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The transfer of gas phase species to aerosols depends
critically on the condensation (or sticking) coefficient.
Reported values for water on water vary from 0.03 to 1.
Theoretical arguments indicate that the condensation
coefficient should be near unity for polar species on an
aqueous surface. As long as heat transfer is properly
accounted for, measurements on bulk water support this
conclusion. The theory of aerosol growth is reviewed and

a somewhat modified form is presented. Experimental
measurements of aerosol growth are consistent with a
condensation coefficient of unity but indicate that the
thermal accommodation coefficient may be somewhat
smaller. Aerosols grown on natural condensation nuclei
may have smaller condensation coefficients owing to th
presence of organic films. '

NOMENCLATURE

-drop radius
concentration of the drop

concentration of vapor in equi-
librium with the drop

concentration of bulk vapor
diffusion coefficient

corrected diffusion coefficient, Eq. (3)
thermal diffusivity, Eq. (17)

reduced diffusion coefficient, Eq. (20)
thermal conductivity
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molar heat of vaporization
condensation jump length, Eq. (5)
temperature jump length, Eq. (14)
mean jump length, Eq. (21)

molar flux to drop, Eq. (4)
condensation coefficient, Eq. (4)
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«, theérmal accommodation coefficient,

Eq. (11)

A effective’ mean free path, Eqgs. (1)
and (12)
INTRODUCTION

The growth of atmospheric aerosols, or the
transfer of reactive chemical species to aero-
sols, may be thought of as taking place in
two steps. First, the vapor phase species must
diffuse to the droplet surface, then it must
cross the interface. If the droplet growth
were controlled only by diffusion, the rate of
mass. increase would be proportional to the
drop radius. In the gas kinetic limit, where
transfer across the interface is the slow step,
the rate is proportional to the square of the
radius and the condensation (or sticking)
coefficient (defined as the probability that a
vapor molecule enters the liquid phase when
it strikes the interface). Thus, the con-
densation coefficient determines the radius at
which the change from the kinetic limit to
the diffusion-controlled limit takes place. For
a coefficient of unity, this occurs when the
radius is comparable to the mean free path
of the vapor.




In clouds, the drop radii are about two
orders of magnitude larger than the mean
free path. Thus the condensation coefficient
will affect processes in clouds only if it is
substantially less than unity. The importance
of the condensation coefficient for nuclea-
tion, or for processes in the atmospheric
aerosol, will be much more pronounced.

The transfer of free radicals from the gas
phase may play an important role in the
chemistry of cloud droplets (Chameides and
Davis, 1982). Data on' the relevant sticking
probabilities are sparse but it has been sug-
gested that they might be as low as 1074, If
this is so, then the rates of these processes
will be much slower than the diffusion-con-
trolled limit. Part of the rationale for believ-
ing that these sticking probabilities might be
small is that the value for water on water has
been reported to be as small as 0.03.

However, chemical intution suggests that
there is nothing to hinder the sticking of
polar species to an aqueous surface. We might
therefore expect that sticking coefficients are
near unity. In fact, this is the case for most
substances (Pound, 1972). In the second sec-
tion, I review various theoretical approaches
for estimating condensation coefficients.
These support the view that the values should
be near unity.

It has been claimed (Pruppacher and Klett,
1978) that the condensation coefficient for
water is small (0.02-0.04) for a quiescent
surface and large (0.2-1.0) for a rapidly re-
newed surface. However, there is no ap-
parent reason why this should be so. One
purpose of this paper is to resolve this ques-
tion.

In the third section I review measure-
ments made on bulk water. Measurements of
the rates of growth of aerosol particles are
particularly relevant for atmospheric appli-
cations. A number of theories of aerosol
growth, differing in various details, have been
presented; I review these in the fourth sec-
tion. Experimental measurements of aerosol
growth are reviewed in the fifth section. The

conclusions of this review are summarized in
the last section.

Many of the experimental measurements
reviewed here are actually of the evaporation
coefficient. This is defined as the ratio of the
rate of evaporation into a vacuum to the
rate, at equilibrium, of collisions of mole-
cules with the surface. The evaporation and
condensation coefficients are generally as-
sumed to be equal; this will be true if either
of two conditions holds: (1) the condensing
vapor molecules are in thermal equilibrium
with the surface, or (2) the coefficients are
independent of energy. In many of the ex-
periments discussed below, the departures
from thermal equilibrium are small. Also, if
the condensation coefficient is near unity,
condition (2) will be satisfied since there will
be little leeway for this coefficient to vary. In
the following discussion, 1 will assume that
the condensation and evaporation coeffi-
cients are equal.

THEORETICAL ESTIMATES OF
CONDENSATION COEFFICIENTS

As a molecule approaches the surface of its
own liquid, it will feel an attractive interac-
tiofi and the potential energy will decrease.
Thé potential should be purely attractive un-
til the molecule comes in contact with the
sutface; there should be mo energy barrier. In
the language of chemical -kinetics, such a
process is characterized by a “loose” transi-
tion state (Benson, 1976). The rates of such
processes are very near collision frequency,
i.e., the sticking coefficient is near unity.
Wyllie (1949) noted that small values of

' the sticking coefficient tend to be reported

for polar substances and suggested a rela-
tionship to the free angle ratio (Kincaid and
Eyring, 1938). For nonpolar liquids, this
quantity is near unity, while for polar liquids
the free angle ratio is much smaller. Wyllie’s
observation would imply that the rotational
motion of a molecule in the transition state
would resemble that of a molecule in the



liquid. To explain this, he proposed that, in
order to enter the bulk liquid, the molecule
must cross a barrier. The energy at the top of
the barrier would have to be almost identical
to the energy of the gas phase molecule; this
seems highly unlikely.

Penner (1948,1952) derived detailed rela-
tionships between the transition state theory
rate constant and the condensation coeffi-
cient. He showed that, as suggested above, a
gaslike transition state implies a con-
densation coefficient near unity and a liquid-
like transition state implies a much smaller
value. He gave no explanation for the transi-
tion state being liquidlike.

Such an explanation was proposed by
Mortensen and Eyring (1960), who argued
that, in the condensation process, the molec-
ular rotations should be treated as adiabatic.
This leads to a condensation coefficient equal
to the free angle ratio. They estimated values
for water ranging from 0.022 to 0.17, de-
pending on the method used. However, this
analysis considered only the entropy effects
associated with the molecular rotations; these
are nearly canceled by rotational energy
effects (Robinson and Holbrook, 1972).

Heicklen (1976) has addressed the ques-
tion of condensation coefficients from the
viewpoint of collision theory. He concludes
that they should be near unity unless the
incoming molecule must have a particular
orientation. The dipole—dipole interactions
between water molecules are strongly depen-
dent on orientation. However, the rapid rota-
tional motion of water molecules and the
tendency of dipoles to “lock in” to each
other should minimize this effect.

Kochurova (1964) has calculated con-
densation coefficients for a one-dimensional
step potential model. This has little relevance
to the problem at hand (Labuntsov, 1965). A
theory in which the condensation coefficient
depends on surface curvature has been pro-
posed by Okuyama and Zung (1976). They
assume that there is an activation energy for
absorption due to the Kelvin effect. Since the

Kelvin effect is due to the change in surface
to volume ratio and not to any change in the
energetics of either the surface or bulk mole-
cules, this is clearly incorrect. A theory by
Tovbin and Chalenko (1982) appears to treat
the condensation process as being endother-
mic rather than exothermic.

In summary, the theoretical estimation of
condensation coefficients is not well devel-
oped. However, arguments of the type that
are most -successful in explaining gas phase
reaction rates (i.e., those of Heicklen) indi-
cate that the condensation coefficient should
be near unity with perhaps a factor of 2 or 3

“reduction if the liquid is highly oriented.

These theoretical arguments also imply that
the sticking probabilities for any polar species
on an aqueous surface should be near unity.
The coefficient for condensation of water
vapor on ice is near unity at low tempera-
tures (Pruppacher and Klett, 1978). Any
orientation effects should be as large for ice
as for water.

CONDENSATION COEFFICIENTS ON
BULK WATER

Measured condensation and evaporation
coefficients for bulk water are summarized in
Table 1. In these experiments, the pressure of
vapor above the surface is usually quite dif-
ferent from the equilibrium vapor pressure.
As a result, the net evaporation or con-
densation rates are quite large and, as has
been pointed out by Mills and Seban and by
Bonacci et al., it is difficult to provide or
remove the latent heat of vaporization. Since
the limiting evaporation or condensation
rates depend on temperature, heating or
cooling of the surface may cause consider-
able errors in the measurement of the con-
densation coefficient.

To gain a feeling for the magnitude of this
problem we may consider the worst case of
evaporation into a vacuum with a con-
densation coefficient of unity. For the latent
heat to be provided by thermal conduction




TABLE 1. Results of Experimental Measurements of the Condensation Coefficient on Bulk Water

. Condensation Temperature

Investigator coefficient (X) Remarks
Alty and Mackay (1935) 0.006 to 0.036 285-305 a
Delaney et al. (1964) 0.042 t0 0.027 273-316 a
Narusawa and Springer (1975) 0.038,0.17 290-300 a, b
Fujikawa et al. (1983) 0.04 285 a
Bonacci et al. (1976} >0.7 280
Hickman (1954) >0.24 280 ¢
Maa (1967) =1 273 d

- Jamieson (1964) >0.3 ?
Nabavian and Bromley (1963) >0.35 283-323
Mills and Seban (1967) > 0.45 280
Tamir and Hasson (1971) >0.2 323 e

“Probably in error because of inadequate treatment of heat transfer.

hLower value from quiescent surface, larger value from gradually renewed surface.
“Reanalysis by Mills and Seban (1967) gives a condensation coefficient of unity.
4Reanalysis by Davis et al. (1975) and in this paper gives coefficients of 0.64-1,52.

“Authors reported this as 0.20 + 0.04.

perpendicular to the surface would require a
temperature gradient of the order of 104
Kcm ™!, Under these conditions, it is doubt-
ful that accurate measurements of the surface
temperature are possible.

As the vapor pressure, and therefore the -

evaporation rate, -increases, the errors due to
inadequate heat transfer will become more
severe. This may account for the fact that the
condensation coefficient for water on ice is
generally reported to be near unity for
temperatures below 233 K while smaller
values are reported at higher temperatures
(Pruppacher and Klett, 1978). Also, it prob-
ably accounts for the negative temperature
dependence reported by Delaney et al. (1964).

Values of the condensation coefficient less
than 0.05 have been reported by a number of
investigators.

(1) Alty and Mackay (1935) measured
evaporation from a growing, suspended
drop. They inferred the surface tempera-
ture from the surface tension correspond-
ing to the size of the drop when it fell.

(2) Narusawa and Springer (1975) measured
the rate of evaporation from a reservoir.
The surface temperature was determined
from infrared emission. A larger con-
densation coefficient was obtained when
a slow flow of water was used.

(3) Delaney et al. (1964) studied the
evaporation of thin films. A thermistor
was used to measure the surface temper-
ature, '

(4) Fujikawa et al. (1982) studied con-
densation on the end wall of a shock
tube. The reflection coefficient of the
surface was used to determine the ‘den-
sity and temperature of the gas near the
surface. This was combined with a con-
ductive model of heat transfer to calcu-
late the surface temperature.

These methods of measuring the surface tem-
perature of the liquid phase are probably not
applicable in the presence of the large tem-
perature gradients and/or convective heat
transfer that should be expected in these
experiments.

Bonacci et al. (1976), using a method very
similar to that of Delaney et al., attempted to
circumvent these heat transfer problems by
keeping the vapor near saturation. They
found that the condensation coefficient did
appear to decrease with increasing initial dis-
placements from equilibrium. They also ob-
served temperature gradients in excess of 100
Kcm™! and observed convective motions in
the water. They conclude that their data are

consistent with a condensation coefficient of -

unity.




Hickman (1954) measured evaporation
rates using jet tensimetry. The idea was to
minimize surface cooling by exposing a jet of
water to a vacuum for a very short time
(103 s). Neglecting surface cooling pro-
duced a lower bound of 0.24 for the evapora-
tion coefficient. Mills and Seban (1967) re-

analyzed Hickman’s results and found that

they are consistent with a condensauon
coefficient of unity.

Maa (1967) also performed jet tensimetry
experiments and obtained results very simi-
lar to Hickman’s. From an analysis of the
surface cooling he concluded that the con-
densation coefficient is near unity. A reanaly-
sis of this data by Davis et al. (1975), using a
different set of approximations, arrived at

values ranging from 0.64 to 1.52. They at-

tribute values greater than unity to a neglect
of the net hydrodynamic flow from the
surface. The simplest treatment of . this effect
is to replace the condensation coefficient, a,,
with 2a,/(2 — a,) (Nabavian and Bromley,
1963; Schrage, 1950). This correction gives
values of a, in the range 0.64-0.86. Mills
and Seban included this correction in their
analysis of Hickman’s data.

In a similar experiment, Jamieson (1964)
measured the condensation of tritium-labeled
water onto a jet. Since he was unable to
measure the amount of reevaporation, the
~ results only place a lower bound of 0.3 on
the coefficient. As the jet is exposed for
shorter times, this bound rapidly increases.
This implies that the actual value is consider-
ably larger than 0.3.

Another approach has been to measure
the rate of heat transfer due to condensation
of steam (Mills and Seban, 1967; Nabavian
and Bromley, 1963). This method is limited
by other thermal resistances present in the
apparatus. Although great care was taken to
minimize these resistances, if the coefficient
is near unity only a lower bound can be
obtained.

Finally, Tamir and Hasson (1971) mea-
sured the viscous drag on a fan spray sheet
passing through steam [see Hasson et al.

(1964) for details]. Assuming that the steam
was stationary and the momentum transfer
was due to condensation, they obtained a
coefficient of 0.20. Since the drag will set the
steam in motion, and therefore be reduced,
this should be regarded as a lower bound.
In summary, all experiments on bulk water
which properly account for heat transfer give
results that are consistent with a con-
densation coefficient of unity. This coeffi-
cient is almost certainly greater than 0.5
None of the experiments give an accurate
value. ‘

THEORY OF AEROSOL GROWTH

For atmospheric applications the most rele-
vant measurements of condensation coeffi-
cients should be those based on the growth,
or evaporatjon, of aerosols. As is shown be-
low, the growth rate of aerosol particles with
a radius of a few micrometers is quite close
to the diffusion-controlled limit. Conse-
quently, the growth rate is not very sensitive
to approximations made in deriving the
growth equations. However, the value of the
condensation coefficient determined from
aerosol growth measurements is quite sens1-
tive to these approximations.

If the aerosol particle radius, a, is very
large compared to the gas phase mean free
path, A, then the growth rate is governed by
the well-known diffusion theory of Maxwell
(Fuchs, 1959). This assumes that the vapor
at the surface of the drop is in equilibrium
with the drop. Together with the assumption
that the vapor at a large distance from:the
drop has a constant concentration, this pro-
vides the boundary conditions for the solu-
tion of the diffusion equation.

In the opposite extreme, when a < A, the
growth rate is governed by kinetic theory.
Here, the composition of the gas phase is
uniform and the rate of condensation is given
by the rate of collision of vapor molecules
with the drop times the condensation coeffi-
cient. Of course, to obtain the net growth




rate we must subtract the rate of evapora-
tion.

There are a number of assumptions that
must be made in order to obtain a reason-
ably tractable theory of aerosol growth. First
we may assume steady state conditions with
stationary boundaries as long as the time
scale of the experiment is long compared to
a’/wD, where D is the diffusion coefficient
(Fuchs, 1959). For drops of 10 pm or smaller,
convective mass transport is negligible
(Schwartz, 1984). Also, Fuchs (1959) has
shown that radiative heat transfer is not im-
portant in this size range.

Most theories of aerosol growth for the
case a = A are based on that of Fuchs (1959).
This theory assumes that kinetic theory may
be used in the region very near the drop; far
from the drop the flux is calculated from the
laws of diffusion. The kinetic and diffusive
fluxes are set equal at a distance A . from the
surface of the drop.

Simple kinetic theory arguments (Fuchs,
1959) suggest that for a flat surface A =
(2/3)A,, where A, is the effective mean free
path for diffusion, and for a point particle
A=A\, A, is defined to satisfy the simple
expression for the diffusion coefficient

D,=\j,/3, (1)

v

where p, is the mean speed of the vapor
molecules. Equation (1) is based on the same
physical arguments that lead to the relations
between A and A..

In the following, subscript co refers to
bulk properties of the vapor phase (i.e., far
from the drop), A refers to properties at a
distance A, from the surface of the drop, and
0 refers to equilibrium conditions at the
surface of the drop. The equilibrium vapor
concentration  should take into account the
effects of surface curvature and concentra-
tion of solute in the drop.

In terms of the molar concentrations, C,
the diffusive flux, 7 in moless !, up to a
sphere of radius a + A, centered on the drop
is
n=4x(a+ A )D(C, — C). (2)

D, is a “corrected” diffusion coefficient. It is
related to the actual diffusion coefficient, D,
by

: P, L Dp\7! '
DC=D(1—FI+—RT7<‘7—:) R 3)

where P, is the pressure of the vapor, P, is
the total pressure, L is the latent heat of
vaporization, and X is the thermal conduc-
tivity. The term P, /P, represents a correc-
tion for Stephan flow. The last term occurs
because we have used concentrations, rather
than partial pressure or mole fraction, in Eq.
(2) (Wagner, 1982). In the nonisothermal
case (L/K # 0), to be considered below, the
partial pressure gradient depends on both
the concentration and temperature gradients.
Equation (3) may also be derived in a
straightforward manner from the gener-
al diffusion equations given by Frank-
Kamenetskii (1969). Thermal diffusion is ne-
glected here since it should contribute less
than 1% to the total flux. Under ambient
conditions, D, is about 10% smaller than D.
In Eq. (1) it is appropriate to use D, rather
than D since the simple theory of diffusion is
derived in terms of the concentration gradi-
ent. The correction due to Stephan flow is
only 2%-3%.

At steady state, the diffusive flux, 7, must
equal the flux to the droplet surface. Accord-
ing to kinetic theory, this is given by
n=4na’a (Cy — Cy)(D,/4), 4
where a, is the condensation coefficient. At
equilibrium, C, = C, and the rates of con-
densation and evaporation are equal.

Eliminating C, between Egs. (2) and (4)
yields

4D a> |
o — 2 — [4
n 47a D.:(C'oo Co)[acb-v + (a+ AC)J .

To simplify this we substitute D, using Eq.
(1) and let

4\, A,
=3, T+ (dJa)" (5)

Also, it is convenient to express the result n

)




terms of the rate of increase in drop radius
a=n/(4ma’C,), (6)

where C, is the molar concentration of the
drop. From these equations we obtain

,_D(C - G)
4= C(avT) )

This is equivalent to the expression derived
by Fuchs. The condensation jump distance,
/., accounts for the reduction in growth rate
due to the finite rate of transfer across the
interface. Setting /, = 0 reduces Eq. (7) to the

diffusion controlled limit. As pointed out by

Schwartz (1984), this expression is of the
same form as that which occurs with two-step
chemical reactions.

If a> A_we may replace A with 2A /3
and set A_/a = 0. Then Eq. (5) becomes

ax.(: a.
lc=§a:(1-—'§'). ) (8)
Monchick and Reiss (1954) solved the
Boltzmann equation for droplet growth with
" a> A, They concluded that one should
match fluxes at the droplet surface (A, =0)
and replace a, with 2a./(2 —a,). This is
- exactly equivalent to Eq. (8). Kennard (1938)
arrived at a similar result, via a different
argument, for heat transfer problems. Al-
though the equivalence of these approaches
has been pointed out by Wright (1960), this
does not seem to have been generally recog-
nized.

Fuchs and Sutugin (1970) and Smirnov

(1971) have compared Eq. (7) with detailed

solutions of the Boltzmann equation for neu-
tron transport problems. They find that, for
large a, A, agrees well with the approxima-
tion used above. The Fuchs method deviates
from the exact results by a maximum of 5%
when A, = a (Smirnov, 1971). Confirmation
of these results for the case where a, <1 has
been provided by Sahni (1980). Using the
Fuchs and Sutugin expression for A, Eq. (5)
becomes
4A. 0.47a,
<" 3a, [1 1+ (A /a) | )

/

Langmuir (1961) derived droplet growth
equations by making use of the Cunningham
correction for viscous slip. His results corre-
spond to A, = 0.7A . Seaver (1984) has pro-
posed a somewhat modified method of flux
matching. However, his results do not satisfy
microscopic reversibility and do not behave
properly in the limits of large and small
a/A,. A variety of approaches have been
used to solve the Boltzmann equation for
this problem (e.g., Loyalka, 1982). Other than
those mentioned above, these results are not
especially useful for the present purposes.

The quantity (1 — a_/2) in Eq. (8) arises
in the Fuch’s treatment from the introduc-

tion of A,. In the Boltzmann equation solu-
“tions it represents the fact that the velocity

distribution function of the vapor is per-
turbed by the absorption process. The prin-
cipal perturbation is the net velocity towards
the surface. By assuming that this is the only
perturbation, the same correction factor may

" easily be obtained for flat surfaces. (Nabavian

and Bromley, 1963; Schrage, 1950). In the
kinetic limit, where a < A, the Boltzmann
distribution is not perturbed and this correc-
tion is not appropriate.

Since the experiments considered in the
next section all have ¢ > A, I will use Eq.
(8) for calculating a, from the drop growth
rates.

As the drop grows, the latent heat must be
removed. Otherwise the temperature of the
drop will increase until the equilibrium vapor
pressure equals the bulk partial pressure of
vapor, then growth will cease. Carstens and
Kassner (1968) and Fukuta and Walter
(1970) have derived growth equations that
account for this heat transfer. However, these
do not make use of the corrections included
in Eq. (3). The integration of these equations
has been given by Carstens et al. (1974).

The heat flux from the drop must equal
L#, where L is the latent heat per mole. We
can express the heat flux in terms of equa-
tions similar to (2) and (4):

Li=—4n(a+A)K(T,-T,) (10)




and

L= —4xa*a,C,(y+1)(c,/2)

X(Ty = To)(0,/4).. (11)
Here, K is the thermal conductivity, 7, the
mean molecular speed of the air, C, the
molar concentration of air, ¢, the heat
capacity, and y the heat capacity ratio of air.
a, is the thermal accommodation coefficient
(Kennard, 1938); if the air molecule comes

into thermal equilibrium with the drop after .

one collision then a,= 1. The heat capacity
is multiplied by (y + 1)/2 to account for the
fact that molecules with a larger translational
energy are more likely to strike the surface
(Kennard, 1938).

In using the above equations we ignore
the temperature dependences of K, D,, 7,
0,, and L. Also, the latent heat flux is strictly
equal to Ln only if T,=T, As long as
(T, — T,) is no more than 6 K, the error due
to these approximations is less than 1%. With
this large a value of T,  — T;, the lineariza-
tion of the vapor pressure curve, introduced
below, produces a much larger error.

The effective mean free path for thermal
conduction, A,, may be defined to satisfy an
equation analogous to (1): '

K=Q1/3)A0,Cc,(y+1)/2.

a-a-v

(12)
From (10), (11), and (12) an equation similar
to (7) may be obtained:

._K([T1,-1T,)

2=C,L(a+1)’ (13)

where the temperature jump distance is
_4A, A,

l,= | 1T (3,/a) ] (14)

Assuming a > A, and A,=2A,/3 we obtain,
analogous to Eq. (8):
[, = 2 (1- 3).

'~ 3a, 2

(15)

The equilibrium vapor concentration, C,
in Eq. (7) is a function of the drop temper-
ature, T, in Eq. (13). This temperature is
unknown, but it may be eliminated between

the two equations. To do this conveniently,
we must linearize the Clausius—Clapeyron
equation, i.e., we let '

G = [1+(L/RT£)(T0“T°°)]CN (16)

Where C, is the equilibrium vapor con-
centration for a drop of radius a at temper-
ature T,. C, may depend on the radius due
to both the drop curvature and dilution of
any solute in the drop.

It is convenient to replace the thermal
conductivity with a quantity having the same
dimensions as a diffusion coefficient

D,= KRT?2/L*C,. (17)
Using (16) and (17), Eq. (13) becomes
._D(G-C) |

=T latl) (18)

Eliminating C, between this and (7) yields

a+10+a+l, . C.—C
D, D, 1°T ¢

Following Carstens et al. (1974), we may
introduce a reduced diffusion coefficient

1 1 1
—_= 4

D,- D, D,

r [

(19)

(20)

and a Ihean ‘jump length, I, which is a
weighted average of /, and /,

7= lc lt
|= D,.( -5; + —D-; ) .
These transform (19) to a form identical to
that of (7) and (18):
._D(C,-¢)
TG )

The thermal accommodation and -con-
densation coefficients affect the growth rate

(21)

~ through a single parameter, L. If ¢, = a,=1,

then / is roughly equal to the mean free path
(about 0.1 pm); smaller values of these
coefficients produce larger values of /.

From Eq. (17) we see that D, decreases
rapidly with increasing temperature. In'con-
trast, D, increases with temperature. From
Eq. (21) we should therefore expect the tem-




perature dependence of / to depend on the
relative magnitude of /. and /,. This may
provide a means to determine both &, and «,
from measurement of aerosol growth rates.
Also, since K is independent of pressure

while D, depends inversely on pressure, the -

pressure dependence of / will depend on the
relative values of a, and a,.
The linearized Clausius—Clapeyron equa-
tion, (16), results from the expansion of an
~exponential. Letting the second-order term
be &, we have

2
1{ L 2
€=§(R—Tz)(To—Tm) : (23)
If this is treated as a constant, the effect on
(18) and (22) is to multiply C; by (1 +e).
The percentage change in 4 is therefore

§= ECs/(Coo - Cs) (24)
Eliminating & between (13) and (19) gives
the temperature difference o

RTj(Cw—-Cs)

TO - TOO:=

L\~ c
D(a+1,) |t
X[“ D.(a+1) (25)

Substituting this into (23) and (24) yields

(S5 2] o

Typically, th'é second quantity in brackets is
about 1.4.. Thus, if the supersaturation is

much more than a few percent, the error due
to using Eq. (16) will be significant.

MEASUREMENTS OF AEROSOL
GROWTH RATES

Usable results from the measurement of the
growth rates of aqueous aerosols are sum-

* marized in Table 2. As shown in the previ-

ous section, the growth rate depends on a
mean jump length, /, which depends on both
the condensation coefficient, a,, and the
thermal accommodation coefficient, a,. Gen-
erally, / has not been reported. Instead, a
value of a, has been assumed and then a,
was fit to the growth rate. These values are
listed in Table 2.

The values of / recorded in Table 2 were
calculated as follows. First, using the re-
ported treatment of A, and values K, D,
etc., a value of [ was obtained from &, and
«,. Then, using K and D from Pruppacher

and Klett (1978) and L from the Handbook

of Chemistry and Physics (1972), D, was
calculated from the formulas in the previous
section. This was generally about 5% less
than that obtained from the parameters re-
ported in the original paper; / was then
reduced according to Eq. (22). When the
original paper did not report the parameters
used, I assumed that D, should be lowered
by 5%. Finally, if the drop size measure-
ments were based on an assumption of Stokes
flow, I increased / by 0.04 pm to account for

TABLE 2. Results of Aerosol Growth Rate Measurements®.

Reported I Dev.

Drop radius
(pm) o, a, (pm) (%)
Chodes et al. (1974) 1.5-25 0.033 ) 13407 40
Golub et al. (1974) 3-7 0.12 1.0 03+07 6
Sinnarawalla et al. (1975) 0-7 0.026 1.0 1.5+£07 30
Duguid and Stampfer (1971) 3-9 — — <0.6 <10
Neizvestnyy. and Onishchenko (1979) 1-4 >0.3 1.0 <025 <10
Neizvestnyy et al. (1979) 1-4 >0.3 1.0 <0.25 <10
Levine (1973) 0-3 1.0 0 <0.20 <12
Wagner (1982) 1-3 1.0 1.0 0.5+05 20
Akoy (1971) 1-3 0.8 10 0.15+0.05 8

“The mean jump length, I, was recalculated as described in the text. Dev. is the percent deviation from the diffusion

control limit,




TABLE 3. Values of a, and o, Consistent with Various Possible Values of /

a,=10 a,=1.0
! (um) a, a,=a, a,
0.096 1.0 1.0 1.0
0.20 0.30 0.65 0.58
0.50 0.10 0.32 0.27
1.0 0.048 0.18 0.14
14 0.034 013 0.10

the overestimate of the drop radius (Beard,
1976).

Values of «, and «, corresponding to the
recalculated values of / in Table 2 may be
obtained from Table 3.

There is a possible source of serious error
in these calculations: the total pressure at
which these experiments were performed is
usually not reported. The approximate devia-
tion from the diffusion controlled limit, cor-
responding to the recalculated values of /
and the mean drop size, are listed in Table 2.
Since these are so small, / will be very sensi-
tive to small errors in the diffusion coeffi-
cient. A total pressure of one atmosphere
was assumed for these calculations.

In several of the experiments, the recalcu-
lated value of / is less than the minimum
value. of 0.096 pm, corresponding to a, =
a,=1. For these, the estimated uncertainty
of I was added to / and the results are
reported as being less than this value. Uncer-
tainties were determined from the uncertain-
ties in growth rate and supersaturation re-
ported in the original paper.

The most widely quoted measurements of
aerosol growth are those on atmospheric
condensation nuclei carried out in a diffusion
cloud chamber with supersaturations of less
than 5% (Chodes et al., 1974; Golub et al.,
1974; Sinnarawalla et al., 1975). Taken to-.
gether, these results indicate that / has a
value of about 1 pm. Chodes et al. did not
give the values of the parameters used in
their analysis.

Duguid and Stampfer (1971) measured
the rate of evaporation of drops in a system
held a few percent below saturation and
obgained results 6%-14% greater than

- the diffusion-controlled "limit. Their error

estimates of +5% seem overly optimistic
considering the scatter in their data and er-
ror estimates in other, similar experiments.
Uncertainties of 15%-20% seem more rea-
sonable. The drops were grown from atmo-
spheric condensation nuclei. Since experi-
ments in the same apparatus (Hughes and
Stampfer, 1971) with deliberately con-
taminated drops gave substantial evapora-
tion rates under saturated conditions, it is
likely that there is a large systematic error in
these experiments. ‘

Neizvestnyy and Onishchenko (1979)
measured the rate of evaporation of water
drops in a system held less than 1% below"
saturation. Neizvestnyy et al. (1979) mea-
sured growth of a droplet formed on a NaCl
nucleus in a saturated atmosphere. The re-
sults were virtually identical, the best fit lies
between the diffusion-controlled limit and a
growth rate corresponding to a,=a,=1.
Distilled water was used in these experi-
ments,

Levine (1973) measured the evaporation,
due to the Kelvin effect, of a small drop
in a saturated atmosphere. The results
are scattered around the diffusion controlled
limit.

Experiments in expansion cloud cham-
bers, using supersaturations up to several
hundred percent have been carried out by
Vietti and Shuster (1973a,b), Wagner (1982),
Akoy (1969) and Wakeshima and Takata
(1963). As shown in the previous section, the
linearization of the Clausius—Clapeyron
equation is not valid for such large super-
saturations. Also, in these experiments the
droplet concentration is large enough that




depletion of the bulk vapor and heating of
the bulk gas will be considerable. Ignoring
these effects will lead to a low value of the
condensation coefficient. Of the above inves-
tigators, Wagner (1982) and Akoy (1969)
have accounted for these effects, the others
do not provide sufficient details to permit
reanalysis.

In his analysis, Wagner included the heat
flux due to the transport of enthalpy by the
diffusing vapor molecules. This is incorrect
since this quantity was already included in
the latent heat; in Table 2, / was corrected
for this. Also, Wagner did not report either
the values of the physical parameters used or
estimates of the uncertainties. The error bars
included in Table 2 for Akoy’s results are
based on his reported scatter in «_.

Vietti and Fastook (1975) studied droplet
growth using an expansion cloud chamber
with a supersaturation of about 5%. They
report «, = a,= 1 (implying /= 0.1 pm) but
also give /= 1.6 pm. I do not understand the
source of this discrepancy.

Finally, experiments on the expansion of
steam in supersonic jets (Hill, 1966; Moses
and Stern, 1978) in the absence of air indi-
cate that &, and/or «, (for water on water)
equals unity. The sensitivity of these experi-
ments to «, and a, is not very great (Hill,
1966).

In summary, we see that of the nine mea-
surements listed in Table 2 only two are not
consistent with / taking on the minimum
value of 0.096 pm. Whereas experiments done
in diffusion cloud chambers give /=1.0 + 0.6
pm, the other methods indicate that / is
probably less that 0.25 pm.

It is interesting to note that the largest

“values of / occur for experiments which used
atmospheric condensation nuclei. This raises
the possibility that these drops were con-
taminated with surface active organic sub-
stances. Films of such substances can ap-
parently increase / by three to four orders of
magnitude (Gill et al., 1983).

Gill et al. (1983) have reviewed the litera-
ture on organic films on atmospheric aero-

sols. They find that for sub-micrometer size
particles, there is more than enough surface
active organic material present to produce a
monolayer. As the drop grows, the surface
active material spreads out so that by the
time the radius is a few micrometers there is
only a fraction of a monolayer. Since the

_growth rate is most sensitive to the con-
~ densation * coefficient when the droplet is

small, this could account for the large values
of / measured by Chodes et al. and
Sinnarawalla et al. For cloud droplets, with
radii of 5-10 pm, an organic monolayer is
not likely.

From measurements at a single tempera-
ture it is not possible to obtain unique values
for both a, and a,. It is usually assumed that
a, = 1.0. There is no justification for this; a,
has never been measured for air on water. A
value of unity for «, implies that a nitrogen
or oxygen molecule comes into thermal equi-
librium upon striking the surface, If this is
so, then we should expect that a water mole-
cule, which has a much stronger interaction
with the surface, would also come into ther-
mal equilibrium, If it does so, it will not have
sufficient energy to escape, thus «,=1.0. We
should therefore expect that a, is at least as
large as «a,.

In Table 3 «, and «, are given for three
cases with each of several values of /. These
cases are «, assumed to be unity, a.= a,,
and a, assumed to be unity. With a, =1 and
[=1.4 pm we have a,=0.034, as has often
been quoted. This is really an extreme case.
The value of a, does not change much be-
tween the cases a,=1 and a,=a, This is
because when a,.>a,, the growth rate is
dominated by the rate of heat transfer and is
therefore insensitive to a,.

The collision of hard spheres of similar
masses results, on average, in the exchange
of 50% of the difference in translational en-
ergy. About 60% of the internal energy of a
diatomic molecule is translational. There
should be some exchange of rotational en-
ergy, and multiple collisions with the surface
might enhance the exchange of translational



TABLE 4. Temperature and Pressure Dependence of the Mean Jump Length,
{ in pm, for Various Combinations of the Condensation Coefficient, «,, and the

Thermal Accommodation Coefficient, a,

a.: 1.0 1.0 0.10 1.0 0.034

T (K) P (atm) a,; 1.0 0.26 1.0 0.10 1.0
273 1.0 0.082 0.32 0.82 . 082 2.41
293 1.0 0.096 0.51 0.51 141 1.39
313 1.0 0.017 0.65 0.31 1.83 1.29
293 0.75 0.129 0.72 0.57 2.01 1.51
293 0.50 0.195 1.16 - 067 3.23 1.69

energy. Hence, we can take 0.3 as a con-
servative estimate of «,. This is in reasonable
agreement with energy transfer efficiencies in
unimolecular reactions (Chan et al., 1970).
From Table 3 we see that this, together with
the assumption a_> a,, implies that /< 0.5
pm, in agreement with most of the experi-
mental results.

On the basis of the above arguments it
seems that under ambient conditions we have
I less than 0.5 pm with «, near unity and
a, > 0.3. It is possible that / is as large as 1.5
um with &, as small as 0.1. Although aerosol
growth experiments cannot rule out small
values of a_, this would be inconsistent with
measurements on bulk water.:

In Table 4, / is given as a function of
temperature and pressure for various com-
binations of «, and «, taken from Table 3.
For a given value of / at room temperature,
choosing a, =1 rather than «, =1 produces
a very different temperature and pressure
dependence. Because of this, we must be
careful about extrapolating growth rate data
at ambient temperature and pressure to other

‘conditions.

SUMMARY

Simple theoretical arguments, of a type that
have been applied quite successfully in chem-
ical kinetics, imply that the condensation
coefficient for a vapor on its own liquid
should be near unity. For water, these argu-
ments are confirmed by measurements on
bulk samples; which show that the con-
densation coefficient is at least 0.5. As long
as the transfer of heat to the surface is

properly accounted for, experiments on bulk
water give results that are consistent with a
coefficient of unity. An accurate value has
not been determined.

The rate of growth of aerosol particles
depends on the mean jump length, /, which
is a function of both the condensation coeffi-
cient, «, and the thermal accommodation
coefficient, a,. The temperature dependence
of / depends strongly on the relative values
of these coefficients. This could provide a
means of determining both coefficients, how-
ever, such -experiments have not yet been,
done. Extrapolation of existing aerosol
growth data to conditions much different
from the ambient should not be made casu-
ally. o A \

For micrometer size drops, the growth
rate is not much different from the diffusion
controlled limit. As a result, measurements
of [ are very sensitive to errors in the growth
rate, degree of supersaturation, and the diffu-
sion coefficient. In particular, the fact that
the diffusion rate is proportional to the par-
tial pressure gradient rather than the con-
centration gradient should not be neglec-
ted. Also, the linearized form of the
Clausius—Clapeyron equation may only be
applied if the partial pressure of vapor is
within a few percent of saturation.

Existing measurements of aqueous aerosol
growth rates are highly uncertain. When
combined with the results of bulk measure-
ments they indicate that probably /<0.5
pm, a,=1 and «,> 0.3. However, some ex-
periments indicate that / is as large as 1.5
pm, which would imply that «, might be as



small as 0.1, or that «, is as small as 0.03.

This latter result could be correct if there is a
significant coverage of surface active material
on the droplet. '

In order to obtain more precise measure-
ments of «, and a_ it will be necessary to
conduct growth experiments on droplets with

a radius comparable to /. This would require
that the radius be just a few tenths of a

micrometer or that the experiments be car-
ried out at reduced pressure. However, re-
ducing the pressure would only be effective if
it is a,, rather than a,, that is less than one.
For droplet growth calculations in this
size range, Eq. (9), and its analogue for /,,
should be used rather than Egs. (8) and (15).
If the simplified equations resulting from the
linearization of the Clausius—Clapeyron
equation are to be used, the partial pressure
of vapor must be kept within a few percent
of saturation. It would be desirable to have
results on both pure water droplets and on
ones grown on atmospheric condensation
nuclei in order to assess the possibility that
organic films cause a reduction in a,.
The theoretical arguments presented in
the second section imply that the sticking
coefficients for all polar species on aqueous
surfaces should be near unity. If this is so,
then the mass transfer of reactive species,
such as OH or HO, radicals, to cloud drop-
lets should be diffusion controlled. It does
not appear that sticking coefficients, on water,
for species other than water have been mea-
sured. Rates of disappearance of species at
an aqueous surface tend to be limited by
either reaction rates (Baldwin and Golden,
1979; Baldwin, 1982; Huntzicker et al., 1980;
Jech et al., 1982; Martin et al., 1980) or by
liquid phase diffusion (Raimondi and Toor,
1959; Harvey and Smith, 1959). An analysis
of the characteristic times of the individual
steps has been provided by Schwartz and
Freiberg (1981). '

1 wish to thank Jack Calvert for helpful discussions.
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