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Abstract

In this dissertation, we focus on the verification of distributed Java applications

composed of communicating multithreaded processes. We choose model checking

as the verification technique. We propose an instance of the so-called centralization

approach which allows for model checking multiple communicating processes. The

main challenge of applying centralization is keeping data separated between differ-

ent processes. In our approach, this issue is addressed through a new class-loading

model. As one of our contributions, we implement our approach within an exist-

ing model checker, Java PathFinder (JPF). To account for interactions between

processes, our approach provides the model checker with a model of interprocess

communication. Moreover, our model allows for systematically exploring poten-

tial exceptional control flows caused by network failures. We also apply a partial

order reduction (POR) algorithm to reduce the state space of distributed applica-

tions, and we prove that our POR algorithm preserves deadlocks. Furthermore, we

propose an automatic approach to capture interactions between the system being
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verified and external resources, such as cloud computing services. The dissertation

also discusses how our approach is superior to existing approaches. Our approach

exhibits better performance which is mainly due to the POR technique. Further-

more, our approach allows for verifying a considerably larger class of applications

without the need for any manual modeling, and it has been successfully used to

detect bugs that cannot be found using previous work.
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1 Introduction

When it comes to concurrency, two levels of execution can be identified: pro-

cesses and threads. Each process provides a self-contained execution environment,

whereas, threads run within a process and share the process runtime resources such

as memory space. In this dissertation, we focus on verifying a category of systems

composed of multiple processes. We call these systems distributed applications.

We specifically focus on an automatic verification technique called model check-

ing. In the last few decades, there has been an extensive amount of work towards

model checking of single process multithreaded applications. Most of the existing

model checkers can be applied only on single processes. Due to the concurrent

nature of distributed systems, some existing techniques proposed for single process

multithreaded applications can be used for distributed systems. In this work, we fo-

cus on model checking distributed applications composed of multiple multithreaded

processes. We specifically target those distributed applications that are written in

Java and use unbounded blocking buffers for interprocess communication.

1



There are four main research questions that we aim to answer through this dis-

sertation. The first question is how we can capture multiple processes within a Java

model checker. The model checking approach used in our work is based on checking

all possible executions of the distributed system under test (SUT) using a sched-

uler. Therefore, the first question can be reduced to how a virtual machine that

handles single process applications can be extended to execute distributed applica-

tions, where the execution semantics of individual processes is preserved. Another

question is how communication channels, that exist at the operating system level,

can be modeled within a Java model checker. Moreover, in this dissertation, we look

into a selective search strategy to explore a part of the state space of distributed

systems while still preserving properties of interest. Finally, the last question is

how we can provide a mechanism that allows applications being model checked to

use external resources which exist outside of the model checker environment.

This chapter discusses the factors that motivated us, our main objectives, and

the contributions achieved in the dissertation. As one of the contributions, we

implement our technique within the JPF model checker. We extend the scope

of JPF, which can verify single process applications, to distributed applications.

Chapter 2 describes model checking, compares it with other verification techniques,

and discusses the features of the JPF model checker. After giving an overview of

the current state of the art in Chapter 3, we discuss our approach (Chapter 4, 5,

2



and 7) and present results obtained from applying our work in Chapter 8.

1.1 Motivation

The direction of this research is motivated by several observations which we elabo-

rate upon in this section. One such observation is an essential need for techniques

that can help to detect errors in software systems. This section also discusses

the importance of distributed systems and their specific verification requirements.

Moreover, it explains why in our research we target applications written in Java by

discussing the relevancy of Java as a platform for distributed applications.

1.1.1 Software Verification

In the last few decades, the involvement of software systems in human life has

increased significantly. Nowadays, many aspects of our lives are affected by these

systems and we use them on a daily basis. For example, every day we are confronted

with software-driven devices like telephones, televisions, automobiles, elevators,

automated teller machines, microwave ovens, or services like online banking and

online shopping.

Even though the involvement of software systems is spreading through most

aspects of our lives, these systems are not reliable. The major contributing factor

to this problem is the high complexity of software. Unlike hardware, software has

3



a tendency to grow in size very fast, which can make software more vulnerable to

errors.

One of the most notorious software errors of all times is the error of Therac-25,

which is a computerized radiation therapy machine. Due to this error, known as a

race condition, between June 1985 and January 1987, at least six patients received

massive radiation overdoses which resulted in deaths and serious injuries. Another

notorious software error is the one that caused the explosion of the Ariane 5 rocket.

According to the report by the Ariane inquiry board, on June 4 1996, only 40

seconds after the launch, the rocket exploded.1 They reported that the failure was

due to a software exception. The exception occurred in a data conversion from a 64-

bit floating point value to a 16-bit signed integer value in the Ada code. Since the

converted result was too large to fit in a 16-bit signed integer, the data conversion

instructions led to the exception that was not handled. There were some other data

conversions in the code that were handled. The development of Ariane 5 cost the

European Space Agency about $7 billion. The Northeast Blackout of 2003 which

was a massive loss of electric power in parts of the northeastern United States and

Ontario, Canada, also resulted from a software error known as a race condition.

The cost of this outage is estimated to have been between $7 and $10 billion.2

1http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

2https://reports.energy.gov/
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As our lives are becoming more involved with software systems, their correctness

is becoming a more serious issue. However, detecting and fixing a software error

can be very hard and time consuming. According to an article3 by the U.S. Defense

Department and the Software Engineering Institute at Carnegie Mellon University,

there are typically about 5 to 15 errors in every 1,000 lines of code. According to

a five-year study by the Pentagon, it takes about 75 minutes to trace an error, and

two to nine hours to fix it. It therefore takes about 150 hours to verify 1,000 lines,

costing roughly $30,000.

As can be seen in Figure 1.1, the earlier the error is detected, the better [1].

The cost of detecting and repairing a software error during maintenance and oper-

ation is considerably higher compared to the early stages of development. In later

stages, the malfunctioning of the system can severely damage the reputation of the

company and can even be a threat to its survival. According to a study by the

National Institute of Standards and Technology (NIST) in 2002, software errors

cost the U.S. economy about $59.5 billion annually, which is about 0.6 percent of

the gross domestic product.4

As pointed out earlier, software errors cannot be avoided and detecting them is a

very difficult and tedious process. But, since errors in software can have extremely

3http://www.businessweek.com/1999/99_49/b3658015.htm

4http://www.nist.gov/director/planning/upload/report02-3.pdf
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Figure 1.1: Software life cycle and error introduction, detection, and repair costs [2]

undesirable consequences, there is an essential need for techniques that can help

to detect errors in software systems. These techniques are invaluable to developers

and can cut the cost of software development significantly, especially if the error is

detected in the early stages of software development.

1.1.2 Concurrency

It is becoming increasingly difficult to follow the traditional path to increase the

performance of processors, by switching transistors at ever greater speeds. This

is mainly the case because the amount of power used and the amount of cooling

technology needed increase with the speed at which transistors switch [3]. Nowa-
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days, there are many sequential systems that are being replaced with concurrent

versions. That is done by putting multiple processors, or cores, on a single chip.

Compared to sequential programming, concurrent programming is more com-

plex. Detecting errors in such systems is also more difficult. The way that

concurrent systems behave depends on the relative speed of the executions of dif-

ferent components (including processes and threads) in the system, which cannot

be predicted. Hence, the behavior of a concurrent system is non-deterministic. It

is very hard for programmers to consider all possible interleavings of concurrently

running components.

1.1.3 Distributed Applications

Distributed computing is becoming more and more important these days as most

systems in use are distributed. For example, mobile applications, the popularity

of which keeps rising, are mostly distributed [4]. Some examples of widely used,

Java-based, mobile applications are Google maps mobile and Gmail mobile.

There are several key factors driving the development of distributed applications

[5, 6]. Some services intrinsically require the use of a communication network

to connect different components. Massively multiplayer online games are among

such services which allow large numbers of people to play simultaneously, e.g.,
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RuneScape5, which is written in Java.

Distributed computing can also allow for developing fault tolerant applications

where a failure in a process does not stop other processes from running, and the

application can still complete its task. The Netflix API is an example of a system

that uses distributed components to provide fault tolerance6.

Moreover, distributed systems provide the use of the computational power of

multiple machines to process tasks faster and handle larger problems. For example,

Memcached7 is a high-performance distributed memory caching system designed

to speed up dynamic web applications. The Netflix EVCache8 open-source project

employs Memcached. Some other users of the Memcached caching system are

Facebook, Twitter, Wikipedia, and YouTube. Distributed computing is also used in

intensive scientific simulations to gain speed, e.g., CartaBlanca 9 is a physical system

simulation package written in Java which uses MPJ Express10 (a Java message

passing library) to parallelize its computation.

Finally, using distributed applications allows for sharing resources in a net-

worked system such as disks, printers, files, and databases. This can be seen in

5http://www.runescape.com

6http://techblog.netflix.com/2012/02/fault-tolerance-in-high-volume.html

7http://memcached.org

8https://github.com/Netflix/EVCache

9http://www.lanl.gov/projects/CartaBlanca

10http://mpj-express.org
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systems based on cloud computing [7], which are distributed systems following the

client-server model wherein one or more clients request information from a server.

Cloud computing is one of the major focuses of leading companies in the computer

industry, such as Apple, Amazon, IBM, and Google. The majority of Google ser-

vices follow the cloud computing model. Some of those services, such as Google

Docs, Google Calendar, and Gmail, are based on Java.

In general, distributed applications are hard to develop. These applications are

inherently concurrent. Other than concurrency errors, developers of such applica-

tions need to deal with issues related to a distributed setting, such as the possibility

of failures at different levels, for example, within the process initiating the commu-

nication, while the operating system (OS) writes data to the network, during the

time that data is transmitted between processes, while the OS receives data and

hands it over to the recipient process, and finally within the process receiving data.

Another issue in programming distributed applications is gaining a consistent view

of data across the system.

In general, testing distributed systems is hard. Different components of the

system may have different software and hardware requirements, and therefore set-

ting up an environment to test such applications can be difficult. Furthermore,

due to the possibility of failures at different levels, testing such applications against

potential defects requires injection or simulation of failures at several layers.
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Figure 1.2: TIOBE Programming Community Index for February 2014

1.1.4 The Java Platform

Java is one of the most popular programming languages. That can be seen from the

graph of Figure 1.2. This graph shows the TIOBE Programming Community Index

in February 201411 which captures the popularity of programming languages. Java

is considered a language of choice for many developers of distributed applications,

e.g., the majority of the most watched Java projects on GitHub, which is a popular

web-based hosting service for software systems, are distributed applications.

Java has several features that make it a powerful environment for developing

11http://www.tiobe.com/index.php/content/paperinfo/tpci/
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such applications [5, 6]. Java is platform independent, that is, a single version of

Java code can run on any platform with a Java virtual machine (JVM). It supports

multithreaded programming and offers an exception handling mechanism which is

useful for developing fault tolerant applications. It also provides multilevel support

for network communication including basic networking support such as sockets used

to establish a connection between processes, and data communication protocols

such as TCP and UDP. At a higher level, it provides networking capabilities such

as distributed objects, and communication with databases.

Finally, Java supports two aspects of security for distributed applications. Since

in a distributed Java application, running processes (such as Java applets) can

migrate across the network, Java provides ways to secure the runtime environment

of recipient processes, for example, by restricting access to the local file system. It

also allows for adding user authentication, and encryption of data sent across the

network to establish secure network connections.

1.2 Objectives

Consider the distributed system presented in Figure 1.3. Processes are shown using

cloud shapes. Threads running within a process are shown using rectangles sur-

rounded by the cloud. Processes are running on different machines. They do not

share memory and use distinct execution environments.
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The client processes use the server process to translate phrases from English

to some other language. Once they connect to the server, they notify the server

of their language of choice. For each client the server creates a worker thread

which handles all translation requests from the client in the requested language.

For example, Client 1 requests translations into French which are handled by the

thread worker 1. To perform a translation, worker 1 forwards the request from

the client, and the language of choice to the Google translator which is a cloud

computing service. Once worker 1 receives the translation result from the Google

translator, it sends it to the client. By creating a translator thread per client,

the server can serve multiple clients simultaneously. In this example, the client

processes also include more than one thread for processing their internal tasks.

Google charges for each translation request ($20 per million characters of text) and

there is also a daily usage limit. To avoid further charges, for each language, the

server process uses a map to store translation results obtained from the Google

translator. It only sends a request to the Google translator if the translation result

is not in the map.

Our ultimate goal is to verify such a distributed system using the model checking

technique. We are interested in verifying all possible states of the server and the

two clients while capturing interactions with the Google translator. The server and

clients are subjected to thread non-determinism, so, they can have more than one
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Figure 1.3: An example of a distributed multithreaded system

possible execution. Since these processes interact, non-determinism in one process

can affect the state of the entire system. Besides, another source of non-determinism

is the possibility of network failures. Therefore, to explore all possible executions

of such a system, it is essential to feed the model checker with multiple processes

and provide a communication model. Moreover, a mechanism is needed to allow

interaction with external resources, e.g. the Google translator, during the model

checking.

In this work, we propose a technique which allows for model checking multiple

multithreaded processes that communicate with each other. Our technique is appli-
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cable to those model checkers that drive the execution of the system using a runtime

scheduler. In this work, we apply our approach to JPF which is a model checker

for Java applications. However, the approach can be used for distributed systems

written in some other programming languages which are dynamically typed, such

as Android, Scala, and Smalltalk. Our goal can be broken down into the following

main objectives.

• Applying a new instance of the so-called centralization approach on the model

checker to support multiple processes.

• Modeling communication between processes running within the model

checker.

• Applying a POR reduction technique to reduce the state space of the dis-

tributed SUT.

• Capturing communication with external resources.

1.3 Contributions

In this work, we focus on model checking of distributed multithreaded Java ap-

plications. One of the novelties of our work is a technique proposed to keep data

separated between processes running within the model checker. This is one of the

main challenges when capturing multiple processes within a model checker. We
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address this by implementing a new class-loading model within the model checker.

That also requires extending the type system of the model checker. Our approach

to separate data between processes addresses several limitations of previous work

to verify distributed applications.

This work also provides an accurate model of communication between Java

processes running within the model checker. Our work can be used to detect errors

which could not be detected by previous work. We also propose a new mechanism

for injecting failures into the distributed system analyzed by the model checker.

This enables systematic exploration of possible exceptional control flows which are

due to network failures. Such a mechanism is essential since executions caused by

network failures cannot be captured by exploring all the executions of the process

code.

Furthermore, we apply a POR technique in this context and prove its correctness

with respect to deadlocks. This technique is based on identifying those operations

which are visible within only one process and do not impact the state of other

processes (e.g., accessing a shared field) versus those operations which are globally

visible (e.g., accessing communication objects).

Moreover, in this work, we propose a novel technique to connect the processes

running within the model checker with external resources. The approach is au-

tomatic and generic as it is not specific to certain communication means. This
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approach can be also used to handle native methods automatically, which can save

a lot of modeling effort.

In this dissertation, we also propose a way to separate the execution environment

for different processes, which requires implementing a new Java virtual machine.

In addition, we propose a new model for Java finalizers in the model checker. Such

a model is essential to capture all possible behaviors of distributed systems. We

also provide a visualization of the search graph explored by the model checker when

verifying a distributed application. Finally, comparing our work with existing work

confirms that, overall, our approach has significantly better performance and scales

better, which is due to our POR technique and our implementation choices.
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2 Background

As we have seen in the previous chapter, it is very useful to develop techniques and

tools that can be used to detect errors in software systems. In the last few decades,

there has been a considerable amount of work on developing techniques and tools to

verify code. In this chapter, we give an overview of different verification techniques

and compare them with model checking. We also provide a general survey of

existing tools used to model check Java applications. Finally, this chapter justifies

the suitability of JPF to model check distributed applications, and it provides a

broad overview of the JPF infrastructure and its features.

2.1 Software Verification Techniques

The goal of software verification techniques is to check that software behaves in a

way that it is supposed to. The behavior of the software is outlined in the system’s

specification, which is a document that includes all the properties that the software

should satisfy. Basically, the software is said to be correct if it is performing in a

17



way such that all of the required properties are satisfied.

It should be noted that code verification is undecidable. According to Rice’s

theorem, every non-trivial property of the language of Turing machines is undecid-

able. That implies that, given code and a non-trivial property, there may not exist

an algorithm that decides whether the code satisfies the property [8]. When errors

are detected and fixed, software systems can only get more reliable. Verification

techniques are, in general, not able to prove the correctness of code. However,

applying them can still have a significant impact. The main software verification

techniques include testing, theorem proving, runtime verification, abstract inter-

pretation, type systems, and model checking. In the following sections, we give a

brief overview of each of these techniques.

2.1.1 Testing

Testing is one of the methods used to verify software systems [9]. The testing

process includes providing the compiled code of the system under consideration

with inputs and observing the outputs to find errors. The software should produce

the outputs as expected. In other words, the outputs should be compatible with

the system’s specification. Software testing is a widely used method and usually

about 30% to 50% of software engineering projects costs go to the testing process

[2, page 4].
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A main advantage of testing is that it can be used to verify all kinds of software.

However, using testing, it is difficult to capture all potential executions of the code.

It can be very hard to test the code against all possible input sequences. Since

testers usually do not have control over the scheduling of the concurrently running

components, it is very hard to use testing to detect concurrency errors. Even if a

bug is detected, because the execution of the code is non-deterministic, the bug may

be very difficult to reproduce. According to Edsger W. Dijkstra “Program testing

can be used to show the presence of errors, but never to show their absence!” [10].

2.1.2 Theorem Proving

Another technique to verify software systems is theorem proving. This method

uses axioms and inference rules to prove properties of the code. One of the main

advantages of this technique is that it can be applied to code with infinite state

spaces. Theorem proving may involve a high level of mathematical complexity and

can only be used by an expert in the formulation of formal arguments and proof

techniques.

Until the 1960s, this technique was completely performed by humans. Today,

some interactive software tools, called theorem provers, have been developed which

can be used to develop formal proofs. Some examples of such provers can be

found in [11, 12]. These tools ensure the correct applications of axioms and proof
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rules. At each stage of the proof, they can also suggest possible ways to make

progress. It should be noted that there exist some theorem provers which are

fully automatic [13, 14]. Compared with these fully automated theorem provers, in

general the underlying logic of interactive theorem provers is more expressive. In

general, theorem proving is a very time-consuming process and no bound can be

set on the time and memory that is needed to verify code. In practice, that limits

the use of this technique.

2.1.3 Runtime Verification

Runtime verification is also a software verification technique. Runtime verification

tools analyze the behavior of the code at runtime. They go through a single execu-

tion of the code, and as it executes, they check if it is running correctly with respect

to a system’s specification. Some examples of tools performing runtime verification

are Monitoring and Checking (MaC) [15] and Java PathExplorer (JPAX) [16].

In the MaC framework, during the execution of the code under consideration,

information about the execution is extracted and it is checked against the system’s

specification. A prototype implementation of the MaC architecture has been devel-

oped for Java code, called Java-MaC [17]. The JPAX tool is very close to the MaC

architecture. It extracts information about an execution. It checks the execution

against the system’s specification and it also applies error detection algorithms to
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detect errors such as data races and deadlocks.

In general, this method scales very well, i.e., the time and the memory to verify

an execution is a constant factor larger than the time and the memory to execute

the code. Moreover, runtime verification can be completely automated. However,

similar to testing, using the runtime verification technique, it is nearly impossible

to capture all possible execution paths.

2.1.4 Abstract Interpretation

Another technique that can be used to verify software systems is abstract inter-

pretation. The semantics of code can be defined as a mathematical formalization

of all possible behaviors of the code. Abstract interpretation requires the precise

definition of a concrete semantics which represents the actual executions of the

code. This technique approximates the concrete semantics of the code to obtain

an abstract semantics [18, 19]. The abstraction function is defined to assign each

value in the concrete semantic domain to a value in the abstract semantic domain.

The goal of abstract interpretation is to obtain an abstract semantics as an

approximation that gives reliable answers to questions about properties of the code,

i.e., answers which are neither false positives nor false negatives. Otherwise, the

analysis is not reliable. For example, consider an analyzer that uses approximations

to check whether an index of an array is used out of its bounds. The analyzer
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computes an approximation of the set of all the indices used to access the array.

One possible case is that the analyzer approximates this set by computing a subset

of the indices used to access the array. If the analyzer does not find any errors and

indicates that no violation has been found, the answer could be a false positive,

because the analyzer has not checked all the indices used in accessing the array.

Another possible case is that the analyzer computes a superset of all the indices

used to access the array. If the analyzer does not find any errors and gives an answer

indicating that no violations have been found, the answer is reliable, because the

analyzer has checked all the indices used in accessing the array. However, if the

analyzer reports an error, it could be a false positive.

The tools based on abstract interpretation are considered as static analyzers

since they determine runtime properties of the code statically, without executing

it. There are many automated tools based on abstract interpretation that are used

to verify code. Cibai [20] is an example of an abstract interpretation-based tool for

the verification of code written in Java. The errors that can be detected by Cibai

are division by zero, array indices out of bounds, and null dereferences. Cibai can

also check for user-defined assertions.

Static analyzers implementing abstract interpretation are designed based on the

properties of interest. They check the code against a set of properties that are hard

coded into the tool and are not application specific [21]. Another limitation of these
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techniques is that they do not produce counterexamples.

2.1.5 Type Checking

Another method to verify software systems is type checking. This approach is

based on formal type systems. Basically, using the type system, properties can

be expressed as types and the code verification is reduced to type checking. A

type system consists of a set of types and a set of rules that associate types with

(parts of) code. Type checking amounts to applying the rules with the objective of

showing that the code can be typed. A type system checking a particular property

is designed in such a way that code satisfies the property if it can be typed.

One example of a tool including a formal type system is the race detector dis-

cussed in [22]. This tool uses a type system to perform a static race detection

analysis for code written in Java. The type system guarantees the absence of races

in well-typed code. This race detector relies on code annotations. It is based on the

lock-based synchronization discipline, i.e., each field is protected by a lock which is

held while accessing the field. The race detector keeps track of the locks for each

shared field and makes sure that the locks are held during every access of the field.

Another race detector based on a formal type system is presented in [23]. This

race detector also relies on user annotations. The type system of this race detector

is more expressive than the one in [22]. This type system allows the user to assign
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different protection mechanisms to different objects of the same class. This is useful

since it is not always necessary to protect an object by a lock, e.g., when the object

is immutable no locking is needed. However, in [22], the protection mechanism has

to be specified at declaration time and it is applied to all instances of the class. The

type system of [23] is also extended to detect deadlocks in Java code as explained

in [24]. Well-typed code in this type system is free of races and deadlocks.

The design of formal type systems is specific to certain properties. This implies

that to check any other properties, a new formal type system has to be designed.

But type checking is considered as an efficient technique for software verification,

in terms of both time and memory consumption.

2.1.6 Model Checking

Finally, model checking is an automated verification technique that examines all

possible system states in a systematic way to check if desired properties are satisfied.

Figure 2.1 shows the three possible outcomes from model checking an application.

One outcome is that the model checker fully explores the state space of the pro-

gram without detecting errors. Another possible outcome is that a property is not

satisfied. In this case the model checker provides a counterexample (i.e., an execu-

tion path that leads to the erroneous state) that can be used to help correct the

error. The last possible outcome is that model checking leads to the state space
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Figure 2.1: Applying model checking can lead to three different outcomes

explosion problem. In this case the model checking process cannot be completed

and terminates by running out of memory. This is considered as one of the most

challenging issues in model checking.

The state space explosion problem describes the exponential relation of the

number of states of the system to the number of components that constitute the

state [25]. These components include data variables, processes, and threads. Dif-

ferent values of data variables represent different states of the system. Moreover, in

multiprocess applications and multithreaded applications, concurrent actions can

be executed in any arbitrary order. Considering all possible interleavings of these
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concurrent actions may lead to a very large state space. It can be shown that

the number of states can increase exponentially with the number of interleaving

components [2].

Although model checking is subject to the state space explosion problem, con-

sidering its advantages, in many cases, it can be preferable to the other methods.

Model checking is naturally preferred to testing and runtime verification when con-

currency comes into play since, unlike model checking, these techniques have no

control over the scheduling of the concurrently running components, and there-

fore are not able to check all possible execution paths of the application. Moreover,

counterexamples provided by model checkers make the process of fixing errors much

easier. Since model checking is mostly automated, it is generally easier to use than

theorem proving. Finally, model checkers allow for the specification of properties

related to the functionality of the application, hence allowing for verifying a wide

range of requirements, unlike the type checking technique and static analyzers based

on abstract interpretation which are implemented specifically for certain properties.

It should be noted that the above comparison between model checking and

other techniques is based on their basic definitions. In practice, these techniques

can be closely related. For example, in some cases, model checking can be viewed

as theorem proving [26]. Moreover, software verification tools may not rely on a

single technique. For example, the systematic testers such as ExitBlock [27] and
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CHESS [28] are designed to test concurrent code. The technique implemented by

these tools is very close to model checking. They have control over the scheduling

of the concurrently running components. Given a test scenario, these tools are able

to execute the code repeatedly so that each execution has a distinct scheduling.

In the last two decades, the interest in using model checking has been consid-

erably increased in industry. Many leading companies have started research on

model checking and have developed their own model checkers, e.g., SLAM and

ZING developed at Microsoft [29, 30], Spin developed at Bell Labs [31], and Rule-

Base developed at IBM [32]. There are also many examples where model checking

has been successfully applied in industry [33] and it has detected previously un-

known errors [34]. In the next section, we provide a detailed description of the

model checking technique.

2.2 Overview of Model Checking

Based on the way that states are represented, model checking algorithms can be

classified into two main categories: explicit-state model checking versus symbolic

model checking. In explicit-state model checking, graph algorithms are used to

create and explore the state space. While exploring the state space of the system,

the states are checked against the desired properties. To avoid regenerating states,

the model checking algorithm keeps a record of visited states which are usually
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stored in a hash table. That also allows the algorithm to backtrack to states which

encapsulate non-deterministic choices in order to explore new paths. Spin [31] and

JPF [35] are examples of explicit-state model checkers.

Symbolic model checking deals with sets of states instead of directly dealing with

individual states. In symbolic model checking, states are usually represented using

binary decision diagrams (BDDs) [36]. A BDD is a data structure for boolean

expressions. It is a rooted, directed, acyclic graph that can be retrieved from

a decision tree by identifying nodes. Due to BDD’s features, there are efficient

algorithms that can perform logical operations on them. One issue with using BDDs

is choosing a suitable ordering of variables, which is tedious and affects the size of

the BDD. Another method for symbolic representation of states is propositional

logic formulas [37]. Microsoft’s SLAM project [29] and SMV [38] are two examples

of symbolic model checkers.

Symbolic model checking is mostly applied on hardware rather than software,

because symbolic model checking deals well with static transition relations but is

less suitable for systems including dynamic creation of threads and objects. Com-

pared to explicit-state model checking, it can verify larger systems. Unlike explicit-

state model checking, symbolic model checking can handle systems with infinite

state spaces. Symbolic methods are more suitable for systems subjected to data

non-determinism. Explicit-state model checking works better in finding concur-
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rency errors [39]. It should be noted that the remainder of this thesis is restricted

to explicit-state model checking. From here on, we use model checking to refer to

explicit-state model checking.

Another criterion used to categorize model checkers is based on their input,

which could be either a model of the system or the system itself. The first group

includes model checkers that are applied on models that describe the possible be-

havior of the systems. The first step to use these model checkers is to create

a model of the system using a modeling language understandable by the model

checker. However, the verification results are just as good as the model of the sys-

tem [2, Chapter 1]. These types of model checkers are more suited to verify the

design of the system than its implementation. Due to the loss of precision, the

model of the system might not reflect the exact behavior of the actual system. It

should be noted, when applying model-based development, the gap between the

model and its implementation becomes small. In this method, an executable model

of the system is generated early in the lifecycle, and it is used to automatically

generate code. Another drawback of using these model checkers is that the input

languages for these model checkers are modeling languages which are usually too

simple to capture all the features of the system. Spin [31], SMV [38], and SAL [40]

are examples of model checkers applied on a model of the system.

The second group of model checkers are directly applied to the actual system.
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Therefore, using them does not require creating a model of the system. That makes

this group of model checkers much easier to use. These model checkers are able to

verify both the design and the implementation of the system. However, in general,

systems include more details compared to models of the systems. Therefore, directly

model checking a system rather than a model of the system leads to a larger state

space which intensifies the state space explosion problem. Some examples from this

group are JPF [35] for Java code, VeriSoft [41] for C code, and CMC [42] for code

in C and C++.

2.2.1 The Model Checking Process

The model checking process can be divided into four major steps explained below.

Every model checker goes through some or all of these steps.

Modeling - modeling is the very first step of the model checking process. This

step is performed by model checkers that are applied to a system model. In this step,

the model of the system is generated from the system’s specification using a model

description language understandable by the model checker. The system is usually

modeled using a finite-state automaton. For example, consider Java code. States

of the Java code may contain the values of variables in the system and snapshots of

the stacks and the heap. Transitions take the system from one state to another. In

the Java code, transitions may be represented by bytecode instructions. The model
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of the system should be validated to make sure that it specifies the behavior of the

code accurately. Accurate modeling of the code can result in detecting mistakes

such as incompleteness and ambiguities in the system’s specification [2, Chapter 1].

There exist some model extractors that have been developed to automate the

modeling process. They are usually combined with model checkers that accept a

model of the system to make the whole model checking process automated. Basi-

cally, these tools receive the source code as input and extract a finite model of the

system. The finite model is in the input language of an existing model checker. For

example, Bandera [43] is applied to Java code and extracts a finite model of the

code in three different modeling languages, namely the input languages for Spin,

SMV, and SAL.

Properties Specification - in this step, the desired properties of the system under

consideration are specified. This step precisely outlines what the code is supposed

to do, and what it is not supposed to do. Properties of interest can be generic such

as absence of deadlock and absence of race conditions. They can be also specific to

the SUT, for example, the value of a counter does not reach a certain value. One

usual way to state the properties at this stage is to specify them using temporal

logics. Temporal logics are considered to be a useful way to formalize properties of

concurrent code since they can be used to describe the behavior of code over time.

Running - in this step the model checker is initialized and, depending on the
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type of model checker, it is run on either the model or the actual system. The

model checker algorithm considers all possible interleavings of the code for (all)

possible inputs. At each state it checks if the specified properties are hold. Usually,

when a property does not hold, the model checker stops running and terminates to

report the error. When the size of the state space gets too large, due to the state

space explosion problem, the model checker terminates by giving an out of memory

error.

Analysis - after the model checker terminates, it provides the user with different

results. Different scenarios can be reported: the code satisfies the desired properties,

the code does not satisfy a property, or the model checker runs out of memory and

terminates due to the state space explosion problem. If the results demonstrate

that the property is not valid, an error is detected.

The error can have different sources: a modeling error (for the group of model

checkers which are applied on the system model), an error in the actual system, or

an error in the property specification. Note that this is based on the assumption

that the model checker behaves correctly. After all, the model checker is code as

well and, hence, most likely contains bugs. However, by applying it over and over

again, fewer and fewer bugs will remain in the model checker code.

The model checker typically provides a counterexample that helps the user de-

tect the source of the error. A counterexample is a trace of the code that leads to
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the error. For the group of model checkers that are applied on the source code, the

trace of the error is directly mapped to the source code. Some model-based model

checkers include embedded model extractors that exploit intermediate languages to

map the model to the source code, e.g., Bandera [43].

2.2.2 Addressing The State Space Explosion Problem

As mentioned earlier, the state space explosion problem is an inherent limitation of

model checking. There exist several approaches to mitigate the state space explo-

sion problem. Symbolic execution treats input variables to a program as unknown

quantities or symbols [44]. By symbolically representing values, this technique al-

lows for reasoning about infinite domain. Abstraction which, based on the system

specifications, abstracts away details from the system [45]. The abstract systems

are usually much smaller than the actual systems, and therefore lead to smaller

state spaces. In compositional verification [46, 47], the specification of a system,

composed of multiple components running in parallel, is decomposed into properties

specifying the behavior of the system components. One example of the composi-

tional verification technique is assume-guarantee reasoning [48]. This technique

first checks whether a component of a system guarantees local properties, where

the system satisfies an assumption characterizing the behavior of the component

with respect to other components. A compositional proof rule is set up to ensure
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consistency among the assumptions made for different components. Proof rules are

then used to infer system level properties from local verification steps.

Another commonly used approach to deal with the state space explosion problem

is POR [49, 50, 51, 41, 52, 53]. In this work, we also apply a POR technique.

Since this technique is well-suited for the type of the system we study in this

work, we describe it in more detail. The aim of the POR technique is to reduce

the number of possible orderings of concurrently executed actions to be analyzed

by the model checker. This technique is based on identifying the execution path

fragments that lead to the same state of the system regardless of the order of

concurrently executed actions. These actions are called independent actions. For

example, actions accessing different variables or accessing local variables of different

processes, are considered as independent actions. However, two threads writing to

the same variable or acquiring the same lock are considered as dependent actions.

Independent actions occurring in any order give rise to the same behavior of the

system. Consequently, instead of analyzing all possible orderings of this set of

actions, only one representative ordering is analyzed.

This approach results in a state space which is a subset of the original state

space. The resulting state space should be equivalent to the original state space

with respect to the property of interest. The POR reduction technique can be

applied either dynamically or statically [2, Chapter 8]. The dynamic POR reduction
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is applied on-the-fly, that is, the reduced state space is generated during the model

checking [53]. In contrast, in the static POR reduction, the reduced state space is

generated before the model checking process starts [52]. POR reduction techniques

can have a significant impact on the size of the state space and they are used by

almost every model checker.

2.3 Race Detection

A (data) race is one of the most notorious concurrency errors. Roughly speaking, a

race on a shared variable arises in concurrent code if two threads access that variable

simultaneously and the accesses are conflicting, that is, at least one of them writes

to the variable. Although some races are benign, races often represent errors in

code. Hence, tools that detect them are invaluable to those writing concurrent

code. For an example of a race consider the following Java code.

public class Account {

private int balance;

public Account() {

this.balance = 0;

}

public void deposit(int amount) {

this.balance += amount;

}

}
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public class Deposit extends Thread {

private Account account;

private int amount;

public Deposit(Account account, int amount) {

this.account = account;

this.amount = amount;

}

public void run() {

this.account.deposit(this.amount);

}

}

public class Bank {

public static void main(String[] args) {

Account account = new Account();

new Deposit(account, 100).start();

new Deposit(account, 200).start();

}

}

This code consists of the three classes Account, Deposit, and Bank. These classes

represent a bank with one account, with an initial balance of zero. In the main

method of the Bank class a new account is created and two threads deposit money

into the account. By executing new Deposit(account, 100).start(), a new

Deposit object is created, which is a thread, and its run method is invokdeposited.

The execution of the run method should amount to deposit 100 into the account.

Similarly, by executing new Deposit(account, 200).start(), another thread de-

posits 200 into the account.
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Now consider the scenario where one of the threads first reads the value of

the variable balance12 and the other thread then reads the same value of the

variable balance. In this scenario, the two invocations of the deposit method

“overlap” and the final value of balance may be equal to 100 or 200 (depending

which thread changes the value of balance last), rather than 300. This is caused

by a race on the variable balance. This example demonstrates a race that makes

the code behave in an unexpected way.

Many tools have been developed to detect races. These tools are based on

the two types of race detection techniques: dynamic and static. In dynamic race

detection, a single execution of concurrent code is checked for races. Dynamic race

detection is NP-hard (see [54] and the references therein). The two key approaches

to detect races dynamically are based on locksets and the happens-before relation.

The former approach has been popularized by the Eraser tool [55]. During the

execution, Eraser dynamically keeps track of the set of locks that have protected

shared variables so far. Each time a thread accesses a shared variable, Eraser

computes the intersection of the set of locks protecting the variable and the locks

held by the thread. A race warning is issued if the intersection becomes empty.

Another example of a dynamic race detector based on the lockset algorithm is

Goldilocks [56].

12The Java statement this.balance += amount corresponds to a number of bytecode instruc-
tions including reading and writing the variable balance.
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Another type of algorithm is based on the happens-before relation which is a

relation between the actions of the code. In order to define this relation, first we

define the program-order and the synchronizes with order. Consider multithreaded

Java code. The actions are represented by bytecode instructions. The actions

within a thread occur in the same order in which they show up in the code. This

ordering of actions is called the program-order. Any action that releases a lock

on an object synchronizes with all subsequent actions that acquire the lock on

the same object. Moreover, writing to a volatile variable synchronizes with all

subsequent reading of the same variable. A volatile variable in Java is declared using

the keyword volatile. The value of such a variable is never cached in threads’

local memory and is always written to and retrieved from the main memory. The

happens-before relation can be defined as the transitive closure of the union of

the synchronizes with order and the program-order [57]. For an example of a race

detector based on the happens-before relation we refer the reader to [58].

Static race detection algorithms aim to consider all potential executions. Al-

though this approach gives rise to tools that are usually sound (that is, the races

that are reported by the tool are real races), the tools are generally not complete

(that is, not all races are always reported). Examples of static race detectors can

be found in [59, 60, 61, 62]. Several different approaches exist to statically detect

races. One of these approaches is model checking. For example, in [63] model
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checking is exploited to detect races in code written in an extension of C. The JPF

model checker can also be used to detect races in Java code. The JPF race detector

is discussed in Section 2.5.4.

2.4 Tools for Model Checking Java Code

In general, existing tools used for model checking Java code are developed based

on two broad approaches. The first approach uses static analysis techniques to

automatically extract a model out of code in the input language of an existing

model-based model checker. Then, the model is model checked. The other approach

systematically explores the state space of the actual system. This approach is based

on executing the code. It uses a runtime scheduler to drive possible executions of

the system. Next, we explain different tools that fall within one of the two above

categories.

One of the tools that has been developed to automatically specify the system in

the modeling language of an existing model checker is the first generation of Java

PathFinder, JPF1 [64]. This tool was developed at NASA in 1999. It receives

the Java source code as input and automatically translates it into the Promela

language which is the input language of the Spin model checker. The motivation

behind this project came from applying the Spin model checker on a multithreaded

operating system written in LISP for NASA’s Deep Space 1 mission. They manually
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translated the LISP code into Promela and applied Spin, which led to the discovery

of five previously unknown concurrency errors [34]. Some of the features of Java

that cannot be translated using JPF1 include packages, method overloading and

overriding, recursive methods, strings, and floating point numbers. Moreover, JPF1

does not map error traces produced by Spin back to their corresponding traces in

the Java source code.

As described later in this section, besides JPF1, the Spin model checker serves

as a back-end for other tools such as JCAT [65], and Bandera [43]. Spin is one of

the most well-known software model checkers, which was developed by Holzmann

[66]. It is an explicit-state model checker that can be used to verify models of con-

current code. Its development is started in 1980 at Bell Labs. As mentioned earlier,

the input language of Spin is Promela, which is a high-level language to formalize

the system model. Compared to other modeling languages, Promela has a rich

modeling functionality. Spin relies on the fact that the behavior of asynchronous

processes in distributed systems can be modeled by finite state automata. Concur-

rent code in Promela is described by a parallel composition of process templates

which specify the behavior of the processes. Spin generates a finite automaton for

each process template. Then it computes an asynchronous interleaving product of

these automata to create the state space of the system.

To express behavior that should never happen, Spin provides the never claim.
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Spin generates a Büchi automaton from a never claim. It computes the synchronous

product of this automaton and the one representing the state space. The system

does not violate the property if the language accepted by the resulting automaton

is empty. Instead of hand-writing the never claim, the user can simply specify

the undesirable behavior by a linear temporal formula which is translated to a

never claim. Spin allows for dynamic allocation of processes. However, it does not

support dynamic allocation of memory. An extension of the Spin model checker

called dSPIN [67] has been developed. It provides support for dynamic memory

allocation. However, both Spin and dSPIN impose a limit on the size of the state.

Spin was originally developed for verification of communication protocols. Today,

Spin is considered a mature tool and it is used for a wide variety of software systems.

JCAT [65] also receives Java source code as input and translates it into the input

language of Spin. JCAT can be used to detect deadlocks in multithreaded Java code.

Using the Java2Spin translator tool, JCAT creates an abstract formal model from

the Java code. Spin verifies the model and if any error is detected, JCAT maps the

model trace that leads to the error to a sequence of states in the actual Java code.

One of the limitations of the tool is that it does not support polymorphism. In

order to reduce the size of the state space, the Java2Spin translator applies static

analysis on the Java code. It gets rid of the inherited class members that are not

used and the object synchronization structures that are not used by any of the
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threads. JCAT also combines some state sequences into a compound state in a way

that does not influence the system properties. Further, in JCAT, the user can use

annotations to remove variables that do not affect the concurrent behavior of the

code.

Another tool that converts Java code into the Promela modeling language is

Bandera [43]. Bandera automatically extracts a finite-state model from the source

code and creates a model in the input language of one of the supported verification

tools, which are Spin, SMV, and SAL. Bandera is based on the Soot compiler

[68], a framework for optimizing Java bytecode. To optimize Java bytecode, Soot

transforms bytecode to multiple intermediate languages. One of these intermediate

languages is Jimple. In Bandera, the Java code is translated to Jimple. In order

to simplify the code and to reduce the state space of the model, Bandera applies

three main techniques on the Jimple representation of the code. The first one is

a slicing technique that removes from the code the statements that are irrelevant

for checking the desired property. Another reduction technique used by Bandera is

a data abstraction technique that reduces the unnecessary details associated with

variables. The last technique is component restriction, which decreases the number

of components involved in the code or limits the ranges of variables. Applying

the component restriction technique, the model does not exhibit all the behavior

of the code. After applying the techniques described above, Bandera generates
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the Bandera Intermediate Representation (BIR), which is a low-level intermediate

representation of guarded commands, from the reduced code. Then a finite model

of the code is created in the input language of a verification tool chosen by the

user. After running the chosen verification tool, Bandera interprets the output of

the tool. If the model does not satisfy a desired property, Bandera maps the trace

back to the Java source code.

The SAL model checker has also been adapted to work with Java code [40]. The

input can be either Java source code or Java bytecode which is automatically trans-

lated into the SAL intermediate language, which supports dynamic data structures.

As in Bandera, in SAL, Java code is first translated into the Jimple intermediate

language. Basically, SAL is a framework to merge different tools for model checking,

abstraction, theorem proving, etc. SAL uses an intermediate language for specify-

ing concurrent code. The SAL model checker is written in C++. The idea of the

SAL model checker is based on the VeriSoft [41] model checker. VeriSoft is a model

checker for concurrent C code which uses a scheduler to systematically execute the

code in all possible ways. However, since VeriSoft does not store the visited states,

termination of the model checking process is not guaranteed. In order to terminate,

VeriSoft imposes a limit on the depth of the search.

Bogor is a software model checking framework that can also be adapted to verify

Java code [69]. It extracts a model out of Java code in an extended version of BIR
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which is the input language of the Bogor model checker component. Bogor uses

a scheduler to systematically execute the model in all possible ways. The three

main modules included in Bogor are search, the scheduler, and the state manager

module, which are used to explore the state space. The goal of the Bogor project

is to provide flexibility in the choice of input language, search algorithm, reduction

techniques, and state-space representation. Since the Bogor framework is not tied

to a particular setting, it can be adapted to efficiently model check any code.

The second generation of Java PathFinder, JPF, is an explicit-state model

checker which directly model checks Java bytecode by driving all possible execu-

tions of the code using a scheduler. As was mentioned earlier, the first generation of

JPF was simply a translator from Java to Promela. But this version of JPF worked

on the source code of the Java application, which is not always available. Moreover,

some features of the Java language cannot be easily represented in Promela, e.g.

Promela does not support floating point numbers. Therefore, in 2000, JPF was

refactored as a JVM which can execute all Java bytecode instructions generated by

a Java compiler.

JPF provides support for dynamic features, such as class loading, dynamic data

structures, and method invocation. But, unlike Spin and dSPIN, it does not impose

any limit on the size of the state space. Compared to the other model checkers, JPF

is very flexible. It offers a highly configurable structure, and introduces numerous
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extension mechanisms which make it a suitable engine for many existing tools, e.g.,

tools that automatically create test cases by performing symbolic execution of Java

applications [70, 71]. JPF can also be configured to use different functionalities,

such as different search algorithms. Furthermore, JPF is applied directly on the

code and does not require the modeling process. Since it directly handles bytecode,

it can be used to verify any code that is compiled into bytecode such as Scala

and Android applications. In 2005, JPF became an open-source project on the

source code repository SourceForge.net. In 2009, it was moved to the NASA server,

babelfish. Today, JPF is a mature tool with hundreds of active users and more than

one hundred downloads every month. In Section 2.5, the structure of JPF and some

of its features are explained in more detail.

2.5 Java PathFinder

In this section, we focus on the design and the structure of JPF. We explain JPF’s

main components, which are JVM and Search. We also explain some of its extension

mechanisms. Finally, we discuss the POR technique implemented by JPF.

As mentioned earlier, one of the most interesting features of JPF is that it

provides several extension mechanisms. To capture non-deterministic choices, JPF

introduces choice generators, which keep the list of all enabled transitions at states.

As one of its extension mechanisms, JPF allows the user to define choices captured
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by choice generators. For example, through choice generators, one can make JPF

consider certain values of a set of random integers. Another important extension

mechanism of JPF is listeners. Listeners are runtime plugins that can interact with

JPF as it runs the SUT. They can be used to modify the runtime environment of

JPF and retrieve information from the execution of the SUT.

JPF also includes the model Java interface (MJI) to delegate code execution

from the JPF level to the underlying JVM that runs JPF. This mechanism is mainly

used to handle native calls. JPF also provides model classes which are used as

alternatives to the actual Java classes. Moreover, the JPF attribute system allows

for associating verification specific information to values of fields, local variables

and stackframe operands which are manipulated and passed along the execution

paths. This feature is suitable to implement data-flow related properties. Finally,

JPF allows for changing the semantics of the execution of bytecode instructions.

2.5.1 JVM Component

As its core, JPF implements a JVM which executes the SUT. The JVM of JPF

is able to handle all of the bytecode instructions that are created by a standard

Java compiler. JPF itself is written in Java. That means that it is running on top

of another JVM which we refer to as the host JVM. Figure 2.2 demonstrates the

different layers that are involved in model checking a SUT using JPF.
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Figure 2.2: Different layers involved in running JPF on a target application

Similar to a standard JVM, the JVM of JPF implements a garbage collection

mechanism. Java does not provide any explicit statement to deallocate the memory

for an object that is no longer referenced by the code. Instead, it is provided with a

garbage collection mechanism which automatically removes such objects from the

heap. The garbage collection algorithm implemented in JPF is called mark and

sweep [72]. In the marking phase, JPF marks all the objects that can be referenced

by the code. Next, in the sweeping phase, it checks all the objects stored in the

Java heap, and it removes all the objects that have not been marked in the previous

phase.

JPF is a special JVM. It explores all potential executions in a systematic way.

Each execution is a sequence of transitions and each transition is a sequence of

bytecode instructions that takes the system from one state to another. In con-
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trast, an ordinary JVM executes the code in only one possible way. Moreover, as

JPF executes the target application, it checks for certain properties. Some of the

properties checked by JPF are unhandled exceptions, deadlocks, and user-defined

assertions which are used to test properties of the code’s behavior.

While executing the code, JPF also generates the state space. Each state is

composed of three elements: 1. a snapshot of the current execution status of the

code, 2. the path that leads to this state, 3. possible choices in the current state

where each choice value is associated with a transition. In order to represent choices

at states, JPF defines the gov.nasa.jpf.vm.ChoiceGenerator class. The way that

choices are encapsulated by JPF is explained in Section 2.5.3.

2.5.2 Search Component

As JPF explores the state space, in order to move from one state to another, it

has to choose from the transitions leading out of the state. The way that JPF

chooses the next transition is determined by its Search component. In other words,

the Search component of JPF works as a driver for its JVM. The JVM component

provides key operations which are used by Search to make it traverse the state space

of the SUT. These operations are implemented by methods (namely, forward(),

backtrack(), and restoreState()) within the class gov.nasa.jpf.vm.VM, which

encapsulates the JVM component. forward() makes JPF move from the current
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Figure 2.3: UML diagram representing the relationships between some of the main classes of JPF

state to a new state. backtrack() makes JPF to move back to the previous state.

Finally, restoreState() is used to move to the state given as an argument.

The Search component can be configured to use different algorithms to tra-

verse the state space, such as depth-first search (DFS) and breadth-first search

(BFS). This component is encapsulated by the abstract class gov.nasa.jpf.

search.Search, which includes an abstract method called search(). Java classes

such as gov.nasa.jpf.search.DFSearch and gov.nasa.jpf.search.heuristic.

BFSHeuristic implement different search algorithms by extending the Search class

and overriding its search method. Using the JPF configuration mechanism, one

can specify which Search subclass to use to encapsulate the Search component.

The UML diagram in Figure 2.3 depicts the relationship between the classes

Search and JVM.
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2.5.3 Encapsulating Choices

The goal of every model checker is to check if certain properties hold in states of

the SUT. Since choices that a model checker makes at each state determine which

states are explored next, the way that choices are computed is a fundamental part

of every model checker.

Whenever there is non-determinism in code, the model checker needs to compute

the possible choices. Non-determinism can be either thread non-determinism or

data non-determinism. For code subject to thread non-determinism, the concurrent

actions can be executed in any interleaving. Since different interleavings may lead to

different states, scheduling choices are required to capture all possible interleavings

of these actions. For code subject to data non-determinism (for example code

including java.util.Random.nextInt() which returns a uniformly distributed int

value), a variable can assume different values where each value may lead to different

execution paths. Therefore, data choices are required to capture (some of) the

values of the corresponding data type.

As mentioned earlier, JPF uses the ChoiceGenerator type to capture choices.

Different subtypes of ChoiceGenerator capture different types of choices. For ex-

ample, gov.nasa.jpf.vm.ThreadChoiceGenerator represents scheduling choices,

and gov.nasa.jpf.vm.IntChoiceGenerator represents integer data choices.
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In JPF, the interface gov.nasa.jpf.vm.SchedulerFactory encapsulates

scheduling strategies, and the creation of all ThreadChoiceGenerator instances is

delegated to an instance of this type. By default, JPF uses an instance of the sub-

type of SchedulerFactory, gov.nasa.jpf.vm.DefaultSchedulerFactory, which

creates scheduling choices for operations that are subject to thread non-determinism

such as Object.wait(). As one of its extension mechanisms, JPF can be config-

ured to use a different subtype of SchedulerFactory to impose different scheduling

policies.

2.5.4 Listeners

Listeners are considered the most important extension mechanism of JPF. Listen-

ers interact with the JPF components, JVM and Search, and they retrieve useful

information about the execution of JPF as it model checks the target application.

As is shown in Figure 2.4, listeners run at the same level as JPF, on top of the

host JVM. They register themselves with the Search and/or JVM components in

order to receive notifications on the occurrence of certain events. When any of those

events occur, the component notifies the registered listener and it invokes a method

of the listener which corresponds to the event. The notifications can be issued on

a wide variety of events, from low level events like instructionExecuted, indi-

cating that an instruction was executed, to high level events like searchFinished,
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Figure 2.4: Listeners and JPF running on top of the underlying host JVM

indicating that JPF is done exploring the state space.

The JPF implementation includes two basic interfaces for listeners, which are

VMListener and SearchListener. Listeners are represented by classes that imple-

ment one or both of these interfaces. Listeners that implement the interface gov.

nasa.jpf.vm.VMListener register themselves with the JVM component. Similarly,

listeners that implement the interface gov.nasa.jpf.search.SearchListener reg-

ister themselves with the Search component. The race detector of JPF is an ex-

ample of the listeners included in the implementation of JPF.
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JPF Race Detector

As was mentioned earlier, JPF can be exploited to detect races in Java code. The

JPF race detector is based on static race detection, and it is implemented in the

form of a listener [73]. The idea behind this race detector is fairly simple. In every

state that JPF visits, it checks all actions that can be performed next. If this

collection of actions contains at least two conflicting accesses of a shared variable v,

then a race on v is reported. A similar approach in a considerably simpler setting

has been proposed in [74]. The race detector of JPF is sound, that is, the races

that are reported by the tool are real races.

2.5.5 Handling Native Calls

A method is called native if it is implemented in a language other than Java but

it is invoked from a Java application. Many of the classes of the Java standard

library include invocations of native methods. Therefore, it is essential for Java

model checkers to provide a way to handle native calls. The JPF model checker

provides different ways to handle native methods. But before explaining how JPF

handles native calls, we describe how an ordinary Java virtual machine handles

native methods.
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Figure 2.5: Java native interface included in JVM

Java Native Interface

Every JVM includes a Java native interface (JNI) [75] that allows Java applications

to call or to be called by functions which are written in other languages such as C,

C++, and assembly. Basically, JNI is used to transfer the execution from the Java

level to the native level, as shown in Figure 2.5. Whenever the JVM comes across

a bytecode instruction that invokes a method defined as native, the execution is

transferred to the native level. After the native method returns, the execution is

transferred back to the JVM. JNI allows us to use functions that have already been

implemented in other languages. Moreover, in some cases, accessing code written

in, for example, C and C++ from applications written in Java can improve the

performance. Furthermore, JNI can be used when Java does not support certain

platform-dependent features.
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Figure 2.6: Model Java interface included in JPF

Model Java Interface

One of the important features of JPF is its model Java interface (MJI). In analogy

to JNI, which is used to transfer the execution from the Java level to the native

level, MJI is used to transfer the execution from the JPF level to the underlying

JVM level (see Figure 2.6). The so called native peer classes play a key role in MJI.

Native peers run on top of the underlying host JVM. Therefore, these classes are

completely unknown to JPF and are not model checked by JPF at all.

JPF uses a specific name pattern to establish the correspondence between a

native peer class and a class included in the SUT. It also relates the methods of

these corresponding classes using a name pattern and an annotation of type gov.

nasa.jpf.annotation.MJI. For example, Figure 2.7 shows how the correspondence

is established between the java.lang.StrictMath class and its native peer.
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package gov.nasa.jpf.jvm;

public class JPF_java_lang_StrictMath {

  @MJI
  public double sin__D__D (MJIEnv env,
  int ref, double d)
    sin (double d) {
     …
    }
}

package java.lang;

public class StrictMath {
 …

 public static native double 
   sin (double d);

 …
}

Figure 2.7: The correspondence between java.lang.StrictMath and its native peer

In this figure, the class on the left is part of the Java standard library and the

one on the right is its native peer. When JPF gets to the bytecode invoking the

method sin of java.lang.StrictMath, since sin is linked to a method in the native

peer, it does not model check this method. Instead, the execution is transferred

to the underlying JVM, and the host JVM executes the method sin D D of the

class JPF java lang StrictMath. MJI provides native methods with at least two

arguments. The first argument of native methods is of type MJIEnv. MJIEnv is an

interface that allows native peers to access all internal features of JPF. The second

argument of native methods is an integer representing the JPF object or the JPF

class that has invoked the native method (note that, in JPF, objects and classes

are represented by a unique integer).
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2.5.6 Model Classes

JPF has special classes called model classes which are used by JPF as alternatives

to the actual Java classes. The model classes are considered to be part of the SUT.

They are model checked by JPF and are invisible to the host JVM. These classes

model the behaviour of actual classes and often they abstract from particular details

of the actual classes. A model class has the same name as the class it models. For

example, JPF contains a model class named java.lang.String which replaces the

class java.lang.String in the standard Java library.

Before executing the SUT, JPF starts loading classes. To load classes, JPF

starts from the directories that include model classes. Once a class is loaded, JPF

does not load the other versions of the same class. In other words, by implementing

model classes, we force JPF to use alternative versions of certain Java classes.

2.5.7 Reduction Technique

JPF uses a reduction technique to cut down the state space which is similar to the

reduction technique by Godefroid [41]. The reduction of JPF is applied on-the-fly,

and it is based on combining a sequence of bytecode instructions in a thread, that

do not have any effects outside the thread, into a single transition. This approach

is precisely described in Chapter 6.
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3 Related Work

Conventional model checking techniques implemented by various Java model check-

ers [35, 43, 40, 69] are only applicable to single-process applications, and they cannot

handle distributed systems. In general, applying the model checking technique on

distributed Java applications is not trivial.

The techniques that have been proposed to model check distributed Java appli-

cations can be divided into two main categories: (1) cache-based and (2) central-

ization. In the cache-based approach, the model checker verifies only one process,

and the rest of the processes run outside of the model checker. This approach uses

a cache layer to keep the external processes in synchronization with the SUT. In

the centralization approach, the distributed application is captured within a single

process, and the model checker is able to verify all the communicating processes.

The main distinction between these two techniques can be seen in Figure 3.1.

The cache-based approach runs only one process (which could be either a server

process or a client process), as a SUT, within the model checker, and the rest of the
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Figure 3.1: Different main approaches used to verify distributed systems, (a) cache-based, (b)

centralization

processes, henceforth called peers, run outside of the model checker either within

their native environment or a virtualization thereof [76, 77, 78].

The main challenge of this approach is to keep the SUT in synchronization with

its peers since the model checker does not have any control over the execution of

peers, and their execution is not subject to backtracking. After the model checker

backtracks, the SUT may resend data which might interrupt the correct behavior

of the peers. Moreover, after backtracking, peers do not resend previously sent data

to the SUT. Existing cache-based techniques [76, 77, 78] address this problem by

introducing a cache layer between the SUT and its peers. Section 3.1 explains these

techniques in more detail.

An alternative to the cache-based approach is centralization [79, 80, 81, 82]. The

existing centralization techniques can be applied at either the SUT level or the OS
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Figure 3.2: Different centralization techniques applied at different levels, (a) the SUT level, (b)

the OS level, (c) the model checker level

level. In centralization at the SUT level (see Figure 3.2 (a)), the distributed appli-

cation is transformed into a single-process application which is then fed to a model

checker as a SUT [79, 80]. In this technique, distributed processes are mapped onto

communicating threads within a single process application. This requires a model

of the inter-process communication (IPC) mechanism that is used for communi-

cation. Centralization at the SUT level requires dealing with several issues. How

are processes represented? How is exclusive access to static attributes provided for

different processes? How are static synchronized methods handled? How is the

shutdown semantics specified? Since the technique proposed in this research is also

subject to similar issues, we provide a detailed discussion of techniques that apply

centralization at the SUT level in Section 3.2.

In centralization at the OS level (see Figure 3.2 (b)), the distributed application
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is run on a virtualization tool. This approach does not require transforming the

SUT. The model checker’s scope is extended to capture the state of the virtual-

ization tool running all communicating processes. Nakagawa et al. [82] develop a

model checking framework based on this approach. Their model checking environ-

ment is very close to the actual execution environment. This framework combines

the user-mode Linux, which is a Linux virtual machine generated by porting the

Linux OS to Linux system calls [82], and the GNU debugger (GDB) [83]. It can

save and restore the entire Linux state. In this approach, each process is systemat-

ically run by a GBD process. Once non-determinism is detected within a process,

the state of the OS and the possible execution paths leading out of it are computed

and are used to explore the state space. GBD can support several programming

languages including Java.

One of the drawbacks of this approach is that it requires manual user inter-

vention, e.g., the user needs to specify non-deterministic points within processes.

Moreover, in this approach, the OS along with the running processes form the SUT,

and therefore states include redundant information if one is only interested in the

behavior of the distributed application, and not the OS. It consumes large amounts

of time and memory resources, and aggravates the state space explosion problem.

In this research, we propose a novel centralization technique which is applied

at the model checker level (see Figure 3.2 (c)). Chapter 4 explains the proposed
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technique and the ways it addresses the limitations of existing approaches outlined

in Table 3.1.
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technique weaknesses strengths

cache-based [76, 77, 78]

• can check only one process

and its communication with the

peers

• scales better than cen-

tralization

• does not require trans-

forming SUT

• allows for processes in

different formats

centralization

SUT

level

[79,

80,

84]

• does not keep types separated

for Java (standard) libraries

• does not address the class ver-

sion conflict problem for Java

standard libraries

• cannot handle static initializ-

ers with side effects

• cannot support custom class

loaders

• cannot support Java reflection

API

• requires manual user inter-

vention to capture correct shut-

down semantics

• does not address starting shut-

down hooks upon a normal shut-

down

• requires all the processes to be

in the same format

• scales better than cen-

tralization at the OS level

• can check all communi-

cating processes

OS

level

[82]

• aggravates the state space ex-

plosion problem

• requires manual user interven-

tion

• includes redundant informa-

tion in states for just analyzing

the distributed application

• can check all communi-

cating processes

• does not require trans-

forming SUT

• allows for processes in

different formats

Table 3.1: The comparison of different existing techniques for model checking distributed appli-

cations
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3.1 Cache-based Approach

In the cache-based approach, the model checker only captures one process, as a

SUT, and its communication with its peers [76, 77, 78]. The main effort in applying

this technique is to synchronize the execution of the SUT with the peers’ execution

which is achieved through a cache-layer. Existing techniques associate a cache to

each communication object (e.g., a socket) between the SUT and the peers, which

captures communication data by storing interactions in the cache.

Initial work by Artho et al. [76] based on the cache-based technique uses a cache

to capture the communication between the SUT and the peers. We refer to such a

cache as a linear-time cache, since it can only handle deterministic communication

traces between the SUT and the peers regardless of thread scheduling within the

processes. It assumes that all execution paths of the SUT lead to communication

traces which are consistent with the first observed sequence of communication data.

This requires that in all execution paths, for each communication object, the SUT

sends the same sequence of requests and receives the same sequence of responses.

This is illustrated in example (a) in Figure 3.3. The graph on the left represents

the search graph generated from model checking a SUT. The graph on the right

side represents the communication data between the SUT and the peers. After

exploring the state s3, the model checker backtracks to the previous state and
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Figure 3.3: Two different cache-based techniques for model checking distributed applications, (a)

based on linear-time cache [76] (b) based on branching cache [77]

takes a new transition, t3. When executing t3, this approach requires observing

the same communication data as it observed during t2. In this approach, when the

SUT requests data that was previously received in an earlier run, the request is

not resent, and instead the corresponding response is obtained from the cache. It

only transmits data over the network if communication proceeds beyond the cached

traces, and then the cache information is extended with the newly received data.

In the approach presented in [77], Artho et al. replace the linear-time cache with

a cache which is applicable to a wider range of applications (see Figure 3.3). We

refer to such a cache as a branching-time cache, since it allows for non-deterministic

communication traces between the SUT and the peers. However, it still does not
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consider non-determinism within the peers. In this approach, communication data

sent by the SUT can deviate from previously observed data. However, for a given

sequence of requests, the peers are still required to issue the same sequence of

responses. After backtracking to an earlier state, if the SUT sends data to a peer

which is different from previously cached information, the cache implementation

spawns a new peer, and communicates with the peer using the cached trace up to

the current state. Then it transmits the SUT’s new request over the network, and

it updates the cache correspondingly. This is shown in example (b) in Figure 3.3.

To take into account non-determinism in peers, a technique has been proposed

which combines the use of a cache layer with checkpointing [78]. Checkpointing

is an approach to capture the state of a group of processes. The checkpointing

environment [85] can run the peers, store their states, and backtrack to previously

visited states at any point. As the SUT is model checked, a strategy is used to

decide at which points the SUT needs to synchronize with the peers. At those

points, the checkpointing environment stores the state of the peers. When the SUT

backtracks to a state that requires synchronization with a peer, the checkpointing

environment restores the peer’s state accordingly, and makes it re-execute from the

restored state.

Compared to other cache-based techniques, this approach covers a wider range

of applications, since every time the model checker backtracks to a state, it does
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not require the peer to send the same sequence of requests to each communication

object up to that state. This approach guarantees that, in every execution path,

the SUT receives the expected responses from non-deterministic peers. However,

it still does not have control over the scheduling of peers’ threads, and it thus

cannot model check the SUT against all the possible inputs from peers. Moreover,

checkpointing is a very expensive procedure in terms of time and memory, since it

needs to store and restore the state of the peers and the underlying OS.

In general, cache-based techniques scale better than the centralization tech-

niques, since the model checker only captures one single process. However, a major

drawback of these techniques is that they are not able to check all possible be-

haviors of the distributed application, and they may miss errors caused by certain

responses of peers.

3.2 SUT Level Centralization

Centralization at the SUT level was initially proposed by Stoller and Liu [79].

It transforms distributed Java applications by merging all processes into a single

process, and it replaces remote method invocations (RMIs) with local ones that

simulate RMIs. Using the Java RMI mechanism, Java processes can communicate

with one another remotely. This mechanism allows an object in one JVM to call

methods on an object running within another JVM.
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Every Java process provides a self-contained execution environment which in-

cludes an exclusive set of basic runtime resources, for example a memory space. A

Java process includes at least one thread. Each thread also provides an execution

environment, and it is represented by an instance of the java.lang.Thread class.

Threads that exist in a process share the same runtime resources. Centralizing

distributed applications requires a way to associate each process to the group of

threads that exist within that process.

To address this, Stoller and Liu replace all the occurrences of the Thread

class with the class CentralizedThread that extends Thread and declares an in-

stance field of type integer which represents the process id. By extending the

class Thread, CentralizedThread becomes its subclass and it thus inherits all the

Thread members.

One of the main efforts in applying centralization at the SUT level is to pro-

vide different parts of the application representing different processes with exclu-

sive access to Java types. Java types are represented by instances of the class

java.lang.Class which are also referred to as class descriptors. As an example,

consider the class java.lang.String, the instances of which represent string ob-

jects. The type String itself is encapsulated by an instance of Class in the JVM

runtime environment. In Java, class loaders are responsible for defining types by

accessing the class files, parsing them, and generating the instances of Class. To
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run a Java application, the JVM uses system-defined class loaders to define stan-

dard Java library classes, platform specific frameworks, and application classes. In

a standard JVM, a class with a given name can be loaded only once by a certain

class loader (see Section 4.1 for a more detailed description of Java types and class

loaders).

Each attribute and method of a Java class is declared as either instance or static

(i.e., by using the keyword static in the declaration). Every object has its own

copy of instance members. The static members belong to classes instead of objects,

and there is thus only one fixed memory location associated with a static attribute.

In a distributed system, since Java processes run on different JVMs, every pro-

cess has its own system-defined class loaders, and therefore processes do not share

types. For example, consider a distributed system composed of two Java processes,

P1 and P2, that declare the following class.

public class C1 {

public static int i;

}

Since P1 and P2 are two different processes, each of them has a separate copy of

the class C1, and it thus has an exclusive memory location for the value of i.

By combining processes into one, different parts of the transformed system that

represent different processes now share the same class loaders. Consequently, they

share the same classes and access the same static attributes and methods. By
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centralizing the example above, P1 and P2 access the same memory location for

i. That leads to a model which is not sound, that is, it includes executions which

are not consistent with the correct behavior of the system. To capture the correct

behavior, it is essential to provide a mechanism to avoid processes from sharing

static members of classes.

To address this, Stoller and Liu use arrays to capture the effects of multiple

copies of a class, i.e., they replace the declaration of a static field of type T with

an array of type T, and transform the static methods and class initialization ac-

cordingly. For example, by applying their centralization approach on the system

composed of P1 and P2, the class C1 is transformed to the following.

public class C1 {

public static int[] i = new int[2];

}

In the transformed application, each part that represents a process is provided with

exclusive access to an element of the array i.

Another problem to deal with in centralization at the SUT level is handling

static synchronized methods. In Java, every object is provided with a monitor

which can be locked or unlocked by threads. A lock on an object monitor can be

held by only one thread at the time. Executing a synchronized method requires

acquiring a monitor lock. For an instance method, the monitor of the object to

which the method belongs is used. For a static method, the monitor of the class
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descriptor is used which, as mentioned earlier, is a unique instance of Class. In

other words, executions of static synchronized methods of a class are synchronized

on the class descriptor.

Since in the transformed application, a single class represents multiple classes,

the class descriptor cannot be used as a lock anymore. If it were, different parts

of the application representing different processes would share the same lock to

execute static synchronized methods of the class. Stoller and Liu include an array

of objects in each transformed class where each element of the array is used as a

lock associated with a process. This lock is held by all the threads belonging to

that process in the entire body of the static synchronized methods of the class.

Consider the following class declared by the processes P1 and P2.

public class C2 {

public static synchronized void m() {

...

}

}

By applying this centralization technique, the body of C2 becomes as follows where

prcId refers to the id of the current process.

public class C2 {

private Object[] locks = new object[2];

public static void m() {

synchronized(locks[prcId]) {

...

}

}
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}

In the transformed class, the synchronized static method m() is marked as not

synchronized, and each simulated process has exclusive access to an element of the

array locks and holds that element as a lock to execute the body of m().

Finally, centralization at the SUT level needs to address the shutdown seman-

tics of the centralized application. Shutting down a process requires terminating

threads that exist within the process. Shutdown semantics also refers to actions

performed by the JVM upon the application termination which can be either a

normal shutdown or an abnormal shutdown. Normal shutdown occurs when the

method java.lang.Runtime.exit(int) is invoked or the last non-daemon thread

terminates. Upon a normal shutdown, the JVM goes through two phases. In the

first phase, the JVM initiates all shutdown hooks. A shutdown hook is a thread that

has not been started yet. Shutdown hooks are explicitly set through the method

java.lang.Runtime.addShutdownHook(Thread). Upon normal termination, the

JVM starts the threads representing shutdown hooks in some unspecified order.

This way, the JVM allows each process to dispose of resources in use and do other

clean up actions.

In the second phase, upon the Java process request, the JVM executes final-

izers of objects that have not been invoked yet. Any object whose class over-

rides java.lang.Object.finalize() is called a finalizable object, and the method
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finalize() is referred to as its finalizer. The JVM invokes a finalizer when a fi-

nalizable object is no longer referenced, and it is about to be garbage collected by

the JVM. Using finalizers allows for performing clean up actions before the object

is reclaimed by the garbage collector.

Upon an abnormal shutdown, the running JVM is forced to terminate without

initiating the shutdown sequence. The abnormal shutdown occurs when the method

java.lang.Runtime.halt() is executed or the JVM is interrupted externally, for

example by shutting down the machine.

To deal with the shutdown semantics, the approach proposed by Stoller and

Liu replaces invocations of the method System.exit(int) (i.e., it terminates the

execution of the Java process by invoking java.lang.Runtime.exit(int)) with

throwing the exception java.lang.ThreadDeath. Since throwing this exception

only terminates the calling thread, their approach can only deal with distributed

applications composed of single-thread processes. Moreover, their approach does

not include any mechanism to free resources after processes terminate, and it does

not deal with shutdown hooks in the case of normal shutdown.

Artho and Garoche [80] also apply centralization to transform the distributed

SUT to a single-process system. Their work provides a more accurate transfor-

mation of distributed Java applications, and addresses some of the limitations of

previous work by Stoller and Liu. In contrast to the former centralization approach,
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which works with Java source code, their work performs bytecode instrumentation.

During the last decade, the Java language has been considerably extended, but

changes to Java bytecode instructions have been very minor. Unlike the former ap-

proach, Artho and Garoche’s work is applicable to systems compatible with newer

versions of Java.

As mentioned earlier, work by Stoller and Liu replaces each class descriptor

with an array of the objects used as locks to synchronize the execution of static

synchronized methods. However, that can lead to incorrect behavior of the SUT

if a part of the SUT code, other than its static synchronized methods, relies on

synchronization on a class descriptor, e.g., a thread holds the object C.class as

lock, which is the instance of java.lang.Class representing the type C.. Consider

the following example.

public class C3 {

public static synchronized void m1() {

...

}

public void m2() {

synchronized(C3.class) {

...

}

}

In this example, the method m1() cannot run concurrently with the synchronized

block in the method m2, since executing any of them requires a thread to hold the

74



class descriptor C3.class as a lock. Since the Stoller and Liu technique marks

m1() as not synchronized, in the transformed system the body of m1() and the

synchronized block within m2() can execute concurrently. To address this issue,

the Artho and Garoche approach performs additional checks at runtime to see if

the lock being used is a descriptor of a transformed class. If so, it is replaced by

the corresponding element of the array of locks.

To address the shutdown semantics, similar to work by Stoller and Liu,

the Artho and Garoche approach also replaces invocations of methods that ter-

minate the process, such as System.exit(int), with throwing the exception

java.lang.ThreadDeath. Their approach also does not provide any mechanism

to kill other threads within the terminating process. But for the cases that all

other remaining threads are daemon, their solution suggests identifying and ignor-

ing the failures in a dead process. They also provide a mechanism to free resources

after processes terminate. However, starting shutdown hooks requires manual in-

strumentation of the centralized program.

The RMI model proposed in work by Stoller and Liu cannot be extended to

support arbitrary communication based on sockets. The centralization technique by

Artho and Garoche is applicable to applications that use sockets for communication.

Ma et al. [84] also use centralization at the SUT level. Their approach extends

the Artho and Garoche approach and addresses some of its limitations. Their
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approach addresses the class version conflict problem which occurs when different

processes use classes with the same name but different bytecode. Unlike the other

proposed approaches, this approach does not force processes to use the exact same

version of Java classes. Before applying their centralization algorithm, similar to

the one proposed in [80], they resolve class version conflicts between processes by

renaming classes that have identical names but different bytecode. However, their

approach cannot address the class version conflict problem for Java system libraries,

since it is not applied on native methods and code relying on the reflection API.

The approach by Ma et al. provides a way to terminate processes by killing

all of their threads. This has been achieved through the Java thread interruption

mechanism, and it requires code instrumentation. This approach also does not

address starting shutdown hooks upon process termination.

Another approach to model check distributed Java applications based on cen-

tralization at the SUT level has been proposed by Barlas and Bultan [81]. They

mainly focus on the environment generation problem for network communication,

and present a framework, NetStub, that models the Java networking packages

java.net and java.nio. They do not address the problem of merging processes

into a single process. To check communicating processes, their approach requires

the user to manually implement a driver that centralizes the SUT. Moreover, this

approach requires a manual integration of the NetStub framework into the SUT.
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The resulting system is a standalone, centralized, Java application which uses the

NetStub framework for communication. NetStub also allows for model checking just

one process within the distributed application through an event generator compo-

nent. The user needs to write an event generator component using the NetStub

API, and a driver that starts the process. This component generates network events

which are perceived by the SUT.

3.2.1 Limitations

There are several issues that existing centralization techniques at the SUT level

do not address. None of these techniques are able to apply the transformation on

classes from the Java standard libraries, and they only transform the user-defined

classes. The processes thus end up sharing the same classes and therefore accessing

the same static attributes and static methods. One of the main reasons is that there

are standard classes that provide access to global resources where transformation

is not desirable. For example, consider the class java.lang.System. This class

has the static field out which represents the standard output stream corresponding

to display output. Another reason is that transformation is not applied on native

methods. However, there are numerous classes in the Java standard libraries that

include native methods. Sharing standard classes is a major drawback of these

techniques, since every Java application relies on classes from standard libraries.
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Making processes share the same standard classes may affect the soundness of

the verification. To validate our claim, we developed a distributed system composed

of a server process and a client process. The server process uses the value of

java.lang.System.out as a lock for a synchronized block in which it blocks until

it connects to a client. The client process uses the value of java.lang.System.out

as a lock for a synchronized block in which it waits until its connection request

is received by the server. When executing this distributed system, the connection

is successfully established between the processes. However, after applying the SUT

level centralization, the connection cannot be established between the processes. In

the centralized system, two processes share the field java.lang.System.out. After

one of the processes, p1, holds the monitor on the value of java.lang.System.out,

the other process, p2 waits until p1 releases the monitor. However, p1 waits for p2

in the synchronized block. Therefore, the processes never connect to one another,

and this execution is not consistent with the behavior of the actual system.

In Java, every class is initialized by its static initializer method which is invoked

at class load time. The SUT level centralization techniques are not able to handle

applications where static initializers rely on certain data or include side-effects. The

static initializer of a class is only executed once after the class is loaded. Centralizing

the application transforms each static initializer code in a way that it executes the

original code once per process. However, the static initializer code may have certain
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side-effects where executing it more than once in the transformed version affects

the correct behavior of the application.

To validate our claim, we developed a Java process, p, with a class static initial-

izer that accesses a file, named f , where its execution depends on the f content. If

f is empty the static initializer enters the text processed into the file, and p contin-

ues and prints processed on the console. If f already includes the text processed,

the static initializer terminates the execution. Consider a distributed system com-

posed of two processes, p1 and p2, that behave similar to p. When executing p1 and

p2 on two separate machines where the processes access empty files, each process

prints the text processed on the console. However, by centralizing the distributed

application, both processes access the same file and thus the second process always

accesses a non-empty file. Therefore, the centralized version leads to an execution

in which only one process prints the text processed, which is not an admissible

execution in the original system. As a consequence, the SUT level centralization is

not sound.

Another limitation of centralization at the SUT level is missing support for the

Java reflection API. Java reflection is a commonly used API by Java applications

that allows for examining classes at runtime, e.g., using this API one can retrieve an

object that represents an attribute declared in a class. In general, the use of Java

reflection calls is dependent on the class structure. However, by transforming the
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SUT, the structure of classes changes, and the behavior of code relying on reflection

may become undefined. That affects the soundness of the approach.

To validate our claim, we develop a distributed system composed of two pro-

cesses that manipulate a static field, f, of type int. Each process uses the reflection

API to retrieve the value of f, i.e., processes invoke the method getInt(Object)

on the object of type java.lang.reflect.Field which represents the field f. By

applying the SUT level centralization, the type of the field f is changed from int to

an array of int. However, the call Field.getInt(Object) remains unchanged, and

executing the centralized system gives rise to the exception java.lang.Illegal-

ArgumentException. Since this execution is not an admissible execution in the

original system, it can be concluded that the approach based on the SUT level

centralization is not sound.

Moreover, previous work is not able to address the class version conflict problem

for Java standard libraries, and different processes are forced to use the exact same

version of Java standard classes, e.g., they cannot capture a system composed of

two processes where one process uses Java 1.5 and the other one uses 1.6. Central-

ization at the SUT level requires all the processes to be in the same format, e.g.,

in the approach by Stoller and Liu all processes must be written in Java, and in

the approaches explained in [80] and [84] all processes must be compiled to Java

bytecode. Furthermore, the existing approaches require the process implementa-
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tion to be independent of host information such as host name. Finally, processing

shutdown hooks, which is addressed by only one of the techniques, requires manual

intervention of the user.

In the next chapter, we present a new centralization technique which is applied

at the model checker level and addresses the limitations of existing techniques. The

proposed approach does not require transforming the SUT. Our centralization tech-

nique can keep the Java standard libraries separated between different processes,

and it addresses the class version conflict problem for such libraries. Moreover, it

can handle code using the Java reflection API. Finally, it can handle static initial-

izers that have side-effects.

81



4 Centralization

In the previous chapter, we described the existing centralization techniques used

to model check multiple processes and discussed their limitations. This chapter

describes our centralization approach and the way it addresses the limitations of the

existing techniques. Applying centralization is the first step of our work towards

model checking distributed applications. We apply our technique to JPF. Our

centralization approach extends a JVM (which is the core of JPF) that executes

single process applications to distributed systems, while preserving the execution

semantics of each process.

Using centralization allows for analyzing the behavior of the entire distributed

application rather than cache-based techniques that can only check the behavior

of one process. Unlike the existing centralization techniques, which are applied at

either the SUT or the OS level, the proposed approach is applied at the model

checker level (see Figure 3.2 (c)), that is, it expands the scope of the model checker

to accept multiple processes.
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The proposed centralization approach is part of JPF 7. This approach does not

require instrumenting the code of the distributed SUT, and it allows the model

checker to accept multiple processes in their original form as input.

Providing support for distributed applications in JPF requires addressing several

issues. The first issue is to separate types between processes. As mentioned earlier,

each Java process has its own separate memory space. To keep data separated

between Java processes, it suffices to separate types. To provide processes with

exclusive access to types, we propose a new class loading mechanism.

Another issue is representing processes. Since each process represents a distinct

execution environment, a mechanism is needed to partition the execution environ-

ment of the model checker into different parts where each is associated with one

process. Our approach models each process as a group of threads. That is achieved

by mapping threads that belong to the process to an object that uniquely identifies

the process.

Finally, to execute the centralized SUT, a specialized JVM, which can handle

multiple processes, is required. As part of our work, we implement a new JVM

within JPF which we refer to as the multiprocess JVM. The multiprocess JVM is

able to execute distributed applications. The thread scheduling policies used by

this JVM are different from the ones used by the existing JVM of JPF. To impose

new policies, our approach introduces a new scheduler factory (Section 2.5.3) which
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is used by the multiprocess JVM to define scheduling choices. The remainder of this

chapter explains the three steps of our centralization approach mentioned above.

4.1 Separating Types

In JPF, each type is identified by only the name of the class. Therefore, by merg-

ing multiple processes into one process in JPF, processes share the same types.

Subsequently, merged processes access the same static attributes and execute the

same static methods. Keeping types separated between different processes is the

main challenge in applying centralization at the model checker level, which requires

extending the JPF type system.

The class loading mechanism plays a central role in the Java type system. It

is one of the key concepts defined in the JVM specification [86, 87]. It provides

on-demand lookup and generation of class files, and it transforms such data into

VM specific constructs, which are encapsulated by Class instances known as Java

types. This process is performed by class loaders.

In Java, a type is identified by a pair 〈N,L〉 where N is the fully qualified name

of the class and L is the class loader that defines the type. Consider, for example,

two different class loaders L1 and L2 that access the same class file, x.y.Z.class,

to define a type. The JVM identifies the types defined by L1 and L2 as pairs

〈x.y.Z, L1〉 and 〈x.y.Z, L2〉, respectively. They are treated as distinct types, and
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the static fields of their associated class objects are kept apart and, hence, may

have different values. Setting an instance of type 〈x.y.Z, L1〉 to an instance of the

type 〈x.y.Z, L2〉 gives rise to a type mismatch error in the JVM.

In this work, we propose a class-loading mechanism which is based on the class-

loading model of Java. We implement our model within JPF. Such a model allows

for capturing multiple processes within the model checker, but it still preserves the

execution semantics of each individual process. Prior to this work, JPF used a

basic mechanism to define types without using entities that represent class loaders.

Our approach also required extending the JPF type system by taking class loaders

into account to identify types. Therefore, for a given fully qualified name of a class,

there can exist multiple types in JPF. This functionality provides a basis for giving

each part of the SUT that represents a process exclusive access to a set of classes

used within the process. This is essential to support distributed applications.

Next, we elaborate on the class-loading model of Java, and then, we describe how

we extend JPF’s class-loading model to separate types between different processes.

4.1.1 The Java Class-Loading Model

This section gives a high level description of Java’s class-loading model. For a

precise description, the reader is referred to previous work [86, 88, 89, 90] which

provides formal specifications of the model.
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Java distinguishes between two fundamental categories of class loaders: (1)

bootstrap class loaders and (2) java.lang.ClassLoader instances. A standard

JVM has exactly one bootstrap class loader. This class loader is integrated into

the JVM implementation and cannot be accessed by Java applications. It is used

to define standard Java library classes, e.g., classes in the java.* and javax.*

packages. The JVM assumes that every class defined by this class loader is trusted,

and is exempt from verifying its binary representation [87].

ClassLoader instances are ordinary Java objects. Any application can control

how its own classes are loaded by overriding ClassLoader methods in the sub-

classes. The key method of ClassLoader is loadClass. This method takes the

name of a class as argument, loads the class, and returns the corresponding Class

object. The method loadClass implements the lookup policies which by default

follow the delegation pattern (explained in the following section). To access binary

data in class files, loadClass invokes the method defineClass on the class loader

object. The method defineClass parses the class file and transforms its data into

a Class object. This method is declared as final, that is, it cannot be overridden by

subclasses of ClassLoader. Moreover, every ClassLoader instance is associated

with a search path which specifies the locations at which the class loader searches

for class files.

Next, we discuss some important aspects of the Java class-loading model which
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are also crucial to our model.

Delegation Pattern

The standard implementation of Java follows a delegation pattern in which every

class loader (except the bootstrap one) has a parent. To load a class, first the class

delegates the load to its parent, and only defines the class itself if it has no parent, or

the parent fails to return a Class object. The delegation pattern is implemented by

the loadClass method of ClassLoader. However, it is not enforced, and one can

replace it by overriding loadClass. The following code, that presents part of the

method ClassLoader.loadClass, shows how the delegation model is implemented.

The field parent represents the parent class loader, c is a variable of type Class,

and findClass locates the class file and defines the type by invoking defineClass.

public Class<?> loadClass(String name) {

...

if (parent != null) {

c = parent.loadClass(name);

}

...

if (c == null) {

c = findClass(name);

}

...

return c;

}
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The delegation pattern implies that the class loader that initiates the load of the

class is not necessarily the defining class loader. Consider the following definitions

taken from [86].

Definition 4.1.1. Let C be the return value of the method L.defineClass. Then

L is the defining class loader of C.

Definition 4.1.2. Let C be the return value of the method L.loadClass. Then L

is an initiating class loader of C.

For example, consider a class loader hierarchy that follows the delegation pattern

and includes the class loader B as the parent of A. The application attempts to load

the class C by invoking loadClass on A. First, A delegates the load to B which

successfully defines the type and returns it as the result of defineClass to A. The

type defined by B is also going to be the return value of the call A.loadClass(C).

However, B is the defining class loader, whereas A and B are both initiating class

loaders of C.

To run a Java application, the JVM uses a standard hierarchy including three

system-defined class loaders: the bootstrap class loader, the extension class loader,

and the application class loader. This hierarchy follows the delegation pattern, and

it exists during the entire execution of the Java application. The bootstrap class

loader is the root of the hierarchy, and has the extension class loader as its child
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Bootstrap Class Loader

Extension Class Loader

Application Class Loader

Custom Class Loader L2Custom Class Loader L1

Figure 4.1: The delegation pattern of the Java class loading model. The solid and dashed contours

represent the scope accessed by the classes defined by the class loader L1 and L2, respectively

which is used to locate and define platform specific frameworks (the locations of

which are specified by the java.ext.dirs system property). The application class

loader is responsible for loading classes declared by the Java application, and it has

the extension class loader as its parent. By default, the application class loader is

used as the parent of custom class loaders. Figure 4.1 shows the standard hierarchy

of Java. The delegation relationships between class loaders are represented by

arrows.
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Resolution

The Java class-loading model dynamically extends an application at runtime. It

loads classes on-demand. The compiler does not determine all the classes that will

eventually be part of the application. The JVM starts the execution of a Java

application by loading the initial class using the application class loader. From

there, it loads classes only when they are referenced by the application. This

process of dynamically extending the application is called dynamic linking, and it

is provided through resolution.

Every Java class file has dependencies to entities referenced within its imple-

mentation, including its superclass, implemented interfaces, and any other types

used in the body of the class. The class keeps symbolic references to the runtime

constant pool13 for these entities.

Consider the following example.

class A extends B {

C m() {

D d = new D();

}

}

The class file representing A includes symbolic references to B, C, and D. As the

13Every Java class has a runtime constant pool which is an internal table that contains different
kinds of constants, ranging from numeric literals known at compile time to references resolved at
runtime.
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JVM executes the application, it resolves these dependencies dynamically by re-

placing the symbolic references by concrete references. This process is performed

recursively. Resolution of superclasses, implemented interfaces and types used to

declare attributes in the class occurs while the class is being defined by the method

defineClass. Besides, invocation of certain methods in the Java reflection API

and certain bytecode instructions (such as getfield, getstatic, and instanceof)

contain symbolic references. When executing any of those, the JVM resolves the

corresponding symbolic reference on-the-fly.

Resolving symbolic references within a class is initiated by the class loader that

defines the class. Consider the example explained above. Let L be the defining

class loader of A. To resolve B, C, and D, the JVM invokes the method loadClass

on L.

Namespace

The namespace of a class loader can be defined as a finite map associating names of

classes loaded by the class loader to their corresponding Class objects. The JVM

enforces class loaders to consistently return the same Class object for every type

in their namespaces. This policy not only avoids type incompatibilities at runtime,

but also prohibits the injection of redefined classes from different locations, which

could compromise security.
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loadClass
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<C2,B2>

Figure 4.2: The namespaces determine the class view. The solid contour and the gray area

determine the view of C1 when loaded by A1 and A2, respectively

Namespaces determine the view of the classes, that is, each class loaded by the

class loader L can only reference types within L’s namespace. As a consequence,

depending on which class loader defines a type associated with a class file, the

corresponding Class object can have different views. That can be seen from the

example shown in Figure 4.2 which includes two distinct class loader hierarchies

that follow the delegation pattern. B1 and B2 are the parents of the class loaders

A1 and A2, respectively. A1 and A2 have access to the class file C1.class in

their search paths. B1 and B2 have access to different class files with different

implementations, but share the same name, C2.class. Let the class C1 extend

C2. When C1 is loaded by A1, the type 〈C2, B1〉 becomes its superclass, whereas,

when loaded by A2, 〈C2, B2〉 becomes its superclass. The solid contour and the

gray area in Figure 4.2 determine the view of C1 when loaded by A1 and A2,

respectively. Moreover, the table in this figure includes the types that belong to
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each class loader’s namespace. It shows that classes loaded by class loaders from

distinct hierarchies are invisible to each other.

As can also be seen from the example in Figure 4.2, the delegation relationship

between class loaders plays a central role in specifying the scope of namespaces and,

consequently, the visibility of classes. In our approach, to provide processes with

distinct namespaces, we associate each process with class loaders that do not have

any delegation relationship with class loaders belonging to other processes. The

next section explains our class loading model.

4.1.2 The JPF Class-Loading Model

Our model ensures that processes do not share any types, which is essential for

supporting distributed applications [91]. Moreover, this model addresses some other

limitations of JPF. Prior to this work, JPF included a basic class loading mechanism

which did not follow the delegation pattern of a standard JVM. This model was

embedded in the JPF infrastructure without identifying entities that represent class

loaders. Therefore, it was not able to support custom class loaders. Moreover, the

older version of JPF used a basic type system which identified classes only by their

names. As a consequence, it only included a single namespace containing every

class in the SUT.

Our model is based on the class-loading model of Java. We divide the develop-
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ment of our model into two steps. In the first step, we implement a model in JPF

which behaves similar to the Java class-loading model. Our model defines entities

that represent class loaders within JPF and links them to the SUT class loaders.

It supports custom class loaders, follows the Java delegation pattern, provides per-

class loader namespaces, and follows a dynamic linking mechanism similar to that

of Java. Finally, it improves the JPF type system by also accounting for class

loaders to identify types.

The second step towards implementing our class-loading model includes a mod-

ification to allow for partitioning types between processes. In particular, our goal

is to map processes to sets of namespaces that do not overlap. To accomplish that,

our model, contrary to a standard JVM, includes multiple hierarchies of system-

defined class loaders, where each hierarchy maps to a process. These hierarchies

are distinct, that is, there is no delegation relationship between hierarchies asso-

ciated with different processes. Moreover, our implementation ensures that each

process has exclusive access to its own hierarchy. That guarantees type separation

in the presence of custom class loaders as well, since they cannot access standard

hierarchies associated with other processes. Finally, having distinct hierarchies,

dynamic linking also maintains separation of types, and resolved types that belong

to different processes cannot interfere with one another.

The example in Figure 4.3 shows how our model partitions types for a dis-
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Figure 4.3: The JPF class-loading model separates type spaces between processes by allowing for

multiple hierarchies of system-defined class loaders

tributed SUT composed of two processes. Each process has an exclusive hierarchy

of system-defined class loaders which is used to define only those classes that belong

to that process. Processes can even access the same class files to define types, for

example C1.class, but the model ensures that different Class objects (associated

with the same class file) are used in different processes.

Class Loaders Implementation

Our model encapsulates the three system-defined class loaders in a single instance

of the class SystemClassLoaderInfo which is in the package gov.nasa.jpf.vm.

Creating SystemClassLoaderInfo instances is part of the initialization of JPF’s

JVM which also ensures that each instance of SystemClassLoaderInfo loads only

classes that belong to its corresponding process. The bootstrap class loader can-
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Extension Class Loader

Bootstrap Class Loader

sysCL: SystemClassLoaderInfo

SUT Native

Application Class Loader

loaderA: ClassLoader loaderA: ClassLoaderInfo

loaderB: ClassLoader loaderB: ClassLoaderInfo

Figure 4.4: For every class loader created in the SUT, there exists a native representation within

JPF

not be accessed by the Java application, and since the field of ClassLoader that

represents the parent class loader is declared as final, the parents of extension

and application class loaders cannot be changed. However, by combining these

class loaders, we cannot support custom class loaders that have the extension class

loader as their parents. But we still chose to combine them to considerably re-

duce the complexity of their implementation and simplify the configuration of their

search paths by the user.

Our work models the class ClassLoader by including its model class and the

corresponding native peer. We also provide support for some of the subclasses of

ClassLoader in the standard Java library, such as java.net.URLClassLoader and
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java.security.SecureClassLoader, within JPF. The core functionality of these

classes is hardcoded into the internal structure of JPF to optimize the class loading

process.

As JPF executes the SUT, for every ClassLoader instance created in the

SUT, the model creates an instance of gov.nasa.jpf.vm.ClassLoaderInfo in

JPF which is a superclass of SystemClassLoaderInfo. ClassLoaderInfo instances

maintain the same hierarchy as their corresponding ClassLoader objects. This can

be seen in Figure 4.4. Basically, ClassLoaderInfo instances are native represen-

tations of Java class loaders. Invocation of almost every method of ClassLoader

within the SUT leads to an invocation of a corresponding method in ClassLoader-

Info. That is accomplished through the MJI and our native peers.

Each ClassLoaderInfo instance keeps its loaded classes in an array of type gov.

nasa.jpf.vm.ClassInfo. This array represents the class loader’s namespace. To

account for class loaders when identifying types, each ClassInfo instance stores

a reference to its defining ClassLoaderInfo instance. Every ClassLoaderInfo

object has an instance of gov.nasa.jpf.vm.Statics which is used to store the

values of the static attributes of classes defined by the class loader. Moreover, each

ClassLoaderInfo object has an instance of the class gov.nasa.jpf.vm.Class-

Path which encapsulates its search path. Since our implementation provides each

SystemClassLoaderInfo with a separate search path, unlike previous work on cen-
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Figure 4.5: Class diagram of JPF class loading model

tralization at the SUT level, it supports distributed SUTs composed of processes

written in different versions of Java. The relationships between the classes men-

tioned above can be seen in Figure 4.5.

Resolution Implementation

As mentioned earlier, our model follows a dynamic linking mechanism similar to

that of Java, and resolves classes at runtime accordingly. Resolution takes place in

the method defineClass which defines a class by accessing its class file. In our

model, similar to a standard JVM, defining a class is performed by the final method

defineClass. This method is declared as native in the ClassLoader model class,

and it is implemented by a native peer method. Therefore, it executes on the host

JVM.

Consider the following example. Let L be the defining class loader of A.
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class A extends B {

...

}

To define A, the call L.defineClass(A) executes. Since defineClass is native,

the execution of this call is transferred to the host JVM level. Defining the class A

requires resolving its superclass B. Therefore, before defineClass returns, it has to

execute the call L.loadClass(B). But at this point the execution is at the host JVM

level, whereas loadClass has to execute at the JPF level. The loadClass method

can be overridden in custom class loaders and can contain arbitrary code which

may, for example, result in creating ChoiceGenerators. Therefore, to capture the

SUT behavior, it is essential to execute loadClass at the JPF level.

This implies that we need to pause the execution of L.defineClass(A) at

the JVM level, and invoke the call L.loadClass(B) at the JPF level. Once

L.loadClass(B) returns, the execution needs to transfer back to the JVM level

to complete the execution of L.defineClass(A). In other words, to resolve a type,

the execution of defineClass requires to take the roundtrip hostJVM → JPF →

hostJVM . Before describing how we handle such a roundtrip, we explain how a

method invocation is handled in JPF. In JPF, similar to a standard JVM, each

thread has a stack. When a thread invokes a method, a new frame is pushed onto

the stack, and when the method returns, the frame is popped from the stack.

Figure 4.6 shows how the type B is resolved by JPF. To resolve a type, the na-
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host JVM

 L.loadClass(A) {
  ...
  L.defineClass(A);
  ...

  L.loadClass(B) {
    ...
  }

 ... 
}

JPF

L.defineClass(A) {
  ...
  resolve B
    push the loadClass(B) frame
    interrupt the execution
    reschedule the last inst
    return to JPF
 }

L.defineClass(A) {
   complete the define of A
 }

Figure 4.6: The figure shows how the resolution of the superclass B of A is performed in JPF

tive peer creates a new stack frame corresponding to L.loadClass(B) and pushes

the frame onto the stack of the current thread running on JPF. Then it interrupts

the normal flow of the execution at the host JVM level: this is done by simply

throwing an exception of type gov.nasa.jpf.jvm.ResolveRequired. This excep-

tion is handled within the native peer implementation of defineClass. To handle

the exception, the bytecode instruction that has invoked the current defineClass

method is flagged to be re-executed (which is accomplished by invoking the method

MJIEnv.repeatInvocation()). Note that at this point the class A has not been
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defined yet, and thus re-execution of L.defineClass(A) is essential to complete

its definition.

After handling the exception, the native peer method returns, and the execution

transfers back to the JPF level. At this point, since L.loadClass(B) is at top of

the current thread stack, it executes next at the JPF level, and once its execution is

completed, the bytecode that triggered the call L.defineClass(A) is re-executed

by JPF. This procedure repeats for any other types in A that need to be resolved.

To avoid the overhead from switching execution between JPF and the host JVM,

the roundtrip is only applied if there is a customized loadClass implementation

involved. Otherwise, the class is resolved internally within the host JVM. In par-

ticular, the roundtrip is not required for our SystemClassLoaderInfo which is an

essential runtime optimization.

4.2 Representing Processes

Next we consider how to represent multiple processes in a Java model checker with a

JVM running as a single process. In our approach, processes are modeled as groups

of threads with separate sets of namespaces which are provided through our class-

loading model, and a specialized JVM (explained in Section 4.3) is implemented to

handle groups of threads associated with different processes.

The previous implementation of JPF, similar to a standard JVM, has exactly
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one main thread, which initiates the run of every Java application. Our approach

allows for multiple main threads within JPF. Each main thread maps to a process

and initiates the execution on the process from its corresponding main method.

One natural way to map a process to a group of threads is using the java.

lang.ThreadGroup instances, which is a common way to represent a set of threads

in Java. However, this approach requires keeping ThreadGroup objects at the SUT

level, which may disrupt the expected functionality of these objects. Our aim

is to hide the thread-to-process association from the SUT. To accomplish that, we

develop the class gov.nasa.jpf.vm.ApplicationContext. This class encapsulates

per-process information such as initial class, command line arguments, a System-

ClassLoaderInfo instance, and classpath.

For every process, there exists exactly one instance of ApplicationContext

which exists at the JPF level and cannot be accessed by the SUT. In the JPF

infrastructure, threads are represented by instances of gov.nasa.jpf.vm.Thread-

Info which declare an instance field of type ApplicationContext. To provides the

thread-to-process association, every ThreadInfo object stores the reference to the

ApplicationContext object of its corresponding process.

Upon system initialization, JPF creates a new ApplicationContext instance

for each process and stores it within the ThreadInfo object that represents the

main thread of the process. Each new thread that is created by the SUT automat-
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Figure 4.7: The distributed SUT composed of two processes is converted to two groups of threads

ically inherits the ApplicationContext of the currently executing thread. This

mechanism ensures the thread-to-process association during the entire execution.

To summarize, our approach relies on three key elements: a SystemClass-

LoaderInfo object, a main thread, and an ApplicationContext object. That can

be seen in Figure 4.7, which also shows how a distributed SUT is captured as groups

of threads within JPF. Creating and initializing the elements used to encapsulate

processes, and maintaining their states as JPF executes the SUT are performed by

our multiprocess JVM, as explained next.
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4.3 Implementing Multiprocess VM

The previous version of JPF has a JVM which can only execute single process

applications and is not able to handle distributed SUTs. As part of this work, we

develop a new JVM within JPF which is multiprocess aware. This JVM identifies

parts of the SUT associated with each process and maintains their states as it

executes the distributed system. The way that the multiprocess JVM interprets

states is also different from the way adopted by the single process JVM. One

example is how JPF recognizes that a state is deadlocked. For distributed SUTs,

the JVM identifies two different deadlock scenarios, local deadlocks which prevent

a single process from progressing and global deadlocks which prevent the whole

distributed system from progressing.

The multiprocess VM can also compute non-deterministic choices to capture

different interleavings of concurrently running processes. In particular, it uses a

new scheduler factory to encapsulate choices. Moreover, the previous version of

JPF does not support finalizers which are required to address shutdown semantics

of Java processes. This work provides such support in both the single process and

multiprocess JVM. The next two sections explain the new scheduler factory of the

multiprocess VM and the new model for supporting finalizers.

Since the multiprocess JVM and the single process JVM have some similar
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behavior, we use inheritance to capture their similarities. The UML diagram in

Figure 4.8 shows the design adopted by our approach. The single process and

multiprocess JVMs are encapsulated by instances of gov.nasa.jpf.vm.Single-

ProcessVM and gov.nasa.jpf.vm.MultiProcessVM, respectively. Both classes ex-

tend the abstract class VM and override those methods that behave differently. One

of those methods is initialize, which is used to set up the initial execution envi-

ronment. As mentioned earlier, as part of its initialization, the multiprocess JVM

associates the process to an instance of SystemClassLoaderInfo, a main thread,

and an ApplicationContext object. Using these objects, at any state, the multi-

process JVM can determine the process associated with each entity in the system.

4.3.1 Distributed Scheduler Factory

As mentioned earlier, to capture scheduling choices in JPF, the type ThreadChoice-

Generator is used. The JVM delegates the creation of all ThreadChoiceGenerator

objects to the scheduler factory. To handle a distributed SUT, JPF requires new

scheduling policies. We have developed a new scheduler factory that implements the

scheduling policies for distributed SUTs. Our scheduler factory is used by the mul-

tiprocess JVM and is encapsulated by the class gov.nasa.jpf.vm.Distributed-

SchedulerFactory, as a subclass of SchedulerFactory.

In general, for distributed systems, we can identify two different types of schedul-
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ing points: process local choices and system global choices. Process local choices

capture interleavings among intra-process threads, whereas, system global choices

capture interleavings among processes. Both local and global scheduling points are

captured by instances of ThreadChoiceGenerator.

The distributed scheduler factory assumes that there is no communication be-

tween processes. Later in Chapter 5 we show how the scheduler is extended to

account for communication between processes. There are exactly two places at

which the distributed scheduler factory uses global choices to capture thread non-

determinism. One place is the initial state from which the execution of the dis-

tributed SUT starts. The initial state encapsulates a scheduling choice where there

is exactly one transition associated with the main thread of each process. Execution

of each transition starts with the first instruction of the process main thread which

is unique. Another place that is subject to global choices is processes’ termination

points. Upon process termination, a global scheduling point is created that includes

a choice associated with each remaining process in the SUT.

Any other place that is subject to thread non-determinism is treated as a local

choice. Since processes have exclusive access to runtime resources, they cannot

interfere with one another during the execution, unless a mechanism is used for

them to communicate.
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4.3.2 Addressing Shutdown Semantics

When it comes to distributed applications, finalizers and shutdown hooks play

an important role, since they are used to clean up communication channels. For

example, java.net.Socket objects which represent end points of connections are

finalizable. Upon the garbage collection of a Socket object, its finalizer invokes

Socket.close() to clean up the corresponding connection. As is explained in the

next chapter, closing Sockets can affect the behavior of the process at the other end

of the connection. Therefore, to capture all possible interactions of communicating

processes, it is essential to support finalizers. However, JPF does not provide

support for Java finalizers. As part of this work, we have provided such support in

both single process and multiprocess VMs of JPF.

To execute finalizers on JPF, we create a special thread, called finalizer thread,

for each process. This thread is created during the initialization of JPF’s JVM

and is kept alive during the entire execution of the process. To avoid increasing

the state space, as explained later, our approach does not take the finalizer thread

into account when computing choices, unless a finalizable object is being garbage

collected.

Every finalizer thread is represented by two objects. One thread object exists on

the JPF level, and it is of type gov.nasa.jpf.FinalizerThread which is a subclass
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of Thread. This thread is used to execute finalizers, which can include arbitrary

code, on the JPF level. The other object exists on the host JVM level, and it is of

type gov.nasa.jpf.vm.FinalizerThreadInfo which is a subclass of ThreadInfo.

The FinalizerThreadInfo object of each process is kept by its corresponding

ApplicationContext object. A native peer is implemented as an interface between

these two classes that represent finalizer threads.

Our model to support finalizers, shown in Figure 4.9, can be divided into three

parts. In the first part, the JPF garbage collection is extended to identify those

finalizable objects that are no longer referenced from the SUT and store them in

queues associated with finalizer threads. These queues exist on the JPF level, and

they are encapsulated by the field finalizeQueue declared in the class Finalizer-

Thread. The second part involves providing the JVM with a functionality to sched-

ule the finalizer threads. Finally, the last part focuses on the way that a finalizer

thread processes its finalizeQueue. In the remainder of this section, we explain

these three parts in more detail.

As explained in Section 2.5.1, garbage collection of JPF is based on the mark and

sweep algorithm. The marking phase marks all objects that are being referenced

from the SUT, and the sweeping phase removes all objects that have not been

marked. We extend the garbage collection mechanism of JPF with an additional

phase between mark and sweep. This phase marks any finalizable object that
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has not been marked and adds it to the corresponding finalizeQueue. Marking

finalizable objects prevents them from being removed from the heap in the sweep

phase. Moreover, keeping the finalizable objects in a queue, finalizeQueue, which

exists on the JPF level prevents them from being garbage collected until they are

processed and removed from the queue.

Basically, the executions of finalizer threads are closely controlled by JPF’s

JVM. The JVM allows a finalizer thread to run only if there is a finalizable object

to process. Otherwise, the JVM sets the status of the finalizer thread to WAITING

to prevent it from contributing to the state space. Moreover, there is no point in

the SUT that creates and starts the finalizer threads. Creating these threads is part

of JPF’s JVM initialization. When created, to start each finalizer, a stack frame

corresponding to Thread.run() is pushed onto the stack of every finalizer thread.

To reduce the state space, initially, the status of finalizer threads are set to WAITING

to prevent them from being included when computing scheduling points. After each

garbage collection, the JVM checks if there is any object stored in finalizeQueue

of the finalizer thread of the process executed last. If so, the JVM schedules this

thread to execute next. To accomplish that, the scheduler factory is extended to

create a thread choice generator from which only the finalizer thread can proceed.

At this point, the status of the finalizer thread is set to RUNNABLE to let the JVM

execute its run() method.
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The FinalizerThread.run() method iterates over finalizeQueue and invokes

finalize() on every object. Once the entire queue has been processed, the finalizer

thread clears the queue, and the scheduler factory creates a global scheduling point.

At this point if there is no other thread alive in the process, the finalizer thread is

terminated. Otherwise, its status is set to WAITING until it is scheduled again by

the JVM. Setting the status to WAITING avoids the finalizer thread from iterating

through the while loop (See Figure 4.9).

Note that in the presence of finalizer threads, the end states of processes are

interpreted differently. Without finalizer threads, a state is interpreted as an end

state, if there are no alive threads in the process. But, in the presence of finalizer

threads, a state is considered an end state if there is either no alive thread or the

only alive thread is the finalizer thread and it is not runnable.

Since supporting finalizers requires adding a phase to the JPF garbage collec-

tion, which is performed very frequently, it can increase the model checking time.

Therefore, a property is provided in the JPF configuration file to activate the sup-

port for finalizers. By default, finalizers are not processed. To handled them one

needs to set vm.process finalizers to true.
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+ forward(): boolean
+ backtrack(): boolean
+ initialize(): boolean
+ isDeadLocked(): boolean
+ isEndState(): boolean
+ getApplicationContexts: ApplicationContext[]
...

~ jpf: JPF
# config: Config
# ss: SystemState
# backtracker: Backtracker
# serializer: StateSerializer
…

VM

gov.nasa.jpf.vm

+ initialize(): boolean
+ isDeadLocked(): boolean
+ isEndState(): boolean
+ getApplicationContexts: ApplicationContext[]
+ getAppThreads: ThreadInfo[]
...

~ appCtxs: ApplicationContext[]

MultiProcessVM

+ initialize(): boolean

+ isDeadLocked(): boolean

+ isEndState(): boolean

+ getApplicationContexts: ApplicationContext[]

...

~ appCtxs: ApplicationContext

SingleProcessVM

Figure 4.8: The UML diagram including classes that encapsulate the JVMs of JPF
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Heap

garbage collection

FinalizerThread

ApplicationContext

update finalizeQueue

run() {
while(!done) {
  processNextFinalizer()
}

FinalizerThreadInfo

schedule FinalizerThread

update finalizeQueue

mark referenced objects

sweep unmarked

JVM

execute next transition

perform garbage collection

MJI

if(garbageCollectionNeeded) {
  schedule FinalizerThread
}

mark finalizables

JPFhost JVM

Figure 4.9: Different components of the model that provides support for Java finalizers
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5 Modeling Interprocess Communication

In the previous chapter, we explained how our centralization technique provides

the basic building blocks in JPF to capture distributed applications. However, to

model check such applications, models of communication between processes are

required. This chapter explains how communication channels are modeled in our

approach. It also presents how we capture different scheduling of threads at process

communication points to explore the state space of distributed SUTs. Moreover,

it presents our POR technique and its correctness proof with respect to certain

properties. First, we explain, using a simple distributed application, how Java

processes communicate via TCP sockets. Then, in Section 5.2, we elaborate on the

components required to model communication between processes.

5.1 Java Networking

As mentioned earlier, one of the features that makes Java a suitable platform for

developing distributed applications is multilevel support for network communica-
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tion. The most commonly used networking API for process communication in Java

is based on sockets which are also the most primitive networking construct [6]. A

socket represents an endpoint of a communication channel between two processes.

Every socket is identified by two elements, an IP address and a port number. An

IP address is a unique address to identify a host across a network which is based on

the Internet protocol (IP). A port number identifies the communication endpoint

within a computer and is usually associated with a specific service or protocol.

One of the main types of sockets in an IP network is based on the transport con-

trol protocol (TCP). TCP provides a reliable communication channel that guaran-

tees the successful delivery of data packets in order. Java provides support for TCP

sockets through classes in the java.net package, such as java.net.Socket, java.

net.InetAddress, and java.net.ServerSocket. Data is exchanged through TCP

sockets via a pair of input and output streams.

The code in Figure 5.1 demonstrates a simple example in which a server process

and a client process communicate using TCP sockets. Both processes are single-

threaded. Henceforward, we use s.i and c.i to denote the ith statement of the server

code, and the client code, respectively.

A TCP socket in Java can be either passive or active. To establish a connection,

the server creates a passive socket (encapsulated by java.net.ServerSocket) that

is associated with a given port (s.6), and then it blocks (s.7) until it receives a
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1 import java.io.*;

2 import java.net.*;

3 public class Server {

4 public static final int PORT = 1024;

5 public static void main(String[] args) throws IOException {

6 ServerSocket ssocket = new ServerSocket(PORT);

7 Socket socket = ssocket.accept();

8 InputStream in = socket.getInputStream();

9 byte[] buf = new byte[10];

10 in.read(buf);

11 socket.close();

12 ssocket.close();

13 }

14 }

1 import java.io.*;

2 import java.net.*;

3 public class Client {

4 public static void main(String[] args) throws IOException {

5 final String HOST = "indigo.cse.yorku.ca";

6 Socket socket = new Socket(HOST, Server.PORT);

7 OutputStream out = socket.getOutputStream();

8 String message = "Hello";

9 out.write(message.getBytes());

10 socket.close();

11 }

12 }

Figure 5.1: A simple client and server that communicate through TCP sockets
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connection request from a client.

The client creates an active socket (encapsulated by java.net.Socket) which

sends a connection request to a server that is running on the host indigo.cse.

yorku.ca and is waiting for connections on the specified port (c.6). If there is

no server socket associated with the given host and port, Java throws a java.

io.IOException that has to be handled in the client code. Otherwise, the server

accepts the connection request from the client and obtains a new active socket rep-

resenting the server endpoint of the connection (s.7). At this point the connection

is established, and the server and the client can start to exchange data.

The server and the client receive and send data through their respective socket

streams, which are obtained by calling the Socket.getInputStream() and Socket.

OutputStream() methods (s.8 & c.7). Next, the server attempts to read a request

from the client (s.10). If data have not been sent yet, the server input operation

blocks until the client writes some data (c.9). Once the server is done with the input

operation, it terminates by closing its sockets (s.11 & s.12). Closing the Server-

Socket object prevents new clients from connecting to this server, and closing the

Socket object disconnects this server from the client. After the client completes

the output operation (c.9), it also terminates by closing its endpoint of the connec-

tion (c.10). Closing the Socket object disconnects this client from the sever, and

consequently, no more data can be exchanged between the two.
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5.2 Model of IPC

At this stage, our model supports communication via TCP sockets [92]. The com-

munication paradigm supported by TCP sockets is based on blocking operations on

unbounded buffers. As part of our future work, we intent to support other commu-

nication paradigms, such as non-blocking operations on unbounded buffers. Our

IPC model consists of two main components: connection manager and scheduler.

The former models the communication channels (see Section 5.2.1) and the latter

captures different scheduling of processes at synchronization points at which they

communicate (see Section 5.2.2). Our model is implemented as an extension of JPF

which is called jpf-nas (which stands for networked asynchronous systems).

5.2.1 Connection Manager

Consider the server/client example in Figure 5.1. The two processes use a commu-

nication channel to exchange data which is established by two active sockets. The

communication channel is implemented natively, i.e., it is kept out of the scope of

the JVM runtime environment and is handled by the underlying OS. Therefore, the

content of the channel is completely invisible from the Java processes, and they can

only access its entry points through Java Socket objects to send and receive data.

Modeling a similar mechanism in JPF requires providing shared buffers accessed
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ConnectionManager

jpf-nas

JPF
client socket s2c-buffer c2s-buffer state

. . . . . . . . . . . . . . . 

server socket

Server Client

receive/send receive/send 

Native 
Peer

Native 
Peer

SUT

Figure 5.2: The list of connections is kept natively at the same level as JPF

by different processes. Such buffers cannot exist at the SUT level, since the type sep-

aration enforced by our centralization technique does not allow different processes

of the distributed SUT to share Java types and therefore, cannot share objects. If,

in JPF, a process accesses a type defined by a class loader that belongs to some

other process, an instance of the exception java.lang.ClassNotFoundException

is thrown by the process. However, using the MJI feature of JPF (see Section 2.5.5)

allows for shared objects at the host JVM level.

To provide the communication channels, the connection manager component of

jpf-nas creates and maintains shared buffers including communication data (see Fig-

ure 5.2). This component exists at the host JVM level (i.e., it is invisible from the

JVM of JPF) and it is accessed by native peers corresponding to java.net classes.
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The connection manager is encapsulated by the class nas.java.net.connection.

ConnectionManager. For every communication channel, it includes an instance

of the class nas.java.net.connection.ConnectionManager.Connection. Hence-

forth, these instances are referred to as connections. Each connection is shared by

exactly two processes. The state of a connection is updated by the connection

manager each time that a SUT process accesses a socket or its I/O stream. Each

connection captures the following information:

• Endpoints - each connection is identified by two endpoints, representing

a server socket and a client socket. To capture endpoints, each connection

stores two integers representing the two corresponding SUT socket objects in

JPF and the respective ApplicationContext instances in which they were

created (to identify processes).

• State - we define three possible states for connections, PENDING (the con-

nection has not been established yet, and one endpoint is waiting for the other

end to connect), ESTABLISHED (the connection has been established and

is ready for I/O operations), CLOSED (at least one socket has been closed,

and no more data can be transmitted).

• Buffers - to capture the communication data, the connection has two buffers,

one buffer is used to store data sent from the client socket to the server socket,
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and the other one is used to store data sent from the server socket to the client

socket. The buffers store only the data that has been sent by one endpoint,

but has not been received by the other end yet. The buffers are instances

of gov.nasa.jpf.util.ArrayByteQueue which is a cyclic queue to store raw

bytes.

As JPF executes the distributed SUT, the connection manager needs to main-

tain a list of connections that were created along the current execution path. How-

ever, since connections exist at the host JVM level, their states are not part of

the SUT and they are not handled by JPF. Therefore, JPF does not take into

account the state of the communication channels when matching states. Moreover,

as JPF backtracks to previously visited states, it does not restore the state of the

connections, and their states may not be in sync with the SUT state anymore.

To address the former issue, we implement a hash function within the

Connection class. This function maps the data that defines the state of a con-

nection to an integer. This integer is stored by an instance field, hash, which is

declared within the Socket model class. In other words, every Socket object within

the SUT keeps the hash value representing the state of its corresponding communi-

cation channel. The connection manager updates the hash field upon any changes

to the corresponding connection. Using this mechanism, the changes to connections

are reflected to the SUT and thus are considered by JPF when matching states. In
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the case of a hash collision, different states of a connection object are associated

with the same hash value. That can make the model checker treat two different

states of the SUT the same, and as a consequence, it can miss certain execution

paths. Therefore, hash collisions can affect the completeness of the verification.

To address the latter issue, a mechanism is required to keep the state of the list

of connections in synchronization with the state of the SUT. Without such a mecha-

nism, after backtracking or restoring a previously seen state, the list of connections

may not reflect the right state. To provide such a mechanism, jpf-nas uses a JPF lis-

tener, gov.nasa.jpf.util.StateExtensionListener, which captures snapshots

of the connection list at every state of the SUT. Basically, this listener keeps a

map from state ids to lists of connections. It operates upon three different events,

stateAdvanced (the SUT execution reaches a new state), stateBacktracked (the

SUT execution moves back to the previous state) and stateRestored (the SUT

moves to a previously seen state). Each time JPF has reached a new state it calls

the stateAdvanced method of the listener, which then creates a deep copy of the

current list of connections, stores this snapshot in the map kept by the listener, and

associates it to the current state id. This way, a list of connections is associated with

every state of the SUT. Upon the events stateBacktracked and stateRestored

at which the SUT moves back to a previously visited state, using the state id, the

listener restores the associated connection list from the map to keep this list always
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synchronized with the SUT state.

5.2.2 Scheduler

As mentioned in Section 2.5.3, JPF has a scheduler which is used to capture different

schedulings of threads within a process. When JPF searches the state space of

the SUT, it uses this scheduler to explore different orderings of those concurrent

transitions where executing them in different orders may lead to different behaviors

of the process. The scope of the JPF scheduler is an individual process, that is, it

only deals which those operations which are local to a single process and do not

involve interprocess communications. We refer to the JPF scheduler as the local

scheduler from now on.

A communication between processes requires an access to a communication

channel. Different orderings in which processes access communication channels

may lead to different behaviors of the distributed system. Therefore, a mechanism

is needed to capture different orderings of those concurrent transitions that involve

interprocess communications. To address this issue we include a scheduler in our

IPC model which is referred to as the global scheduler.

Our approach to search the state space of distributed systems involves using

both the local scheduler and the global scheduler. Basically, we use the local sched-

uler to deal with intra-process operations, whereas the global scheduler is used to
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deal with interprocess operations. Consider the state s of the distributed system

where the transition that takes the system from a previous state to s belongs to

a thread in the process p which is referred to as the current process. If all those

transitions to be executed next by the threads of p from s involve intra-process

operations, the local scheduler is used which only interleaves the threads that exist

within the process p. Otherwise, the global scheduler is used which interleaves all

the threads in the distributed system.

This approach leads to a selective search strategy (see Algorithm 1) which in-

stead of exploring all the enabled transitions at each state, explores a subset of

the enabled transitions. In Chapter 6, we provide the precise description of our

algorithm to explore the state space of the distributed system. We also prove that

our approach is sound with respect to deadlocks.

The jpf-nas scheduler is also used to inject exceptional control flows that cor-

respond to network failures. As mentioned earlier, verifying distributed systems is

challenging since failures can happen at so many different levels. Model checking

the source code of Java processes does not verify the distributed system against

all possible failures, for example, the ones that occur at the OS and hardware

levels. Failures occurred at network layers appear into processes as exceptions of

type java.io.IOException. To account for such network failures in our model,

the scheduler component inserts transitions into the state space that represent the
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corresponding exceptional control flow. Such functionality is essential to simulate

network failures without SUT modifications. This functionality is enabled through

the jpf-nas properties file, i.e., if the property scheduler.failure injection is

set to true, choices for failures are injected. By default, all possible exceptions are

injected. However, one can specify the types of exceptions to be injected using the

property scheduler.injected failures types.

Moreover, as part of this work, we provide a visualization of the search graph

explored by JPF, as it model checked the distributed SUT. Our visualization

tool is implemented in the form of a JPF listener (Section 2.5.4), gov.nasa.jpf.

listener.DistributedSimpleDot, which extends an existing listener in jpf-core,

gov.nasa.jpf.listener.SimpleDot. The listener DistributedSimpleDot gen-

erates a dot file that includes the SUT search graph. It distinguishes between

local and global scheduling points. It uses circles to show local scheduling points

and octagons to show global scheduling points. Figure 5.4 presents a search graph

generated by our listener. We elaborate on that in Section 5.3.

5.2.3 Native Peers Implementation

This section focuses on implementation details of jpf-nas and explains how it mod-

els classes of the Java networking API. Consider the class Socket. To model this

class, our extension includes the model class java.net.Socket. While running
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the SUT, JPF uses this class as an alternative to the actual Socket class from

the standard Java library (Section 2.5.6). The extension also includes a native

peer, JPF java net Socket, associated with the model class. That makes JPF

establish a correspondence between the methods of the model class and the na-

tive peer (Section 2.5.5). For example, when JPF gets to an invocation of the

method Socket.connect (in our model this method is invoked by the constructors

of Socket and sends a connection request to a server), the execution transfers to the

host JVM level and the method connect Ljava lang String 2I V in the native

peer executes.

The flowchart presented in Figure 5.3 shows how the native peer method

connect Ljava lang String 2I V is implemented. This example reveals how

native peers in jpf-nas interact with the connection manager and the scheduler to

model the Java networking API.

First the method checks if the socket to be connected is closed. If so, the method

returns by creating a JPF exception object of type java.net.SocketException

which is thrown by the SUT. Otherwise, it uses the connection manager and goes

through the connection objects to check if there exists a server at the given host and

port whose corresponding ServerSocket object has not been closed yet. If such

a server does not exist, a JPF exception object of type java.io.IOException is

created and thrown by the SUT, and the method returns. Otherwise, a connection
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Figure 5.3: The flowchart illustrating the implementation of the method Socket.connect
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object, c, is retrieved with an endpoint that represents the server.

Depending on the status of c, the method takes different actions. The connection

with the PENDING status indicates that the server is blocking on an accept()

operation to receive a connection request from a client. At this point, the blocked

thread at the server gets unblocked. Moreover, the method updates c, i.e., it sets the

status to ESTABLISHED and this socket becomes an endpoint of the connection.

Next, the method uses the scheduler to create a global scheduling choice. Before

creating a new choice generator it checks if scheduler.failure injection is set

to true. If so, the scheduler considers choices for possible failures as well. Otherwise,

it creates a choice generator that only includes choices for runnable threads in the

SUT. Finally, the method returns.

If the status of the retrieved connection object c is not PENDING, the client

has to block until the server calls accept(). At this point, a new connection object

is created and is added to the list maintained by the connection manager. One of

the endpoints of the new connection is set to this socket, and its status becomes

PENDING. Next, the scheduler is used to create a global scheduling choice. If

scheduler.failure injection is set to true, choices are included for possible

failures as well. Otherwise, a choice generator is created which only has choices

associated with runnable threads in the SUT. Then, the method returns.
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5.3 Tool Demonstration

This section explains how jpf-nas verifies the client/server example in Figure 5.1.

Applying this extension requires JPF to use the multiprocess JVM and the dis-

tributed scheduler factory (see Section 4.3 and 4.3.1). The default configuration of

jpf-nas includes the following setting.

vm.scheduler_factory.class =

gov.nasa.jpf.vm.DistributedSchedulerFactory

vm.class = gov.nasa.jpf.vm.MultiProcessVM

To apply jpf-nas on the client/server example, JPF is configured as follows.

@using = jpf-nas

target.0 = Server

target.1 = Client

listener+=,gov.nasa.jpf.listener.DistributedSimpleDot

The first line makes JPF use the jpf-nas extension. The next two lines specify

the initial classes from which the execution of the server and client processes start.

Finally, the last line makes JPF use the listener DistributedSimpleDot which

generates the search graph from running jpf-nas on the example.

Figure 5.4 shows the entire graph. The total number of unique states visited by

JPF is 16. Transitions with labels starting with P0 are taken by the server process

main thread and the ones with labels starting with P1 are taken by the client

process main thread. Moreover, the graph shows the transitions’ last statement
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Figure 5.4: Search graph for example in Figure 5.1
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that results in generating a new state. The dotted arrows are used when the model

checker backtracks to a previous state. The state represented by a double circle

is the end state at which all the processes of the SUT terminate. The state e1

represents an error state at which the normal flow of the SUT’s instruction is

disrupted and its execution cannot proceed further. The states that capture global

scheduling points are represented by octagons. DistributedSimpleDot depicts the

states capturing local scheduling points by white circles. In this example, since both

the server and the client processes are single threaded and do not include any data

non-determinism, JPF does not create any local scheduling points. Next, using the

search graph, we explain how jpf-nas uses the connection manager and the scheduler

to capture the process interactions in JPF. Henceforth, the state with the id i in

Figure 5.4 is referred to as Si.

As was mentioned earlier, different orderings of statements involved in estab-

lishing a connection between a server and a client can have different outcomes.

Figure 5.4 shows how our extension captures the different orderings of s.7 and c.6.

In the start state, S, both the client and the server main threads are enabled. The

execution path that starts with the client execution leads to an error state, e. In

this path, since the client sends a connection request without the server waiting,

an exception is thrown. The other possible execution starts with the server which

blocks until it receives a connection request. To capture this execution, after the
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server blocks, the state S0 is created from which only the client can proceed. After

the client unblocks the waiting server by executing c.6, jpf-nas creates the state S1

from which both the client and the server main threads can proceed next. At this

state, the connection is established, and a new connection object is added to the

connection manager.

Figure 5.4 also presents one of the possible orderings of the I/O operations, s.10

and c.9, captured by jpf-nas. After the connection is established at S1, the server

proceeds and executes the read operation, s.10. Since the client has not written

any data yet, the server blocks and a new state, S2, is created from which only the

client is enabled. Next, the client proceeds and unblocks the server by writing a

request (c.9). At this point, the state S3 is created from which both processes can

continue.

Closing a socket from a process can affect the I/O operations performed by the

process at the other end. To capture this effect, jpf-nas creates scheduling choices

upon socket close operations. Figure 5.4 shows how different orderings of the write

operation at c.9 and the socket close operation at s.11 are captured. As is shown

in the figure, the server continues from state S3 until it gets to the close operation.

Before closing the corresponding connection in the connection manager, jpf-nas

breaks the transition and creates state S4 from which both the client and the server

main threads are enabled. The server continues by closing the socket and then,
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it terminates at s.14. At that point, since a process terminates, the distributed

scheduler factory creates state S5 from which the remaining threads (i.e., only the

client main thread) can continue. At state S5, the client continues and attempts to

read from a closed channel. Another possible execution from state S4 is that the

client continues and reads the data before the connection is closed by the server.

To show the effect of the failure injection functionality, we run JPF on the

example in Figure 5.1 using the following configuration.

@using = jpf-nas

target.0 = Server

target.1 = Client

listener+=,gov.nasa.jpf.listener.DistributedSimpleDot

scheduler.failure_injection = true

Setting scheduler.failure injection to true activates the failure injection

functionality of jpf-nas which allows for checking the code against possible network

failures. Instead of exploring the search graph in Figure 5.4, jpf-nas explores the

graph in Figure 5.5. Due to a possible java.io.IOException at s.7 which is not

handled by the code, the choice generator at state S0 includes a transition which is

taken by the server and leads to the error state e10. Similarly, since executing c.6

can throw an unhandled java.io.IOException, the choice generator at state S1

includes a transition which is taken by the client and leads to the error state e9.
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Figure 5.5: Search graph for example in Figure 5.1 when failures are injected
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Figure 5.6 contrasts local choices against global choices. The search graph on

the left side is obtained from code similar to what is presented in Figure 5.1, except

for the sake of simplicity the statements socket.close() in both the client and

server code are commented out. Since both of the processes in this example are

single threaded and there is no data non-determinism in the code, the search graph

includes only global choices. To make local choices appear in the search graph, we

made the client process multithreaded, i.e., at the beginning of the main method of

Client, a statement is added which creates and starts a new thread. To keep the

example simple, the body of the run method of the new thread is simply empty.

The search graph on the right hand side of Figure 5.6 is obtained from model

checking the distributed application composed of the server process and the mul-

tithreaded client. The client threads are interleaved upon the starting of the new

thread and the termination of the threads. Since the new thread does not interfere

with the client main thread at all, there is a one-to-one correspondence between

the global choices of the two search graphs.
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5.4 Correctness of the Model

In this section, we explain two different approaches used to verify that our model

behaves consistently with the java.net classes. In Chapter 6, we formalize our

POR algorithm and show that it preserves deadlocks.

5.4.1 Testing Framework

One approach used to verify the model is testing. JPF includes a unit testing

framework. Using this framework, one can implement regression tests in the form

of methods, annotated by org.junit.Test, which run on top of JPF. The testing

infrastructure of JPF has been designed in a way that its test classes adopt the

same format as JUnit tests14. By running a test method within the JPF testing

infrastructure, all possible execution paths of the method are explored by JPF, and

for each path it checks if the test passes.

The testing framework of JPF can only model check a single process. As part of

this work, we extend the JPF testing framework to model check multiple processes

simultaneously. Using our distributed setting, for every annotated method, one can

specify an integer representing the number of processes. The code to be executed

for each process by JPF is the body of the test method. In order to allow different

14Unit Testing Framework for Java: http://junit.org
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processes to execute different parts of the test method, we include a method in the

JPF testing infrastructure which can be used to retrieve the id of the processes.

Using ids, one can make a process execute a certain part of the method. As an

example, consider the following test method.

@Test

public void exampleTest() throws IOException {

if (mpVerifyNoPropertyViolation(2)) {

int prcId = getProcessId();

int PORT = 1024;

String HOST = "indigo.cse.yorku.ca"

switch(prcId) {

case 0:

ServerSocket serverSocket = new ServerSocket(PORT);

serverSocket.accept();

case 1:

Socket socket = new Socket(HOST, PORT);

try {

socket = new Socket(HOST, port);

assertTrue(socket.isConnected());

} catch(IOException e) {

}

}

}

}

This example shows the format used to develop tests in JPF. By executing mp-

VerifyNoPropertyViolation, JPF is initialized and starts model checking the test

method. The integer, 2, sent as argument to this method, represents the number of

processes. In this example, JPF model checks a distributed application composed

of two processes that execute the code surrounded by the if block. As you can

see, using the process ids, parts executed by different processes are specified using
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a switch statement. The process with the id 0 executes the part associated with

the case 0 statement which makes it the server process. The process with the id 1

executes the part associated with case 1 which makes it the client process.

We use the distributed testing infrastructure explained above to test our model.

For each standard class modeled in jpf-nas, we develop a test class, including re-

gression tests that check if the model behaves as expected. We identified the correct

behavior of java.net classes from the Java specification API. In the majority of

the cases, the specifications are not precise enough, and we retrieved the expected

behavior by going through the source code of the standard Java classes. For code

which is implemented natively, we observed its behavior by running examples of

distributed applications.

5.4.2 Runtime Behavior of the java.net Model

In order to understand the behavior of the java.net classes which are modeled

in jpf-nas, we looked into their specifications along with their Java source code.

However, due to parts that are implemented natively, some behaviors were not clear,

and understanding them required observing the runtime behavior of distributed

Java applications.

To verify our understanding of java.net classes, we defined invariants, pre-

conditions, and postconditions in form of assertions that capture the behavior we
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observed by looking into the actual classes from the Java standard library. To

check if these assertions capture the correct behaviors, we included the assertion

statements in our own copies of the standard classes. Basically, these classes are

identical to the ones within the standard Java libraries, except they include the

assertion statements. We execute some distributed Java applications on the host

JVM, when forcing the host JVM to use our copies of java.net classes, which is

accomplished by using the JVM property -Xbootclasspath. These applications

are presented in Chapter 8. Not getting an assertion violation gave us confidence

that our assertions capture the expected behaviors of java.net classes.

We used the same set of assertions to check if our model is sound, that is,

the behaviors of distributed SUTs captured by the model are consistent with their

behaviors captured by the Java libraries. We included the assertions into our model

of the java.net package. However, that still cannot confirm our model is complete,

that is, whether it captures all potential executions of distributed systems. Using

this approach, we found an error in our model. The error was related to reading

from a socket where the corresponding connection had been closed by the process

at the other end. In this case, we missed throwing an exception of type Socket-

Exception.
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5.5 Related Work on Modeling IPC

Existing work that can be compared with our model includes modeling IPC for

applications centralized at the SUT level. As mentioned in Section 3.2, these ap-

proaches transform the distributed SUT, which includes multiple processes, into a

new single process Java application with multiple threads. That also requires pro-

viding IPC models that replace the communication between processes with inter-

thread communication.

The work by Stoller and Liu [79] models Java RMI. Java RMI allows a process to

invoke a method on an object that exists in another process. In RMI applications,

one process, called the server, makes objects accessible to other processes, called

clients. The server achieves that by entering the references to those objects in a

database, called the RMI registry. Then, the clients obtain the references to remote

objects in the server and communicate with the server through invoking methods

on the remote objects. The arguments to the methods are provided by clients, i.e.,

they are serialized on the client and sent to the server. Serialization is a mechanism

that represents a Java object as a sequence of bytes which includes information such

as the object type and value. Once the method is invoked, the client blocks until it

receives the serialized result from the server. The server unserializes the arguments,

executes the method remotely invoked by the client, serializes the result, and passes
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it to the calling client. Distributed applications that communicate through Java

RMI are also referred to as distributed object applications.

To model Java RMI, the approach by Stoller and Liu simply replaces an RMI

call with a ordinary method call and also simulates the RMI registry using a map.

Their model considerably simplifies the communication and does not reflect the

complexity of bidirectional network communications between processes. The work

by Artho and Garoche [80] also provides an IPC model for applications centralized

at the SUT level. Their IPC model is similar in flavour to our work, since they also

model communication based on TCP sockets. Note that both models encompass a

RMI model since Java RMI is a protocol built on top of TCP/IP.

In the IPC model of Artho and Garoche, the communication channels are

represented by instances of the java.io.PipedInputStream and java.io.Piped-

OutputStream classes and are maintained at the SUT level. However, in our ap-

proach they are implemented at the native level and only their entry points are

visible to the SUT processes. In a way, our approach is more realistic, since the

communication channels used by Java processes are entirely handled by native li-

braries, not by Java code. Therefore, modeling them at the SUT level may affect

the soundness of the approach and may lead to executions which are not consistent

with the SUT behaviors. Moreover, the results from comparing our approach with

their approach demonstrate that modeling communication channels at the SUT
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level intensifies the state space explosion problem (see Section 8).

Moreover, our approach provides a more efficient way to model check distributed

SUTs. The reduction technique implemented by the scheduler component leads

to smaller state spaces. As explained in Section 5.2.2, we distinguish between two

types of scheduling: global and local scheduling points. For operations that do not

have any effects outside of the process, the scheduling choices include only those

threads that exist in the process. However, in approaches where IPC models are

built on top of centralized SUTs, all scheduling points are treated as global.
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6 Reduction Techniques for Distributed

Applications

In this chapter, we explain two different reduction techniques to reduce the state

space of distributed multithreaded applications. These techniques are exploited

in our work. One technique (Section 6.1) is a slight modification of a reduction

technique presented by Godefroid in [41, Section 2]. This reduction technique by

Godefroid reduces the state space of a system consisting of a single process that

has multiple threads. These threads are assumed to be deterministic. We apply a

similar technique to a system with multiple processes (Section 6.2). We also show

that applying such a technique on the state space of a distributed system preserves

deadlocks and assertion violations.

Moreover, we propose a partial order reduction technique for distributed systems

(Section 6.3). Our technique relies on the fact that each process has its own local

data which is not shared with any other processes in the system. We show that

applying our POR algorithm on a system, which is constructed by the former
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reduction technique, allows for detecting deadlocks. We use the persistent set

technique of Godefroid [93] to prove the correctness of our algorithm. Using this

technique, we show that in each state, our algorithm explores a sufficient subset of

all possible transitions leading out of the state, preserving deadlocks.

The reduction techniques are presented in general settings. In the last section

(Section 6.4), we specialize these techniques to JPF. We show that JPF applies

the reduction technique of Godefroid [41] for model checking single process Java

applications which preserves deadlocks and assertion violations. Moreover, we show

that applying our POR algorithm within JPF allows for detecting global deadlocks

in distributed Java applications.

6.1 Reduction of Single Process Systems

Consider a system consisting of a single process composed of a finite set Φ of threads.

Each thread T ∈ Φ executes a sequence of actions. The system is modeled by a

transition system TS. The transition system is a tuple (S,Act,−→, s0) such that

• S is a set of states,

• Act is a set of actions,

• −→⊆ S × Act× Φ× S is the transition relation, and

• s0 ∈ S is the initial state.
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The set Act of actions is partitioned into the set V of visible actions, and the

set I of invisible actions. Instead of (s, α, T, s′) ∈−→ we write s
α−→
T
s′. The action α

is said to be enabled in the state s, if

∃T ∈ Φ : ∃s′ ∈ S : s
α−→
T
s′

We use enabled(s) to denote the set of all enabled actions in s, that is,

enabled(s) = {α ∈ Act | ∃T ∈ Φ : ∃s′ ∈ S : s
α−→
T
s′}

Each thread is assumed to be deterministic. At any state s, for each thread

T , there is at most one action α and state s′, where s
α−→
T
s′. This is expressed by

Assumption 6.1.1.

Assumption 6.1.1. If s
α1−→
T
s1 and s

α2−→
T
s2 then α1 = α2 and s1 = s2.

A state s is called a global state if,

enabled(s) ⊆ V

We denote the set of global states by g(S). We also assume that all actions to be

executed from the initial state are visible. That is expressed by Assumption 6.1.2.

Assumption 6.1.2. enabled(s0) ⊆ V

As a consequence, s0 ∈ g(S).

We assume that invisible actions of one thread do not have any effect on actions

performed by other threads.
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Assumption 6.1.3. If s1
α1−→
T1

s2
α2−→
T2

s3 where T1 6= T2 and α1 ∈ I or α2 ∈ I then

s1
α2−→
T2

s′2
α1−→
T1

s3 for some s′2 ∈ S.

From the transition system TS, we construct a reduced system, denoted as

r(TS). The transition system r(TS) describes the behavior of the system by its set

of global states and the transitions (sequence of actions) that take the system from

one global state to another. A transition of r(TS) is one visible action followed by

a finite maximal sequence of invisible actions performed by a single thread. The

transition system r(TS) is the tuple (g(S), V I∗,=⇒, s0) such that s
α1...αn====⇒
T

s′ if,

• s = s1
α1−→
T
s2

α2−→
T
· · · αn−→

T
sn = s′,

• α1 ∈ V, α2 ∈ I, . . . , αn ∈ I, and

• s′ ∈ g(S).

The example illustrated in Figure 6.1 compares the transition systems TS and

r(TS), composed of two threads T1 and T2. The code of T1 includes the sequence

of actions a1; a2, and the code of T2 includes the sequence of actions b1; b2;. The

state of the system is composed of three variables (v, i, j) where v is shared, i is

local to T1, and j is local to T2. The initial state of the system is (−1,−1,−1).

The actions a1 and b1 are visible actions which set v to 0 and 1, respectively. The

actions a2 and b2 are invisible where a2 sets i to 1, and b2 sets j to 1. Figure 6.1(a)
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Figure 6.1: Comparing the transition systems (a) TS and (b) r(TS) for a system composed of

two threads with actions a1; a2; and b1; b2;, where a1 and b1 are visible and the rest of the actions

are invisible

illustrates the transition system TS, whereas Figure 6.1(b) illustrates the reduced

system r(TS).

The state s ∈ S is deadlocked if,

enabled(s) = ∅

Note that in our model, states at which the system terminates are also identified

as deadlock states. Since these final states can easily be identified, we do not

distinguish between final and deadlocked states. This simplifies our model and the

proofs that follow, without any loss of generality.
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It can be shown that r(TS) preserves deadlocks and assertion violations which

are reachable from s0 in TS. This is captured by Theorem 6.1.1 and 6.1.2. First, we

present Lemma 6.1.1, which is required to prove these two theorems. This lemma

shows that any global state which is reachable from s0 in TS is also reachable from

s0 in r(TS).

Lemma 6.1.1. If s1
α1−→
T1

s2
α2−→
T2
· · · αn−→

Tn
sn+1 and s1, sn+1 ∈ g(S) then s1 ⇒∗ sn+1.

Proof. We prove this lemma by induction on the number v of visible actions in α1,

. . . , αn.

• Base case: v = 1. Since s1 ∈ g(S), enabled(s1) ⊆ V . As a consequence

α1 ∈ V . Therefore, α2, . . . , αn ∈ I.

Next, we show that Ti = T1 for all 2 ≤ i ≤ n. Towards a contradiction, let

j be the smallest index in [2, n] such that Tj 6= T1. Since αj ∈ I, we can

conclude from Assumption 6.1.3 that s1
αj−→
Tj

s′2
α1−→
T1
· · · αj−1−−−→

T1
sj+1 for some s′2,

. . . , s′j ∈ S. Hence, αj ∈ enabled(s1). But this contradicts that s1 ∈ g(S).

Combining the above, we get that s1
α1...αn====⇒
T1

sn+1.

• Inductive step: let v > 1. As in the base case, α1 ∈ V . Let αk be the second

visible action in α1, . . . , αn. As in the base case, we can show that Ti = T1

for all 2 ≤ i < k. Let ` be the smallest index in the interval [k, n + 1] such
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that s`
α−→
T1

s for some α ∈ V and s ∈ S or enabled(s`) = ∅. Note that such

an ` exists, since sn+1 ∈ g(S).

Let i be the number of invisible actions performed by T1 in αk+1, . . . , α`−1.

Let αf(1), . . . , αf(i) be the subsequence of αk+1, . . . , α`−1 of invisible actions

performed by T1. Let αg(1), . . . , αg(`−k−i−1) be the subsequence of αk+1, . . . ,

α`−1 of the remaining actions. We will prove that

sk
αf(1)−−−→
T1
· · ·

αf(i)−−→
T1

s′k+i
αg(1)−−−→
Tg(1)

· · ·
αg(`−k−i−1)−−−−−−−→
Tg(`−k−i−1)

s` (6.1)

for some s′k+1, . . . , s′`−1 ∈ S by induction on i.

– The base case, i = 0, is trivial.

– Let i > 0. Using Assumption 6.1.3, we can conclude

sk
αf(1)−−−→
T1

s′k+1

αk−→
Tk
· · ·

αf(1)−1−−−−→
Tf(1)−1

· · ·
αf(1)+1−−−−→
Tf(1)+1

· · · α`−1−−→
T`−1

s`

for some s′k+1, . . . , s′`−1 ∈ S. By induction,

s′k+1

αf(2)−−−→
T1
· · ·

αf(i)−−→
T1

s′k+i
αg(1)−−−→
Tg(1)

· · ·
αg(`−k−i−1)−−−−−−−→
Tg(`−k−i−1)

s`

for some s′k+2, . . . , s′`−1 ∈ S. Hence, (6.1) immediately follows.

Next, we will show that s′k+i ∈ g(S) by showing that enabled(s′k+i) ⊆ V .

From the choice of ` and the construction of the subsequence αf(1), . . . , αf(i)

we can conclude that s′k+i
α−→
T1

s implies α ∈ V . Let T 6= T1. Towards a
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contradiction, assume that s′k+i
α−→
T

s for some s ∈ S and α ∈ I. Again

using Assumption 6.1.3, we can conclude that s1
α−→
T
s′ for some s′ ∈ S. This

contradicts that s1 ∈ g(S).

From the above we can conclude that s1
α1...αk−1αf(1)...αf(i)
============⇒

T1
s′k+i. By induction,

s′k+i ⇒∗ sn+1. Hence, s1 ⇒∗ sn+1.

Theorem 6.1.1. All deadlocked states which are reachable from s0 in TS are also

reachable from s0 in r(TS).

Proof. Consider that the state s reachable from s0 in TS is deadlocked. Accord-

ing to the definition of a deadlocked state, we have enabled(s) = ∅. Therefore,

enabled(s) ⊆ V which implies that s is a global state, that is, s ∈ g(S). According

to Lemma 6.1.1, since s is reachable from s0 in TS, it is also reachable from s0 in

r(TS).

In our model, an assertion is defined as an action assert(A), where A ⊆ S.

The assertion A is said to be violated in the state s, if assert(A) ∈ enabled(s) and

s /∈ A. In our model, it is assumed that the action assert(A) is visible which is

expressed by Assumption 6.1.4.

Assumption 6.1.4. assert(A) ∈ V
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Moreover, we assume that invisible actions cannot affect assertion results. This

is expressed by Assumption 6.1.5

Assumption 6.1.5. If s
α−→
T

s′ where α ∈ I and assert(A) ∈ enabled(s) then

assert(A) ∈ enabled(s′) and s ∈ A iff s′ ∈ A

To prove the following lemma, we need to assume that each thread cannot do a

sequence of infinitely many invisible actions.

Assumption 6.1.6. If si
αi−→
T

si+1 for all i ∈ N then for all n ∈ N there exists

m > n such that αm ∈ V .

As we will show next, from any state we can reach a global state by doing only

invisible actions.

Lemma 6.1.2. For all s1 ∈ S there exists s1
α1−→
T1

s2
α2−→
T2
· · · αn−→

Tn
sn+1 where

α1, . . . , αn ∈ I and sn+1 ∈ g(S).

Proof. Consider the following algorithm.

s← s1

while s 6∈ g(S) do

pick α ∈ I, s′ ∈ S and T ∈ Φ such that s
α−→
T
s′

s← s′

end while
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Note that if s 6∈ g(S), then enabled(s) 6⊆ V . Hence, we can find α ∈ I, s′ ∈ S and

T ∈ Φ such that s
α−→
T
s′. If the algorithm terminates, then the lemma obviously

holds.

Towards a contradiction, assume that the algorithm does not terminate. Then

for all i ∈ N, there exist si ∈ S, αi ∈ I and Ti ∈ Φ such that si
αi−→
Ti

si+1. Since the

set Φ is finite, one thread, say T , takes infinitely many transitions. Let (Tf(i))i∈N

be the subsequence of the transitions taken by thread T . Let (Tgn(i))i∈N be the

subsequence obtained by removing Tf(1), . . . , Tf(n−1) from (Ti)i∈N.

Next, we show that for each n ∈ N there exist a sequence (sn,i)i∈N such that

• sn,1 = s1,

• for all 1 ≤ i < n, sn,i
αf(i)−−→
Tf(i)

sn,i+1

• for all i ≥ n, sn,i
αgn(i−n+1)−−−−−−→
Tgn(i−n+1)

sn,i+1

by induction on n. Note that this contradicts Assumption 6.1.6.

• Base case: n = 1. We simply take s1,i = si for all i ∈ N.

• Inductive step: let n > 1. We define for all 1 ≤ i ≤ n−1, sn,i = sn−1,i. Let j be

such that sn−1,j
αf(n−1)−−−−→
Tf(n−1)

sn−1,j+1. Then for all n−1 ≤ i < j, sn−1,i
αgn−1(i−n+2)

−−−−−−−−→
Tgn−1(i−n+2)

sn−1,i+1 and Ti 6= T . Hence, according to Assumption 6.1.3, there exist sn,i,

for n ≤ i ≤ j, such that sn−1,n−1
αf(n−1)−−−−→
Tf(n−1)

sn,n and sn,i
αgn−1(i−n+1)

−−−−−−−−→
Tgn−1(i−n+1)

sn,i+1 for
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all n ≤ i ≤ j and sn,j
αgn−1(j−n+1)

−−−−−−−−→
Tgn−1(j−n+1)

sn−1,j+1. For all i > j, define sn,i = sn−1,i.

The sequence (sn,i)i∈N satisfies the properties by construction.

Theorem 6.1.2. If there is an assertion, A, violated in a state reachable from s0

in TS, then there is a state reachable from s0 in r(TS) at which A is violated.

Proof. Suppose that s is a reachable state from s0 in TS where an assertion A is

violated. Then there is a thread T ∈ Φ where s
assert(A)−−−−−→

T
s′ for s /∈ A and some

s′ ∈ S. From Lemma 6.1.2 we can conclude that

s = s1
α1−→
T1

s2
α2−→
T2
· · · αn−→

Tn
sn+1 (6.2)

where α1, . . . , αn ∈ I and sn+1 ∈ g(S). From Assumption 6.1.5, since assert(A) ∈

enabled(s1) then assert(A) ∈ enabled(sn+1) and since s /∈ A then sn+1 /∈ A. From

Lemma 6.1.1, since sn+1 ∈ g(S), we can conclude that sn+1 at which A is violated

is reachable from s0 in r(TS).

6.2 Reduction of Distributed Systems

Consider a distributed system composed of a set of (multithreaded) processes. Let

the set Φ of threads include all threads in the system regardless of which process

they belong to. The behavior of such a distributed system can be captured by
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a single process system composed of the set Φ of threads which can be modeled

by the transition system TS. Therefore, we can use the reduced system r(TS) to

model the distributed system which allows for detecting deadlocks and assertion

violations. Note that the distributed system is required to satisfy Assumption 6.1.1-

6.1.6, otherwise there is no guarantee that deadlocks and assertion violations are

preserved by r(TS). In the next section, we apply a POR technique on r(TS)

which models the distributed system.

6.3 Partial Order Reduction Algorithm

In this section, we explain our POR technique that reduces the transition system

r(TS). Before presenting our technique, we introduce some definitions and nota-

tions used throughout the remainder of this section. Consider a distributed system

composed of a finite set P of (multithreaded) processes. We use Φp to denote the

finite set of threads that belong to the process p ∈ P . According to the definition

of distributed systems, these sets are disjoint. That is expressed by Assumption

6.3.1.

Assumption 6.3.1. If p1 6= p2 then Φp1 ∩ Φp2 = ∅

We partition the set V of visible transitions in TS into the set Vl of locally

visible actions, which involve interactions between threads of a single process, and
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the set Vg of globally visible actions, which involve interactions between threads that

may belong to different processes. We assume that these sets are disjoint. This is

expressed by Assumption 6.3.2.

Assumption 6.3.2. Vl ∩ Vg = ∅

We use next(s, p) to denote the set of transitions, in s ∈ g(S) that belong to

the process p, that is,

next(s, p) = {t ∈ V I∗ | ∃T ∈ Φp : s′ ∈ g(S) : s
t

=⇒
T
s′}

We also use next(s) to denote the set of all transitions in p, regardless of which

process they belong to, that is,

next(s) =
⋃
p∈P

next(s, p)

We define the predicate blocked(s, p) for a state s and process p, where blocked(s, p)

verifies to true iff there exist t ∈ Gp and

s = s1
t1=⇒
T1
s2

t2=⇒
T2
· · · tn−1

==⇒
Tn−1

sn

such that,

• T1, . . . , Tn−1 6∈ Φp,

• t 6∈ next(s, p), and

• t ∈ next(sn, p).
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Algorithm 1 Partial Order Reduction Algorithm

1: Initialize: stack ← ∅; H ← ∅; p← nil;
2: push(s0, p) onto stack;
3: while stack 6= ∅ do
4: pop(s, p) from stack;
5: if s /∈ H then
6: enter s in H;
7: γ ← branch(s, p);
8: for all t ∈ γ do

9: < ssucc, p >←< s′, p′ > where s
t

=⇒
T
s′ and T ∈ Φp′ ;

10: push(ssucc, p) onto stack;
11: end for
12: end if
13: end while

In r(TS), we distinguish between different types of transitions. Let t = α1 . . . αn

where s
t

=⇒
T
s′ and T ∈ Φp. The transition t is said to be a local transition of p if

α1 ∈ Vl. We use Lp to denote the set of all local transitions of p. The transition t

is said to be a global transition if α1 ∈ Vg. We use Gp to denote the set of all global

transitions of p.

In the remainder of this section, first, we describe our POR algorithm (see

Algorithm 1). It adapts the persistent-set selective search of Godefroid presented

in Figure 1.4 of [93]. We show that in any state our algorithm explores a persistent

set of transitions. Then, using Theorem 4.3 of Godefroid in [93], we conclude that

our algorithm can detect deadlocks.

Our POR algorithm starts from the initial state s0 in r(TS). After exploring

each state, it adds it to the set H which used to keep track of visited states.
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In any state s ∈ g(S), reached by p ∈ P (the process whose thread takes a

transition discovering s), the algorithm computes the set branch(s, p) ⊆ next(s),

and it continues searching the state space from the transitions in branch(s, p).

The following algorithm shows how branch(s, p) is computed for a state s ∈

g(S).

if s 6= s0 and next(s, p) 6= ∅ and next(s, p) ⊆ Lp and ¬blocked(s, p) then

branch(s, p)← next(s, p)

else

branch(s, p)← next(s)

end if

We say that s, where s 6= s0, is a process-local state of p if,

next(s, p) 6= ∅ ∧ next(s, p) ⊆ Lp ∧ ¬blocked(s, p)

If the state s is not a process-local state, then s is referred to as a system-global

state. In process-local states, the algorithm explores the transitions of only the

current process. In system-global states, the algorithm explores the transitions of

all processes in the system.

Below we define the notation of independence of transitions, adapted from Def-

inition 3.1 in [93]. Using this notion, we later show that our algorithm preserves

certain properties.
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Definition 6.3.1. Let t1 and t2 be two transitions of r(TS). The transitions t1

and t2 are said to be independent in r(TS) if for any s ∈ g(S) the two following

properties hold:

• if s
t1=⇒
T
s′, then t2 ∈ next(s) iff t2 ∈ next(s′), and

• if t1, t2 ∈ next(s), then there exists a unique state s′′ where s
t1=⇒
T1
s′1

t2=⇒
T2
s′′ and

s
t2=⇒
T2
s′2

t1=⇒
T1
s′′.

In our model, we assume that local transitions of one process are independent

from the transitions taken by any other process in the system. This is expressed

by Assumption 6.3.3.

Assumption 6.3.3. If t1 ∈ Lp1 and t2 ∈ Lp2 ∪ Gp2 where p1 6= p2 then t1 and t2

are independent.

Before we discuss the correctness of the algorithm, below, we provide the defi-

nition of persistent set taken from Definition 4.1 in [93].

Definition 6.3.2. A set γ of transitions in a state s is persistent in s iff, for all

nonempty sequences of transitions

s = s1
t1=⇒
T1
s2

t2=⇒
T2
· · · tn−1

==⇒
Tn−1

sn
tn=⇒
Tn

sn+1

from s in r(TS) and including only transitions ti /∈ γ, 1 ≤ i ≤ n, tn is independent

in sn with all transitions in γ.
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Next, we show that the set of transitions, explored by Algorithm 1 in any state

s ∈ g(S), is a persistent set in s. That is captured by the following theorem.

Theorem 6.3.1. In any state s ∈ g(S) and process p ∈ P , the set branch(s, p) of

transitions explored by Algorithm 1 is a persistent set in s.

Proof. For a system-global state s, branch(s, p) is set to next(s). Therefore, there

is no nonempty sequence of transitions s = s1
t1=⇒
T1
s2

t2=⇒
T2
· · · tn=⇒

Tn
sn+1 which includes

only ti /∈ branch(s, p) for 1 ≤ i ≤ n. Therefore, according to Definition 6.3.2,

branch(s, p) is a persistent set in s.

Now we show that, at a process-local state s of the process p, the set branch(s, p)

is persistent in s. Towards contradiction, we assume that branch(s, p) is not a

persistent set in s. Then, according to Definition 6.3.2, there exists a nonempty

sequence of transitions

s = s1
t1=⇒
T1
s2

t2=⇒
T2
· · · tn−1

==⇒
Tn1

sn
tn=⇒
Tn

sn+1 (6.3)

such that:

(a) t1, t2, ..., tn /∈ branch(s, p).

(b) tn in (6.3) is dependent with some transition t ∈ branch(s, p).

Without a loss of generality, suppose (6.3) is a shortest such a sequence. Now we

show that such a sequence cannot exist. Since s is a process-local state,

branch(s, p) = next(s, p) (6.4)

159



First we show that for all 1 ≤ i ≤ n,

next(s, p) = next(si, p) (6.5)

by induction on i.

• Base case: i = 1, which is trivial.

• Inductive step: let i > 1. We assume that (6.5) holds in si−1, that is,

next(s, p) = next(si−1, p). (6.6)

Then we show that (6.5) holds in si, that is, next(s, p) = next(si, p).

According to (a), ti−1 /∈ branch(s, p), which according to (6.4), implies that

ti−1 /∈ next(s, p). Therefore, according to (6.6), ti−1 /∈ next(si−1, p). That im-

plies ti−1 ∈ Lp′∪Gp′ where p′ 6= p. Since s is a process-local state, next(s, p) ⊆

Lp, and hence, next(si−1, p) ⊆ Lp. Therefore, according to Assumption 6.3.3,

ti−1 is independent from any transition t ∈ next(si−1, p). Therefore, from Def-

inition 6.3.1, we can conclude that for any t ∈ next(si−1, p), t ∈ next(si, p).

Hence,

next(si−1, p) ⊆ next(si, p). (6.7)

Let t′ ∈ next(si, p). Towards contradiction, suppose that there exists a tran-

sition t′, where t′ ∈ next(si, p), but t′ /∈ next(si−1, p). According to Definition

6.3.1, t′ and ti−1 are dependent. From Assumption 6.3.3, we can conclude
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that ti−1 ∈ Gp′ and t′ ∈ Gp. Since t′ /∈ next(s, p) (according to (6.5)) and

t′ ∈ next(si, p), from (a) we can conclude blocked(s, p) = true. This is a con-

tradiction, i.e., since s is a process local state, blocked(s, p) = false. Hence,

such t′ does not exist, and

next(si, p) ⊆ next(si−1, p). (6.8)

Therefore, from (6.7) and (6.8), we can conclude that (6.5) holds in the state

si.

According to (b) tn is dependent with some t ∈ branch(s, p) in sn. According to

Assumption 6.3.3, this requires tn to be a transition of p, that is, tn ∈ Lp∪Gp. That

implies tn ∈ next(sn, p). From (6.5), this implies tn ∈ next(s, p). Hence, from

(6.4), tn ∈ branch(s, p). This contradicts our initial assumption (a). Therefore,

such a sequence of transitions, (6.3), cannot not exist.

Theorem 6.3.1 shows that our algorithm performs a selective search through

r(TS), and in each state s reached by a process p, explores a set branch(s, p) of en-

abled transitions that is persistent. Moreover, the set branch(s, p) computed by the

algorithm becomes empty if and only if next(s, p) = ∅. The following theorem cap-

tures Theorem 4.3 by Godefroid, presented in [93]. According to this theorem our

algorithm preserves deadlocks reachable from s0 in r(TS). Note that the system,

on which the algorithm is applied, is required to satisfy Assumption 6.1.1-6.3.3,
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otherwise there is no guarantee that deadlocks are detected by Algorithm 1.

Theorem 6.3.2. Let s ∈ g(S) be a deadlock state which is reachable from s0 in

r(TS). Then s is reached from s0 by Algorithm 1.

6.4 Specialization of the Reduction to JPF

In this section, we describe a specialization of the reduction techniques, presented

in this chapter, to JPF. Consider a single process Java application. To model check

such a system, JPF applies a reduction technique which is similar to the approach

by Godefroid [41]. Basically, JPF combines a sequence of bytecode instructions in a

thread, that do not have any effects outside the thread, into a single transition. In a

way, given a transition system TS which describes a single process Java application,

JPF explores the reduced system r(TS).

Every thread of the Java application represents Java code composed of a se-

quence of bytecode instructions. To model a Java application using TS, each ac-

tion is mapped to a bytecode instruction. The set V of visible actions are those

bytecode instructions which involve communication between threads. For example,

consider putfield and getfield which access instance fields [94]. If a field being

accessed by these bytecode instructions is shared, they are treated as visible ac-

tions. Another example of a visible action is a bytecode instruction that invokes

the method java.lang.Object.wait. This method makes the current thread block
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until it gets notified by some other thread. The set of enabled actions in the state

s0 from which the execution of the application starts includes exactly one bytecode

instruction executed by the application’s main thread. This bytecode instruction

is also included in V to satisfy Assumption 6.1.2.

Any other bytecode instruction which is not in V is included in the set I of

invisible actions. Side-effects of bytecode instructions mapped to invisible actions

are only observable within a single thread. For example, a bytecode instruction

that accesses a local variable declared in a method is treated as an invisible ac-

tion. Intuitively, different orderings of actions that access disjoint variables (that

is variables that occupy different memory locations) result in the same state of the

system [2]. Variables accessed by invisible actions of a thread in a Java application

cannot be accessed by any other thread in the system. Hence, Assumption 6.1.3 is

a valid hypothesis.

Assumption 6.1.1 requires threads to be deterministic. For this assump-

tion to hold, the SUTs are restricted to not include any data non-determinism.

Data structures that can assume different values represent data non-determinism.

For example, the method java.util.Random.nextBoolean introduces data non-

determinism, since its return value can be true or false.

Moreover, Assumption 6.1.4 requires an assertion to be a visible action, oth-

erwise it may not be reachable from s0 in the system r(TS). To satisfy this as-
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sumption, we restrict assertions to only involve shared fields since they are accessed

through visible operations. That also implies that invisible actions should not access

variables used in an assertions. Therefore, Assumption 6.1.5 is also a valid hypothe-

sis. Note that JPF includes the property vm.por.field boundaries.break which

is used to specify fields. If a field, f , is specified by this property, then any bytecode

instruction that accesses f is treated as a visible action. Therefore, one can use

this property to check for assertion violations which also involve non-shared fields.

Furthermore, according to Assumption 6.1.6, a thread cannot execute infinitely

many invisible actions. JPF has the property vm.max transition length which

denotes the maximum number of bytecode instructions that form a transition of

r(TS). By default, this property is set to 5000. Once JPF reaches this limit

while executing a transition, it creates a choice generator which includes a choice

associated with every runnable thread in the system. In a way, it creates a global

state and it treats the next action of the current thread as a visible action. Hence,

Assumption 6.1.6 is satisfied by JPF.

In order to model check a single process Java application, JPF constructs the

reduced system r(TS) from the TS that models the application using the above

mapping. From Theorem 6.1.1 and 6.1.2, we can draw the following conclusion.

Conclusion 6.4.1. Consider a single process Java application which does not in-

clude any data non-determinism. Given such an application, JPF can detect all
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deadlocks and assertion violations (involving only shared fields) which are reachable

from the initial state.

We can also use TS to model a distributed Java application composed of a set

P of processes. For a distributed Java application, bytecode instructions, mapped

to visible actions, are partitioned into two disjoint sets, Vl and Vg, which satisfies

Assumption 6.3.2. The set Vl of locally visible actions includes those bytecode

instructions which involve intra-process communication. For example, consider

the bytecode instructions putfield and getfield accessing a shared field and a

bytecode instruction that invokes the method java.lang.Object.wait. Note that

elements of the set Vl for a distributed system can be mapped to visible actions in

a single process Java application.

The set Vg of globally visible actions includes those bytecode instructions which

involve interprocess communication. For distributed Java applications, in which

processes communicate through TCP sockets, Vg includes bytecode instructions

that invoke native methods accessing communication buffers. One example is the

native method java.net.SocketInputStream.socketRead0 which reads the con-

tent of a communication buffer. The execution of the distributed Java application

starts from the initial state s0. The set of actions, denoted by enabled(s0) in TS,

includes exactly one bytecode instruction associated with the main thread of each

process p ∈ P . These bytecode instructions are also in the set Vg, which satisfies
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Assumption 6.1.2. Any other bytecode instructions which are not in Vl or Vg are

included in the set I of invisible actions.

Since Assumption 6.1.4 requires an assertion to be a visible action, for the case

of distributed systems, we limit assertions to only involve shared data including

fields shared between threads of a process and communication buffers data shared

between all processes. Assumption 6.3.1 holds for any distributed Java application.

Consider the reduced system r(TS) which is constructed from TS that models

a distributed Java application. In the system r(TS), Assumption 6.3.3 requires

local transitions of one process to be independent of any transitions that belong

to any other processes. Our class loading model ensures that each process has

exclusive access to its own local data. Our model allows processes to only share

communication buffers. Therefore, any variable accessed by a local transition, t,

of a process cannot be accessed by a transition, t′, that belongs to some other

process in the system. Since t and t′ access disjoint variables, intuitively, they are

independent [2]. Hence, Assumption 6.3.3 is also a valid assumption.

To model check a distributed system which can be modeled by TS using the

above mapping, JPF’s default search strategy explores the reduced system r(TS).

This allows JPF to detect deadlocks and assertions involving shared fields and

communication buffers data. In order to mitigate the state space explosion problem,

our work implements a selective search strategy, presented by Algorithm 1, in JPF.
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Note that when computing branch(s) for a state s and process p, JPF evaluates the

predicate blocked(s, p) to true only if the next transition of a thread of p is either a

blocked or an enabled global transition. JPF uses Algorithm 1 to search the system

r(TS) which models the distributed SUT. From Theorem 6.3.2, we can make the

following conclusion.

Conclusion 6.4.2. Consider a distributed Java application which does not include

any data non-determinism. Given such application, JPF can detect all deadlocks

which are reachable from the initial state.

In Chapter 8, we apply our approach on four distributed Java applications

which do not include any data non-determinism. For these distributed applications,

Assumption 6.1.1-6.3.3 are satisfied. Our POR algorithm can be used as a heuristic

method to check for properties other than deadlocks or where some assumptions

are not satisfied. As a heuristic method, it may not be complete, that is, it may

not detect all the errors, however, it is still useful for reducing prohibitively large

state spaces of systems which cannot be model checked otherwise. As one of our

future plans, we would like to check whether our algorithm can preserve some other

properties such as assertion violations and local deadlocks, which prevent only one

process from progressing.
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7 Communication with External Processes

In Chapter 4, we explained our centralization approach to capture processes of a

distributed system within the model checker, and later in Chapter 5, we described

how their communication is modeled in JPF. However, in some cases, it might not

be feasible to model check the entire distributed SUT. In distributed applications,

a component of the system can be a process representing an external resource such

as a database or a cloud computing service. It is not possible to verify such a

distributed system as a whole if such a process resides on a different machine and

its source code is not available, or it is in a format that is not supported by the

model checker. Moreover, one might not even be interested in checking the states

of the external resources.

For example, consider a Java process communicating with the Google translator

which is a cloud computing service. This Java process may only rely on the trans-

lation results and not be affected by the internal state of the Google translator. To

verify such a system, it suffices to model check the Java process and its commu-
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Figure 7.1: Contrasting different ways used by jpf-nas and jpf-nhandler to handle IPC

nication with the translator. Moreover, there is no need to provide backtracking

of the external service, since regardless of the state of the translator application,

given a translation request, the Java process always receives the same input.

As part of this work, we provide a way in JPF to connect the SUT to external

resources. We have implemented this functionality as a JPF extension called jpf-

nhandler 15. Figure 7.1 contrasts the different ways adopted by the extensions

jpf-nas and jpf-nhandler to capture process communications. In this figure, the

communication channel captured by each extension is labeled by the name of the

15https://bitbucket.org/nastaran/jpf-nhandler
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extension.

The approach implemented in jpf-nhandler is generic since it is not specific to

certain types of communication and resources. This extension is based on trans-

ferring the execution of the SUT from JPF to the host JVM and back. The main

idea is to delegate any call, which involves communication with external processes,

to the host JVM. The next section elaborates on jpf-nhandler, discusses its design

and implementation, and finally, outlines its limitations.

7.1 Delegating Calls in JPF

As explained in Section 2.5.5, the interface MJI of JPF is used to transfer the

execution from the JPF level to the host JVM level. That is achieved through

native peers, the methods of which are associated with the methods of the SUT

classes. Whenever a method associated with a native peer is invoked, the execution

is transferred to the host JVM which executes the native peer. The parts of code

executed on the host JVM are completely invisible to JPF and are not model

checked at all.

The approach taken by jpf-nhandler mainly relies on MJI and native peers.

This extension makes the SUT switch between two different modes of execution,

one mode is within JPF and the other one is within the host JVM. Whenever JPF

encounters certain calls that involve communication with an external process, jpf-
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nhandler intercepts the call and uses MJI to delegate it from JPF to the host JVM.

To delegate the execution, it creates bytecode for native peer classes on-the-fly,

referred to as OTF peer classes from now on. Basically, upon the invocation of

certain methods, jpf-nhandler creates an OTF peer class (if it does not exist yet)

and adds a native peer method, associated with the invoked method, to the OTF

peer class (if it does not exist yet).

The design of jpf-nhandler consists of three main components: the forwarder,

code generator, and converter. The forwarder component identifies and flags the

calls to be delegated by jpf-nhandler. The code generator creates native peer code

on-the-fly upon the invocation of methods flagged by the forwarder. Finally the

converter component translates classes and objects from their JPF representations

to their host JVM representations and back. The converter is used in the body

of OTF peer methods, and it is an essential part of this extension, since the way

that classes and objects are represented in JPF is different from the way that they

are represented in a standard JVM. When the execution switches to a different

mode, relevant classes and objects need to be converted from one environment to

the other.

The actual communication between the SUT and external processes is performed

by the OTF peer methods. Next, we use an example to elaborate on the body of

these methods generated by the code generator component.
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7.1.1 Example

Consider the following Java application that uses the Google translator web ser-

vice16 which translates phrases between natural languages.

1 import com.google.api.GoogleAPI;

2 import com.google.api.translate.*;

3 public class GoogleTranslator {

4 public static void main (String[] args) throws Exception {

5 String link = args[0];

6 String key = args[1]

7 GoogleAPI.setHttpReferrer(link);

8 GoogleAPI.setKey(key);

9 String result = Translate.DEFAULT.execute("Hello", Language.

ENGLISH, Language.FRENCH);

10 }

11 }

This example represents a distributed application composed of a Java process and

the Google translator. Running the example requires two inputs: a Google trans-

late API key17 and a link to associate the service with this program. The state-

ment at line 7 requests translation for the word Hello from English to French.

The execution of this statement leads to the invocation of the method GoogleAPI.

retrieveJSON(URL). This method captures the entire communication between the

Java process and the Google translator. It commences the communication by cre-

ating and sending an HTTP (a protocol to exchange data on the internet) request

16code.google.com/p/google-api-translate-java

17https://developers.google.com/translate/
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 Capturing relevant objects/classes in JVM,
• the object url
• the class GoogleAPI

GoogleAPI.retrieveJSON(url)

jpf-nhandler

                                                                 Host  JVM   

Invoke GoogleAPI.retrieveJSON(url)

SUT

Translate the result from JVM to JPFjpf-core

MJI 1

2

3

Figure 7.2: jpf-nhandler delegates the execution of retrieveJSON(URL) to the JVM level

to the translator, and it returns an object including the result.

Using jpf-nhandler allows for model checking the Java process as the Google

translator executes in its normal environment. To model check this example, we

configure jpf-nhandler to delegate the method retrieveJSON. The delegation of

this call is presented in Figure 7.2. The left side executes on JPF and the right

side represents code generated on-the-fly and executes on the host JVM. Once JPF

gets to the bytecode invoking retrieveJSON, jpf-nhandler generates an OTF peer

method associated with retrieveJSON. This native peer method implements the

following three steps:

S1: First, the converter is used to transform the JPF representation of the class

GoogleAPI and the object url to a corresponding object and class in the host
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JVM.

S2: Then, using the Java reflection API, the execution is delegated to the host JVM

by calling the original method retrieveJSON on the JVM representation of

the class GoogleAPI with the JVM representation of url as its argument. By

executing the method, the connection is established with the translator and

the request is sent to the translator.

S3: Finally, after the method returns, its result, which is an instance of String,

is transformed from its JVM representation to its JPF representation. Once

this step is completed, the OTF peer method terminates and the execution

transfers back to JPF.

The jpf-nhandler distribution comes with a properties file to configure the tool.

To extend the tool’s flexibility, we declare a wide variety of properties outlined in

Table 7.1. One of the properties, nhandler.spec.delegate, is used for specifying

the methods to be delegated. To connect the SUT to an external process, one

should set this property to all the methods that involve communication with the

external process.
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7.1.2 Implementation

This section goes through the implementation details of the jpf-nhandler main

components.

Forwarder

Using the configuration file, the forwarder identifies the methods to be delegated

and makes them trigger jpf-nhandler when invoked on JPF. This component is im-

plemented in the form of a JPF listener. As explained in Section 2.5.4, listeners

run at the same level as JPF and are notified upon certain events, as JPF model

checks the SUT. The forwarder is encapsulated by the class gov.nasa.jpf.vm.

ExecutionForwarder and is triggered upon the event ClassLoaded. Before going

through details, we discuss how JPF implements the association between meth-

ods and their corresponding native peers. The respective classes involved in the

implementation are shown in the UML diagram in Figure 7.3.

JPF uses instances of gov.nasa.jpf.vm.ClassInfo to represent classes.

ClassInfo includes a map, called methods, which keeps track of all the methods

declared in the class. The keys of this map are string representations of the method

signatures. The values of this map are instances of gov.nasa.jpf.vm.MethodInfo

which represents methods in JPF. The class gov.nasa.jpf.vm.NativeMethodInfo
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isUnsatisfiedLinkError(): boolean

DelegatedMethodInfo

MethodInfo

isUnsatisfiedLinkError(): boolean

peer: NativePeer
mth: Method

NativeMethodInfo

methods: Map<String,MethodInfo>

ClassInfo

*

peerClass: Class

NativePeer

Method

Figure 7.3: A UML diagram of the classes involved in associating methods with native peers

is a subclass of MethodInfo and represents those methods associated with native

peer methods. To associate the method with its corresponding native peer method,

NativeMethodInfo declares two fields: peer and mth. The field peer is of type

gov.nasa.jpf.vm.NativePeer which contains the native peer class, and mth is of

type java.lang.reflect.Method which represents the native peer method. When-

ever JPF encounters a call to a method represented by a NativeMethodInfo object,

instead of model checking it, JPF delegates its execution to the host JVM. JPF

uses Java reflection to invoke the method mth of the class PeerClass (declared as

a field in peer) on the host JVM. After the method mth returns, JPF resumes its

model checking effort.

The listener forwarder receives notifications from JPF whenever a class is loaded.
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By the time this notification is received, JPF has already created a ClassInfo ob-

ject that represents the loaded class and initialized its methods. Once the forwarder

is notified, it goes through the collection of MethodInfo objects of the loaded class.

Using the properties file, it checks if the method needs to be delegated. If so,

the forwarder replaces its corresponding MethodInfo object with a gov.nasa.jpf.

vm.DelegatedMethodInfo object. The class DelegatedMethodInfo is a subclass

of NativeMethodInfo. This class is part of jpf-nhandler and is used to specify

methods to be delegated. Figure 7.3 shows this class in regards to JPF classes.

The class NativeMethodInfo contains the method isUnsatisfiedLinkError,

which checks whether there is a corresponding native peer method (i.e., it checks

whether its mth field is null). JPF executes the isUnsatisfiedLinkError method

before it attempts to invoke the native peer method mth. To trigger jpf-nhandler

on-the-fly, in our DelegatedMethodInfo we override the isUnsatisfiedLinkError

method. Consider, for example, the method retrieveJSON from the previous exam-

ple. The first time the method isUnsatisfiedLinkError is invoked on retrieve-

JSON’s DelegatedMethodInfo object, jpf-nhandler creates the corresponding OTF

peer class and method (if they do not already exist) and initializes the fields peer

and mth of the DelegatedMethodInfo object to the OTF peer class and method,

respectively. As a consequence, whenever JPF encounters a call to retrieveJSON,

it delegates the execution of its associated OTF peer method mth to the host JVM.
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Code Generator

The functionality to generate OTF peer classes is implemented in the package

nhandler.peerGen. By default, jpf-nhandler generates both bytecode and Java

code for the OTF peer classes. To generate bytecode, this component uses the

bytecode engineering library (BCEL)18. The OTF peer classes and methods follow

the same naming pattern as the JPF native peer classes and methods, with the

exception that the name of the OTF peer classes is prefixed by OTF . The files

containing the bytecode and Java code generated by jpf-nhandler can be found in

the onthefly directory of jpf-nhandler.

A key class in the package nhandler.peerGen is PeerClassGen. As mentioned

earlier, the method isUnsatisfiedLinkError of DelegatedMethodInfo creates

OTF peer classes. In particular, it uses an instance of PeerClassGen for each

OTF peer class. The diagram in Figure 7.4 shows how a PeerClassGen decides to

generate OTF peer classes and methods.

Before generating the OTF peer class, the PeerClassGen object checks whether

such a class already exists in the onthefly directory. If not, it generates the

OTF peer class. Otherwise, it loads the existing class, and extends it as it gets

to methods, which need to be delegated and whose associated OTF native peer

18commons.apache.org/bcel
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begin

C.m() is 
handled?

OTF for C 
exists?

m() peer OTF 
exists? 

invoke m() peer

end

add m() peer to 
OTF

create OTF 
for C

Yes

Yes

YesNo

No No

Figure 7.4: A UML diagram depicting how PeerClassGen decides to handle a call to the native

method m of the class C

methods are missing. To extend an OTF peer class with an OTF peer method,

the method createMethod(NativeMethodInfo) is invoked on the PeerClassGen

object. If such a method does not already exist, it adds it to the OTF peer class.

The body of the OTF peer method implements similar steps to the ones explained

in Section 7.1 for the call GoogleAPI.retrieveJSON(url).

Note that we can implement similar functionalities in jpf-nhandler without the

need to generate the OTF peer classes at all. That can be accomplished by directly

implementing the invocation of the native method using Java reflection. However,

due to limitations of the tool (discussed in Section 7.1.3), jpf-nhandler may fail

179



to automatically handle a call. In that case, one can modify the generated Java

code to possibly address those limitations, rather than having to start from scratch.

Since generating the bytecode and Java code is expensive, we included a property,

nhandler.clean, to make jpf-nhandler reuse existing OTF peer classes. Later in

this chapter we present results indicating how effective it is to reuse existing classes.

Converter

As mentioned earlier, the way that objects and classes are represented in JPF is

different from the way they are represented by the host JVM. JPF uses the Class-

Info and ElementInfo, in the package gov.nasa.jpf.vm, to represent classes and

objects, respectively. Figure 7.5 contains an example, contrasting the different

representations for a simple object. The way that JPF represents primitive types

(e.g., int and char) is similar to the way adopted by the host JVM.

point: ElementInfo

name: "Point"

ci: ClassInfo

values: {0, 1}

fields: Fields
x: 0
y: 1

point: Point

(a) (b)

11

Figure 7.5: UML diagrams of a Point object represented in a JVM (a) and JPF (b)
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Since jpf-nhandler interacts with the host JVM (steps 1 and 3 in Figure 7.2),

it needs to convert objects and classes from JPF to the host JVM and back. The

converter component is implemented in the package nhandler.conversion. Given

an object or a class in one environment, the converter obtains the entity with the

same state in the other environment. The state of a class is identified by the values

of all static fields declared in the class, and the state of an object is identified by

the values of all non-static fields declared in the object’s class. Consider converting

a JVM object to a JPF object. Conversion is performed recursively. Using the

Java reflection API, the converter goes through the fields of the JVM object and

for each non-primitive field it performs another conversion from JVM to JPF.

However, this generic converter does not work if there is an inconsistency be-

tween a model class and the actual class it models. Since model classes (Sec-

tion 2.5.6) abstract away details from the original ones, they usually do not declare

the same fields as declared in the original classes. However, the converter, explained

above, relies on a one-to-one correspondence between the fields of the model class

and the actual class. To address this issue, the converter uses the abstract factory

design to instantiate objects of type Converter, the subclasses of which implement

type-specific conversions. The factory returns the generic converter if there is no

inconsistency, and a hand crafted converter otherwise. This design is illustrated in

Figure 7.6. The generic converter is captured by two classes, one converts object
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# setStaticFields(Class, ElementInfo, MJIEnv)

# setInstanceFields(Object, ElementInfo, MJIEnv)

# instantiateFrom(Class): Object

JPF2JVMGenericConverter

+ obtainJVMCls (int, MJIEnv): Class

+ obtainJVMObj(int, MJIEnv): Object

+ updateJPFObj (Object, int, MJIEnv)

# setJVMClassFields(Class, ElementInfo, MJIEnv)

# setJVMObjFields(Object, ElementInfo, MJIEnv)

JVM2JPFConverter

# setStaticFields(Class, ElementInfo, MJIEnv)

# setInstanceFields(Object, ElementInfo, MJIEnv)

JVM2JPFGenericConverter

# setStaticFields(Class, ElementInfo, MJIEnv)

# setInstanceFields(Object, ElementInfo, MJIEnv)

JVM2JPF_java_util_Random_Converter

# setStaticFields(Class, ElementInfo, MJIEnv)

# setInstanceFields(Object, ElementInfo, MJIEnv)

# instantiateFrom(Class): Object

JPF2JVM_Java_util_Random_Converter

+ init()

+ reset(MJIEnv env)

# resetState: boolean

# objMapJPF2JVM: ValueIdentityHashMap<Integer, Object>

# classMapJPF2JVM: ValueIdentityHashMap<Integer, Class>

Converter

nhandler.conversion.jpf2jvm nhandler.conversion.jvm2jpf

+ obtainJVMCls (int, MJIEnv): Class

+ obtainJVMObj(int, MJIEnv): Object

# setJVMClassFields(Class, ElementInfo, MJIEnv)

# setJVMObjFields(Object, ElementInfo, MJIEnv)

# instantiateFrom(Class): Object

JPF2JVMConverter

nhandler.conversion

Figure 7.6: UML diagram representing classes that implement the converter component

and classes from JPF to the host JVM, and the other one does the conversion from

the host JVM to JPF. Similarly, each hand crafted converter is encapsulated by

two types. For example, since the java.util.Random model class and the actual

class do not declare the same fields, the factory returns a hand crafted converter,

implemented by JPF2JVM java util Random Converter and JVM2JPF java util -
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Random Converter.

7.1.3 Limitations

There are some limitations to jpf-nhandler which are outlined in this section. Native

code can modify arbitrary objects and classes through JNI. Currently, we only

reflect in JPF the changes made by the native code to some objects and classes. For

example, consider the call GoogleAPI.retrieveJSON(url). Only changes made

to the object url, its declaring class java.net.URL, and the class GoogleAPI are

reflected in JPF. However, if the method were to change any other objects or classes,

those changes would not be reflected in their corresponding JPF representations.

This can be partly addressed by enhancing the generated code.

Moreover, delegation of a method to the host JVM amounts to the assumption

that its execution is atomic. For example, consider an application consisting of two

threads that share an integer variable x which is initialized to zero. The one thread

simply consists of the statement assert x % 2 == 0. The other thread calls a

method whose body consists of x++; x++;. JPF detects an uncaught exception,

since there exists an interleaving of the two threads in which the assertion is not

true. But, by delegating the method to the host JVM, it is assumed to be atomic,

and JPF misses an assertion error. However, we focus on detecting errors, not on

proving that code is error free. Using jpf-nhandler we can exercise some possible
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executions of code that without jpf-nhandler requires huge modeling effort of the

user in order to be checked by JPF.

To explore all potential executions of an application, JPF may backtrack to

states that have been already visited. That causes jpf-nhandler to delegate a

method multiple times which can lead to undesirable consequences. Consider, for

example, an application that adds an entry to a database. To avoid a call from

being delegated more than once, we intend in future work, to use a cache to record

the effects of a delegated method call. If JPF encounters the same call later, we

simply reflect the cached effects in JPF.

7.2 Tool Demonstration

Consider the example presented in Section 7.1.1. As mentioned earlier, to model

check this example, we configure jpf-nhandler to delegate the call GoogleAPI.

retrieveJSON(url). To use our extension, we run JPF on the following application

properties file, with extension .jpf, which also includes the tool configuration.

1 @using = jpf-nhandler

2 target = GoogleTranslator

3 nhandler.spec.delegate = com.google.api.GoogleAPI.retrieveJSON

4 nhandler.genSource = true

The first line makes JPF use jpf-nhandler. The second line specifies the initial

class of the target application. The third line tells jpf-nhandler to delegate the
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call retrieveJSON. Finally, by setting getSource to true, the source for the OTF

peer of GoogleAPI is generated which includes the following OTF peer method

associated with retrieveJSON.

1 public static int

retrieveJSON__Ljava_net_URL_2__Lorg_json_JSONObject_2 (MJIEnv env

, int rcls, int arg0) throws Exception {

2 ConverterBase.reset(env);

3 Class<?> caller = JPF2JVMConverter.obtainJVMCls(rcls, env);

4 Object argValue[] = new Object[1];

5 argValue[0] = JPF2JVMConverter.obtainJVMObj(arg0, env);

6 Class<?> argType[] = new Class[1];

7 argType[0] = Class.forName("java.net.URL");

8 Method method = caller.getDeclaredMethod("retrieveJSON", argType);

9 method.setAccessible(true);

10 Object returnValue = method.invoke(null, argValue);

11 int JPFObj = JVM2JPFConverter.obtainJPFObj(returnValue, env);

12 JVM2JPFConverter.obtainJPFCls(caller, env);

13 JVM2JPFConverter.updateJPFObj(argValue[0], arg0, env);

14 return JPFObj;

15 }

Lines 3 and 5 obtain JVM representations of GoogleAPI and url, respectively.

After the method retrieveJSON is retrieved (line 8), at line 10, using Java reflec-

tion, it is invoked on the host JVM. Once the method returns, at line 11, its return

value is converted to its JPF representation. Next, at lines 12 and 13, it updates the

JPF representations of the caller class (GoogleAPI) and the input parameter (url),

respectively. Finally, once the OTF peer method returns the JPF representation

of the delegated method return value (line 14), the execution transfers to the JPF

environment, and JPF proceeds by executing the next bytecode instruction.
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As mentioned earlier, providing the source code of the OTF peers allows for

refining the automatically generated code and possibly addressing some limitations.

The refined OTF peer can be compiled using the script, compileOTF, provided in

the bin directory of jpf-nhandler.

In this chapter we specifically use jpf-nhandler to capture communications with

processes and services running outside of the model checker. However, by appro-

priately configuring jpf-nhandler, it can be used for different applications which are

not the focus of this thesis. One such application, which is the main motivation

behind the development of the tool, is to handle native calls. Recently, our tool has

been used in verifying a prototypical next-generation air traffic controller system,

Autoresolver, at NASA, to handle native calls.

Table 7.1 outlines the properties declared in jpf-nhandler. One can set these

properties in the jpf-nhandler properties file to configure the tool. If a property is

not set, the default value presented in the second column is used instead. Consider

the last six properties outlined in the table. If the specification of a method matches

the value of more than one of these properties, jpf-nhandler gives priority to the

property that appears last in the table.

186



property default description

nhandler.clean true If false, jpf-nhandler reuses the OTF peers
created in previous runs. Otherwise these
OTF peers are removed

nhandler.resetVM-

State

true If false, upon each delegation, jpf-
nhandler reuses the JVM objects created
in previous delegations

nhandler.genSource false If true, the source code for OTF peers is
created along with bytecode

nhandler.

updateJPFState

true If false, jpf-nhandler does not update the
JPF objects after the native call returns
on the host JVM

nhandler.delegate-

UnhandledNative

false If true, jpf-nhandler delegates all unhan-
dled native calls

nhandler.skipNative false If true, the OTF peer methods for unhan-
dled native calls become empty methods
returning default values

nhandler.spec.

delegate

null Any method that matches this specifica-
tion is delegated by jpf-nhandler, e.g., us-
ing java.lang.String.*, all methods of
String are delegated

nhandler.spec.

delegateNative

null Any native method that matches this
specification is delegated by jpf-nhandler

nhandler.spec.skip null The OTF peer for any method that
matches this specification becomes an
empty method that returns a default value

nhandler.spec.

filter

null Any method that matches this specifica-
tion is not handled by jpf-nhandler

Table 7.1: The list of properties to configure jpf-nhandler

We were able to apply jpf-nhandler on several examples to successfully model

check a Java process connecting to an external service. Here, we outline a few such

examples.
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Querying a Database - jpf-nhandler applied on a Java application, that con-

nects to an Apache Derby database19, creates a new table, inserts two records

into the table, and finally closes the connection to the database. By delegat-

ing calls that involve querying the database, jpf-nhandler model checked the

Java process as it is connected to a database outside of the model checker.

Scraping the Web - We have developed a web scraper which simply reads the

HTML of a web page. By configuring jpf-nhandler appropriately, we success-

fully model checked the Java process connecting to the web.

Communicating using Sockets - Using jpf-nhandler, we were able to model

check a Java application composed of a server and a client that communi-

cate through sockets. We ran the server on one machine and model checked

the client on another machine.

Communicating using JGroups - Red Hat’s JGroups20 provides a framework

for reliable multicast communication. In our example, two applications com-

municate by using an org.jgroups.JChannel. One application sends a mes-

sage which is received by the other one. Using jpf-nhandler, we ran the re-

ceiver on one machine while model checking the sender on another machine.

19db.apache.org/derby

20www.jgroups.org
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7.3 Correctness and Experimental Results

To verify jpf-nhandler, we selected four Java types which are not subject to the

limitations outlined in Section 7.1.3. These types are outlined in the first column

of Table 7.2. For each type we used a class including a test suite that checks the

correctness of methods declared by the type. These test suites are based on tests

developed for verifying standard Java libraries and they all pass when running on a

standard JVM. The tests used in our experiments are released either as part of the

Java specification requests (JSRs) or under the Apache software foundation (ASF)

license.

To test our tool, we ran JPF on each test suite using jpf-nhandler. For each

type, jpf-nhandler was configured to delegate all the methods declared by the type.

We applied jpf-nhandler with two different settings: In setting A, it generated OTF

peers, and in setting B, it reused the OTF peers created in previous runs. All the

tests ran successfully.

We also ran jpf-core (without using jpf-nhandler) on the same test suites and

all tests passed. Using the results from this setting, we could see how expensive

delegation of calls in jpf-nhandler is compared to executing them normally in the

JPF environment. Table 7.2 presents our results which are the average of ten runs.

The time measurements are in milliseconds. The standard deviation is small, on
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average 14 ms. The second column includes times from running JPF without using

our extension. The third and fourth columns present times from running JPF with

jpf-nhandler, using settings A and B, respectively. The overhead from the settings

A and B are shown in the columns overheadA and overheadB, respectively. Our

results show, on average, when reusing the OTF peers, the overhead is almost two

times less than the overhead when jpf-nhandler generates the peers.

type core(ms) nhandler(ms) reuse peer(ms) overheadA overheadB

lang.String 3767 4582 4038 21% 7%

lang.Math 6169 6974 6574 13% 6%

lang.reflect.Array 44406 5007 4802 13% 8%

util.concurrent-

.atomic.AtomicLong

4250 4719 4485 11% 5%

Table 7.2: Results representing the overhead of jpf-nhandler

7.4 Related Work

The work most closely related to ours is that of d’Amorim et al. [95]. Although their

extension of JPF also model checks some parts of the code and executes the other

parts of the code, their objective is reducing the execution time of JPF. Although

they have a different objective, their approach shares several ingredients with ours.
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First of all, they also translate JPF objects to JVM objects and back. However,

their translations have several limitations from which ours does not suffer. For

example, their translation from JPF objects to JVM objects handles neither arrays

nor instances of classes without a default constructor. In our case studies, we have

to handle both. Secondly, they also use reflection to invoke methods on the host

JVM. Whereas they only handle methods, we also deal with several other elements

of Java such as constructors and static initializers.

Moreover, the approaches that use caching to model check distributed applica-

tions [76, 77, 78] are similar in flavour to jpf-nhandler. They also model check the

SUT as it communicates with external processes. Unlike cache-based techniques,

our approach does not provide backtracking for external processes. As mentioned

earlier (see Section 3.1), the cache-based techniques introduce a cache layer that

keeps track of communications between the SUT and the external processes. Using

the cache, they keep the SUT in synchronization with the external processes. The

existing cache-based techniques can only support socket-based communication over

a network, whereas, the automatic technique adopted by jpf-nhandler is generic

and it is not limited to network communications, e.g., we have applied jpf-nhandler

to capture communication with external databases, web pages, and cloud comput-

ing services (see Section 7.2). Note that one can extend cache-based approaches

to account for more types of communications. However, that requires manually
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modeling their respective classes which is time consuming and error prone.

Gligoric and Majumdar [96] have developed DPF, an extension of JPF to model

check database applications. They consider both in-memory databases and on-

disk H221 databases. In their approach they reimplemented methods accessing

the database. In Section 7.2, we already mentioned that jpf-nhandler can deal

with a simple database application without having to reimplement any Java class.

However, unlike their approach, jpf-nhandler is not able to keep the SUT in syn-

chronization with the changes to the database when backtracking.

21h2database.com
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8 Results

In this chapter, we apply our approach on several Java applications. We compare

our approach with the most recent work based on centralization at the SUT level [80,

84]. This work is most similar to ours since it merges processes of a distributed

SUT into one and supports socket-based interprocess communication. Moreover,

this work uses JPF to model check four distributed Java applications. In our

experiments, we use the same Java applications as SUTs , the source code of which

is provided by Artho et al. Table 8.1 outlines these applications. The second

column presents the size of each application in terms of lines of code. All the

applications follow the server/client architecture. The simplest application is Echo

in which both the server process and the client process are single threaded, whereas

the most complex application is Alphabet in which both the server process and

the client process are multithreaded. The last column of the table presents the

maximum number of threads used for each application in our experiments.

We model check these applications using JPF in two different settings. One
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application size (loc) server characteristics client characteristics max #threads

Echo 96 single-threaded single-threaded 2

Daytime 72 single-threaded single-threaded 6

Chat 134 multithreaded single-threaded 5

Alphabet 162 multithreaded multithreaded 9

Table 8.1: Java Applications used in are experiments

setting is referred to as centralized-jpf which applies our approach. In this setting,

JPF is configured to run in the multiprocess mode, i.e., it uses the multiprocess

VM and the distributed scheduler factory. It is also configured to use our jpf-nas

extension. In the centralized-jpf setting, the original Java code of the distributed

Java applications are fed to the model checker as SUTs. The distributed applica-

tions used in our experiments require that the server process always initiates the

executions, otherwise, an exception of type IOException is thrown. To allow for

only those executions which start with a particular process, the property vm.nas.

initiating target was introduced in jpf-nas. In centralized-jpf, this property

is set to the server process to let only the server main thread proceed from the

initial state. Moreover, the property vm.process finalizers is set to true to en-

able finalizers which are essential to capture certain executions of the distributed

applications.

The other setting is referred to as centralized-sut. To model check the distributed
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applications in this setting, first, using centralization at the SUT level [80, 84],

these applications are transformed into single process, multithreaded, applications.

Then, the transformed applications are fed to JPF as SUTs. In this setting, JPF

is configured to run in the single process mode, i.e., it uses the single process VM

and the default scheduler factory. To handle the communication between processes,

the centralization at the SUT approach models some classes from the java.io and

java.net packages. This approach requires JPF to use these classes as alternatives

to the existing JPF model classes and also alternatives to classes from the Java

standard library. That is achieved by setting the JPF property vm.boot classpath

to the path of these classes.

All the experiments were performed on a Mac OS X machine with a 2.8 GHz

Intel Core i7 processor and 16 GB 1600 MHz DDR3 memory. For these experiments,

we used the Java version 1.7.0 51 of Java and the Java HotSpot(TM) 64-Bit Server

VM.

Previous studies reveal that there are various factors that impact the over-

all performance of Java applications [97, 98]. One factor is Just-In-Time (JIT)

compilation [99] performed by the JVM. JIT compilation identifies those parts of

bytecode which are frequently executed, usually referred to as hotspots. To improve

the performance, JIT translates those parts into optimized native code during the

execution. Applying JIT compilation can also affect the time intervals at which
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the garbage collection occurs. The effect of the garbage collection on the memory

system performance is another factor that affects the overall performance. When

performing the experiments, we also observed impacts on the model checking time.

To run our experiments, we developed a driver that repeats each experiment

13 times. After each time JPF returns, the garbage collection of Java is invoked

(System.gc()) to clean up the memory before the next run. Observing the data

shows that the performance improves after the first few iterations of the loop. In all

the experiments, the first run is slower which is mainly due to static initializations.

In the majority of the cases, there is still a noticeable time difference between the

next couple of runs and the rest of the runs which is explained by the effect of JIT

compilation. In our analysis, we always disregard the first 3 runs since according to

our observation, in most cases, the execution times become more consistent after

the second or third run. The time provided for each experiment is the average of

the last 10 runs.

Next, we present, and discuss the results obtained from applying JPF in the two

settings. For each Java application, we provide the execution time in milliseconds,

which represents average of ten runs, along with a standard deviation. We also

provide the total number of states explored by the model checker which represents

the size of the state spaces. Moreover, for each experiment, we present the total

number of bytecode instructions executed by the JVM of JPF during the entire
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model checking process.

Furthermore, the depth of the JPF search tree, in terms of number transitions,

explored by the model checker is presented for each experiment. In our experiments,

we use the default search algorithm of JPF to explore the state space which is depth-

first search (DFS). If a bug is detected, the approach with the shallower search graph

provides shorter execution paths leading to the bug. This makes understanding the

bug easier.

We also use a listener, called gov.nasa.jpf.listener.StateSpaceAnalyzer,

to collect information about the choices explored during the model checking process.

Using this information, we identify the main factors that contribute to the size of

the state space in both approaches. We also compare the scalability of our approach

versus the other approach in terms of different variables such as number of processes

and number of messages exchanged between processes. Finally, we present the

memory consumption of each approach by providing the maximum amount of heap

memory, in megabytes, occupied during the entire model checking process.

8.1 Echo Example

In our first experiment, we use an application called Echo. It consists of one server

process and one client process. These processes are single-threaded and use TCP

sockets to communicate. Once a connection between them is established, the client
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sends some messages to the server and the server sends the same messages back to

the client in the same order.

Applying our approach on the Echo application reported a deadlock which was

not detected when JPF was applied in the centralized-sut setting. Consider the

following two code snippets which present part of the server and the client code,

respectively.

1 public class Server {

2 ...

3 while (!done) {

4 try {

5 socket = server.accept();

6 ...

7 while ((msg = in.readLine()) != null) {

8 out.write(msg + "\n");

9 ...

10 }

11 ...

12 done = true;

13 } catch(IOException e) {

14 System.err.println(e);

15 } finally {

16 ...

17 if (socket != null) {

18 socket.close();

19 }

20 }

21 }

1 public class Client {

2 ...

3 socket.connect(address);

4 ...

5 out.write (msg);
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6 while ((n++ < num_of_msgs) && (line = in.readLine()) != null) {

7 ...

8 }

9 out.close()

10 }

The error trace produced by the model checker is illustrated in Figure 8.1, which

is an execution path leading to a deadlock. This execution belongs to a run in

which the client sends one message to the server. We use s.i and c.i to denote

the ith statement of the server and the client code snippets presented above. In

this execution, after the connection is established (c.3), the client sends a message

to the server (c.5), and blocks by attempting to read (c.6) until the server writes

something. Then, the server proceeds by reading the message sent earlier from the

client (s.7) and writes the same message back to the client (s.8). The maximum

number of passes through the while loop in the client code is the same as the

number of messages sent to the server, which is one in this example. Therefore,

the client does not go through the loop again, and it terminates after closing the

socket (c.9).

Upon termination, the finalizer thread invokes the finalize() method on the

socket which closes the socket if it has not been closed yet. Next, since the server

attempts to read from a broken connection (s.7), an exception of type Socket-

Exception is thrown. Since SocketException is a subclass of IOException, the

exception is caught at s.13. Then, the server closes the socket, and since the
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Client

  c.3: socket.connect()
 c.5: out.write(...)
 c.6: in.readLine()

 c.9: out.close()
 c.10: client terminates
 termination: finalizer
                     socket.finalize()

s.5: server.accept()

Server

s.7: in.readLine()
s.8: out.write(...)

      // read from closed socket 
s.7: in.readLine()
         throw SocketException
s.13: catch(IOException e) {…}
s.18: socket.close
s.7: server.accept()

this accept() never receives a 
client request, therefore, server 
waits forever

Figure 8.1: An execution of the Echo application leading to a deadlock

while loop condition evaluates to true, it goes through the loop again and executes

server.accept() (s.5). This blocks the server until a connection request is received

from a client. However, there is no client, and thus, the server blocks forever.

Looking into the code used by the centralization approach at the SUT level

reveals that missed paths are caused by lack of precision in their model classes.

Reading from a broken connection leads to an exception of type SocketException.

This scenario is not captured by their model classes. To fix the bug, we included a

catch block for the type SocketException as follows.

1 public class Server {
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2 ...

3 while (!done) {

4 try {

5 socket = server.accept();

6 ...

7 while ((msg = in.readLine()) != null) {

8 ...

9 }

10 ...

11 } catch(SocketException e) {

12 done = true;

13 } catch(IOException e) {

14 ...

15 } finally {

16 ...

17 }

18 }

The only way the server can get to the SocketException catch block is read-

ing from a broken connection. This implies that the connection has been estab-

lished with the client at some point in the past, and therefore further execution

of server.accept() leads to deadlock. By setting done to true in the Socket-

Exception catch block, the server never gets to server.accept() again, and thus

the deadlock is avoided.

In this experiment, we model checked Echo in two different settings: centralized-

jpf and centralized-sut. In each setting, the experiment was performed with different

numbers of messages, ranging from one to ten, sent from the client to the server.

The experiment for each message was repeated ten times. The size of the SUT

code for centralized-jpf and centralized-sut is 77 and 74 classes, respectively. These
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numbers are the total number of classes loaded by the VM of JPF through dynamic

linking applied by the class-loading model. The centralization approach at the SUT

level simplifies modeling of the java.net package by merging the implementation

of a hierarchy of classes into one class, and therefore ends up using fewer classes.

Table 8.2 presents the execution times in milliseconds along with the standard

deviations obtained from applying both approaches. The last column of the table

presents the ratio of the execution time in the centralized-sut setting to the time

obtained when applying centralized-jpf. The ratios show that, in every case, our

approach has better performance. Moreover, the nonlinear increase in ratios shows

that as the number of interactions between processes increases the overhead of their

approach versus our approach becomes more significant.

The data presented in Table 8.3 is also obtained from model checking Echo.

The first two sections of the table include the size of the state space, the number

of bytecode instructions executed by the JVM of JPF, and the depth of the JPF

search tree, respectively. Later in this chapter, we demonstrate this effect by

seeding the SUTs with bugs (Section 8.5). The values outlined in the last column

of each section of the table represent ratios of the centralized-sut values to the

centralized-jpf values.

The results show that our approach is more efficient. In all cases, our approach

leads to the smaller states spaces, fewer bytecode instructions, and shallower search

202



#echos
centralized-jpf centralized-sut

time ratio
time (ms) st.dev time (ms) st.dev

1 121 22 204 24 1.7

2 131 27 489 8 3.8

3 144 26 1046 11 7.3

4 152 22 1848 7 12.2

5 165 23 2869 13 17.4

6 180 25 4032 20 22.4

7 197 22 5317 22 27

8 221 23 7107 36 32.2

9 239 23 9228 36 38.6

10 264 25 11053 27 41.9

Table 8.2: Execution times obtained from model checking Echo

trees. It can be seen that the difference in the size of the state space becomes

pronounced as the number of network interactions increases. One of the main

factors that amounts to this difference is the way that communication channels are

modeled. In our approach, the communication buffers exist on the host JVM level

and are hidden from the SUT. In the centralization at the SUT level, the objects

that capture communication buffers exist at the SUT level. They are modeled as

shared objects between processes.

Note that the set of model classes used for this experiment in the centralized-

sut setting are specific to this particular Java application. The mechanism used

by these model classes to interleave threads upon network interactions is through
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#echos
#states #bytecode max depth

centralized-jpf centralized-sut ratio centralized-jpf centralized-sut ratio centralized-jpf centralized-sut ratio

1 21 460 22 11237 230677 20.5 12 29 2.4

2 39 1519 39 16356 772744 47.2 14 54 3.9

3 60 3532 59 25098 1812712 72.2 16 83 5.2

4 85 6148 72 37464 3164913 84.5 18 110 6.1

5 114 9484 83 54434 4891326 89.9 20 137 6.9

6 147 13199 90 75866 6810049 89.8 22 162 7.4

7 184 18316 100 105256 9467057 89.9 24 191 8

8 225 24269 108 141680 12560364 88.7 26 220 8.5

9 270 30541 113 184371 15813404 85.8 28 247 8.8

10 319 37168 117 234254 19260655 82.2 30 273 9.1

Table 8.3: Data obtained from model checking the Echo application

accessing shared attributes. Communication buffers are encapsulated by a static

array, which is declared in the java.io.InputStream model class and shared be-

tween the processes. Every time an array element is accessed (for example for some

internal check) a new choice generator is created from which all the threads in the

system can proceed.

To verify the justification above, we configured JPF to use the listener

gov.nasa.jpf.listener.StateSpaceAnalyzer. This listener collects information

about the choice generators created during the model checking process. Table 8.4

shows the total number of choices explored by JPF and the percentages of choices

created due to socket accesses. It can be seen that, in the centralization at the SUT

level, reading from and writing to sockets contribute a large portion of the state

204



space.

setting
1 echo 3 echos

#total #buffer %buffer #total #buffer %buffer

centralized-jpf 24 9 %38 72 35 %49

centralized-sut 1083 974 %90 8641 8236 %95

setting
6 echoes 10 echoes

#total #buffer %buffer #total #buffer %buffer

centralized-jpf 180 104 %58 394 252 %64

centralized-sut 32630 31499 %97 92302 89600 %97

Table 8.4: Information on choices generated due to accesses of communication buffers for Echo
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Figure 8.2: Number of states explored when model checking Echo in the centralized-jpf and

centralized-sut settings
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Figure 8.3: Number of bytecode instructions executed when model checking Echo in the

centralized-jpf and centralized-sut settings
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Figure 8.4: The depth of the search tree explored when model checking Echo in the centralized-jpf

and centralized-sut settings
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The graphs presented in Figure 8.2, 8.3, and 8.4 show how the approaches scale,

in terms of the size of the state space, the number of bytecode instructions, and

the depth of the search tree, as the number of communications between processes

increases. It can be seen that our approach scales significantly better than the other

approach.

8.2 Daytime Example

For our second experiment, we used the Daytime application. It includes a server

which communicates with one or more clients. The server and the client processes

are single-threaded and use TCP sockets to communicate. Once a connection be-

tween the server and a client is established, the server creates a java.util.Date

object, capturing the current time, and sends its String representation to the client.

The server repeats the same procedure for every client and can only serve one client

at a time. When serving a client, the remaining clients block until a connection

with the server is established.

We applied JPF on this application using centralized-jpf and centralized-sut

settings. The size of the SUT code for centralized-jpf and centralized-sut is 83 and

89 classes, respectively. The reason for having more classes in centralized-sut is

that it declares some helper classes which are used by the java.net model. The

experiment is performed with different numbers of clients ranging from one to five.
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Table 8.5 presents the execution times in milliseconds along with the standard

deviations obtained from applying both approaches.

The ratios, presented in the last column of the table, show that overall, the

performance of our approach is better. Even though the experiment performed

with one client is faster when using the other approach, we can still conclude that

overall, our approach exhibits a better performance, since the standard deviation in

this experiment is high compared to the rest of the experiments. For instance, in the

centralized-jpf setting, for the experiment with one client, the standard deviation

is about 19% of the average execution time, whereas in the experiments performed

with three or more clients, the standard deviation is less than 1% of the average

execution times.

#clients
centralized-jpf centralized-sut

time ratio
time (ms) st.dev time (ms) st.dev

1 126 24.4 121 10 0.96

2 369 46 1396 16 3.8

3 5750 38 31141 83 5.4

4 142880 379 632300 1742 4.4

5 2848372 8689 10648446 39529 3.7

Table 8.5: Execution times obtained from model checking Daytime

The data presented in Table 8.6 is also obtained from model checking Daytime.

In every case, centralization at the model checker level results in a smaller state

208



space, fewer bytecode instructions, and a shallower search graph.

#clients
#states #bytecode max depth

centralized-jpf centralized-sut ratio centralized-jpf centralized-sut ratio centralized-jpf centralized-sut ratio

1 20 144 7 18035 85643 5 9 19 2.1

2 367 2848 8 303011 2507243 8 17 37 2.2

3 7648 47452 6 6535605 57611690 9 25 54 2.2

4 310789 703912 5 147481441 1096959361 7 33 71 2.2

5 2413212 9700480 4 2764883787 18492964176 7 41 88 2.1

Table 8.6: Data obtained from model checking the Daytime application

The set of model classes used for this example in the centralized-sut setting

uses Object.wait() and Object.notify() operations to interleave processes upon

network interactions. These model classes are developed to model the package

java.net. The communication buffers captured by these model classes exist at the

SUT level. They are encapsulated by attributes of types java.io.PipedInput-

Stream and java.io.PipedOutputStream declared in the Socket model class, i.e.

socket writes to its PipedOutputStream object and reads from its PipedInput-

Stream object which are read and written, respectively, through the socket at the

other end of the connection. The same set of model classes is used for the remain-

ing experiments (on the applications Chat and Alphabet in Section 8.3 and 8.4)

performed in the centralized-sut setting.

Using the listener StateSpaceAnalyzer, we obtained information about choices

created to model check Daytime in both settings. Table 8.7 compares the choices
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created due to accessing communication buffers. The results show that accessing

communication buffers kept at the SUT level amounts to large state spaces in the

centralized-sut setting.

setting
2 clients 3 clients

#total ratio #buffer ratio #total ratio #buffer ratio

centralized-jpf 579
14.8

91
42.7

14503
12.2

21111
44.3

centralized-sut 8569 3884 176789 93509

setting
4 clients 5 clients

#total ratio #buffer ratio #total ratio #buffer ratio

centralized-jpf 312663
10

45811
33.2

5605777
9

813355
27.7

centralized-sut 3135127 1520259 50436635 22554169

Table 8.7: The percentages of choices generated due to access communication buffers for Daytime

The graphs presented in Figure 8.5, 8.6, and 8.7 show how the approaches scale,

in terms of the size of the state space, the number of bytecode instructions, and

the depth of the search tree, as the number of clients increases. It can be seen that

also in this experiment, our approach scales better than the other approach.
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Figure 8.5: Number of states explored when model checking Daytime in the centralized-jpf and

centralized-sut settings
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Figure 8.6: Number of bytecode instructions executed when model checking Daytime in the

centralized-jpf and centralized-sut settings
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Figure 8.7: The depth of the search tree explored when model checking Daytime in the centralized-

jpf and centralized-sut settings

8.3 Chat Example

Our next experiment is performed on the Chat application. It contains one server

that communicates with one or more clients. The server is multithreaded, whereas

the clients are single threaded. They use TCP sockets to communicate. In this

application, the clients interact with each other through the server, and each in-

teraction between them is handled by a particular thread, referred to as a worker.

The server main thread listens to incoming connection requests from clients. Once

a connection is established with a client, it creates a worker thread to handle inter-

actions with that particular client. This way, more than one client can be served at
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the same time. When the worker thread receives a message from the client, it sends

it to every other client in the system. The worker threads use a shared array to

send a message to the other clients. The array stores references to all the workers.

Using these references, the worker obtains the sockets connecting the chat server

to each client.

One of the input parameters of Chat is the size of the array that keeps references

to the worker threads. The maximum number of workers that can simultaneously

serve clients is the same as the size of the array. We perform the experiments on

Chat using different numbers of clients and different sizes for the workers array.

Table 8.8 presents the execution times in milliseconds along with the standard

deviation obtained from applying both approaches. Overall, our approach exhibits

better performance.

In the first experiment presented in Table 8.8, the execution time of the other

approach is smaller. However, the standard deviation in this experiment is high

compared to the rest of the experiments. For instance, in the centralized-jpf set-

ting, for the first experiment, the standard deviation is about 17% of the average

execution time, whereas in the last two experiments performed successfully, the

standard deviation is less than 1% of the average execution times. Therefore, it

can be concluded that in general, our approach performs better.

The data presented in Table 8.9 is also obtained from model checking Chat in the
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#clients/#workers
centralized-jpf centralized-sut

time ratio
time (ms) st.dev time (ms) st.dev

1c/1w 160 28 150 10 0.9

2c/1w 1865 49 13952 39 7.5

3c/1w 71146 160 1279186 4038 18

2c/2w 78956 208 722864 2087 9.2

3c/3w out of memory out of memory -

Table 8.8: Execution times obtained from model checking Chat

centralized-jpf and centralized-sut settings. The first three experiments presented

in the table are performed with one, two and three clients, respectively. In all three

of them, a worker array of size one is used. This means that only one client can be

served at a time. If there are more clients that need to be served, they wait until

the last worker terminates, and a space in the array becomes available for a new

worker. The last experiment presented in the table is performed with two clients

and a worker array of size two. In this experiment, the maximum number of clients

to be served simultaneously is two. When verifying the Chat example with three

clients and a worker array of size three, the host JVM runs out of memory, due to

the infamous state space explosion problem.

It can be seen from Table 8.9 that our approach leads to smaller state spaces and

shallower search graphs, and executes less bytecode instructions. In this application,

there are two factors that contribute to this difference. As mentioned earlier, one
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factor is that, in our approach, the communication buffers are hidden from the

model checker, whereas in centralized-sut they exist at the SUT level and therefore,

contribute more to the size of the state space.

#clients/#workers
#states #bytecode max depth

centralized-jpf centralized-sut ratio centralized-jpf centralized-sut ratio centralized-jpf centralized-sut ratio

1c/1w 73 192 3 26506 55774 2 14 24 1.7

1c/2w 3148 22841 7 981094 8022851 8 46 77 1.7

1c/3w 93016 1691302 18 28202807 573027106 20 77 123 1.6

2c/2w 139056 1271696 9 30087951 467362721 16 73 101 1.4

Table 8.9: Data obtained from model checking the Chat application

Another factor that improves the results obtained from our approach is the

POR technique (see Section 5.2.2). This factor did not play a role in the previous

examples since they only include single-threaded processes. For operations that do

not have any effect outside of the process, for example accessing a shared field, our

approach interleaves only the threads that belong to the process by creating a local

choice generator. Therefore, an access to the shared array that stores workers in

the centralized-sut setting leads to more choices compared to the centralized-jpf

setting. In the case of centralized-sut, a global choice generator is created from

which all threads in the system, including the clients’ main threads, can proceed.

In the case of centralized-jpf, a local choice generator is generated from which only

the server’s main thread and the worker threads can proceed.

Table 8.10 presents information on the choices explored by JPF which is ob-

215



tained by applying the listener StateSpaceAnalyzer. This table includes a section

for each experiment. Similar to Table 8.7, the columns #total and #buffer rep-

resent the total number of explored choices and the number of choices created by

accessing communication channels. The column #server represents the total num-

ber of choices created within the server code. This number does not include those

choices created to capture network communications. The next column is the ratio

of the #server value obtained in the centralized-sut setting to the #server value

obtained in centralized-jpf.

As can be seen from the table, in the majority of the cases, the ratio for #buffer

is higher than the ratio for #total. This implies that the model of communication

at the SUT level is leading to larger state spaces. Moreover, in most of the

cases, the ratio for #server is higher than the ratio for #total. This also shows the

effectiveness of the POR technique.

setting
1c/1w 2c/1w

#total ratio #buffer ratio #server ratio #total ratio #buffer ratio #server ratio

centralized-jpf 100
5

21
4.2

24
8.5

5571
14.6

937
24.3

1561
20

centralized-sut 498 89 204 81142 22813 31245

setting
3c/1w 2c/2w

#total ratio #buffer ratio #server ratio #total ratio #buffer ratio #server ratio

centralized-jpf 194191
36.1

42950
53.2

62666
41.9

258666
14.7

85664
19.7

98440
12.7

centralized-sut 7004299 2287002 2623778 3807778 1688283 1252509

Table 8.10: Information on choices generated due to access communication buffers for Chat
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The graphs presented in Figure 8.8, 8.9, and 8.10 show the scalability of the

approaches in terms of the size of the state space, the number of bytecode instruc-

tions, and the depth of the search tree for the worker array of size one as the number

of clients increases. It can be seen from the graphs that also in this experiment,

our approach scales better.
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Figure 8.8: Number of states explored when model checking Chat in the centralized-jpf and

centralized-sut settings
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Figure 8.9: Number of bytecode instructions executed when model checking Chat in the

centralized-jpf and centralized-sut settings
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Figure 8.10: The depth of the search tree explored when model checking Chat in the centralized-jpf

and centralized-sut settings
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To precisely observe the effect of our POR technique, we model check Chat in

the centralized-jpf setting with the POR disabled and compare it with the case in

which POR was in effect. With POR disabled, JPF is simply configured to use the

default scheduler factory which only allows for global choices. Table 8.11 presents

the results from this experiment. It compares the data obtained from running

JPF with POR enabled and disabled. In each section, the column por-on and

por-off represent values obtained when POR is enabled and disabled, respectively,

and the last column is the ratio of the por-off value to the por-on value. In all

sections, the ratio for the experiment presented in the last row of Table 8.11 is the

highest, which implies that experiment is impacted the most by disabling POR.

This is what we also expected as this is the only case in which worker threads serve

clients simultaneously. Therefore, there are more accesses to the shared array, and

consequently, POR plays a more effective role.

#clients/#workers
#states #bytecode #total choices #server choices

por-on por-off ratio por-on por-off ratio por-on por-off ratio por-on por-off ratio

1c/1w 73 77 1.05 26506 30116 1.14 100 113 1.1 24 32 1.3

1c/2w 3148 3245 1.03 981094 1394858 1.42 5571 6443 1.2 1561 2166 1.4

1c/3w 93016 100270 1.08 28202807 46909151 1.66 194191 239202 1.2 62666 93342 1.5

2c/2w 139056 237985 1.71 30087951 63512124 2.11 258666 500009 1.9 98440 175169 1.8

Table 8.11: Impact of the POR technique applied by the centralization at the model checker level
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8.4 Alphabet Example

Our last experiment is performed on the Alphabet application. It contains one

server which is connected to one or more clients. Both the server and clients are

multithreaded. The server and the clients processes use TCP sockets to communi-

cate. A string of digits is associated with each client. The client’s goal is to have the

server transform a string of digits to a string of letters, for example, the string “123”

becomes “ABC”. To accomplish that, the client creates pairs of producer/consumer

threads. Each pair is responsible for transforming a substring of the client string.

The number of the pairs and the size of the substrings are input parameters to the

client processes. Each producer/consumer pair is independently connected to the

server. The server process creates a worker thread to handle each connection. For

every digit in the substring, the producer thread sends a byte representing the digit

to the server. The server converts the digit to a letter and sends the result to the

consumer thread. Basically, there can exist more than one communication channel

between each client and the server, and both the server and the client can handle

multiple connections simultaneously.

We applied JPF on the Alphabet application in the centralized-jpf and

centralized-sut settings. We performed the experiments on Alphabet using different

sizes of strings transformed by the server, different numbers of producer/consumer
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#clients/#pairs/#bytes
centralized-jpf centralized-sut

time ratio
time (ms) st.dev time (ms) st.dev

1c/1p/1b 297 44 5688 19 5.3

1c/1p/5b 3809 33 631938 696 146.6

1c/2p/2b 77995 63 1835485 4757 28.6

2c/1p/1b 320899 894 22438331 67866 163.7

Table 8.12: Execution times obtained from model checking Alphabet

pairs per client, and finally different numbers of clients. Table 8.12 presents the

execution times in milliseconds along with the standard deviations obtained from

applying both approaches. Table 8.13 also presents the results obtained from our

experiment. The results obtained for this example also indicate that our approach

is superior.

#clients/#pairs/#bytes
#states #bytecode max depth

centralized-jpf centralized-sut ratio centralized-jpf centralized-sut ratio centralized-jpf centralized-sut ratio

1c/1p/1b 597 5688 10 30989 501782 16 22 38 1.7

1c/1p/5b 3809 631938 166 141359 63584724 450 39 74 1.9

1c/2p/2b 77995 1835485 24 3824342 261890278 68 44 74 1.7

2c/1p/1b 320899 41961084 131 15233025 6441690358 423 41 79 1.9

Table 8.13: Data obtained from model checking the Alphabet application

In the first experiment presented in both tables, the SUT includes one client

with a producer/consumer pair which has the server transform a string of size one.

The second experiment in both tables is similar to the first one except the client uses

a string of size five. The increase in the ratios shows that increasing the number of
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read and write operations on sockets leads to significant overhead in centralization

at the SUT level. That shows the impact of keeping the communication buffer at

the SUT level.

In the third experiment presented in the tables, the SUT includes one client with

two producer/consumer pairs. The clients have the server transform a string of size

two. Each producer/consumer pair handles a substring of size one. Finally, in the

last experiment, the SUT includes two clients. Each client has a producer/consumer

pair which has the server transform a string of size one.

Using the listener StateSpaceAnalyzer, we obtained information about choices

created to model check Alphabet in both settings. The results are presented in

Table 8.14. The column #total is the total number of choices explored by JPF

and the next column is the ratio of total choices explored in centralized-sut to the

choices explored in centralized-jpf. The column #buffer is the total number of

choices created by classes that encapsulate and access communication buffers, and

the next column is the ratio of the #buffer value obtained in the centralized-sut

setting to the #buffer value obtained in centralized-jpf. Finally, the column #prc-

internal represents the total number of choices created within either the server

code or the client code. This number does not include those choices created to

capture network communications. The next column is the ratio of the #prc-internal

value obtained in the centralized-sut setting to the #prc-internal value obtained in
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centralized-jpf.

Similar to what we observed in the previous experiments, the ratios for #buffer

show that one of the factors that makes our approach more efficient is keeping the

communication buffers on the host JVM level. Moreover, comparing the #prc-

internal choices shows that our POR technique is also another factor that makes

our approach superior.

setting
1c/1p/1b 1c/1p/5b

#total ratio #buffer ratio #prc-internal ratio #total ratio #buffer ratio #prc-internal ratio

centralized-jpf 1173
19

306
7

611
21

8473
289

2826
200

4867
314

centralized-sut 22810 2161 12673 2447731 564057 1528131

setting
1c/2p/2b 2c/1p/1b

#total ratio #buffer ratio #prc-internal ratio #total ratio #buffer ratio #prc-internal ratio

centralized-jpf 239224
47

64605
20

142847
46

778147
387

246005
121

413772
423

centralized-sut 11351631 1263643 6502023 301045170 29720826 175099081

Table 8.14: Information on choices explored by JPF when model checking Alphabet

To precisely observe the effect of our POR technique, similar to the previous

experiment, we model check Alphabet in the centralized-jpf setting with the POR

disabled and compare it with the case in which POR was in effect. Table 8.15

presents the results from this experiment. Similar to Table 8.11, the last column of

this table outlines the ratio of the por-off value to the por-on value. In all cases,

enabling POR improves the performance considerably. Comparing the ratios in this

table with Table 8.11 shows that overall, POR plays a more effective role in the
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Alphabet experiment than Chat. One reason is that in Alphabet all processes are

multithreaded, whereas in Chat only the server process is multithreaded. Therefore,

in the Alphabet experiment, POR directly impacts all processes by replacing the

global choices (created to handle the process internal operations) with local choices.

#clients/#pairs/#bytes
#states #bytecode #total choices #prc-internal choices

por-on por-off ratio por-on por-off ratio por-on por-off ratio por-on por-off ratio

1c/1p/1b 597 1421 2.4 30989 91132 2.9 1173 3507 3 611 1879 3.1

1c/1p/5b 3809 6665 1.7 141359 399194 2.8 8473 17127 2 4867 9437 1.9

1c/2p/2b 77995 159940 2.1 3824342 12008747 3.1 239224 630202 2.6 142847 389727 2.7

2c/1p/1b 320899 2571817 8 15233025 218932643 14.4 778147 11182101 14.4 413772 7129720 17.2

Table 8.15: Impact of the POR technique applied by the centralization at the model checker level

8.5 Seeding Bugs

This section presents our experiment which includes seeding some of the appli-

cations, presented earlier in this section, with errors. We used the same error

scenarios used by Artho et al. [80]. In this experiment, the erroneous version of

the applications is model checked using both our approach and the other approach.

In this experiment, to obtain the shortest trace leading to the error, we configure

JPF to use the breadth-first search (BFS). The traces are measured by the number

transitions.

In the erroneous version of Daytime, the server gets into an infinite loop where

at each iteration, it attempts to connect to a client. However, the number of
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clients is limited, and thus at some point, the server accept() operation leads to a

deadlock. Both approaches are able to detect the error when model checking up to

four clients. When applying our approach on Daytime using five client processes,

JPF runs out of memory after exploring 277,428 states. The other approach also

runs out memory, with five client processes, after exploring 2,061,398 states. The

other approach could examine a lot more states before running out of memory. The

reason is that in our approach, a lot of memory is occupied by connections that

exist on the host JVM level (see Section 8.6).

Note that in general, exploiting the BFS algorithm requires more memory than

DFS, i.e., as presented in Section 8.2, JPF could handle Daytime with five clients

when using DFS. The depth at which the error was found in each run is presented

in Table 8.16. The last column outlines the ratio of the centralized-sut value to the

centralized-jpf value. The ratios show that the length of the error traces obtained

from our approach are around half that of the traces obtained from the other

approach. In this example, a deadlock occurs after all clients have been connected

to the server. Therefore, by increasing the number of clients the size of the error

trace increases.
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#clients centralized-jpf centralized-sut ratio

1 7 14 2

2 14 29 2.07

3 21 43 2.05

4 28 57 2.04

Table 8.16: Length of error traces obtained from model checking Daytime

The traces provided by our approach are shorter and easier to analyze. That

can be seen from comparing Figure 8.11 and 8.12 which illustrate the error traces,

trace1 and trace2, produced by JPF in the settings centralized-jpf and centralized-

sut respectively. The traces are from the Daytime experiment performed with

one client. To make understanding the traces easier, we added descriptions on

the right side of each figure. In trace1, it takes the first two transitions until

the connection between the processes is established, whereas in trace2, after the

first eight transitions, the connection is established. A few of these transitions in

trace2 are taken by a driver thread, which is required in the centralized-sut setting

to create and start the processes of the distributed system. However, the driver

thread is not part of the SUT code in its original form, and it is added to the code

after it is centralized at the SUT level. Moreover, the communication buffers are

shared objects. Since in the centralized-sut these buffers exist at the SUT level,

any access to them requires holding a lock which also leads to additional scheduling
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Server starts & blocks

Client starts & connects

Server writes

Server closes the socket

Client reads

Server finalizer starts

Server finalizer attempts
to close the socket

Figure 8.11: The error trace produced by JPF when verifying Daytime in the centralized-jpf

setting

points and thus additional transitions in the trace.

The Chat application is also seeded with two different errors, which only ap-

pear if there are more than one worker serving clients simultaneously. The Chat

application used in this experiment includes two clients and the workers array of

size two. Both approaches detect the errors. The first error causes the application

to throw an instance of NullPointerException. In the first erroneous version of

Chat, creating the output stream of workers is moved out of the Worker construc-

tor. Therefore, before one worker creates its output stream, the other worker may
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The driver starts
Server

Connection is 
established

Server blocks 

Client starts and 
waits on a lock 
held by Server

The driver starts
Client

Server writes

Client reads

Client terminates

Figure 8.12: The error trace produced by JPF when verifying Daytime in the centralized-sut

setting
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attempt to access the reference to the stream which is null at this point. Using our

approach, the path to the error is of depth 10, and using the other approach, the

path to the error is of depth 18.

The second error seeded to Chat is a race condition which allows both worker

threads to access the workers array at the same time. Once a worker is done

serving a client, it removes itself from the array. Consider a scenario in which

one worker, w1, checks the array to see if the other worker, w2, exists. The array

element containing w2 is not null at this point, and w1 is going to obtain the w2

socket to send a message to the w2 client. But before w1 attempts to do so, w2

finishes serving its client and removes itself from the array. Then, the w1 attempt

to access the w2 socket leads to throwing an instance of NullPointerException.

Our approach detects the error at depth 24, whereas the other approach detects

the error at depth 34. Therefore, in the case of both errors seeded to Chat, our

approach makes analyzing the error trace easier for the user.

The erroneous version of the Alphabet application includes an execution that

leads to an assertion violation error. Both approaches are able to detect the bug.

Each approach is applied using the same configurations used in our Alphabet ex-

periment (see the first column of Table 8.12). Using our approach, the path to the

error is of depth 5 in all configurations. Using the other approach, the path to the

error is of depth 9 in all configurations. This example also shows that our approach
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makes it easier for the user to analyze the error scenarios.

8.6 Memory Analysis

To compare the memory consumption of the approaches, we use a tool called Vi-

sualVM 22. VisualVM is a Java profiler that can be used to monitor memory and

CPU usage of the application. We used VisualVM to monitor JPF when using

our approach and the other centralization approach to model check the distributed

applications presented in this chapter. Table 8.17 presents the maximum amount

of heap memory, in megabytes, occupied by JPF during the entire model check-

ing process. The last column outlines the ratio of the centralized-sut value to the

centralized-jpf value.

application parameters centralized-jpf centralized-sut ratio

Echo 10 echos 63 102 1.6

Daytime 4c 547 225 0.4

Chat 2c1w 299 1185 4

Chat 2c2w 2309 3278 1.4

Alphabet 1c2p2b 216 241 1.1

Table 8.17: Maximum amount of memory, in megabytes, occupied by JPF during the entire model

checking process

The results show that, in all cases except Daytime, our approach does better

22http://visualvm.java.net
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than the other approach. We took several snapshots of the Java heap during model

checking Daytime using our approach. The snapshots show that StateExtension-

Listener contributes a lot to the memory, i.e., on average about 80% of the memory

is occupied by the StateExtensionListener object. As explained in Section 5.2.1,

this object is used by the connection manager to keep the state of connections in

synchronization with the state of the SUT as JPF backtracks. Each time JPF has

reached a new state, a deep copy of the current list of connections is added to the

StateExtensionListener object. To improve our approach, we are considering

using persistent data structures [100] to store the states of connections.

The graphs presented in Figure 8.13 and 8.14 show heap memory consumption

over time when model checking Daytime using our approach and the other approach,

respectively. These graphs are automatically generated by VisualVM. Note that

these graphs use different scales, and they are included to show the pattern of

memory usage. The similar graphs are presented in Figure 8.15 and 8.16 for Chat

when running with two clients and the workers array of size two.
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Figure 8.13: Heap memory occupied by JPF when model checking Daytime using our approach

Figure 8.14: Heap memory occupied by JPF when model checking Daytime in centralized-sut

setting
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Figure 8.15: Heap memory occupied by JPF when model checking Chat using our approach

Figure 8.16: Heap memory occupied by JPF when model checking Chat in centralized-sut setting
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9 Conclusion

In this dissertation, we presented our work on verifying distributed multithreaded

applications. We specifically focused on the model checking technique. We extended

an existing Java model checker, JPF, which can verify single process applications,

to verify distributed applications composed of multiple multithreaded processes.

The first step of our work was expanding the infrastructure of the model checker

to accept multiple processes. To achieve that, we used an instance of the central-

ization technique, applied at the model checker level, in which processes of a dis-

tributed application are mapped to communicating groups of threads within the

model checker. Processes within a distributed application do not share memory.

The main challenge of applying centralization is to prevent different processes from

sharing the same data. We addressed this by proposing a novel technique: intro-

ducing a new class-loading model within the model checker.

Processes in distributed applications have distinct execution environments. To

provide that, our centralization technique mapped the threads within a process to
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an object within JPF that uniquely identifies the process. By representing each

process using this unique object, along with a main thread and a distinct hierarchy

of class loaders, our approach provided a distinct execution environment for each

process. Moreover, as part of our centralization technique, we implemented a new

JVM within JPF that is able to execute distributed applications. This multiprocess

JVM uses new thread scheduling policies which are specific to distributed appli-

cations. Finally, we proposed a model for finalizers which has been added to the

multiprocess JVM (as well as the single process JVM) of JPF.

Our centralization approach is superior to existing centralization approaches.

Some of the main advantages over other centralization techniques, which are applied

at the SUT level, are keeping types within standard Java libraries separated for

different processes and handling SUTs which use Java’s reflection API. Unlike the

existing centralization technique at the OS level, our approach does not take the

state of the OS into account, which reduces the size of the state space.

Centralization provides the basic building blocks for JPF to capture distributed

applications, but it does not capture interactions between processes. To address

this, we implemented a model of communication between processes as an extension

of JPF, named jpf-nas. At this stage, jpf-nas supports Java processes that com-

municate via TCP sockets, and models the package java.net. It consists of two

main components: a connection manager and a scheduler. The former maintains
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communication channels along the current execution path, and the latter captures

scheduling points upon network interactions. Since the communication channels

exist at the host JVM level, JPF does not take their state into account when back-

tracking and matching states. The former issue was addressed by using a listener

maintaining a map from states to lists of connections. The latter issue was ad-

dressed by including fields that store hash values of connections at the SUT level.

Our model of communication within jpf-nas relies on the finalizer model to address

the shutdown semantics of processes by cleaning up corresponding communication

channels.

We proposed a POR technique which has been implemented in jpf-nas. The

technique distinguishes between two types of choice generators: local and global.

Local choice generators are used to interleave threads within one process, whereas

global choice generators are used to interleave processes within the distributed

SUT. Our POR approach only allows for creating a global choice generator if the

operation can have an effect outside of the process. The results showed that POR

can significantly impact the performance, e.g. in one case, by disabling POR, the

state space became eight times larger (Table 8.15). One of the main challenges of

developing distributed systems is dealing with errors occurring at levels, such as the

hardware level, which are hidden from the code. To verify the SUT against such

errors, we added a mechanism which injects such failures to the SUT by including
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choices associated with interrupting the execution flow.

We also provided a way to capture interactions of processes centralized within

JPF with external resources such as cloud computing services. This is useful if

one is not interested in checking the states of the external resources. We have

implemented this functionality as a JPF extension called jpf-nhandler which was

originally developed to handle native calls. It is based on delegating calls from the

JPF level to the host JVM level. The approach is generic, as it is not tied to certain

communication means.

The results, presented in Chapter 8, confirmed that our work provides a more

accurate IPC model to capture interactions between processes, for example, it de-

tected a bug which was not detected using the recent work on centralization at

the SUT level [84]. Moreover, the results showed that, overall, our implementation

choices along with our POR technique led to significantly better performance and

scalability.
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10 Future Work

One of our future plans is to study whether the POR approach (presented in Chap-

ter 6) preserves additional properties such as assertion violations. We are also

planning to improve the POR algorithm to eliminate more redundancies from the

state space of distributed SUTs. As mentioned in Section 6.3, in global states at

which processes communicate, our POR algorithm explores the set of all enabled

transitions. We are planning to use the independence relation between global transi-

tions performed on disjoint communication objects to explore a subset of transitions

enabled from the global state instead of all enabled transitions.

In addition, our future work includes modeling the new I/O (NIO) [6] intro-

duced into JDK 1.4. NIO provides scalable I/O by supporting non-blocking I/O

operations and multiplexing. Multiplexing allows one thread to manage multi-

ple communication channels simultaneously using an event notification mechanism.

Most of the existing Java APIs, supporting distributed computing, are based on

NIO. One such application, to which we are planning to apply our approach, is
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Zookeeper23. Zookeeper is a widely used open-source server which is written in

Java and provides reliable distributed coordination. We are also planning to apply

the approach on JGroups24 which also relies on NIO. JGroups is a reliable multicast

system which is written in Java.

Another future plan is to extend the scope of our approach to a different type

of VM, Dalvik, which executes Android applications [101]. To achieve this, we are

going to use Pathdroid, which is a model checker for binary Android applications.

It shares the same engine as JPF, but it implements its own instruction factory.

Pathdroid uses a class loading model similar to JPF’s, but at the low level it

deals with different types of binary files, which are of type dex. Our goal is to be

able to verify distributed systems composed of communicating Java and Android

processes. Android provides its own version of an IPC protocol [101]. To capture

communication between Android processes, we are going to extend jpf-nas with the

Android IPC model.

Finally, we are planning to look into the PhoneSat project25 which is an ongo-

ing project at NASA, started in 2009. This project includes building nanosatellites

which are controlled by smartphones and launched into a low orbit around Earth.

We are particularly interested in the coordination problem of multiple nanosatel-

23http://zookeeper.apache.org

24http://www.jgroups.org

25http://www.phonesat.org
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lites. PhoneSat is written in Java, but relies on native libraries. We believe jpf-

nhandler can be very useful in verifying this system since one of the primary chal-

lenges is handling native calls.
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