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Abstract 

Natural organic matter (NOM) is on the rise across the Shield.  Its heterogeneous, amalgamate 

nature makes each NOM source potentially unique.  Relatively little is known about the direct 

effects distinct NOM sources have on daphniids, or the varying protection NOM provides against 

metal toxicity –specifically Ni. I show that NOM from different natural sources increases growth 

rates and decreases time to maturation of Daphnia to various degrees.  These changes relate to 

aromatic content of NOM isolates, the mechanism most likely being a hormonal effect or mild 

oxidative stress.  Aromatic content (representing phenolic groups) is also positively related to Ni 

mitigation for those isolates with specific UV absorbance below 19.3 cm
2
mg

-1
.  Incorporating 

NOM aromatic content into a predictive model improves the relationship between predicted and 

measured LC50s by 5%.   I demonstrate that structural differences between NOM isolates relating 

to aromatic content play a major role in their effects on Daphnia. 
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Introduction 

 Daphnia are planktonic crustaceans found in lakes (Tatarazako and Oda 2007), swamps 

and ephemeral ponds (Hanski and Ranta, 1983) on all continents (Benzie, 2005).  They are an 

important species in aquatic food webs (Dodson and Hanazato 1995) and are a preferred model 

for use in assorted research fields.   Daphnia are sensitive to changes in their environment, 

including changes in temperature (Goss and Bunting, 1980); food quantity (Tessier et al. 1983; 

Lampert 1987) and quality (Boersma and Kreutzer 2002; von Elert 2004), and chemical 

contaminants (Adema, 1978).  Many of these changes in aquatic environments are known to be 

influenced or altered by natural organic matter (NOM).   

 Natural organic matter (NOM) is found in all water bodies (e.g. streams, lakes, oceans) 

(Ertel et al., 1984). It is a polydisperse macromolecule (Baker and Khalili 2003) made up of 

decayed plant, animal (Nebbioso and Piccolo 2013), bacterial and Archaea tissue, as well as 

viruses.   It can be fractioned and defined using various measures: physical state, as either 

dissolved (passes through a 0.45 µm filter) or particulate (removed by a 0.45 µm filter) (Perdue 

2009); origin, as either autochthonous (from within the water body) or allochthonous 

(terrigenous in origin then washed into the water) (McKnight et al., 2001); and solubility, which 

determines NOM’s hydrophobic acids to be either humic acid (HA) (soluble at pH greater than 

2) or fulvic acid (FA) (soluble at all pH levels) (Perdue 2009). 

 NOM influences aquatic biota in several ways it: provides protection from UV-B 

radiation (Molot et al., 2004); complexes metals (Playle et al., 1993) and organic contaminants 

(Haitzer et al., 1999) influencing metal and contaminant transport and bioavailability; acts as a 

food source for food webs (Pace et al., 2004); and influences light attenuation and thermal 

structure of small lakes (Fee et al., 1996).  The complex mixtures of polyelectrolytes, and the 
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wide range of functional moieties and molecular weight distribution of NOM (Celo et al., 2001) 

make it impossible to give NOM a specific chemical formula (Meinelt et al., 2007).  While the 

general way in which NOM influences aquatic biota is understood, its heterogeneity within each 

source makes each NOM isolate in effect, unique.  It is this variation of NOM’s structure 

between sites which interests the author.  How does this structural disparity affect its accepted 

roles in aquatic ecology?  Can general patterns in NOM structure be related to these altered 

affects?  Much research is needed to address such questions.  

 Zooplankton consumes NOM via two major routes.  The first is by ingesting bacteria 

which use low molecular weight fractions of dissolved organic matter (DOM) for growth (Grey 

et al. 2001; Karlsson et al. 2003; Jansson et al. 2007; Berggren et al. 2010).  The second is direct 

ingestion of particulate organic matter (POM) as a food source (Pace et al., 2004; Cole et al., 

2011 and Wenzel et al., 2012).  In small nutrient deficient lakes 20-50% of carbon consumed by 

Daphnia originates terrestrially—outside of their home water bodies (Pace et al., 2004)—though 

this may be more out of need than preference.  

 NOM is a poor quality food for daphniids.  Brett et al. (2009) compared the quality of 

several daphniid diets.  The first diet was ground red alder (Alnus rubra) leaves, representing an 

exclusive NOM diet.  The second diet was a cyanobacterium (Anabaena), and the third, a green 

algae (Scenedesmus). They found that growth and time to primiparity were dramatically reduced 

on the alder and bacterial diet, and reproductive output was reduced by 90%. 

  Masclaux et al. (2011) observed similar results when Daphnia longispina was fed a diet of 

pollen (a component of NOM).  Wenzel et al. (2012) observed that Daphnia galeata fed ground 

peat could not survive beyond two days unless 20% of the diet was supplemented with the 

cryptophyte algae, Rhodomonas lacustris, which fostered both survival and reproduction.  
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NOM’s nutritional deficiencies across these studies were due to difficulties with digestion 

(pollen) (Masclaus et al., 2011), and low mineral content and a higher C:P ratio (red alder, 

ground peat) (Wenzel et al., 2012) than Daphnia require (Andersen and Hessen 1991).  

Allochthonous NOM also appears to be short of essential biochemicals such as polyunsaturated 

fatty acids (PUFA)—specifically eicosapentaenoic acid (EPA) and α-linolenic acid (ALA) 

(Wenzel et al., 2012)—which are essential for zooplankton growth and reproduction (Brett and 

Muller-Navarra 1997; Wacker and von Elert 2001).  However, while uptake of NOM may not 

lead to an improved diet, there do appear to be other direct effects of NOM on zooplankton and 

other aquatic invertebrates. 

 In amphipods, NOM exposure increases expression of stress hormones such as Hsp70 

(Bedulin et al., 2010), induces the reaction of the multixenobiotic resistance system (MSR) 

(Timofeyev et al., 2007), and causes oxidative stress as demonstrated by the accumulation of 

hydrogen peroxide and lipid peroxidation (Timofeyev et al., 2006a; Timofeyev et al., 2006b).  

Humic substances (HS) have also been shown to alter membrane permeability in Daphnia 

magna, which enhances sodium influx (Glover and Wood 2005; Glover et al., 2005b).  

Additionally, HSs induce the production of male offspring, decrease female lifespan while 

increasing male lifespan of D. magna (Euent et al., 2008), and diminish cumulative offspring 

numbers (Bouchnak and Steinberg 2010).  In multiple stress situations, NOM alleviates the stress 

of a poor quality diet of yeast; increases offspring counts and lessens ephippia production with 

D. magna (Bouchnak and Steinber 2010); eases salt-induced reductions of somatic growth, 

boosting body volume (Suhett et al., 2011); and increases reproduction and lifespan in the 

cladoceran Moina macrocopa (Engert et al., 2012).  The composition of NOM varies with 

source, with the amount of allochthonously-based NOM making its way into the water body, and 



4 
 

with the chemical composition of the surrounding foliage adding to the terrigenously-based 

NOM.  And so the question presents itself, how does the composition of NOM relate to its direct 

effects on an aquatic organism such as Daphnia?  

 Glover et al (2005b) noted that both Suwanne River NOM (SRNOM) and commercial 

Aldrich humic acid increased the capacity for sodium passage while simultaneously decreasing 

the affinity for sodium uptake, but only SRNOM increased sodium loss.  However, the 

amphipod, Gammarus pulex, increased peroxidase activity and stress protein expression of 

sHSPs and HSP70 when exposed to three different NOM sources, including two brown-water 

lakes in Germany, and one isolate from the black layer of a Brazilian sandbar soil (Bedulina et 

al., 2010).  M. macrocopa lived longer with exposure to an NOM isolate from Brazil and the 

synthetic humic acid, HuminFeed® to varying degrees, but also had contrasting changes in life 

time reproductive output.  While the NOM isolate improved reproduction, HuminFeed® 

curtailed lifetime neonate production (Steinberg et al., 2010.).  Hofmann et al. (2012) also noted 

differences in life history traits when M. macrocopa was exposed to four different leaf litter 

leachates.  Three of the four leaf leaches enhanced body size and extended lifespan and the two 

Picea species increased reproduction.  The structural heterogeneity of NOM would appear to be 

the cause of these differences.  So what is it about the structure of NOM that induces these 

changes?  By using spectroscopic techniques the general structure, relative fractions and origins 

of five NOM isolates were determined and compared to the changes in life history traits of a wild 

Daphnia pulex/pulicaria clone in chapter one of this thesis. 

 The characterization of NOM has been aided by modern, sophisticated technologies in 

absorbance and fluorescence (Fellman et al., 2010).  The process is now both affordable and 

dependable (Jaffe et al., 2008), while at the same time being a straightforward and unobtrusive 
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(Senesi et al. 1990) method of analysis.  Absorbance measures such as the specific absorbance 

coefficient (SAC) and the specific UV absorbance (SUVA) were rendered to gauge the 

differences in colour and aromatic content of the NOM isolates (Curtis and Schindler 1997; 

Schwartz et al., 2004; Weishaar et al., 2003).  The ratio of the absorbance of NOM at 254 nm 

and 365 nm was used as a proxy inversely related to the molecular weight of the isolates (Dahlen 

et al., 1996).  I also employed fluorescence spectroscopic techniques, which are considered more 

sensitive (Borisover et al., 2009) and discriminating as compared to absorbance measures 

(Luider et al., 2004).  The Fluorescence Index (FI) was used to determine the origin of the FA 

portion of the NOM as either mostly allochthonous or autochtonous (McKnight et al., 2001).  In 

addition, Emission and Excitation Matrices (EEMs) in combination with Parallel factor analysis 

(PARAFAC) were used to determine the relative proportions of humic acids (HA) and fulvic 

acids (FA) (Nadella et al., 2009).  These spectroscopic methods of characterizing NOMs have 

been helpful in identifying features of organic matter related to metal complexation and 

reductions in toxicity.  NOMs that are dark in colour, high in aromatic content, larger in 

molecular weight, allochthonous in origin and/or containing higher concentrations of HA have 

been found to  alleviate acute Cu (Al-Reasi et al., 2012), Pb, and to a lesser degree, Cd toxicity 

(Al-Reasi et al., 2011).  Steinberg et al. (2003) suggested that these functional groups associated 

with toxicity reduction may also play a role in the biological interactions described above.  For 

example, Meinelt et al. (2007) found that reductions in vegetative growth of the water mold 

Saprolegnia parasitica were related to aromatic content (measured using SUVA) and molecular 

weight of 10 NOM isolates, the synthetic HS1500, HuminFeed® humic acid, and a Na-Humate.   

This present study is the first in which these techniques of NOM characterization (in concurrence 
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with life history bioassays) are performed to determine how the specific characteristics of NOM 

directly affect Daphnia.    

 The ability of NOM and its fractions (HA and FA) to decrease metal toxicity has long 

been recognized (Zitko et al., 1973).  Trace metals complex with the functional groups within 

NOM, decreasing the abundance of the most toxic form of metals (the free metal ion), reducing 

their bioavailability to aquatic organisms and thus, creating a protective effect (Baken et al. 

2011, Al-Reasi et al. 2012, Ryan et al. 2004,Richards et al. 2001 and De Schamphelaere et al. 

2004).  This relationship is known to be concentration dependent (Playle et al., 1993; Erickson et 

al., 1996).  With the wide heterogeneity between geographical sites demonstrated in differing 

proportions of functional group makeup of NOM, it follows that these protective effects would 

vary by source.  When trying to construct a metal toxicity model with inorganic Hg and fish 

gills, Playle (1998) found it necessary to alter Hg affinity for DOM to compensate for a ten-fold 

difference in toxicity which was due to differences in NOM source.  Richards et al. (2001) 

supported this finding that source influenced the protective effects provided by NOM with a six-

metal mixture and three different sources of NOM. Investigations with single-metal solutions 

identified how NOM source alters the toxicity of Pb (MacDonald et al., 2002; Schwartz et al., 

2004), Ag (VanGenderen et al., 2003; Glover et al., 2005 - heterogeneity), Cd (Schwartz et al., 

2004) and Cu (De Schamphelaere et al., 2004; Ryan et al., 2004; Schwartz et al., 2004).  Several 

of these investigators observed that darker, more aromatic and allocthonous NOM provided a 

greater amount of protection (Richards et al., 2004); this was particularly true for Pb 

(MacDonald et al., 2002; Schwartz et al., 2004) and Cu (De Schamphelaere et al., 2004; 

Schwartz et al., 2004).   Ryan et al. (2004) also noted that HA content had a positive relationship 

with alleviation to metal toxicity.  Based on these observations, Al-Reasi et al. (2011) reviewed 
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the influence of NOM source on metal toxicity mitigation from the existing literature (in which 

NOM isolates had been collected by reverse osmosis) and compared metal toxicity parameters to 

NOM characteristics.  Correlations between spectroscopic-determined NOM characteristics and 

metal toxicity were found for all of the above mentioned metals except Ag.  After observing the 

differences in metal toxicity mitigation, most authors took the next step and tried to incorporate 

these disparities into models capable of predicting metal toxicity.  The state of the science model 

in this field is the Biotic Ligand Model (BLM). 

 The BLM identifies the binding site of toxic action on an organism as equal to any other 

ligand, and defines it as a biotic ligand (BL) (De Schamphelaere and Janssen 2004, Di Toro et al. 

2001 and Paquin et al. 2002).  A BL is made up of a subset of negatively charged proteins on an 

organism (e.g. on a gill) which bind as readily with metals and various cations as other similarly 

charged ligands in the water (Paquin et al. 2002).  More specifically, the BL has multiple 

transport sites for essential cations (Ca
2+

, Na
2+

).  These sites can also transport ionoregulatory 

toxicants such as free ions of Cu, Cd and Ni, which disrupt the ion balance in the organism and 

cause toxic effects (Di Toro et al. 2001 and Niyogi and Wood 2004).   

 Reductions in free metal ion concentration, due to complexation with inorganic and 

organic ligands in solution, are also essential to the BLM.  Stability constants (or log K values 

which describe the attractions between an ion and a ligand in solution) are given to gill-metal, 

gill-essential cations, as well as metal-inorganic and metal-organic interactions (Paquin et al. 

2002). 

 The BLM takes into account the competition between cations (Ca
2+

, Na
2+

, Mg
2+

) and pH 

(H
+
 ions) with free metal ions for dissolved organic carbon (DOC), synthetic ligands and gill 

binding sites.  Both cations and free metal ions operate in terms of concentration and affinity as 
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rated by stability constants; the higher the concentration and stability constant, the greater 

competitive success (Di Toro et al., 2001).   

 To describe the interactions between DOC and metal binding in the BLM, the 

Windermere Humic Aqueous Model (WHAM) by Tipping (1994) is utilized.  It incorporates 

proton and metal binding, with carboxyl and phenolic sites of humic acid (Di Toro et al., 2001). 

It is based on a large data set of acid-base titrations; binding affinity is based on the median 

binding and spread around the median for both carboxyl and phenolic sites.  Competition 

between protons, calcium and metal ions for DOC binding sites is also taken into consideration 

(Di Toro et al., 2001; Paquin et al., 2002; Tipping 1994).  While two different binding sites are 

considered and the data set on which WHAM is large, the heterogeneity between NOM sources 

does not appear to be optimally accounted for in the BLM.  Several authors have attempted to 

accommodate the disparity in NOM source structure by using the spectroscopic techniques used 

to characterize NOM. 

 Richards et al. (2001) created the quality factor (F) to incorporate NOM structure into a 

BLM.  The quality factor uses NOM colour and aromaticity based on the results of SAC to alter 

the number of NOM binding sites.  This parameter improved predictions of a Pb-BLM 

(McDonald et al., 2002), and Schwartz et al. (2004) also found improvements to calculate gill Cu 

and Pb burdens using the quality factor.  De Schamphelaere et al. (2004) used the % active fulvic 

acid (%AFA) to describe the complexing capacity of each DOM they employed with great 

success for an acute Cu-BLM.  Al-Reasi et al. (2012) indicated that using EEMs and PARAFAC 

to modify HA% to a relative HA% also improved an acute Cu-BLM, as did HA% based on the 

relationship between SAC and relative HA%.  Two key questions remain.  Do these differences 
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in metal toxicity with various-sourced NOMs apply to other metals not previously studied, and 

which of these methods used to improve the BLM produce the best results? 

 One important metal to investigate is nickel.  This is particularly true for the Canadian 

environment as Canada is one of the largest nickel producing countries in the world (Mandal et 

al., 1999a). The environmental effects brought about by 130 years of this industry’s operation 

remain today.  Areas such as Sudbury, Ontario, are still coping with lakes containing nickel 

concentrations exceeding Ontario’s Provincial Water Quality Objectives (25 µg L
-1

) and Ni 

levels are falling more slowly than other metals in the lakes (Norman Yan personal 

communication).  The zooplankton communities (i.e. planktonic cladocerans and copepods) of 

Sudbury’s urban lakes have been slow to recover due to elevated metal concentrations (Valois et 

al., 2011) and underscore the importance of understanding nickel’s potential toxic interactions 

with zooplankton.  However, Ni’s low binding affinity to NOM and high concentrations required 

for acute toxicity have led several authors to believe that NOM did not play a vital role in metal 

mitigation (Wu et al., 2003), only recently have the interactions between Ni and organic matter 

been considered in this matter.  Kozlova et al. (2009) noted an increase in Ni LC50s with 

Daphnia pulex when NOM was added to solution in a concentration dependent manner and also 

observed that two NOM isolates protected to differing degrees.  In this study, I will show that 

NOM does play a vital role in the alleviation of Ni toxicity; that its ability to protect zooplankton 

from Ni toxicity is dependent on NOM source; and that it is specifically the aromatic content of 

NOM which plays a major role in reducing metal toxicity.  Based on the relevance of Ni to the 

Canadian environment and the lack of information regarding Ni-NOM interaction, Ni was my 

metal of choice for exploring how the variability in NOM structural make-up influences metal 

toxicity.  In chapter two of this thesis, I explore how thirteen different NOM isolates protect 
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Daphnia pulex/pulicaria from acute Ni toxicity, and how the differences in Ni mitigation relate 

to NOM structural heterogeneity.  

 In summary, my objectives in this thesis were to:  (1) identify life history traits of a 

Daphnia pulex/pulicaria clone which are altered when exposed to NOM; (2) determine if NOM 

from various sources produced different results; (3) describe which measurable characteristics of 

NOM relate to observed life history changes; (4) establish if 7 mg C·L-1
 of NOM protected a 

Daphnia hybrid from acute Ni toxicity;  (5) determine if protection varied with NOM source; (6) 

identify NOM characteristics which correlated with amelioration of Ni toxicity; (7) ascertain if a 

Ni BLM can be improved with inclusion of NOM characteristics; and (8) identify which 

inclusion method performed best. 
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Direct Effects of Natural Organic Matter (NOM) Isolates from Canadian Shield waters on 

laboratory performance of a native Daphnia 
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Abstract 

 Many indirect effects of Natural Organic Matter (NOM) on biota are well understood, 

e.g. binding of toxic metals, absorbance of damaging UV radiation, and sustenance of bacteria.  

In contrast, it is unclear if NOM interacts directly with herbivores, including Daphnia, and this 

knowledge gap is concerning given that NOM concentrations are currently on the rise in north 

temperate lakes. In this study, five NOM isolates were obtained from Canadian Shield sources 

including lakes, a stream and a wetland , and added at 6 mg C·L-1
 to a synthetic soft-water 

medium to determine the NOM effects on a well fed local Daphnia pulex/pulicaria hybrid in the 

laboratory.  Four out of the five isolates raised the intrinsic rate of natural increase, specific 

growth rate, and mean clutch size of the Daphnia while decreasing mean generation time and 

time to primiparity.  Changes in Daphnia performance metrics were not correlated with bacterial 

densities, or with algal feeding rate. They were, however, associated with two absorbance 

metrics which are used to distinguish the structural differences of NOM: specific absorbance 

coefficient (SAC), an index of NOM colour and aromaticity; and the specific UV absorbance 

(SUVA), another proxy for aromaticity.  The observed positive effects of the NOM on Daphnia 

performance were likely due either to a xenobiotic hormone characteristic of the NOM, with 

irradiation of NOM by fluorescent light in the chamber increasing its estrogenic activity; or to 

mild oxidative stress, which created an overall biological benefit.  The results indicate that 

environmentally-realistic concentrations of NOM can be directly beneficial to Daphnia, 

increasing both growth and reproductive output.  Therefore, in addition to the known indirect 

benefits of rising NOM for aquatic biota, direct benefits are now worthy of consideration.  

  



20 
 

Introduction 

Natural organic matter (NOM) is a heterogeneous (Ertel et al. 1984; Guthrie et al. 2005), 

ubiquitous (Hudson et al., 2007), organic substance present in shallow ground and surface 

waters.  Composed mainly of deteriorated woody plant debris (Ertel et al., 1984), decayed 

animals, and microbes (Al-Reasi et al. 2011, Timofeyev et al. 2004, Chen et al. 2012), 50 to 70% 

of this material is made up of humic substances (HSs) (Timofeyev et al., 2004) which further 

segregate into humic acids (HA) and fulvic acids (FA) (Thurman 1985; Al-Reasi et al. 2011; 

Schindler et al. 1992; Sekaly et al., 2003; Guthrie et al., 2005).  The remaining material within 

NOM is carbohydrates, protein, peptides and amino acids (Al-Reasi et al., 2011, Fellman et al., 

2010, Jaffé et al., 2008, Hudson et al., 2007, Baker and Khalili 2003). 

  NOM levels are currently rising in several parts of the world, including northeastern 

North America, and northern and central Europe (Monteith et al., 2007).  The many hypotheses 

that may be proposed to explain this phenomenon (Evans et al., 2006) include: 

 i)  reduced NOM adsorption to mineral soils, resulting in a greater loss of NOM to surface 

waters (Yan et al., 1996; Keller et al., 2008; Kerr and Eimers 2012), accompanying falling 

acidity in watersheds that followed reduced SO2 emissions (Keller et al., 2008,Evans et al., 2006; 

Monteith et al., 2007); ii) reduced binding of NOM to Al in soils, as porewater pH rises (Yan et 

al., 1996);  iii)  decreased, UV-induced photo-oxidation of NOM associated with rising lake 

water pH (Gennings et al., 2001); iv) decreased retention of negatively charged NOM in soils 

associated with base cation depletion (Kerr and Eimers 2012) linked to acidification and 

logging/afforestation cycles;  v) enhanced decomposition of organic matter in soils augmenting 

delivery of NOM into lakes as the climate warms (Freeman et al., 2001; Keller et al., 2008)  

(Keller et al., 2008); vi) elevated primary productivity of wetland plants at higher carbon dioxide 
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concentrations levels leading to increased root exudation of NOM and more carbon leaching into 

water courses  (Freeman et al., 2004; Evans et al., 2006); and finally, vii) greater NOM export 

from agricultural soils linked to increased nitrogen deposition. While the mechanism for this last 

hypothesis is unclear, N does decrease oxidative enzymes, leading to reduced decomposition of 

phenolic compounds in the bulk NOM pool, contributing potentially to greater export of NOM to 

surface waters (Findlay 2005).  Many of the underlying drivers of these proposed causes of 

NOM rise are also rising, suggesting that NOM concentrations will continue to increase 

(Monteith et al., 2007).  To understand the potential impacts, if any, of increasing NOM 

concentrations on biota, we need to consider both its indirect and direct effects. 

 NOM plays many fundamental roles in aquatic ecosystems (Prairie 2008).  As a 

predominant determinant of lake transparency, it impacts the thermal structure of small lakes by 

increasing the vertical attenuation of light (Fee et al., 1996).  It is the principle factor responsible 

for absorption of UV-B radiation, naturally protecting aquatic organisms (Molot et al., 2004).  It 

complexes metals (Playle et al., 1993) and organic contaminants (Haitzer et al., 1999), 

determining the biotransport of essential metals, and the bioavailability of toxic metals.  

Furthermore, it has long been recognized that NOM serves as an energy source for aquatic food 

webs as a major food source for bacteria (Jones 1992 and references within) and a possible 

component in the diets of aquatic organisms (e.g. zooplankton and fish) at higher trophic levels 

(Pace et al., 2004).  Via its effects on underwater light climate, coloured NOM may also affect 

ecological and ethological interactions in lakes, e.g. mate selection in fish (Sabbah et al. 2010), 

and vulnerability of pelagic macroinvertebrates to their fish predators (Wissel et al. 2003b)  

 NOM clearly has major indirect effects on aquatic metazoa.  Might it also have direct 

effects?  It has traditionally been assumed that NOM is too large and inert to cause any direct 
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effects on aquatic biota, but recent research is shifting this paradigm. It is now believed that 

NOM can cause molecular and biochemical changes in organisms (Steinberg et al., 2010b), 

eliciting direct physiological effects.   For example, NOM isolates from various sources were 

found to increase reproduction of the nematode Caenorhabditis elegans (Höss et al., 2001; 

Steinberg et al., 2002), and create oxidative stress in four freshwater amphipods (Timofeyev et 

al., 2004; 2006a; 2006b).  

 While NOM and its HS components have been found to induce physiological changes in 

aquatic organisms, the majority of the few studies in this field have employed commercial, 

synthetic HSs, as the NOM source.  HS1500, a synthetic HS, stimulated metabolism in swordtail 

fish (Xiphophorus helleri) and initiated a hormone-like effect by altering their sex ratio (Meinelt 

et al., 2004). Hormone-like effects also followed exposure in the South African clawed frog 

(Xenopus laevis) by increasing expression of the  estrogenic biomarker Er-mRNA as well as 

enhancing the expression of the thyroid-stimulating hormone, TSHβ-mRNA (Lutz et al., 2005).  

Another commercial HS preparation, HuminFeed®, elicited a hormone-like effect in Daphnia 

magna, altering the sex ratio of offspring by inducing the production of males (Euent et al., 

2008).    

Glover and Wood (2005) cautioned against using these synthetic HSs in their study of 

sodium metabolism in Daphnia magna.  They reported that commercially available Aldrich 

humic acid disrupted the sodium metabolism of the Daphnia, while an NOM isolate from a 

marsh in Ontario, Canada, did not produce the same metabolic disruption.  While use of 

synthetic HSs provides numerous benefits, such as ready access, consistency and lower cost, or, 

say, the reduced risk of contamination by xeno or phytoestrogens (Steinberg et al., 2004), too 

few studies have compared natural NOM isolates with synthetic HSs to establish if synthetic HSs 
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produce environmentally relevant responses.  There is reason to question the value of work based 

on synthetic HSs, as they lack various features often associated with natural NOM (Meinelt et 

al., 2007; Hofmann et al., 2012).  

 How might natural NOM directly elicit physiological responses in aquatic biota?  Menzel 

et al., (2012) found that phenolic and quinonoid moieties of HSs may be responsible for 

extended lifespan, increased tolerance to thermal stress, and stronger pumping of the pharynx in 

the nematode, Caenorhabditis elegans.  Meinelt et al., (2007) established that HSs characterized 

by high molecular weights and high aromaticity inhibited the growth of the fungal fish pathogen 

Saprolegnia parasitica, to the benefit of the fish.   Little else is currently known, because the 

characteristics of natural NOMs have so rarely been linked with biological effects, including 

growth and reproduction.  However,  steady progress in fluorescence and absorbance 

technologies (Fellman et al. 2010) has provided means for characterizing NOM in an easy, non-

invasive (Senesi et al. 1990), affordable and dependable manner (Jaffé et al. 2008).  Metrics 

developed from fluorescence and absorbance spectra can distinguish molecular differences 

between NOMs from natural sources, and between their fulvic and humic acid fractions (Senesi 

et al., 1991).  Such techniques have been useful in understanding the protective effects of NOM 

on metal toxicity (Al-Reasi et al., 2011).  I hypothesized that these methods might be of similar 

assistance in explaining which features of natural NOM have a direct influence on the life history 

traits of a common cladoceran herbivore, Daphnia, and might also distinguish NOMs from 

different sources which might differ in their magnitude of impact on life history parameters.  

 Daphnia, is a key species recommended for ecotoxicological research and monitoring by 

the ASTM (ASTM 2012), OECD (2004, 2012), US-EPA (2002), and Environment Canada 

(1996, 2007).  The sensitivity of daphniids to chemicals (Adema, 1978), their wide geographic 
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range (they can be found on all continents) (Benzie, 2005), their ubiquity within most permanent 

(Tatarazako and Oda 2007) and transient lakes and ponds (Hanski and Ranta, 1983), their key 

role in aquatic food webs as food for fish and invertebrate predators,  as well as their role in 

maintaining water quality by consuming algae (Dodson and Hanazato 1995) all make Daphnia a 

good choice for studying the physiological changes potentially induced by the xenobiotic 

(Steinberg et al., 2003) characteristics of NOM.   

Several studies on the direct effects of commercial HSs have used Daphnia magna as 

their test subject (Glover and Wood, 2005; Euent et al., 2008; Bouchnak and Steinberg 2010 and 

Steinberg et al., 2010b).  As Daphnia magna is not present in the soft water lakes of the 

Canadian Shield, a local Daphnia pulex/pulicaria hybrid isolated from the Sudbury region of 

Ontario, Canada, was chosen for this study.  Exposures of D. magna to HSs have produced 

conflicting results.  Euent et al., (2008) did not find a quantitative change in reproductive output, 

but did observe a decrease in female lifespan; conversely, Bouchnak and Steinberg (2010) and 

Steinberg et al. (2010b) noted a decrease in reproductive output and an overall increase in 

lifespan.  Therefore, I hypothesized that the Daphnia pulex/pulicaria used in this study would 

experience a change in reproduction when exposed to NOM; however, the current knowledge 

makes it difficult to ascertain whether it will be positive or negative.  Furthermore, only a single 

study (by Glover and Wood, 2005) used more than one humic substance.  While the two 

substances produced dissimilar results, it is difficult to identify whether the differences were due 

to the structural makeup of the HS, or attributed to their disparate origins (natural and 

commercial).  Thus it is difficult to surmise whether the source of the NOM will impact the life 

history traits of Daphnia.  With the lack of studies on the effects of NOM structure on Daphnia, I 

made no specific hypothesis with regards to how NOM structure would affect Daphnia health. 



25 
 

 My aims were to determine if: i) NOM influences the demographics of a native Daphnia 

(i.e. growth, survival, time to primiparity, fecundity); ii) NOM from various sources affect the 

Daphnia in different ways; and iii) structural differences among NOM isolates are correlated 

with performance changes in NOM-exposed Daphnia.  

Materials and Methods 

NOM Collection: 

 NOM was collected from five sites in Sudbury, Ontario, Canada.  The Sudbury region is 

in a state of recovery from over a century of the regional mining and smelting of metal rich ores, 

exacerbated by deforestation from the mass harvesting of timber to fuel early smelters (Gunn, 

1995).  Airborne contaminants dramatically elevated the sulfur and metal concentrations of the 

lakes, bringing about acidification, metal contamination and biotic depletion in the mid-twentieth 

century.  Changes in SO2 and metal emission regulations beginning in the 1970s enabled the start 

of a slow recovery in the region (Keller and Yan 1990). I selected five sample sites as  part of a 

larger project known as Terrestrial Aquatic Linkages for Ecosystem Recovery (TALER), which 

has the main objective of determining the regulators and effects of cation and carbon exports on 

aquatic systems in the early stages of recovery.  My sample sites included lakes, a wetland and a 

stream. A portable reverse osmosis (RO) apparatus was used to collect the samples.  Collecting 

NOM by RO yields the highest quantities of NOM, and it is fast and chemically gentle (Perdue 

2009).  After collection, the pH of the NOM concentrate was lowered to approximately two by 

treating it with a cation exchange resin (Resin USF C-211 (H) Cation, Siemens) which had been 

activated with 4 N HCl (Schwartz et al., 2004) with intent to remove all major and minor cations.  

It was then stored, un-illuminated, at 4℃ refrigeration. 
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Culturing: 

 The Daphnia pulex/pulicaria hybrid I employed was obtained from McFarlane Lake in 

Sudbury, Ontario, Canada, and cultured for 3 years at the Field Laboratory for the Assessment of 

Multiple Ecological Stressors (FLAMES) in Dorset, Ontario.  This pond (pulex)/lake(pulicaria) 

hybrid is quite common in Sudbury-area lakes and is one of the first Daphnia to inhabit lakes as 

they recover from acidification and high metal concentrations (Yan unpub. Data).  Animals were 

held in Conviron E7/2 growth chambers, at 20 °C with a diurnal split of 16 light hours at 100 

µmol m
-2

 s
-1

, and 8 dark hours with 20 minute transitioning periods simulating dawn and dusk.  

The animals were cultured in 1 L glass beakers with approximately 800 ml of the synthetic soft 

water FLAMES medium (Celis-Salgado et al. 2008).  The medium was made up at least 24 hours 

in advance of use and aerated to allow chemical equilibrium and stabilization.  D. pulex/pulicaria 

were fed a combination of Pseudokirchneriella subcapitata and Ankistrodesmus falcatus at a 

particulate C level of 1 mg/L.  Grown in batch cultures, algae were derived from pure stocks 

originally acquired from the University of Toronto Culture Collection (currently the Canadian 

Phychological Culture Centre).  Each beaker contained thirty Daphnia, algae were dispensed into 

the beakers three times a week, the soft water medium was changed twice a week.  Broods three 

to eight were placed individually in 45 mL glass vials with the same feeding regime, the 

changing of soft water medium was increased to three times weekly to obtain the maternal lines 

used for neonate production for experiments. 

Bioassay and Growth: 

 An 18-day, partial life-cycle, static-renewal bioassay was initiated with 3
rd

 to 8
th

 brood 

neonates less than 24-h old (Environment Canada, 1996).  FLAMES, a synthetic soft-water 
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medium, was modified by replacing the EDTA with the collected NOM.  FLAMES was 

inoculated with 6 mg C·L
-1

 of NOM from five various sources.  This concentration was chosen 

as boreal shield lakes in Ontario often have NOM concentrations of 6 mg C·L-1
 or below (Keller 

et al., 2008).  Before inoculation, the DOC concentrations of FLAMES ranged from 0.6 to 1.3 

mg C·L
-1

, attributed mostly to the vitamin solution in the medium.  Prior to adding the NOM, 

solutions were brought up to a pH of 6.4 with 0.1 M NaOH (this is the pH we normally employ 

in our soft-water assays).  There were ten replicates of the control and NOM-inclusive solutions.  

Neonates were rinsed twice with FLAMES-without-EDTA to minimize transfer of EDTA and 

algae from the medium in which they were cultured.  During the bioassay, individuals were held 

in vials within 45 mL of solution with media changes occurring every other day.  Each day, 

animals were fed 1 mg particulate C·L-1
 of non-axenic algae to ensure Daphnia growth was not 

food-limited (Lampert and Schober 1990) with a combination of Pseudokirchneriella 

subcapitata and Ankistrodesmus falcatus. Animal survival and neonate production were scored 

every day.  Offspring were removed from solutions when the medium was changed.  Before each 

use, all containers were base, then acid washed to remove all organic materials and rinsed 7 

times in RO water.  Test solutions were prepared a minimum of 24-h in advance (to ensure they 

reached equilibrium) and were not aerated.   To quantify daphniid weights at the initiation of the 

experiment, 24 randomly chosen neonates were rinsed with de-ionized water and transferred to 

Teflon® strips placed within a large plastic Petri tray. Teflon® strips allowed for easy removal 

of dried Daphnia. Three neonates were placed on each Teflon® strip.  Animals were dried for 

48-h at 65℃ (Shapiera et al., 2011) then left to stand over silica gel in a desiccator for 20 minutes 

to allow animals and trays to cool.  Animals were removed from the Teflon® inserts using paint 

brushes with plastic bristles and weighed to the nearest µg on a Cahn 29 Automatic 
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Electrobalance (Cahn Instruments Inc., Cerritos, California).  All plates, inserts and brushes were 

base, then acid washed prior to use.  At the completion of the bioassay, six Daphnia from each 

treatment were dried and weighed in accordance with the above protocol; however, these larger 

animals were weighed individually.   

Chemical analyses: 

 The pH, dissolved oxygen and temperature of each test solution was measured at the start 

of the experiment; day 8; and at test finish.  At test initiation and completion, solutions were also 

analysed for alkalinity, colour, conductivity, ammonia, phosphorous, dissolved inorganic carbon, 

sulphate and chloride, calcium, magnesium, potassium and sodium.  The pH of solutions was 

measured with an Accumet® Basic AB15 pH Meter (Fisher Scientific), and pHC2001-8 

electrode (Radiometer Analytical, France) calibrated with buffer solutions of pH 4, 7 and 10.  

Dissolved oxygen and temperature were measured with a ProODO® digital professional series 

YSI handheld optical dissolved oxygen meter.  Alkalinity, colour, conductivity, ammonia, 

phosphorous, dissolved inorganic carbon, sulphate and chloride, calcium, magnesium, 

potassium, sodium and dissolved organic carbon (DOC) were measured by  chemists of the 

Ontario Ministry of the Environment, using their standard protocols (MOE 1983)   

NOM Characterization: 

 For absorbance measures, concentrated NOM solutions were diluted to 10 mg C·L
-1

 

using RO water with a normal conductivity of 18.2 MΩ.  Solution pH was adjusted to  7.0±0.1 

with a 0.1 M NaOH solution, then filtered with a 3-mL syringe (Luer-LOK Tip Franklin Lakes, 

NJ, USA)  fitted with a 0.45-µm Acrodisc® syringe filter (Pall Corporation, Ann Arbor, MI, 

USA).  Absorbances were measured at 254, 340 and 365 nm in a 1 cm quartz spectrophotometer 
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cuvet (VWR, West Chester, PA, USA) with a UV-Vis spectrophotometer (Thermo Scientific 

Genesys, G 10s UV-Vis, Madison, WI, USA)(Al-Reasi et al. 2012).  A specific absorbance 

coefficient (SAC), used as a colour and aromatic index, was obtained using the equation from 

Curtis and Schindler (1997) SAC = ((2.303* absorbance at 340 nm)/pathlength))/ ([DOC]/1000).  

A second measure of aromaticity, known as the specific UV absorbance (SUVA), was obtained 

following Weishaar et al. (2003), as: 

SUVA = Abs254 (m
-1

)/[DOC (mg·L
-1

)]  

To obtain the approximate molecular weight of the NOM molecules, absorbance at 254 nm was 

divided by the absorbance at 365 nm (Dahlen et al. 1996).  All absorbance measurements were 

made in triplicate for each NOM sample.  The average variance among triplicates was <1%.   

Fluorescence values for each NOM source were obtained from K. Livingstone (Wilfred Laurier 

University, unpublished).  Emission intensity was measured at 450 nm and 500 nm; the 

excitation wavelength of 370 nm was used to determine the fluorescence index (FI) as 

established by McKnight et al. (2001).  This was designated to indicate if the source of NOM 

was allochthonous (terrestrial in origin and washed into water bodies from the surrounding 

catchment) or autochthonous (produced within the water column from macrophytes, algae, 

bacteria, and/or microbes; or photodegradation of terrestrially derived NOM (Leenheer and 

Coure, 2003; Curtis and Schindler, 1997; McKnight et al., 2001; Al Reasi et al., 2011)).  The 

stream and wetland were expected to produce NOM that was more allochthonous in origin and 

the lakes more autochthonous.  FI values closer to 1.4 and below indicate that NOM is 

allochthonous in nature while those closer to 1.9 and above indicate more autochthonous NOM.   

Emissions and Excitation Matrices (EEMs) provide a unique fingerprint for NOM (Luider et al., 



30 
 

2004).  EEMs, in combination with parallel factor analysis (PARAFAC), designate the main 

components of NOM and establish relative component concentration, thereby allowing  NOM 

isolate composition to be compared within a data set to reveal trends between NOM composition 

and biological function (Nadella et al. 2009).   

Statistics 

 The five parameters used to measure daphniid health included the intrinsic rate of natural 

increase (r); mean generation time (T_bar); specific growth rate (g); time to primiparity; and 

mean clutch size.  The two life history parameters (T_bar and r) were calculated using the 

PopTools add-in for Microsoft Excel (http://www.ese.csiro.au/poptools).  T_bar designates the 

average amount of time separating births of one generation from the next; and r incorporates age, 

age-specific survival, and age-specific fecundity (Carey, 1993) to determine the immediate per 

capita increase rate in a population with established age distribution. 

Specific growth rates (g) (a measure of individual animal mass) were calculated according to 

Lampert and Trubetskova (1996) as:  

g =  

W2 is the dry mass of six individual surviving Daphnia from each treatment at test termination. 

Twenty-four random Daphnia were used to determine initial dry mass (W1).  Termination was 

on day 18 of the test (t2).  Fecundity was assessed as the mean number of neonates released per 

brood for each experimental Daphnia.  Time to primiparity in days was also recorded. The mean 

and standard error for r and T_bar were computed using Microsoft Excel with a Jackknife 

procedure (Miller, 1974; Efron, 1981) which is recommended for cladoceran populations (Meyer 

et al., 1986).   

ln W2 – ln W1 

t2-t1 

http://www.ese.csiro.au/poptools
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 I had intended to remove all cations from the NOM with the resinating procedure, but 

was only partially successful (Table 2).  Thus, before linking demographic factors of the 

daphniids with NOM characteristics, I first had to remove any affects of residual cations in the 

NOM solutions.  Thus I employed stepwise regression to see the degree to which the five 

demographic factors (T_bar, r, g, mean clutch and time to primiparity) could be predicted from 

the calcium, magnesium or nickel levels in the NOM solution.  There was in fact a significant 

influence of Ca for four of the metrics, and Ni for specific growth rate (Table 3), although the 

variance explained was modest.  Nonetheless, all subsequent analyses employed the residuals of 

these linear regression models (Table 3) to ensure we were examining only the NOM effect, not 

any artifactual effects of differences in Ca or Ni levels among treatments.   Means of residuals 

were compared with a one-way ANOVA, a post-hoc Dunnett’s procedure (P < 0.05) was used to 

determine differences between the control and the five NOM treatments for each demographic 

factor and Tukey Honestly Significant Difference (HSD) test (P < 0.05) was used to determine 

differences between each NOM for each demographic factor.  To determine if a relationship 

existed between each Daphnia demographic metric in the treatments and the six spectroscopic 

NOM characteristics, linear regression analysis was employed at P < 0.05 for hypothesis testing. 

Results 

 The addition of NOM (6 mg C·L
-1

) did not alter Daphnia survival over 18 days. The 

controls had 100% survival; three of the five NOM treatments had 100% survival while two 

NOM treatments, Daisy Lake (DL) and Lake Laurentian (LL) had 90% survival. 

 At 6 mg C·L
-1 

of NOM, the five demographic factors (T_bar, r, g, mean clutch, and time 

to primiparity) used to measure D. pulex/pulicaria health were affected by NOM addition. The 
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intrinsic rate of natural increase ranged by almost two fold among NOM treatments, from 0.24 

day
-1

 in DL to 0.44 day
-1

 in Clearwater Lake outflow (SSW).   The Dunnett’s procedure 

indicated that 3 NOM treatments produced values of r that differed significantly from the 

control, with DL NOM being lower, while r in all other treatments was higher than the control 

(Fig. 1B), SSW and Laurentian Wetland (LW) were significantly so.   NOM structure appeared 

to exert a strong influence (mostly positive) on a population-level response of Daphnia. Mean 

generation time was decreased by all of the NOMs, except DL, where it increased to 12.7 days 

(Fig. 1A). Addition of the four NOMs caused changes in T_bar (generation time) from 11.4 days 

(control) to 9.3 days (SSW). A similar result was observed for time to primiparity where DL 

(11.4 days) increased compared to the control (10.4 days) while all other NOMs decreased the 

juvenile duration, two of the NOMs did so to a significant degree: LW (8.6 days) and SSW (8.1 

days) (Fig. 1D). Exposure to most NOMs decreased the period of time Daphnia required to reach 

reproductive maturity, thus decreasing time between consecutive generations.  Specific growth 

rate was increased by all NOM sources, but only the SSW treatment growth rate of 3.3 µg ·day
-1

 

was significantly greater than the control rate of 2.3 µg ·day
-1

 (Fig. 1C). Mean clutch size 

increased with exposure to all five of the NOM isolates, it increased to a significant degree with 

the addition of NOM from Clearwater Lake (CW) (14.6 eggs·brood
-1

female 
-1

), SSW (17.4 

eggs·brood
-1

 experimental female
-1

) and LW (16.5 eggs·brood
-1

 experimental female
-1

) compared 

to the control (7.9 eggs·brood
-1

 experimental female
-1

) (Fig. 1E). 

 The five performance metrics of D. pulex/pulicaria were altered to varying degrees by 

the addition of five different NOM isolates at 6 mg C·L
-1

. The intrinsic rate of natural increase 

ranged 3.5-fold with the addition of NOM from
 
the five sources. The r attained with the addition 

of DL NOM was significantly less than all other NOMs, while r attained with LW and SSW was 
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significantly greater than all other isolates. Mean generation times amongst the five isolates were 

all significantly different from each other except between LW and SSW in the following order: 

LW < SSW < LL < CW< DL, with variation ranging just over two-fold. Time to primiparity also 

had a two-fold range in values across the five NOM isolates.  The order in increasing time was 

the same as mean generation time; however, CW was not significantly different than either LL or 

DL, but LL and DL were significantly different from each other.  Similar to T_bar, LW and SSW 

were not significantly different from each other. Specific growth rate ranged by 2.5-fold between 

the five NOM isolates, however, most of this range was due to LW, with the other four NOMs 

varying less than 0.5-fold.  The LW isolate produced a significantly greater growth rate than CW 

and DL. Mean clutch was significantly increased by LW compared to the other NOMs (with 

exception of SSW).  

 Time to primiparity and mean generation time were significantly negatively related to 

SAC and SUVA; spectroscopic techniques related to the colour and aromaticity of NOM. There 

was an almost four-fold range in SAC values, from 9.67 cm
2
mg

-1
(CW) to 38 cm

2
mg

-1
(LW) (Fig 

2), and a two-fold range in SUVA (Fig 3). Both specific growth rate and intrinsic rate of natural 

increase were moderately significant (P<0.1) in their positive relationship to SAC (Fig 2).  As 

the colour of the NOM darkened and aromaticity content increased, the time to reach 

reproductive maturity decreased, days between each generation decreased, animal weight 

increased and the population increased at a greater rate. This said, none of the other NOM 

characteristics (i.e. molecular weight, origin, relative percent humic acid and fulvic acid) were 

related to the five health measures (data not shown). The only performance metric not correlated 

to any NOM structure was mean clutch size. Over the test period of 18 days, the number of 

broods produced varied with NOM source. I hypothesised that with decreased time to primiparity 
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and a greater amount of time to reproduce in the experiment, mean clutch size would increase. 

There was a significant negative relationship with mean number of clutches and time to 

primiparity, and a significant positive relationship between mean number of offspring and mean 

clutch number (Fig 4). NOM appears to have a greater influence over time to reproductive 

maturity than clutch size. Since r incorporates fecundity and time to primiparity, its positive 

relationship to SAC had a greater dependence on time to primiparity, i.e. on maturation rate, 

rather than clutch size. 

Discussion  

 Exposing a Daphnia hybrid to four of five NOM sources caused an increase in somatic 

growth rate and mean clutch size.  Increases in r and g were positively correlated to NOM colour 

and aromaticity while T_bar and time to primiparity diminished with increases in colour and 

aromatic content.  These results are similar to those of Hofmann et al. (2012) who ascertained 

that when exposed to leaf litter leachates from more aromatic coniferous tree species, the 

cladoceran Moina macrocopa increased both reproductive output and body length when 

compared with exposure to two deciduous leaf litter leachates.  To similar effect, Suhett et al., 

(2011) found a HS from a Brazilian coastal lagoon increased the body length of M. macrocopa.  

Engert et al., (2012) also witnessed an increase in reproductive output of M. macrocopa at 25°C 

with exposure to the synthetic HuminFeed®. While Steinberg et al., (2010) determined that two 

concentrations of HuminFeed® increased reproductive output, they also recognised that a  HS 

from Brazil decreased offspring numbers in M. macrocopa, and that both HuminFeed® and the 

Brazilian HS decreased reproduction, body growth and time to primiparity in the clone M. 

micrura.  Steinberg et al., (2010b) also described a decrease in reproduction, this time in 

Daphnia magna, when they were exposed to HuminFeed®.  The influence that NOM and its 
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components have on Cladocera appears to depend both on the structural make-up of the NOM as 

well as the species under investigation.   

 It has long been recognised that bacteria can act as a food source for Cladocera (Gellis 

and Clark 1935; Salonen and Hammer 1986; Kankaala 1988: Taipale et al., 2009), and as 

dissolved organic matter (DOM) is consumed by bacteria as a food source (Murray and Hodson 

1984; Pace et al., 2004; Cole et al., 2006), it was reasonable to surmise that the various NOMs 

used in this study may have contained bacteria that served as an additional food source for the 

Daphnia (which could have caused an increase in growth and reproductive output).  To test this 

hypothesis, an aerobic colony count was performed to determine the number of viable aerobic 

and anaerobic bacteria per mL of each NOM isolate (except LL), at the concentration of 6 mg 

C·L
-1 

(this could not be done for LL as too little of the sample remained).  This same count was 

performed using our synthetic soft-water medium (FLAMES) both with and without EDTA—the 

latter being the medium into which the NOM isolates were diluted.  Each solution was incubated 

for 48 hours at a temperature of 35°C in plate count agar solution (Government of Canada, 

2001). Bacterial counts ranged from 66 colony forming units (CFU) to 550 CFU, with the 

control containing the least and FLAMES-without-EDTA and LW containing the highest counts 

(Table 4).  There were no significant differences in the quantity of bacteria between any of the 

solutions tested. These counts suggested that differences in Daphnia growth and reproduction 

among NOM isolates were not attributable to differences among isolates in the quantity of 

bacteria present that could have fed the daphniids.   

 Furthermore, during the resinating process the pH of each NOM solution was dropped to 

approximately 2, since the optimal pH range for mesophilic bacteria is narrow (Rousk et al., 
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2010) (between five and eight) (Slonczewski et al., 2009) suggests that the number of bacteria 

surviving at such a low pH would be minimal.  

 Another possibility is that not the quantity, but the quality of the bacteria which were 

present that caused the improvements in Daphnia life history traits.  Several studies have noted 

differences in Daphnia health when fed various bacterial diets.  Diets comprised solely of 

bacteria have noted reduced somatic growth (Brett et al., 2009; Freese and Martin-Creuzburg 

2013; Martin Creuzburg et al., 2011; Taipale et al., 2012), increased time to primiparity (Brett et 

al., 2009) and increased mortality (Freese and Martin-Creuzburg 2013; Martin-Creuzburg et al., 

2011; Taipale et al., 2012).  These are usually considered to be the result of bacteria lacking 

sterols and polyunsaturated fatty acids (Martin-Creuzburg et al., 2011).   

However, mixed diets of bacteria and algae (where bacteria make up less than 50% of carbon 

supply) have been found to increase somatic growth compared to a pure algal diet possibly due 

to improved supply of vitamins (Freese and Martin-Creuzburg 2013).  Bacteria-supplemented 

diets result in reduced fecundity, suggesting the results obtained in this study were not due to 

variations in the quality of bacteria within NOM treatments. 

 Particulate carbon in aquatic environments is available for uptake by zooplankton 

(Hessen et al., 1990); recent stable isotope studies have found that terrestrially derived 

particulate organic matter may contribute significantly to Daphnia diet (Pace et al., 2004).  Since 

NOM contains a fine-particulate carbon portion, it is possible that this fraction of the NOM may 

have acted as a nutritional supplement.  NOM is known to contain small amounts of sterols such 

as cholesterol (Schmitt-Kopplin et al., 1998; Schulten, 1999; Steinberg et al., 2002).  Not only is 

cholesterol an essential nutrient (Martin-Creuzburg and Von Elert 2004) for growth and 

reproduction (Wacker and Martin-Creuzburg 2007), it may also be considered the primary sterol 
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for crustaceans as it is known to be a precursor of steroid hormones as well as a structural 

component of cell membranes (Goad 1981).  De Lange and Arts (1999) found that seston sterol 

content was a good predictor of Daphnia growth.  While NOM from the various sources may be 

acting as a nutritional supplement, this does not explain the relationship between r, T_bar, time 

to primaparity, g, and aromatic content of NOM isolates.   

I hypothesize that the effects of NOMs with greater colour and higher concentrations of 

aromatic compounds (which are associated with greater somatic growth and increased population 

growth) may have been due to an indirect effect of the NOM.  Waters of concentrated (darker) 

colour are often associated with higher densities of Daphnia (Wissel et al., 2003a; DeSellas et 

al., 2008), as well as with longer-bodied Daphnia (Yan et al., 2008).  These changes in Daphnia 

populations are often associated with transitions in predation pressure from planktivorous fish 

(visual predators dominant in clearer waters) to Chaoborus (a zooplankton which preys upon 

Daphnia in darker waters).  Ten of 14 studies in a review by Riessen (1999) indicated that 

Daphnia responded to the presence of Chaoborus and Chaoborus kairomones (a chemical cue 

released by predators) with an increase in body size as well as delayed times to reproduction and 

associated reductions in r.  However, there is evidence that contradicts this.  A study by Spitze 

(1991) observed changes in Daphnia showing comparable increase in body size, but conversely 

demonstrated reductions in time to maturity and increased reproduction when in the presence of 

Chaoborus.  These findings support what I observed in this present study regarding darker 

NOMs producing Daphnia with greater somatic growth, higher r and decreased times to 

primiparity. 

 I hypothesize that Daphnia may have an internal mechanism which interprets changes in 

water colour as a visual cue, indicating a change in predation pressure from fish to Chaoborus, 
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and results in the initiation of morphological changes in size.  Visual cues are known to control 

Daphnia orientation (Ringelberg 1964) and swimming behaviour (Daan and Ringelberg 1969). 

Young et al., (1984) found D. magna responded to changes in light distribution by altering their 

rate of filter limb beating; as the proportion of light exposed to the side of the Daphnia’s head 

increased, beat rate decreased.  The ratio of top light to sideways scattered light is interpreted by 

Daphnia as a measure of suspended particles (food) density.  Visual cues have a major influence 

on Daphnia, from orientation in the water, swimming behaviour and feeding rates.  It is not 

unreasonable to think that a stimulus-response system (Ringelberg and Flik 1994) is causing the 

morphological changes seen in Daphnia which dwell in darker waters as a response to changes 

in predation.  

 The uptake of NOM in aquatic organisms (Steinberg et al., 2003) is known to cause mild 

oxidative stress in several species.  Symptoms include the increasing concentrations of reactive 

oxygen species (ROS) in two Baikalian gammarids (Timofeyev et al., 2006), Gammarus 

lacustris and Gammarus tigrinus (Timofeyev et al., 2004), as well as raising concentrations of 

the longest lived ROS, hydrogen peroxide, in Daphnia magna (Steinberg et al., 2010).  These 

conditions may bring about an effect known as hormesis, in which mild stress results in 

biologically beneficial results (Mushak 2007).   Effects include eliciting the formation of a stress 

defense system which leads to improved metabolic health and extended lifespan such as 

described in the mitohormesis theory (Ristow and Zarse 2010).  While mitohormesis (an increase 

in the formation of reactive oxygen species in the mitochondria, leading to an increase in stress 

resistance) is most often associated with extended lifespan, several authors have suggested other 

benefits observed from contact with NOM.  Some such benefits involve increased body size and 

increased reproduction in the cladoceran species, Moina macrocopa (Engert et al., 2012; 
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Hofmann et al., 2012) while Meinelt et al., (2007) found HSs rich in condensed highly aromatic 

structures (high SUVA) reduced growth of the water mould Saprolegnia parasitica.  The authors 

suggested that materials characterised by high SUVA values were also associated with greater 

internal oxidative stress.  This hormetic effect may be the cause of increased reproduction and 

reduced time to primiparity in this study. 

 NOM and some of its components have been known to have hormone-like effects. Male 

offspring production is increased in cladoceran species such as D. magna (Euent et al., 2008) and 

Moina macrocopa (Suhett et al., 2011) in the presence of HSs and NOM.  Terpene analogs and 

juvenile hormones are known to trigger male production in cladocerans (Tatarazako and Oda 

2007); this is most likely due to terpenes which are building blocks of HSs (Rostad and Leenheer 

2004).  

 Alkylphenols in HSs are considered to have an estrogenic mode of action for 

Xiphophorus helleri, the swordtail fish which demonstrated dose dependent feminization in the 

presence of a synthetic HS (Meinelt et al., 2004).  An estrogenic mode of action was also 

postulated for the feminization and increase of the estrogenic biomarker estrogen receptor (ER-

mRNA) found in Xenopus laevis, the clawed frog, when exposed to the same synthetic HS as X. 

helleri (Lutz et al., 2005).  Several studies have found NOM isolates and HSs to modulate 

reproduction in the  nematode Caenorhabditis elegans (Höss et al., 2001; Steinberg et al., 2002) 

which is considered to be due in part to alkylaromatics (Höss et al., 2002) which are key 

components of HSs (Schmitt-Kopplin et al., 1998; Schulten, 1999). 

Estrogenic activities were discovered in mice exposed to the humic acid portion of an 

isolate of a peat bog using the Allen-Doisy test (Klöcking and Helbig 2005 and references 

within).  While Janosek et al., (2007) determined that eight out of 12 commercially available HSs 
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(including NOM, HA and FA) elicited anti-estrogenic effects to a human cell line, having lowest 

effect concentrations ranging from 16 to 150 mg C·L
-1

.  However, Chen et al., (2012) observed 

that—at low concentrations and after irradiation—three NOM sources significantly increased 

estrogenic activity of the natural estrogen 17β-estradiol (E2).  Solar irradiation of NOM caused a 

decrease in absorbance (Chen et al., 2012) which was accompanied by release of molecules with 

lower mean molecular size (Bertilsson and Tranvik 1998).  Various functional groups of NOM, 

such as phenolic hydroxyl, have been found to possess estrogenic activity.  Chen et al., (2012) 

suggested that the molecules (which are released during irradiation) contain some of these active 

functional groups; alkylaromatics may also be responsible for the estrogenic activity found in 

these NOM isolates (Chen et al., 2012).   

I measured the absorbance of the five NOM solutions prior to exposure to the chamber 

environment and before the addition of any Daphnia.  To observe if the NOM was degrading, the 

absorbance of the same solutions was measured once again, 48-h later (48-h being the standard 

change cycle for the synthetic soft water medium housing Daphnia in this study).  SAC values 

decreased (Table 5), suggesting it was possible that the 32-h of exposure to 100 µmol m
-2

 s
-1 

amount of light was sufficient to increase estrogenic activity. While estrogen has not been 

observed to affect Daphnia magna fecundity, the synthetic hormone 17α-ethinylestradiol (EE) 

was found to decrease time to primiparity in the cladoceran Sida crystalline (Jaser et al., 2003) 

while the natural hormone 17β-estradiol decreased time to primiparity and increased 

reproductive output in the cladoceran Diaphanosoma celebensis (Marcial and Hagiwara 2007).  

Similar observations of increased fecundity and decreased primiparity have been observed 

among other crustaceans such as the copepod Acartica tonsa (Andersen et al., 1999), and the 

amphipod Gammarus pulex (Watts et al., 2002) when exposed to the same estrogen hormones as 
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the two cladocerans.  The Daphnia hybrid in this study may behave similarly to S. crystallina 

and D. celebensis when exposed to estrogen.  The aromatic ring within estrogen may explain the 

link between time to primiparity and SAC.    

In this study I have shown that NOM isolates from five different locations affected a 

native Daphnia pulex/pulicaria hybrid to varying degrees.  Four out of the five isolates caused an 

increase in reproduction, intrinsic rate of natural increase, somatic growth, and a decrease in time 

to primiparity and mean generation time.  Except for reproduction, all of these parameters were 

positively correlated with the aromaticity of the NOM isolates.  The four-fold range in intrinsic 

rate of natural increase found in this study is of greater magnitude than those found by Ashforth 

and Yan (2008) with a change in calcium concentration from 0.5 to 2 mg·L-1
 at three different 

temperatures, as well as an 8°C change (20°-28°C) in temperature.  Changes in life history traits 

may be due to a triggering of a response to water colour, to reflect predator vulnerability, 

hormesis due to mild oxidative stress, or a hormonal response.  Far from inert in nature, NOM’s 

effects in this study have yielded results which are commensurate with those of both calcium 

declination and seasonal fluctuations in temperature to the life cycles and population growth of 

Daphnia.  NOM’s recent rising trends make its effects even more salient as various aquatic biota 

adapt to the transition.   

Future studies which may be useful in testing the three hypotheses I have presented may 

include: assessments of how alterations of light intensity over chronic periods of time to Daphnia 

in darker waters yields changes to life history traits; investigations into which genes are regulated 

by the presence of NOM and how this relates to NOM characteristics; and explorations into 

ROS’s potential to alter reproduction in Daphnia at low concentrations.  Additionally (and not 
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testing my hypotheses), demonstrating if and when the effects of NOM become negative to 

Daphnia could be most useful. 
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Table 1.  NOM collection sites, including several chemical characteristic site descriptions. No samples of the outflow of Clearwater 

Lake were taken.  Chemical data for Lake Laurentian is from July 2005, all other site data are from June and July of 2011. 

NOM Type Coordinates 
DOC 

(mg·L-1
) 

pH Conductivity (µS·cm
-1

) 
Ni 

(µg·L-1
) 

Cu 

(µg·L-1
) 

Clearwater Lake (CW) Lake 46224’N, 81245’W 3 6.72 58.8 42.8 8.5 

Daisy Lake (DL) Lake 46450’N, 80888’W 2.5 6.71 33.3 55.3 8.9 

Lake Laurentian (LL) Lake 46447’N, 80961’W 7.1 6.46 146 56.0 15.0 

Clearwater Lake Outflow 

(SSW) 

Stream 462244’N, 81246’W      

Laurentian Wetland (LW) Wetland 46450’N, 80942’W 65.75 4.62 30.2 303.6 236.2 
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Table 2. Major ion and nickel concentrations of NOM isolates at a nominal concentration of 6 mg C·L-1
 combined with the synthetic 

soft water medium, FLAMES-without-EDTA. 

 Ca 

(mg L
-1

) 

Mg 

(mg L
-1

) 

Na 

(mg L
-1

) 

K 

(mg L
-1

) 

Cl 

(mg L
-1

) 

SO4 

(mg L
-1

) 

Ni 

(µg L
-1

) 

Control 2.64 0.735 0.89 0.345 0.48 9.45 0 

CW 8.28 2.28 14.7 0.98 19.1 26.4 40.27 

DL 2.76 0.83 4.87 0.37 2.1 14.3 15.23 

LL 9.6 2.74 22.4 1.12 40.2 17.1 46.91 

SSW 6.92 1.8 21.2 1.1 31.4 15.3 31.55 

LW 2.46 0.73 4.11 0.365 3.54 8.4 4.94 
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Table 3. Results from stepwise regression were used to determine the ion of greatest influence on each health metric.  These figures 

were used to measure Daphnia health and for the regression equation obtaining residuals.   

Metric Ion Regression Equation R
2
 P 

Mean generation time, T_bar Ca -.190x + 11.759 .250 0.000 

Intrinsic rate of natural increase, 

r 

Ca .009x + .285 .189 0.000 

Specific growth rate, g Ni .013x + 2.595 .365 0.000 

Time to primiparity Ca -.178x + 10.438 .138 0.004 

Mean clutch Ca .507x + 10.270 .097 0.016 
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Figure 1. Five health matrices ((A) cohort generation time ( T_bar); (B) intrinsic rate of natural 

increase (r); (C) specific growth rate (g); (D) time to primiparity; (E) and mean clutch) for a 

Daphnia pulex/pulicaria hybrid exposed to five different NOM isolates. * indicates significant 

difference (P = 0.05) between NOM isolate and control.  Error bars are standard error. 

Clearwater Lake (CW), Daisy Lake (DL), Lake Laurentian (LL), Outflow of Clearwater Lake 

(SSW), and Laurentian Wetland (LW) 
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A.       B. 

   

C.       D. 

   

Figure 2. The regression between four of the Daphnia health matrices ((A) cohort generation 

time (T_bar); (B) intrinsic rate of natural increase (r); (C) time to primiparity; (D) and specific 

growth rate (g)) and specific absorption coefficient (SAC cm
2
mg

-1
 an index of aromaticity and 

colour).  Regression analysis was run on the residuals of a linear regression with calcium for r, 

T_bar, time to primiparity, and with nickel, for g. 
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A.       B. 

    
Figure 3. The regression between (A) mean generation time (T_bar, days), and (B) time to 

primiparity and specific UV absorbance (SUVA L·mg
-1

M
-1

 an index of aromaticity). Regression 

analysis was based on the residuals of linear regression between calcium and T_bar. 
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A.       B. 

   
Fig 4.  The relationship between the (A) mean number of offspring produced and the mean 

number of clutches for each of the NOM isolates during the 18 day exposure; and the 

relationship between (B) the mean number of clutches produced and the mean time to 

primiparity for each of the NOM isolates during the 18 day exposure. 
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Table 4. Bacterial counts (± relative uncertainty) for the control, the solution used to dilute the 

NOM isolates (FLAMES without EDTA), and the solutions containing 6 mg C·L-1
 of four out of 

the five NOM isolates used in the study. 

Solution Colony forming unit (CFU) 

Control 66 ± 5.94 

FLAMES without EDTA 550 ± 53.9 

Clearwater Lake 420 ± 46.62 

Daisy Lake 100 ± 7.4 

Outflow of Clearwater Lake 290 ± 38.57 

Laurentian Wetlands 550 ± 53.9 
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Table 5. The decrease in absorbance at 340 nm after 48 hours of exposure to a 16-hr light and 8-

hr dark cycle at 20 °C of solutions containing 6 mg C·L-1
 of the five NOM isolates. 

Solution % Decrease in Absorbance 

Clearwater Lake 0.0 

Daisy Lake 8.9 

Lake Laurentian 16.6 

Outflow of Clearwater Lake 15.1 

Laurentian Wetlands 6 
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Chapter 2 

 

Effects of the Structure of Natural Organic Matter (NOM) on the Amelioration of Acute 

Nickel Toxicity to a Wild Daphnia 
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Abstract 

Natural organic matter (NOM) complexes metals and decreases their toxicity to aquatic biota. 

While increasing NOM concentration increases mitigation of metal toxicity, NOM structure may 

also play a role, but this structural effect of NOM on metal toxicity has received little study.  

Hence, I investigated how the structural heterogeneity of NOM affects nickel toxicity to a native 

Canadian Daphnia pulex/pulicaria hybrid that had been isolated from a lake with a history of 

metal contamination.  To quantify structure, NOM isolates from thirteen different natural sources 

were characterized with six different spectroscopic techniques.  The addition of 7 mg C·L-1
 of 

NOM decreased toxicity, i.e. increased Ni LC50s; seven of the isolates did so to a significant 

degree.  Both specific absorbance coefficient (SAC) and specific UV absorbance (SUVA) 

techniques, used as aromatic indices, were positively related to toxicity amelioration.  The 

protective effect of the NOM was best described by segmented regression rather than linear 

regression with ameliorative effect of NOM increasing to a plateau at 19.3 cm
2
mg

-1
 for SAC and 

3.03 L·mg
-1

m
-1

 for SUVA.  Phenolic functional groups within NOM structure bind with metals 

and seem to be the main constituents alleviating metal toxicity. There is growing use of the 

Biotic Ligand Model (BLM) in setting standards for metal toxicity and a quality factor (F) has 

been used to quantify amelioration differences in NOM structure.  However, the addition of the 

quality factor F, improved the R
2
 between measured and predicted Ni LC50s by 5%. 
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Introduction: 

 Natural organic matter (NOM) is a ubiquitous (Ertel et al. 1984; Guthrie et al. 2005) 

heterogeneous (Hudson et al., 2007) substance made up of decomposed woody plant debris, 

decayed animals, and microbes (Al-Reasi et al. 2011, Timofeyev et al. 2004, Chem et al. 2012)   

found in ground and surface waters (Ertel et al., 1984). Its composition depends on the chemistry 

and physics of the aquatic environment and the available parent molecules in play (Senesi 1990).  

NOM is largely comprised of humic substances, the main constituents of which are humic acid 

(HA) and fulvic acid (FA) (Thurman 1985; Al-Reasi et al. 2011; Schindler et al. 1992; Sekaly et 

al., 1999; Guthrie et al., 2005).   These acids are polydisperse macromolecules (Baker and 

Khalili 2003) with a wide range of functional moieties (Celo et al., 2001), including carboxylic, 

phenolic (Sekaly et al., 1999), nitrogenous, and sulfitic sites (Takacs et al. 1999) which are 

known to complex with cationic divalent metals (Doig and Liber 2007).  When NOM complexes 

and chelates with metals (Hutchinson and Sprague, 1987), the resulting metal-organic matter 

complexes are too large and polar to cross biological membranes (Richards et al. 2001);  thus, 

the NOM has a protective effect as the formerly dissolved, potentially toxic metals become 

unavailable to aquatic organisms (Al-Reasi et al. 2011; Baken et al., 2011).  As functional group 

make-up varies with NOM source, it follows that the protective abilities of NOM against metal 

toxicity would vary among sources (Al-Reasi et al., 2011). 

 Recent advances in absorbance and fluorescence techniques (Fellman et al. 2010) have 

allowed for easy, non-invasive (Senesi et al. 1990), cost effective and reliable (Jaffe et al. 2008) 

means of characterizing NOM.  Absorbance and fluorescence spectroscopy are able to 

distinguish molecular variability between natural sources of NOM as well as between humic and 

fulvic acid portions of an NOM source (Senesi et al., 1991).  Absorbance metrics such as the 
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specific absorbance coefficient (SAC) (a measure of relative NOM colour (Curtis and Schindler) 

and aromaticity (Schwartz et al., 2004)), the specific UV absorbance (another measure of 

aromaticity (Weishaar et al., 2003), and the ratio of 254 nm and 365 nm (a proxy inversely 

related to molecular weight (Helms et al., 2008) have all been useful in characterizing NOM 

samples in metal toxicity studies.  Considered to be more sophisticated than absorbance 

measures (Luider et al., 2004), fluorescence spectroscopy is a sensitive (Borisover et al. 2009), 

rapid, and precise method for characterizing NOM (Fellman et al. 2010).  It provides information 

on the molecular size, chemical composition and aromatic properties of humic substances 

(Hudson et al. 2007).  It has also provided insight into the relationship between toxicity and 

metal bioavailability.  Such indices include the fluorescence Index (FI) (McKnight et al. 2001) 

which distinguishes allochthonous (terrestrial in origin) from autochtonous (produced within the 

water column from macrophytes, algae and bacteria, or microbrial and photodegradation of 

terrestrially derived NOM (Leenheer and Coure, 2003; Curtis and Schindler, 1997; McKnight et 

al., 2001; Al Reasi et al., 2011) origin of the FA portion of the NOM.  There are also Emissions 

and Excitation Matrices (EEMs) which are considered more sensitive than other techniques, 

providing a unique finger print for NOM (Luider et al. 2004).  Although the fluorescent 

structures make up only a minor portion of humic substance composition, their variety permits 

useful chemical characterization of the NOM,  i.e. differentiating and classifying various humic 

substances based on their origin and nature (Senesi et al. 1991).  EEMs in combination with 

parallel factor analysis (PARAFAC) designate the main components of NOM and establish their 

relative concentrations, thereby allowing data within the same study to be compared and trends 

in quality identified (Nadella et al. 2009).  These spectroscopic characteristic techniques 

described above have been used to identify specific characteristics of NOM which correspond to 
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greater protection against metals in toxicity bioassays. These studies have found that more 

allochthonous (low FI values) (Playle, 1998; Luider et al., 2004; Al Reasi et al., 2011, 2012) 

based NOMs are darker in colour, have higher SAC values (MacDonald et al., 2002; Schwartz et 

al., 2004; Glover et al., 2005a; Gheorghiu et al., 2010), are  more aromatic in nature (high 

ABS254) (Pempkowiak et al., 1999; De Schamphelaere et al., 2004; Luider et al., 2004), have 

higher molecular weight (Kozuch and Pempkowiak 1996; Al Reasi et al., 2011, 2012) and 

greater HA concentration (based on EEMs) (Ryan et al., 2004; Nadella et al., 2009; Gheorghiu et 

al., 2010; Al Reasi et al., 2011, 2012).  These allochthonous NOMs are associated with greater 

protection against metal toxicity to aquatic biota.  Acute toxicity studies have indicated a positive 

relationship between SAC and NOM protection for Cu (Schwartz et al., 2004; Al-Reasi et al., 

2012) and Pb (Schwartz et al., 2004) , while Al-Reasi et al., (2012) also demonstrated a negative 

correlation with acute Cu toxicity and the molecular weight of NOM.  Decreases in acute Cu and 

Cd toxicity have also been associated with lower FA content and higher HA content, indeed, 

NOM with higher FI values has been correlated with decreases in Pb and Cd toxicity (Al-Reasi 

et al., 2011).  There are no current studies focusing on effects of the composition of NOM on Ni 

toxicity to freshwater biota. 

 The Canadian Council of Ministers of the Environment (CCME), the United States 

Environmental Protection Agency (EPA), and European Union are currently using the Biotic 

Ligand Model (BLM) (Deleebeeck et al., 2008, and McGeer in press) to quantify the toxicity of 

metals in natural waters. In BLMs, only one structural parameter of NOM is taken into account: 

the quantity of HA.  When HA% has not been measured or included in toxicity prediction with 

the BLM it is often generalized to 10% BLMs (The Biotic Ligand Model Windows Interface, 

2005).  NOM-quality studies which have attempted to incorporate the actual HA% parameter 
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into the model have had mixed results, from substantial to only marginal improvements.  Ryan et 

al. (2004) found moderate improvements with the inclusion of HA%, however they described the 

model as insufficient in explaining differences between NOM source with the inclusion of NOM 

concentration and HA% for Cu toxicity.  Al-Reasi et al. (2012) found a much stronger 

relationship between predicted and measured Cu LC50s when relative HA% representing specific 

NOM sources was included in the BLM.  Other methods used to take NOM structure into 

consideration include altering dissolved organic carbon (DOC) with a so-called “quality” factor 

so concentration represents aromatic content (Richards et al., 2001).  This alteration improved 

the predictive capabilities of a Pb BLM for rainbow trout (Oncorhynchus mykiss) (MacDonal et 

al. 2002).  

 Nickel is considered to be a magnesium ionoregulator to Daphnia (Pane et al., 2003b) 

and a respiratory toxicant to fish (Pane et al., 2003) at acute concentrations. It was first 

considered to be appropriate for adoption into a BLM model by Wu et al. (2003).  At that time, 

little toxicity data existed for Ni and even less dealt with Ni-organic matter complexation.  Due 

to Ni’s low binding affinity to NOM and the high concentrations required for acute toxicity, 

NOM concentration was not thought to play a major role in Ni mitigation (Wu et al., 2003).  

More recently, this opinion has been shifting, as, for example, Ashworth and Alloway (2008) 

were surprised to find the high affinity Ni had for sewage sludge.  Moreover, a study by Kozlova 

et al., (2009) discovered that not only did NOM concentration significantly alter LC50 

concentration of acute Ni to Daphnia pulex, but the protection offered by two different NOM 

sources varied as well.  A study by Baken et al. (2011) observed a 10-fold difference in Ni 

affinity for 23 distinct NOM sources.  Though Baken et al. (2011) studied the largest number of 

NOM sources, their study did not involve toxicity to organisms.  The above results suggest that 
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NOM structural differences will indeed influence Ni toxicity to biota, but this has yet to be tested 

for several NOM sources.  Additionally, there have been no attempts to relate NOM structural 

variability to Ni mitigation.   

  My objectives were: 1) to determine if the protective effects of NOM on acute Ni toxicity 

to a wild Daphnia pulex/pulicaria clone differed among various NOM isolates; 2) to establish 

which NOM characterization method best described the relationship between NOM structure and 

the mitigation of Ni toxicity; and 3) to verify if a BLM could be modified, and its predictions of 

Ni toxicity to daphniids improved, by including the best NOM characterization method. 

Material and Methods 

NOM collection:  

 NOM collections were made using a portable reverse osmosis (RO) apparatus.  NOM 

isolates obtained from RO extraction have demonstrated similar protective qualities to those of 

natural waters (De Schamphelaere et al., 2004; De Schamphelaere et al., 2005).  It is also the 

most common collection method used with metal toxicity studies (Al-Reasi et al. 2011) and is 

one of the most chemically mild methods used in obtaining NOM (Perdue 2009).  The NOM 

collection sites spanned almost 1000 km in Ontario, and were selected to vary in recent logging, 

industrial and fire history, factors we assumed would all influence NOM composition.  In 

particular, NOM was collected at three sites from White River, five sites from Sudbury, and five 

sites from the Muskoka region.  The streams, wetlands and lakes which made up the site 

locations (Table 1) were chosen to cover water bodies which had been affected by various 

stressors including; fire, logging, metal pollution, acid rain and as well as pristine sites.  Sites 

were also chosen to ensure a range of NOM colour as streams and wetlands are known to have 
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greater terrigenous content  (Wong 2009) due to inputs from soil material (Leichtfried, 2007) as 

well as groundwater and leaf litter (Allan, 1995).   In an effort to remove all minor and major 

cations from the NOM, a cation exchange resin charged with 4 N HCl was utilised (Schwartz et 

al., 2004); in this process, the pH of NOM concentrates was decreased to approximately 2 (Resin 

USF C-211 (H) Cation, Siemens).  Following this resination step, NOM isolates were kept cold 

at 4°C and dark prior to use in the bioassays.  

Culture Toxicity Testing: 

 All bioassays were performed with a Daphnia pulex/pulicaria hybrid obtained from 

McFarlane Lake in Sudbury, Ontario, a region with a long, well-studied history of metal 

contamination (Gunn, 1995).  .  This pond (pulex) / lake (pulicaria) hybrid is quite common in 

Sudbury area lakes and is among the initial Daphnia to re-settle lakes recovering from high 

metal concentrations and acidification (Yan unpub. Data).  The daphniid cultures were 

maintained in the FLAMES laboratory at the Dorset Environmental Science Centre, at 20° C in 

Conviron E7/2 growth chambers programmed to provide a 24-h  deil cycle of 16 daylight hours 

(at 100 µmol m
-2

 s
-1 

) and 8 night hours of darkness, with 20 minute crepuscular transitions .  At 

the time of this study, this hybrid line had been maintained for three years in this fashion.  D. 

pulex/pulicaria were cultured in 1 L glass beakers in approximately 800 ml of the soft water 

FLAMES medium (Celis-Salgado et al. 2008).  The medium was prepared and aerated at least 24 

hours prior to use. Animals were fed 4 mg C·L
-1 

with a non-axenic algal combination of 

Pseudokirchneriella subcapitata, Scenedesmus obliquus, Chlorella kessleri, Cyclotella sp., and 

Ankistrodesmus falcatus.  All algae were procured in pure stocks from the Canadian 

Phycological Culture Centre (previously the University of Toronto Culture Collection); they 

were raised in batch cultures in the FLAMES laboratory.  For the stock daphniid cultures, each 
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beaker was initiated with thirty Daphnia; beakers were inoculated with algae three times a week 

and the medium was changed twice a week.  
 

 Static acute 48-h toxicity assays were conducted using neonates of less than 24-h, without 

the use of the first brood (Environment Canada, 1996).  The end point was immobility at the 

completion of 48-h, which was assumed to indicate mortality.  The animals were not fed (OECD 

2004) for the duration of the test.  The soft water medium, FLAMES, was modified for the 48-h 

tests by removal of the main chelator, ethylenediaminetetraacetic acid (EDTA), resulting in 

FLAMES-without-EDTA.  A preliminary test demonstrated 100% survival with Daphnia in 

FLAMES and EDTA-free-FLAMES for up to four days.  NOM solutions were brought up to a 

pH of 7.0 with 0.1 M NaOH and FLAMES-without-EDTA was spiked with the NOM solution to 

obtain a final NOM concentration of 7 mg C·L
-1

 (Table 2).  For each NOM source, a series of 

solutions were prepared: one control of FLAMES-without-EDTA, one with only NOM and the 

remaining four solutions contained NOM and Ni.  The Ni concentrations were 500, 1000, 2000, 

and 4000 µg·L
-1

 to ensure the acute LC50 was within range as well as incorporate a Ni 

concentration which killed 100% of exposed Daphnia.  Each Ni treatment of each NOM source 

had six replicates, each containing eight animals held in 130 mL of test solution.  Before use, all 

containers were base and acid washed to completely remove organic materials and metals.  

Animals were rinsed twice in FLAMES-without-EDTA to minimize transfer of EDTA and algae 

from the culture medium.  Test solutions were prepared 24 hours in advance and not aerated.  

Nickel was added as NiCl2 due to preliminary test findings that only minor differences between 

the LC50s obtained with NiCl2 and NiSO4 existed.  

 Chemical analysis: 
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 The pH, dissolved oxygen, and temperature of each test solution were measured at the 

initiation of the experiment and at test completion.  At the initiation of the test, solutions were 

also analysed for alkalinity, colour, conductivity, ammonia, phosphorous, dissolved inorganic 

carbon, sulphide, chloride, calcium, magnesium, potassium, and sodium.  At time 0 and test 

completion, two 10 mL samples were collected for total nickel and dissolved nickel analysis.  

Each sample was acidified to 1% with 70% reagent grade nitric acid.  Dissolved nickel samples 

were filtered with a 0.45 µm Acrodisc® HT Tuffryn Membrane, PALL, NY filter.   

 The pH of solutions was measured with an Accumet® Basic AB15 pH Meter, Fisher 

Scientific and pHC2001-8 electrode (Radiometer analytical, France) calibrated with buffer 

solutions of pH 4, 7 and 10.  Dissolved oxygen and temperature were measured with a ProODO 

digital professional series YSI.  Alkalinity, colour, conductivity, ammonia, phosphorous, 

dissolved inorganic carbon, sulfate and chloride, calcium, magnesium, potassium, sodium and 

DOC were measured by the Ministry of the Environment at the Dorset Environmental Science 

Centre following their standard methods (MOE 1983).   Ni was measured via inductively coupled 

plasma atomic emission spectroscopy (ICPAES, Varian Inc.) at Wilfred Laurier University, 

Waterloo, Ontario.  Measured Ni concentrations were within 10% of nominal values.  

NOM Characterization: 

 NOM quality was characterized by absorbance and fluorescence measurements. For 

absorbance measures, NOM solutions (10 mg C·L
-1

) were prepared by diluting the NOM stock 

solutions with the appropriate quantity of water which had been run through a double cycle of 

reverse osmosis and measured a present conductivity of 18.2 MEG Ω.  Solutions were adjusted 

to a pH of 7.0 ± 0.1 with a 0.1 M NaOH solution and filtered with a 3-ml syringe (Luer-LOK Tip 

Franklin Lakes, NJ, USA)  fitted with a 0.45-µm Acrodisc® syringe filter (Pall Corporation, Ann 
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Arbor, MI, USA).  Absorbance was measured at 254, 340 and 365 nm in a 1 cm quartz 

spectrophotometer cuvet (VWR, West Chester, PA, USA) with a UV-Vis spectrophotometer 

(Thermo Scientific Genesys, G 10s UV-Vis, Madison, WI, USA)(Al-Reasi et al. 2012).  A 

specific absorbance coefficient (SAC), used as an aromatic index, was obtained using the 

equation from Curtis and Schindler (1997) SAC = ((2.303* absorbance at 340 nm)/(pathlength))/ 

([DOC]/1000).  A second measure of aromaticity, known as the specific UV absorbance 

(SUVA), was obtained with the following equation: 

SUVA = Abs254 (m
-1

)/[DOC (mg·
L-1

)]
 
 (Weishaar et al., 2003) 

To obtain the approximate molecular weight of the NOM molecules, absorbance at 254 nm was 

divided by the absorbance at 365 nm (Dahlen et al. 1996).  SAC, SUVA and molecular weight 

measurements were obtained in triplicate for each NOM source.   

 Fluorescence values were obtained from Livingstone et al. (Wilfred Laurier University, 

unpublished).  Emission intensity was measured at 450 nm and 500 nm; the excitation 

wavelength of 370 nm was used to determine the fluorescence index (FI) (McKnight et al. 2001).  

This was designated to indicate the source of NOM as either allochthonous or autochtonous in 

origin.  EEMs, in combination with parallel factor analysis (PARAFAC), were used to designate 

the main components of NOM and establish their relative concentrations (Nadella et al., 2009).  

The use of PARAFAC allowed for the quantification of the relative concentrations of each of 

these components. 

Statistics: 

 LC50s were obtained using nominal Ni concentrations.  The LC50 values were calculated 

using the trimmed Spearman-Karber method (Hamilton et al. 1977) programmed into Microsoft 

Excel.  An LC50 was determined for each replicate; LC50 values were averaged for 
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determinations in presence of each specific NOM.  All values have been reported as mean ± 

standard error (Figure 1A).  Any replicates which had less than 90% survival in the controls were 

removed from analysis. This occurred for only one control.  For WR1 and WR3 only three 

replicates were used as the other three replicates had been somehow contaminated. 

 While we did follow established procedures, treatment with cation exchange resin did not 

remove all cations from the NOM (Table 2).  To correct for the effects of cations on our 

endpoints, a linear regression between LC50s and Ca (which is known to influence Daphnia 

health (Ashforth and Yan 2008) and acute Ni toxicity (Kozlova et al., 2009)) was performed to 

obtain the residuals (Figure 2A).  Because the NOM isolate, SSW, was identified as an 

influential outlier (Figure 2A), a regression analysis between calcium and acute nickel LC50s was 

conducted a second time with the removal of SSW (Figure 2B).  Residuals from the second 

regression analysis were used in further statistical analyses.  Data were analysed using SPSS 

Statistics 19.0 for Windows (SPSS Inc., Chicago, IL, USA).  While the Shapiro_Wilk test 

identified the data as normally distributed, the Levene’s test indicated the data did not abide by 

the assumption of homogeneity.  Therefore, a Welch one-way analysis of variance (ANOVA) 

was employed to detect variation in LC50s with various NOMs.  The ANOVA was followed by 

the post hoc Games-Howell test (P < 0.05) (Figure 1B), also used when the assumption of 

homogeneity is not achieved.  The relationship between LC50 residuals and each NOM structural 

characteristic were initially analysed by linear regression.  Visual observation suggested that this 

analysis did not completely capture the relationship.  Segmented linear regression with SegReg 

(http://www.waterlog.info/segreg.htm) was employed as SegReg tests data with seven different 

functions and determines the best function and breakpoint based on maximizing the statistical 

http://www.waterlog.info/segreg.htm
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coefficient of explanation.  As data must be positive to be analysed by Segreg, the lowest LC50 

residual value was subtracted from each NOM isolate prior to analysis. 

LC50 Prediction using the BLM for Acute Ni toxicity 

 The BLM (Windows version 2.2.3, HydroQual Inc.) developed for Daphnia pulex in 

moderately soft water by Kozlova et al. (2009) was used to predict LC50s for the Daphnia hybrid 

in soft water in the current study.  The BLM was optimized for the current data set using five 

different control series by gradually manually altering the critical value in the Ni BLM to 

improve the relationship between the actual measured LC50s of the five controls and the 

predicted LC50s for these series. In an attempt to include NOM structure and improve BLM 

predictions, two different methods were employed.  These were based on the relationships 

obtained between the residuals of LC50s and the characteristics of the NOM which were found to 

have a relationship.  The first incorporated the significant relationship between SAC and the 

relative HA% obtained from PARAFAC to estimate HA content (Al Reasi et al., 2012) (Figure 

4).  The second used the quality factor, F, described by Schwartz et al. (2004): 

 

F = (0.31· ln(SAC))·[DOC] 

 

The quality factor decreases the concentration of DOC in order to decrease the concentration of 

binding sites, giving NOMs with greater aromatic content higher DOC concentrations and those 

with less aromaticity a lower concentration of DOC.  These values were compared with the 

original measured values (not residuals) by linear regression analysis to determine if 

improvements were made to BLM predictions.   

Results: 



77 
 

 For all the series run, only one control had less than 90% survival; this was for a replicate 

without any NOM added.  One replicate of the Hp3 NOM-only series had a survival rate of 

87.5%, this was also true for one replicate of the PL-NOM-only series.  Two replicates of the 

SSW-NOM-only series had 87.5% survival.  For all other NOM isolates there was 100% survival 

in all replicates. 

 The mean 48-h Ni LC50 for the Daphnia pulex/pulicaria hybrid in FLAMES medium 

without EDTA was 702.76 µg·L-1
 (Fig. 1), at its low measured hardness of 9.22 mg·L-1

 (CaCO3). 

 The addition of 7 mg C·L-1
 of NOM increased acute nickel LC50 concentrations in every 

NOM treatment.  Increases in LC50 values were significant for seven of the 12 NOM isolates 

used.  While the mean nickel LC50 for the control was 702.76 (µg·L-1
), the addition of NOM 

raised the mean LC50 values from 931.08 (WR2) to 1898.0 (LL) (µg·L-1
); an almost two-fold 

range in values (Figure 1A and B). 

 The protection provided by NOM varied with source.  There was a two-fold range in 

mean nickel LC50 values with the addition of twelve NOM sources.  The mean LC50 produced by 

WR2 was significantly less than six of the other NOM isolates (DL, HL, WR3, HP3, PC1, LW).  

The NOM isolate, WR2, had the lowest Ni LC50 of all at 931.08 µg·L-1
, while LC50s for isolates 

of significantly greater value ranged from 1405.0 µg·L-1
 for HL to 1511.5 µg·L-1

 for LW. 

  PL had a significantly lower mean LC50 (1393.2 µg·L-1
) than DL (1407.83 µg·L-1

).  LW was 

significantly greater than four of the other NOM isolates (WR2, PL, HP3 and PC1) (Figure 1B). 

The variation in Nickel LC50 residuals were related to two of the six NOM characteristic metrics 

(Table 3).  Specific absorption coefficient (SAC), which is considered an index of colour (Curtis 

and Schindler 1997) and aromaticity (Haitzer et al., 1999; Richards et al., 2001), varied between 
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9.67 and 38 cm
2
mg

-1
.  Specific UV absorbance (SUVA), the second parameter used to measure 

aromaticity (Baker et al., 2011), ranged between 1.99 and 4.67 L mg
-1

m
-1

.  SegReg determined 

that a segment regression out performed linear regression.  Between the SAC values of 9.67 and 

19.35 cm
2
mg

-1
, there was a positive relationship with Ni LC50 residuals where SAC explained 

60% of the variation seen in LC50s.  This relationship ceased after this value, thus, any additional 

increases in SAC/aromaticity did not result in a greater LC50.  For SUVA, 1.99 to 3.03 L·mg
-1

m
-

1
, explained 67.7% of the variance in LC50s up to that maximum, while stopping above this point.  

Therefore, the colour and aromatic content of NOM did correlate to the ability of natural NOM 

to protect Daphnia against acute Ni toxicity to a point.  While none of the absorbance matrices 

were related to FI (data not shown), both SAC 340 (Figure 4A) and SUVA (Figure 4B) were 

positively related to HA%.  Though the relationship between HA% was not significantly related 

to changes in nickel LC50s, the NOMs with higher relative humic acid content do appear to have 

greater aromatic content.  

 The LC50 toxicity predictions made with the BLM were all within the accepted two-fold 

range (Santore et al., 2002), but all samples (except those from WR2) were under predicted by as 

much as 41% of the measured value.  Changing the critical value from 5.1 (used by Kozlova et 

al. (2009)) to 6.37 made minor improvements to BLM predictions, expanding the R
2
 value from 

0.5922 to 0.6025 and increasing the predicted values while decreasing the differences between 

measured and predicted to 25% (with the exception of WR2 which increased from 37% to 69%).  

BLM predictions were not improved by the inclusion of relative HA% based on the relationship 

between SAC and HA% (results not shown).  Using the F factor for determining DOC 

concentration improved BLM predictions (increasing the R
2
 value to 0.6548)(Figure 5); 

improvements in this relationship were primarily due to those NOM isolates with SAC values 
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less than 19.35.  The NOM isolate WR2 was only over predicted by 44% while 95% were 

predicted within 1.24 fold and 50% of those samples were within 1.1 fold.  The slope of the 

relationship also changed from 0.5922 with the original BLM predictions to 0.7405 with the 

inclusion of the F factor. 

Discussion: 

The measured Ni LC50 for the D. pulex/pulcaria hybrid in FLAMES medium was higher than 

what Kozlova et al. (2009) observed for D. pulex in harder water.  Deleebeck et al. (2008) 

proposed that differences in clone sensitivity explained the disparity in Ni toxicity between two 

clones of Daphnia magna.  The differences which arose in this study may have been due to the 

use of a hybrid originating from a metal-contaminated lake.  Disturbance is credited as a main 

cause of hybridization (reviewed by Allendorf et al., 2001); furthermore, the hybrid-superiority 

hypothesis suggests that in certain environments, hybrids are superior (Moore 1977).  

Anthropogenic disturbances have been related to the dominance of hybrid species in Daphnia 

populations.  An example of this is given by Keller et al. (2008) who found that Daphnia 

galeata-hyalina-cucullata hybrids dominated over parent lines in lakes which had a history of 

eutrophication in Europe north and south of the Alps. The D. pulex/pulicaria hybrid used for this 

present study was obtained from an environment which had been disturbed with high 

concentrations of metals (Valois et al., 2011).  I hypothesize that its higher tolerance to Ni than a 

parent line—such as D. pulex—is another example of the hybrid-superiority hypothesis.   

 The NOM isolate, SSW, was identified as an influential outlier as it had a lower than 

expected LC50; this may be due to its high calcium concentration of over 7 mg·L-1
.  While Ca is 

known to protect against acute Ni toxicity (Kozlova et al. 2009), at high Ca to Ni ratios, Ca can 

so thoroughly out-compete Ni for available ionic-bonding sites while simultaneously reducing 
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Ni’s electrostatic binding potential at other sites, that the resulting weak and unstable Ni-NOM 

complexes can ultimately lead to higher concentrations of the free Ni ion (Mandal et al., 2000).  

This would result in a lower than expected LC50.  However, this is normally the case when Ca is 

several orders of magnitude greater than Ni (unlike the Ni : Ca ratio for this NOM isolate, which 

was 4 : 7)   It is also possible that other metals which were not measured remained in the NOM 

isolate and contributed to the lower than expected LC50.  This would, though, be expected to 

cause high mortality in the NOM-only series. 

 The addition of 7 mg C·L
-1

 of NOM from seven out of 12 sites significantly increased 

acute Ni LC50s, i.e. had a protective effect.  These results are comparable to those in the 

literature.  While Deleebeeck et al. (2008a) found a relationship between acute Ni EC50 values 

and DOC for D. magna in eight European lakes, the relationship was weak (R
2
 = 0.33).  Pane et 

al. (2003b) suggested that the discrepancies found in acute Ni LC50s for D. magna in their study 

compared to the results of a study by Biesinger and Christensen (1992) were attributed to 

differences in DOC concentration from 1 to 3.6 mg C·L
-1

.  Cloran et al. (2010) also found that 

additions of one to 18 mg C·L
-1

 provided protection against 2150 µg·L-1
 of Ni for D. magna.  

NOM is known to bind Ni (Livens 1991; Mandal et al., 1999), and so it would be expected that 

the addition of NOM to the synthetic medium used in this study would increase acute Ni LC50s. 

 The relationship between SAC and the ability of NOM and its fundamental components 

(dissolved organic matter (DOM) and humic substances (HS)) to ameliorate metal toxicity has 

been well established for Cu (Richards et al., 2001; De Schamphelaere et al., 2004; Ryan et al., 

2004; Schwartz et al., 2004; Al-Reasi et al., 2011; 2012) and to a lesser extend Cd (Schwartz et 

al., 2004), inorganic Hg (Klink et al., 2005) and Pb (Schwartz et al., 2004) (Al-Reasi et al., 

2001).  This relationship has yet to be well established for Ni.  Kozlova et al. (2009) observed 
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that additions of NOM from two different sources both significantly increased Ni EC50 values 

for D. pulex; above 10 mg C·L
-1 

the two NOMs ameliorated Ni toxicity to varying degrees.  The 

darker of the two isolates provided a greater amount of protection than the lighter.  Doig and 

Liber (2007) identified that neither source nor fraction (HA or FA) provided differences in 

protection against acute Ni toxicity to Hyalella azteca. Chan (2013) found that 10 out of 12 

NOM isolates provided a significant amount of protection against acute Ni toxicity to H. azteca 

and that the protection varied amongst NOM isolates.  The differences in protection were not, 

however, related to aromaticity or colour.  This may be due to the fact that Ca was not accounted 

for as it was in the present study. 

NOM is a composite system wherein a continuum of binding sites complex with metals, 

each with different stability constants (Hertkorn et al., 2004).  Donor atoms from O-, N-, and S- 

binding sites on NOM (Mandal et al., 2003) are most likely to bind with metal cations (Hertkorn 

et al., 2004; Mandal et al., 2003).  Metals which tightly retain their valence electrons have more 

substantial interactions with oxygen (Al Reasi et al., 2012; Mandal et al., 2003; Smith et al., 

2002).    Oxygen containing functional groups such as carboxylic acids and phenolics are 

considered to provide the main sites of metal binding (Carbonaro et al., 2011; Perdue 2009), 

which is also considered true for Ni (Nachtegaal and Sparks 2003).  Carboxyl functional groups 

are more abundant than phenolic, with an estimated ratio of 2.7 ± 0.4 for NOM (Perdue 2009) 

and are considered weak (Richards et al., 2004; Swartz et al., 2004). The stronger phenolic-type 

binding sites have an average pKa between 8 -10 (Christensen and Christensen 2000).  While 

higher values of SAC are associated with greater aromaticity, it is these phenol groups which 

have been suggested as the source of this protection (Schwartz et al., 2004; Al-Reasi et al., 

2012).  The concept that phenolic functional groups provide the main source of protection is 
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substantiated by Leenheer et al., (1998) who observed it was not the direct association of metals 

with aromatic structures, but the phenolic functional groups themselves which participated in 

metal binding.     

 To establish a correlation between SAC and LC50s, the quantity of metal bound to NOM 

must have enough of an impact on the free metal ion to decrease the amount which can bind to 

the biotic ligand. Al Reasi et al. (2011) refer to this as an overlap of the ‘toxicological’ and 

‘analytical window’.  With large amounts of metal, the strong binding sites can become saturated 

and changes to aromatic content will not exert enough influence on the free metal ion to alter 

LC50s.  The opposite is also true; a large number of strong binding sites with low levels of metal 

may not prove effective at alleviating metal burdens either.  It appears that for acute Ni toxicity 

to the Daphnia hybrid I used, only a small overlap exists between the two windows, and this 

occurs solely below a SAC of 19.35 (cm
2
mg

-1
) and SUVA 3.03 (L·mg

-1
M

-1
).  The lack of 

overlap is not entirely unexpected, because high concentrations of Ni are required for acute 

toxicity (unlike other more potent metals such as Cu and Pb).   Furthermore, binding constants 

for Ni are much lower between free metal ions and NOM ligands; these equilibrium constants, 

when juxtaposed, score Cu with phenolic functional groups from 12 – 15, over Ni’s weaker 8 - 

10 (Carbonaro et al., 2011).  This is because Ni has a lower rate coefficient for water exchange 

(Mandal et al., 1999b) which means it is less likely to shed water molecules in order to interact 

with another ligand, which is especially important in aquatic environments.  Ni also has a lower 

ionization potential which leads to lower electrostatic attractions (Baker and Khalili 2003).  

Therefore, high Ni concentrations and weaker binding constants make it less likely for the 

‘toxicological’ and ‘analytical’ windows to overlap and show a relevant relationship between 

LC50s and aromaticity.  
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 The benefits of adding NOM isolates from various sources may also be due to direct 

effects of NOM on Daphnia.  Geiger (Chapter 1) demonstrated that the addition of five 

unfiltered NOM isolates decreased time to primiparity and mean generation time; increased 

specific growth rate in the same hybrid used in this study; and indicated that these changes in life 

history were related to SAC.  In multiple-stress situations, the addition of NOM and its 

components (HSs) have also been shown to decrease stress and promote health matrices.  

Bouchnak and Steinber (2010) noted that when D. magna was fed a poor quality diet of pure 

yeast, the addition of HSs increased fecundity and longevity.  Suhett et al. (2011) maintained that 

in the presence of salt stress, the addition of dissolved HSs extended mean lifespan of the 

cladoceran, Moina macrocopa; it also diminished the salt-induced reduction of somatic growth. 

Direct effects of NOM on biota have also been directly related to abatements in metal toxicity.  

NOM either adsorbs to cell surfaces (observed with filtered NOM samples) (Campbell et al., 

1997) or integrates into lipid membranes, increasing membrane permeability (observed with 

unfiltered NOM samples) (Vigneault et al., 2000), stimulating an increase in Na uptake rates 

(Glover et al., 2005), preventing ion-regulatory metals from interrupting the influx of Na+ 

(Matsuo et al., 2004), and limiting access to certain metals passing through the membrane 

(Glover et al., 2005).  Unfiltered NOM has also led to changes in epithelium membrane voltage 

of trout gills, with the magnitude of this change relating to SAC (Galvez et al., 2008).   

 The relationship between measured and BLM-predicted Ni LC50s was improved by using 

the quality factor F to take NOM aromaticity into consideration.  Haitzer et al., (1999) found that 

a specific absorption measurement was an effective way to qualify NOM concentration in terms 

of toxicity amelioration.  Based on these results (and in combination with their own), Richards et 

al., (2001) came up with the F quality factor to incorporate NOM quality into a biotic ligand 
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model.  By multiplying the concentration of NOM by the quality factor F, the number of binding 

sites on the NOM decreases (Richards et al., 2001; Macdonald et al., 2002).  Macdonald et al. 

(2002) found that inclusion of the F quality factor made minor improvements to the predictive 

capabilities of a Pb-gill binding model.  Inclusion of the quality factor seems to make the BLM 

more comprehensive. 

 As an example, if we look at one of Plastic Lake’s measured LC50s of 1369.5 µg L
-1

, the 

BLM predicted 1584.95 µg L
-1

 when species sensitivity is taken into account.  When its 

measured DOC concentration of 8.14 mg L
-1

 is multiplied by the F factor using its SAC value of 

10.36 cm
2
mg

-1
, the concentration changes to 5.9 mg L

-1
 and decreases the predicted LC50 to 

1396.9 µg L
-1

, ultimately improving the predictions of the BLM. 

 In conclusion, NOM at environmentally relevant concentrations decreases Ni toxicity to 

varying degrees depending on NOM source.  Increasing the aromaticity of NOM mitigates Ni 

toxicity up until a value where the protection provided by NOM plateaus.  The inclusion in biotic 

ligand models of Ni toxicity of the quality factor, F, which accounts for the increasing 

aromaticity and thus protective effects of NOM aromatic structure can improve the predictions of 

acute Ni toxicity to daphniids. 
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Table 1. The description of sites where NOM isolates were obtained.  For measurements below detection, BD is used, detection limit 

for Ni < 0.18 µg L
-1

 and for Cu <0.11 µg L
-1

.  Clearwater outflow analysis remains incomplete, however it is expected to be similar to 

those of Clearwater Lake. Metal levels of the White River sites are expected to be very low.  

NOM Source Type Condition Coordinates DOC 

(mg·L
-1

) 

pH Conductivity 

(µS·cm
-1

) 

Nickel 

(µg L
-1

) 

Copper 

(µg L
-1

) 

Lake Laurentian (LL) Lake Metal Contaminated 46447’N, 80.961’W 7.1 6.45 146 56 15 

Laurentian Wetland (LW) Wetlands Metal Contaminated 46450’N, 80942’W 65.75 4.62 30.2 303.6 236.2 

Daisy Lake (DL) Lake Metal Contaminated 46450’N, 80888’W 2.5 6.71 33.3 55.3 8.9 

White River 1 (WR1) Stream Pristine 48751’N, 85173’W 17.03 7.4 102.1 BD 3.7 

White River 2 (WR2) Stream Logged 48653’N, 85364’W 4.26 7.6 133.5 BD 2.6 

White River 3 (WR3) Stream Fire 48431’N, 85350’W 9.9 7.6 197.6 BD BD 

Clearwater Lake (CW) Lake Metal Contaminated 46224’N, 81245’W 3 6.72 58.8 42.8 8.5 

Clearwater outflow (SSW) Stream Metal Contaminated 462244’N, 81246’W      

Harp Lake (HL) Lake Pristine 45228’N, 79085’W 4.5 6.5 32.2 0.4 0.8 

Harp Inflow 3 (Hp3) Stream Pristine 45224’N, 79084’W 18.4 5.84 71.4 1.1 0.8 

Plastic Lake (PL) Lake Acidified 45107’N, 78496’W 3.2 5.5 11.4 0.4 0.3 

Plastic  inflow 1 (PC1) Stream 

below 

wetland 

Acidified 45107’N, 78497’W 22.2 4.64 24.4 0.5 1.1 

Plastic inflow 108 (PC108) Stream Acidified 45109’N, 78497’W 3.3 5.03 17.4 1.2 0.7 
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Table 2. The number of replicates used to determine mean LC50s; mean dissolved organic carbon (DOC); mean Ca concentration; and 

mean pH of control and FLAMES with the addition of NOM isolate.  Measured as the mean ± standard deviation. 

Treatments N DOC (mg L
-

1
) 

pH Ca (mg L
-1

) 

 

FLAMES no added NOM 
5 1.75 ± 1.04 6.5 ± 0.14 2.55 ± .09 

Lake Laurentian 6 7.8 ± 1.49 6.65 ± 0.15 4.52 ± 0.28 

Laurentian Wetland 6 7.3 ± 2.06 6.53 ± 0.13 2.49 ± 0.04 

Daisy Lake 6 6.81 ± 2.14 6.58 ± 0.11 2.86 ± 0.04 

White River 1 3 7.56 ± 0.11 6.58 ± 0.09 2.86 ± 0.03 

White River 2 6 7.13 ± 0.17 6.94 ± 0.04 3.28 ± 0.06 

White River 3 3 7.89 ± 1.52 6.54 ± 0.06 2.76 ± 0.04 

Clearwater Lake 6 6.86 ± 0.07 6.71 ± 0.02 4.24 ± 0.09 

Clearwater outflow 6 9.04 ± 0.19 6.81 ± 0.03 7.37 ± 0.09 

Harp Lake 6 6.69 ± 0.03 6.77 ± 0.04 3.81 ± 0.03 

 Harp Inflow 3 6 6.99 ± 0.06 6.72 ± 0.06 4.16 ± 0.02 

Plastic Lake 6 8.0 ± 0.63 6.67 ± 0.08 4.51 ± 0.13 

 Plastic Lake Inflow 1 6 8.0 ± 0.27 6.54 ± 0.08 2.46 ± 0.03 

Plastic Lake Inflow 108 6 7.31 ± 0.27 6.76 ± 0.08 4.96 ± 0.05 
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A.  

B.      

 
Figure 1. (A) Meansured 48-h 50% lethal concentration (LC50) based on nominal nickel 

concentrations to Daphnia pulex/pulicaria with the addition of NOM from thirteen different 

sites. (B) LC50s residuals obtained from the relationship between measured LC50s and calcium 

concentration, SSW was not included.  All residuals are more positive than the control.  NOM 

treatments are arranged in order of its SAC value.  All NOM was added as a nominal value of 7 

mg C·L
-1

.  LC50s which were significantly different from the control are denoted by *.    
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         A.                                                                   B. 

  
Figure 2. Relationship between 48-h nickel LC50s and calciuming concentration (A) including 

the influential outlier SSW (◊) (B) without the influential outlier. 

  



98 
 

Table 3. Correlation coefficient for linear regression between each spectroscopic technique and 

48-h Ni LC50s. 

Spectroscopic Technique  Correlation Coefficient  

Specific absorption coefficient (SAC) 0.556 

Specific UV absorbance (SUVA) 0.578 

Molecular Weight -0.512 

Fluorescent index 0.138 

Relative percent humic acid (HA%) 0.172 

Relative percent fulvic acid (FA%) -0.104 
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A.  

 
    

B. 

                  
    

     

Figure 3. Relationship between mean 48-h Ni LC50, using residuals from linear regression 

between Ni LC50 and Ca concentrations. and (A) SAC (a proxy for aromaticity and colour) and 

(B) SUVA (another proxy for aromaticity).  The residuals used for A and B were from the 

relationship in Figure 2B without the inclusion of SSW. LC50 break-point and its 90% 

confidence block of break-point is shown as well as the 90% confidence belt.  Linear regression 

equations are for the relationship to the left of the breakpoint. 

NOM sources were added at a nominal concentration of 7 mg C•L
-1
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A. 

 

B. 

 

Figure 4. The relationship between relative humic acid percent obtained from PARAFAC and 

(A) specific absorbance coefficient, SAC, and (B) specific UV absorbance, SUVA. 
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Figure 5. The relationship between BLM-predicted Ni LC50 (µg·L
-1

) values and measured LC50s.  Predicted values from the 

BLM include those with the critical value obtained from (◊) Kozlova et al., (2009): 5.1; and when the critical value was 

corrected for (□) this study: 6.37; as well as predicted values obtained when NOM structure was incorporated using the (▲) F 

quality factor. 
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Concluding Remarks 

It was formerly held that natural organic matter (NOM) was a large and inert substance having 

little to no effect on aquatic biota (Steinberg et al., 2002).  While this paradigm has shifted over 

the last decade, this thesis adds to the growing literature exploring the direct effects NOM indeed 

has on aquatic biota.  Not only does it concern how NOM aids in ameliorating toxic 

environments, it also attempts to explain which structural features of NOM cause these observed 

changes and demonstrates how this knowledge can improve predictive models.  

 The first chapter of this thesis discusses how NOM from four out of five different sources 

decreased time to primiparity and mean generation time; it also increased specific growth rate 

and intrinsic rate of natural increase of a wild Daphnia species.  Three of these changes in life 

history traits were related to the colour and aromatic content of NOM isolates as measured by 

absorbance characteristic techniques, i.e. specific absorbance coefficient measured at 340 nm 

(SAC) and specific UV absorbance (SUVA).  In the second chapter of this thesis, these same 

NOM characteristics were related to acute Ni toxicity mitigation when 12 different NOM isolates 

were added to Ni-spiked water.  Seven out of the 12 isolates provided a significant amount of 

protection.  NOM with a measured SAC of 19.35 cm
2
mg

-1
 and below had a positive relationship 

with measured LC50s, however, isolates with higher SAC values had no relationship with 

measured toxicity.  The decrease in Ni mitigation may not be due directly to aromatic structures, 

but also to phenolic functional groups of NOM.  Altering DOC concentrations in the Biotic 

Ligand Model with the quality factor (a method used to incorporate SAC) improved the 

relationship between measured and predicted acute Ni LC50s far better than any other prescribed 

method of NOM character inclusion.  While NOM remains a complex substance, delineating its 

general characteristics has proven useful in interpreting the results obtained in this study.  Colour 
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and aromatic content specifically appear to be major factors influencing both direct effects as 

well as toxicity mitigation. 

 With NOM on the rise in northeastern North America, and northern and central Europe 

(Monteith et al., 2007), future research may do well to focus on how these life history traits are 

affected by this increase in NOM concentration, paying heed to its varying aromatic contents.  I 

suggest: 1) taking on such investigations by performing similar experiments as Menzel et al. 

(2012) to determine if phenolic/quinonoid moieties are the functional groups responsible for 

changes in Daphnia life history; 2) examining entire genome DNA microarray experiments over 

a range of NOM sources to determine if changes in time to maturation and growth are due to 

hormesis in nature from NOM-induced stress (Steinberg et al., in press); and 3) exploring 

indirect effects by performing chronic toxicity studies to determine if NOM structurally-induced 

differences persist at lower Ni concentrations.  This research is a stepping stone in gaining a 

greater understanding of how NOM characteristics influence its wide role in aquatic ecology and 

the above are but a few suggestions in its development.  

 NOM cannot be thought of as a single entity.  As observed in this thesis, the differences 

between NOM characteristics influence its direct effects on aquatic biota as well as its indirect 

effects by altering the protection it provides against acute Ni toxicity.   Understanding the effects 

of NOM on aquatic biota and determining which aspects of NOM have the greatest influence can 

provide insight to agencies in setting water quality standards as well as understanding how 

changes in the environment (such as increasing NOM) will affect aquatic biota in the long term.  
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Appendix A: 

Photos of portable reverse osmosis apparatus used to collect natural organic matter (NOM) 

samples and of five of the NOM isolates collected. 

 

A.   

 

 

B. 
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Appendix B: 

Raw survival and reproductive data for chronic study looking at the effects of natural 

organic matter (NOM) on Daphnia. 

The raw data collected for the experiment described in Chapter 1 is presented in the following 

table.  Ten D. pulex/pulicaria individuals were exposed to five different NOM isolates at a 

nominal concentration of 7 mg C·L
-1

 for 18 days.  Day 1 is the start of the experiment with 

Daphnia less than 24 hours in age.  Experimental animals are labelled #1-10 in the following 

table.  Each table lists the number of neonates produced by each individual daphniid.  Mortality 

is marked by an underscore. 
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Treatment Date Day 

Adult Survival and number of neonates born 

1 2 3 4 5 6 7 8 9 10 

FLAMES 22-Nov-2011 1 0 0 0 0 0 0 0 0 0 0 

23-Nov-2011 2 0 0 0 0 0 0 0 0 0 0 

24-Nov-2011 3 0 0 0 0 0 0 0 0 0 0 

25-Nov-2011 4 0 0 0 0 0 0 0 0 0 0 

26-Nov-2011 5 0 0 0 0 0 0 0 0 0 0 

27-Nov-2011 6 0 0 0 0 0 0 0 0 0 0 

28-Nov-2011 7 0 0 0 0 0 0 0 0 0 0 

29-Nov-2011 8 0 0 0 0 0 0 0 0 0 0 

30-Nov-2011 9 0 0 2 0 0 9 0 0 0 0 

01-Dec-2011 10 5 6 0 2 7 0 0 0 1 0 

02-Dec-2011 11 0 0 0 0 0 0 0 0 0 7 

03-Dec-2011 12 8 0 5 5 10 0 0 11 10 0 

04-Dec-2011 13 0 0 0 0 0 0 1 0 0 0 

05-Dec-2011 14 0 10 6 0 0 0 1 0 0 0 

06-Dec-2011 15 8 12 0 8 11 15 0 13 12 0 

07-Dec-2011 16 0 0 0 0 0 0 0 0 0 0 

08-Dec-2011 17 13 0 9 6 0 0 0 11 0 10 

09-Dec-2011  18 0 9 0 0 1 13 0 0 16 0 

Clearwater Lake 22-Nov-2011 1 0 0 0 0 0 0 0 0 0 0 

23-Nov-2011 2 0 0 0 0 0 0 0 0 0 0 

24-Nov-2011 3 0 0 0 0 0 0 0 0 0 0 

25-Nov-2011 4 0 0 0 0 0 0 0 0 0 0 

26-Nov-2011 5 0 0 0 0 0 0 0 0 0 0 

27-Nov-2011 6 0 0 0 0 0 0 0 0 0 0 
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28-Nov-2011 7 0 0 0 0 0 0 0 0 0 0 

29-Nov-2011 8 0 0 0 0 0 0 0 0 0 0 

30-Nov-2011 9 9 9 0 0 0 8 9 0 0 0 

01-Dec-2011 10 0 0 6 8 0 0 0 5 7 6 

02-Dec-2011 11 0 0 0 0 7 0 0 0 0 0 

03-Dec-2011 12 19 16 9 0 0 22 17 0 18 19 

04-Dec-2011 13 0 0 0 13 13 0 0 15 0 0 

05-Dec-2011 14 0 0 0 0 0 0 0 0 14 0 

06-Dec-2011 15 15 18 4 16 0 15 19 13 0 18 

07-Dec-2011 16 0 18 0 0 15 0 0 0 0 0 

08-Dec-2011 17 20 0 16 0 0 23 20 0 21 25 

09-Dec-2011 18 0 21 0 19 21 0 0 17 0 0 

Daisy Lake 22-Nov-2011 1 0 0 0 0 0 0 0 0 0 0 

23-Nov-2011 2 0 0 0 0 0 0 0 0 0 0 

24-Nov-2011 3 0 0 0 0 0 0 0 0 0 0 

25-Nov-2011 4 0 0 0 0 0 0 0 0 0 0 

26-Nov-2011 5 0 0 0 0 0 0 0 0 0 0 

27-Nov-2011 6 0 0 0 0 0 0 0 0 0 0 

28-Nov-2011 7 0 0 0 0 0 0 0 0 0 0 

29-Nov-2011 8 0 0 0 0 0 0 0 0 0 0 

30-Nov-2011 9 0 0 0 0 0 0 0 0 0 0 

01-Dec-2011 10 6 0 0 0 0 0 _ 0 8 0 

02-Dec-2011 11 0 0 0 5 0 0  0 0 4 

03-Dec-2011 12 11 0 4 0 0 7  0 0 0 

04-Dec-2011 13 0 4 0 4 5 0  5 14 8 

05-Dec-2011 14 0 0 8 0 0 0  0 0 0 
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06-Dec-2011 15 16 0 0 0 9 0  7 18 0 

07-Dec-2011 16 0 7 0 12 0 0  0 18 13 

08-Dec-2011 17 0 0 0 0 0 0  0 0 0 

09-Dec-2011 18 19 8 0 17 14 0  17 19 20 

Lake Laurentian 22-Nov-2011 1 0 0 0 0 0 0 0 0 0 0 

23-Nov-2011 2 0 0 0 0 0 0 0 0 0 0 

24-Nov-2011 3 0 0 0 0 0 0 0 0 0 0 

25-Nov-2011 4 0 0 0 0 0 0 0 0 0 0 

26-Nov-2011 5 0 0 0 0 0 0 0 0 0 0 

27-Nov-2011 6 0 0 0 0 0 0 0 0 0 0 

28-Nov-2011 7 0 0 0 0 0 0 0 0 0 0 

29-Nov-2011 8 0 0 0 0 0 0 0 0 6 5 

30-Nov-2011 9 5 11 9 6 7 10 7 5 0 0 

01-Dec-2011 10  0 0 0 0 0 0 0 0 16 

02-Dec-2011 11  0 0 0 0 0 0 0 14 0 

03-Dec-2011 12  19 18 17 14 18 12 16 0 0 

04-Dec-2011 13  0 0 0 0 0 0 0 20 20 

05-Dec-2011 14  16 10 14 2 10 0 18 0 0 

06-Dec-2011 15  0 0 0 16 0 15 0 0 0 

07-Dec-2011 16  24 0 0 0 0 0 0 16 16 

08-Dec-2011 17  0 20 20 17 22 0 23 0 0 

09-Dec-2011 18  0 0 0 0 0 17 0 17 15 

Clearwater Lake Outflow 22-Nov-2011 1 0 0 0 0 0 0 0 0 0 0 

23-Nov-2011 2 0 0 0 0 0 0 0 0 0 0 

24-Nov-2011 3 0 0 0 0 0 0 0 0 0 0 

25-Nov-2011 4 0 0 0 0 0 0 0 0 0 0 
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26-Nov-2011 5 0 0 0 0 0 0 0 0 0 0 

27-Nov-2011 6 0 0 0 0 0 0 0 0 0 0 

28-Nov-2011 7 0 0 0 0 0 0 0 0 0 0 

29-Nov-2011 8 5 8 5 0 6 6 7 4 6 8 

30-Nov-2011 9 0 0 0 14 0 0 0 0 0 0 

01-Dec-2011 10 18 16 18 0 14 20 17 16 16 20 

02-Dec-2011 11 0 0 0 0 0 0 0 0 0 0 

03-Dec-2011 12 26 0 26 20 0 24 0 4 0 22 

04-Dec-2011 13 0 22 0 0 23 0 22 21 20 3 

05-Dec-2011 14 0 0 0 0 0 0 0 0 0 0 

06-Dec-2011 15 22 19 21 15 16 21 18 21 9 24 

07-Dec-2011 16 0 0 0 0 0 0 0 0 0 0 

08-Dec-2011 17 0 0 31 18 0 26 0 0 0 28 

09-Dec-2011 18 26 21 0 0 21 0 22 23 20 0 

Laurentian Wetland 22-Nov-2011 1 0 0 0 0 0 0 0 0 0 0 

23-Nov-2011 2 0 0 0 0 0 0 0 0 0 0 

24-Nov-2011 3 0 0 0 0 0 0 0 0 0 0 

25-Nov-2011 4 0 0 0 0 0 0 0 0 0 0 

26-Nov-2011 5 0 0 0 0 0 0 0 0 0 0 

27-Nov-2011 6 0 0 0 0 0 0 0 0 0 0 

28-Nov-2011 7 0 0 0 0 0 0 0 0 0 0 

29-Nov-2011 8 5 6 6 0 5 0 0 0 0 0 

30-Nov-2011 9 0 0 0 10 0 7 6 6 9 5 

01-Dec-2011 10 13 12 17 0 0 0 0 0 0 0 

02-Dec-2011 11 0 0 0 0 12 0 0 0 0 0 

03-Dec-2011 12 0 0 27 23 0 21 16 19 20 19 
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04-Dec-2011 13 25 15 0 0 0 0 0 0 0 0 

05-Dec-2011 14 0 0 0 0 0 0 21 20 20 0 

06-Dec-2011 15 22 9 23 22 0 24 0 0 0 22 

07-Dec-2011 16 0 0 0 0 4 0 0 0 0 0 

08-Dec-2011 17 0 0 29 27 0 21 21 13 29 30 

09-Dec-2011 18 21 16 0 0 12 0 0 0 0 0 
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Appendix C: 

Raw survival data for preliminary study investigating Daphnia survival without food in 

both FLAMES and FLAMES without EDTA 

The raw survival and reproductive data collected for a preliminary experiment used in Chapter 2 

is presented in the following table.  Ten D. pulex/pulicaria individuals were placed in FLAMES 

and FLAMES-without-EDTA.  Animals were not fed for the seven days of the experiment.  Day 

1 is the start of the experiment with Daphnia >24 hours in age.  Experimental animals are 

labelled #1-10.  Each table lists the survival of individual Daphnia.  Mortality is marked by an 

underscore. 
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Treatment Date Day 

Adult Survival and number of neonates born 

1 2 3 4 5 6 7 8 9 10 

FLAMES 16-Jul-2011 1 0 0 0 0 0 0 0 0 0 0 

17-Jul-2011 2 0 0 0 0 0 0 0 0 0 0 

18-Jul-2011 3 0 0 0 0 0 0 0 0 0 0 

19-Jul-2011 4 0 0 0 0 0 0 0 0 0 0 

20-Jul-2011 5 0 0 0 0 0 0 0 0 0 0 

21-Jul-2011 6 0 0 0 0 0 0 0 0 0 0 

22-Jul-2011 7 0 0 0 0 0 0 0 0 0 0 

FLAMES without EDTA 16-Jul-2011 1 0 0 0 0 0 0 0 0 0 0 

17-Jul-2011 2 0 0 0 0 0 0 0 0 0 0 

18-Jul-2011 3 0 0 0 0 0 0 0 0 0 0 

19-Jul-2011 4 0 0 0 0 0 0 0 0 0 0 

20-Jul-2011 5 0 0 0 0 0 0 _ 0 0 0 

21-Jul-2011 6 0 0 0 0 _ 0  0 0 0 

22-Jul-2011 7 0 0 0 0  0  0 0 0 
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Appendix D: 

Raw mortality data for 48-hour acute Ni toxicity tests. 

The raw mortality data collected for acute toxicity tests used in Chapter 2 is presented in the 

following table.  Thirteen different natural organic matter samples were tested to determine their 

protective effects on Daphnia.  NOM concentrations were at a nominal 6 mg C·L-1
.  For each 

NOM isolate, eight Daphnia were placed in containers at four Ni concentrations of 500 µg L
-1

, 

1000 µg L
-1

, 2000 µg L
-1

, and 4000 µg L
-1

 plus a container with only NOM and a container with 

FLAMES-without-EDTA.  This was repeated six times for each NOM isolate. An “X” denotes 

occasion when animals were not subjected to that treatment. 
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Treatment Replicate Number of animals dead at Ni Concentrations (µg L-1) 

0 

FLAMES 

WITHOUT 

EDTA 

0 

NOM only 
500 1000 2000 4000 

No NOM added 1 0 X 3 8 8 8 

No NOM added 2 0 X 1 7 8 8 

No NOM added 3 0 X 0 0 7 8 

No NOM added 4 0 X 1 7 8 8 

No NOM added 5 0 X 0 0 7 8 

No NOM added 6 1 X 1 6 8 8 

Clearwater Lake 1 0 0 2 0 8 8 

Clearwater Lake 2 0 0 3 1 8 8 

Clearwater Lake 3 0 0 1 1 8 8 

Clearwater lake 4 0 0 0 0 7 8 

Clearwater Lake 5 0 0 0 0 8 8 

Clearwater Lake 6 0 0 0 0 5 8 

White River 2 1 0 0 0 5 8 8 

White River 2 2 0 0 0 3 8 8 

White River 2 3 0 0 0 5 6 8 

White River 2 4 0 0 0 5 8 8 

White River 2 5 0 0 0 6 8 8 

White River 2 6 0 0 0 7 7 8 

Plastic Lake 1 0 0 0 1 8 8 

Plastic Lake 2 0 0 0 0 8 8 

Plastic Lake 3 0 0 0 1 7 8 

Plastic Lake 4 0 1 0 1 8 8 
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Plastic Lake 5 0 0 1 1 7 8 

Plastic Lake 6 0 0 0 0 8 8 

Plastic Lake Inflow 108 1 0 0 0 1 8 8 

Plastic Lake Inflow 108 2 0 0 0 4 8 8 

Plastic Lake Inflow 108 3 0 0 0 2 8 8 

Plastic Lake Inflow 108 4 0 0 0 2 8 8 

Plastic Lake Inflow 108 5 0 0 0 3 7 8 

Plastic Lake Inflow 108 6 0 0 0 4 7 8 

Daisy Lake 1 0 0 1 1 7 8 

Daisy Lake 2 0 0 0 1 8 8 

Daisy Lake 3 0 0 0 1 8 8 

Daisy Lake 4 0 0 0 1 8 8 

Daisy Lake 5 0 0 0 2 6 8 

Daisy Lake 6 0 0 0 0 7 8 

Harp Lake 1 0 0 0 0 6 8 

Harp Lake 2 0 0 0 2 7 8 

Harp Lake 3 0 0 0 3 7 8 

Harp Lake 4 0 0 0 0 7 8 

Harp Lake 5 0 0 0 0 8 8 

Harp Lake 6 0 0 0 1 8 8 

White River 1 1 0 0 1 1 5 8 

White River 1 2 0 0 0 1 4 8 

White River 1 3 0 0 0 2 6 8 

White River 3 1 0 0 0 2 8 8 

White River 3 2 0 0 0 3 6 8 

White River 3 3 0 0 0 3 8 8 

Lake Laurentian 1 0 0 0 0 6 8 
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Lake Laurentian 2 0 0 0 0 7 8 

Lake Laurentian 3 0 0 0 0 6 8 

Lake Laurentian 4 0 0 0 0 4 8 

Lake Laurentian 5 0 0 0 0 3 8 

Lake Laurentian 6 0 0 0 0 3 7 

Harp Inflow 3 1 0 1 0 0 8 8 

Harp Inflow 3 2 0 0 1 0 7 8 

Harp Inflow 3 3 0 0 0 0 6 8 

Harp Inflow 3 4 0 0 0 0 8 8 

Harp Inflow 3 5 0 0 0 1 7 8 

Harp Inflow 3 6 0 0 0 1 7 8 

Plastic Lake Inflow 1 1 0 0 0 1 8 8 

Plastic Lake Inflow 1 2 0 0 0 4 8 8 

Plastic Lake Inflow 1 3 0 0 0 2 8 8 

Plastic Lake Inflow 1 4 0 0 0 2 8 8 

Plastic Lake Inflow 1 5 0 0 0 3 7 8 

Plastic Lake Inflow 1 6 0 0 0 4 7 8 

Clearwater outflow 1 0 0 1 0 3 8 

Clearwater outflow 2 0 0 1 0 7 8 

Clearwater outflow 3 0 0 0 0 6 8 

Clearwater outflow 4 0 1 0 1 7 8 

Clearwater outflow 5 0 1 0 0 7 8 

Clearwater outflow 6 0 0 0 0 6 8 

Laurentian Wetland 1 0 0 0 1 7 8 

Laurentian Wetland 2 0 0 0 2 7 8 

Laurentian Wetland 3 0 0 0 0 7 8 

Laurentian Wetland 4 0 0 0 0 8 8 
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Laurentian Wetland 5 0 0 0 1 5 8 

Laurentian Wetland 6 0 0 0 1 6 8 
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Appendix E: 

Table of abbreviations used in the thesis. 

Abbreviation Name 

NOM Natural Organic Matter 

HA Humic Acid 

FA Fulvic Acid 

DOM Dissolved Organic Matter 

POM Particulate Organic Matter 

EPA Eicosapentaenoic Acid 

ΑLA α-linolenic Acid 

MSR Multixenobiotic Resistance System 

HS Humic Substance 

HSs Humic Substances 

SRNOM Suwanne River NOM 

SAC Specific Absorbance Coefficient  

SUVA Specific UV Absorbance 

FI Fluorescence Index 

EEMs Emission and Excitation Matrices 

PARAFAC Parallel Factor Analysis 

BLM Biotic Ligand Model 

DOC Dissolved Organic Carbon 

WHAM Windermere Humic Aqueous Model 

F Quality Factor 

LC50 Lethal Concentration of 50% of the 

population 
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ASTM American Society for Testing Materials 

OECD  

US-EPA United States Environmental Potential 

Agency 

TALER Terrestrial Aquatic Linkages for Ecosystem 

Recovery 

RO Reverse Osmosis 

FLAMES Field Laboratory for the Assessment of 

Multiple Ecological Stressors  

EDTA Ethylenediaminetetraacetic Acid 

r Intrinsic Rate of Natural Increase 

g Specific Growth Rate 

T_bar Mean Generation Time 

ANOVA  

CFU Colony Forming Units 

E2 17β-estradiol 

EE 17α-ethinylestradiol 

CCME The Canadian Council of Ministers of the 

Environment 

MOE Ministry of the Environment 

LL Lake Laurentian 

LW Laurentian Wetland 

DL Daisy Lake 

CW Clearwater Lake 

SSW Clearwater Lake Outflow 

WR1 White River 1 

WR2 White River 2 

WR3 White River 3 
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HL Harp Lake 

Hp3 Harp Inflow 3 

PL Plastic Lake 

PC1 Plastic Lake Inflow 1 

PC108 Plastic Lake Inflow 108 

 


