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Abstract

Finding and rescuing people from downed aircraft is challenging in many parts of the world,

including Canada. Because the Canadian military still relies on the naked eye to conduct

searches, airborne search and rescue could benefit greatly from advanced sensor systems. Partial

automation of target detection could alleviate operator workload and potentially improve rescue

efforts. One of the obstacles to developing such a system has been the lack of a large, realistic,

and ground-truthed search and rescue (SAR) dataset. I used a new dataset for airborne SAR

collected in 2014 by the National Research Council Flight Research Laboratory (NRC-FRL)

and labeled approximately 40,000 frames, to extract roughly 20,000 negative and 20,000 positive

images. Then I tested three ATD methods on this dataset in order to develop more advanced

assisted target detection algorithms for thermal infrared (IR) images.
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Chapter 1

Introduction

In this thesis I developed an assisted target detection (ATD) algorithm for airborne search and

rescue. In this chapter I introduce the motivation behind this project as well as briefly review

prior work. I also introduce the methods used in the project, that is deep learning, histogram

of oriented gradients, and matched filters.

1.1 Motivation

In Canada, search and rescue (SAR) operations are often performed using manned aircraft.

While the Canadian military still relies on the naked eye to conduct searches, advanced sensor

systems are poised to transform airborne SAR. Canada’s new fleet of SAR aircraft will come

equipped with state-of-the-art electro-optical/infrared (EO/IR) stabilized sensor systems that

will make it possible to image objects and people several kilometers away.

There are several challenges in applying computer vision to aerial imaging. One is aircraft

motion, which can cause motion blur in the image. Also, the small appearance of targets

viewed from long distances can result in blurry, low-detail images [1]. Infrared (IR) thermal

imagery is widely used because it can function regardless of the time of day. However, even

with this technology, it is still difficult for a human operator to reliably detect a target from a

moving aircraft when the target may subtend only a few pixels of the display and be partially

obscured by weather, terrain, and ground cover [2].

Assisted target detection (ATD) systems can alleviate operator workload and potentially im-

prove rescue efforts. A key limitation in SAR-ATD research has been the lack of a large,

realistic, and ground-truthed SAR dataset. In order to asses the capabilities of EO/IR systems,

the National Research Council Flight Research Laboratory (NRC-FRL) in collaboration with

the Department of National Defense (DND) established a new ground-truthed SAR dataset in

1



2014, consisting of 22 hours of thermal IR videos from the installed camera on the searching

airplane [2]. This motivated us to take advantage of the new NRC-FRL thermal IR SAR dataset

to create a new benchmark for ATD systems and evaluate several object detection methods.

1.2 Goals and Contributions

Considerable time was spent cleaning and labeling the NRC-FRL dataset, an effort that can

serve us or others in future research. For this purpose, I constructed an algorithm to automat-

ically identify frames containing targets, using log files that accompanied the dataset. I then

manually labeled approximately 40,000 frames, to extract roughly 20,000 negative and 20,000

positive images.

Since the ultimate goal of this project is to improve automatic target detection systems, to help

with SAR, I tested three ATD methods on this dataset: MF (Matched Filter), HOG + SVM

(Histogram of Oriented gradients classified by a support vector machine), and Faster R-CNN

(Faster Region-based Convolutional Neural Network, a deep network learning method). Among

the three methods, The best performance overall was obtained with Faster R-CNN.

1.3 Prior Work

SAR is a challenging operation performed by human and non-human operators in airplanes,

ships and unmanned aerial vehicles (UAVs). The purpose of the SAR is to investigate, find,

and rescue targets such as people, airplanes, ships, etc. In recent years, low costs and easier

operation have increased the use of UAVs in SAR and surveillance. There are only a few labeled

realistic datasets for search in aerial imagery, such as DOTA[3] (a large-scale Dataset for Object

Detection in Aerial Images). To get around the limited availability of aerial datasets, Narayanan

et al. [4] combined RGB aerial data as well as some synthetic images generated by video game

engines to develop an on-board object detection system for hexacopters, improving a pretrained

YOLO (You Only Look Once)[5] for the purpose of surveillance.

Some studies used a pre-trained convolutional neural network (CNN). For example, Bejiga

et al. [6] used a CNN pre-trained on ImageNet to detect targets (victims in debris) in an

avalanche from UAVs, and Stone et al. [7] used a pre-trained CNN to detect explosive hazards

in IR images. Despite being trained on different images and for different tasks, these pre-trained

neural networks outperformed object detectors based on histogram of oriented gradients (HOG)

and its derivatives [7].

IR imaging has many applications in vessel and aircraft search and rescue as well as surveillance

and pedestrian detection. IR images can reveal hot or cold targets regardless of illumination.

2



However, computer vision algorithms used in RGB applications do not necessarily generalize

well to IR.

For example, Olmeda et al. [8] found that the wide spectrum of IR sensors and their variability

with temperature reduced the reliability of visual features typically used for RGB imagery, such

as HOG. Instead, they proposed a novel representation called histogram of oriented phase energy

(HOPE), which measures phase alignment across frequency and is more contrast-invariant and

reliable for IR imagery. By combining HOPE with a support vector machine (SVM) classifier and

a radial basis function kernel, reasonable performance was achieved on a pedestrian detection

task.

Herrmann et al. [9] combined a maximally stable extremal region (MSER) proposal generator

with a custom-designed CNN for person detection in low-resolution IR imagery, and were able to

substantially outperform prior approaches. Elder et al. [10] assessed a potential assisted target

detection algorithm for airborne SAR, focusing on nighttime IR sensing. Noting the random

variability in data quality due to sensor noise, atmospheric effects, uncertain and changing

background terrain, and imperfect target knowledge, they employed a signal detection theory

(SDT) approach to maximize expected detection rate.

Another issue for training detectors with IR images of airborne and shipborne surveillance is the

limited number of training IR images containing the target of interest and the small size of the

object in the image [11]. Wei et al. [12] implemented a method called multiscale patch-based

contrast measure to detect small objects in IR guidance systems. They took advantage of the

fact that targets were usually brighter than their neighborhood. The main idea was to define a

local contrast measure based on patch differences to suppress the background and enhance the

targets.

1.4 Matched Filters

A matched filter is a linear filter used to detect a known signal contaminated with stochastic

noise. A matched filter is designed to maximize the signal-to-noise ratio [13]. Consider a simple

case where the target is a single pixel. The likelihood of the pixel intensity x when projected

from the target can be represented by p(x|T ) and when projected from the background, can be

represented by p(x|B). The likelihood ratio is then:

p(x|T )

p(x|B)
(1.1)

3



In statistics, this is a likelihood-ratio test. The greater the ratio, the greater the likelihood that

the target is present. If I model the conditional distribution of the pixel value as Gaussian, I

have:

p(x|T ) = N(x|µT , σT ) (1.2)

p(x|B) = N(x|µB, σB) (1.3)

where N(x|µ, σ) is normal distribution with mean µ and standard deviation σ:

N(x|µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 (1.4)

The whole image patch X containing either target and/or background consists of s pixels.

Assuming the pixel values are conditionally independent, the likelihood of the patch is:

p(X|T ) =
s∏
i=1

N(xi|µT , σT ) (1.5)

p(X|B) =

s∏
i=1

N(xi|µB, σB) (1.6)

where xi are pixels of the image patch. In practice, the likelihood function is used in logarithmic

form:

log(p(X|T )) ∝
s∑
i=1

−(xi − µT )2

2σ2T
(1.7)

log(p(X|B)) ∝
s∑
i=1

−(xi − µB)2

2σ2B
(1.8)

In the simplest case, σB = σT = σ, and we have:

log
p(X|T )

p(X|B)
∝

s∑
i=1

xi(µT − µB) (1.9)

Equation (1.9) defines the filter as the difference between the target and background expectation

(templates). The correlation is calculated by taking the inner product of the patch with the filter.
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Note that the matched filter does not account for occlusion, illumination changes, background

clutter (that cannot be modeled as an independent and identically distributed Gaussian), scale

changes, or rotation. This can limit the performance of the matched filtering approach.

1.5 Histogram of Oriented Gradients

Histogram of oriented gradients (HOG) is a feature descriptor for object detection in computer

vision. HOG is a popular baseline in object detection as it is simple, very easy to implement, and

performs reasonably well in many tasks. HOG was originally used for pedestrian detection in

static images [14]. HOG is based on hand-crafted features. The idea behind it is to describe an

object in the image by its distribution of luminance gradient vectors within a patch, computed

over uniformly-spaced cells (Figure1.1). Gradient directions are discretized into 9 orientation

bins ranging over 0 to 180 degrees; opposite directions are collapsed into the same bin. Within

each orientation bin, gradient magnitudes are accumulated.

In each k×k block of cells, histograms are concatenated into a one-dimensional vector. Usually

for RGB images, this vector is normalized to unit length. The final feature is the concatenation

of all vectors from each block within a detection window. Finally, I can use a Support Vector

Machine (SVM) on top of HOG features for classification. In the next section I review the basics

of SVMs.

For each cell compute the gradient in x
and y directions.

Create a histogram of gradient 
based on magnitudes and directions.

Normalize across blocks.

Concatenate histograms 
of blocks as the final 
descriptor.
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Figure 1.1: Histogram of Oriented Gradients
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1.5.1 Support Vector Machine

Support vector machines (SVMs) are linear models for classification and regression. An SVM

algorithm finds a maximum margin hyperplane decision boundary. This margin separates cate-

gories in an N-dimensional space. We choose the hyperplane so that the distance from it to the

nearest data point on each side is maximized [15]. Support vectors are the nearest data point to

the hyperplane and affect the position and the orientation of the hyperplane. Support vectors

define the margin of the classifier as shown in Figure 1.2. Other data points play no part in

determining the chosen decision surface.

Maximum Margin 
Decision Hyperplane

Margin is maximized

Support Vectors

Figure 1.2: In an SVM Classifier, support vectors are data points that are closer to the
hyperplane and affect the position and the orientation of the hyperplane.

1.5.1.1 Linearly-separable data, binary classification

In binary classification for linearly separable data, the hyperplane, or decision boundary, linearly

separates the data. Equation 1.10 shows a linear boundary equation.

wTx+ b = 0 (1.10)

This linear equation is a multiplication of the weight vector w and data vector x followed by the

addition of bias b. Any data vector that yields a positive response is labeled as 1. For example
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xi s.t. wTxi + b>0 will have corresponding output of yi = 1. Similarly, any data vector that

yields a negative response receives a label of -1. For example, xi such that wTxi+ b<0 will have

corresponding output of yi = −1.

Using equation 1.10, I define a boundary as well as the nearest data points of either class. I can

rescale the data such that anything on or above the line wT + b = 1 is of the class with label 1

and anything on or below the line wT + b = −1 is of the other class with label -1. Let us pick

an arbitrary point x1 on the line wTx + b = −1. Then the closest point on wTx + b = 1 to

x1 is x2 which satisfies x2 = x1 + λw. This is because the closest point will always lie on the

line orthogonal to the boundaries and passing through x1, and vector w is orthogonal to both

lines. Therefore, λ‖w‖, the distance between x1 and x2, is the distance between the two lines

(boundaries). In order to determine λ I start with:

wTx2 + b = 1 (1.11)

substituting x2 = x1 + λw I have:

wT (x1 + λw) + b = 1

wTx1 + b+ λwTw = 1
(1.12)

Since wTx1 + b = −1 I have:

−1 + λwTw = 1

λwTw = 2

λ =
2

wTw
=

2

‖w‖2

(1.13)

thus, the distance λ‖w‖ is 2
‖w‖2 ‖w‖ = 2

‖w‖ = 2√
wTw

. In order to minimize misclassification,

we want this distance to be maximized so that the data points from the two classes lie as far

apart as possible. This distance is called the margin. Maximizing the margin corresponds to

minimizing wTw
2 . Taking into account the linear constraint that points lie on the appropriate

side of the decision boundary results in the following quadratic programming problem with

linear constraints:

minw,b
wTw

2
(1.14)
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subject to: yi(w
Txi + b)>1 (∀ data points xi).

1.5.1.2 Soft Margin Extension

Consider the case that the data are not perfectly linearly separable. We want to allow some

data points to appear on the wrong side of the boundary. To achieve this, we can introduce

a slack variable εi for each data point, such that εi ≥ 0. Then, the quadratic programming

problem becomes:

minw,b,ε
wTw

2
+ C

∑
i

εi (1.15)

which is subject to: yi(w
Txi + b)>1− εi and εi > 0 (∀ data points xi).

I can control the soft margin width with the parameter C. Small C emphasizes the margin

while ignoring the outliers and large C may tend to overfit the training data.

1.5.1.3 Higher-Dimensional Spaces

Mapping non-linearly-separable data vectors xi into a higher-dimensional (even infinite) feature

space may make them linearly separable in that space. The formulation remains the same, except

that all data points are replaced with φ(xi), a function which provides the higher-dimensional

mapping.

1.5.1.4 Lagrangian Formulation

In the SVM formulation, for all the data points, the optimal canonical hyperplane should satisfy

yi(w
Txi+b)>1 and must be close to 1 as possible. We can introduce the Lagrange multipliers to

represent this condition. Thus, the new formulation entails the classical quadratic optimization

problem with inequality constraints which is solved by the saddle point of the Lagrangian 1.16.

The solution corresponding to the original constrained optimization is always a saddle point of

the Lagrangian function. A saddle point is a point on the surface of the graph of a function

where the derivatives in orthogonal directions are all zero.

L(w, b, α) =
wTw

2
−
∑
i

αi[yi(w
Tφ(xi) + b)− 1] (1.16)
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L has to be minimized with respect to (w, b) and maximized with respect to αi, where the αi are

Lagrangian multipliers [16]. In order to prevent αi from going to∞, I can impose constraints on

the Lagrangian multipliers to satisfy this condition: 0 6 αi 6 C. Thus, the problem becomes:

minw,b(
wTw

2
−
∑
i

maxαiαi[yi(w
Tφ(xi) + b)− 1]) (1.17)

Interchanging the max and min, I obtain:

maxαiminw,b(
wTw

2
−
∑
i

αi[yi(w
Tφ(xi) + b)− 1]) (1.18)

To solve this optimization problem, I set ∂L
∂w = 0 which results in the optimal solution

∑
i αiyiφ(xi).

Setting ∂L
∂b = 0 yields the constraint

∑
i αiyi = 0. Substituting and simplifying, I get:

minw,bL(w, b;α) =
∑
i

αi −
1

2

∑
i,j

αiαjyiyjφ(xi)
Tφ(xj) (1.19)

Therefore the problem becomes:

maxαi(
∑
i

αi −
1

2

∑
i,j

αiαjyiyjφ(xi)
Tφ(xj)) (1.20)

subject to:
∑

i αiyi = 0 and 0 6 α 6 C

1.5.1.5 Kernel Trick

Computing the inner product φ(xi)
Tφ(xj) directly is expensive if the feature space is high-

dimensional, and impossible if it is infinite-dimensional. The kernel trick is a method for effi-

ciently determining this inner product without having to directly compute the feature vectors

φ(xi). The kernel trick merges the mapping of input vectors to a higher-dimensional space and

the forming of an inner product in that space into a single kernel function k. This allows me to

rewrite Equation 1.20 as:

maxαi(
∑
i

αi −
1

2

∑
i,j

αiαjyiyjk(xi, xj)) (1.21)

The radial basis function kernel, or RBF kernel, is a popular kernel function used in kernelized

learning algorithms:
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k(xi, xj) = exp(−‖xi − xj‖
2

2σ2
) (1.22)

where ‖xi − xj‖2 is squared Euclidean distance between the two vectors. σ is a free parameter.

SVMs are memory efficient but do not provide probabilistic measures of uncertainty.

1.6 Deep Learning

Deep learning is a sub-field of machine learning that is highly popular due to its impressive

performance in artificial intelligence domains, such as computer vision, natural language pro-

cessing, and robotics. Deep learning uses a hierarchical neural network architecture to learn

high-level features [17]. Convolutional neural networks (CNNs) in particular are commonly used

in computer vision applications. One of the most important algorithms in deep learning is back-

propagation as it computes an efficient gradient of the loss function with respect to the weights

in a supervised neural network. It uses the chain rule for calculating derivatives. The gradient

is calculated sequentially from the output layer back to the input layer. Since the gradient at

any given layer can be expressed as a simple function of the gradient at the following layer,

this reduces the computation time. However, since the loss function is typically non-convex,

standard gradient descent can easily get trapped in local optima. Stochastic gradient descent

calculates the gradient based upon a small random sample of the training dataset, rather than

the entire training dataset. This gives the algorithm the opportunity to jump between local

wells in the objective function increasing the probability that a near-optimal solution will be

found, and also greatly reduces the computation required for a single weight update.

Generally speaking, a deep network consists of a hierarchical architecture with many layers,

each of which consists of alternating linear and non-linear processing steps that may include

convolutional layers, pooling layers, and fully-connected layers. Each layer has a different role

in the architecture of the network.

Convolutional Layers:

Convolutional layers serve as feature extractors, and they learn feature representations of the

input image [18]. They consist of sets of filters or kernels. Through the forward pass in the

neural network, each filter in a convolutional layer is convolved with the input image and

computes a new feature map [19]. Convolved results are sent through a nonlinear activation

function. Different feature maps within the same convolutional layer have different weights so

that several features can be extracted at each location [19, 20]. This transformation can be

represented as:
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Yk = f(Wk ∗ x) (1.23)

where the input image is denoted by x, and the convolutional filter of the kth feature map is

denoted by Wk. The asterisk refers to the 2D convolutional operator, which is used to calculate

the inner product of the filter model at each location of the input image. The f(.) represents

the nonlinear activation function.

Nonlinear activation functions allow for the extraction of nonlinear features. Traditionally, the

sigmoid and hyperbolic tangent functions were used; recently, rectified linear units [21] have

become popular [19].

Pooling Layers:

The purpose of the pooling layer is to reduce the spatial resolution of the feature maps and

achieve spatial invariance to input distortions and translations. Initially, it was common practice

to use average pooling aggregation layers to propagate the average of all the input values of

a small neighborhood of an image to the next layer. However, in more recent models, max

pooling aggregation layers propagate the maximum value within a receptive field to the next

layer. Formally, max pooling selects the largest element within each receptive field:

Ykij = max(p,q∈Rij)xkpq (1.24)

where xkpq denotes the activation at location (p, q) within the pooling region or receptive field

Rij , at the position (i, j) [22].

Fully Connected Layers:

Several convolutional and pooling layers are usually stacked on top of each other to extract more

abstract feature representations when going deeper through the network. The fully connected

layers that follow these layers interpret these feature representations and implement a decision

stage. For classification problems, it is standard to use the softmax operator on top of a deep

convolutional neural network [23, 27–30].

One CNN architecture is the region-based Convolutional Neural Network (R-CNN) [24]. R-

CNNs can be trained to find objects as well as their locations. This is relevant to my project

(assisted target detection) as I wish to locate the downed aircraft in the image. Sliding window

search is a conventional method to scan over the image in order to detect the object in the

image and define the object location with respect to the location of the sliding window. In

R-CNN, the algorithm creates multiple object proposals as an alternative to a sliding window

search. R-CNNs feed region proposals at the pixel level to the CNNs and extract features for
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each region to find and locate objects in the image. Classification is performed using an SVM

on the features from each region. Because R-CNNs compute the feature map separately for

each region, they are slow.

The new generations of R-CNN are Fast R-CNN and Faster R-CNN. In Fast R-CNN a single

network computes the whole feature map first, classifies each proposed region of the feature

map, and finally defines the bounding boxes [25]. Faster R-CNN replaces the selective search

used in Fast R-CNN with the same CNN used for feature map extraction. Thus one single

network creates the feature maps, proposes regions, classifies, and defines the bounding boxes

[26].

1.6.0.1 R-CNN

The goal of object detection is to identify the class of the object as well as the bounding box

size and location. Conventionally, for each image, there is a sliding window to search every

position within the image as below, see Figure 1.3. Objects can have different aspect ratios

and sizes depending on object size and distance from camera. If I use deep learning for image

classification at each location, it will be a slow process.

Figure 1.3: Region-Based Convolutional Neural Network Structure. R-CNNs feed region
proposals to CNNs and extract features for each region to find and locate objects in the image.

Classification is performed using an SVM on the features from each region [24].

R-CNN uses selective search to generate proposals (bounding boxes) for image classification

[31], [32]. In selective search, color similarities, texture similarities, region size, and region

filling are used as non-object-based segmentation, see Figure 1.4. Therefore, there will be many

small segmented areas. Then using a bottom-up approach, small segmented areas are merged

together to form larger segmented areas, generating roughly 2k region proposals in the image.

The image in each proposed bounding box is fed to a CNN. Since windows have various sizes,

all bounding boxes are warped to a certain size. In R-CNN, AlexNet, as shown in Figure 1.5, is

used to extract the CNN features. For each proposal, a feature vector is computed by forward

propagating the mean-subtracted RGB image patch through five convolutional layers and two
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Figure 1.4: In selective search, color similarities, texture similarities, region size, and region
filling are used as non-object-based segmentation [24].

fully connected layers. Then the feature vector is scored by an SVM trained for each class. A

non-maximum suppression (NMS) process eliminates weaker detections whose bounding boxes

overlap with stronger detections. Finally the bounding box locations, sizes and aspect ratios

are refined by regression.

Figure 1.5: AlexNet Neural Network Structure. In R-CNN AlexNet is used to extract the
CNN features, based on figure in [23].

In R-CNN, softmax classifiers are trained first and then R-CNN uses the feature vectors to

train the bounding box regressor. R-CNN is not an end-to-end training algorithm since it has

a multi-stage pipeline as shown in Figure 1.3. It is an expensive algorithm in space as well as

in time.

1.6.0.2 Fast R-CNN

The overall approach of Fast R-CNN is similar to R-CNN but instead of feeding the region

proposal to the CNN, it feeds the input image to the CNN to generate the convolutional feature

map. Then from this map, it can identify the region proposals and warp them into squares

using a region of interest (ROI) pooling layer. The pooling size of a max-pooling layer in an
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Figure 1.6: Fast R-CNN Structure. The input image is fed to the CNN to generate the
convolutional feature map. Figure taken from [25].

ROI pooling layer is dependent on the input size to ensure that the output size is always the

same. This layer is essential because the fully-connected layer always expects the same input

size.

Figure 1.7: Region of interest pooling layer (RoI). This layer is essential since it assures that
all the proposals have the same size. Figure taken from [25]

Fast R-CNN is an end-to-end learning algorithm. Since it learns the features of objects as well

as the associated bounding boxes and their sizes, the loss function of Fast R-CNN is a multi-task

loss function consisting of the classification loss and the bounding box loss.

1.6.0.3 Faster R-CNN

In Faster R-CNN, the main idea is to use deep convolutional layers to infer region proposals.

Faster R-CNN consists of two modules as shown in Figure 1.8:

1. Region Proposal Network:
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The Region Proposal Network (RPN) gives a set of rectangles (anchors) based on the deep

convolutional layers. In the default configuration of Faster R-CNN, there are nine anchors

at each location, with aspect ratio of 1:1, 1:2, and 2:1.

2. Region of interest pooling layer:

The region of interest pooling layer (RoI) classifies the object in each proposal and refines

the proposal location accordingly.

Figure 1.8: Faster R-CNN consists of an RPN and a region and an RoI layer. Figure taken
from [26].

There are steps of Faster R-CNN algorithm:

1. We need to choose a convolutional neural network structure for the desired object detec-

tion.

2. At this point, the algorithm defines the feature maps from the deep convolutional layers.

3. We train a Region Proposal Network (RPN) that detects the object in the image and

defines the bounding box location in the image.

4. The algorithm feeds the proposals to an ROI pooling layer such as Fast R-CNN.
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5. Finally, the algorithm reshapes all proposals to a fixed window size and sends them to a

fully-connected layer to predict a class label.

For every point in the output feature map, the network has to learn whether an object is present

in the input image at the object’s corresponding location and estimate its size. This is done by

placing a set of anchors (boxes) on the input image for each location on the output feature map

from the backbone network. These anchors indicate possible objects in various sizes and aspect

ratios at each location. In the default configuration of Faster R-CNN, there are nine anchors

with different positions in the image. For example, for an image of size 600× 800 pixels, I can

define three scales, such as 128× 128, 256× 256, and 512× 512. The nine anchors will have the

height and width ratio of 1:1, 1:2, and 2:1 with respect to each of the scales.

As the network moves through each pixel in the output feature map, it has to check whether

these k corresponding anchors spanning the input image actually contain objects, and then

refine the anchors’ coordinates to define the bounding box in the image.

At the training stage, all of the anchors that cross the image boundaries are ignored so that

they do not contribute to the loss. An anchor is considered to be a positive sample if it satisfies

either of the two following conditions: first, the anchor has the highest intersection over union

(IoU) with the ground truth or the anchor overlaps by more than 70% with any ground truth

box. The same ground truth box can cause multiple anchors to be assigned positive labels.

The anchor is labeled negative if its IoU with all ground truth boxes is less than 0.3. Each

mini batch for training the RPN comes from a single image. An equal number of positive and

negative samples are randomly selected for the training. The training loss for the RPN is:

L({pi}, {ti}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg(ti, ti∗) (1.25)

where i is the index of the anchor in the mini-batch, ti is the predicted coordinate and t∗i is the

ground truth coordinate. The Lcls(pi, p
∗
i ) is the classification loss (cross-entropy). The output

score from the classification branch for anchor i is pi, and p∗i is the ground truth label, which

can be either zero or one. The regression loss Lre(ti, t
∗
i ) is activated only if the anchor actually

contains an object. The variable ti is the output prediction of the regression layer.

At test time, all boxes are sorted according to their class scores. Then non-maximum suppression

(which selects the window with the higher score from a given number of overlapping windows) is

applied with a threshold of 0.7. Starting from the highest-scoring box, all of the bounding boxes

having an IoU greater than 0.7 with previously visited bounding box having been discarded.

In R-CNN, for each proposed region, a CNN is employed, making it computationally expensive.

This is solved in Fast R-CNN by generating the convolutional feature map directly from the
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input image. The selective search component of Fast R-CNN is a computation bottle neck that

has been replaced with a Region Proposal Network in Faster R-CNN, making the detection and

localization even faster.

1.7 Conclusion

In this chapter, I reviewed the basics of the methods used in this project which are matched filters

(MF), histogram of oriented gradients (HOG), and Faster R-CNN, a deep learning method. In

MF, I search for image patches similar, in a least-square sense, to a linear template learned

from training data. In HOG, detection is based on the distribution of the local gradient vectors.

These methods will be baselines for comparison to the more sophisticated R-CNN detector in

my project.
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Chapter 2

Dataset

In order to develop an assisted target detection system, this project uses the dataset developed by

the National Research Council Flight Research Laboratory (NRC-FRL). NRC-FRL conducted

a series of flights to assess the capabilities of the sensor operators using an EO/IR system versus

traditional night goggles for search and rescue. The flight experiment, using an NRC Twin Otter

aircraft, was conducted between September 8 and October 3, 2014. Over a period of 2-3 days,

90 targets were placed by four teams of NRC and military personnel and Civil Air Association

volunteers in a 200 km2 area as shown in Figure 2.1.

Figure 2.1: Defense Research and Development Canada-Suffield, Alberta: Targets shown by
blue pins in a 200 km2 area.

The Twin Otter flew multiple parallel tracks over the designated test area, during which two

Department of National Defense (DND) EO/IR operators were tasked with finding targets in

the test area. One sensor operator used an EO/IR system to detect and discriminate between

potential targets and non-targets and the other sensor operator detected targets with night

vision goggles. The two sensor operators switched detection roles on alternate nights.
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Figure 2.2: Flight lines are shown with blue color. The green triangle is the start point,
and the red circle is the end point. The magenta circles are the locations of the targets placed

aligned with the flight lines.

The targets consisted of pieces of lightweight, flexible, reflective, aluminized polyethylene, ar-

ranged in a typical aircraft shape. The test flights were conducted at night (after local astro-

nomical twilight), each approximately three to four hours in duration. The targets were placed

along 15 flight lines, each 11 km in length. The 15 lines combined resulted in a 315 km long track

which took approximately 2 hours to travel. Each line was traversed once in each direction.

Figure 2.2 shows a sample of the tracking flight lines. A total of 12 flights were conducted over

a period of three weeks. Some of the targets changed in appearance over time due to damage

from weather or animals.

The NRC Twin Otter was flown over the test area at 1500 feet above ground level at 100 knots.

The sensor operators were instructed to direct the EO/IR sensor forward along the aircraft

track. The sensor elevation was set at 30 degrees below the horizon during the search, which

put the center of the sensor field of view approximately 3000 feet in front of the aircraft.

Over 22 hours of data collection was completed during the flight test period. Data was saved

in the format of a transform stream file. Videos were paired with log files containing flight

information such as location of the airplane (in longitude and latitude), heading, pitch and

roll angles, field of view of the camera, and the location of the corners of the field of view in

longitude and latitude (ground point back projections).

Generally, the target material (polyethylene plates) was highly visible to the EO/IR systems.

Targets had a consistent shape and sat on relatively flat terrain with few trees. However, the

19



probability of detection (POD) by human operators for these targets was not perfect, with an

average performance of 81.8 ± 5.7 %. The targets were typically cooler than the background

grassland but there were some targets that were placed in fairly wet (i.e. cool) areas. These

cooler targets were usually not seen with the EO/IR sensor.

Figure 2.3 shows samples from the dataset. The deployed IR sensors had a resolution of 640×480

pixels and a scanning field of view of 18×14 deg, operating at 30 frames per second. The human

operator could zoom in on the targets during the operation. Targets subtended about 20× 20

pixels of each image when the lens was zoomed out (wide angle), as it would be in scan mode.

For the most part, the polarity of the IR sensor was set to white-hot, meaning the search objects

were typically darker (i.e., colder) than the background terrain.

Figure 2.3: Dataset samples. Top row: zoomed-out images. Bottom row: zoomed-in images.

2.1 Data Preparation

The goal of this project is to utilize deep neural networks to create a new generation of assisted

target detection algorithms with higher performance than previous algorithms. To train a deep

neural network, I need many ground-truthed images. The new dataset from NRC-FRL consists

of over 22 hours of videos with a frame rate of 30 fps, providing us with more than 2 million

frames. To avoid searching for the targets manually, I used log files of the Twin Otter (including

airplane position, location, and target GPS coordinates) to estimate and identify video frames

containing targets. These log files were recorded in different formats. The main log files are

CSV files and as shown in Table 2.1, they contain various information about the search flight.

I used the main log file information to associate the target’s location on the ground to the

video frames (Figure 2.5). I can recreate the ground plane field of view (FOV), as shown in

Figure 2.4, using the four corners of the back-projected field of view of the installed sensor in
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UNIX Time Stamp (microsecond) Mission ID

Platform Tail Number Platform Heading Angle (deg)

Platform Pitch Angle (deg) Platform Roll Angle (deg)

Platform Designation Sensor Latitude (deg)

Sensor Longitude (deg) Sensor True Altitude (meters)

Sensor Horizontal Field of View (deg) Sensor Vertical Field of View (deg)

Sensor Relative Azimuth Angle (deg) Sensor Relative Elevation Angle (deg)

Sensor Relative Roll Angle (deg) Slant Range (meters)

Frame Center latitude (deg) Frame Center longitude (deg)

Frame Center Elevation (meters) Offset Corner Latitude Point 1 (deg)

Offset Corner Longitude Point 1 (deg) Offset Corner Latitude Point 2 (deg)

Offset Corner Longitude Point 2 (deg) Offset Corner Latitude Point 3 (deg)

Offset Corner Longitude Point 3 (deg) Offset Corner Latitude Point 4 (deg)

Offset Corner Longitude Point 4 (deg) Platform Call Sign

UAS LDS Version Number Event Start Time - UTC

Table 2.1: Videos are paired with log files containing flight information such as location of the
airplane (in longitude and latitude), heading, pitch and roll angles, field of view of the camera,

and corners of the field of view (ground point back projections).

Figure 2.4: Typical airborne search geometry. The polygon represents the sensor field of view,
projected on the ground plane. The asymmetry is due to the roll of the airplane. Blue points

represent target locations.

the log files. Whenever a target appears in the FOV polygon, I can correlate information such

as location of the target recorded by NRC-FRL staff with the video frame that contains this

target and extract the frames with at least one target as positive samples of the dataset. I used

a homography to project the location of the target in the polygon to the image coordinates,

as explained in section 2.1.1 and at the end I extracted about 20,000 positive frames for the

dataset. In section 2.2 I discuss the issues with extracting frames with targets.
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Figure 2.5: Key log file variable.

2014-09-11 There is a 15-second gap after each 15 seconds of recorded data.

2014-09-16 No information was recorded in CSV files.

2014-09-18 No CSV files come with the videos.

2014-09-20 Very few videos and CSV files were provided.

2014-09-23 Data storage convention not followed.

2014-09-29 No information was recorded in CSV files.

Table 2.2: Days with recording failures. I have not considered these days in our analysis.

As shown in Table 2.2, 6 days of the 15 days data collection were excluded due to problems

with the data files, leaving 9 days for our dataset. Using the information in the log files, I can

estimate the flight path for each day.

As shown in Figure 2.6, I simulated the flight path for each day. The green triangle shows

where the human operator started recording data, and the red circle shows where data recording

ended. The locations of the airplane when the human operator took snapshots of the target

on the ground are shown with black triangles and the targets on the ground are shown with

magenta circles.
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Figure 2.6: Aerial search path for each day. Blue contour shows the location of the aircraft
over time. The green triangle is the start point, and the red circle is the end point. Black
triangles indicate the locations of the airplane at the time of snapshots and magenta circles are
the locations of the target in the snapshots. Upon examining the NRC-FRL dataset as to my

knowledge, it is unknown why there are some deviations in the aircraft following the track.
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2.1.1 Homography

A homography is a transformation that maps one projective plane to another projective plane

[33]. A 2D image projection can be related to the scene points for each image by Equation 2.1.

xs = K[R|t]p̄w = P p̄w (2.1)

Where xs is the 2D image projection, K is the intrinsic matrix, [R|t] is (rotation+translation)

matrix, P is projective matrix and p̄w is the 3D world point. For convenience, I can align the

3D world coordinate frame with the scene plane, so that Z = 0 for all scene points. Under this

condition, projection to the image can be modeled by a 3× 3 matrix H known as homography

(Equation 2.2).

xs =


x′

y′

w′

 = H


x

y

1

 (2.2)

Since this homography is a 3× 3 matrix relating 2D images points in homogeneous coordinates,

it has 8 degree of freedom.

H =


1 + h00 h01 h02

h10 1 + h11 h12

h20 h21 1

 (2.3)

Therefore, x′ and y′ can be defined as:

x′ =
(1 + h00)x+ h01y + h02

h20x+ h21y + 1

y′ =
h10x+ (1 + h11)y + h12

h20x+ h21y + 1

(2.4)

One of the simplest methods for estimating parameter is non-linear least squares. The Jacobian

of this transformation is:

J =
1

D

[
x y 1 0 0 0 −x′x −y′y
0 0 0 x y 1 −y′x −y′y

]
(2.5)
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Where D = h20x + h21y + 1. The initial guess for the eight unknowns, h00, . . . , h21, can be

defined by multiplying both sides of the Equation 2.4 through by the denominator, which yields

the linear set of equations:

[
x′ − x
y′ − y

]
=

1

D

[
x y 1 0 0 0 −x′x −x′y
0 0 0 x y 1 −y′x −y′y

]
h00

...

h21

⇔ b = AH (2.6)

I have four pairs of matched points in this project. Therefore, a unique solution for H is defined.

Now I can compute where any point from one projective plane maps onto the second projective

plane. There is no need to know the 3D location of the point or camera parameters. For

mapping one plane onto the second, I used the skimage.transform module in Python.

2.2 Frame Extraction

I needed to correlate the videos with the log file information to localize targets in the imagery.

Challenges include:

• Temporal Shift: Each piece of information in the main CSV files has a time-stamp that

indicates when that specific information was recorded. However, the videos are not time-

stamped and the beginning of each video does not align exactly with the beginning of

each log file.

• Scaling: Given the four corners of the back-projected field of view from the log files, the

back-projected field of view can be recreated, but I have noticed that this field of view is

much bigger than it should be.

• Video Format: The format of the videos is transport stream (.ts). This is a container

format for MPEG that is used frequently by digital broadcasting systems such as digital

cable and satellite. It has a very different format from the usual MPEG container. Reading

these files in Python is challenging as I could not get consistent size and counts of frames

per second. Since I used Python for all our analysis, I had to convert the videos to another

format in order to get the exact frame count as well as the exact length of each video.

I chose to work with .mp4 as it was easier to manipulate in Python. The transformed

videos are not perfectly matched to the log files

In the next experiments I annotated a small subset of our dataset (a few hundreds) in order to

define the mapping error considering temporal shift and scaling. Figure 2.7 is a sample of the
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mapping and projection of the target location from the ground to image coordinates, without

compensating for temporal shift and scaling. The log file ground plane location of the target

mapped to the image (red) does not match the actual location of the target in the image (blue).

Figure 2.7: Sample of mapping from ground to the image plane without compensating for the
temporal shift and scaling. These are consecutive frames. The blue circle shows the target on
the ground, the green circle shows the center of the image, and the red circle shows the log-file

ground-plane location of the target mapped into the image.

Day Number of Videos Number of Extracted Frames

2014-09-12 26 41658

2014-09-13 21 35167

2014-09-17 30 51394

2014-09-19 32 47769

2014-09-24 18 30955

2014-09-25 25 44566

2014-09-26 25 44993

2014-09-30 24 42402

2014-10-01 25 43743

Table 2.3: Number of videos and total number of frames for each day.

Table 2.3 shows the number of videos and the total number of frames for each day. There are

some transitions in the camera’s FOV which resulted in blurry and sometimes completely black
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or white frames; I have removed these frame from the dataset.

2.3 Scaling the Field of View

γ=Sensor Elevation

θ = γ + β/2 + slope

Sensor Position = 
𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

Intersection Position = 
𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
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Figure 2.8: The polygon represents the sensor’s field of view projected on the ground plane.

Given the four corners of the back-projected field of view of the sensor recorded in the log files,

the field of view can be recreated. I noticed that the field of view was much bigger than it should

be. I therefore decided to use the intersection between the two diagonals of the trapezoid of field

of view, the slant range1, horizontal field of view, vertical field of view, and elevation parameters

stored in the log files to create an alternate estimate of the ground-plane field of view.

As shown in Figure 2.8, based on this geometry, I can recompute the new location of the four

corners. For example, as in Equation 2.7 and 2.8, I compute the length of BD, in order to find

the new corner D. Since the ground in NRC-FRL dataset is fairly flat, I make the assumption

that the back-projected field of view happens on a flat plane. This may cause a small error in

our application which compared to the noise in the log file information is insignificant.

1Slant range is the distance from the middle of the field of view on the ground to the principal point of the
sensor
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OA = OB · cos(
π

2
− γ)

AC = OA · tan(
π

2
− β

2
− γ)

AB = OB · sin(
π

2
− γ)

BC = AB −AC

(2.7)

and

OC =
OA

cos(π2 −
β
2 − γ)

CD = OC · tan(
α

2
)

(2.8)

I perform the same procedure for all corners. With this calculation, the new polygon will have

the same orientation in Earth coordinates at all times. Thus, the last step to complete the

creation of the polygon is to rotate it with respect to the yaw or heading angle of the moving

airplane as they are recorded with respect to the Earth coordinates. While heading angle is in

the log file, I decided instead to use the location of the intersection point to define the heading

angle and avoid using the other noisy data in the log files. Given the (latitude and longitude)

position of the aircraft at two successive times, I can compute the heading angle of the airplane

using the Python package Geodesic.Wgs84.Inverse.

2.4 Temporal Shift

When a target was noticed by the human operator, they zoomed in on the target for a few

seconds. Information in the log file identifies the camera’s horizontal and vertical fields of view,

which makes it possible to figure out roughly when the operator noticed the target and zoomed

in. Due to various factors, there is an unknown temporal shift between this log file event and

the corresponding frame in the video. To reduce this temporal shift and to create a better

match between the log files and the video frames, I have tried two methods, one manual and

one automatic.

In the first method, I used the camera’s horizontal and vertical fields of view in the log file

and looked for the time-stamp in which the zoom occurred. Meanwhile, I manually identified

frames in the video where the human operator zoomed in. There is a frame of the video for

each time-stamp in the log file. Therefore, the difference between the number of the frame of
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Video/Day 09-12 09-13 09-17 09-19 09-24 09-25 09-26 09-30 10-01

0 0 18 0 28 6 0 8 13 0

1 26 25 14 28 13 10 11 14 0

2 31 25 15 21 N/T 19 6 10 41

3 24 20 4 20 22 15 11 19 14

4 27 32 9 19 N/T 6 19 7 8

5 22 28 16 N/T 12 25 13 18 5

6 22 19 4 18 N/T 13 19 20 15

7 29 21 6 32 N/T 20 15 12 21

8 32 13 15 17 N/T 10 14 10 18

9 33 31 3 20 N/T 15 11 8 20

10 29 29 6 31 N/T 15 7 20 12

11 24 28 18 19 N/T 23 6 10 18

12 20 28 8 19 4 15 7 16 9

13 20 N/T 18 18 21 17 6 16 13

14 34 28 7 28 17 8 4 21 16

15 31 30 14 28 20 9 5 10 10

16 28 19 11 20 15 16 15 21 9

17 31 27 3 30 N/T 18 9 12 13

18 28 22 12 18 6 8 17 6

19 20 25 5 20 20 16 12 19

20 33 0 0 23 0 9 5 11

21 25 13 19 0 5 14 5

22 N/T 18 22 6 19 11 14

23 N/T 10 22 0 16 N/T 0

24 N/T 6 31 0 16 N/T 0

25 N/T N/T 25 N/T

26 6 25

27 17 17

28 N/T 19

29 N/T 23

30 N/T

31 N/T

Table 2.4: Manually-estimated frames shifts. N/T means no target was seen in this video so
I could not estimate the shift and, as it does not contain any target, it is not considered in our

analysis.

video corresponds to the time-stamp when the operator began to zoom in on the target and the

number of the frames in the video where zoom occurred, defines the temporal shift. Considering

this shift in frames, I can match the log file information to the extracted frames more accurately.

Table 2.4 shows manually extracted shifts for different days and videos. As shown, the temporal

shift is different for each day and video.

The location of each target placed on the ground (in latitude and longitude) was recorded by

NRC-FRL staff. Knowing the latitude and longitude of each frame’s field of view, I can find

frames with at least one target located within its field of view. I used homography 2.1.1 to
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Figure 2.9: Mean error between the target in the image and the projected location of the
target into the image, based on the ground location and the ground-to-sensor homography for
six different example cases. The frame shift with minimum error matches the manual estimates

in Table 2.4.

identify the target’s location in pixels on the corresponding image. Since I have also manually

localized each target appearing in an image frame for a small subset of our dataset, I can

find the error in pixels between the target location estimate derived by projecting the ground

plane target location and the manually annotated image location of the target. Using inverse

homography, I can map the location of the labeled target on the image to the ground and

find the error in meters between the target location recorded by the NRC-FRL staff and the

manually annotated location. In the second method, to confirm the accuracy of the result, I

automatically identified the mean error between the manually annotated location of the target

and target location estimate for different shifts in the range of −50 to +50 frames. I then
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estimate the shift as the shift that minimizes the error. As depicted in Figure 2.9 and Table

2.4, the results from these two methods match.

2.5 Labeling

Day Number of labeled frames

2014-09-12 3113

2014-09-13 3154

2014-09-17 5349

2014-09-19 5310

2014-09-24 168

2014-09-25 3897

2014-09-26 4346

2014-09-30 5883

2014-10-01 6419

Table 2.5: Labeled frames for each day.

For labeling the whole dataset, I considered 400,000 images to find images with a target. I

considered the scaling issue and the temporal shift in finding images with a target. In the

original SAR experiment, when a target was observed, the human operator took a picture of

it and recorded the current position of the sensor in longitude and latitude along with a time-

stamp. Using this time-stamp makes the labeling process much easier since I can estimate where

to look for possible frames with targets among all the frames of the videos. As shown in Table

2.5, using MATLAB, I was able to label and annotate about 40,000 images containing a target.

2.6 Dataset Partitioning

To train the classifier, I divided the datatset into 3 main parts:

• East side for training

• Northwest quadrant for validation

• Southwest quadrant for test

I chose the longitude and latitude boundaries to produce an almost equal number of targets on

the ground in the training set versus the validation and test sets. There are many zoomed-in

annotated images in the dataset. Since I am using it for the purpose of search and rescue, I

needed to eliminate the zoomed-in frames. Considering this, I have in total 20,401 negative

images and 20,403 positive images in the dataset. The number of positive frames identified for
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Figure 2.10: Data partitioning.

each day is matched by an equal number of randomly selected negative frames from the same

day. As in Table 2.6, there are 9,904 positive training images and 10,626 negative training

images. Also there are 3,994 positive validation images and 3,754 negative validation images.

Training Validation Test

Positive 9,904 3,994 6,505

Negative 10,626 3,754 6,021

Table 2.6: Final dataset.

Figure 2.11 shows the distribution of target length and aspect ratios for about 400 targets

randomly sampled from our dataset. To compute this distribution, I manually annotated the

noise, tail and wingtips of the aircraft. Figure 2.12 indicates that the aspect ratio is close to

one, so that square detection windows could potentially be used.
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Figure 2.11: Dimension’s histograms for 400 samples. Most of the targets have smaller
dimensions than of 35 pixels.
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Figure 2.12: Aspect ratios histograms of head-tail to wings’ length.
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Chapter 3

Assisted Target Detection

In this chapter I analyze the results of the three different methods introduced in the previous

chapter – Matched Filters (MF), Histogram of Oriented Gradients (HOG), and Deep Learning –

and compare their performance as detectors. We will see that the target detection performance

of the first two methods, MF and HOG, is significantly worse than that of the deep learning

method. Implementing these algorithms, especially deep learning, is computationally intensive.

I used just the CPU for MF and HOG, and employed a GPU for deep learning. I used Ubuntu

16.04.6 running on an Intel R© Core TM i7-4770(3.4 GHz) CPU with an NVIDIA GeForce GTX

1080 Ti GPU.

One of the common ways to visualize the performance of detection algorithms is a precision-

recall curve (PR curve). I can plot this PR curve by having the confidence score and the true

label for each detection. By varying the threshold on confidence continuously, I obtain a curve

of precision and recall values that I can graph to compare and analyze the performance of each

detector.

After the implementation of the non-maximum suppression (NMS), I can create an array of

confidence scores and true labels and sort that array by the confidence scores, which enables me

to define the true positives (TP), false positives (FP), true negatives (TN), and false negatives

(FN). For instance, for the case shown in Figure 3.1, after defining a threshold, all detections

with the label 1 (positive images) above the threshold are considered as TP, and all detections

with the label 0 (negative images) above the threshold are considered as FP. Detections with

the label 0 below the threshold are TN, and those with the label 1 under the threshold are FN.

Having these values, I can calculate the precision and the recall, where precision = TP
TP+FP

and recall = TP
TP+FN.

In this project I need recall to be relatively high, as even a single FN might mean that I miss

finding the airplane. However, if there is only a single target, then even a low precision might
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True Label Confidence Score

1 0.9

0 0.88

1 0.75

0 0.63

1 0.4

1 0.33

0 0.2

0 0.1

1 0.01

Threshold of 0.8

Label 1= True Positive Label 0= False Positive

Label 1= False Negative Label 0= True Negative

Figure 3.1: An example of the confidence scores array and their true labels. By defining a
threshold I can define the true positives (TP), false positives (FP), true negatives (TN), and

false negatives (FN).

be tolerable. For example, if there is just one airplane, then a search operator might be able

to filter through hundreds of false positives. In that case, the precision would be quite low.

Since precision is largely defined by the ratio TP/FP, it is very sensitive to the balance of the

dataset. For example, if the dataset has 1 positive image and 1,000 negative images, even a

moderate FP will result in low precision.

Therefore, below I describe two ways of testing the MF, HOG, and deep neural networks (DNN)

methods. First, I test the algorithm on equal numbers of positive and negative images to see how

it performs with a more approximately balanced dataset (part (A) in section 3.1.1),. Second,

I test the algorithms as they would be used in the real world (part (B) in section 3.1.1), with

more negative images than positive images.

3.1 Matched Filters

3.1.1 Approach

The basic idea in MF is to create a filter or a template based on the positive and negative images

of the dataset as described in section 1.3. By computing the inner product of this template across

either (A) image patches from the dataset that are the same size as the template or, (B) each
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of the images of size 640 × 480 pixels in the dataset, I can determine if either (A) any of the

image patches or (B) any parts of that image have a similar structure to the template.

For the sliding window method, I used a square window that moves across the image in 2 pixel

steps in horizontal and vertical directions. Positive cases are defined as cases where the center

of the sliding window has a distance less than half of the average size of an actual target in the

dataset.

Taking the inner product of the template across the whole image as in (B) will produce many

more negative images than positive ones. For instance, for a sliding window of size 20× 20 with

a stride of 2 pixels and an image size of 480× 640, a positive image will be divided into 76,800

image patches, of which fewer than 30 are true positives. This means that for a validation set of,

for example, 100 images (half positive images and half negative images), I have fewer than 3,000

positive image patches and 7,677,000 negative image patches. This imbalance in the positive

and negative image patches reduces the precision.

I used the training partition of the dataset to construct the template for the MF - approximately

20,000 images (about 10,000 positive images and 10,000 negative images). I evaluated four

template sizes: 10 × 10, 20 × 20, 40 × 40, and 80 × 80 pixels. I also implemented a method to

minimize variation in target size by projecting to ground plane coordinates. This is described

under the section 3.1.2 “Geometry”. The template is defined as the difference of the average

negative image from the average positive image. Figure 3.2 shows the average target and average

background, and Figure 3.3 shows the template.

In the case of (A) above, I extract positive image patches from the positive images and negative

image patches using the same procedure described above in constructing the template. This

provides about 4,000 positive image patches and 4,000 negative image patches that are the same

size as the template. I then compute the inner product for each of these 8,000 image patches.

In the case of (B) above, I take the inner product of the template with each image from the

validation dataset (50 positive, 50 negative images), moving the template in a sliding window

with stride 5 across the image.

3.1.2 Geometry

Along with each frame of video in the dataset, I have information about the searching airplane,

including horizontal and vertical field of view, sensor elevation, and slant range1. I use this

information to equalize the expected target size in the sliding window approach. As a sliding

window moving across an image, each image patch is re-sized based on the distance of the patch

center from the ground to the camera. For example, in Figure 3.4, the center of the sliding

1Slant range is the distance from the ground-plane projection of the principle point to the center of the optical
sensor
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Figure 3.2: On the left is the average of the images without a target, and on the right is the
average of the images with targets for the training dataset. Window size = 40× 40 pixels.

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40 -70

-60

-50

-40

-30

-20

-10

0

Figure 3.3: MF template.

window corresponds to a point in the real world E with distance to the center of the camera

denoted as AE. D is the closest point on trapezoid’s height in the middle, to the point E.

Since I know the sensor elevation angle (γ), I can use the right-angled triangle property of

4ABC and calculate AB and AD:

AB = slant range ∗ sin(γ) (3.1)

AD =
AB

sin(φ)
(3.2)

Based on whether the location of the sliding window is above or below the center of the image,

I can define the angle φ as:
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α=Horizontal FOV

β=Vertical FOV

γ=Sensor Elevation

Sensor
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BCD

E
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Figure 3.4: Each point in the image corresponds to a point on the ground in the field of view.
I use the corrected field of view as described in the chapter “Dataset”. Sections 2.3 and 2.4.

φ =

γ − θv, Below

γ + θv, Above

where θv is the angle from the camera to the center of the sliding window in the y direction as

shown in Figure 3.5. The angle from the camera to the sliding window center in the x direction

is denoted as θh, so I can define AE as:

AE =
AD

cos(θh)
(3.3)

The focal length of the camera installed on the searching airplane (f) is 40mm and each pixel

in the camera is 20µm. θv and θh based on the focal length are defined in Equations 3.4 and

3.5.

θv = tan−1
y

f
(3.4)

θh = tan−1
x

f
(3.5)

Since the dimension of the target is proportional to the inverse of its distance to the center of

the camera, the right window size for each image patch is:
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Figure 3.5: θh and θv are angles from the center of the camera to the center of the sliding
window in x and y directions.

window size =
C

AE
(3.6)

where C is a constant over all pixels and slant ranges. Figure 3.6 shows the distribution of slant

ranges in our dataset. It ranges mainly from 500m to about 2200m. I ran an experiment to

identify the constant C that provides the best performance with MF and HOG methods. These

results are described in the “Results” section for each method. Figure 3.7 shows some samples

of the original cropped image patches with a window size of 40× 40 pixels versus image patches

with window size modified according to the Equation 3.6. The method clearly helps to equalize

the target size.

3.1.3 Results

Figure 3.8 shows the probability distributions of the inner product calculated by matching the

template shown in Figure 3.3 with training image patches and Figure 3.9 shows the probability

distribution for the patch-based validation set extracted by method (A)(section 3.1.1). Figure

3.10 shows the same distributions for patches extracted with method (B) after implementing the

non-maximum suppression. The positive distribution in method (A) is based on approximately

5,000 different targets. There is no clear margin between the two sets of scores of the positive and

negative images; consequently, a threshold that would provide for good detection performance
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Figure 3.6: Slant range histogram shows the distance from the center of the camera to the
center of the image on the ground for each image in our dataset. For our dataset, this distance

ranges from roughly 500m to the roughly 2000m .

Figure 3.7: Upper row are samples of targets shown in original size of the sliding window,
40× 40 pixels. Lower row are new cropped patches based on their distance to the camera.
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Figure 3.8: Probability distribution of the inner product of the template with positive and
negative image patches of size 40× 40 pixels based on 10,000 image patches from the training

set extracted using Method (A)(Section 3.1.1).
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Figure 3.9: Probability distribution of the inner product of the template with positive and
negative image patches of size 40×40 pixels based on 10,000 image patches from the patch-based

validation set extracted using Method (A)(Section 3.1.1).
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Figure 3.10: Probability distribution of the inner product of the template with positive and
negative image patches of size 40× 40 pixels based on images of size 480× 640 pixels from the

validation set using Method (B)(Section 3.1.1).

cannot be chosen. In fact, we can see from these two distributions that we can obtain high

recall or high precision, but not both.

Figure 3.11 shows the Receiver Operating Characteristic curves (ROC curves) of MF algorithm

performance for different sliding windows on image patches, method (A). To assess the detector

performance, I plotted PR curves as well as ROC curves. ROC curves use a different measure

that allows for a different comparison of the algorithm’s performance across the datasets.

In ROC curves, the true positive rate (which is as the same as recall) is plotted against the

false positive rate, where the true positive rate is defined as TP
TP+FN and the false positive rate

is defined as FP
FP+TN. The true positive rate is a measure of how many of the positive samples

have been correctly identified, while the false positive rate is a measure of how many of the

negative samples have been incorrectly identified.

In Figure 3.12, the MF algorithm PR curve shows that MF algorithm performs very poorly on

the image validation set. The precision over the set of validation images is very low. Among

all methods, the Geometry method has slightly better performance. I chose the constant C =

28, 000 as it has a better performance on the validation set. Figure 3.13 shows MF performance

over different overlaps in non-maximum suppression for the Geometry method. I chose the

overlap 0 as it has a better performance not only for the Geometry method but also for MF
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Figure 3.11: ROC curve of MF with different sliding window sizes on image patches.

with different window sizes. The MF algorithm as a detector is very dependent on the filter or

template that I use in the algorithm. We can clearly see the airplanes in false negatives (Figure

3.14), but they differ from the template, mostly in orientation and luminance. Moreover, miss

hits can occur due to spatial shifts, missing parts, and low contrast. We can also see that almost

all of the most confident false positives have a vague resemblance to the template, as they are

mostly dark in the middle and lighter in the background. Figure 3.18 shows a few results of the

MF method on the validation set, after non-maximum suppression. For the Geometry method,

it took 38.25 seconds to create the template and 11.58 seconds for implementing the algorithm

on the each validation image.
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Figure 3.12: Precision-Recall curve of MF over the IR images with different sliding window
sizes.
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Figure 3.13: Precision-Recall curve of MF with Geometry method over the IR images with
different overlaps in non-maximum suppression.
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Figure 3.14: False negative patches for MF algorithm. The template that was used is in the
bottom row.
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Figure 3.15: True positive patches for MF algorithm. The template that was used is in the
bottom row.
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Figure 3.16: False positive patches for MF algorithm. The template that was used is in the
bottom row.
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Figure 3.17: True negative patches for MF algorithm. The template that was used is in the
bottom row.
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Figure 3.18: MF performance on a few images of the validation set. It shows the first highest
score in green and the next four highest scores in magenta. Yellow circle indicates the target

location.

47



3.2 Histogram of Oriented Gradients

3.2.1 Approach

In this section, I report on the use of Histogram of Oriented Gradients (HOG) as a detector.

I implement this method in the same fashion as the MF method (see section 3.1.1). However,

instead of taking the inner product of the template with image patches ((A) in section 3.1.1) or

image ((B) in section 3.1.1), I compute the HOG features for each image patch or image (see

section 1.4). I then use the support vector machines (SVM) module implemented in Python to

classify the images from the HOG features.

Each image is broken up into blocks and each block into cells. I chose 2 × 2 cells per each

block. The number of the unsigned directions from 0 to 180 degrees is given by the parameter

orientations. Table 3.1 shows the HOG parameter values I used for each method of sliding

window. I chose these parameters by determining the values that maximized the accuracy of

the SVM classifier when tested on the validation set (described in section 2.6). For example,

Table 3.2 shows the accuracy of Geometry method with 2 × 2 cells per block and for different

values of pixels per cell and orientations. We can see that the cell size of 10× 10 pixels with 7

unsigned orientations results in the greatest accuracy.

Since contrast is normalized for each block (the block norm parameter above), I worried this

might affect the results. For example, if the contrast is much higher in one block compared to

another, then the gradient magnitude might end up lower (since it is normalized by the contrast

in its own block). Therefore, gradient magnitudes are not comparable between blocks. I thus

tried to implement HOG from scratch to have direct control over the normalization, as I could

not simply turn it off in the Python implementation. While our implementation did not perform

as well as the one in Python, the L1 normalization had almost no effect on performance (our

implementation with and without normalization achieved an accuracy of about 98%). Hence, I

conclude that using block contrast normalization for our infrared images does not likely result

in worse performance.

Figure 3.19 shows a few visualizations of the HOG features in image patches that contain a

target. The lines indicate the direction of the brightness gradient, while the brightness indicates

the gradient value (the higher the gradient, the brighter the line). The brightest areas in the

image patches correspond to the locations of the targets. Therefore, I can see that, in these

examples, the targets are distinguishable from the background. This suggests that this approach

may be more promising than the MF method.

The SVM was trained on whole training dataset. I used a regularization value of 1 (C in

equation 1.15) (note that the strength of the regularization is inversely proportional to C) and
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Method pixels per cell orientations

10× 10 5 9

20× 20 8 9

40× 40 10 9

80× 80 12 9

Geometry 10 7

Table 3.1: Specification of the HOG parameters in the “skimage” library used to extract
features of the airplanes in our dataset.

pixels per cell orientations Accuracy

4 7 97.61

4 8 97.48

4 9 97.51

6 7 98.10

6 8 98.13

6 9 98.17

8 7 98.12

8 8 98.14

8 9 98.22

10 7 98.32

10 8 98.22

10 9 98.23

12 7 97.46

12 8 97.48

12 9 97.5

14 7 97.45

14 8 97.32

14 9 97.43

16 7 95.75

16 8 95.83

16 9 95.73

18 7 89.20

18 8 89.79

18 9 88.99

Table 3.2: Accuracy of the SVM classifier applied to features extracted with HOG on the test
set. The accuracy depends on the parameter values chosen. Red accuracy value indicates the

highest value obtained.

a linear kernel (described in section 1.4.1.5). I did not find any major qualitative differences in

results by adjusting these parameters.

3.2.2 Results

As with MF, HOG (+ SVM) performs differently depending on the size of window that I use.

When choosing a window size, several aspects are at play that may increase or decrease the

49



Figure 3.19: HOG feature visualization for image patches of 40×40 pixels. Targets correspond
to the brightest areas in the patches and are therefore distinguishable from the background.

performance of the algorithm. On the one hand, having too large of a window may lower the

algorithm’s performance, since: (1a) most of the information in the window may be of the

background rather than the airplane, so that it might be more difficult to detect the airplane;

and (2a) there are many more possible positions within the window the airplane may appear in.

Indeed, (1a) is the main reason to use a sliding window approach rather than to simply apply the

algorithm to the entire image at once. On the other hand, a smaller window size may also lower

the algorithm’s performance, since: (1b) having some of the environment in the background to

contrast against the target can provide helpful detection information, and too small a window

size may provide too little of the environment; and (2b) there is a higher probability that the

target will only be partly contained within the sliding window. Since the training set consists

of whole airplanes, the algorithm will have greater difficulty in detecting partial planes. The

best window size is the one that balances all of these factors within a particular dataset.

When I try different window sizes, we can see all of these factors reflected in the performance

of the algorithm. First, I look at the image patches ((A) in section 3.2.1) that have a balanced

number of positive and negative images. In this case, since I am not using a sliding window, all

of the airplanes in the training and test sets are whole airplanes. Therefore, (2b) does not apply,

and as long as enough background is present, I would expect that (1a) and (2a) would both

apply, so that the algorithm would perform best with a window size based on our Geometry

method and worst with our smallest window size of 10× 10 pixels.

In this case, there are slightly more positive than negative images, hence when recall = 1,

the precision is slightly higher than 0.5. As expected (since the dataset is balanced), the

ROC curves for the image patches in Figure 3.23 reflect the same performance as in the PR
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Figure 3.20: Probability distribution of the SVM decision value on positive and negative image
patches of size 40 × 40 pixels based on 10,000 image patches from the training set extracted

using Method (A)(Section 3.1.1).
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Figure 3.21: Probability distribution of the SVM decision value on positive and negative image
patches of size 40 × 40 pixels based on 10,000 image patches from the patch-based validation

set extracted using Method (A)(Section 3.1.1).
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Figure 3.22: Probability distribution of the SVM decision value on positive and negative
image patches of size 40× 40 pixels based on images of size 480× 640 pixels from the validation

set using Method (B)(Section 3.1.1).
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Figure 3.23: ROC curve of HOG+SVM with different sliding window sizes on the validation
set image patches.
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Figure 3.24: ROC curve of MF and HOG (+SVM) based on Geometry method on the vali-
dation set of image patches.

curves. Figure 3.24 shows MF performance on the balanced dataset next to the HOG (+SVM)

performance based on the Geometry method.

In the case of implementing HOG (+ SVM) on the entire image with a sliding window ((B) in

section 3.1.1), I can see in Figure 3.27 that HOG performs better than MF in the sense that

there are thresholds that allow for higher, though still low, precision. It also appears that the

Geometry method produces the best performance, and the smallest, 10 × 10 window size the

worst. Figure 3.20 shows the probability distributions of SVM decision value for the training

image patches and Figure 3.21 shows the probability distribution for the patch-based validation

set extracted by method (A)(section 3.1.1). Figure 3.22 shows the same distributions for patches

extracted with method (B) after implementing the non-maximum suppression.

The geometry method attains optimal performance with scaling constant C = 34, 000 which

is somewhat larger than for the MF detector. This suggests that, for HOG, having more

background in the the image patch can improve the performance of the detector. Figure 3.26

shows HOG (+SVM) performance over different overlaps in non-maximum suppression for the

Geometry method. I chose the overlap 0 as it has a better performance not only for the Geometry

method but also with different window sizes. In Figures 3.28, 3.29, 3.30, and 3.31, I examined

the most confident FN, the most confident TP, the most confident FP, and the most confident

TN, respectively, to try to gain insight into where the algorithm runs into difficulties.
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Figure 3.25: PR curve for the validation set of 100 images size 480× 640.
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Figure 3.26: Precision-Recall curve of HOG(+SVM) over the IR images with different overlaps
in non-maximum suppression for Geometry method.
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Figure 3.27: PR curve of MF and HOG (+SVM) based on the Geometry method on the
validation set.

HOG appears especially to have difficulties in detecting small, blurry, or low contrast airplanes,

as might be expected. As I again only am looking for whole airplanes within a window in the test

set, I constrained the annotated target location to be in center of the window. In future work, if

we randomized the target position within the windows in the training set, we expect, to achieve

slightly better performance. We would then expect the SVM to learn to classify uncentred

targets better. I only included centred targets in the training set, and I found that the most

confident TP were image patches with centred targets, while the most confident FN were image

patches with uncentred targets. The algorithm also more easily identifies backgrounds that are

more spatially uniform, while having difficulty with backgrounds with strongly linear contrast

changes. The algorithm false alarms if there is a clear, high-contrast, sharp contour running

through the patch, near to the center.

Figure 3.32 shows the most confident detections, after non-maximum suppression, identified by

HOG + SVM for some example images. For the Geometry method, it took 133.25 seconds to

train the SVM and 174.32 seconds for implementing the algorithm for each validation image.
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Figure 3.28: Most confident false negative patches of the HOG + SVM algorithm.

Figure 3.29: Most confident true positive patches of the HOG + SVM algorithm.
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Figure 3.30: Most confident false positive patches with the HOG + SVM algorithm.

Figure 3.31: Most confident true negatives with the HOG + SVM algorithm.

57



Figure 3.32: HOG + SVM performance on a few images. It shows the first highest score in
green and the next four highest scores in magenta. Yellow circle indicates the target location.
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3.3 Deep Learning

3.3.1 Approach

For deep learning, I implemented a neural network using Faster R-CNN (Region-based Convo-

lutional Neural Network) as the model and ResNet50 (Figure 3.33) as the backbone.

Figure 3.33: ResNet50 structure. It consists of 49 convolutional layers and one fully connected
layer[34].

Deep residual networks were groundbreaking in the field of deep learning. ResNet makes it

possible to train thousands of layers and achieve very high performance [34]. A well-known

difficulty with deep networks is the vanishing gradient problem. Basically, the loss gradients,

and therefore the computed changes in the weights, at the first layers of the network can become

extremely small as the gradient of the loss function is propagated backwards from the later to the

earlier layers. This can slow down or even stop learning in the network during training. ResNet

implements one way to prevent this issue by adding skip connections. As opposed to the MF

and HOG+SVM methods, Faster R-CNN does not use a fixed sliding window to scan an image

for the target. Instead, it proposes bounding boxes that might contain the target. Therefore,

in addition to the annotations (i.e., the labeled (x, y) coordinates of the airplanes), I need to

specify ground-truth bounding boxes around the targets as well. Based on the dimension’s

histogram of some targets in the dataset (Figure 2.11) I chose a bounding box of 30 pixels as

the ground-truth bounding box for the positive images in the training set. I implemented Faster

R-CNN with Pytorch, based on the code from GitHub2 that I modified for our project.

2https://github.com/potterhsu/easy-faster-rcnn.pytorch
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3.3.2 Results

I tried two different initializations for the Faster R-CNN weights: 1) Pre-trained on the ImageNet

and 2) Random. I then trained both networks on our dataset for a few days, for 80,000 epochs.

Figure 3.34 shows the PR curve for both initializations. I used the same training, test, and

validation sets on whole images for both networks. I do not report an ROC curve on the image

patches for the deep learning method since the deep learning method is based on anchors and

not sliding window.
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Figure 3.34: The PR curve of Faster R-CNN with and without pre-trained weights on whole
validation set.

The training error using pre-trained weights and using no pre-trained weights reached 0.04 and

0.1, respectively. Figure 3.35 shows that Faster R-CNN performs much better than MF or

HOG. Interestingly, the network that was only trained on the airplanes performs worse than the

network that was pre-trained on unrelated images in ImageNet. Using the pre-trained weights

might have taught the network better image statistics.

The training loss and validation loss for both cases (with and without pre-trained weights) are

shown in Figures 3.36 and 3.37. After each 20 steps of training, I keep the weights fixed and

compute the evaluation loss on the validation set. As shown, the training loss is higher than the

validation loss at the beginning of training, but at later steps they converge. One possible reason

for this is that in my Faster R-CNN implementation the hyper-parameters for regional proposal

network (RPN) are different in training and validation process. More anchors are proposed in
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the training process rather than in the validation process in this implementation. The more the

number of proposals the bigger the loss will be, specifically at the beginning of training where

network is more prone to make mistakes. The other reason that might result in higher training

loss is with the current implementation each datapoint for the validation loss consists of image

batch of 1, whereas it is 10 images for the training loss. We can see that the training of the

Faster R-CNN with pre-trained weights is much faster than the network without pre-trained

weights. For example, after 1,000 epochs, the loss for the network with random initialization is

roughly 0.4, whereas for the network with ImageNet initialization, it is roughly 0.1 (Figure 3.37

and 3.36). The final accuracy at the end of training on the validation set for the Faster R-CNN

with pre-trained weights is 89.68% and for the case without the pre-trained weights is 89.18%.

Figures 3.38 shows some example detections from the test set. In most cases, the network is

able to detect the target on the ground despite the fact that the target is very small in the

image. The network can detect the target correctly even for some cases that could be difficult

for a human observer.
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Figure 3.35: PR curve of MF, HOG (+SVM), and Faster R-CNN based on the validation set
of images.
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Figure 3.36: The training loss and validation loss of Faster R-CNN with pre-trained weights.
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Figure 3.37: The training loss and validation loss of Faster R-CNN without any pre-trained
weights.
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Figure 3.38: Example results on the test dataset for Faster R-CNN. Each image has one
target. In the left column, there is one false positive in the top image and another in the image

that is second from the bottom.
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3.4 Discussion

I implemented three algorithms to automatically detect airplanes on the ground: MF (Matched

Filters), HOG (Histogram of Oriented Gradients), and Faster R-CNN (Faster Region-based

Convolutional Neural Network, a deep learning network). I found the MF method performed

by far the worst of the three algorithms. The template, constructed as the difference of the

average of targets and backgrounds, is unlikely to match all of the targets well. In our dataset,

targets have well-defined shapes but vary in size and orientation. The best performance was

achieved using the Geometry method. HOG + SVM (HOG feature vectors classified by a

support vector machine) performed better than MF. I found best performance with a Geometry

method that adjusts for variations in viewing distance.

For the last experiment in this project, I implemented Faster R-CNN as a detector with the

Pytorch library. This deep learning method can extract more meaningful features of the object.

I experimented with both ImageNet and random initialization, finding faster convergence and

ultimately better performance with ImageNet-initialized weights. The network could detect

airplanes with an accuracy of 89.68% with weights pre-trained on ImageNet and with an ac-

curacy of 89.18% without the pre-trained weights. This may be because the network has kept

information in its weights about image statistics that may be relevant here.

We can assume that in our performance evaluation on the test set, there are nP positive images

and nN negative images. For a fixed threshold, let true positive rate (TPR) or recall be equal to

the probability of a detection given a positive image (p(r = 1|P )). TPR happens if the detection

overlaps a ground truth target, and thus qualifies as hit. Let the precision or positive predictive

value (PPV) be p(P |r = 1) and the false positive rate (FPR) be p(r = 1|N). FPR denotes the

number of detections not at the target location, per image. Let nTP and nFP represent the

number of observed true and false positives, respectively. Then we have:

PPV =
nTP

nTP + nFP
=

nP × TPR

nP × TPR + (nP + nN )× FPR
(3.7)

or

PPV =
TPR

TPR + (1 + nN
nP

)× FPR
(3.8)

Let us assume that it takes 1 hour to find the airplane with a 30 f/p video. Then, nP might

only be one, but nN = 60 × 60 × 30. Thus under realistic operating conditions, the presicion

or PPV is:
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PPV =
TPR

TPR + (1 + 108, 000)× FPR
(3.9)

For example, with TPR = 0.95 and FPR = 0.01, precision ≈ 0.0008, which is too low for the

system to be useful. Figure 3.39 shows the PR curve for a realistic application. If we want a

recall of 0.8, there will be 100,000 false positives for every true positive. Thus, the performance

is not yet at a level that is useful operationally.
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Figure 3.39: Precision-Recall curve of real application.
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Chapter 4

Conclusion and Future Work

Our goal in this project was to implement and evaluate candidate ATD methods for finding

downed aircraft in conditions that resemble those encountered in SAR (search and rescue). We

used the National Research Council Flight Research Laboratory (NRC-FRL) dataset that was

established in 2014 and consists of 22 hours of data with airplanes as targets. Considerable

time was spent cleaning and labeling the dataset before we could apply any target detection

algorithms, effort that can be taken advantage of in the future by us or others in further

developing ATD technology. The three ATD methods we tested on this dataset to detect the

target airplanes were MF (Matched Filter), HOG + SVM (Histogram of Oriented gradients

classified by a support vector machine), and Faster R-CNN (Faster Region-based Convolutional

Neural Network, a deep network learning method).

In order to train and evaluate the different ATD methods, we need to know which frames have

targets, and where the targets are in each frame. This information is implicitly contained within

the NRC-FRL dataset in different files that separately contain the video, information about the

ground location of the targets, and information about the state of the search plane. Our first

step was to put all of this information together in order to find and label each target. We

first constructed an algorithm to automatically identify frames that had targets, using log files

that accompanied the dataset. We then manually labeled these approximately 40,000 frames,

taking care to eliminate frames that occurred during sudden camera transitions, such as rapid

panning or zooming. We also eliminated zoomed-in images, since these were cases where the

human operators had already located the target. Although we attempted to clean the dataset

as described above, the data in the log files used to construct the algorithms were not perfectly

accurate.

Among the three methods, we obtained the best performance with Faster R-CNN. MF did not

perform well because it fails to capture the rotation-invariant shape of the aircraft. This can

be improved by using a combination of different filters which is trained on different airplane’s
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rotations. While HOG (+ SVM) performed better than MF, the precision was still quite low.

MF and HOG performed much better with Geometry method’s window sizes in which the target

took up enough proportion of the window area. Faster R-CNN performed better and required

less training time when the network’s weights were pre-trained on ImageNet than when they

were randomly initialized, even though the two networks used the same training, validation,

and test sets. As we outlined in section 3.4, while an ideal SAR-ATD would be able to achieve

extremely high precision and recall simultaneously, we may be able to sacrifice one for the

other. In SAR, we want to ensure we don’t miss the target. However, a human operator might

be able to screen positive detections, so that apparently low precision levels might be acceptable

in this situation. The performance achieved here by Faster R-CNN, might not be sufficient for

SAR-ATD applications as described in section 3.4. However, we believe we can further improve

the performance to higher levels with some additional modifications. For example, we can use

the hard-negative mining method by adding high-confidence false positives to the training set

to improve the performance of the algorithm.

Another opportunity to improve performance is to take advantage of information present in

nearby video frames. Consecutive frames have high spatial correlations. If a target is detected

in one frame, it should also be detected in nearby frames. Combining detector outputs over

successive frames can thus be used to improve the detector sensitivity. However, since the

aircraft is moving, combining the detections accurately requires that we estimate the spatial

mappings (roughly homographies) of a target detected in a particular frame to neighboring

frames. To accomplish this, we can apply algorithms such as FAST [35], SIFT [36], SURF [37],

and ORB [38] to identify features in each frame, compute pairwise matchings of the features

between frame pairs, and then estimate the homography that minimizes the re-projection error.

One of the limitations of the current developed assisted target detection algorithms including

MF, HOG+SVM, and Faster R-CNN is that they may not be able to detect downed aircraft

that have been disfigured in a crash. This must be addressed for an ATD algorithm to be of

practical use.

Further improvements in dataset includes having more varied and realistic representations of

target airplanes and environments that better match what might be encountered in real SAR

missions. For example, we could augment and expand the current dataset to more realistically

model downed aircraft by occluding parts of the airplanes with patches of background that

match the image background. The NRC dataset is collected in a flat environment in the fall

season. As a result, the performance of the detectors such as our deep learning method will

be negatively affected in different environments, including forest, mountains, and in different

seasons. To address this, we need an expanded dataset with greater variations in terrain and

season.
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