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Abstract 

The anterior cingulate cortex (ACC) is implicated in the detection of errors 

and the allocation of correctional adjustments. However, error detection alone is 

not sufficient to resolve and prevent future mistakes since errors can occur in 

various ways, subsequently requiring different adjustments. I therefore investigated 

whether the ACC tracks specific processing states that give rise to errors in order to 

identify which specific processing aspects need readjustment. To do this, my lab 

recorded from cells in the prefrontal cortex (PFC) of macaques while they were 

performing a selective-attention task that elicited three types of error. My study 

provides support for the functional role of the ACC in performance monitoring and 

specifying correctional adjustments through the tracking of specific sources of 

erroneous task outcomes. 
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Chapter 1 – Introduction and Literature Review 

1.1 - Introduction 

Envision a situation where a western tourist attempts to order iced coffee 

from a vending machine in Japan. A tentative process of pressing one button that 

he believes to produce iced coffee instead delivers iced tea. During the next few 

days, he presses more wrong buttons, but ultimately succeeds in learning the right 

symbol that servers as a reliable predictor of iced coffee. The proposed hypothetical 

situation highlights the importance of errors, or failures to meet one’s prior 

expectation, in the process of acquiring reliable predictions of one’s actions to 

achieve the desirable outcome. 

Error typically carries a negative connotation due to its potentially severe 

consequences; yet it plays a vital role in our daily lives by signaling that a given 

behaviour is no longer appropriate, and that proper behavioural adjustments may 

be needed. According to the roman philosopher Seneca, “To err is human, to persist 

is devilish”. Indeed, failure to learn from previous harmful behaviours is one of the 

characteristic causes underlying the symptoms demonstrated by patients suffering 

from mental illnesses such as schizophrenia (Franken et al. 2007; Becerril et al. 

2010). Taken together, it is not surprising that recent literature on learning has 

emphasized the importance of error monitoring (Shenhav et al. 2013; Khamassi et 

al. 2013; Alexander & Brown 2011). The aim of my master’s thesis is to examine 

how errors are detected by the brain and how it might be utilized in learning. The 
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following chapters will first introduce two models of error-facilitated learning and 

discuss how these models are implemented by the brain. Then I’ll present my 

research examining whether our brain can not only detect errors, but also 

discriminate different types of errors during an attentional-selection task. 

1.2 – Models of error-facilitated learning 

Error and learning  

According to associative learning theory, learning consist of associating 

external stimuli or behavioural responses with their subsequent outcomes. For 

instance, the sound of thunder is an external stimuli associated with the outcome of 

oncoming rain (stimulus-outcome association). An example of an association 

between behavioural responses and outcome (response-outcome association) would 

be learning that pressing the right button on the drink dispenser gives you a can of 

coke. Based on an array of these learned associations, the subject can then direct 

his behaviours in order to maximize favourable outcomes while avoiding 

unfavourable outcomes. 

In order to establish either stimulus-outcome or response-outcome 

associations, the following two conditions must be met. First, the external stimulus 

or behavioural response must be closely followed in time by their subsequent 

outcome. Second, the associated outcome must be surprising or unpredictable for 
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the prior stimulus or response to be established as its predictor (Schultz & 

Dickinson 2000). 

The first condition was proposed based on classical and instrumental 

conditioning. In classical conditioning, a tone can form association with fear if fear 

is predictively followed in time. Similarly for instrumental conditioning, the 

organism can learn to perform a particular action in order to obtain the desirable 

outcome if the outcome is predictively preceded by the action. However, this simple 

pairing of stimulus and outcome alone is not sufficient for explaining the blocking 

effect during learning (Figure 1), thus a second condition was added (Martin & 

Levey 1991; Kamin 1969). To illustrate the blocking effect, imagine two cues A and 

B that are equally predictive of the outcome X. If A and B are both presented to a 

subject, then by our first criteria of learning, A and B will both be associated with 

outcome X. But suppose that the subject learned previously that A by itself is 

predictive of the outcome, then the ability of B to predict the outcome will not be 

learned. The blocking effect demonstrated that associative learning is not based 

solely on the sequential occurrence of cue and outcome, but the outcome must also 

be surprising or unpredictable for the stimulus to be established as a predictor 

(condition 2). In this way, associated learning can discriminate against redundant 

and relatively uninformative stimuli or responses. 
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Taking both conditions into account, two prominent theories have been 

proposed to explain learning: the reinforcement learning model which assumes that 

learning is directly driven by prediction errors, and an attentional model which 

argues that errors indirectly affect learning by allocating attention to the predictive 

stimuli or responses. In the following sections, I’ll attempt to explain these two 

theories in more detail. 
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Figure 1. Blocking experiment demonstrated that learning is sensitive 

to the unexpectedness of the reinforcer. In stage 1, the circle was repeatedly 

paired with the reinforcer so that the circle became established as a predictor of the 

reinforcer. In stage 2, the pre-trained circle was presented in compound with the 

star and paired with the same reinforcer. According to simple associative pairing 

rule, the circle and the star should be established as equivalent predictors of the 

reinforcer. However, because the reinforcer was already fully predicted by the 

circle and the star supplied no additional information, the star was unable to be 
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established as a predictor of the reinforcer (Schematic adapted from Scheultz & 

Dickinson 2000). 

 

Direct learning with prediction errors 

In the reinforcement learning model, an organism must first learn to 

correctly predict the reward values (outcome) associated with the occurrence of a 

particular stimulus or action through trial-and-error, then use the array of learned 

associations to maximize the values gained and minimize the values lost. The 

underlying assumption here is that learning is directly driven by prediction errors 

or the degree of mismatch between the predicted reward values and the actual 

reward values associated with the stimulus or action (Rescorla & Wagner 1972; 

Sutton & Barto 1998; Rushworth & Behrens 2008). 

In this model, the expected value associated with a stimulus or action is 

constantly updated by the equation:  

𝑉𝑡+1 = 𝑉𝑡 +  𝜎 ∙ 𝛼  

Where Vt is the expected reward value on the current trial, sigma is the prediction 

error, or the discrepancy between the expected reward value and the actual reward 

value, and alpha determines the learning rate, or the extent to which the prediction 

error influences the expected reward value on the upcoming trial, represented by 



7 
 

the symbol Vt+1. Here, the prediction error plays a direct role in minimizing the 

deviation in actual and expected reward value: the prediction error is positive when 

the outcome is better than expected, and negative when the outcome is worse than 

expected, and the magnitude of the prediction error signifies the degree of 

discrepancy.  

Under this model, once the subject accurately predicted the values of reward 

received using cue A, there would be no prediction error. Thus, no learning would 

occur during the blocking experiment when cue B was presented. 

 

Indirect learning via attention induced by error 

A competitive theory first proposed by Mackintosh (1975) argues that errors 

do not have direct effect on learning, but rather they indirectly modulate learning 

by allocating attention. The underlying assumption is that the subject will assign 

greater attention to the relevant stimulus or action following an error. The more 

attention that is allocated to a given stimulus or action, the more readily that 

stimulus or action can be associated with its outcome (Mackintosh 1975; Pearce & 

Hall 1980; Kaye & Pearce 1984).  

In this model, the degree of allocated attention (alpha) is directly 

proportional to the absolute degree of discrepancy between the predicted (Vt) and 
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the actual outcome (Vt + 1). The allocated attention would then serves to facilitate 

learning:  

𝛼 ∝  |𝑉𝑡+1 −  𝑉𝑡|  ∝ 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 

In the blocking experiment, the occurrence of cue B allocated little attention 

since the outcome could be accurately predicted from the occurrence of cue A. Thus, 

the ability to form association between cue B and the outcome was weak due to the 

lack of attention allocated to cue B.  

Although the two models differ greatly on the role of errors in learning, 

empirical studies have shown that both appear to be involved in learning processes 

(Shenhav et al. 2013; Holroyd & Yeung 2012). The following sections will cover 

the past and recent biological evidence supporting both of these models of learning. 

 

1.3 – Biological signatures of error 

Despite their differences, both reinforcement learning and attentional 

learning take into account the important role of error. In attempt to link error-driven 

learning with biological systems, Konorski (1948) and Hebb (1949) proposed the 

idea that associations are encoded by the strength of synaptic connections between 

neurons encoding predictive stimuli or actions and neurons encoding the expected 

outcomes. The weight of their synaptic connections are thought to be modified by 



9 
 

prediction errors signaled by dopamine and norepinephrine neurons (Rumelhart et 

al. 1986). 

 

Dopamine neurons and reinforcement learning 

Midbrain dopamine neurons have been shown to encode for prediction 

errors by phasically increasing or inhibiting their firing rates following unexpected 

reward delivery (positive prediction error) or omission of rewards (negative 

prediction error) respectively. As demonstrated by Schultz et al (1998), dopamine 

neurons showed phasic increase in firing rate following unpredicted delivery of a 

juice reward. With continuous pairing of juice reward and an audio tone, phasic 

activation following the delivery of juice reward decreased as the reward delivery 

became predictable by the audio tone. However, when the predicted reward failed 

to occur following the tone after training, dopamine neurons were phasically 

depressed at the time when the reward was expected (Figure 2).   

The observation that positive-prediction errors induced opposite modulation 

in firing rates compared to negative-prediction errors suggested that errors are 

directly implemented in adjusting reward expectations so that future outcomes can 

be accurately predicted. The empirical study of dopamine neurons provided strong 

support for reinforcement learning. The biological support for attentional learning, 

however, came from studies of norepinephrine neurons. 



10 
 

 

Figure 2. Dopamine neuron and prediction errors. (A) Firing rate of a dopamine 

neuron signaled prediction errors. In the top panel, an unexpected reward was 

signaled by increased firing rate following reward delivery (positive prediction 

error). In the middle panel, the cue was established as a predictor of the reward, and 

the firing rate was not modulated following reward delivery (no prediction error). 

In the bottom panel, the expected reward following cue presentation was omitted 

and triggered a decrease in firing rate following reward omission (negative 

prediction error). (B) Diagrammatic representation of the corresponding prediction 

errors shown in A (Scheme adapted from Schultz et al. 1997). 
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Norepinephrine neurons and attention 

Norepinephrine (NE) neurons are located within the brainstem and have 

wide-spread projections to cortical regions, including the hippocampus and the 

neocortex. Like dopaminergic neurons, NE neurons exhibit phasic increase in 

activity following unexpected outcomes, and habituate quickly upon repeated 

exposures (Aston-Jones et al 1994). However, unlike dopaminergic neurons, NE 

neurons phasically increase their activities following both positive and negative 

prediction errors (Sara & Segal 1991; Foote et al. 1980).  

The activation of NE neurons following prediction errors has been 

demonstrated to play a critical role in learning (Devauges & Sara, 1990; Harley 

2004). Kety (1970) was the first to propose that phasic NE activation might serve 

as a learning signal by facilitating synaptic strength between two neurons that fire 

in conjunction with the release of NE neurotransmitters. Therefore, the phasic 

release of NE neurotransmitters following prediction errors may enhance ongoing 

learning by facilitating associations. This theory is supported by the finding that 

formation of memory traces in the hippocampus were highly sensitive to NE release 

(Berridge & Waterhouse 2003). Studies have also demonstrated that learning can 

be facilitated by pharmacologically boosting NE release, and impaired when NE 

receptors were inactivated (Devauges & Sara 1990; Collier et al. 2004). 
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Altogether, empirical studies of NE neurons provided biological support for 

the attentional model of learning. Phasic release of NE neurotransmitters following 

errors increased the responsiveness of the learning system by facilitated synaptic 

plasticity, and supported the indirect role of prediction error in facilitating learning. 

 

1.4 – Neuronal substrates of learning and action selection 

Anatomy of the Prefrontal cortex 

The prefrontal cortex is a density heterogonous region located at the frontal 

lobe of the brain, and can be further sub-divided into several regions. In particular, 

the brain regions implicated in learning and implanting behavioural responses have 

been broadly credited to the medial and lateral sub-regions of the prefrontal cortex 

(Miller & Cohen 2001).  

The lateral prefrontal cortex (lPFC) is composed of areas with distinct 

cytoarchitectonic properties (area 8, area 9, and area 46) and is similarly organized 

in both humans and monkeys. However, in humans, the lPFC is folded with three 

sulci (superior frontal sulcus, frontal sulcus, inferior frontal sulcus), whereas only 

one sulcus (principle sulcus) is found in monkeys (Petrides & Pandya 2004). The 

medial prefrontal cortex can be separated into several regions. Barba and 

Zikopoulos (2007) classified area 24 as the anterior cingulate cortex (ACC) while 

designating the adjust area 32 as a part of the medial frontal cortex. Similar to the 
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lPFC, the medical prefrontal cortex is also similarly organized in both humans and 

monkeys, with an additional sulcus sometimes found within the human ACC. 

However this sulcus, termed paracingulate sulcus, is presented in only 30 to 60% 

of the human population (Petrides & Pandya 2004; Figure 3). 

Complex cognitive learning studies have segregated the function of the 

lPFC and ACC. The functional segregation of these two regions will be discussed 

in more detail in the sections below. Briefly, the ACC has been shown to play a 

critical role in tracking performance failures and signaling a need to make 

adjustments. When an error is detected, the ACC signals to the lPFC which exerts 

control over the cognitive processes in order to optimize task performance (Miller 

& Cohen 2001).  
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Figure 3. Anatomy of the medial and lateral prefrontal cortex. A, lateral view 

of the prefrontal cortex in humans (left) and in monkeys (right). B, medial view of 

the prefrontal cortex in humans (left) and monkeys (right). The lateral prefrontal 

cortex and the anterior cingulate cortex has long been suggested to play a criticle 

role in learning. The lateral prefrontal cortex usually refers to boardman area 8, 9 

and 46. The anterior cingulate cortex generally refers to boardman area 24. 

(Diagrams obtained from Petrides & Pandya 2004) 
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ACC - Performance monitoring and allocating adjustments 

The ACC is the most prominent brain region associated with error 

processing. The earliest description of error signals came from 

electroencephalograph studies that showed a negative deflection in event-related 

potential (ERP) peaking around 100ms after the onset of an error. This ERP 

component, referred to as error-related negativity (ERN), was later localized to the 

ACC (Falkenstein et al., 1991, 2000; Miltner et al., 1997; Gehring et al. 1993; 

Figure 4A). ERN has been shown to reflect a genuine error-locked response, since 

it is only observed following sub-optimal performances and can be elicited by a 

wide variety of sensory modalities (Holroyd & Coles, 2002; Miltner et al., 1997). 

More recently, single neuronal recordings have also confirmed the existence of 

error-encoding neurons within the ACC. Neurons within the ACC have been 

reported to encode for prediction errors, with positive and negative prediction errors 

encoded by distinct populations (Matsumoto et al. 2007; Figure 4B). Other recent 

electrophysiological studies have reported neurons within the ACC that encoded 

for inappropriate motor responses such as break fixations, and incorrect response 

mappings such as incorrect choice errors (Quilodran et al., 2008; Ito et al., 2003).  
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Figure 4. Evidence of error processing within the ACC. (A) Error-related 

negativity. Top panel shows response-locked waveform for correct and error trials 

at mid-frontal electros. Bottom panel shows the scalp voltage maps at the time of 

peak error-related negativity (56ms after the response). (B) Activity of anterior 

cingulate prediction-error encoding cells aligned to the time of response. Top panel 

shows the population activity of positive feedback cells, where C1, C2 and C3 

respectively indicate first correct responses, and second and third subsequent 

correct responses. Bottom panel shows the population activity of negative feedback 

cells, where E1, eC1, eC2, and eC3 respectively indicate error responses, and first 

second third subsequent correct responses following E1 (Diagrams adapted from 

Yeung et al. 2004 and Matsumoto et al. 2007). 
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Errors are salient indicators of the need for adjustments, and the error 

monitoring role of the ACC has been viewed as a small part of its overall function 

in optimizing performance by overcoming a bad streak of failures (Shenhav. et al. 

2013, Khamassi et al. 2013). Under the reinforcement learning framework, the 

ACC plays a direct role in updating expectations through prediction errors and 

allocating correctional adjustments. Evidence in support of this theory came from 

studies demonstrating ACC’s sensitivity to not only prediction errors, but also to 

the degree of expected rewards and to internally selected actions (Khamassi et al. 

2013; Lapish et al. 2008; Hyman et al. 2010, 2011). On the other hand, attentional 

theory proposes that the ACC indirectly optimizes task performance by adjusting 

motivational control or the overall responsiveness of the system. In support of this, 

ACC lesion studies showed changes in behavioral responses that were consistent 

with the idea of motivational deficits. Lesions of the ACC in rats shifted their 

selection criteria such that the lesioned rats would often choose the less effortful 

actions that yield less reward over the more effortful action that yield larger rewards 

(Walton et al. 2003). In humans, patients with ACC lesions showed signs of a deficit 

in self-initiated, or willed, movements (Nemeth et al. 1988). 
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lPFC - Implementing adjustments 

In contrast to the monitoring and regulatory role of the ACC, the lPFC is 

thought to be involved in implementing and executing purposeful behaviors. In 

particular, the ventrolateral prefrontal cortex is thought to be involved in first-order 

executive processes, such as the active representation of stimulus-response 

associations and the selection of task-relevant versus the task-irrelevant information. 

Whereas the dorsolateral prefrontal cortex is thought to be involved in higher-order 

executive processes, such as strategic planning, which involves the integration of 

multiple pieces of information (Petrides 1996). 

Given the close functional relationship between the ACC and lPFC, 

performance errors often elicit the co-activation of both regions. A study by 

Cavanagh et al (2009) demonstrated that theta band phase coherence reflected 

communication between the lateral and the medial prefrontal cortex, and that 

resolutions following errors occur when these two regions interact with each other. 

In their study, the medial prefrontal cortex responded to error events with increased 

inter-areal theta power and phase coherence, consistent with the view that the ACC 

monitors performance. Although the lPFC did not show an increase in inter-areal 

theta power, theta phase synchrony between the medial and the lateral prefrontal 

cortex was increased on error trials and this synchrony is predictive of post-error 

behavioral adjustment (Figure 5).  
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These highlighted studies demonstrated the division of labor between ACC 

and lPFC: the ACC is involved in performance monitoring, while the lPFC is 

involved in implementing correctional adjustments to ensure future successes. In 

order to optimize performance during cognitively demanding tasks, the ACC 

monitors task performance and signals to the lPFC a need for adjustments. 
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Figure 5. Intra-areal communications between the lateral and medal 

prefrontal cortex facilitated adjustments following error. Left panel A, medial 

prefrontal theta power is positively correlated with the power of intra-areal theta 

synchronization between lateral and medial prefrontal cortex. F5 and F6 represents 

electros placed on the lateral prefrontal cortex of the left and right hemisphere. 

Right panel A, post-error response slowing is present in trials following error, 

where N is error trials and N+1 is the trials following error. Panel B, intra-areal 
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theta phase synchronization between lateral prefrontal cortex in the right 

hemisphere and medial prefrontal cortex is correlated with post-error slowing. 

Similar in C, the inter-areal medial prefrontal cortex theta power after error 

response is also shown to be correlated with post-error slowing (Diagrams adapted 

from Cavanagh et al. 2009). 

 

1.5 – Research Questions & Hypothesis 

In order to achieve the desired outcome, one must monitor his performance 

and strategize his behaviors based on learned associations between the external 

stimuli or behavioral responses and their subsequent outcomes. In the brain, the 

ACC has been suggested to play a role in performance monitoring and regulating 

the implementation of executive functions by the lPFC. Metaphorically, the ACC 

can be viewed as the coach while the lPFC can be viewed as the players. As a coach, 

the ACC is on the field with the players, experiencing the joy and pain of wins and 

losses. It monitors the current environment as well as keeping track of the recent 

performance, and guides the players to overcome a bad streak in performance or to 

maintain a string of success.   

In order for the ACC to function effectively as a coach, it must be able to 

discriminate performance failures based on their underlying causations in order to 

make the necessary corrections through the lPFC. Past studies have shown that 
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ACC neurons encode for different types of errors related to reward expectation, 

such as positive and negative prediction errors, uncertainty errors, and incorrect 

choice errors (Matsumoto et al. 2007; Quilodran et al. 2008; Ito et al. 2003; Amiez 

et al. 2005). However, few studies to date have examined whether the ACC can 

discriminate errors caused by the failure of different processes of attentional 

controls. In support of the current theories on the role of ACC and lPFC in decision 

making, I hypothesize that the ACC can distinguish between different errors types 

caused by failures of different processes of attentional controls. The rest of the 

chapters will outline the experimental approaches used in our lab to segregate 

different processes of attentional control, and highlight my findings as to whether 

the ACC can distinguish different attentional control failures. 
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Chapter 2 – Methods 

2.1 – Experimental Procedures and Paradigm.  

 In my analysis, I used a set of previously collected and processed data from 

a recent publication by our lab (Kaping et al. 2011). The data were collected from 

two male macaque monkeys following the guidelines of the Canadian Council of 

Animal Care on the use of laboratory animals and of Western University’s Council 

on Animal Care. The following experimental procedures and data acquisition 

protocols have been described in detail in Kaping et al. (2011). 

 

Extracellular recordings.  

 Extra-cellular recordings commenced with 1-6 tungsten microelectrodes 

(impedance 1.2-2.2 MΩ, FHC, Bowdoinham, ME) through standard recording 

chambers (19mm inner diameter) implanted over the right hemisphere in both 

monkeys. The recording chambers allowed access to the anterior aspects of the 

prefrontal cortex and cingulate sulcus, and to align recordings to the same anterior-

to-posterior extent in both animals (see Kaping et al. 2011; and below: 

Reconstruction of Recording Sites). Electrodes were lowered in guide tubes with 

software controlled precision microdrives (NAN Instruments Ltd., Israel) on a daily 

basis, through a recording grid with 1mm inter-hole spacing. Before recordings 
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began, anatomical 7T MRIs were obtained from both monkey’s to allow 

reconstruction of electrode trajectories and recording sites. 

 

Data acquisition.   

 Data amplification, filtering, and acquisition was done with a multi-channel 

processor (Map System, Plexon, Inc.) using unity gain headstages. Spiking activity 

was obtained following a 100-8000 Hz passband filter, further amplification and 

digitization at 40kHz sampling rate. During recording, the threshold was adjusted 

to have always a low proportion of multiunit activity visible against which we could 

separate single neuron action potentials in a 0.85 to 1.1 ms time window. Sorting 

and isolation of single unit activity was performed offline with Plexon Offline 

Sorter (Plexon Inc., Dallas, TX), based on principal component analysis of the spike 

waveforms. The monkeys eye position was tracked continuously with an infra-red 

system (ISCAN, Woburn, US) running on a DOS platform, with eye fixation 

controlled within a 1.4-2.0 degree radius window.    

 

Visual stimulation.  

 Stimuli were presented on a 19’’ CRT monitor placed 57cm from the 

monkeys’ eyes, running at 1024x768 pixel resolution and 85 Hz refresh rate. 

Behavioural control and visual stimulation was accomplished with Pentium III PCs 
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running the open-source software Monkeylogic (http://www.monkeylogic.net/), 

which has been benchmarked and validated in two previous publications (Asaad 

and Eskandar 2008a, 2008b). Grating stimuli was used with ‘rounded off’ edges 

and were presented at 4.2° eccentricity to the left and right of fixation. Monkeys 

had to detect a transient and smooth clockwise/counterclockwise rotation of the 

grating movement (see below). The rotation was adjusted to ensure ≥ 85% of 

overall correct responses to the grating and ranged between ±13° and ± 19°. The 

rotation proceeded smoothly from standard direction of motion towards maximum 

tilt within 60 ms, staying at maximum tilt for 235 ms, and rotating back to the 

standard direction within 60 ms. 

 

Experimental paradigm 

 Monkeys performed a selective attention task requiring a two-alternative 

forced-choice discrimination on the attended stimulus (Figure 6). Monkeys 

initiated a trial by directing their gaze to a centrally presented, gray fixation point. 

Following a fixed 0.4 sec period, the two black/white grating stimuli were colored 

red/green (‘Color Cue’ onset). Within 0.05 to 0.75 sec after color onset, the central 

fixation point changed to red or green cueing the monkeys to covertly shift attention 

towards the location with the color matching stimulus. I label the period of 

sustained spatial attention the ‘Attention Epoch’ (Figure 6, time epoch with red 

http://www.monkeylogic.net/
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colored solid line). Errors during the Attention Epoch were fixation breaks and 

triggered abortion of the trial. At random times (drawn from a flat random 

distribution) within 0.05-4 sec after cue onset the cued target grating transiently 

rotated clockwise or counterclockwise. In half of the trials the un-cued distractor 

grating transiently rotated before the target. The stimulus rotation of the distractor 

stimulus had to be ignored, or filtered, which lead me to label this trial period the 

‘Filter Epoch’ that required control of bottom-up stimulus interference (Figure 6, 

time epoch with red colored dashed line). Monkeys had to discriminate the rotation 

of the target stimulus by making a saccadic eye movement up- or downwards to 

one of two response targets within 70-550 ms following rotation onset. I label the 

time after target stimulus rotation that required a choice from the monkeys the 

‘Choice Epoch’ (Figure 6, blue colored time epoch). The monkeys received fluid 

reward after a further delay of 0.4 sec after correct saccadic responses. Errors during 

the Filter and Choice Epoch were incorrect saccadic responses to the response target, 

or saccadic responses elsewhere Stimulus colors were differentially associated with 

high and low reward in alternating blocks (for more details see Kaping et al. 2011). 
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Figure 6. Selective attentional task paradigm. Two macaque monkeys performed 

a selective attention task (red / green) requiring a two-alternative forced-choice 

discrimination (clockwise vs. counterclockwise rotation) on the attended stimulus. 

Trials begin with monkeys fixating a central fixation point bounded by green and 

red colored grating stimuli. During the attentional period, the color of the central 

fixation point changed to either red or green cuing the monkey to covertly shift its 

attention towards the target grating stimulus with color matching that of the fixation 

cue. Within 0.05-4s following cue onset, either the target or the distractor 

transiently changed. In 50% of the trials, the distractor change occurred before the 

target change (distractor period) and had to be ignored. To receive a liquid reward, 

the monkeys had to discriminate the rotation of the cued stimulus by making an 
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upward/downward saccade to clockwise/counter clockwise rotations (response 

period). 

 

2.2 – Reconstruction of Recording Sites.  

I utilized a set of data that had been previously processed and prepared for 

a recent publication from my lab (Kaping et al. 2011). Briefly, the anatomical sites 

of each recorded neuron were reconstructed and projected onto a flat map 

representation of the macaque brain (see Kaping et al. 2011) (Figure 7). My lab 

used the area subdivision scheme outlined by Barbas and Zikopoulus (2007) and 

refer to prefrontal areas 46, 8, and 9 as ‘lateral prefrontal cortex’ (lPFC), area 24 as 

the anterior cingulate cortex (ACC), and area 32 as the (ventro-) medial prefrontal 

cortex (mPFC) (see also Passingham and Wise, 2012). Very similar area 

assignments would follow when considering two other major anatomical 

subdivision schemes (Saleem et al. 2008, Petrides and Pandya 2007, see Suppl. Fig. 

2 in Kaping et al. 2011). To briefly summarize the reconstruction steps, my lab 

began by projecting each electrodes trajectory onto the two dimensional brain slice 

obtained from 7T anatomical MRI images, using the open-source OsiriX Imaging 

software and custom-written Matlab programs (Mathworks Inc.), and utilizing the 

iodine visualized electrode trajectory within the electrode grid placed within the 

recording chamber during MR scanning. They drew the coronal outline of the 

cortical folding of the MR gray scale image to ease the comparison of the 
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individuals monkey brain slices to standard anatomical atlases, and to ease using 

major landmarks (Van Essen et al. 2001). They then projected, manually and under 

visual guidance, the electrode position to the matched location in the standard F99 

brain in Caret. Our lab estimated that the complete procedure from documenting 

precisely the recording depth, identification of the recording location in the 

monkeys MR slice, and up to the placement of the electrode position in the standard 

F99 brain introduces a potential maximal error of 3mm.  
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Figure 7. Anatomical subdivisions of the prefrontal cortex.  A, lateral and 

medial view of the macaque brain. Left panel shows a typical 3D model of the 

macaque frontal cortex, with subdivisions colored according to Barbas and 

Zikopoulus (2007). The middle panel shows a partially inflated brain, and the right 

panel shows the flattened representation of the brain.  

 

However, we felt that despite this potential distortion, which we cannot rule 

out despite our confidence that the typical (unsystematic) error is more in the 1mm 

range, the assignment of recording locations to standard brains is highly beneficial. 

Note in particular, that anatomical reconstruction was conducted entirely 

independent of the analysis of neuronal data and of projecting functional results 

onto the anatomical 2D map. After identifying all recording sites within the 

standard F99 brain, my lab used the Caret software package to render the standard 

brain into a three dimensional volume, which was then spherically inflated and cut 

in order to unfold the brain into two dimensional space, i.e. the flat map.  

 

2.3 – Data Analysis.  

 Analysis was performed with custom Matlab code (Mathworks, Natick, 

MA), utilizing functionality from the open-source fieldtrip toolbox (Oostenveld et 
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al. 2011). Analysis of spiking activity was based on convolving spiketrains of 

individual trials with a Gaussian (SD 30ms) sampled every 5 ms.  

 

Classification of errors & saccade directions 

 Analysis of errors was time aligned to the onset of the erroneous trial 

outcome. For the analysis, I considered errors that were committed during either of 

three time epochs. First, I considered errors committed during the sustained 

Attention Epoch within 0.3-3 sec. following attention cue onset. These errors 

occurred during a state of selective attention and may best reflect rather unspecific 

motivational lapses of attentional control, which entailed lost inhibitory control of 

eye fixation. The second error type occurred during the Filter Epoch. I restricted 

analysis of these errors to the typical response time window that animals were 

granted for the true attentional target stimulus. Errors in this Filter Epoch reflected 

the erroneous bottom-up capture of attention by the salient distractor, or erroneous 

top-down attention to the wrong stimulus that was of a color different to the 

attention cue color. The third error type was seen in the Choice Epoch, where the 

animals either responded to the wrong response target (i.e. made a wrong choice), 

or incorrectly directed attention to the wrong stimulus. Errors during choice period 

reflected erroneous motor response due to erroneous stimulus-response mapping. I 
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restricted analysis of errors in the choice period to the time window that would have 

been allowed for the correct response to occur.  

 I categorized the saccade direction of errors in each of the three time epochs 

during the trial relative to the four major quadrants (up: 0° ± 45°, left 90° ± 45°, 

down: 180° ± 45°, and right 270° ± 45°). For each of the three errors, I statistically 

tested whether erroneous saccades were biased in any particular direction (Chi 

square test). First, I compared whether saccadic responses up versus down (and 

right vs left) were statistically equally likely. Since the response targets were along 

the vertical axis and the peripheral stimuli in the horizontal dimension, I then tested 

the null hypothesis that saccade directions were equally distributed in the horizontal 

vs. vertical axis.  

 

Identifying error specific firing rate modulation.  

 I imposed two main criteria to identify whether cells encoded error specific 

information in their firing. First, firing in response to the error had to be 

significantly different from pre-error baseline firing. Baseline was defined as the 

average firing within 300 ms before error onset. Error activity was averaged in 

sliding windows of ±150 ms in steps of 50 ms. Secondly, the activity modulation 

following errors had to be significantly different from the firing in correct trials. 

For this comparison, I randomly realigned correct trials so that their activity at time 
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“zero” corresponded to the time when errors were committed (i.e. drawing the 

alignment times for the times of error commission).  

 For both criteria, I required a cell to show significant modulation for at least 

five consecutive sliding windows in the time windows between 0 and 0.7 sec. after 

error onset (p < 0.05, Mann-Whitney U test). To focus on the transient detection 

processes I additionally required that there was no significant modulation prior to 

error-onset, and after 0.7 sec. following error onset. For some cells with low and no 

firing in a large subset of trials, I used a non-parametric two-part model for 

statistical comparison that has been shown to have more power and be more 

accurate for data with large proportions of discrete (0’s) over continuous values 

(Lachenbruch 2002).  

 For all neuronal analysis I used only errors committed ≥0.2 sec. following 

the onset of cue (Attention Epoch errors), the onset of distractor rotation (Filter 

Epoch errors) and the onset of target rotation (Choice Epoch errors). This selection 

prevented interference from transient onset related effects. I further required at least 

ten error trials per isolated cell to test for error-selectivity and proceed with 

subsequent analysis. Error modulated firing was either characterized as enhanced 

or suppressed firing, based on the sign of the firing rate difference between baseline 

corrected correct and error trials.   
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Anatomical distribution of cells with error-selective firing.  

 To test for fine anatomical clustering of error-detecting cells, I calculated 

the proportion of error-selective cells, relative to all recorded cells, at intersections 

of a virtual grid within a 4mm radius of the flat map. I only considered pixels in the 

map that included at least ten recorded cells. This anatomical mapping of error 

activity allowed testing for spatial clustering of error detection using randomization 

statistics that controlled for uneven sampling of cells across the grid (see Kaping et 

al. 2011). To test for a higher or lower proportion of error-detecting cells than 

expected by chance, I calculated n=2000 random distributions of proportions of 

cells with a significant effect, after randomly shuffling the location label while 

maintaining the number of recorded cells per pixel. A cluster was significant if the 

observed proportion of error-selective cells exceeded the 95th percentile of the 

random distributions, corresponding to one-tailed p < 0.05 threshold.  

 Independent of the fine anatomical mapping, I also compared the 

proportions of error detecting cells between three major subdivision of the PFC 

using multiple comparison corrected (Bonferroni threshold: p < 0.0165) chi-square 

tests of independence, comparing ACC vs. lPFC, lPFC vs. mPFC and mPFC vs. 

ACC. 
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Latency analysis of error-selective firing.  

 For each cell with significant error-selective firing, I calculated the latency 

as the time of maximal difference in post-error to pre-error firing baseline. I aimed 

then to test for significant discrepancies in the latency associated with different 

response types (enhanced vs. suppressed firing), different area subdivisions (lateral 

PFC, ACC, mPFC), and different error epochs (Attention-, Filter-, and Choice- 

Epoch). However, the small sample size of some cell subsets limited the reliability 

of the latency distribution (i.e. proportion of error-selective cells with a given 

latency). Therefore, instead of simply comparing medians from unreliably 

characterized distributions, I computed the cumulative latency distribution for each 

cell subset, fitted them with sigmoidal functions, and utilized the C50 parameter of 

the fits – latency at which the cumulative distribution reaches 50% – as an improved 

estimate of the overall cell subset latency.  Prior to fitting, response latencies were 

tested for unimodality using Hartigan’s Dip Test (Hartigan and Hartigan 1985). 

Those that were confirmed to be multimodal were fitted with two separate 

sigmoidal functions. Confidence intervals surrounding the fit were computed from 

the Jacobian matrix and the residuals using Matlab toolbox. 
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Analysis of error-selective firing: enhancement versus inhibition.  

For ACC and lPFC, I directly tested whether the proportion of cells with 

error-locked firing enhancement exceeded, or fell behind, the proportion of cells 

with error-locked firing inhibition across time relative to error onset. To do so, I 

first estimated the distribution of cells showing error-specific 

enhancement/suppression by differentiating the fitted cumulative distribution of 

error latencies (see above). The subtraction of both derivatives indexed the relative 

balance of enhanced and inhibited firing. I evaluated statistical significance using 

randomization statistics by shuffling the assignment of cells to the 

enhanced/suppressed cell subset and repeating the procedure 2000 times.  

 

Classification of putative cell types.  

Putative cell types were classified using a method developed by one of our 

post-doctoral colleagues. Following his guidance, I aligned, normalized and 

averaged all action potentials for the set of highly isolated neurons (n = 404) of the 

sample. Each neuronal waveform was then fitted with cubic interpolation from an 

original precision of 25 μs to 2.5 μs. On the resultant waveform, I analyzed two 

measures (Figure 8): the peak-to-trough duration and the time for repolarization. 

The time for repolarization was defined as the time at which the waveform 

amplitude decayed 25% from its peak value. These two measures were highly 
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correlated (r = 0.68, p < 0.001, Pearson correlation). I computed the Principal 

Component Analysis and used the first component (84.5 % of the total variance), 

as it allowed for better discrimination between narrow and broad spiking neurons, 

compared to any of the two measures alone. I used the calibrated version of the 

Hartigan Dip Test (Hartigan and Hartigan 1985) that increases the sensitivity of the 

test for unimodality (Cheng and Hall 1998; Henderson et al. 2008). Results from 

the calibrated Dip Test discarded unimodality for the first PCA component 

(p < 0.01) and for the peak to trough duration (p < 0.05) but not for the duration of 

25% repolarization (p > 0.05). In addition, I applied Akaike's and Bayesian 

information criteria for the two- vs one- Gaussian model to determine whether using 

extra parameters in the two-Gaussian model is justified. In both cases, the 

information criteria decreased (from -669.6 to -808.9 and from -661.7 to -788.9, 

respectively), confirming that the two-Gaussian model is better. I then used the two-

Gaussian model and defined two cutoffs that divided neurons into three groups 

(Figure 8). The first cutoff was defined as the point at which the likelihood to be a 

narrow spiking cell was 10 times larger than a broad spiking cell. Similarly, the 

second cutoff was defined as the point at which the likelihood to be a broad spiking 

cell was 10 times larger than a narrow spiking cell. Thus, 95% of neurons (n = 384) 

were reliably classified: neurons at the left side of the first cutoff were reliably 

classified as narrow spiking neurons (20%, n = 79), neurons at the right side of the 

second cutoff were reliably classified as broad spiking neurons (75%, n = 305). The 
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remaining neurons were labeled as ‘fuzzy’ neurons as they fell in between the two 

cutoffs and were not reliably classified (5%, n = 20). 

 

Analysis of cell type distributions  

To test whether the ratio of narrow and broad cells were different between 

the error encoding neurons within the ACC and lPFC, I applied randomization 

statistics. From the recorded neurons within each region, I randomly sampled a set 

of neurons equal in size to error population. I repeat this process 2000 times for 

both lPFC and ACC to obtain the expected narrow and board cell proportions found 

within the two regions. I then compared the observed difference between narrow 

and board cells to the expected different between narrow and board cells obtained 

from randomization. Statistical significances were identified if the observed values 

fall outside the 95% confidence interval. This method corresponds to a two-tailed 

test with p < 0.05. 
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Figure 8. Putative cell types classification. A, cells towards the left and right of 

the bimodal distribution were classified as ‘narrow spiking’ and ‘board spiking’ 

cells respectively, with those falling in the middle labeled as ‘fuzzy’ cells. The 

bimodal histogram distribution was plotted using PCA score calculated from peak-



40 
 

to-trough time and repolarization time. B, averaged population wave-form for 

narrow (red) and board spiking cells (blue). The black line represent the mean 

normalized voltage, and the shaded region represents stand error around the mean.  

 

Analysis of oculomotor activities 

 To examine whether error-related activities are confounded by other factors, 

such as motor related modulations, spike activities of error-feedback neurons were 

re-examined after aligning to saccade onset. For a particular error-feedback neuron, 

saccadic aligned correct and error trials were tested for significance against their 

respective baselines as described above. For error neurons that displayed 

significantly modulated activity from baseline, during both correct and error trial, 

their respective magnitude of maximum modulation from baseline were compared 

pair-wise (paired-ranksum test, p < 0.05). 
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Chapter 3 – Results 

3.1 – Behavioral Error Classification. 

 Our lab have recorded single neuronal activities across a large extent of the 

lateral and medial prefrontal cortex in two macaque monkeys while they were 

performing a selective attention task (see Kaping et al. 2011). The task required the 

monkeys to use an instructional cue stimulus to covertly shift their attention to one 

of two peripheral stimuli, and maintain spatial attention on that stimulus until it 

transiently rotated. The monkeys were then required to make the correct saccadic 

movements towards one of the two targets based on the direction of the rotation 

(Figure 6). In half of the trials, the non-attended distracting stimulus transiently 

rotated before the attended stimulus, which had to be filtered (ignored) by the 

animals. Overall, the task was performed at 78% accuracy levels (monkeys M and 

R: 76.6 / 83.9%; SD: 10%), with errors falling into three major task epoch: First, 

errors committed during sustained spatial attention, but prior to any stimulus 

rotations (Attention epoch), were breaks of fixations without a particular strong 

directional bias to the response targets (46% horizontally) or peripheral stimuli (54% 

vertically) (Figure 9). These errors mostly reflected lapses in inhibitory control of 

eye fixation and were indicative of lapses in the top-down maintenance of attention. 

Monkeys committed errors in the Attention Epoch for an average of 8.5% of all 

trials (monkey M: 6% and R: 11%). The second epoch with large numbers of errors 
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followed the distractor rotation that had to be filtered from influencing the behavior 

of the monkeys. Saccadic errors in this Filter Epoch partly reflect erroneous top-

down attention to the distractor (as inferred from the 78% vertical preference in the 

saccade directions), but also partly a bottom-up capture of attention by the 

peripheral stimuli (22% horizontal saccades, Figure 9). Monkeys made on average 

8% of the trial errors in the Filter Epoch (monkey M: 6% and R: 10%). The third 

type of error was committed within the allowed response time window to the 

rotation of the attended target stimulus (Figure 9). Errors in this Choice Epoch were 

predominantly saccades to the wrong response target (91% vertically) located 

vertically up and down from the fixation point (Figure 9). Choice Epoch errors 

were thus mostly reflecting incorrect sensory-response mappings from rotation 

directions to saccade directions. Monkeys made on average 11.5% of trial errors in 

the Choice Epoch (monkey M: 18% and R: 5%). 
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Figure 9. Behavioral characteristics of erroneous saccades within attentional, 

filter, and choice epochs. A, distribution of error commission times during 

attentional, filter, and choice epoch. B, proportion of erroneous saccades that were 

made toward one of the four quadrants (up, down, left, right) during attentional, 

filter, and choice epochs. 
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3.2 – Selective error-detection signals in neuronal firing.  

 Next, I attempted to isolate prefrontal cells encoding for error outcomes in 

the three task epochs described above. Figure 10 shows the proportion of cells that 

transiently modified their firing upon error commission in each of the task epochs: 

for the Attention Epoch, the recordings of 867 cells included at least 10 error trials, 

and 128 (15%) showed error selectivity; for the Filter Epoch, the recordings of 544 

cells included at least 10 error trials, and 72 (13%) showed error selectivity; and for 

the Choice Epoch, the recordings of 728 cells included at least 10 error trials, with 

84 (12%) showing error selectivity. The error-locked firing modulations were 

evident not only in increased firing, but also through transient post-error response 

inhibition for a substantial number of neurons (44% of error-selective cells).  

 Cells may show error-locked responses only for errors in one task epoch, or 

they could generalize and signal errors across epochs. I quantified this 'tuning' to 

specific errors in different epochs by calculating the proportion of cells that showed 

joint error-locked response modulation (Figure 11). The joint selectivity of error 

outcomes across epochs was evident in less than one third of the cells (28% 

attentional epoch, 33% filter epoch, 24% choice epoch) that were error-selective 

through increased activations (Figure 11 A). Joint-error coding through response 

inhibition was less equally distributed compared to response enhancement (22% 

attentional epoch, 28% filter epoch, 9% choice epoch), with proportion of joint-

error encoding being significantly less in choice epoch than in attentional epoch 
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(Figure 11 A, Chi squared test, p < 0.05). Figure 11 B,C illustrates the specific 

combinations of task epochs to which single cells showed error locked firing 

increases (Figure 11 B) and decreases (Fig. 11 C). Joint-error selectivity through 

response enhancement was similarly likely for all combinations of error types. In 

contrast, cells showing response inhibition following errors in the Choice Epochs 

were largely unaffected by errors committed during the Attention Epoch and Filter 

Epoch (Figure 11C). 
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Figure 10. Error-related firing rate modulations for errors in three different 

task epochs. (A) Normalized firing of cells that increase (upper panels) and 

decrease (lower panel) their firing rate transiently following error commission in 

the Attention Epoch (see Fig. 1A). Dashed and Solid lines correspond to error and 

correct trials. (B, C) Same format as in A, but for the set of cells with significant 

activity modulation in response to error commissions in the Filter Epoch (B), and 

the Choice Epoch (C). Normalization of single cell firing rates used the formula 

(Rate - min(Rate))/(max(Rate)-min(Rate)). Gray shading shows SE. 
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Figure 11. Proportion of cells encoding error outcomes in more than one task 

epoch. (A) Proportion of cells (y-axis) that encode errors in one task epoch (as 

indicated on the x-axis) and in at least one other epoch ('joint encoding' cells). The 

dark gray bars reflect join encoding for cells that increased their firing upon errors. 

The light gray bars denote cells showing transient firing suppression following 

errors. (B) The distribution of joint encoding of errors for cells that increase firing 

upon error commission. The length of arrows in each plot denotes the proportion of 

cells that jointly encode errors in the epoch where the arrows originate and where 

they point to. The sketched circles on the left illustrate the main result of partly 
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overlapping error types. (C) Same format as B but for cells with firing rate 

suppression upon error commission. 

 

3.3 – Functional topography of error detection. 

 Next, I tested whether neurons encoding errors in a particular task epoch 

were anatomically located in specific subareas within the PFC of the macaque 

monkeys. For this purpose, I used the previously reconstructed recording locations 

of neurons that were projected onto a two dimensional flat map of the PFC (see 

Materials and Methods, and Kaping et al. 2011). Across the three major subdivision 

of the PFC that the neurons were recorded from, the ACC (area 24) hosted the 

largest proportion of error cells (Figure 12A, 12B). The salient cluster in area 24 

(Figure 12B, randomization test, p < 0.05) is highly consistent with existing 

evidence about the functional role of the ACC in error detection (Alexander and 

Brown, 2011; Shenhav et al. 2013). Beyond the ACC I also found small satellite 

spots with significantly higher proportions of error-detecting neurons than expected 

by chance in dorsolateral prefrontal cortex (dlPFC) area 9 and at the border of 

medial frontal (mPFC) area 32 (Figure 12B, randomization test, p < 0.05). Taken 

together, these findings showed first that error detection was particularly prominent 

in the ACC with more than 25% (and locally up to 40%) of cells signaling error 
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outcomes across task epochs in an attention task. Secondly, the results also showed 

that error signals were not strictly confined to the ACC. 

 

 

Figure 12. Anatomical distribution of error-encoding cells in the prefrontal 

and anterior cingulate cortex. (A) The overall proportion of cells with significant 

error-related firing rate modulation in the lPFC (areas 46, 8 and 9), the ACC (area 

24), and the medial prefrontal cortex (mPFC, area 32). The contour map shows 

these areas as patches on a 2D flat map (see also Figure 1E). (B) Fine grained 
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functional topography of the proportion of error-encoding cells (color scale) in 

prefrontal and cingulate cortex. Significant spatial clustering, particularly within 

ACC, is shown in the contour map to the right. (C-E) Same format as in B but only 

for cells that signal error outcomes in the Attention Epoch (C), in the Filter Epoch 

(D), and in the Choice Epoch (E). The bar histograms show the average proportions 

of error-encoding cells per sub-area. The small contour maps show significant 

spatial clustering of error encoding cells for each error type. The colorbars are 

scaled with the distribution medians' as the intermediate (white) color. 

 

Topographic clustering of cells encoding errors in different task epochs. 

 One reason for the anatomical clustering of error signals in frontal areas 

beyond the ACC could be an anatomically specific tuning to errors committed in 

selective task epochs. As shown above (Figure 11) more than two thirds of error-

encoding neurons were exclusively selective to one error type. I therefore analyzed 

the topographic distribution of error-encoding neurons for each task epoch 

separately (Figure 12C-E). For the Attention Epoch the overall proportion of error-

encoding cells did not vary between the dlPFC, mPFC and ACC, but fine grained 

functional mapping revealed a significant cluster of error-encoding cells in the 

dlPFC areas 46 and 8 (Figure 12C, randomization test, p < 0.05). Error encoding 

during the Filter Epoch was evident in up to 31% of cells in local clusters within 
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ACC (area 24) (Figure 12D, randomization test, p < 0.05). Errors committed 

during the Choice Epoch were likewise mostly encoded in local clusters of cells 

within the ACC (Figure 12E, randomization test, p < 0.05). The anatomical 

clusters of error-detecting cells in the Filter Epoch and the Choice Epoch 

overlapped only partly, suggesting that largely independent populations of ACC 

cells encoded errors in each epoch. 

 

Anatomical dissociation of error-locked enhancement and inhibition. 

 In principle, the functional topographies described above could reflect a 

local circuit of primitive cells and interneurons tuned to error outcomes by locally 

coordinating their firing rates. However, errors could also trigger the activation of 

intra-areal brain circuits, where the activation of interneurons within one cluster 

triggers the inhibition of clusters within different sub-regions of the PFC. I tested 

whether these possibilities may be realized in the PFC by investigating the 

anatomical distribution of neurons that showed error-locked inhibition independent 

from neurons that signaled errors through response enhancement. Figure 13A 

shows that, across all PFC subregions, the proportion of neurons that transiently 

increased their firing upon error commission was statistically indistinguishable 

across different task epochs. In contrast, error-locked inhibition varied across PFC 

sub-regions as a function of the task epoch: within the ACC error-locked inhibition 
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was more than twice as likely to occur in the Choice Epoch than in the Attention 

Epoch (p < 0.016, multiple comparison corrected); the opposite pattern was found 

within the lPFC (p < 0.016, multiple comparison corrected). As illustrated in 

Figure 13B, in lPFC a large proportion of cells (up to 18% of cells in local clusters) 

showed error-locked inhibition in the Attention Epoch, while there were virtually 

no error-signaling cells with response inhibition in the Choice Epoch. Analogously, 

large proportion of cells in the ACC (up to 21% of cells) showed error-locked 

inhibition in the Choice Epoch, whereas virtually no cells encoded errors through 

response inhibition in the Attention Epoch.  

To validate this double dissociation (ACC-lPFC and Attention-Choice 

Epoch), I evaluated significant spatial clustering of cells with a permutation test 

that corrected for uneven sampling of cells across the flat map (see material and 

methods). This analysis (Figure 13C) confirmed that a larger proportion of cells 

than expected by chance (p < 0.05) showed error-locked inhibition during the 

Choice Epoch within the ACC, and during the Attention Epoch within the lPFC 

(area 8 and 46).    
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Figure 13. Anatomical distribution of cells with enhanced and suppressed 

firing upon errors across anterior cingulate and prefrontal cortices. (A) 

Proportion of cells encoding error outcomes with enhanced firing (dark gray bars) 

and suppressed firing (light gray bars). Significantly different proportions are 

indicated with a star. (B,C) Finer grained functional topography of cells with 

suppressed firing following errors in the Attention Epoch (top), the Filter Epoch 

(left bottom), and the Choice Epoch (right bottom). The double pointing arrows 

connect the spatial clusters where there were significantly larger proportions of 

error encoding cells than expected by chance as shown in the clustering map in 
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panel C. Red and blue bounded gray patches denote cell clusters with error-locked 

inhibition in the Attention Epoch (red) and Choice Epoch (blue). The colorbars in 

B are scaled with the distribution medians as the intermediate (white) color. 

 

3.4 – Relative spike timing of error-locked responses. 

  Next, I tested the relative timing of error-locked enhancement and 

inhibition. For each cell with significant error-selective firing, I first calculated the 

latency of maximal error-locked response modulation, and then compared the 

cumulative distribution of cells with error-locked firing increases versus the 

cumulative distribution of cells with error-locked firing inhibition. I restricted this 

analysis to cells in ACC and lPFC, as my aim was to explain the dissociation 

between both areas described above (Figure 13B).  

 Figure 14A-C illustrates the cumulative distributions of error-specific 

response enhancement and inhibition cells. The cumulative distributions were well 

fitted by a sigmoidal function (or, in one case, with the combination of two sigmoids, 

see Materials and Methods), which allowed using the C50 parameter of the fits – 

latency at which the cumulative distribution reached 0.5 – as a good estimate of the 

latency for error encoding per sub-area (see Materials and Methods). Figure 14D 

summarizes the latencies of error-signaling through response enhancement and 

response inhibition, illustrating two main findings: first, error-locked firing 
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enhancement preceded in time to error-locked inhibition in all task epochs and brain 

areas with only one exception - the lPFC error signaling in the Filter Epoch that 

showed similar strengths of firing enhancement and inhibitions. Secondly, error-

locked firing enhancement in the ACC preceded the error-locked signaling in the 

lPFC. This finding of the earliest latency in the ACC corroborates the special role 

of the ACC to detect errors in the attention task. In summary, error-detections were 

the fastest in the population of ACC cells that increased firing upon error 

commission, followed by transient response inhibition in the ACC and the lPFC.  

 I further validated these conclusions with an additional analysis that, unlike 

the cumulative distributions, took into account the unequal proportion of cells 

signaling distinct error types in different prefrontal regions through either 

enhancement or inhibition (Figure 14E-G). For this analysis I subtracted the 

estimated distribution of the proportions of cells showing error-locked firing 

enhancement with respect to the cells showing firing inhibition (Materials and 

Methods). As shown in Figure 14E-G, error locked enhancement activity clearly 

emerged earliest and strongest in the ACC compared to the lPFC in the Attention 

Epoch, the Filter Epoch, and the Choice Epoch.  
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Figure 14. Latency of error encoding in the ACC and lateral PFC. (A-C) 

Cumulative latency distributions (y-axis) in the Attention Epoch (A), the Filter 

Epoch (B), and the Choice Epoch (C), with respect to time (x-axis). Raw data (small 

point- or cross- symbols) were fitted with a sigmoidal function (see text and 

Materials and Methods for details). Green / Blue lines show results from ACC and 

lateral PFC, respectively. Solid and dashed lines show cumulative latency 

distributions for cells with enhanced (solid) and suppressed (dashed) firing to errors. 

(D) The latency of cells with error related response inhibition (y-axis) against the 

latency of cells with error related response enhancement (x-axis). Latency is 

estimated by the C50 parameter of the sigmoidal fits shown in (A-C). Vertical and 

horizontal error bars denote the 95% confidence intervals around the C50 estimates. 

(E) The table lists the latencies (in seconds) from panel D for cells with error-locked 

enhancement (1st number) and inhibition (2nd number). (F-H) Difference in the 

proportion of error-selective cells that showed firing enhancement vs inhibition 

within ACC and lPFC in the Attention Epoch (E), the Filter Epoch (F), and the 

Choice Epoch (G) (see and Material and Methods). The green (blue) shading 

denotes the time intervals for which the difference in proportion between 

enhancement and inhibition neurons was significantly (p<0.05) different from zero 

(null hypothesis) in the ACC (green) and the lPFC (blue). 
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3.5 – Putative neuron types underlying error detection and error-locked inhibition.  

 The previous results illustrated that transient post-error inhibition followed 

the error-locked firing enhancement. This finding suggested that post-error 

enhanced firing was instrumental in triggering the post-error inhibition, and thus 

one can hypothesize that error signaling relies on inhibitory interneurons whose 

error-locked activation will impose error specific inhibition on the connected 

pyramidal cell populations (Medalla & Barbas 2012).  

 I tested this prediction by classifying the set of n=404 maximally isolated 

neurons into putative inhibitory interneurons and putative pyramidal cells 

according to their action potential waveform parameters (Figure 8, see Materials 

and Methods). The trough-to-peak duration and the time of 25%-repolarization of 

the cells' action potentials provided a bimodal distribution of waveform parameters 

with a clean separation of narrow spiking (‘NS’, 20%, N=79) and broad spiking 

(‘BS’ 75%, n=305) neurons, and 5% (N=20) of cells without unequivocal 

classification (which I labeled fuzzy cells). Of the classified cells, I found that n=70 

cells showed significant error-locked firing modulation (38/32 with error-locked 

enhancement and suppression, respectively), comprising n=11 NS cells (16%) and 

n=55 BS cells (79%), (and n=4 fuzzy cells) (Figure 15A). The overall proportion 

of NS to BS cells did not differ between lateral PFC (NS: N=4, 14%; BS: N=22, 

79%), medial PFC (NS: N=2, 10%; BS: N=18, 90%) and ACC (NS: N=5, 23%; BS: 

N=15, 68%). Figure 15B documents that on average, the population of cells with 
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error-locked response enhancement contained 74% BS cells (n=28) and 18% (N=7) 

NS cells. Similar overall proportions of 84% BS cells (n=27) and 13% NS cells 

(N=4) showed error-locked response inhibition. However, considering the 

subarea’s of recorded cells revealed that a significant larger proportion of narrow 

spiking cells encoded errors in the ACC than in the lPFC through response 

enhancement (Figure 15B,D, randomization statistics, p < 0.05). This finding is 

consistent with the outlined scenario that error signaling in the ACC involves a 

large fraction of putative inhibitory interneurons which use their error information 

to inhibit connected cells within ACC and possibly within the connected lPFC 

(Medalla & Barbas 2009, 2012; Morecraft et al. 2012). 
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Figure 15. Putative neuron types underlying error detection and error-locked 

inhibition. (A) Normalized waveforms of all recorded single cells (left) and of 

those single cells that encoded error outcomes by enhanced and suppressed firing 

(middle and right panels, respectively). Red/Blue colored waveforms reflect 

grouping into NS/BS cells. (B) Overview of the number of NS and BS cells 

encoding error in lateral PFC, mPFC, and ACC. (C) Proportion of NS cells within 

the classes of error encoding cells in lateral PFC, mPFC and ACC. The difference 

between proportions of error-selective NS cells in lateral PFC and ACC was 

statistically significant for cells with enhanced firing following an error. (D) 

Shuffled random distribution of the relative difference in the proportion of NS cells 
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increasing firing upon error commission between lateral PFC and ACC. The 

observed difference is statistically lower than expected by chance, showing that 

there are more putative inhibitory interneurons in ACC that encode errors through 

enhanced firing (the comparison is shown in bold font in the table in B). 

 

3.6 – Error-locked firing and oculomotor activity. 

 Previous studies have shown that error-related activity in the ACC and 

adjacent prefrontal cortex is largely separate, and goes beyond, motor-related 

activation (Ito et al. 2003; Hyman et al. 2013). To relate to these findings I tested 

whether the error-locked modulations that I have described were separated from 

saccade-related activity modulations. For this analysis I aligned the data to saccade 

onset in correct trials and compared to the saccade onset aligned activity modulation 

on error trials. My analysis revealed that cells that increased their firing upon error 

commission showed on average a stronger activity increase on error aligned trials 

compared to post-saccadic modulation on correct trials (p < 0.05 for all error types, 

Wilcoxon rank test). Similarly, cells with error-locked inhibition showed stronger 

firing inhibition on error trials than on saccade aligned correct trials (p < 0.05 for 

all error types, Figure 16).  
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Figure 16. Error-related modulation exceeds oculomotor aligned activity 

modulation. (A-C) Comparison of maximal firing after errors (y-axis) and after 

saccadic responses on correct trials (x-axis). Panels in A-C show results for the 

Attention Epoch, the Filter Epoch and the Choice Epoch. Panels on the left show 

results for the population of cells with enhanced firing after errors and panels on 

the right shows results for cells with suppressed firing following errors. Statistical 

p values are based on paired Wilcoxon signed-rank test. 

  



63 
 

Chapter 4 – Discussion 

4.1 – Behaviorally separable error types in selective attention task 

Our task required the monkeys to covertly attend to the peripheral stimulus 

while fixating at the centre fixation cue, and discriminate changes in the rotation of 

the peripheral stimulus by saccading to the correct response target. In our task, the 

peripheral stimuli were located to the left and right of the centre fixation cue while 

the response targets were located above and below the fixation cue (Figure 1). Thus, 

to examine behavioral differences between error types, I categorized erroneous 

saccades into up, down, left, and right quadrants centred on the fixation points (see 

material and methods).  

The overall direction of erroneous saccades were distinctively different 

between error types, and these behavioral differences likely reflected differences in 

the underlying cognitive deficits leading to the commission of each error type.  

Amongst the three error types, errors committed during attentional epoch were the 

most evenly distributed within the four quadrants. While errors committed during 

choice epoch were the most biased toward the target stimuli in the vertical quadrants. 

Errors committed during filtering epoch, however, fell in between the two extremes. 

Filter epoch errors were disturbed mostly toward the target stimuli in the vertical 

quadrants but were also distributed towards the peripheral stimuli in the horizontal 

quadrants. 
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These results confirmed that errors committed during different epochs were 

likely elicited by different underlying cognitive deficiencies. Break fixation errors 

during attentional epoch likely reflected the lack of top-down attentional control, 

or the lack of inhibition of impulsive saccades. Vertically orientated response errors 

during choice period were likely caused by incorrect sensory-response mapping 

between the direction of stimulus rotation and the correct saccadic response. 

Whereas filter epoch errors were likely due to erroneous top-down facilitation of 

attention to the distractor (vertical response errors), or the failure to prevent bottom 

up capture of attention by the salient distractor stimuli (horizontal break fixation 

errors).  

I hypothesize that these different error types must be discriminated by the 

monkeys in order for them to implement the correct adjustment measures. Thus, 

my behavioral results warrant the investigation for whether different neurons within 

the prefrontal cortex discriminately code for these three error types.  

 

4.2 - Performance monitoring and selective error encoding by the ACC activation 

Previous electrophysiological studies reported up to 14% of the ACC 

neurons were activated following error events (Matsumoto et al. 2007, Quilodran 

et al. 2008, Ito et al. 2003, Amiez et al. 2005). Albeit, these studies examined 

different performance failures in isolation: negative prediction errors were studied 
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by Matsumoto (2007), break fixation errors were studied by Quildran (2008) and 

Amiez (2005), while Ito (2003) studied incorrect choice errors. Consistent with the 

previous findings, 12% of the our recorded units within the ACC were found to be 

encoding errors during attentional epoch, 17% encoded for errors during filter 

epoch, and 18% encoded for errors during choice epoch (Figure 12 C-E). 

Surprisingly, our findings showed that more than two thirds of our error-encoding 

neurons were exclusively selective to one error type, and up to 29% of the recorded 

neurons within the ACC encoded for any one given error type (Figure 12A). This 

result is a strong indicator that neurons within the ACC monitor and categorize error 

events, and that previous electrophysiological studies have largely under-estimated 

the ACC’s involvement in performance monitoring.  

The timing difference in error-selective encoding within the ACC and lPFC 

has been reported in an earlier study. Rothe and colleagues (2011) observed that an 

early error response within the ACC was followed by shortly by a sustained 

response within the lPFC. Our findings were consistent with this earlier report, and 

demonstrated that error-driven activation of the ACC is followed by error-driven 

suppression of other PFC regions, suggesting that error detection is likely reflected 

by the former. A recent model proposed by Alexander and Brown (2011) predicted 

that error or unexpected events are reflected by the increased firing-rate of neurons 

within the ACC. Our finding that the activation of ACC is reflective of error 

monitoring resonates well with this proposed model. 
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4.3 - Adaptive configuration of cognitive control by the PFC inhibition 

Error-driven activation of the ACC was followed immediately by error-

driven inhibition within regions of the prefrontal cortex – the ACC and the lPFC.  

The relative delay between ACC activation and prefrontal inhibition suggested that 

the error-driven inhibition within the prefrontal cortex was influenced by the 

activation of ACC inhibitory interneurons following an erroneous outcome. Indeed, 

the ACC has been shown to contain dense local inter-connection as well as forming 

long-range connection with the lPFC (Barbas & Zikopoulos 2007). Furthermore, I 

have shown that a relative large percentage of inhibitory interneurons were 

activated within the ACC following error onset (Figure 15). Taken all together, the 

activation of ACC interneurons could possibly be the source of local inhibition of 

the ACC as well as long-range inhibition of the lPFC. 

The anatomical distribution of error-driven inhibition differed across error 

types and likely reflected differences in cognitive demands between error types. 

During attentional epoch, errors-driven inhibitions were non-homogenously 

clustered within the dlPFC, area 46 and 9 (Figure 13).  dlPFC has long been 

proposed to play a role in directing selective attention and inhibiting inappropriate 

actions. Lesion studies have suggested that dlPFC damage results in immature or 

impulsive responses during learning tasks (Aron 2007; Chambers et al. 2006). 

Studies have also demonstrated that inhibition of the dlPFC via calbindin 

interneurons increased selective attention by reducing task-irrelevant signals 
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(Medalla and Barabas 2010). As demonstrated in our behavioral analysis, break 

fixation errors made during motivational periods were scattered in all directions and 

were likely due to the lack of top-down maintenance of focus on the task at hand, 

or the lack of top-down inhibition of inappropriate saccade (Figure 9A). Transient 

inhibition of the dlPFC might be one of the mechanisms by which the dlPFC 

readjusts top-down control to focus on task-relevant processes and suppress 

inappropriate responses after error.  

During Choice Epoch, error-driven inhibitions were non-homogenously 

clustered within the ACC (Figure 13). Anatomical studies have shown direct 

innervation of the ACC with premotor cortex, and the ACC has been reported to 

encode for action-reward association as well as directing reward orientated 

responses (Hayden & Platt, 2010). As indicated by our behavioral analysis, 

erroneous saccades during Choice Epoch were almost exclusively towards the 

response targets and were likely due to inappropriate action-reward mapping 

(Figure 9C). Therefore, inhibitions of the ACC were likely associated with 

reinforcing the correct action-reward mappings to ensure proper responses in the 

subsequent trials following error.  

Considering that there appeared to be a clear behavioural distinction 

between saccadic errors committed during Attentional and Choice Epoch, it was 

not surprising to find distinctly different topographical distribution of inhibition 
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following error onset during Attentional and Choice Epoch. Errors committed 

within Filter Epoch, however, triggered wide-spread inhibition within both lPFC 

and ACC (Figure 13). As indicated by our behavioral analysis, saccadic errors 

during Filter Epoch were oriented mostly towards the target stimuli but a sizeable 

amount were also distributed towards the peripheral stimuli (Figure 9B). Thus, the 

spread of inhibition following Filter Epoch errors might have reflected the failures 

of more heterogeneous categories of attentional processes. 

This idea that a unique set of error-driven inhibition neurons were elicited 

by a unique error type was also supported by our joint-signaling analysis. Neurons 

displaying error-driven inhibition during Attentional and Choice Epoch rarely 

overlapped with each other. Taken together with our topographical analysis, these 

findings suggested that errors committed during attentional and choice periods were 

distinctively separated from each other, and inhibited two very distinct population 

of neurons. A relatively large percentage of neurons were inhibition following 

error-onset during both Filter and Attentional epoch, but neurons displaying error-

driven inhibition during Filter Epoch were mostly distinct from the neurons 

inhibited during Choice Epoch. This suggested that errors occurring during Filter 

Epoch reflected more attentional type of errors than choice type of errors (Figure 

11C).  
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4.4 – Ocular motor activity 

I have demonstrated that neurons encoding for errors were also modulated 

by saccade-related activities. However, the error-driven component of the 

modulation could still be separated by comparing saccade aligned firing rates 

between correct trials and error trials. My findings were not unusual. Previous 

studies have demonstrated that prefrontal neurons can track multiple task-relevant 

factors (Lapish et al. 2008; Hyman et al. 2010, 2011). In particular, error encoding 

cells within the prefrontal cortex have been reported to also monitor for action-

related activities (Hyman et al. 2010; Ito et al. 2003).  

Taken together, I have demonstrated that error-encoding neurons also 

encoded for other task-relevant factors. Our findings supports the idea that the 

prefrontal neurons encode for multi-dimensional variables. One can hypothesize 

that these additional task-relevant factors add context to the errors, and can be used 

to distinguish error types and specify the necessary corrections for subsequent trials.  
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Chapter 5 – Summary and Conclusions 

My results were consistent with the established view that the ACC is 

involved in error monitoring and error resolution. Importantly, my results suggested 

that the ACC’s role in error monitoring extended beyond mere error detection, but 

also error identification. Specifically, I have demonstrated that the ACC can 

distinguish between errors caused by lapse of top-down attention, errors caused by 

bottom-up attentional capture, and errors due to failures to associate the cued 

stimulus rotations with the correct responses. This makes intuitive sense, since 

resolution of performance failures cannot rely solely on error detection, but requires 

that the type of error to be identified.  

From these findings two questions arise: 1) how were error categorizations 

made immediately following error onset, and 2) how were these error signals being 

utilized by the prefrontal cortex. My results provided suggestions to both of these 

questions. To answer the first question, I have demonstrated that error-signaling 

neurons within the ACC were not only highly tuned to detecting error types, but 

were also encoding for events beyond mere error detection (e.g. motor-related 

events). These observations suggested that different subsets of ACC neurons may 

monitor a particular cognitive state. Errors caused by the failure of a particular 

cognitive state were then perhaps signaled by the same neurons responsible for 

monitoring the overall state of that particular process. As for the second question, I 
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have provided evidence suggesting that the ACC signaled to other regions of the 

prefrontal cortex for the need of adjustment through inhibitory interneurons. 

Importantly, we have shown that different error types triggered distinct clusters of 

inhibition within the prefrontal cortex. Taken all together, this suggested that 

locally clustered neurons within the ACC can detect and identify error types, and 

allocate specific correctional adjustments by inhibiting distinct regions of the 

prefrontal cortex. 
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