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Abstract

In this work, we derive general expansions in vibrational coordinates for the (E +A) ⊗ (e+ a)

vibronic Hamiltonians of molecules with one and only one C3 axis. We first derive the expansion

for the lowest C3 symmetry. Additional symmetry elements systematically eliminate terms in

the expansion. We compare our expansions with the previous results for two cases, the D3h

(E′ +A′′2)⊗ (e′ + a′′2) and the C3 (E +A)⊗ e. The first comparison demonstrates the robustness,

completeness, conciseness, and convenience of our formalism. There is a systematic discrepancy in

the second comparison. We discuss the origin of the discrepancy and use a numerical example to

corroborate our expansion. Our formalism covers 153 vibronic problems in 6 point groups. It also

gives general expansions for the spin-orbit vibronic Hamiltonians of the p-type (E +A) ⊗ (e+ a)

problems.
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I. INTRODUCTION

In any nonlinear molecules, orbital degeneracy induced by symmetry must be lifted along

with symmetry lowering. This is the famous Jahn-Teller (JT) effect.1,2 Such an instability

can also be induced by strong interaction between non-degenerate states along symmetry-

broken distortion, which is termed the pseudo-Jahn-Teller (pJT) effect.2 These two effects

manifest themselves frequently in molecular physics, solid state physics, and structural chem-

istry. For instance, they induce line splitting in spectroscopy, internal conversion in quantum

dynamics, and phase transition in solid.2–9 Around the structures of degeneracy or pseudo-

degeneracy, the electronic and nuclear motion are strongly coupled. An accurate vibronic

Hamiltonian that treats the two types of degrees of freedom on the same footing is the key

to describe and understand any phenomena related to the JT and pJT effects.

Non-accidental orbital degeneracy only arises for molecules with at least one n-fold sym-

metry or improper rotational axis and n ≥ 3. Trigonal molecules are therefore systems

of the lowest symmetry that exhibit the JT effect and have attracted continuous interest.

By “trigonal”, we mean molecules that feature only one C3 axis and no other symmetry

or improper rotational axes greater than three-fold. Molecules of C3, C3v, D3, C3h, D3h,

and D3d symmetries belong to this class. The interaction between a doubly degenerate E

electronic state and a doubly degenerate e vibrational mode (the E ⊗ e problem) in those

molecules gives an illustrative example for the JT effect in many classic monographs.2,10,11

The interaction between an E state and a close-lying A state through an e mode also gives

a typical example for the pJT effect.12 The E-A energy gap and the vibronic coupling

strengths among the three states (two E components plus an A state) can be modified by a

non-degenerate a mode. The (E + A) ⊗ (e+ a) interaction in trigonal molecules forms an

important class of vibronic problems, including the subproblems of neglecting the A state

and/or the a mode13–34 (also see the references in the cited works). Here, “E” and “A” (the

lower case analogues too) cover all irreducible representations (irreps) of the 6 trigonal point

groups that have the two respective letters in their symbols. For instance, they include E ′

and E ′′ of C3h, A
′
1, A′2, A′′1, and A′′2 of D3h, etc. Therefore, (E + A) have covered all irreps of

the trigonal point groups. We follow the convention of using upper case symbols to denote

electronic states and lower case for vibrational modes and orbitals.

A vibronic Hamiltonian is usually expanded in a subspace of interacting electronic states
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and relevant vibrational modes. In the electronic degrees of freedom, the Hamiltonians

are usually expanded using the (quasi-)diabatic electronic states that preserve their charac-

ters along nuclear distortion.35,36 The character preservation guarantees smoothly changing

Hamiltonian matrix elements that are suited for expansion in vibrational coordinates. Tra-

ditionally, the expansions in vibrational coordinates stop at the second order. These short

expansions are often adequate for stretching modes as their amplitude is relatively small.

However, if the vibronically active modes are bending and torsional modes that feature an-

harmonic large amplitude motion or even tunnelling, higher order expansions are strongly

desired.19,20,29,31,37 The success of the case specific expansions up to 6-th ∼ 8-th order for

some trigonal (E + A) ⊗ (e+ a) problems and subproblems in these pioneering works, es-

pecially in calculating vibronic and photoelectron spectra, inspires us to pursue the general

formalism for this important class of vibronic Hamiltonians. The objective of this work is

to derive expansions in the vibrational coordinates for all the trigonal (E + A) ⊗ (e+ a)

Hamiltonians (153 of them in the 6 point groups) to arbitrarily high order. Although our

formalism is derived for molecules, it can be readily transplanted to describe the similar

vibronic problems of local formations in solids.2,11 Following the suggestion of a referee, we

use “polyatomic systems”, instead of “molecules”, in the title of this article, to emphasize

that the resultant formalism is applicable to a broader range of systems.

In Section II, we first derive the expansion for the least symmetric C3 (E + A)⊗ (e+ a)

Hamiltonian. Hamiltonians of higher symmetries have the same mathematical expressions

but with case specific constraints on the terms in their expansions. The constraints are

derived in Section III. In Section IV, we compare our expansions of two specific cases

with previous results and discuss their differences. In Section V, we employ the relation38

between the electrostatic and the spin-orbit matrix elements to derive concise expressions for

the spin-orbit vibronic Hamiltonians of the p-type (E + A)⊗ (e+ a) problems. Section VI

concludes this work.

II. (E +A)⊗ (e+ a) IN C3 MOLECULES

We use |X〉 and |Y 〉 to label the two components of the degenerate E state, and |Z〉 for

the non-degenerate A state. Since our focus is the spin-free electrostatic Hamiltonian, the

states are chosen to be eigenstates of the Ŝ2 and Ŝz spin operators with the same S (S + 1) h̄2
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and MSh̄ eigenvalues. x, y, and z are used to label the vibrational coordinates of the ex,

ey, and a modes. All electronic states in this work are diabatic states. Throughout this

paper, we adopt the orientations of the e and E components that they transform under the

Ĉ3 rotation as:

Ĉ3ex = −1

2
ex +

√
3

2
ey; Ĉ3ey = −

√
3

2
ex −

1

2
ey;

Ĉ3 |X〉 = −1

2
|X〉+

√
3

2
|Y 〉 ; Ĉ3 |Y 〉 = −

√
3

2
|X〉 − 1

2
|Y 〉 . (1)

Such orientations are illustrated in Figure 1(a) taking an e stretching and a p-type E state

as examples. The orientations of the A state and a mode are immaterial since they do not

transform to other states or modes under all symmetry operations considered.

To discuss the effect of Ĉ3, it is natural to represent the vibronic Hamiltonian using the

complex electronic states:19,20,39,40

(|+〉 |−〉 |Z〉) = (|X〉 |Y 〉 |Z〉)U ;U =


1√
2

1√
2

0

i√
2
−i√

2
0

0 0 1

 (2)

They are eigenstates of Ĉ3:

Ĉ3 |±〉 = e∓i2π/3 |±〉 ; Ĉ3 |Z〉 = |Z〉 . (3)

The distortion along the e mode can be expressed using the conventional polar coordinates

ρ and φ that gives

x = ρ cosφ; y = ρ sinφ. (4)

Given the transformations of ex and ey in Eq. 1, rotating a function of the x and y coordinates

by 2π/3 is equivalent to changing φ to φ− 2π/3, while keeping ρ unchanged.

In the representation of the complex diabatic states, the vibronic Hamiltonian has a

general form of

Ĥ = |+〉H++ (ρ, φ, z) 〈+| + |−〉H−− (ρ, φ, z) 〈−| + |Z〉HZZ (ρ, φ, z) 〈Z|

+ |+〉H+− (ρ, φ, z) 〈−| + |+〉H+Z (ρ, φ, z) 〈Z| + |−〉H−Z (ρ, φ, z) 〈Z|

+ c.c. (5)

“c.c.” stands for taking the complex conjugates of the off-diagonal matrix elements and swap-

ping the associated bra and ket states, e.g., the c.c. of |+〉H+− (ρ, φ, z) 〈−| is |−〉H∗+− (ρ, φ, z) 〈+|,
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B3
ex |Y>|X>

eyex |Y>|X>

eyex |Y>|X>

e'ye'x |Y'>|X'>

e'ye'x |Y'>|X'>

euy
|Yu>|Xu>

(a) C3

(b) C3v

(c) D3

(d) C3h

(e) D3h

(f) D3d

σvxz

C2x

eux

C2x

σvxz

C2x

FIG. 1. Examples of orientations of e and E components, on which the derivations are based.

Atomic motions in the modes are represented by solid arrows. With the atom labelling in panel

(a), ex =
√

1
6 (2∆rAB1 −∆rAB2 −∆rAB3), and ey =

√
1
2 (∆rAB2 −∆rAB3). Similar definitions

apply to the displayed e modes in the other panels. The directions of the arrows are consistent

with the e mode transformations in Eq. 1.

etc. Our goal is to derive the expansions of the Hij elements in the vibrational coordinates

x, y, and z. Under the action of the time-reversal operator (T ), the Hamiltonian becomes

T̂ ĤT̂ −1 = ˜|−〉H++ (ρ, φ, z) ˜〈−| + ˜|+〉H−− (ρ, φ, z) ˜〈+| + ˜|Z〉HZZ (ρ, φ, z) ˜〈Z|

+ ˜|−〉H∗+− (ρ, φ, z) ˜〈+| + ˜|−〉H∗+Z (ρ, φ, z) ˜〈Z| + ˜|+〉H∗−Z (ρ, φ, z) ˜〈Z|
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+ c.c. (6)

T changes i to −i (i.e., |+〉 ↔ |−〉 and Hij → H∗ij) and flips spin as α → β and β → −α

in its operand. The spin-flipped states are denoted by the overhead tilde. Since Ĥ is

spin-independent, the matrix elements for the spin-flipped ket-bra (e.g., ˜|−〉 ˜〈−|) must be

identical to those before spin-flipping (e.g., correspondingly, |−〉 〈−|). This requirement, and

the comparison of Eqs. 5 and 6 determine

H++ = H−−;H−Z = H∗+Z . (7)

The two equalities result from the time-reversal symmetry and spin-independence of Ĥ.

They simplify Ĥ to

Ĥ = |+〉H++ (ρ, φ, z) 〈+| + |−〉H++ (ρ, φ, z) 〈−| + |Z〉HZZ (ρ, φ, z) 〈Z|

+ |+〉H+− (ρ, φ, z) 〈−| + |+〉H+Z (ρ, φ, z) 〈Z| + |−〉H∗+Z (ρ, φ, z) 〈Z|

+ c.c., (8)

with four independent matrix elements.

Ĥ commutes with Ĉ3. Using Eqs. 3 and φ→ φ− 2π/3 under Ĉ3, we have

Ĉ3ĤĈ
−1
3 = |+〉H++ (ρ, φ− 2π/3, z) 〈+| + |−〉H++ (ρ, φ− 2π/3, z) 〈−|

+ |Z〉HZZ (ρ, φ− 2π/3, z) 〈Z| + ei2π/3 |+〉H+− (ρ, φ− 2π/3, z) 〈−|

+ e−i2π/3 |+〉H+Z (ρ, φ− 2π/3, z) 〈Z| + ei2π/3 |−〉H∗+Z (ρ, φ− 2π/3, z) 〈Z|

+ c.c. (9)

The equivalence of Eqs 8 and 9 requires

H++ (ρ, φ− 2π/3, z) = H++ (ρ, φ, z) ;HZZ (ρ, φ− 2π/3, z) = HZZ (ρ, φ, z) ;

H+− (ρ, φ− 2π/3, z) = e−i2π/3H+− (ρ, φ, z) ;H+Z (ρ, φ− 2π/3, z) = ei2π/3H+Z (ρ, φ, z) .

(10)

Each Hij (ρ, φ, z) can be expanded as

Hij (ρ, φ, z) = Fm (ρ, z) eimφ, (11)

with m being integers to guarantee that the element is invariant under a 2π rotation.

Throughout this paper, Einstein’s convention of summing over duplicated indices is fol-

lowed, unless the summation sign is explicitly given. The invariances of H++ and HZZ with
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respect to φ→ φ− 2π/3 determine that

H++ = Am (ρ, z) ei3mφ;HZZ = Cm (ρ, z) ei3mφ. (12)

They need to be real, and therefore

H++ = Arm (ρ, z) cos (3mφ)− Aim (ρ, z) sin (3mφ) ; (13)

HZZ = Cr
m (ρ, z) cos (3mφ)− Ci

m (ρ, z) sin (3mφ) , (14)

with m being nonnegative integers, and Ar/im and Cr/i
m being real functions. The superscript

r and i indicate that the functions stem from the real and imaginary parts of the Am and

Cm functions in Eq. 12. Similarly, the respective equalities of H+− and H+Z in Eq. 10 give

them the following expansions:

H+− = Bn (ρ, z) ei(3n+1)φ;H+Z =

√
1

2
Dn (ρ, z) e−i(3n+1)φ. (15)

Here, n can take any integer values, and Bn and Dn are in general complex functions.

The
√

1
2

factor is introduced to simplify Eq. 17 below. Allowing the Am, Bn, Cm, and Dn

functions to be complex differentiates our expansions from those in previous studies. Please

see Section IV B for discussion in this aspect.

With these angular expansions of the Hij elements, Ĥ can be written in a matrix form:

Ĥ = (|+〉 |−〉 |Z〉)



Arm (ρ, z) cos (3mφ)

−Aim (ρ, z) sin (3mφ)
Bn (ρ, z) ei(3n+1)φ 1√

2
Dn′ (ρ, z) e

−i(3n′+1)φ

Arm (ρ, z) cos (3mφ)

−Aim (ρ, z) sin (3mφ)

1√
2
D∗n′ (ρ, z) e

i(3n′+1)φ

Cr
m′ (ρ, z) cos (3m′φ)

−Ci
m′ (ρ, z) sin (3m′φ)




〈+|

〈−|

〈Z|

 .

(16)

The complex Hamiltonian matrix is labelled by Hc, and the missing lower triangle is just

the complex conjugate of the upper. Throughout the paper, only upper triangles are given

for hermitian matrices. Transforming Ĥ back to the real electronic basis using U in Eq. 2

(the Hamiltonian matrix transforms as UHcU †; “†” means taking the complex transpose of

the denoted matrix),

Ĥ = (|X〉 |Y 〉 |Z〉)
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

Arm (ρ, z) cos (3mφ)

−Aim (ρ, z) sin (3mφ)

+Re
[
Bn (ρ, z) ei(3n+1)φ

] −Im
[
Bn (ρ, z) ei(3n+1)φ

]
Re

[
Dn′ (ρ, z) e

−i(3n′+1)φ
]

Arm (ρ, z) cos (3mφ)

−Aim (ρ, z) sin (3mφ)

−Re
[
Bn (ρ, z) ei(3n+1)φ

] −Im
[
Dn′ (ρ, z) e

−i(3n′+1)φ
]

Cm′ (ρ, z) cos (3m′φ)

−Ci
m (ρ, z) sin (3m′φ)




〈X|

〈Y |

〈Z|

 .

(17)

The resultant Hamiltonian matrix is real and symmetric. Again, m and m′ take only non-

negative integers, while n and n′ take any integers.

Considering the real and imaginary parts of the Bn and Dn functions explicitly:

Bn (ρ, z) = Br
n (ρ, z) + iBi

n (ρ, z) ;Dn (ρ, z) = Dr
n (ρ, z) + iDi

n (ρ, z) , (18)

we can rewrite Ĥ as:

Ĥ = (|X〉 |Y 〉 |Z〉)

Arm (ρ, z) cos (3mφ)

−Aim (ρ, z) sin (3mφ)

+Br
n (ρ, z) cos ((3n+ 1)φ)

−Bi
n (ρ, z) sin ((3n+ 1)φ)

−Bi
n (ρ, z) cos ((3n+ 1)φ)

−Br
n (ρ, z) sin ((3n+ 1)φ)

Dr
n′ (ρ, z) cos ((3n′ + 1)φ)

+Di
n′ (ρ, z) sin ((3n′ + 1)φ)

Arm (ρ, z) cos (3mφ)

−Aim (ρ, z) sin (3mφ)

−Br
n (ρ, z) cos ((3n+ 1)φ)

+Bi
n (ρ, z) sin ((3n+ 1)φ)

−Di
n′ (ρ, z) cos ((3n′ + 1)φ)

+Dr
n′ (ρ, z) sin ((3n′ + 1)φ)

Cr
m′ (ρ, z) cos (3m′φ)

−Ci
m′ (ρ, z) sin (3mφ)




〈X|

〈Y |

〈Z|

 .

(19)

Each of the functions of ρ and z can be expanded as polynomials of the two variables, e.g.,

Arm (ρ, z) = ar,3mI,J zIρJ ;Bi
n (ρ, z) = bi,3n+1

I,J zIρJ . (20)
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{
ar,3mI,J

}
and

{
bi,3n+1
I,J

}
are expansion coefficients. The trigonometric functions can be ex-

panded using cosφ and sinφ, e.g.,

cos (3mφ) =
3m∑

k=0,2,4,···

 3m

k

 (−1)k/2 cos3m−k φ sink φ; (21)

sin ((3n+ 1)φ) = sgn (3n+ 1)
|3n+1|∑

k=1,3,5,···

 |3n+ 1|

k

 (−1)
k−1
2 cos|3n+1|−k φ sink φ, (22)

where

M

N

 stands for binomial coefficient. Since 3n+ 1 can be negative, |3n+ 1| is taken

to be the upper limit in the summation over k, and sgn (3n+ 1) is introduced to give the

appropriate sign of the expansion. With the expansions of Arm (ρ, z) and cos (3mφ),

Arm (ρ, z) cos (3mφ) =
∑
I,J

3m∑
k=0,2,4,···

ar,3mI,J

 3m

k

 (−1)k/2 zIρJ cos3m−k φ sink φ

=
∑
I,J

3m∑
k=0,2,4,···

ar,3mI,J

 3m

k

 (−1)k/2 zIρJ−3m (ρ cosφ)3m−k (ρ sinφ)k

=
∑
I,J

3m∑
k=0,2,4,···

ar,3mI,J

 3m

k

 (−1)k/2 zI
(
x2 + y2

)J−3m
2 x3m−kyk. (23)

To expand Arm (ρ, z) cos (3mφ) and the other similar funcitons as polynomials of x, y, and

z, we need positive integer powers of (x2 + y2), i.e., J = 3m+ 2K,K = 0, 1, 2, · · · With the

constraint on the power of ρ, the expansion can be rewritten as

Arm (ρ, z) cos (3mφ) = ar,3mI,2Kz
Iρ3m+2K cos (3mφ) . (24)

With similar expansions for the other terms, Ĥ can be written as:

Ĥ = (|X〉 |Y 〉 |Z〉)

ar,3mI1,2K
zI1ρ3m+2K cos (3mφ)

−ai,3mI2,2K
zI2ρ3m+2K sin (3mφ)

+br,3n+1
I3,2K

zI3ρ|3n+1|+2K cos ((3n+ 1)φ)

−bi,3n+1
I4,2K

zI4ρ|3n+1|+2K sin ((3n+ 1)φ)

−br,3n+1
I3,2K

zI3ρ|3n+1|+2K sin ((3n+ 1)φ)

−bi,3n+1
I4,2K

zI4ρ|3n+1|+2K cos ((3n+ 1)φ)

dr,3n
′+1

I5,2K
zI5ρ|3n

′+1|+2K cos ((3n′ + 1)φ)

+di,3n
′+1

I6,2K
zI6ρ|3n

′+1|+2K sin ((3n′ + 1)φ)

ar,3mI1,2K
zI1ρ3m+2K cos (3mφ)

−ai,3mI2,2K
zI2ρ3m+2K sin (3mφ)

−br,3n+1
I3,2K

zI3ρ|3n+1|+2K cos ((3n+ 1)φ)

+bi,3n+1
I4,2K

zI4ρ|3n+1|+2K sin ((3n+ 1)φ)

dr,3n
′+1

I5,2K
zI5ρ|3n

′+1|+2K sin ((3n′ + 1)φ)

−di,3n
′+1

I6,2K
zI6ρ|3n

′+1|+2K cos ((3n′ + 1)φ)

cr,3m
′

I7,2K
zI7ρ3m

′+2K cos (3m′φ)

−ci,3m
′

I8,2K
zI8ρ3m

′+2K sin (3m′φ)


9



 〈X|〈Y |
〈Z|

 ,m,m′,K, I1−8 = 0, 1, 2, · · · ;n, n′ = · · · ,−2,−1, 0, 1, 2, · · ·

(25)

{
a
r/i,3m
I,2K

}
,
{
b
r/i,3n+1
I,2K

}
,
{
c
r/i,3m′

I,2K

}
, and

{
d
r/i,3n′+1
I,2K

}
are the expansion coefficients of the

functions labelled by the corresponding upper case letters.

Eq. 25 is the central result of the present work. It is the general polynomial expansion for

the (E + A)⊗ (e+ a) vibronic Hamiltonian for any C3 molecules, from which we derive the

vibronic Hamiltonians for higher symmetries below. All zIρL cos (Mφ) and zIρL sin (Mφ)

monomials in expanding any of the matrix elements differ either in the power of z, the power

of ρ, the trigonometric function, or the multiple of φ. There is hence no redundancy; Eq. 25

gives the most concise polynomial expansion of the Hamiltonian, which facilitates conver-

gence in numerical fitting to determine the expansion coefficients. The order of expansion

is determined by I +L in zIρL and it can be arbitrarily high. As shown below, the equation

can be easily converted to the expansion in x, y, and z. It is ready to be used. We would

like to emphasize again that Eq. 25 is derived with the setting in Eq. 1. If instead the e

components transform as

Ĉ3ex = −1

2
ex −

√
3

2
ey; Ĉ3ey =

√
3

2
ex −

1

2
ey, (26)

φ should be replaced by −φ in Eq. 25. If the E components transform as

Ĉ3 |X〉 = −1

2
|X〉 −

√
3

2
|Y 〉 ; Ĉ3 |Y 〉 =

√
3

2
|X〉 − 1

2
|Y 〉 , (27)

the signs of HXY and HY Z should be flipped.

III. HIGHER SYMMETRIES

A. C3v and D3

In the following derivation, we adopt the orientations of the E components and e com-

ponents as shown in Figure 1(b): ex and |X〉 are symmetric with respect to one σv plane,

which is called σxzv below. With such natural orientations, all electronic states and vi-

brational modes are eigenstates of the σ̂xzv operation: σ̂xzv |X〉 = |X〉; σ̂xzv |Y 〉 = − |Y 〉;
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σ̂xzv |Z〉 = χ
σ̂xz
v
Z |Z〉; σ̂xzv ex = ex; σ̂

xz
v ey = −ey; σ̂xzv a = χσ̂

xz
v
z a. Throughout this paper, the

symbol χŜi is used to label the eigenvalue of the operand i under the symmetry operation Ŝ.

The eigenvalues χ
σ̂xz
v
Z and χσ̂

xz
v
z are 1 if |Z〉 and the a mode are of a1 irrep, and −1 if they

are of a2 irrep. For an e distortion with the (x, y) coordinates,

σ̂xzv (xex + yey) = (xex − yey) . (28)

In the polar coordinates, correspondingly, the reflection keeps ρ unchanged and changes φ

to −φ. We can hence associate formal eigenvalues to ρ and φ: χσ̂
xz
v
ρ = 1 and χ

σ̂xz
v
φ = −1.

Obviously, under the action of σ̂xzv , any function of the mode coordinates transforms as

σ̂xzv f (ρ, φ, z) = f
((
χσ̂

xz
v
ρ ρ

)
,
(
χ
σ̂xz
v
φ φ

)
,
(
χσ̂

xz
v
z z

))
. (29)

For a C3v vibronic Hamiltonian, we need further constraints on Eq. 25 to make it invariant

with respect to σ̂xzv . For such a symmetry operation that does not mix the electronic states

and does not mix the vibrational modes, it transforms the vibronic Hamiltonian as

ŜĤŜ−1 = Ŝ |Ψi〉Hij (ρ, φ, z) 〈Ψj| Ŝ−1 = χŜi χ
Ŝ
j |Ψi〉Hij

((
χŜρρ

)
,
(
χŜφφ

)
,
(
χŜz z

))
〈Ψj| (30)

Therefore, to have ŜĤŜ−1 = Ĥ, we need

∀ (i, j) : χŜi χ
Ŝ
jHij

((
χŜρρ

)
,
(
χŜφφ

)
,
(
χŜz z

))
= Hij (ρ, φ, z) . (31)

This is the general requirement on the matrix elements in Eq. 25 for deriving Hamilto-

nians of all trigonal point groups with higher symmetries than C3. We need to impose

constraints on the expansion coefficients, or in other words, on the summing indices to

satisfy Eq. 31. We first consider HXX , HZZ , and HXZ , since they have included all ex-

pansion coefficients. Furthermore, since the expansion of HZZ has the same form as the

ar,3mI1,2K
zI1ρ3m+2K cos (3mφ) − ai,3mI2,2K

zI2ρ3m+2K sin (3mφ) part in HXX , and they are both di-

agonal elements that have χŜi χ
Ŝ
j = 1 in Eq. 31, the constraints on I1, I2, and 3m that make

HXX satisfy Eq. 31 also apply to I7, I8, and 3m′, in order to make HZZ symmetry-adapted.

There is thus no need to derive constraints on I7, I8, and 3m′ separately.

With the χ ˆσxz
v eigenvalues introduced above Eq. 28, Eq. 31 becomes

HXX

(
ρ,−φ,

(
χσ̂

xz
v
z z

))
= HXX (ρ, φ, z) ; (32)

HXZ

(
ρ,−φ,

(
χσ̂

xz
v
z z

))
= χ

σ̂xz
v
Z HXZ (ρ, φ, z) . (33)
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To satisfy the two equations, we need

(
χσ̂

xz
v
z

)I1
= 1;

(
χσ̂

xz
v
z

)I2
= −1;

(
χσ̂

xz
v
z

)I3
= 1;

(
χσ̂

xz
v
z

)I4
= −1;

(
χσ̂

xz
v
z

)I5
= χ

σ̂xz
v
Z ;

(
χσ̂

xz
v
z

)I6
= −χσ̂

xz
v
Z .

(34)

First, for an a1 mode with χσ̂
xz
v
z = 1: there is no constraint on I1 and I3, while ai,3mI2,2K

and

bi,3n+1
I4,2K

need to be zero since the second and fourth equalities cannot be met. If |Z〉 is an

A1 state, there is no constraint on I5, and di,3n
′+1

I6,2K
need to be zero. If |Z〉 is an A2 state,

dr,n
′

I5,2K
= 0 and there is no constraint on I6. Second, for an a2 mode with χσ̂

xz
v
z = −1: I1

and I3 need to be even, while I2 and I4 odd. If |Z〉 is an A1 state, I5 even and I6 odd. If

|Z〉 is an A2 state, I5 odd and I6 even. All these constraints are summarized in Table 1. It

is straightforward to see that these constraints have made HY Y , HXY , and HY Z transform

appropriately under σ̂xzv . No more constraints are needed.

TABLE 1. Constraints on the summing indices for the (E +A) ⊗ (e+ a) vibronic Hamiltonian

expansions for C3v and D3 molecules.a

I1 I2 I3 I4 I5 I6

(E +A1)⊗ (e+ a1) nr na nr na nr na

(E +A1)⊗ (e+ a2) even odd even odd even odd

(E +A2)⊗ (e+ a1) nr na nr na na nr

(E +A2)⊗ (e+ a2) even odd even odd odd even

a “nr” and “na” stand for “no further restriction” other than indicated in Eq. 25 and “not

applicable”, respectively. Terms with the “na” indices should be zeroed. I7,8 share the same

constraints as I1,2, respectively, in each case.

The D3 and C3v point groups are isomorphic. The derivation for the constraints on

I1−6 above is also applicable to the D3 (E + A) ⊗ (e+ a) vibronic Hamiltonian, simply

with the σxzv plane being replaced by the Cx
2 axis. Therefore, Table 1 also applies to D3

molecules. This transferability is based on that the orientations of the E and e components

are consistent with those in the C3v derivation: |X〉 and ex are invariant with respect to

Ĉx
2 , while |Y 〉 and ey antisymmetric. Such orientations and the Cx

2 axis are exemplified in

Figure 1(c).
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B. C3h

The A and E states as well as the a and e modes are dressed by prime and double-prime

in the C3h symmetry, according to their being symmetric or antisymmetric with respect to

the σ̂xyh operation. In the polar coordinate representation of the e mode, we can associate

the prime/double-prime character to ρ, i.e., χ
σ̂xy
h
ρ = 1 for an e′ mode and −1 for an e′′ mode.

χ
σ̂xy
h
φ = 1 regardless of the prime/double-prime character.

The derivation for the C3h vibronic Hamiltonian expansion follows the same route as the

C3v above. We need to constrain the summing indices so that HXX and HXZ satisfy Eq. 31

with Ŝ = σ̂xyh . For HXX , the conditions are:(
χ
σ̂xy
h
z

)I1 (
χ
σ̂xy
h
ρ

)3m

=
(
χ
σ̂xy
h
z

)I2 (
χ
σ̂xy
h
ρ

)3m

=
(
χ
σ̂xy
h
z

)I3 (
χ
σ̂xy
h
ρ

)|3n+1|
=
(
χ
σ̂xy
h
z

)I4 (
χ
σ̂xy
h
ρ

)|3n+1|
= 1.

(35)

For a′ and e′ modes, there is simply no constraint, as expected. For a′′ and e′′ modes, we

need I1,2 + 3m and I3,4 + |3n+ 1| to be even. For a′ and e′′ modes, we need 3m and 3n+ 1

even and there is no constraint on I1−4. For a′′ and e′ modes, we need I1−4 even and there

is no constraint on m and n.

The conditions for HXZ to satisfy Eq. 31 are:(
χ
σ̂xy
h
z

)I5 (
χ
σ̂xy
h
ρ

)|3n′+1|
=
(
χ
σ̂xy
h
z

)I6 (
χ
σ̂xy
h
ρ

)|3n′+1|
= χ

σ̂xy
h
X χ

σ̂xy
h
Z . (36)

The χ
σ̂xy
h
X χ

σ̂xy
h
Z factor determines that (E ′ + A′) and (E ′′ + A′′) share the same constraints on

the indices; (E ′′ + A′) and (E ′ + A′′) also. Therefore, the 16 C3h (E + A) ⊗ (e+ a) cases

are reduced to 8 sets of constraints. Guided by Eq. 36, it is straightforward to obtain the

constraints on I5,6 and 3n′ + 1 and the details are skipped. All the constraints derived

from HXX and HXZ are summarized in Table 2. These constraints have made the other

Hij elements transform appropriately under σ̂xyh . The “not applicable”s (“na”s) for I5,6 and

3n′ + 1 for the cases of (E ′′ + A′) ⊗ (e′ + a′) and (E ′ + A′′) ⊗ (e′ + a′) simply reflect that

primed and double-primed states cannot be coupled by primed vibrational modes.

One can see from Tables 1 and 2 that I1 and I3, I2 and I4, and 3m and 3n + 1 always

share the same constraints pair-wisely. This is because: (1) the constraints of all the ar,3mI1,2K
,

ai,3mI2,2K
, br,3n+1

I3,2K
, and bi,3n+1

I4,2K
terms are derived from the symmetry requirement on the same

matrix element, HXX ; (2) the I1 and I3 terms have cosine factors, while the I2 and I4 terms
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have sine factors. Being symmetric with respect to Ĉx
2 or σ̂xzv that changes φ to −φ imposes

the same constraints on I1 and I3, and on I2 and I4; (3) both 3m and |3n+ 1| are powers

of ρ that follow the same constraints, given the shared constraints of I1 and I3, and of I2

and I4. The three reasons still apply in the derivation below for higher symmetries, and the

constraint-sharings remain. Overall, we have constraint-sharings among (I1, I3, I7), among

(I2, I4, I8), and among (3m, 3n+ 1, 3m′).

TABLE 2. Constraints on the summing indices for the (E +A) ⊗ (e+ a) vibronic Hamiltonian

expansions for C3h molecules.a

I1,2 3m I3,4 3n+ 1 I5,6 3n′ + 1

(E′′ +A′′)⊗ (e′ + a′), (E′ +A′)⊗ (e′ + a′) nr nr nr nr nr nr

(E′′ +A′′)⊗ (e′′ + a′), (E′ +A′)⊗ (e′′ + a′) nr even nr even nr even

(E′′ +A′′)⊗ (e′ + a′′), (E′ +A′)⊗ (e′ + a′′) even nr even nr even nr

(E′′ +A′′)⊗ (e′′ + a′′), (E′ +A′)⊗ (e′′ + a′′) (ee or oo) (ee or oo) (ee or oo)

(E′′ +A′)⊗ (e′ + a′), (E′ +A′′)⊗ (e′ + a′) nr nr nr nr na na

(E′′ +A′)⊗ (e′′ + a′), (E′ +A′′)⊗ (e′′ + a′) nr even nr even nr odd

(E′′ +A′)⊗ (e′ + a′′), (E′ +A′′)⊗ (e′ + a′′) even nr even nr odd nr

(E′′ +A′)⊗ (e′′ + a′′), (E′ +A′′)⊗ (e′′ + a′′) (ee or oo) (ee or oo) (eo or oe)

a “nr” and “na” stand for “no further restriction” other than indicated in Eq. 25 and “not

applicable”, respectively. Terms with the “na” indices should be zeroed. “(ee or oo)” means that

the two sets of indices (e.g., I1,2 is a set and 3m is another set) covered by the parentheses should

be both even or both odd. “(eo or oe)” means that one set should be even and the other odd, or

the other way around. I7,8, and 3m′ share the same constraints with I1,2 and 3m, respectively, in

each case.

C. D3h and D3d

The D3h (E + A) ⊗ (e+ a) vibronic Hamiltonians should be invariant under Ĉx
2 and

σ̂xyh . They should hence adopt the constraints in both Tables 1 and 2. For instance, for the

(E ′ + A′′1)⊗(e′ + a′′1) Hamiltonian, we need to combine constraints for the (E + A1)⊗(e+ a1)

case in Table 1, with those for the (E ′ + A′′) ⊗ (e′ + a′′) case in Table 2. The resultant
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constraints are: I1 even, I2 na, 3m nr, I5 odd, I6 na, and 3n′ + 1 nr (the constraint-shared

indices are omitted). The constraints for all 64 (E + A)⊗ (e+ a) cases of D3h symmetry are

derived in a similar additive way and summarized in Table S.1 in the supporting information

(SI). To transfer the D3 constraints to D3h, the orientations of the states and modes need

to be consistent: |X〉 and ex are symmetric with respect to one Ĉ2 operation, while |y〉 and

ey antisymmetric. Such orientations are exemplified in Figure 1(e).

TheD3d point group is isomorphic to theD3h and they have the same number of (E + A)⊗

(e+ a) vibronic Hamiltonians. The same derivation follows, with σ̂xyh being replaced by the

Î inversion operation. Naturally, the constraint table of the D3d vibronic Hamiltonians have

the same structure and the same entries as the D3h table, simply with the prime on the irrep

symbols being replaced by the subscript g (gerade), and the double-prime by the subscript

u (ungerade).The D3d constraints are summarized in Table S.2 in SI. Again, the orientations

of states and modes need to be consistent with those in deriving the D3 Hamiltonians, as

exemplified in Figure 1(f). Note that the eux mode there consists of two ey-type vibrations

in the other panels, one for the bold wedged triangle and the other for the hashed wedged

triangle. Similarly, the euy consists of two ex-type vibrations in the other panels.

In total, there are 153 (E + A)⊗ (e+ a) problems for trigonal molecules: 1 for C3, 4 for

C3v, 4 for D3, 16 for C3h, 64 for D3h, and 64 for D3d. They are all covered by the expansion

in Eq. 25 and the constraints summarized in the four tables (Tables 1, 2, S.1, and S.2). The

broad applicability of the present formalism is evident.

IV. EXAMPLES

In this section, we show how to obtain expansions of the vibronic Hamiltonians for two

cases by using Eq. 25 and the constraint tables. The first example is the D3h (E ′ + A′′2) ⊗

(e′ ⊗ a′′2) Hamiltonian. This is a thoroughly investigated vibronic problem and its vi-

bronic Hamiltonian expansion up to 8-th order has been derived using Weyl’s polarization

method41,42 by Bhattacharyya, Domcke (BD) and coworkers.29 It provides a reliable refer-

ence to benchmark our expansion. The second example is the C3 (E + A)⊗ e Hamiltonian,

for which we compare our expansion with that derived by Eisfeld and Viel.19,20
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A. The D3h (E′ +A′′2)⊗ (e′ ⊗ a′′2) Hamiltonian

In the text below, the results in Ref. 29 are labelled by “BD”. The constraints on the

summing indices for the (E ′ + A′′2)⊗ (e′ ⊗ a′′2) vibronic Hamiltonian are read from Table S.1:

I1,3,7 even; I2,4,6,8 na; I5 odd; 3m, 3m′ and 3n+ 1 nr. With these constraints, one can easily

construct a table of allowed indices, e.g., Table 3 for the 5-th to 8-th order expansions of the

vibronic Hamiltonian. We first look at the already challenging 5-th order expansion. The

possible combinations of summing indices that give I1 + 3m + 2K = I3 + |3n+ 1| + 2K =

I5 + |3n′ + 1|+ 2K = 5 are enumerated in the table. Substituting the indices in Eq. 25, we

have

H
(5)
XX = ar,32,0z

2ρ3 cos 3φ+ ar,30,2ρ
5 cos 3φ+ br,14,0z

4ρ cosφ+ br,12,0z
2ρ3 cosφ+ br,10,4ρ

5 cosφ+ br,−5
0,0 ρ5 cos (−5φ)

= ar,32,0z
2
(
x3 − 3xy2

)
+ ar,30,2

(
x2 + y2

) (
x3 − 3xy2

)
+ br,14,0z

4x+ br,12,2z
2
(
x2 + y2

)
x

+br,10,4

(
x2 + y2

)2
x+ br,−5

0,0

(
x5 − 10x3y2 + 5y4x

)
; (37)

H
(5)
XZ = dr,−2

3,0 z3ρ2 cos (−2φ) + dr,−2
1,2 zρ4 cos (−2φ) + dr,41,0zρ

4 cos 4φ

= dr,−2
3,0 z3

(
x2 − y2

)
+ dr,−2

1,0 z
(
x2 + y2

) (
x2 − y2

)
+ dr,41,0z

(
x4 + y4 − 6x2y2

)
; (38)

H
(5)
ZZ = cr,32,0z

2ρ3 cos 3φ+ cr,30,2ρ
5 cos 3φ

= cr,32,0z
2
(
x3 − 3xy2

)
+ cr,30,2

(
x2 + y2

) (
x3 − 3xy2

)
. (39)

They are consistent with the BD expansions. With the agreements in HXX and HXZ , the

expansions of HY Y , HXY , and HY Z must also agree.

Similar agreements are found for all lower order and most of the higher order expansions

up to the 8-th order, the highest order considered by BD. This overall good agreement

corroborates our formalism. However, some inconsistencies do occur in the 6-th to 8th order

expansions. The BD H
(6)
XY contains 3 terms with z2, while there are only two I3 = 2 entries

in the 6-th order (I3, 3n+ 1) block in Table 3. The three terms in the BD expansion are

a
(6)
7 z22xy

(
x2 + y2

)
− a(6)

8 z2y
(
x3 − 3xy2

)
− 2a

(6)
9 z22xy

(
x2 − y2

)
=

−a(6)
7 z2ρ4 sin (−2φ)− a(6)

8 z2ρ4 1

2
(sin 4φ+ sin (−2φ))− a(6)

9 z2ρ4 sin 4φ. (40)

The BD notation for the coefficients is used. The first and third terms are consistent with

the (2,−2, 2) and (2, 4, 0) entries in the (I3, 3n+ 1) block. The second term is a linear

combination of the other two and thus redundant. Correspondingly, similar redundancies

occur in the BD H
(6)
XX and H

(6)
Y Y .
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TABLE 3. Allowed summing indices in constructing the D3h (E′ +A′′2)⊗ (e′ + a′′2) vibronic Hamil-

tonian expansion at the 5-th to 8-th order.

Order I1 3m 2K I3 3n+ 1 2K I5 3n′ + 1 2K Order I1 3m 2K I3 3n+ 1 2K I5 3n′ + 1 2K

5 2 3 0 4 1 0 3 -2 0 6 6 0 0 4 -2 0 5 1 0

0 3 2 2 1 2 1 -2 2 4 0 2 2 -2 2 3 1 2

0 1 4 1 4 0 2 0 4 0 -2 4 1 1 4

0 -5 0 0 6 0 2 4 0 1 -5 0

0 0 6 0 4 2

7 4 3 0 6 1 0 5 -2 0 8 8 0 0 6 -2 0 7 1 0

2 3 2 4 1 2 3 -2 2 6 0 2 4 -2 2 5 1 2

0 3 4 2 1 4 1 -2 4 4 0 4 2 -2 4 3 1 4

0 1 6 3 4 0 2 0 6 0 -2 6 1 1 6

2 -5 0 1 4 2 0 0 8 4 4 0 3 -5 0

0 -5 2 2 6 0 2 4 2 1 -5 2

0 7 0 0 6 2 0 4 4 1 7 0

0 -8 0

The second inconsistency is seen in H
(7)
XZ (and correspondingly in H

(7)
Y Z). The BD H

(7)
XZ

reads

H
(7)
XZ = c

(7)
1 z5

(
x2 − y2

)
+ c

(7)
2 xz3

(
x3 − 3xy2

)
+ c

(7)
3 z

(
x2 − y2

) (
x2 + y2

)2

= c
(7)
1 z5ρ2 cos (−2φ) + c

(7)
2 z3ρ4 1

2
(cos (−2φ) + cos 4φ) + c

(7)
3 zρ6 cos (−2φ) . (41)

However, there are 5 entries in the 7-th order (I5, 3n
′ + 1) block in Table 3, giving

H
(7)
XZ = dr,−2

5,0 z5ρ2 cos (−2φ) + dr,−2
3,2 z3ρ4 cos (−2φ) + dr,−2

1,4 zρ6 cos (−2φ)

+dr,43,0z
3ρ4 cos (4φ) + dr,41,2zρ

6 cos (4φ) . (42)

The summation in the second term in Eq. 41 becomes two independent terms in Eq. 42.

The extra zρ6 cos (4φ) term in Eq. 42 shares the same symmetry as the z3ρ4 cos (4φ) term

and should be included. All terms in Eq. 42 differ either in the trigonometric functions or

the powers of z and ρ; none of them is redundant.

The last inconsistency is seen in H
(8)
XY (and correspondingly in H

(8)
XX and H

(8)
Y Y ). There

are ten terms in the BD H
(8)
XY . However, the 8-th order (I3, 3n+ 1) block in Table 3 contains
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only 8 entries. There are three z4 terms and three z2 terms in the BD expansion, while there

are two I3 = 4 and two I3 = 2 entries in the (I3, 3n+ 1) block. The z4 terms in the BD

H
(8)
XY are:

a
(8)
9 z4

(
x2 + y2

)
2xy − a(8)

11 z
4y
(
x3 − 3xy2

)
− 4a

(8)
13 z

4xy
(
x2 − y2

)
=

−a(8)
9 z4ρ4 sin (−2φ)− a(8)

11 z
4ρ4 1

2
(sin 4φ+ sin (−2φ))− a(8)

13 z
4ρ4 sin 4φ. (43)

The second term is redundant. A similarly redundancy is seen in the z2 terms in the BD

H
(8)
XY :

a
(8)
10 z

2
(
x2 + y2

)2
2xy − a(8)

12 z
2
(
x2 + y2

)
y
(
x3 − 3xy2

)
− 4a

(8)
14 z

2
(
x2 + y2

)
xy
(
x2 − y2

)
=

−a(8)
10 z

2ρ6 sin (−2φ)− a(8)
12 z

2ρ6 1

2
(sin 4φ+ sin (−2φ))− a(8)

14 z
2ρ6 sin 4φ.

(44)

With all the redundancies removed, the BD expansion and ours are consistent, except

for the two missing terms in their H
(7)
XZ and the corresponding missing terms in their H

(7)
Y Z .

Please note that our derivation is not oriented towards this specific (E ′ + A′′2) ⊗ (e′ + a′′2)

Hamiltonian. The close-to-perfect agreement with the BD result demonstrates the robust-

ness, completeness, and conciseness of the present formalism. With the present formalism,

constructing vibronic Hamiltonian for any of the 153 (E + A)⊗ (e+ a) problems (and their

subproblems, vide infra) consists of three steps:

1. Read the constraints for the indices for a specific problem from Tables 1, 2, S.1, or S.2;

2. Construct a table of allowed indices following the constraints, order-by-order, like

Table 3;

3. Use this table and Eq. 25 to write the Hamiltonian expansion directly.

The 9-th and 10-th order expansions of the D3h (E ′ + A′′2)⊗ (e′ + a′′2) Hamiltonian are pre-

sented in Section S.2 in SI. They demonstrate the convenience of using the present formalism

to achieve even higher order expansions.

B. The C3 (E +A)⊗ e Hamiltonian

The (E + A) ⊗ e is a subproblem of (E + A) ⊗ (e+ a) and its Hamiltonian is a special

case of Eq. 25 with I1−8 = 0. The allowed indices for 1 ≤ 3m + 2K = |3n+ 1| + 2K =
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|3n′ + 1| + 2K ≤ 4 are summarized in Table 4. The (3n+ 1, 2K) blocks give the following

expansion for HXY up to the 4-th order:

H
(1)
XY = −br,10,0ρ sinφ− bi,10,0ρ cosφ = −br,10,0y − b

i,1
0,0x; (45)

H
(2)
XY = −br,−2

0,0 ρ2 sin (−2φ)− bi,−2
0,0 ρ

2 cos (−2φ) = br,−2
0,0 2xy − bi,−2

0,0

(
x2 − y2

)
; (46)

H
(3)
XY = −br,10,2ρ

3 sinφ− bi,10,2ρ
3 cosφ = −br,10,2

(
x2 + y2

)
y − bi,10,2

(
x2 + y2

)
x; (47)

H
(4)
XY = −br,40,0ρ

4 sin 4φ− br,−2
0,2 ρ4 sin (−2φ)− bi,40,0ρ

4 cos 4φ− bi,−2
0,2 ρ

4 cos (−2φ)

= −br,40,04xy
(
x2 − y2

)
+ br,−2

0,2

(
x2 + y2

)
2xy − bi,40,0

(
x4 + y4 − 6x2y2

)
−bi,−2

0,2

(
x2 + y2

) (
x2 − y2

)
. (48)

Compared to the expansions derived by Eisfeld and Viel (labelled by “EV” below),19,20 our

expansions contain the extra terms with the bi,3n+1
0,2K coefficients. With Table 4, the expansions

of HXX , HY Y , HXZ , HZZ , and HY Z can be constructed in a similar way. They are given

in Section S.3 in SI, and they all differ from the EV counterparts by having the ai,3m0,2K , bi,3n+1
0,2K ,

ci,3m0,2K , or di,3n
′+1

0,2K terms. There is a systematic discrepancy.

TABLE 4. Allowed summing indices in constructing the C3 (E +A) ⊗ e vibronic Hamiltonian

expansion at the 1-st to 4-th order. 3n′+ 1 has the same allowed values as 3n+ 1 for this case and

is not listed.

Order 3m 2K 3n+ 1 2K Order 3m 2K 3n+ 1 2K

1 1 0 2 0 2 -2 0

3 3 0 1 2 4 0 4 4 0

-2 2

The i-labelled coefficients arise from the imaginary parts of the Am, Cm, Bn and Dn

functions in Eqs. 12 and 15. Assuming those functions to be real, then our expansions are

identical to the EV ones. However, we have no reason to make this assumption. Corre-

spondingly, if we allow the c(++)
p,q coefficients in Eq. (6) of Ref. 19 (and the other expansion

coefficients there too) to take complex values, the EV derivation will result in the same

(E + A)⊗ e Hamiltonian as ours. This derivation is given in Section S.3 in SI. We attribute

the discrepancy to the unnecessary restriction in Refs. 19 and 20 that the c(++)
p,q , c(+−)

p,q , and

c(+Z)
p,q coefficients in the two works must be real.
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The importance of those i-labelled terms is investigated in a numerical example. The

three σ lone-pair orbitals of boric acid are shown in Figure 2(a). They are frozen to be

one-electron diabatic states, and their matrix elements of the bare nuclei Hamiltonian, i.e.,

electron kinetic operator plus nucleus-electron attraction operator, are calculated on a grid

of e bending and a grid of e stretching coordinates. This model is far from any real systems,

but it does reveal the symmetries of the matrix elements. The two components of the e

bending are:

ex =

√
1

6
(2∆α1 −∆α2 −∆α3) ; ey =

√
1

2
(∆α3 −∆α2) , (49)

and the two components of the e stretching:

ex =

√
1

6
(2∆rBO1 −∆rBO2 −∆rBO3) ; ey =

√
1

2
(∆rBO2 −∆rBO3) . (50)

The bond angles α1,2,3 and the O atoms numbering are shown in Figure 2(a). The B3LYP43,44

functional is used to optimize the boric acid structure and the cc-pVDZ45 basis set is used

for all calculations, which are performed using the GAMESS-US program package.46,47

Boric acid is a C3h molecule. The electronic states and the vibrational modes are sym-

metric with respect to σ̂h and hence it is an (E ′ + A′) ⊗ e′ problem. Its Hamiltonian has

the same expansion as the the C3 (E + A)⊗ e problem (see all the “nr”s in the first row in

Table 2). Therefore, the conclusions drawn from this model also apply to the C3 problem.

We first examine the three off-diagonal elements, whose contour plots as functions of the

bending coordinates are shown in Figure 2(b). If the EV HXY expansion is correct, that it

only contains the −br,3n+1
0,2K sin ((3n+ 1)φ) terms (see Eqs 12a-12g in Ref. 19), HXY should

be antisymmetric with respect to the straight line corresponding to φ = 0 and φ = π. Since

the ex and ey components of the mode can be arbitrarily oriented (as long as they satisfy

the transformation in Eq. 1), there is an arbitrariness in the φ value. However, if HXY is

antisymmetric with respect to some arbitrary yet fixed φ and φ+π, its (or one of its) 0 con-

tour line(s) that passes through the origin, which is called “central 0 contour” below, ought

to be a straight line. Such a straight central 0 contour is certainly absent in the HXY con-

tour plot. On the other hand, if HXY only contains the −bi,3n+1
0,2K cos ((3n+ 1)φ) terms, the

contour plot should be symmetric with respect to a straight line corresponding to φ = 0 and

φ = π (or some arbitrary yet fixed φ and φ+π). Such a symmetry is not seen either. There-

fore, HXY must contain both the br,3n+1
0,2K sin ((3n+ 1)φ) and bi,3n+1

0,2K cos ((3n+ 1)φ) terms.
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α2

α3

α1

a'Z e'X e'Y

HXY HXZ HYZ

(a)

(b)

(c)

Vnn Vne (HZZ) Vne (H++)

Vnn Vne (HZZ) Vnn(x, y) - Vnn(x,-y)

(d)

1

2

3

FIG. 2. (a) The three bond angles that define the e′ bending, the numbering of the O atoms that

define the e′ stretching, and the three σ lone pair orbitals that serve as diabatic states; (b) the

contour plots of the three off-diagonal matrix elements as functions of the e′ bending coordinates;

(c) the contour plots of the Vnn and Vne components in the diagonal matrix elements; (d) similar

counterplots as in (c) but in the e′ stretching coordinates. The B, O, and H atoms are represented

by dark green, red, and white spheres. The subscripts of the orbital labels indicate the states they

make. The contours have equal increments. Some contour values are given (in EH) so that the

others can be obtained through projection. The 0 references of the Vnn and Vne contour plots in

(c) and (d) are taken to be their values at the undistorted origin.

Similarly, HXZ and HY Z ’s central 0 contours are not straight; they are not symmetric with
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respect to any straight lines either. HXZ must contain both the di,3n
′+1

0,2K sin ((3n′ + 1)φ)

and dr,3n
′+1

0,2K cos ((3n′ + 1)φ) terms; HY Z must contain both the di,3n
′+1

0,2K cos ((3n′ + 1)φ) and

dr,3n
′+1

0,2K sin ((3n′ + 1)φ) terms.

The importance of the ci,3m0,2K sin (3mφ) terms in HZZ is shown in the contour plots in

Figure 2(c). We can decompose the one-electron HZZ into two contributions: the nucleus-

nucleus repulsion Vnn (x, y) and the nuclei-electron attraction Vne (x, y) (including electron’s

kinetic energy in our calculation). Vnn is state-independent. For this specific e bending, it

can be proved that Vnn (x, y) is symmetric with respect to y → −y (see the Vnn contour

plot in Figure 2(c) and Figure S.2 in SI). Vnn (x, y) hence must take an expansion with only

the cos (3mφ) terms. Vne (x, y) is symmetric with respect to x → −x (see the Vne(HZZ)

contour plot in Figure 2(c)). Its expansion can only contain the sin (3mφ), m = 1, 3, 5, · · ·

and cos (3mφ), m = 0, 2, 4, · · · terms. Since Vne (x, y) is asymmetric with respect to y → −y,

it cannot only contain the cos (3mφ) terms. Summing Vnn and Vne, the HZZ expansion must

contain both the cr,3m0,2K cos (3mφ) and ci,3m0,2K sin (3mφ) terms. The selection of the sin (3mφ)

terms with m = 1, 3, 5, · · · only applies to the e bending. For the e stretching, the only

symmetry is for Vne with respect to y → −y (Figure 2(d)). Vnn has no symmetry on its

contour plot. The apparent symmetry of Vnn with respect to y → −y in Figure 2(d) is

misleading, as clarified by the Vnn (x, y) − Vnn (x,−y) contour plot. The slightly jagged 0

contour in this plot results from the numerical noise of interpolation in generating contour

plot from point-wise data. Overall, for the e stretching, Vne contains cos (3mφ) terms and

Vnn contains cos (3mφ) and sin (3mφ) terms, without selection of the m values. The HZZ

expansion should hence contain both the ci,3m0,2K cos (3mφ) and ci,3m0,2K sin (3mφ) terms. All these

symmetry properties of Vnn and Vne are proved in Section S.4 in SI. Like |Z〉, |+〉 gives a

totally symmetric electron density. Therefore, the Vnes of the two states share the same

symmetry (compare the Vne (H++) and Vne (HZZ) contour plots in Figure 2(c)). The above

conclusion about HZZ can be transferred: H++, and then HXX and HY Y , contain both the

ar,3m0,2K cos (3mφ) and ai,3m0,2K sin (3mφ) terms.

Overall, the calculated diabatic matrix elements of the boric acid σ lone-pair orbitals

corroborate the importance of the ai,3m0,2K , bi,3n+1
0,2K , ci,3m

′

0,2K , and di,3n
′+1

0,2K terms in the C3 and C3h

(E + A)⊗ e Hamiltonian expansion. The symmetry elements that can (but not necessarily)

eliminate the i-labelled terms are the σxzv reflection plane and the Cx
2 axis. For all C3v

and D3 (E + A1)⊗ e problems, those i-labelled terms do not contribute, because the I2,4,6,8
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constraints are either “na” or “odd” in the first two rows of Table 1, and the “odd” constraint

is incompatible with the omission of the a mode (i.e., setting I1−8 = 0). Therefore, the EV

expansion can be used for these problems, which are their focuses.19,20 However, for the

(E + A2)⊗ e problem, the I6 constraint is “nr” or “even” (see the last two rows of Table 1),

which is compatible with I6 = 0. The di,3n
′+1

0,2K terms hence contribute to the HXZ and HY Z of

the (E + A2)⊗e problem. Actually, only the di,3n
′+1

0,2K terms contribute to the HXZ and HY Z ,

since the corresponding I5 constraint is “na” or “odd”, incompatible with I5 = 0. Omitting

the i-labelled terms will hence result in no vibronic coupling between the E and A2 states.

Similarly, for the higher symmetry D3h and D3d, only when the A state has a subscript 2

may the di,3n
′+1

0,2K terms contribute to the (E + A)⊗ e vibronic Hamiltonian. Those problems

correspond to the rows with the I6 constraint being “nr” or “even” in Tables S.1 and S.2

in SI. The I2,4,8 constraints are all “na” or “odd” in the tables; the corresponding i-labelled

terms make no contributions to any of the (E + A)⊗e problems. Again, there is an exclusion

between the di,3n
′+1

0,2K and dr,3n
′+1

0,2K terms in the D3h and D3d (E + A)⊗ e problems: whenever

the I6 constraint is “nr” or “even”, the I5 constraint is “na” or “odd”, incompatible with

I5 = 0. Omitting the i-labelled terms will again result in no coupling between the E and A

states in these problems.

V. EXPANSION OF SPIN-ORBIT MATRIX ELEMENTS IN THE p-TYPE (E +A)⊗

(e+ a) PROBLEMS

For molecules with heavy atoms, spin-orbit coupling (SOC) becomes significant.48,49 The

spin-orbit interaction can couple states of different symmetries and spins; there is an intri-

cate interplay between SOC and the JT (and pJT) effects.50–62 The SOC operator should

hence be included in the vibronic Hamiltonian expansion for those systems. Very recently,

Domcke et al.38 derived the relations between the SOC matrix elements and the electrostatic

Hamiltonian elements for p orbitals. These relations significantly simplify the construction

of the spin-orbit vibronic Hamiltonian.

The Domcke formalism is applicable to any SOC problems that can be formally described

using spin-orbit matrix elements between a set of px,y,z Gaussian orbitals (called the “p-type

problems” below). Combining the Domcke formalism and Eq. 25, we obtain concise expres-

sions for the SOC matrix elements’ expansions for the p-type (E + A) ⊗ (e+ a) problems.
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In the expressions below, orbitals with β spin are denoted by overhead bar, while those with

α spin are not denoted; the “=” sign means that its both sides have the same form of ex-

pansions, not a true equality; C1,2 are common coefficients shared by the last two equations.

Expansions for the six basic matrix elements are:

hSOpxpy = i (HXX +HY Y ) = iεr,3mI1,2K
zI1ρ3m+2K cos (3mφ)− iεi,3mI2,2K

zI2ρ3m+2K sin (3mφ) ; (51)

hSOpxpz = iHY Z

= i
(
δr,3n

′+1
I5,2K

zI5ρ|3n
′+1|+2K sin ((3n′ + 1)φ)− δi,3n

′+1
I6,2K

zI6ρ|3n
′+1|+2K cos ((3n′ + 1)φ)

)
;

(52)

hSOpypz = −iHXZ

= −i
(
δr,3n

′+1
I5,2K

zI5ρ|3n
′+1|+2K cos ((3n′ + 1)φ) + δi,3n

′+1
I6,2K

zI6ρ|3n
′+1|+2K sin ((3n′ + 1)φ)

)
;

(53)

hSOpxp̄y = −iHXZ −HY Z

= −iζr,3n
′+1

I5,2K
zI5ρ|3n

′+1|+2Ke−i(3n
′+1)φ − ζ i,3n

′+1
I6,2K

zI6ρ|3n
′+1|+2Kei(3n

′+1)φ; (54)

hSOpxp̄z = C1 (iHXY −HXX)− C2HZZ

=
(
γr,3n+1
I3,2K

zI3 + iγi,3n+1
I4,2K

zI4
)
ρ|3n+1|+2Kei(3n+1)φ − ηr,3mI1,2K

zI1ρ3m+2K cos (3mφ)

+ηi,3mI2,2K
zI2ρ3m+2K sin (3mφ) ; (55)

hSOpy p̄z = C1 (iHY Y −HXY ) + C2iHZZ

=
(
iγr,3n+1
I3,2K

zI3 − γi,3n+1
I4,2K

zI4
)
ρ|3n+1|+2Kei(3n+1)φ + iηr,3mI1,2K

zI1ρ3m+2K cos (3mφ)

−iηi,3mI2,2K
zI2ρ3m+2K sin (3mφ) . (56)

The other p-type SOC elements are either zero or can be readily obtained from the six.38

These expansions can be used for any p-type (E + A)⊗ (e+ a) spin-orbit vibronic prob-

lems for trigonal molecules. The px,y,z orbitals transform as (E + A) in C3, (E + A1) in C3v,

(E + A2) in D3, (E ′ + A′′) in C3h, (E ′ + A′′2) in D3h, and (Eu + A2u) in D3d. After dressing

the e and a symbols with the prime/double-prime, subscripts 1 and 2, and subscripts g and

u, we can look up the corresponding constraints in the four tables and write down the ex-

pansions straightforwardly. Implementing the constraints for the D3h (E ′ + A′′2)⊗ (e′ + a′′2)

problem and with (ρ, φ) being converted to (x, y), our SOC expansions are consistent with

those given by Domcke et al.38 (up to the 4-th order, see Eq. 39 in their paper), except for

a trivial sign difference of y.
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Despite the conciseness of these expansion formulas of the SO elements, we need to em-

phasize their nature of approximation. First, they are only applicable for trigonal molecules

with one p-block atom at center, whose valence p orbitals provide most of the SO effects.

Any polarization of the central p orbitals to d orbitals has been neglected. Second, the

derivation of Domcke et al.38 for the relations between the SOC and non-SOC matrix ele-

ments relies on the assumption that the three p components are identical in shape, e.g., the

px,y,z Gaussian components have the same exponent ζ. However, the trigonal symmetry only

guarantees the same shape for the central px and py orbitals, but not for the pz. Ignoring the

shape difference between px,y and pz is another approximation. All these approximations

are inherited by our expansions. The expansions of the SO matrix elements free from these

approximations were recently derived by Weike and Eisfeld for C3v molecules.62

VI. CONCLUSIONS

In this work, we revisit the classic (E + A)⊗ (e+ a) problems of trigonal molecules and

derive the general polynomial expansions for their vibronic Hamiltonians. The symmetry

with respect to the three-fold axis rotation leads to the general expansion in Eq. 25. Sym-

metry requirements with respect to plane reflections, two-fold axis rotation perpendicular

to the three-fold axis, and center-inversion impose further constraints on the terms in the

expansion. The constraints are additive so that the constraints for a higher symmetry point

groups can be readily obtained from those for the lower symmetry subgroups. With the gen-

eral expansion and the constraints, it is straightforward to construct vibronic Hamiltonians

to arbitrarily high order for the 153 (E + A)⊗ (e+ a) problems of 6 point groups and their

subproblems.

We compare our expansions for the D3h (E ′ + A′′2) ⊗ (e′ + a′′2) and the C3 (E + A) ⊗ e

Hamiltonians with previous results. For the former, our expansion is in good agreement

with that obtained using Weyl’s polarization method. The completeness, conciseness, and

convenience of our formalism are evident. For the latter, a class of terms emerge in our

expansion. They arise from the imaginary parts of the Am, Bn, Cm, and Dn functions in

Eqs. 12 and 15. Those terms are, to the best of our knowledge, the first time derived.

Their importance is corroborated by numerical calculation using a boric acid model. The

present formalism also brings about concise expansion for the p-type (E + A)⊗ (e+ a) spin-
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orbit vibronic Hamiltonian. With its completeness, conciseness, convenience, and broad

applicability, we anticipate that the formalism will be of extensive use in future vibronic

coupling studies.
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48 P. Pyykkö and J. P. Desclaux, C. R. Acad. Sci. Paris, 1981, II 292, 1513–1515.
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