is called the inductive step.  The terminology used
here corresponds to [Hehner,  1984, p. 46].
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F(V )  = if( V  = 0,V0,  Expression) : Goal ,

where Goal  is a functional expression, we need to prove the basis step:

Goal [ 0 / V ] = V0

(here we reuse the notation for substitutions we introduced in Section 5.2.)

To prove the induction step, we need to prove that if V > 0,  then

Expression [ Goal [V  - 1 / V ]/ F(V - 1) ] = Goal .

This is the process used by the program induction. It accepts as input a term of the
form

F(V )  = if( V  = 0,V0,  Expression) : Goal .

outputs the basis as an identity , and reports whether it can prove it; it then outputs the
induction step as an identity, and reports whether that can be proved. Here is an
example:

% induction
% loading file /cs/fac/bin/induction
% induction loaded in module user, 0.040 sec 65,324 bytes
Version 2.6.1, September 1, 2000
|: assert((A-B)*C ->> A*C - B*C).
|: f(n) = if(n=0, 0, f(n-1) + m) : n*m.
f(n)=if(n=0,0,f(n-1)+m):n*m

Base case: 0*m=0 is valid.

Induction step: n*m = (n-1)*m+m is valid.
  

In this case, the default arithmetic.simp was augmented with a small  bit of algebra
in order to simplify (n - 1) * m + m  ->>  n * m - 1 * m + m  ->>  n * m.

As we can see, the induction tool does not include the hypothesis that n > 0 in the
induction step; for simplicity, it assumes that the hypothesis can be omitted and
attempts to prove the more general case for an arbitrary integer n using unconditional
simplification rules.



For each of these exercises, try verifying using just the default theory files, and then add
additional rules as needed, either by using assert or by creating your own theory files.

Exercise 5.8:  Use the program induction to verify that:

(a) if
sumN(n) = if(n=0, 0, sumN(n-1) + n)

then
      sumN(n) = n*(n+1)/2.

(b)
f(i) = if(i=0, 0, f(i-1) + 2*i - 1) : i**2

Exercise 5.9: Verify that the Lisp program

(DEFUN t (n) (IF (zerop n) 1 (+ (t (1- n))
      (t (1- n)))))

computes 2n.

Exercise 5.10:  (based on  [Kubiak, p. 60].)  Convert the following code into an
equivalent definition in the form

h(n) = <term>:<goal>

which can be input to induction  to verify that the function computed by the code
is just the constant  function 0.

int h(int n) {
if (n == 0)  return(0);
else if (n % 2 == 0)  return n*h(n-1);
else return h(n-1);

}

Note:  represent the operator % by a functional term in the input to induction.

Exercise 5.11:   Show that the following code  computes the predicate odd(i) which is
true if i is odd, else false.

boolean oddf( int i) {
  return (i==0) ? false : ((i==1) ? true :

! oddf(i-1));
}

5.4 Generalized induction

The pattern of recursion in which F(V)  is defined in terms of an expression
involving F(V - 1) for V  > 0 is the form of recursion most directly linked to
mathematical induction.  But recursive definitions which do not fit this pattern can still
be handled in a similar way, by extending the pattern of mathematical induction. For
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example, the induction proof process in Section 5.3 won’t work for a recursive definition
such as

odd(n) = if(n = 0, 0, if(n = 1,1, odd(n - 2))) : n mod 2

in which the recursive expression does not contain F(V - 1) . But a variant of the
verification process which uses a strengthened inductive hypothesis will do the job.  The
stronger form, which we will call generalized induction, reads as follows:

if (0 ≤ m < n implies P(m)) implies P(n),  then P(n) is true for all
integer n ≥ 0.

In other words, if we can show P(n) under the assumption that P(m) holds for all m in
[0, n), then we can infer P(n).

This version sometimes makes it easier to establish the induction step, since we get to
assume more in the hypothesis (P(m) holds for all m in [0, n) rather than just for n-1),
but it isn’t really more powerful in a logical sense; it can be shown to be equivalent to
the simple version involving n - 117.

To apply generalized induction to the verification of the example of odd(n), that is, to
prove that

  odd(n) computes  n mod 2,

we need to assemble an implication with a number of hypotheses:

(i) (0 ≤ m and m < n implies odd(m) = (m mod 2)) implies
(0 ≤  n-2 and n-2 < n implies odd(n-2) =  (n-2 mod 2))

     (the instance is implied by the general case)

(ii) odd(n-2) =  (n-2 mod 2)  implies odd(n-2)  = (n mod 2)

(mathematical fact about mod)

(iii)  (n = 0 implies odd(n) = 0) and (n > 0 implies ((n = 1 and odd(n) = 1) and (n >
1 and odd(n)) = odd(n - 2))

(expansion of the ‘if’ expression in the definition of odd)

(iv) (n=0 and odd(n) = 0 implies odd(n) = (n mod 2)) and (n=1  and odd(n) = 1
implies  odd(n) = (n mod 2))

(mathematical facts about mod)

(v) not n=1 and odd(n) = odd(n-2) and odd(n-2)  = (n mod 2) implies odd(n) = (n
mod 2)

(fact about equality)

(vi) 0 < n and not n=1 implies 0 ≤ n-2 and n-2 < n

                                                                        
17See [Kubiak, pp. 95-96].



(mathematical fact about integers)

(vii)  0 ≤ n implies n=0 or 0 < n

(mathematical fact about <)

We can now use prover to show that the proposition

(i) - (vii)  and 0 ≤ n and ((0 ≤ m and m < n implies odd(m) = (m mod 2)) implies
odd(n) = (n mod 2))

is a tautology, from which we infer, by generalized induction, that

odd(n) = (n mod 2), for n ≥ 0.

Luckily, verification using generalized induction can made much easier than the above
proof would suggest.  We can simplify  the process in much the same way as we did for
ordinary induction, by abstracting out the common steps and incorporating them into
the induction tool. Now, instead of using the induction principle to convert the
induction step into the substitutions

Expression [ Goal [V  - 1 / V ] /  F(V - 1) ] = Goal .

the induction step becomes:

Expression [Goal [ g(V) /V ] / F(g(V))]= Goal.

where g(V) is the argument of F in the recursive expression.

In the previous example, g(V)  = n-2, and the equality which must be proved to establish
the induction step is

if(n=1,1,(n-2) mod 2)) = n mod 2

which is true for 0 < n.

There is an additional complication in generalized induction—the substitution of the
goal for the recursive call is only justified by the generalized induction principle for
values which lie in [0, n).  We took this for granted before, since if n > 0, n-1 is obviously
in [0, n), but in generalized induction, it constitutes a separate proof obligation. So, to
complete the verification of odd(n), we note that if n > 0 and is not 1, then 0 ≤ n - 2  < n.

The following output shows what the induction tool does with the previous example
(the simplification rules required to complete the verification have been omitted, so you
can see what needs to be proved):

odd(n)=if(n=0,0,if(n=1,1,odd(n-2))):n mod 2

Base case: 0 mod 2=0 is valid.
0<n and not n=1 implies 0<=n-2 and n-2<n is valid.

Induction step: n mod 2=if(n=1,1,(n-2)mod 2) is valid.
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To allow induction to be applied to a wider range of recursive definitions, we
generalize somewhat further, by allowing the function being defined to have more than
one argument (induction requires that the first be the recursion variable), and more
than one recursive call in the recursive expression.  An example is the function power(n,
r), which uses a halving strategy to reduce the number of multiplications involved in
computing  r to the power n.

power(n,r)=if(n=0,1,if(even(n),power(n/2,r*r),
      r*power(n-1,r))):r**n

Base case: r**0=1 is valid.

0<n and even(n)implies 0<=n/2 and n/2<n is valid.

Induction step:if(even(n),r** (n/2)* r** (n/2),
      r** (n-1)*r)=r**n is valid.

The verification scenario for verifying a recursive function using generalized induction
is given by:

verify the definition of a recursive function with non-negative integer argument

context: a recursive definition is specified for a function F(n, . . ), for n ≥ 0,

along with a goal expression G. The definition specifies the value V0 of the

function  for n = 0, and a recursive expression E for the value of the function

for n > 0, in terms of values of F for smaller arguments.

method: input  the term F(n, . . ) = if(n = 0, V0 , E) : G to the induction tool,

along with appropriate simplification rules.

proof obligations:

    (i) G [ 0 / n ] = V0

    (ii) E[ G [A ,  . .  / n, . . .  ]/ F(A, . . ) ] = G , assuming n > 0

    (iii) For every occurrence of F in E with first  argument  A (other than  n - 1),

prove that  (in the context in which it occurs) 0 ≤ A < n.

background: mathematical simplification rules supplied as theory files or

asserted interactively. The verification is relative to the assumed correctness of

the simplification rules.

In this scenario, we have explicitly identified the propositions which must  be proved as
proof-obligations, which we try to have the tool discharge, through appropriate
simplification rules.



Exercise 5.12:  Use the induction tool to verify that

       e(n) = if(n = 0, 1, if(n = 1, 0, e(n-2)))

computes  even(n) for n ≥ 0, where even(n) = 1 if n is even and 0 if it is odd.

Exercise 5.13: Translate the following code into the form required by the induction
tool, and see if you can verify that it computes the constant function 1. What goes
wrong? Can it be fixed? (We will encounter this problem again in section 9.8.)

int collatz(int n) {
if (n == 0) return 1;
if (n == 1) return 1;
if (even(n)) return collatz(n/2);
else return collatz(3*n + 1);
}

5.5 Verification through transformations
In most programming languages, the implementation of a recursive call requires

the allocation of dynamic memory for the arguments of the call and the value returned
by the call, so that the computation specified in the previous invocation can be
completed.  Thus, in the sumN function of exercise 5.8, each recursive call is not
completed until the addition sumN(n-1) + n is completed; so space must be allocated
and retained for the pending result of the addition, as well as for the argument, which
cannot be “popped off” the call stack until the computation at level n is completed.

In general, to evaluate a function defined by  the simple recursion of the previous
section on an argument n - 1 with m additional arguments, will require n recursive calls
and space for n intermediate values. This contrasts with an iterative algorithm, in which
partial results and values of variables replace the previous values at each iteration, so no
additional memory has to be allocated.

A more complex form of recursion called tail recursion imitates iteration by using an
additional variable to pass along to the next recursive step a partial result from which a
new (partial) result is computed. When the terminating condition is reached, the partial
result is returned as the desired value.

As an example, the sumN function can be defined using a helper function with an extra
argument:

sumN(n) = helper(n, 0)
helper(n, result) = if(n=0, result, helper(n - 1, result + n))

The recursion in helper is an example of tail recursion, also called ‘last action’ recursion,
because in evaluating the recursive expression, no computation follows the recursion. In
the implementation of this form of recursion,  the value returned at each step can simply
replace the value computed at the previous step, and the input arguments can be
replaced by the new values—they will not be needed for any subsequent computation.
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This produces a more efficient implementation, both in the amount of memory which
must be allocated and the time spent in stack operations on the call stack.

A theorem of [Kubiak, 1991, p. 118] gives us a general set of conditions under which we
can convert simple recursion into tail recursion.  For verification, we want to reverse the
process—by transforming a tail recursive function into the simple recursive form used
by the induction tool, we can extend the scope of the tool to included more complex
function definitions.

The transformation works as follows:

We start with a tail-recursive function with 2 arguments, serving as a helper function for
a 1-argument function F:

F(V ) = F(V, Initial).
F(V, Result) = if(Exit, Result, F(reduce(V), build(Result, d(V)))).

(We use the same name for the helper function as for the main function,  distinguishing it
from the main function by its greater arity.)

The pieces are reassembled to produce a simple recursive definition:

F(V) = if(Exit, Initial, build(d(V),F(reduce(V)))).

But we need some conditions to guarantee that the new definition agrees with the
original one. We will use the following:

• Initial must be an identity for the operation build, i. e, build(Initial, X) = X.  This
allows the value for the non-recursive branch in the simple recursive definition to be the
same as the initial partial result in the tail-recursive definition (for example, 0 if the
result is being built up by addition.)

• build must be associative.

In our previous example,

sumN(n, result) = if(n=0, result, sumN(n-1, result + n))
so

Exit = (n=0),
Initial = 0,
reduce(n) = n - 1,
d(n)  =  n

and
build(x, y) = x + y,

yielding a simple recursive definition

sumN(n) = if(n=0, 0, sumN(n-1) + n).

Since + is associative and 0 + X = X, the new definition is equivalent to the tail-recursive
version.

The transformation from tail to simple recursion requires as inputs:



• the definition of the tail recursive function,
• the intended goal function,
• an initial value.

These are packaged as input to the induction tool in the form:

tail(Definition: Goal, Initial)

As an example:

|: tail(if(n=0,s,sum(n-1,s+n)):n*(n+1)/2,0).
tail(if(n=0,s,sum(n-1,s+n)):n* (n+1)/2,0)

Assume + is associative.
0+X=X is valid.
X+0=X is valid.

Verifying: sum(n)=if(n=0,0,n+sum(n-1)):n* (n+1)/2
Base case:
 Cannot prove 0/2=0.

Induction step:
 Cannot prove (n**2+n)/2= (n-1)*n/2+n.

(To complete the verification, use the simplification rules from Exercise 5.8.)

The construction of the simple recursive expression from the tail-recursive has one
rather subtle aspect—the analysis of the expression which computes the partial result as
a function of two arguments Result and d(V).  The role of the function d here is to allow
us to treat the tail-recursive expression as a function of V even if V does not appear in it.
For example, suppose

f(n, r) = if(n=0, r, f(n -1, r+a)).

Take d(n) = a , and define build(x, y) = x + y.  Then build meets the conditions, and we can
construct an equivalent simple recursive expression using

build(d(n),  r) = a + r.

To see the role which the associativity and identity conditions play in the
transformation, let us ‘unroll’ a tail-recursive and a simple recursive definition for a few
steps and compare:

Let f(n) = f(n, e) where f(n, r) = if(n=0, r, f(n-1, r ° n)), so
Initial = e, reduce(n) = n-1,  d(n) = n, and build(x, y) = r ° n.

Now unroll the computation of f(3) = f(3, e):

f(3, e) = f(2, (e ° 3)) = f(1, (e ° 3) ° 2) = f(0, ((e ° 3) ° 2) ° 1) = ((e ° 3) ° 2) ° 1.

The transformation into simple recursion yields

f(n) = if(n=0, e, n ° f(n-1)),
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and unrolling f(3)  gives:

f(3) =  3 ° f(2)  = 3 ° (2 ° f(1)) = 3 ° (2 ° (1 ° f(0))) = 3 ° (2 ° (1 ° e)) .

So if e is an identity for  °, and  °  is associative, then the two expressions are equivalent.

We sum up the discussion in the form of a verification scenario for tail-recursive
functions:

verify the definition of a tail-recursive function with non-negative integer

argument

context: a recursive definition is specified for a function F(V, result,. . ), for V ≥

0, along with a goal expression G. The function to be verified is assumed to be

defined by F(V, . . ) = F(V, Initial,. . ).

The value of F(V, result, . . ) is specified to be result if V = 0, otherwise

     F(V, Result) = F(reduce(V), build(Result, d(V))).

method: input  the term tail(Definition: Goal, Initial) to the induction

tool, along with appropriate simplification rules to discharge the proof

obligations

proof obligations:

(i) build  is associative (this is assumed to be known on the basis of general 

mathematical knowledge or a separate proof)

(ii) build(Initial, X) = X  and build(X, Initial) = X

(iii) The expression F(V) = if(Exit, Initial, build(d(V), F(reduce(V)))) can be
verified to compute G.

background: mathematical simplification rules supplied as theory files or

asserted interactively. The verification is relative to the assumed correctness of

the simplification rules.



Exercise 5.14:

(a) Use the induction tool to verify that if the function t is defined by

int t(int n, result){
return (n==0 ?  result :  t(n-1, 2 * result));

}

then t(n,1) returns 2n.

(b)  Let t(n, r) be the recursive function you verified in (a).  What corresponds  to the
functions build and d  in the transformation from tail- to simple recursion? Show
how to use  the induction tool to check that your definitions are correct.

For-loops

For-loops which count down by 1 correspond to tail-recursive functions which
reduce the recursion variable by 1. The loop

for(X = Initial, int i = V; i > 0; i--) X = g(i, X);

corresponds to the tail-recursive function

f(V, X) = if(V=0, X, f(V-1, g(V, X))), with f(V) = f(V, Initial).

and so is verified by using the induction tool on the input

tail(if(V=0, X, f(V-1, g(V, X))): Goal, Initial).

Exercise 5.15:   Translate the code fragment

for(p = 1,  int i = n; i > 0; i--) p = p*i;

to a tail-recursive expression and use the induction tool to verify that it computes
the factorial function n! for n ≥ 0.

Most for-loops, however, count up. A small variation of the previous pattern allows us
to handle this as well.  The loop

for(X = Initial, int i = 1; i < V + 1; i++) X = g(i, X);

corresponds to a tail-recursive expression with an additional parameter:

f((Index, X, V) = if(Index = V, X, f(Index+1, g(Index, X), V)),
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with f(V) = f(0, Initial, V).  To verify that  f(V) computes a particular Goal function, we
input

tail(if(Index  = V, X, f(Index+1, g(Index, X), V)): Goal, Initial).

to the induction tool which converts it to the simple recursive equivalent:

f(V) = if(0,  Initial, g(f(V-1), V)).

and verifies that.

 As an example, we can represent

for(p = 1, int i = 1; i < n + 1; i++) p = x*p;

 as the tail-recursive definition

tail(if(i = n, p, power(i + 1, x*p,  n)): x**n, 1)

and input it to induction, resulting in the output:

Assume * is associative.
X*1=X is valid.
1*X=X is valid.

Verifying: power(n)=if(n=0,1,power(n-1)*x):x**n
Base case: x**0=1 is valid.

Induction step: x**n=x** (n-1)*x is valid.

Exercise 5.16:   Verify that the code fragment

for(p = 1,  int i = 1; i < n + 1; ; i++) p = p*i;

computes the factorial function n! for n ≥ 0.

(You can use (n!) to represent the goal function in the induction tool.)

Exercise 5.17:   Construct verification scenarios for for-statements in C/Java, which
count either up or down.



5.6 Structural induction

Mathematical induction, as defined so far, is an inference rule for propositional
functions with integer arguments ≥ 0.  The idea can be extended to induction over
recursively defined data structures, in which form it is called structural induction.18

Structural induction is used to establish the truth of a proposition P(S), for all objects S
of a particular compound datatype, such as stack or string.

Assume that the datatype has some minimal element, call it λ—for strings, λ is the
empty string; for stacks, it is the empty stack which we earlier called nil. Suppose some
operation f is defined on the datatype which has the property that if iterated often
enough, it produces the element λ; for stacks, pop is such an operation.  Then the
principle of structural induction states that if P(λ) is true, and

P(f(S)) implies P(S), for all S,

then P(S) is true for all S.

Notice the analogy with induction over natural numbers: the minimal element is 0 in
that case, and f(n) = n - 1.

In structural induction over a stack, the minimal element (corresponding to 0 in
induction over the natural numbers) is nil.  The induction step, which for integers was an
the implication  from P(n - 1) to P(n), is now an implication from P(pop(stack)) to
P(stack). In structural induction over queues, λ = nil and the operation f = drop.

Computing stack size

As an example, consider a function count which counts the number of elements on a
stack. Using the notation of the previous section, we can define this by:

count(stack) = if(stack = nil, 0, 1 + count(pop(stack))).

What does it mean to verify this? We need a specification of a mathematical function,
say, size(stack), which  count is supposed to compute.

We define size by simplification rules:

size(nil) ->>  0.
size(pop(X))+1 ->> size(X).

Now induction (which knows about structural induction on stacks) can easily
establish that count(stack) = size(stack)  for all stacks:

                                                                        
18See [Dromey, 1989, p. 174.]
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|: assert((size(nil) ->> 0)).
|: assert((size(pop(Stack))+1 ->> size(Stack))).
|: count(s)= if(s=nil,0,1+count(pop(s))):size(s).  
size(nil)=0 is valid.
size(s)=1+size(pop(s)) is valid.

You may feel that not much has been established by this verification; the functional
expression and the specification are so obviously parallel that there is hardly anything to
prove; the induction step turned out to be identical to a defining property of the size
function.  Indeed, one virtue of programs expressed in functional terms is precisely that
they often function as their own specification. To put it another way, specifications
expressed in a functional language can be directly executed by an interpreter for that
language. This is one easy way to construct programs which are necessarily correct,
since there is no distinction between the program code and the description of what the
program is supposed to do.  Learning to program would, in this case, just involve
learning how to take informal specifications expressed, perhaps,  in a natural language
such as English or in a mixture of English and mathematical notations, and translate
them into a language of executable formal specifications.

That conventional programming is so difficult to verify and, as a result, is so prone to
error is a direct consequence of the “semantic gap” between the notation of ordinary
programming languages and a logical specification language—a gap which seems to the
programmer to be required for practical reasons, but whose hidden costs from the
difficulty of verification are rarely counted.  In the subsequent chapters, we shall see
more clearly how this gap arises for procedural languages such as C or Java, and what
additional concepts are needed to bridge it.

Exercise 5.18:  Suppose the stack function double is defined by the equations:

 double(nil) = nil
double(push(X, S))  =  push(X, push(X, double(S))).

Use induction to verify that a recursive function which, when given a stack as
argument, calls itself on the result of popping the top element off, followed by
pushing the top element  twice on the result, computes the function double.

Computing the reverse of a list

Lists, as abstract datatypes, are the same structures as stacks, with relabeled
operations:

• the empty list is represented by [];
• the push(X, S) operation becomes cons(X, S);
• top(S) becomes first(S),
• pop(S) becomes rest(S),

and the axioms for lists are just those for stacks translated into the list vocabulary.



A convenient piece of ‘syntactic sugar’19 represents

• a list by [X, Y, . .  ],
• cons(X, Y) by [X | Y], and
• cons(X, []) by [X].

We use the list vocabulary in the following example, in which we verify that a particular
functional program, that is, a program defined by a functional expression, reverses a list.
To do this we need an additional definition of the reverse of a list as a mathematical
function which we can use in a specification. Again, it is hard to conceive of a simple
way to express such a definition which does not itself directly parallel a recursive
computation.  To make the verification less trivial, we will define the reverse function in
one way and the functional program in another, and then use induction over lists to
verify that the specification in terms of the mathematical function and the function
program agree.

We define first a function append to represent the operation of concatenating the
elements of one list onto another.  This  is given by the equations:

append([], Y) = Y,
append(X, Y) = [first(X) | append(rest(X), Y)]  if X is not [].

If the equivalent rewrite rules are entered in this order, the second rule won’t need a
condition to exclude X = [] , since if the first argument to append is empty, the first rule will
apply, preventing the second from applying.

Now we can define the reverse of a list by the axioms

reverse([]) = [],
reverse([X | L]) = append(reverse(L), [X]).

Note that in this form, the second equation does not directly define how to compute
reverse(L) for an arbitrary list.   But since any list is either empty or equals cons(X, L)  for
some element X and list L,  the equations cover all cases.

Exercise 5.19:  Convert stack.simp to list.simp, changing push to cons,
pop to rest, and top to first. Use the following axioms for append and
reverse:

append([X | Y], L) = [X | append(Y, L)].
reverse([X | Y]) = append(reverse(Y), [X]).

Add appropriate rules for the empty list []. Then use the simplify program to evaluate
the following list expressions:

append([a, b], [x])
reverse([a, b, c])
reverse(append(reverse([a, b]),  [z]))

                                                                        
19 The notation is borrowed from the Edinburgh syntax for Prolog.
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A tail-recursive reversal function rev(list) is defined using the equations

rev(list) = rev(list, []).
rev(list, result) =
       if(list = [], result, rev(rest(list), cons(first(list), result))).

We want to verify that rev(list) = reverse(list) for all lists. The function rev(list, result) fits
the tail recursive pattern, so we can try to verify it using the induction tool on the
input:

|: theory(list).
|: tail(if(list = [], result, rev(rest(list),
       cons(first(list), result))):reverse(list), []).

The output from induction begins

Assume cons is associative.

Cannot prove cons(X,[])=X.

Cannot prove cons([],X)=X.

Verifying:
rev(list)=if(list=[],[],cons(rev(rest(list)),first(list))):
     reverse(list)

This shows us that there is a problem with the formulation of the rev function, for the
purpose of verification,  because, in fact, cons is not associative.  (Both operands of an
associative operation must have the same type, since in the equation

(a ° b) ° c = a ° (b ° c)

the middle operand appears both as the second and the first operand of the operation.
But cons takes a list element as the first argument, and a list as the second.)

However, append is associative (although proving it requires a non-trivial inductive
argument), and we can show by direct calculation that

cons(X, S) = [X|S] = append([X], S).

So we rewrite rev, replacing the cons with an append, and now get



|: theory(list).
Loading /cs/home/fac2/peter/3341/list.simp
|: tail(if(list=[], result, rev(rest(list),
     append([first(list)], result))): reverse(list), []).

tail(if(list=[],result,rev(rest(list),append([first(list)],res
ult))):reverse(list),[])

Assume append is associative.

Cannot prove append(X,[])=X.
append([],X)=X is valid.

Verifying:
rev(list)=if(list=[],[],append(rev(rest(list)),[first(list)]))
:reverse(list)
Base case: reverse([])=[] is valid.

Induction step:
Cannot prove reverse([first(list)|rest(list)])=reverse(list).

What does it take to complete the verification?

The first step is to show append(X, []) = X. One approach is to see if we can verify that
the recursive definition of append yields the identity function if the second argument is
[], and we can use the induction tool for this, together with an appropriate
list.simp  file based on  the definitions above.

|: theory(list).
Loading /cs/home/fac2/peter/3341/list.simp
|: append(x, []) = if(x=[], [], [first(x)|append(rest(x),
[])]):x.

append(x,[])=if(x=[],[],[first(x)|append(rest(x),[])]):x

Base case: []=[] is valid.

Induction step:
 Cannot prove [first(x)|rest(x)]=x.

The last line follows immediately from the definitions of first and rest for non-empty
lists and asserting the rule

[first(S) | rest(S)] ->>S

will complete the verification. So we can now add

append(X, []) ->> X

to the theory of lists.  And the rule [first(S) | rest(S)] ->>S will then also complete the
verification of reverse as well!  
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(As with induction over integers, the induction tool assumes that in the induction step
the induction variable does not equal the base case,  so the required rule can  be
expressed unconditionally.)

Notice that the original definition for rev:

rev(list, result) =
       if(list = [], result, rev(rest(list), cons(first(list), result))).

is now verified as well since cons(first(rest(list)), result))) equals append([first(rest(list))],
result) and so can be substituted for it in the verified definition.  Modifying the original
definition was only necessary to allow us to reduce the tail-recursion to simple recursion
which could then be verified by mathematical induction.

Exercise 5.20:  Prove that [x | s] = append([x], s) .  What rules from your list theory file
were used and how were they applied?

Exercise 5.21:  Locate or construct an inductive proof that appending lists is
associative and adapt it to make an argument  that pushS(X, Y) = append([X], Y)  is
associative.

Exercise 5.22:  State the base case and induction step for an induction proof that
append is associative.   Use prover to help prove the induction step.

Exercise 5.23:  Construct and verify a tail-recursive implementation of the double
function in Exercise 5.16.

Induction over trees

In the previous examples of structural induction, the datatype (stack or list) was
“1-dimensional”, so that only a single function such as pop or rest was needed to
compute the predecessor argument, pop(stack) or rest(list),  in the induction step.  For
more complex datatypes such as trees, we need, instead of a single predecessor function,
multiple predecessors,  f1, . . . ,  fn, and the structural induction step becomes

 P(f1(S)) and P(f2(S)) and . . .  and P(fn(S)) implies P(S) .

The induction tool  can create the appropriate induction step for the case of binary trees.,
in which every node is either a leaf (no subtrees) or has two subtrees. The base case is
specified by the Boolean predicate leaf(t), which is true if t is a leaf node. The structural
induction is based on two functions, left and right, which return the two subtrees of their
argument. These functions together play the role of a “predecessor” function, because, if
repeatedly applied to the values they return,  they eventually terminate in a leaf node..

A classic problem for binary trees is proving that  the leaves function which counts the
number of leaves of a tree is one greater then the nodes function which counts the
number of nodes internal to the tree, i. e., not leaves.  Before verifying this with
induction tool,  let ‘s do some computations of the leaves function, using simplify.



We can present the non-nil nodes of a labelled binary tree as lists with either 1 or 3
elements:

[Label] represents a leaf node; it has no sub-trees.

[Label, Left, Right] represents an internal node with a label; Left and Right are the
two sub-trees.

Thus the expression [a, [b], [c, [e], [d]]] represents the tree structure:

a

b c

e d

The leaves function is defined recursively by the equations

leaves([Label]) = 1,
leaves([Label, Left, Right])  = leaves(Left) + leaves(Right).

If we turn the equations into a theory file

leaves([Label])  ->> 1.
leaves([Label, Left, Right])  ->>  leaves(Left) + leaves(Right).

we can count the number of nodes in a tree using simplify:

% simplify
% loading file /cs/fac/bin/simplify
% simplify loaded in module user, 0.020 sec 79,436 bytes
Version 1.4.10, August 6, 2001.
|: theory(tree).
Loading /cs/home/peter/3341/tree.simp
Loading /cs/dept/course/2000-01/F/3341/arithmetic.simp
|: leaves([a, [b], [c, [e], [d]]]).

leaves([a,[b],[c,[e],[d]]]) ->>
      3

We can define the nodes-counting function recursively:

nodes(t) = if(leaf(t), 0 , 1 +  nodes(left(t)) + nodes(right(t))).

We would like to verify that nodes(t)  =  leaves(t) - 1 using the induction tool.  Since the
base case is here specified by a Boolean function leaf, rather than a specific value,
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induction treats it differently than in previous cases.  It detects the base case leaf(t) and
and interprets the induction as being over binary trees.  The base case and induction
step are constructed as shown in the output:

% loading file /cs/fac/bin/induction
% induction loaded in module user, 0.030 sec 90,376 bytes
Version 2.8, January 25, 2002
Loading /cs/dept/course/2000-01/F/3341/arithmetic.simp
Loading /cs/dept/course/2000-01/F/3341/equality.simp
Loading /cs/dept/course/2000-01/F/3341/logic.simp
|: nodes(t)=if(leaf(t), 0, 1 +nodes(left(t))+
       nodes(right(t))):leaves(t)-1.

nodes(t)=if(leaf(t),0,1+nodes(left(t))+nodes(right(t))):
      leaves(t)-1

Base case:
Cannot prove leaf(t)implies leaves(t)=1.

Induction step:
Cannot prove leaves(t)-1=leaves(right(t))-
1+leaves(left(t)).

What  rules can we use to discharge the two proof obligations? The first is easy; we can
certainly assert that leaf(T) implies leaves(T)=1 ->> true.  For the second, we use the
definition of leaves:

|: assert(leaves(right(T)) + leaves(left(T)) ->>
leaves(T)).

and we need a rule to simplify the arithmetic equality

|: assert(X - Y = Z - Y + W ->> X = Z + W).

to yield the desired proof:

Base case: leaf(t)implies leaves(t)-1=0 is valid.

Induction step: leaves(t)-1=1+ (leaves(left(t))-1)+
(leaves(right(t))-1) is valid.



Exercise 5.24:  Explain carefully and in detail how the proposition in the induction
step is computed, using the notation for substitution E[S/V]. (Compare the
description of the proof obligations in the verification scenario for recursive
functions in Sec. 5.4.)



6. VERIFYING ADT IMPLEMENTATIONS

6.1 Implementing a stack by an array
One abstract datatype can often be usefully implemented in terms of

another—the example we will explore here is that of a stack implemented as an array.
The question before us is the correctness of the implementation.  What do we mean by
‘correctness’ here? We mean that the defining conditions for the original ADT still hold
in the implementation.  In Section 5.1, we gave just two conditions for a stack:

pop(push(X, S) = S
top(push(X, S)) = X

To show that an implementation of this datatype is correct, we must be able to prove
that these axioms hold in the implementation.

A more elaborate specification of the stack datatype would include additional
conditions, governing for example, the empty stack, as in Exercise 5.1, or defining a size
attribute. But omitting such conditions does not invalidate the concept of stack given by
the two axioms; it just means that the datatype they define is a different version of the
stack concept. Correctness of an implementation is not an absolute property of the
implementation; it is always relative to the choice of axioms for the ADT being
implemented.

The array datatype

Before we can discuss the implementation of stacks in terms of arrays, we have to
specify the abstract datatype array.  Instead of the usual notation X[i] for the i’th value in
the array X, we will use a more mathematical notation in which the value at index i is
given by the function array(X, i). 20 Assignment of a value to an element of an array is
represented by a function change(Array, Index, Value) which returns a copy of the Array
argument in which the value at location Index is changed to Value. This is similar to the
approach we took with the stack functions; operations defined on the abstract datatypes
are mathematical functions, not actions which alter the state of a computation—they have
no side effects.

A single condition characterizes the datatype array for our purposes:

array(change(Array, I, Value), J) = if (J = I , Value, array(Array, J))

In any actual implementation of an array, the array index will be constrained to a finite
interval,  but to simplify our examples, we will just assume that it is non-negative.

Now suppose the datatype stack is implemented as an array together with an index that
points to the top of the stack. We can package the array and the index together as a pair
[Array, Index] with Index > 0 if the stack is not empty.
                                                                        
20  The array function corresponds to the vector-ref function in Scheme.



We will need some functions which extract the array and index of a stack in its array
implementation:

a([A, I]) = A
i([A, I]) = I

We can define i(nil) to be 0, but what is the array which implements the empty stack?
that is, what is a(nil)? We just need a name for it, for example,

nil = [nilA, 0].

To simplify the specification of the translation from the abstract stack to its array
implementation, we will translate the stack operations to a new set of operations pushA,
popA, and topA, defined in terms of the array implementation.

The  implementation is given by the conditions21:

pushA(X, S) = [change(a(S), i(S)+1, X), i(S)+1]
popA(S) = [a(S), i(S)-1]
topA(S) = array(a(S), i(S))

To verify this implementation, we need to prove that the conditions that relate push, pop
and top in the abstract stack datatype still hold when these functions are translated, via
the implementation, into conditions on arrays.

For this purpose, we construct a theory file for the prover program. The first part of the
file defines the auxiliary functions a and i, and translates push, pop and top expressions
into their proposed implementations:

a([A, I]) ->> A.
i([A, I]) ->> I.

push(X, S) ->> pushA(X, [a(S), i(S)]).
pop(S) ->> popA([a(S), i(S)]).
top(S) ->> topA([a(S), i(S)]).

The next part of the file shows how the functions pushA, popA and topA are
implemented:

                                                                        
21 To keep the example simple, we omit conditions which would ensure that the stack index is
non-negative.
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pushA(X, S) ->> [change(a(S), i(S)+1, X), i(S)+1].
popA(S) ->> [a(S), i(S)-1] :- prove(i(S) > 0).
topA(S) ->> array(a(S), i(S)).

We add rules for the array axioms:

array(change(Array, I, Value), J) ->>
     Value if prove(I=J).
array(change(Array, I, Value), J) ->>
     array(Array, J) :- prove(not(I = J)).

These conditional rules use a special predicate prove, defined in simplify and
prover, which succeeds if its argument simplifies to true.  The rules assume that the
indices I and J are  ≥  0 and that there is no upper bound to the value of an index.

Exercise 6.1:  What is the purpose of the prove predicate in the conditions in the
above rules ? What if the first condition was changed to just
“I = J and I >= 0”?

Suggestion: experiment.  Try different variations of the rules on array expressions
and see what happens.

Verifying the pop axiom

Let us see what pop(push(X, S)) simplifies to (given appropriate rules):

|: pop(push(x,s)).

pop(push(x,s)) ->> [change(a(s),i(s)+1,x),i(s)]

If we can prove that [change(a(s),i(s)+1,x),i(s)] = s , then we will have verified that the
condition

pop(push(X, S) = S

holds in the array implementation of stacks.

But for this we need a definition of equality for the stack implementation—a definition
which determines when [A, I] = [B, J].

A reasonable definition of stack equality in the array implementation is that the stack
indices should be equal and that corresponding array elements should be equal. More
precisely,



[A, I] = [B, J] if I = J and 0 ≤ k ≤ I  implies array(A, k) = array(B, k).

Since the calculation above shows that the index of pop(push(x, s)) in the array
implementation is i(s), we only need to prove the equality of the arrays; that is, we need
to establish

0<=j and j<=i(s) implies array(change(a(s),i(s)+1,x), j) = array(a(s),j).

We can see that this holds, using a verbal argument rather than a formal calculation, by
observing that since 0<=j, j is a valid index for the array. So we can use the rules for
array(change(Array, I, Value), J) , and since j ≤ i(s), j must be unequal to i(s)+1, which
gives

array(change(a(s),i(s)+1,x), j) = array(a(s),j).

With this as a rationale, we can assert

[change(A,I+1,X),I] ->> [A, I].

to complete the verification of the pop axiom.

Verifying the top axiom

Finally, we need to verify that top(push(x, s)) = x.  This can be calculated directly using
the simplification rules given above.  (In the example shown below, the rules are loaded
from a file astack.simp.) As the trace shows, attempting the calculation manually
would both error-prone and tedious:
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% simplify
. . .

|: theory(astack).
|: theory(arithmetic)
|: theory(equality).
|: traceOn.
|:
|: top(push(x,s)).
topA([a(push(x,s)),i(push(x,s))])
array(a([a(push(x,s)),i(push(x,s))]),i([a(push(x,s)),
      i(push(x,s))]))
array(a([a(push(x,s)),i(push(x,s))]),i(push(x,s)))
array(a([a(push(x,s)),i(push(x,s))]),
      i(pushA(x,[a(s),i(s)])))
array(a([a(push(x,s)),i(push(x,s))]),
      i([change(a([a(s),i(s)]),i([a(s),i(s)])+1,)
array(a([a(push(x,s)),i(push(x,s))]),i([a(s),i(s)])+1)
array(a([a(push(x,s)),i(push(x,s))]),i(s)+1)
array(a(push(x,s)),i(s)+1)
array(a(pushA(x,[a(s),i(s)])),i(s)+1)
array(a([change(a([a(s),i(s)]),i([a(s),i(s)])+1,x),
      i([a(s),i(s)])+1]),i(s)+1)
array(change(a([a(s),i(s)]),i([a(s),i(s)])+1,x),i(s)+1)
true
x

top(push(x,s)) ->>
   x

Exercise 6.2:  What use was made of the arithmetic.simp module in the above
simplification?

Where did the true in the trace come from; i. e. what term simplified to true and
what rule was used?

6.2 An array implementation of queues

Verifying an ADT implementation is complicated enough that we better do
another example.  We sketch the verification of an implementation of queues in terms of
arrays, with some parts left as exercises for the reader.

To implement a queue with an array, we can use the same approach we used for stacks;
namely, we represent a queue as a pair [Array, Index], where Index is an  integer ≥ 0
pointing to the last element in the queue. We use nilQ to represent the empty queue and
nilA as the empty array, and as we did for stacks, we define “getter” functions to extract
the array and  index parts of a queue:

a([Array, Index]) = Array,
i([Array, Index]) = Index.



We can implement the empty queue nilQ in the same way as we used for the empty
stack:

nilQ = [nilA, 0].

We need implementations for the queue operations:

add(X, Q),
 and

drop(Q).

Let us call the implementations addA and dropA respectively.  For addA, a natural
definition is

addA(X, Q) = [change(a(Q),  i(Q) + 1, X), i(Q) + 1].

Informally, this expresses the idea that if we use an array to represent a queue, then, to
add an element, the location of the end of the array is increased by one and the added
item is stored in  the last location of the array.  But note that, from a formal perspective,
nothing is “assigned” or ”stored”; the definition just describes how to compute a queue
data object as the value of addA.

Exercise 6.3:  Define an array implementation, dropA, of the queue operation drop.

Exercise 6.4: Use the array implementation of a queue to define a function last which
returns the last element of a queue.

We can now pose the verification issue for this implementation of queues: is it correct
with respect to the definition of ‘queue’ as an ADT (Ch. 5, Exercise. 5.4)? For this
purpose, we’ll need some axioms to characterize queues:

drop(add(X, Q))  = if(empty(Q), nilQ, add(X, drop(Q))).   

and

last(add(X, Q)) = X.

The verification of the implementation will require showing that these equalities are still
valid when the functions are mapped into their array implementations, which is left as
an exercise.
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Exercise 6.5: Use prover and an appropriate theory file to  verify that the queue
axioms hold when drop is implemented by dropA, add by addA, and last is
implemented as in Exercise 6.4.

Exercise 6.6:  In this exercise, we use the notation of Exercise 5.4 to represent queues
as terms constructed from the infix operator -- , and assume an array
implementation.

(a) Use prover and an appropriate theory file to verify  that the  axiom for first

first(Q -- X) = if(empty(Q), X, first(Q))

holds, if first(Q) is implemented by firstA(Q) = array(a(Q), 1).  (Suggestion: find a
general simplification rule to eliminate the  if function in expressions of the form if(X,
Y, Z) = V.)

(b) Suppose drop is implemented by

dropA(Q) = [shift(a(Q)),  i(Q) - 1)]), if Q is not  empty,

where shift is an array function defined by

array(shift(A), I)  = array(A, I+1) if I ≥ 1.

Verify that the drop axiom

drop(Q -- X) = if(empty(Q), nilQ, drop(Q) -- X)

holds in the array implementation by showing that

shift(change(a(Q), i(Q) + 1, Y)) = change(shift(a(Q), i(Q), Y).

(Since this is an equality between arrays, it is established by showing that the i’th
elements of each side are equal for 1 ≤ i ≤ i(Q).)



Exercise 6.7: The axiom which characterizes the change function for the array
datatype is quite unspecific about what an array index is. The stack implementation
assumes an index is an integer (or more precisely, something one can add and
subtract 1 from), but the axiom is very general and allows any type of object as an
index.

We could, for example, allow an index to be a pair [i, j] for the purposes of defining a
2-dimensional array.  These 2-dimensional arrays can then be implemented by 1-
dimensional arrays with integer indices.

To define such an implementation in a verifiable form, construct simplification rules
which

• translate a two-dimensional array object a into an object of the form [a1, rows],
where a1 is a one-dimensional array whose indices are integers, and rows is the
number of rows in the 2-dimensional array a,

• translate array(a, i)  into an object of the form array1([a1, rows],  rows * n + m),
where i = [m, n], and array1 is the array function for one dimensional arrays.

• define an assignment function change(a, [i, j], x) for two-dimensional arrays in
terms of the one-dimensional array assignment change1(a, k, x).

Add rules  for “getter” functions (similar to the functions a and i in the array
implementation of stacks above) which extract the parts of a two-dimensional array.

Use prover and your simplification rules to prove  that the change axiom

   I ≥ 0  implies array(change(Array, I, Value), J) =  if (J = I , Value, array(Array, J))

holds in this implementation.

(Note that here the index I is a pair of integers, so 0 <= I will need a definition
through a simplification rule such as

0 <= [M, N] ->> 0 <= M and  0 <= N . )

6.3 Verifying a logic-gate implementation22

The following diagram shows a logic circuit for a “majority voting circuit”. Such circuits
are used in nuclear reactors and the electronics in airplanes or spacecraft, where for the
sake of reliability, three computers are each given the same task. If at least two
computers signal to do the same thing (i.e. at least two of a, b and c are ‘high’) then z is
‘high ‘and the task is performed; otherwise z is ‘low’ and the task is not performed.

                                                                        
22 The example and diagram are due to J. Ostroff.
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The circuit is  intended to implement a vote(a, b, c)  function which returns true if the
two or more of the inputs a, b, c are true.  We want to verify this by showing that if the
inputs are translated to integers 1 or 0 and summed, the sum of the inputs (as integers)
is ≥ 2 iff z is true.

The translation function is specified by the rule

int(X) ->> if(X, 1, 0).

and we can represent the logic-circuit implementation by the connection of and and or
gates:

implementation(A, B, C, Z) ->>
        and_gate(A, B, d)
        and and_gate(B, C, e)
        and and_gate(C, A, f)
        and or_gate(d, e, g)
        and or_gate(g, f, Z).

The pattern-variables A, B, C, Z  in this rule represent the three inputs and the output of
the circuit.  The values d, e, f, and g represent the internal signals connecting the logic
gates.  We use constants rather than pattern variables for these because they cannot be
given arbitrary values; they are determined by the input values and the gates23.
                                                                        
23 In the jargon of clause logic, they are Skolem constants and correspond to existentially quantified
variables in the predicate calculus.



The two kinds of gates used in the circuit are defined by

and_gate(V, W, X) ->> X iff (V and W).
or_gate(V, W, X) ->> X iff (V or W).

The implementation is proved correct relative to these definitions if we can prove

implementation(a, b, c, z) implies z =  majority(a, b c).

where majority(a, b, c) =  (2 <= int(a) + int(b) + int(c)).

We add a few simplification rules to assist the translation from arithmetic into
propositional calculus.

(A <= X) = Z ->> (A <= X) iff Z.
 A <= W + if(X, Y, Z) ->> (A - Y) <= W and X or A -Z <= W and
not X.
A <= if(X, Y, Z) ->> A <= Y and X or A <= Z and not X.

(The need for these rules is determined as usual by looking at what remains unproved
when prover attempts to prove the implication without them.)

Inputting the theorems to the prover tool, and using standard rules for arithmetic and
equality:

|: theory(majority).

|:  implementation(a,b, c, z) implies z = (int(a) + int(b)
   + int(c) >= 2).
implementation(a,b,c,z)implies z= (int(a)+int(b)+int(c)>=2)

* Valid.

Turning on the trace shows that simplification reduces the implication to

(g or f iff z)and (e or d iff g)and (c and b iff e)and (c and
a iff f)and (b and a iff d)implies (b and c and a or not c and
b and a or not b and c and a or not a and c and b iff z)

which the tautology checker finds to be valid.
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Exercise 6.8:  The following diagram24 shows an implementation of a 1-bit adder
using two half-adders and an or-gate.

 

Define an implementation predicate

   adder(A, B, Cin, Sum, Cout)

using the approach explained above for the majority circuit, and verify that

   adder(a, b, cin, sum, cout) implies int(cin) + int(a) + int(b) = int(sum) + 2*int(cout)

under the assumption that the half-adders  are constructed correctly, i. e., that

   half(A,B,Sum,Carry) iff int(A) + int(B) = int(Sum) + 2*int(Carry).

(Convert this equivalence to a simplification rule so that it can be used to eliminate
references to half .)

prover will need some help to eliminate the arithmetic expressions.  Here are some
examples of the sort of rules that will be needed:

  if(S,1,0) + if(C,1,0) * 2 = 2 ->> not S and C.
  if(X, Y, Z) + 1 ->>  if(X, 1 + Y, 1 + Z).

As a check on your circuit theory, show that if the or-gate is replaced by an and-gate,
the implementation fails.

                                                                        
24 The figures are taken from Tamura, P., “Jumpstart Introduction to Designing with
Alliance”,  ASIM Labs: 1997.
http://www-asim.lip6.fr/alliance/doc/jumpstart/.



Exercise 6.9:  A half-adder can be implemented using inverters, or- and and-gates:

Verify this implementation.

6.4  Verifying that a subclass is a subtype25

Object-oriented languages such as Java and C++ allow the definition of abstract classes
in which some or all of the class methods are left as “virtual”, that is, unimplemented.,
with the implementation of such methods deferred to a sub-class.  The utility of this
approach is that it allows the definition of an abstract datatype whose axioms (the
“abstract” aspect of the datatype) are applicable to a range of sub-types, differing in
their implementation of the virtual methods, but sharing the relationships among those
methods which are specified in the axioms associated with the abstract class.  The
question as to whether the sub-class methods correctly implement the virtual methods
becomes the problem of verifying that the sub-class, in addition to being a sub-class of
the given abstract class, is a subtype of the abstract datatype.

We illustrate this using the example of Shape and Circle, coded in Java:

public abstract class Shape {
public Point center () {

return Point ((left()+right())/2,
   (top()+bottom())/2);

 };

public void recenter (Point p) { move (p - center()); };
public abstract double top();
public abstract double bottom();
public abstract double left();
public abstract double right();
public abstract void move(Point p);

}

                                                                        
25 The material in this section is derived from an example in [Antoy, 1994].
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Let us assume that the intended relationships among the Shape methods are specified
by requiring that if S is a shape,  P is a point, and X and Y are numbers, then the
following propositions are true:

center(move(S, P)) = center(S) + P
top(move(S, point(X,Y))) = top(S) + X
bottom(move(S, point(X,Y))) = bottom(S) + Y
left(move(S, point(X,Y))) = left(S) + X
right(move(S, point(X,Y))) = right(S) + X
center(S) = point((left(S) + right(S))/2, (top(S) + bottom(S))/2)
recenter(S, P) = move(S, P - center(S))
left(S) <=  right(S)
bottom(S) <= top(S)

(Notice that the methods associated with a Shape object are translated in these axioms
into  functions of the object. For example, move(Point p) becomes move(S, p), where
S is a Shape, and p is a Point.)

Now suppose the sub-class Circle is defined by

class Circle extends Shape {
protected double r:
protected Point c;

public Circle(Point center, double radius) {
this.r = radius;  // radius >= 0
this.c = center;

         }
public Point center() {return this.c;}
public void move(Point p) {this.c = p;}
public double top() {return (this.c.y() + this.r);}
public double bottom() {return (this.c.y() - this.r);}
public double left() {return (this.c.x() - this.r);}
public double right() {return (this.c.x() + this.r);}

}

Translating the methods from code into functional form yields the following definitions:

center(circle(C, R)) = C
move(circle(C, R), P) = circle(C + P, R)
top(circle(point(X, Y),R))=Y + R
bottom(circle(point{X,Y),R)) =Y - R
left(circle(point(X,Y),R)) = X - R
right(circle(point(X, Y), R)) = X + R

The verification question here is whether Circle is a valid subtype of Shape, that is, does
it satisfy  the Shape axioms?  To test this, we create a theory file from the Circle
definitions, along with some lemmas,  and  and see if prover can prove the Shape
axioms from them:



indigo % cat <circle.simp

center(circle(C, R)) ->> C.
move(circle(C, R), P) ->> circle(C + P, R).
top(circle(point(X, Y), R)) ->> Y + R.
bottom(circle(point(X, Y), R)) ->> Y - R.
left(circle(point(X, Y), R)) ->> X - R.
right(circle(point(X, Y), R)) ->> X + R.
recenter(circle(C, R), P) ->> circle(P, R).

% LEMMAS

X - R <= X + R ->> 0 <=  R.
0 <=  r ->> true. % r is a radius
point(X, Y)*A ->> point(X*A, Y*A).
point(X, Y) + point(U, V) ->> point(X + U, Y + V).
X - Y + Z ->> X + Z - Y.

(Note that Shape’s recenter method is here overwritten by a method specialized for Circles ,
whose result, however, should agree with that given by the Shape method.)

The Shape axioms are now not used as rewrite rules, but are translated into a  set of
propositions o be checked for validity, when instantiated by Circles and Points. So the
variables S and P in the axioms must be replaced by  object constructors such as
circle(point(x, y), r) to which the rewrite rules in circle.simp can be applied.

The input to prover is:

indigo % cat <shape.props
theory(circle).

center(move(circle(point(x,y), r), p)) =
center(circle(point(x,y), r)) + p.

top(move(circle(point(u,v), r), point(x,y))) =
top(circle(point(u,v), r)) + y.

bottom(move(circle(point(u,v), r), point(x,y))) =
bottom(circle(point(u,v), r)) + y.

left(move(circle(point(u, v), r), point(x,y))) =
left(circle(point(u,v), r)) + x.

right(move(circle(point(u,v), r), point(x,y))) =
right(circle(point(u, v), r)) + x.

center(circle(point(x,y), r)) = point((left(circle(point(x,y), r))
+ right(circle(point(x,y), r)))/2,
(top(circle(point(x,y), r)) +
bottom(circle(point(x,y), r)))/2).

recenter(circle(point(x,y), r), point(u, v)) =
move(circle(point(x,y), r), point(u, v) - 
center(circle(point(x,y), r))).

left(circle(point(x,y), r)) <= right(circle(point(x,y), r)).
bottom(circle(point(x,y), r)) <= top(circle(point(x,y), r)).

with the desired result as shown below:
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indigo 327 % prover < shape.data
Version 1.6.6SWI, January 3, 2007
Loading /cs/home/peter/3341/arithmetic.simp
Loading /cs/dept/course/2006-07/W/3341/equality.simp
Loading /cs/home/peter/3341/logic.simp
|:Loading /cs/home/peter/3341/circle.simp
center(move(circle(point(x, y), r), p))=center(circle(point(x, y), r))+p

* Valid.

top(move(circle(point(u, v), r), point(x, y)))=top(circle(point(u, v),
r))+y

* Valid.

bottom(move(circle(point(u, v), r), point(x, y)))=bottom(circle(point(u,
v), r))+y

* Valid.

left(move(circle(point(u, v), r), point(x, y)))=left(circle(point(u, v),
r))+x

* Valid.

right(move(circle(point(u, v), r), point(x, y)))=right(circle(point(u,
v), r))+x

* Valid.

center(circle(point(x, y), r))=point((left(circle(point(x, y),
r))+right(circle(point(x, y), r)))/2, (top(circle(point(x, y),
r))+bottom(circle(point(x, y), r)))/2)

* Valid.

recenter(circle(point(x, y), r), point(u, v))=move(circle(point(x, y),
r), point(u, v)-center(circle(point(x, y), r)))

* Valid.

left(circle(point(x, y), r))<=right(circle(point(x, y), r))

* Valid.

bottom(circle(point(x, y), r))<=top(circle(point(x, y), r))

* Valid.


