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Abstract 

In response to appearance of multimodal events in the environment, we often make a gaze-

shift in order to focus the attention and gather more information. Planning such a gaze-shift 

involves three stages: 1) to determine the spatial location for the gaze-shift, 2) to find out 

the time to initiate the gaze-shift, 3) to work out a coordinated eye-head motion to execute 

the gaze-shift. There have been a large number of experimental investigations to inquire 

the nature of multisensory and oculomotor information processing in any of these three 

levels separately. Here in this thesis, we approach this problem as a single executive 

program and propose computational models for them in a unified framework.  

The first spatial problem is viewed as inferring the cause of cross-modal stimuli, whether 

or not they originate from a common source (chapter 2). We propose an evidence-

accumulation decision-making framework, and introduce a spatiotemporal similarity 

measure as the criterion to choose to integrate the multimodal information or not. The 

variability of report of sameness, observed in experiments, is replicated as functions of the 

spatial and temporal patterns of target presentations. To solve the second temporal problem, 

a model is built upon the first decision-making structure (chapter 3). We introduce an 

accumulative measure of confidence on the chosen causal structure, as the criterion for 

initiation of action. We propose that gaze-shift is implemented when this confidence 

measure reaches a threshold. The experimentally observed variability of reaction time is 

simulated as functions of spatiotemporal and reliability features of the cross-modal stimuli. 

The third motor problem is considered to be solved downstream of the two first networks 

(chapter 4). We propose a kinematic strategy that coordinates eye-in-head and head-on-

shoulder movements, in both spatial and temporal dimensions, in order to shift the line of 

sight towards the inferred position of the goal. The variabilities in contributions of eyes 

and head movements to gaze-shift are modeled as functions of the retinal error and the 

initial orientations of eyes and head. The three models should be viewed as parts of a single 

executive program that integrates perceptual and motor processing across time and space. 
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1 General Introduction 

We detect a limited range of signals from the environment. Basic sensory features and 

perceptions, e.g. for position, orientation, texture, color, form, and etc., are constructed in 

primary sensory cortex. At a higher hierarchical level, more complicated perceptions are 

realized in distributed networks by specifically associating sensory representations i.e. 

binding different features into a unique percept. This integration (binding) of sensory 

information may be controlled or commanded by various cortical units. It may be 

controlled by a posterior occipital / parietal network underlying a perception and be used 

for categorization and recognition. It may also be controlled by a frontal network 

underlying an action and be used for driving its executive parameters.  

In this thesis, we consider how spatial information, received from visual and auditory 

sensory apparatus, may be integrated for perception and action. We specifically focus on 

the problem of making a gaze-shift to the inferred cause of the cross-modal stimuli. This 

problem is broken into three levels of information processing: 1) at the highest level, we 

are concerned with spatial perception of the cross-modal stimuli. Here we consider a task 

where a human subject is asked to report if the presented cross-modal stimuli belong to a 

same source or separate sources. 2) At a lower stage, we are concerned about when to 

implement the gaze-shift towards the inferred cause. Here we consider a task where the 

reaction times of gaze-shifts towards the perceived position of a target, based on cross-

modal cues presented about the target, are recorded. 3) At the lowest level, we are 

concerned with how the gaze-shift is realized through a coordinated motion of eyes and 

head. We formalize the first level as a problem of dynamic inference, and propose a 

computational model of the cortico-striatal circuitry as its underlying representational 

structure. The second level is formalized as a computational model of cortico-collicular 

and striato-collicular connectivities. The third level is formalized as a computational model 

of brainstem oculomotor circuitry. We are not concerned with neurophysiological 

verifications in this thesis.   
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In this General Introduction, firstly, I review the experimental evidence about causal 

inference, reaction time variability, and the 3D eye-head coordination. Secondly, I review 

neurophysiology of cortical and subcortical brain networks underlying perception, action, 

attention, working memory reasoning, and decision making. Thirdly, I review the 

behavioral and neurophysiological evidence about eye-head coordination for gaze-shift. 

Fourthly, I review the computational architectures proposed about how the brain’s 

neurobiology may give rise to cognition, and converge to Neural Engineering Framework 

as our selected approach. Finally, I frame the problems we address in this thesis as a 

hierarchy of information processing, starting at cognitive processing for causal inference 

at higher cortical areas, and converging to motor processing for eye-head coordination in 

subcortical areas.  

1.1 Review of Multisensory Phenomena Addressed in this Thesis 

1.1.1 Inference of the cause of the cross-modal stimuli  

Sensory systems detect different types of signals originating from objects in the 

surrounding environment. For example, visual signals represent the electromagnetic waves 

with a specific range of frequencies that can be detected by the visual system, whereas 

auditory signals represent the mechanical waves with a certain range of frequencies that 

are detectable by the auditory system. These sensory received signals activate the 

corresponding sensory representations in the brain, which code for various features in space 

and time. Causal inference in animals is the process of estimating what events in outside 

world has caused the sensory representations in the brain (Shams and Beierholm, 2010, 

Lochmann and Deneve, 2011). 

Here we consider a case where spatial position signals are available from visual and 

auditory senses. Causal inference reduces here to judging whether the two signal originate 

from one same object or two different objects. Experimental evidence shows that if the 

temporal features are very close and similar to each other, one may perceive an illusory 

common cause despite the mismatch between their spatial features (Vroomen et al., 2001a, 

b, Godfroy et al., 2003). Similarly, if the spatial features are very close and similar to each 

other, you may perceive an illusory common cause despite the mismatch between their 

temporal features (Vroomen and Keetels, 2006, Vroomen and Stekelenburg, 2011). These 
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spatial and temporal ventriloquism effects break down at large spatial or temporal 

disparities (Slutsky and Recanzone, 2001, Wallace et al., 2004).  

In one study (Alais and Burr, 2004) observers were asked to report if a test stimulus, flash 

and click in spatial conflict, or a probe stimulus, flash and click presented together spatially, 

appeared more rightward. The main parameter they changed was the quality and spatial 

reliability of the visual signal. The subjects were told that the flash and click in the test 

stimulus belong to a unique object. So, the position where they perceive the unique object 

depends on the reliability of the signals that they assume they receive from it. For the case 

of sharpest visual stimuli they observed the classical ventriloquist effect such that the 

subjects perceive the object close to the position of the visual stimulus. For heavily blurred 

visual stimuli, they perceive the object close to the auditory stimulus. For intermediate 

levels of blurriness, they perceive the object somewhere between the positions of the visual 

and auditory stimuli. Their results imply that, when the subjects assume a common cause 

for the cross-modal stimuli, an intermediate position closer to the more reliable of the 

stimuli, is perceived as the location of the common cause.  

Other studies let the subjects decide whether the two cross-modal signals belong to the 

same object or not (Slutsky and Recanzone, 2001, Wallace et al., 2004). They changed 

both the spatial and temporal relationships between the two presented targets. For very 

short-duration and synchronous stimuli, the subjects reported a unique object as the source 

of the signals and perceived it at the weighted average of the position of the two signals. 

By extending the presentation time or by introducing some temporal disparity between the 

signals the chance of reporting a unique cause for two spatially disparate signals decreased 

drastically. Also for synchronous stimuli with fixed and significant presentation time, 

increasing the spatial disparity between the stimuli decreases the percentage of the trials 

where the subjects reported a unique object as the source. Their results showed that when 

subjects are not told to assume a common source for the stimuli, they may localize the 

stimuli in common or separate spatial positions, and this decision is affected by the spatial 

and temporal features of the stimuli.  
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1.1.2 Variability of reaction times for gaze-shifts towards cross-modal stimuli 

When we avoid reactionary motor responses towards sensory stimuli, we allow ourselves 

to plan actions based on a more complete set of information inferred from the sensory 

evidence. Such inference extends our perception beyond the sensory information, and 

provides us with a wider range of action synergies than sensory-driven reflexive 

movements. Selection of one of such action plans and the timing of its execution, then, 

depends on high-level cognitive processes, rather than reactionary sensorimotor paradigms. 

Such executive reaction time (RT) has been used to investigate hypotheses about the mental 

and motor processes to implement different tasks (Sternberg, 1969). In multisensory 

integration (MSI) research specifically, RT has been used to assess how combining 

multimodal stimuli with various intensities affect task implementation and response 

generation (Hershenson, 1962, Rubinstein, 1964). 

It is well known that bimodal stimuli, e.g. visual and auditory, affect the reaction times of 

goal-directed saccadic eye movements. In particular, when the two stimuli are aligned in 

space and time, a considerable reduction of the saccade RT is typically observed relative 

to visual stimulus alone or to auditory stimulus alone. Conversely, RT increases more 

slowly or even decreases when the stimuli are presented farther from each other or when 

the delay between them gets larger (Frens et al., 1995, Corneil et al., 2002, Diederich and 

Colonius, 2004, Navarra et al., 2005, Diederich and Colonius, 2008a, b, Navarra et al., 

2009, Van Wanrooij et al., 2010). 

1.1.3 Eye-head coordination for shifting the line of sight 

Gaze-shifts, i.e. rapid reorientations of the line of sight, are the primary motor mechanism 

for re-directing foveal vision and attention in humans and other primates (Bizzi et al., 

1971b, Tomlinson and Bahra, 1986a, Tomlinson, 1990, Guitton, 1992, Corneil and Munoz, 

1996). The fundamental aspects of gaze control kinematics can be addressed even in one 

dimension. They include the amplitudes and temporal sequencing of eye and head motion 

(Tomlinson and Bahra, 1986b, Guitton and Volle, 1987, Guitton, 1992, Sparks et al., 2002). 

The typical sequence of events includes a saccade, followed by a slower head movement 

and a compensatory VOR (vestibule-ocular reflex that keeps the gaze stable during some 

head movement by moving the eyes in the head). The aspects of this progression that we 
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will explore here include the variable timing of saccade, head movement and VOR, the 

influence of initial eye and head orientations, relative magnitudes of the contribution of 

these different phases to the gaze-shift and where the head falls in space after the gaze-

shift.  

Additional complexity emerges when one considers gaze-shifts from a two-dimensional 

(2-D) perspective. For example, the eye and head provide different relative contributions 

to horizontal and vertical gaze motion, which must be predictably accounted for saccades 

to produce accurate gaze shifts (Freedman and Sparks, 1997, Goossens and Van Opstal, 

1997), and for the eye and head to end up in the right positions after the VOR (Crawford 

and Guitton, 1997b, Misslisch et al., 1998).  

Finally, gaze control reaches its highest degree of complexity in 3-D (Glenn and Vilis, 

1992, Crawford et al., 2003). First, there is an added dimension of motion control: torsion, 

which roughly corresponds to rotations of the eyes and/or head about an axis parallel to the 

line of sight pointing directly forward. Torsion influences direction perception for non-

foveal targets (Klier and Crawford, 1998), binoclular correspondence for stereo vision 

(Misslisch et al., 2001, Schreiber et al., 2001), and must be stabilized for useful vision 

(Crawford and Vilis, 1991, Fetter et al., 1992, Angelaki and Dickman, 2003). More 

fundamentally, a 3-D description requires one to account for the non-commutative (order-

dependent) properties of rotations (Tweed and Vilis, 1987, Hepp, 1994). These properties 

influence not only ocular torsion and the degrees of freedom problem, but also gaze 

accuracy, for reasons related to reference frame transformations.   

1.2 Review of the Neurophysiology of Cortical Networks 

The ultimate goal of neuroscience is to figure out how the brain categorizes information 

and represents those categories. All cognitive functions are physically realized through 

representations of knowledge in assemblies of neurons in the brain (McClelland and 

Rogers, 2003). Neurons are interconnected in various ways. Some connections are 

segregated in order to process information differently in parallel pathways. Some 

connections are convergent from many onto few nodes for integrating information. Some 

connections are local between all neurons of a network in order to retain and process some 

temporarily available sensory information (McLeod et al., 1998). 
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All cognitive functions can essentially be explained in the context of knowledge 

categorization (Hayek, 1952). Perception consist in classifying of objects by binding of 

features that have occurred together in time and space in the past. Action consists of 

associating a set of movements that, have previously learned, can attain some goal. 

Attention is allocating processing power on a specific class of perceptual or executive 

information. Memories are stored codes of how to instantiate different classes of 

perceptions or actions. Language is a sequential code (syntax) that can be decoded by the 

brain for creating the distributed network of some perception or action (semantics). 

Reasoning is modifying a class based on new information or based on its overlap with other 

classes, according to its learned logical rules of association (Fuster, 2005). Here we review 

the brain organization underlying these cognitive functions, leading to proposing a 

computational cognitive architecture in the next section.     

1.2.1 Hierarchical organization of perceptual networks in posterior cortex 

Perception is our representation of the world through our senses. The sensory foundation 

of perception is not a matter of controversy. However, some view perception to be 

reducible to effects of sensation through receptors and nerve cells (Boring, 1942). Such a 

viewpoint on perception, limiting it to sensory analysis of physical features (Locke and 

George Fabyan Collection (Library of Congress), 1690), however, is not complete as it 

ignores the subjective and historical aspects of perception (Helmholtz and Southall, 1924). 

All percepts are formed by classifying the sensory information according to past memories 

(Berkeley, 1709). Even sensations can be thought of as retrieving ancestral or phyletic 

memory, genetically coded and inherited within species. Perceiving is, then, remembering, 

updating of memory. This active nature of perception has been in large part dismissed by 

psychophysicists, because of their emphasis on sensations, and by cognitive scientists, 

because of their emphasis on symbolic essence of cognition.  

The other aspect of perceptual processing ignored by psychophysicists and cognitive 

scientists is the parallel and unconscious execution of its information processing. Vast 

majority of testing and verifying hypotheses, underlying categorization of sensory 

information for perception, takes place along multiple channels and outside of 

consciousness (Barsalou, 1999). This matching act of sensory impressions to pre-
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established memories, is mostly aided by attention. Guided by memory or pre-conceived 

search plans, attention determines the course of categorization, by its two main functions: 

an inclusion component that allocates the limited processing power to updating some 

relevant perceptual memory; and an exclusionary component that attenuates processing in 

other irrelevant sectors. In case of unsatisfactory matching, the selected perceptual memory 

is modified, or another percept is projected on the present reality.  

The central question, then, is how one perception is constructed, is segregated from others, 

and preserves its identity despite discontinuities. Focusing on visual spatial perception, 

Gestalt psychologists developed certain principles of such organization, for example, based 

on proximity, similarity, continuity, and closure (Koffka, 1935). These principles explain 

grouping of elements in a gestalt based on regularities in the spatial relations between the 

elements. Such regularities reflect on existence of a more abstract code for a whole, which 

is bigger than, and independent of, the sum of the parts (Anderson, 1995). This idea can be 

applied to temporal domain, other sensory modalities, and multiple levels of abstraction. 

Then, in general, a perception can be defined as a specific relational regularity, in time and 

space, which is discovered between elementary parts. This, at least at a phenomenal level, 

explains the problem of perceptual constancy. What defines a perception is a special 

relationship between its elements, not the detailed features of each element, e.g. sizes and 

directions.  

The underlying neurophysiology of perception is the activation of a hierarchically 

organized network of connected neural populations, distributed all through the posterior 

cortex. The distributed network represents a relational regularity in its associative structure 

(Edelman, 1989). At the lowest stage of the perceptual hierarchy in the posterior cortex, 

there exist primary sensory areas. These most peripheral areas are specialized to recognize 

attributes defined by the physical parameters of the objects, giving rise to sensory features 

of the world. The perceptual representations, at this level, are primitive and faithful to the 

environment (Gilbert, 1998). Networks in these unimodal sensory areas categorize simple 

percepts, within that modality, such as color, orientation, motion, pressure, and pitch. 

Individual features of newly presented sensory information are analyzed, separately and in 
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parallel, to form structures in time and space. These analyses are then sent to higher 

unimodal association cortices.  

In higher areas of unisensory association, the separately analyzed features, recognized from 

environmental phenomena, are integrated to form more complex features, within the 

corresponding sensory modality (Felleman and Van Essen, 1991). Neurons in these areas 

have broader receptive fields and are responsive to more complex patterns and forms in the 

environment. Such cognitive networks represent universal and consistent relational 

regularities, in time and space, to categorize the simpler features, formed in primary 

sensory areas, into more complex and abstract classes. Such complex classes may have 

associations to other areas, at the same or different levels, to identify that percept more 

personally and specifically. For example, face recognition areas identify a face by 

classifying spatial features in a very specific way. Then each instantiation of the class 

“face” has specific emotional connotations, realized through associations with limbic 

cortex and amygdala.  

The results of unisensory analyses in primary and associative cortices converge onto large 

trans-modal posterior cortex (Mesulam, 1998). Lesions of this cortex leads to agnosia or 

semantic aphasia. Cognitive networks in these areas represent the perception of highly 

abstract symbols. Symbols abstract the essential features of a percept across wide variations 

of its sensory instances. A cat, a desk, an opera, or a rap song, all can be identified in the 

real world in a wide range of variety. Symbols are amodal in the sense that, in their 

relational structure, they may include associations with lower-level percepts from multiple 

sensory modalities; and they may be instantiated by recognition of lower sensory features, 

from environment, within any of those modalities (Barsalou, 1999). Symbols, obviously, 

have non-sensory dimensions, e.g. affective and emotional, realized through their 

associations with such categorizations in limbic system.  

Multiple patterns of connectivity, within and between hierarchical levels, serve as different 

ways to represent and process percepts in distributed networks (Edelman et al., 1978). 

Upward convergence from multiple lower-level areas to a single higher-level area has been 

observed, which may underlie binding of different features into a higher percept. Upward 

divergent connections from a single lower-level population to multiple higher-level areas 
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has been observed, which is thought to be involved in associating a common property to 

different categories of perception. Collateral connections between areas of the same 

hierarchical level has been observed, which underlies binding of percepts at the same level. 

Local recurrent connectivity in neurons of one population is ubiquitous in cortex and 

underlies retaining and temporal processing of information within that population. Global 

recurrent connectivity has been observed from higher to lower areas, which serves the 

attentional top-down processing.  

1.2.2 Hierarchical organization of executive networks in frontal cortex 

Translation of perception to action is mediated by projections from sensory structures to 

motor structures, at all levels of the two hierarchies, across the central nervous system 

(Young, 1993). The most reflexive reactions take place through interneurons between 

sensory and motor nerves in the spinal cord. Goal-directed actions, though, depend on 

cortical connections. Routine and automatic behaviors are realized in transformations 

between primary sensory and motor cortices. More complex motor actions involve the 

higher-order, associative, cortical areas. The complex motor synergies consist of temporal 

organization of percepts and actions. This integration of lower-level, automatic actions, 

along with updating of the associated percepts, is the cognitive function of the prefrontal 

cortex, at the summit of the executive hierarchy in the frontal lobe. This role is fulfilled 

through massive reciprocal connections of the posterior cortex and lower-level frontal areas 

with the prefrontal cortex (Fuster, 1997).  

The motor cortex (M1) is at the lowest level of the cortical executive hierarchy in the frontal 

lobe. Neural populations in M1 encode directions for the movements of specific body parts 

(Iriki et al., 1989). Each sub-nucleus in M1 controls a group of muscles that can move a 

body part in any direction (Georgopoulos et al., 1982). The specific firing pattern of each 

sub-nucleus, then, leads to a specific activation pattern in the corresponding group of 

muscles, which moves the body part in a specific direction (Sato and Tanji, 1989). 

Therefore, M1 representations are not organized somatotopically, but rather based on the 

intended action.  

In a higher level of the executive hierarchy, in premotor cortex, more global aspects of 

movement are represented. On one hand, in premotor cortex proper (area 6b), cells are 
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attuned to the kinematic properties of movement, especially trajectory (Weinrich and Wise, 

1982). To compute such variables, this nucleus receives connections from posterior areas 

involved in representation of space (Crutcher and Alexander, 1990). On the other hand, the 

so-called mirror units in premotor cortex, seem to encode movements of other subjects in 

the environment (di Pellegrino et al., 1992). To calculate these patterns, this nucleus is in 

constant talk with posterior areas involved in motion perception. Finally, in upper and more 

medial parts of premotor cortex (area 6b), the so-called supplementary motor area, cells 

are activated when a sequence of moments is executed (Mushiake et al., 1990). Neurons 

are tuned to the sequence rather than a specific movement component. This indicates a 

higher level of executive abstraction within time dimension. Temporal coordinates of 

sequence is encoded here, rather than the spatial coordinates of the movement.   

At the highest level of the executive hierarchy, the prefrontal cortex is involved in 

representing complex programs of action (Quintana and Fuster, 1999). Such programs 

consist of integration, across time, of multiple actions with perceptual referencing and 

updating, in order to achieve some abstract goal (Petrides et al., 2012). Lesioning of 

prefrontal cortex causes deficits in learning to formalize action plans, by temporal 

integration of sensory and motor information. Such lesions often also lead to deficits in 

syntactical formation of linguistic sequences. Neurons in prefrontal cortex show sustained 

activity between cue onset and target onset in memory-delay tasks (Quintana et al., 1988, 

Yajeya et al., 1988). This firing patterns has been assigned to working memory, the 

attentive process of temporal integration of information to plan an action. Another 

observation is that, while prefrontal cortex is active during learning sequential movements, 

the activation disappears when the action becomes automatic and routine, and activity of 

basal ganglia increases. Well-established action programs seem to be relegated to lower 

structures.  

The general abstract expertise assigned to prefrontal cortex is formulating a program of 

actions and perceptions to serve a goal (Fuster, 2005). But, what is an example of such 

complex programs, formalized by integration of multiple actions and selections through 

time? The reaction to appearance of a novel, salient, possibly dangerous stimulus in the 

peripheral visual field is one such program. The first element in this program is to use the 
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retinal image for reorienting the line of sight towards the stimulus. To do that, a massive 

subcortical network coordinates movements of the head and the eyes, to change the gaze 

orientation (reviewed in the section 1.3). The second element of the program is to recognize 

the stimulus based on the visual information available through the new pattern of retinal 

stimulation. This is achieved in posterior parietal cortex, within the massive networks of 

the visual perceptual memories. The chosen perceptual network is kept active, by 

attentional control in working memory, for perceptual updating and recognizing an 

appropriate action. The third element of the program is to select an action based on 

recognition of the stimulus. This could be running away, looking away, smiling, punching, 

etc. based on the nature of the stimulus.  

1.2.3 Attention  

Attention, in psychology, is characterized as the focusing on one out of many possible, 

perceptual or executive, information processing paradigms (James, 1890). Attentional 

control does not have to be conscious, as much like the majority of neural information 

processing in the brain. The brain has, as the essence of its cognitive functionality, an 

enormous number of overlapping, intersecting, and interacting networks of neural 

populations, underlying a vast array of complex patterns of perception and action. 

Allocation of neural resources to one of such networks, at the expense of withdrawing 

others (Uexküll, 1926), is the core of the cortical processing we call attention.  

Attention is an essential and inherent component of any cortical neural processing (Neisser, 

1976). Every associative network of neural populations, representing and processing 

sensory or motor information, has as its core, the capabilities and connections to both exert 

attentional control and accept it. There is no evidence of a separate structure in the brain 

dedicated to attention as an independent function. Attention is the selective activation / 

deactivation of perceptual and motor networks, in a timely fashion, by some other strongly 

activated network, to serve the purpose of that network. When a program of action-

perception sequence is formulated in prefrontal cortex, it is also learned when and to what 

networks to send attentional signals. When such programs become routine and automatic, 

they are relegated to lower-level areas, along with their attentional commands. So, 

attentional signals need not be top-down. For the complex programs that need adaptation 
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during the task, attentional signals come from the top, namely prefrontal cortex. For rapid 

automatic programs, the attentional control originates from lower structures.  

As clear from its definition, attention has two faces; an inclusionary role and an 

exclusionary role. This has been shown to be realized by selective excitation and inhibition 

of the target nuclei, at all levels of the central nervous system (Kuffler and Nicholls, 1976). 

At the lower motor levels, in spinal cord, reciprocal innervation is one such mechanism. 

Imagine one motoneuron that innervates a flexor muscle, and another one that innervates 

an extensor muscle. They are parts of a network that controls the movement of the leg at 

the knee. This network also includes a sensory afferent from the spindles of the extensor 

muscle to the flexor motoneuron, and another sensory afferent from the spindles of the 

flexor muscle to the extensor motoneuron. When the leg is moved up, the extensor 

motoneuron innervates the extensor muscle, and extensor sensory neuron inhibits the flexor 

motoneuron, all as part of one action. At the lowest sensory level, in the lateral geniculate 

body, the on-center-off-surround receptive fields embody another such attentional 

mechanism. Such LGN neurons fire harshly if light is shown at the center of their receptive 

field, but show absolutely no firing if an annulus of light is shown around a dark center of 

the receptive field.  

Perception is matching of sensory information to associative networks of perceptual 

memory (Grossberg, 1999). Perceiving is a program devised by integration of multiple 

elements across time, which has been relegated, as an automatic process, to lower sensory 

areas (Moran and Desimone, 1985). The first element of such program is to identify 

primitive perceptual features like color, orientation, position, pressure, pitch, etc. 

Attentional control in this element is to excite one instance of such features in favor of 

inhibiting others. If it is green, it is not red or blue. If it is at the top-right corner, it is not 

at the bottom or left. Next element is to identify more abstract forms based on the primitive 

ones. One attentional control here is the selective excitation of the best choices at the 

expense of inhibiting others. It is a face, so, it is not a chair. It is a melody, so, it is not 

spoken language. Another, this time top-down attentional control is from the more abstract 

forms on the primitive features. If it is a face, let’s not think the line orientations are very 

straight. If it is music, let’s not notice the large frequency differences in successive pitches. 
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The next element is to recognize the stimulus symbolically, if it is possible, based on all 

the features, primitive or abstract, formed at lower levels. The heterarchical attentional 

control is to instantiate the associative networks of one symbol in favor of other possible 

ones. If this is John’s face, it is not Jack’s. If this is a Led Zeppelin song, it is not a Tool 

song. The top-down attentional control, here, originates from the high-level symbol on the 

lower-level features. If it is Led Zeppelin, let’s adapt the parameters of the lower-level 

perceived features based on our memory of Led Zeppelin’s style of music.  

1.2.4 Working memory 

We mentioned how a program of action-perception is formulated on the time axis, in the 

prefrontal cortex (see section 1.1.2). We also mentioned that such programs, when become 

routine and automated, are relegated to lower-level sensory or motor areas. Top-down or 

bottom-up, automated or not, when a program is executed through time, various elements 

of the program send attentional control signals to specific neural populations, to retain their 

represented signal, or process it in some special manner, during the time of the execution 

of the program (Fuster, 2005). What we call working memory refers to this attentional 

control process. The essential properties of working memory are those of a perceptual or 

executive memory, which is held active, in the focus of attention, as required by 

information processing underlying the prospective action.  

In tasks with memory delays, some neurons, found all over the brain depending on the task, 

show sustained strong firing during the delay interval (Fuster and Alexander, 1971). This 

delay activity was strictly dependent on the task requirement to act contingent on the 

memorized signal. It was also not induced just by expectation of the reward. Such 

characteristics made these cells likely candidates as being engaged in the process of 

attending to a perceptual / executive memory, which forces it to retain or process the recent 

instance of itself (i.e. working memory). Their sustained activity is vulnerable to 

distraction, and its level is correlated with efficacy of the stimulus. All such cells belong to 

an associative network that represents the perception of the memorized signal. Maximum 

of such persistent activities belong to the part of the network that represents the features of 

the percept that change trial by trial, and indicate the next course of action.  
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During execution of a memory task, a large distribution of neurons get activated, in frontal 

lobe because of the execution aspects, and in the posterior cortex due to the perceptual 

aspects of the task. In the course of the task, maximum sustained firing moves between 

regions according to the task’s immediate demands. A reasonable interpretation is that all 

these neural populations are parts of a single distributed network that represents the 

program of the task with its motor and sensory components. Working memory is the joint 

activation of different parts of this network during performing the task. Prefrontal cortex is 

active all through each trial because it codes the temporal relations of different stages of 

the task. Posterior areas are active in some stages due to the need for perceptual processing 

in those stages. Lower frontal areas are active in some stages because of the need to execute 

some actions in those stages. The studies of simultaneous recording from lateral prefrontal 

cortex or the inferotemporal cortex, and cooling of the other, support these interpretations, 

among others (Fuster et al., 1985).  

1.2.5 Reasoning and Inference 

We reviewed how the perceptual and executive processing are organized in the brain. Can 

we extend this framework to how deductive reasoning finds the unknown (not available 

through senses) features of a concept, and how inductive reasoning creates new forms of 

perception and action. The abstract structure of a perceptual or executive memory is at the 

core of any intelligent functions that are defined for it. This structure determines what 

lower-level components it can accept, and what higher-level networks it can be part of. In 

essence, this structure is the logic of associations for the corresponding network.  

Let’s first consider deductive reasoning. It is the process of logical reasoning to find 

unknowns about a percept or action based on the structure of its associations (Johnson-

Laird, 1999). It is this associative logic of a percept or action that identifies the questions 

that could possibly be asked about it. This logic characterizes the unknown parts of the 

percept or action, and how such unknowns may be inferred from associations with other 

overlapping memory networks instantiated by the sensory signals, or by planning an action 

which will help us gather the appropriate information. For example, we see the front side 

of a car. We recognize it as a car just by this very limited visual information. We never ask 

how its wings look like because, from the structure of our perception of a car, we know it 
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does not fly. But we may ask what kind of engine it has. We may try to answer this by 

referring to our memory of the engine type of these specific cars. Or we may plan an action 

to go and look at the engine. In any event, such reasoning depends essentially on the 

internal structure of the network. 

Another form of intellectual behavior is problem solving by inductive reasoning. It is the 

process by which we conclude that what is true for some observational instances is true for 

a more abstract class (Sternberg, 1985). Within our reviewed framework, inductive 

reasoning consists of creating a new higher-order symbol constructed of a network of 

associations of features and behaviors and logic, all abstracted based on multiple repetitive 

observations. Imagine we want to answer the question of how kangaroos move around. We 

go observe a number of kangaroos moving. We identify the similarities in our observations. 

We match the shared characteristics with a pre-existing perceptual memory, namely 

jumping in a specific way. We abstract our observations by adding this general way of 

jumping to the distributed network of our memory of kangaroos. Analytical reasoning and 

finding similarities, besides the abstraction through matching the similarities to a higher 

network, constitute the core of inductive reasoning (Holyoak and Thagard, 1996). 

Such intellectual behaviors of problem solving by deductive and inductive reasoning, 

although dependent in their specifics on the context and nature of the question, can be 

thought of as independent and abstract functionalities. They are essentially executive 

programs of integration of perceptions and actions on the time axis. They include selective, 

sequential allocation of different percepts or actions to different stages of a program with 

the goal of gathering the right information to answer a specific question. This implies the 

likely role of executive networks in the prefrontal cortex in intelligent behavior (Duncan et 

al., 1995, Duncan et al., 1996). Such networks contain vast connections to lower levels of 

executive processing in frontal lobe structures, and to all levels of perceptual processing in 

posterior cortex. It has been experimentally shown that the most consistent correlate of 

cognitive abilities, in an intelligence test, is the coherence in the frequencies in the theta 

range, recorded from frontal and posterior cortices (Anokhin et al., 1999). Intellectual 

capacity, therefore, has been associated to synchronicity in wide cortical areas, which 
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implies recruitment of a large number of cognitive faculties in the service of a program, 

whose goal is to answer a question.   

1.2.6 Decision making 

Complex programs, in prefrontal cortex or relegated to lower cortices, consist of calculated 

succession of perceptual and executive processing. Such programs sometimes include 

multiple possible courses of action in a next stage, selected based on gathering some 

sensory information at the current stage. This is the essence of decision making in the brain. 

Decision making is ubiquitous at all levels of cortical neural processing. It is part of lower-

level networks, in sensory or motor hierarchy, if its corresponding program is routine and 

automatic. It is controlled by the prefrontal cortex if its program is adapted to solve a novel 

situation. However, decision making, in its essence, consists of general components: 1) 

what set of alternatives are considered possible, in general, to govern the next course of 

action, 2) which subset of possible alternatives are considered viable in a specific situation, 

3) how a decision is made between multiple viable alternatives, 4) when the selected course 

of action is initiated.  

In any event, the decision to act in a certain way depends on perceptual processing of 

sensory information, and posterior connectivities are one of main players. Cells in middle 

temporal (MT) area of posterior cortex respond selectively to moving visual stimuli 

(Britten et al., 1996), in a decision-making task. Similar MT neural behavior has been 

observed when the direction of ambiguous moving gratings has to be recognized 

(Logothetis and Schall, 1989). Also, cells in somatosensory cortex show discriminatory 

firing in response to different frequencies of mechanical vibrations (to fingertips), when 

trained to report differences in such perceived vibration frequencies (Hernandez et al., 

2000). Perceptual processing in the posterior cortex, therefore, seems to be a cornerstone 

of decision-making. Such posterior areas include the whole decision structure within 

themselves, if the decision-making is part of an automatic process. They send their results 

to executive networks of prefrontal cortex, if the decision-making is part of a program to 

solve a novel problem.  

Frontal executive networks constitute the second component of decision-making processes 

(Damasio, 1994). Every part of the frontal cortex is embedded in a large amount of 
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reciprocal projections, both excitatory and inhibitory, with posterior cortex and subcortical 

areas. This supports the ubiquity of decision-making and weakens the idea of convergence 

in some central unit (Fuster, 1997). Therefore, decision making, included in many frontal 

networks, is governed by multiple influences arriving from various cortical or subcortical 

sectors. Results of decision is applied through selective inhibition, controlled by the 

executive network, of structures that represent the alternatives for the next course of action.  

1.3 Head-Free Gaze-Shifts in Three-Dimensional Space 

1.3.1 Kinematics of eye-head coordination 

Gaze-shift is a rapid reorientation of the line of sight to redirect attention and vision (Bizzi 

et al., 1971, Tomlinson and Bahra, 1986a, Tomlinson, 1990). Natural gaze-shifts are 

implemented by complex coordination of eye and head movements, in time and space. The 

three motor mechanisms, which are coordinated to realize a gaze-shift, include an eye-in-

head saccade, a more sluggish head movement and a vestibule-ocular reflex (VOR) 

(Tomlinson and Bahra, 1986b, Guitton et al., 1990, Freedman and Sparks, 1997, Roy and 

Cullen, 1998). A kinematic strategy for this coordination is the subject of the third part of 

the thesis (chapter 4). Here we review the some experimental findings about such strategy.  

One aspect of this strategy is in the temporal and sequential domain. The typical sequence 

of events, experimentally observed, includes a saccade, followed by a slower head 

movement and a compensatory VOR eye movement. The timing of the saccade, head 

movement and VOR may be variable. The magnitudes of the movements influence the 

timing. Also, the initial orientations of eyes and head affect the timings observed.  

Another aspect of the coordination strategy is the amplitude of the different motor 

movements. Eyes and head have been shown to provide different relative contributions to 

horizontal and vertical components of gaze-shift. Also the amount of VOR eye movement 

is variable based on the initial eye and head orientations. All these variabilities must be 

predictably accounted for saccades to produce accurate gaze shifts (Freedman and Sparks, 

1997, Goossens and Van Opstal, 1997), and for the eye and head to end up in the right 

positions after the VOR (Crawford and Guitton, 1997a, Misslisch et al., 1998). 
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The most important aspect of the coordination strategy is in the spatial domain, and how 

the degrees-of-freedom problem is dealt with. An infinite number of rotational axes can be 

employed to bring a rigid-body from any given initial orientation toward a final 2-D 

direction, each resulting in a different amount of final torsion. Donders’ law states that only 

one final eye orientation is achieved for each 2-D gaze direction, and thus only one axis of 

rotation can be used (Glenn and Vilis, 1992, Crawford et al., 2003a). Orientation of the eye 

relative to the head and orientation of the head relative to the shoulder obey Donders’ law 

at their stable orientations, when the head and body are in normal upright postures 

(Misslisch et al., 1994, Klier and Crawford, 2003). Orientation of eye-in-head has also been 

shown to obey the Listing’s law (Ferman et al., 1987b, a, Tweed and Vilis, 1990, 

Straumann et al., 1991); If torsion is defined as rotation about the axis parallel to gaze at 

the primary eye position, then Listing’s law states that eye orientation always falls within 

a 2-D horizontal-vertical range with zero torsion known as Listing’s plane (LP). Note that 

in order to maintain eye orientation in LP, rotations must occur about axes that tilt out of 

LP as a function of eye position, a phenomenon known as the half angle rule (Tweed and 

Vilis, 1990). In contrast, orientation of head-on-shoulder has been shown to obey the Fick 

strategy (Glenn and Vilis, 1992, Crawford et al., 1999, Klier et al., 2007) where horizontal 

rotation occurs about a body-fixed vertical axis, vertical rotation occurs about a head-fixed 

horizontal axis, and the remaining torsional component is held near zero. Mechanical 

factors appear to aid these constraints by implementing some of the position-dependencies 

required to deal with non-commutativity. In particular, eye muscles appear to implement 

the half-angle rule (Demer et al., 2000, Ghasia and Angelaki, 2005, Klier et al., 2006). 

However, it is clear that mechanical factors do not constrain eye and head torsion, because 

the eye violates Listing’s law during the VOR (Misslisch et al., 1998, Crawford et al., 1999, 

Glasauer, 2007) , and the head constraint can be violated voluntarily or when used as the 

primary mover for gaze (Ceylan et al., 2000). 

1.3.2 Subcortical networks of eye-head coordination  

In response to a signal that codes the position of a spatial target in eye-centered coordinates, 

originating from the superior colliculus or the frontal eye field, the brainstem circuitry plans 

and generates coordinated movements of eyes and head, in order to change the line of sight 

towards the target (Sparks, 2002). These brainstem nuclei, accordingly, communicate a 
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pattern of activity to motoneurons that innervate eye and neck muscles, for them to move 

the eyes and the head in a specific way. The mechanisms, representations and 

connectivities underlying head movement control and its coordination with saccade and 

VOR in 3D space are largely unknown (Chen and Tehovnik, 2007). Here we review the 

little we know about the neural circuitry of saccade generation in brainstem.  

The eyes rotate by the action of three pairs of muscles. Horizontal rotations are generated 

by medial and lateral rectus muscles. Vertical rotations are produced by superior and 

inferior rectus and superior and inferior oblique muscle pairs and torsional movements are 

produced by contractions of combinations of superior/ inferior rectus and superior/inferior 

oblique muscle pairs (Robinson, 1964, 1973, 1978). Different motor neurons innervate 

each muscle (Fuchs and Luschei, 1971).  

Ocular motoneurons have a burst-tonic discharge pattern, tonic coding for eye orientation, 

burst coding the saccade (Robinson, 1964). This pattern is said to be resulted from their 

connectivities with saccade burst generators (SBGs) in reticular formation (RF). The tonic 

activity is proportional to the eye orientation. This tonic activity originates from the tonic 

neurons of the neural integrators in interaction with vestibular nuclei (Klier et al., 2002). 

These neural integrators are located in the interstitial nucleus of Cajal (INC) providing the 

vertical eye position signal, and in the nucleus prepositus hypoglossi (NPH) providing the 

horizontal eye position signal (Sparks, 2002).  

The burst activity of the oculomotor motoneurons is proportional to the saccade amplitude. 

These bursts of activity originate from two distinct SBGs, which are composed of neuron 

types with specific activity patterns. The first class includes medium-lead burst neurons 

(MLBs), which emit bursts of discharge before saccade onset, during ipsilaterally directed 

saccades. There are two subtypes of MLBs (Sparks and Travis, 1971, Cohen and 

Komatsuzaki, 1972): 1) Excitatory burst neurons (EBNs), which code for eye velocity and 

acceleration. They project to ipsilateral motoneurons and the neural integrators. 2) 

Inhibitory burst neurons (IBNs), which inhibit the contralateral motoneurons, and also 

project to tonic neurons of the neural integrators. The inputs to both EBNs and IBNs 

originate from long-lead burst neurons (LLBs) in both SC and brainstem. LLBs emit bursts 
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before saccade and reach their maximum firing at saccade onset (Scudder et al., 2002). 

They are selective to the direction and amplitude of the saccades.  

Burst neurons in the rostral interstitial nucleus of medial longitudinal fasciculus (riMLF) 

also provide monosynaptic excitatory input to the motor neurons that are involved in 

torsional rotations of the eye. The right and left riMLFs both contain burst neurons with up 

and down direction selectivity, but the right riMLF has preference for clockwise 

movements whereas left riMLF has preference for counter clockwise movements. 

Therefore, torsional eye movements can be generated by a balance of activity between up 

and down neurons with the same rotational preference (Hepp et al., 1988, Crawford et al., 

1991, Henn et al., 1991). 

Although the commands for horizontal and vertical components are generated in different 

regions of the brainstem (and are seemingly independent), during oblique saccades with 

both vertical and horizontal components, the onsets and the duration of the two components 

are synchronized (Guitton and Mandl, 1980). They project to and inhibit MLBs, 

functioning as saccade temporal switch. They discharge tonically during fixation and stop 

during the saccade (Pare et al., 1994). 

1.4 Review of Computational Neurocognitive Architectures  

How come animals’ cognitive systems are so incredibly robust, intelligent, and adaptive, 

such that it looks so far from the reach of human engineering? Is it because the cognitive 

processing is only realized completely and robustly by the biological mechanisms in the 

brain, and that we have a very limited understanding of the brain? Or does it seem so far 

from the reach of our knowledge because we are ignorant of the underlying complex 

mechanisms of animal cognitive structure? Or probably both, i.e. our inability to create a 

real cognitive system should be related to both our lack of understanding of the brain as a 

processing unit, and our shortage of knowledge about cognition as the abstract formal 

system?  

Despite the long way for engineering to get even close to animal natural intelligence, for 

any reason, there has been a number of invaluable attempts to propose biologically 

plausible cognitive architectures. Here, in this section, we first review general defining 
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criteria for any computational framework to meet, to be considered a viable cognitive 

architecture. We then review a number of approaches to the problem of computational 

modelling of cognition. Next, we evaluate different approaches based on the general 

criteria and converge on a unifying framework. Finally, we summarize the basic features 

of the Neural Engineering Framework, our selected approach.  

1.4.1 Criteria for evaluation of different architectures  

The first criterion is that any representational capacity ascribed to a cognitive agent must 

be able to explain the systematicity of our thoughts. This refers to intimate link between 

some sets of representations (Fodor and Pylyshyn, 1988). Why is it that, if we can assign a 

property to an object, the same property can be assigned to other objects as well? Or why 

is it that multiple instances of a property can be thought to be assigned to a same object? 

The next criterion is that any cognitive system should account for the meaning of a 

complex, represented concept, based on the meaning of its constituent representations, 

according to some logic of compositionality. This could be the associative logic of binding 

features into a symbol, or the syntactical logic of composing actions and perceptions (verbs 

and words in linguistics) into a complex program (sentence in linguistics). The better a 

computational cognitive architecture defines systems that meet compositionality criteria, 

the more robust it is in processing of novel, complex representations (Fodor and Pylyshyn, 

1988).  

Another criterion is the ability of a system to generate a vast number of complex 

regularities based on a few simpler ones, and rules to combine them. This is directly 

dependent on availability of representations of generic roles, abstracted from experience. 

In linguistic terms, this is the problem of grammatical templates, where a variety of words 

can play the same role, leading to numerous combinations. The only limit to this seemingly 

infinite productivity is limitations of time and memory resources (Jackendoff, 2002).  

Another general ability of a cognitive architecture is to bind basic representations to form 

complex representations, and then, to be able to distinguish multiple instances of one 

complex representation as belonging to a shared structure (Jackendoff, 2002). A proper 

cognitive agent can construct appropriately complex structures, within the limits of time 
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and processing resources, and then use this generic structure to recognize its instances fast 

and robustly.  

The problem just mentioned about binding and recognition for complex concepts, is also 

applicable to complex, time-integrative programs (or sentences in language). An example 

of this is how people are flexible in using the structure of language independent of its 

content (van Gelder, 1998). This refers to the availability of generic structures to integrate 

concepts on the time axis, and then being able to use that to distinguish a shared structure, 

leading to meaning, in numerous instances of it.  

Human cognition is robust, i.e. it is not sensitive to damaged, missing and noisy data 

(Rumelhart et al., 1987). Our engineered computers are robust in one respect, that they use 

components (transistors) whose states are interpreted as ‘on’ or ‘off’, and use a large 

margin (±5 V) to separate those states (leading to massive use of energy). In other respects 

computers are not robust at all. Any novel situation in the environment is not accounted for 

by the hardware, i.e. the hardware cannot run a program that is written poorly. It cannot 

use past experiences to interpret a noisy input reasonably. However, natural cognition is 

robust in all those respects, without using large amounts of power, like computers do.  

Cognitive systems are adaptable as they can use their memory appropriately. They can use 

their memories to recognize novel stimuli (Schoner and Thelen, 2006). They can adapt 

their memory based on new information. Any computational architecture should account 

for this fundamental capability. Different architectures account for adaptability in very 

different ways. The better approach is the one that realizes adaptability within the limits of 

the system on time and processing resources. 

Any cognitive architecture needs to explain how to incorporate memory of past experiences 

into cognitive functions. Such ability is classically approached through introduction of 

long-term memory with static nature and large capacity, and working memory with 

dynamic nature and limited capacity (Cowan, 2001). In any event, cognition necessitates 

manipulation of complex, compositional structures within and using memory, and a 

cognitive framework needs to account for it.   
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1.4.2 Symbolic, connectionist, and dynamicist approaches  

Symbolic approach, realized in production systems, is the classic viewpoint to modelling 

cognition. They usually consist of two core parts: 1) a set of if-then rules, 2) a control 

structure that matches the input to the “if” part of the rules to identify the next course of 

action by the “then” part. This approach was first used in the “General Problem Solver” 

(Newell and Simon, 1972), and then became the core of a number of attempts like Soar 

(Newell, 1992), Executive-Process/Interactive Control (Meyer and Kieras, 1997), and 

Adaptive Control of Thought (ACT-R) (Anderson, 1983). ACT-R is loyal to the basic 

structure of production systems, however, it assigns “utilities” to production rules to 

identify their likelihood of being applied. These utilities change over time with adaptation 

to the context and environment (Anderson, 1990, 2007). LISA (Learning and Inference 

with Schemas and Analogies) materializes the idea of synchronization, of spiking activity 

across a vast network of neural populations (von der Malsburg, 1995), as a method for 

representing structural relations underlying feature binding (Hummel and Holyoak, 1997, 

2003). To avoid LISA’s scaling problem, NBA (neural blackboard architecture) introduced 

a central, flexible, temporary structure underwriting symbolic binding, that can be accessed 

by many independent processes (van der Velde and de Kamps, 2006). ICS (integrated 

connectionist symbolic) architecture, on the other hand, uses Harmonic Grammar to 

implement optimality theory, a symbolic structure, in a connectionist network. It tries to 

model linguistic processing by tensor products (Smolensky and Legendre, 2006).  

 If you want to build a fast cognitive system–one that directly interacts with the physics of 

the world–then the most salient constraints on your system are the physical dynamics of 

action and perception. Roboticists, as a result, seldom use production systems to control 

the low-level behavior of their robots. Rather, they carefully characterize the dynamics of 

their robot, attempt to understand how to control such a system when it interacts with the 

difficult-to-predict dynamics of the world, and look to perception to provide guidance for 

that control. If-then rules are seldom used. Differential equations, statistics, and signal 

processing are the methods of choice for this “dynamicist” approach (van Gelder, 1998). 

According to this approach, cognitive systems can only be properly understood by 

characterizing their state changes through time. These state changes are a function of the 

tightly coupled component interactions and their continuous, mutually influential 
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connections to the environment. Dynamic constraints are clearly imposed by the 

environment on our behavior. The nature of that environment can have significant impact 

on what cognitive behaviors are realized (Healy and Rowe, 2014). Dynamic field theory, a 

complete instance of this approach, focuses on various types of stable attractor networks, 

and how they can be formed, to represent metric dimension (luminance, position, etc.). 

Networks of such stable patterns are created, by connecting them in various configurations, 

for modeling sophisticated behaviors, such as ocular control, reach preservation, and infant 

habituation.  

The third approach to modeling cognition, i.e. connectionism, is based on connections of 

large number of very basic computational units in various patterns. Neurons, here, are 

reduced to nodes of such networks that perform a simple transformation of input to output. 

However, when sufficiently large number of such nodes are grouped together, their 

network function is interpreted as implementing rules, classifying patterns, and performing 

cognitively-driven behaviors (Hummel and Holyoak, 2003, van der Velde and de Kamps, 

2006). As the computational and representational properties of such nodes bear small 

resemblance to real neurons, connectionist models cannot be directly compared to most 

data recorded from the brain. As an example of this approach, Leabra (local, error-driven 

and associative, biologically realistic algorithm) is a method for learning central elements 

of a cognitive architecture, by applying a k-Winner-Takes-All algorithm. It has been used 

to construct Primary Value and Learned Value model of learning (O'Reilly et al., 2007), 

which simulates behavioral and neural data on Pavlovian conditioning and the midbrain 

dopaminergic neurons that fire in proportion to unexpected rewards.  

1.4.3 Reconciliation of different approaches 

Cognition consists of sub-personal processes, such as effortful reasoning, that generate 

representations of the world that go beyond the information available to our senses 

(Eliasmith, 2013). This extends our perception and provides us with action synergies 

beyond sensory-driven reactions. Meanwhile, dynamic constraints are clearly imposed on 

our behavior by the environment. Cognitive systems can only be properly understood in 

case their state evolution through time is characterized (Healy and Rowe, 2014). 
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Classically, cognition is described as chains of if-then rules which statically transform the 

internal states of the system (Newell and Simon, 1972, Anderson, 1983). At the same time, 

classical control theory focuses on goal-directed motor planning within the time constraints 

of environmental interactions (van Gelder, 1998). While the former approach ignores the 

short-term dynamics of perception and action, the latter ignores the internal system, and 

sacrifices the high-level linguistic processes, such as complex planning and deductive 

reasoning. However, It is clear that the “dynamic perception / action” and the “high-level 

inference / language” are integrated in humans: cognitive animals. Interestingly, the way 

to solve this apparent conflict is, probably, through understanding how the brain encodes 

and transforms information in vast networks of neurons; the phenomena that traditional 

connectionism claims to understand, but not really.   

Here, we adopt a unified approach where a model is identified by functions of both the 

internal state variables and the time. Inspired by the brain, such more general models are 

realized through a distributed network of parallel processing units. This approach 

simultaneously accounts for syntactic manipulations of representations underlying 

inference, and flexible control of information routing between different units through time 

(Eliasmith, 2013). Although we do not deal here with the neural implementation of the 

model, all the representations and transformations are designed based on the known 

neurophysiology, and can be neurally realized by a recent theoretical approach, neural 

engineering framework, which unifies the symbolic, connectionist, and dynamicist 

viewpoints (Eliasmith and Anderson, 2003, Eliasmith et al., 2012). The relatively high 

number of variables in such models is because we are modelling an adaptive, robust 

biological system which can behave and survive in an uncertain, changing environment. 

1.4.4 Neural Engineering Framework 

Cognitive, perceptual, and motor abilities have been associated to the activity of neural 

circuits in the brain. This mere association has convinced some that cognition will emerge 

if we can model single neurons’ performance and connect them according to the real 

synaptic statistics (Markram, 2006). However, cognition has not yet emerged from data-

driven large scale models, and there are good reasons to think that cognition may never 

emerge (Eliasmith and Trujillo, 2014). The Neural Engineering Framework (NEF) 
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(Eliasmith and Anderson, 2003) is an approach which starts modeling cognition by 

describing the system at a higher level of abstraction and then realizing it using neural 

models with adjustable degrees of accuracy. This method has its roots in the work of a 

number of researchers (Georgopoulos et al., 1986, Salinas and Abbott, 1994, Rieke, 1997). 

The models designed within this framework closely resembles physiological findings in 

activity of single neurons, timing of responses, and behavioral errors without being built 

into the model (Rasmussen and Eliasmith, 2013, Stewart and Eliasmith, 2013).  

Within NEF, a group of neurons creates a distributed representation of a vector 𝐱(t) which 

is varying in time. A preferred direction vector 𝚽̃, a bias current 𝐽𝑖
𝑏𝑖𝑎𝑠, and a scaling factor 

𝛼 are associated with each neuron 𝑖. If the nonlinearity of the neural model is 𝐺[∙] and its 

noise of variance 𝜎 is 𝜂(𝜎), then 𝐱(t) is encoded by the temporal spike pattern a(t) across 

the group of neurons governed by this equation: 

∑𝛿(𝑡 − 𝑡𝑖𝑛)

𝑛

= 𝐺𝑖[𝛼𝑖𝚽̃ ∙ 𝐱(t) + 𝐽𝑖
𝑏𝑖𝑎𝑠 + 𝜂𝑖(𝜎)] (1)  

For decoding the spiking pattern as the vector 𝐱̂(t), we need the linearly optimal decoding 

vector for 𝚽 each neuron.   

𝚽 = 𝚪−𝟏𝚼 

𝚪ij = ∫aiaj𝐝𝐱 

𝚼j = ∫ ai𝐱𝐝𝐱 

(2)  

The decoding vectors are the weighted with the post-synaptic current ℎ(𝑡) induced by each 

spike: 

𝐱̂(𝑡) =   ∑a𝑖(𝐱(t))𝚽i

𝑖

 

a𝑖(𝐱(t)) =  ∑𝛿(𝑡 − 𝑡𝑖𝑛) ∗  ℎ𝑖(𝑡)

𝑛

  

(3)  
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We now have a neural group X which is representing 𝐱(t). We can also have another neural 

group Y which is representing 𝐲(t) = 𝐟(𝐱(t)) where 𝐟, in the most general case, is a 

nonlinear transformation. We can generalize the derivation of the decoding vector to 

estimate the desired function 𝐟. The transformational decoders for the neurons in Y such 

that their spiking pattern could be decoded to 𝐲(t) is derived by:  

𝚽𝐟 = 𝚪−𝟏𝚼𝐟 

𝚪ij = ∫aiaj𝐝𝐱 

𝚼j
𝐟 = ∫ai𝐟(𝐱)𝐝𝐱 

(4)  

Finally, let’s consider a dynamical system characterized by:  

𝐱̇(𝑡) =  𝚨 𝐱(t) +  𝐁 𝐮(t)  (5)  

We can represent this system within NEF by a recurrently connected neural ensemble:   

∑𝛿(𝑡 − 𝑡𝑖𝑛)

𝑛

= 𝐺𝑖[𝛼𝑖𝚽̃ ∙ (ℎ𝑖(𝑡) ∗  [𝚨́ 𝐱(t) + 𝐁́ 𝐮(t)]) + 𝐽𝑖
𝑏𝑖𝑎𝑠 + 𝜂𝑖(𝜎)] 

𝚨́ =  τ 𝚨 + 𝐈 

𝐁́ =  τ 𝐁 

(6)  

1.5 Moving from the literature to our computational models  

A gaze-shift is planned in space, i.e. it is highly dependent on the percept of space. Space 

perception is constructed based on information received through multiple senses, and also 

on the internal processes of reasoning and associations, e.g. causal inference. Therefore, 

causal inference in spatial perception of audiovisual target(s) and planning of gaze-shifts 

towards such target(s) are interconnected processes. The question is how we can explain 

these various perceptual and motor phenomena in a common framework: 1) which is 

neurophysiologically plausible, 2) which satisfies the constraints on a proper cognitive 

architecture, 3) whose internal structure is able to account for sensorimotor, and possibly 



28 
 

cognitive, gaze-shift planning, 4) which is able to reproduce the experimental evidence on 

spatiotemporal variabilities of the causal inference and saccadic reaction time, 5) which is 

able to account for the known evidence for kinematics of 3D eye-head coordination.  

Based on the presented arguments and evidence, in order to understand multisensory 

processing in neural and behavioral levels concretely, we need to have a large-scale model 

of functionalities and connectivities of cortical brain areas with the superior colliculus, 

basal ganglia, and the brainstem. In this thesis we provide computational-level descriptions 

for the representations and transformations within the proposed networks of expert 

information processing units. Represented signals and transformations for most expert 

units are inspired and supported by neurophysiological evidence.  

In the second chapter, we suggest a model of how the brain uses the spatial and temporal 

features of the visual and auditory stimuli to infer whether or not they belong to a same 

object in the environment. The model includes controlled, leaky integrators to retain and 

process the transient sensory information. An evidence-accumulation decision-making 

circuitry is proposed to represent all possible scenarios, and selecting one based on 

constructing a spatiotemporal similarity measure. The result of the decision is implemented 

by selective disinhibition of plan representations through a striato-cortical projection. The 

model accounts for variability of reports of sameness when spatial and temporal distances 

between the stimuli change.  

In the third chapter, we build upon the decision-making framework we previously used to 

solve the causal inference problem. Once a winning motor plan has been chosen based on 

causal inference, an instantaneous measure of confidence is computed based on the relative 

saliency of the winning motor plan compared to the alternate plans. A winning plan is only 

initiated when enough evidence is accumulated in its favor. This is realized by introducing 

an accumulative measure of confidence which integrates the instantaneous measure 

through time. A threshold is then set on the accumulative confidence and a GO command 

is released whenever it reaches the threshold. The model accounts for variability of 

saccadic reaction time as functions of spatial, temporal and reliability features of cross-

modal stimuli.  
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In the fourth chapter, we propose a kinematic model of three-dimensional, head-

unrestrained gaze-shifts. The input to this model is the eye-centered position of the target 

of the gaze-shift, supposedly provided by the superior colliculus, the output of the reaction 

time model. This target may be constructed based on either visual or auditory information, 

or integration of the two. The model achieves the gaze-shift through a spatiotemporal 

coordination of a saccadic eye movement, a head movement, and a vestibule-ocular eye 

movement. The model provides internal transformations that, together, account for 

behavioral evidence about gaze accuracy, relative eye and head contributions to gaze, non-

commutivity of 3D rotations, Donders’ law, Listing’s law, and Fick constraints. 

Each model is proposed within a “signals and systems” (Karris, 2003) framework. Every 

signal is a time-varying vector. Transformations of a signal is modeled in its feedforward 

conversions to other signals. Temporal processing of a signal can be controlled by its 

characterizing set of differential equations. Therefore, at a computational level, we have a 

network of signals and systems that characterize their behaviors. The whole network is 

designed to be neurally implemented in a circuitry of spiking neural networks, using the 

Neural Engineering Framework. Each signal is represented by a population of spiking 

neurons. Each representation can be transformed, according to a definite function, using its 

feedforward synaptic connections to other neural populations. Temporal processing of a 

representation is controlled by its recurrent connections between its neurons.  
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2.1 Abstract 

Animals try to make sense of sensory information from multiple modalities by categorizing 

them into perceptions of individual or multiple external objects or internal concepts. For 

example, the brain constructs sensory, spatial representations of the locations of visual and 

auditory stimuli in the visual and auditory cortices based on retinal and cochlear 

stimulations. Currently, it is not known how the brain compares the temporal and spatial 

features of these multisensory representations to decide whether they originate from the 

same or separate sources in space.  

Here, we propose a computational model of how the brain might solve such a task. We 

reduce the visual and auditory information to time-varying, finite-dimensional signals. We 

introduce controlled, leaky integrators as working memory that retains the sensory 

information for the limited time-course of task implementation. We propose our model 

within an evidence-based, decision-making framework, where the alternative plan units are 

saliency maps of space. A spatiotemporal similarity measure, computed directly from the 

unimodal signals, is suggested as the criterion to infer common or separate causes.   

We provide simulations that 1) validate our model against behavioral, experimental results 

in tasks where the participants were asked to report common or separate causes for cross-

modal stimuli presented with arbitrary spatial and temporal disparities. 2) Predict the 

behavior in novel experiments where stimuli have different combinations of spatial, 

temporal, and reliability features. 3) Illustrate the dynamics of the proposed internal 

system. These results confirm our spatiotemporal similarity measure as a viable criterion 

for causal inference, and our decision-making framework as a viable mechanism for target 

selection, which may be used by the brain in cross-modal situations. Further, we suggest 

that a similar approach can be extended to other cognitive problems where working 

memory is a limiting factor, such as target selection among higher numbers of stimuli and 

selections among other modality combinations.  
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2.2 Introduction 

Sensory systems detect different types of signals originating from objects in the 

surrounding environment. For example, visual information is carried by electromagnetic 

waves with a specific range of frequencies, whereas auditory information is carried by 

mechanical waves with a certain range of frequencies. Our brain constructs various 

perceptions and plans various actions in space and time, which can be triggered by 

sensations from multiple modalities. Integration of multimodal sensory information has 

been studied for temporal perceptions, e.g. perception of duration (Burr et al., 2009, Klink 

et al., 2011) and simultaneity (Harrar and Harris, 2008, Virsu et al., 2008), for spatial 

perceptions, e.g. spatial localization (Alais and Burr, 2004) and motion direction perception 

(Sadaghiani et al., 2009), for causal inference (Slutsky and Recanzone, 2001, Wallace et 

al., 2004), and also for action (Frens et al., 1995, Van Wanrooij et al., 2009). Here we are 

concerned with how the multisensory information is processed for causal inference.  

Causal inference in animals is the process of estimating what events in outside world has 

caused the sensory representations in the brain (Shams and Beierholm, 2010, Lochmann 

and Deneve, 2011). In presence of multiple sensory representations, we compare their 

features to infer if they have a unique cause or not. A commonly studied case is when visual 

and auditory information is used to construct spatial and temporal perceptual features. If 

the temporal features are similar to each other, a common cause may be perceived 

overriding mismatches in their spatial features (Vroomen et al., 2001a, b, Godfroy et al., 

2003). Similarly, if the spatial features are similar to each other, a common cause may 

again be perceived despite mismatches between temporal features (Vroomen and Keetels, 

2006, Vroomen and Stekelenburg, 2011). These spatial and temporal binding effects break 

down at large spatial or temporal disparities (Slutsky and Recanzone, 2001, Wallace et al., 

2004). In this paper we intend to propose a unique mechanism for causal inference which 

explains all this seemingly disparate evidence. However, let’s first review some previous 

attempts on solving this problem. 

In one study (Alais and Burr, 2004), observers were asked to report the location of a 

stimulus consisting of a flash and click presented with a spatial conflict. The spatial 

reliability of the visual signal was varied. The participants were told that the flash and click 
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belonged to a unique object. For the case of the most conspicuous visual stimuli they 

observed the classical ventriloquist effect such that the participants perceive the object 

close to the position of the visual stimulus. For heavily blurred visual stimuli, they perceive 

the object close to the auditory stimulus. For intermediate levels of blurriness, they perceive 

the object somewhere between the positions of the visual and auditory stimuli. Their results 

imply that, when the observers assume a common cause for the cross-modal stimuli, an 

intermediate position closer to the more reliable of the stimuli, is perceived as the location 

of the common cause. This idea was modeled, assuming Gaussian distributions for the 

unisensory cues, by Bayesian integration of the distributions, leading to the average of the 

two position cues weighted by the inverse of the variances of their distributions (Alais and 

Burr, 2004). Others tried to implement this optimal integration by a single-neuron model 

(Patton and Anastasio, 2003) or a model of a population of neurons (Ma et al., 2006).  

Other experimental studies let the participants decide whether two cross-modal signals 

belonged to a unique object or not (Slutsky and Recanzone, 2001, Wallace et al., 2004). 

Such studies changed the spatial and temporal relationships between the two stimuli. For 

very short-duration and synchronous stimuli, the participants reported a unique object as 

the source of the signals and perceived it at the weighted average of the position of the two 

signals. When the presentation time was extended or temporal disparity was introduced 

between the signals, the chance of reporting a unique cause for two spatially disparate 

signals decreased drastically. Also for synchronous stimuli, increasing the spatial disparity 

between the stimuli decreased the percentage of the trials in which the participants reported 

a unique object as the source. Their results showed that when participants are not told to 

assume a common source for the stimuli, they might localize the stimuli in common or 

separate spatial positions depending on the spatial and temporal features of the stimuli.  

Some theoretical studies have tried to model the effect of spatial disparity (Hairston et al., 

2003) on the report of a common cause (Kording et al., 2007, Sato et al., 2007). However, 

these studies ignored the temporal effect. They used the uncertain spatial cues, detected 

through multiple sensory channels, to calculate the probabilities of them arising from same 

or separate sources. If the same source is more likely, these models calculate the optimal 

estimate of the location of the same source as the weighted average of the cues. If separate 
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sources are more likely, the models shown that the uncertain spatial cues are the best 

estimates of the two locations. A physiologically realistic framework for these models has 

not been offered (Ma and Rahmati, 2013). Some other theoretical studies reduce the 

criterion for fusion to the temporal features of the events, ignore the spatial disparity, and 

propose that the cross-modal events are bound together if they happen within a relative 

time window (Colonius and Diederich, 2010, Diederich and Colonius, 2015). 

Here we want to propose a more general approach which considers the spatial and temporal 

dimensions in a common framework. We suggest a model of how the brain solves the 

causal inference problem for spatial localization for cross-modal, audiovisual stimuli with 

arbitrary spatial and temporal disparities. We propose the model at the computational level 

(Marr, 1982), not assuming a specific probability distribution or neural representation for 

the spatial position of the stimuli. We consider two stimuli, visual and auditory, with only 

spatial and temporal features. However, other problems with more than two stimuli, or with 

other modality combinations, or with stimuli of semantic or emotional significance can 

also be tackled by our approach. We consider the stimuli to be composed of 

multidimensional, time-varying, position signals which communicate the time and place of 

the stimuli. Our model is proposed within an evidence-based decision making framework 

including a short-term memory, in the form of a leaky integrator, and a spatiotemporal 

similarity measure as the criterion for inferring the cause of the input signals. The short-

term memory retains spatial information (not information about the order and temporal 

interrelations of events) and our similarity measure captures spatial and temporal 

disparities between the stimuli (not a higher-level order relation between them in time or 

space). We use this model to simulate known psychophysical results, and to generate 

predictions that can be used to test the model. Such results demonstrate that a model 

constructed in a decision making framework and inferring a causal structure based on a 

spatiotemporal similarity measure explains the behavioral results and could possibly be 

used by the brain to solve the target selection problem when cross-modal stimuli are 

presented.  
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2.3 Model Overview 

The problem we are addressing is causal inference in localization of cross-modal stimuli 

in which the spatiotemporal properties of the components vary. To solve this problem, we 

borrow two popular concepts from cognitive neuroscience that (perhaps surprisingly) have 

not yet been incorporated into models of multisensory spatial integration: decision making 

(Wang, 2008), and working memory (Baddeley, 2003b). Although the computations in this 

model could pertain to any cognitive or behavioral use of causal inference from multimodal 

inputs, we designed this model with output to the gaze control system in mind, because this 

is one of the best understood systems in the brain (Bell et al., 2005) and because numerous 

gaze-control laboratories are capable of testing our predictions. Thus, one can think of the 

output of the model as dictating whether a gaze-shift will be made toward the visual 

stimulus, the auditory stimulus, or a combined representation derived from both. Finally, 

we have arranged the general order and nature of our model algorithms to be compatible 

with the known biology of these systems but focus the current study on replicating and 

predicting psychophysical results. 

The sensory information received from stimuli in the environment is transient as most 

stimuli are only present for a limited time. Sensory information about the position and 

reliability of multimodal stimuli is moved to, and temporarily stored in, working memory 

where operations such as integration and computation of similarity take place. Working 

memory, in general, is used to bring together different pieces of information for cognitive 

processing with the goal of performing tasks such as reasoning, problem solving or action 

planning (D'Esposito et al., 1995, Baddeley, 2003a). Working memory is a distributed 

system in the brain, with multiple brain areas activated depending on the specific task being 

implemented (Courtney et al., 1997, Haxby et al., 2000, Fuster, 2004). Working memory 

in our model comprises four computational units (shown in blue in figure 1) that are 

responsible for retaining sensory information, integrating spatial cues, computing a 

similarity measure, and feeding the decision-making circuitry (Bechara et al., 1998).  
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Figure 1: A) Computation of the spatiotemporal similarity measure and using it to make a call on the sameness of the 

cause of cross-modal signals. The eye-centered, spatial components of the visual and auditory signals, which are stored in 
short-term memory (M) are fed into the unit DIST to calculate the spatial distance between them as a function of time. The 

spatial distance is then sent to the unit DISP, called spatiotemporal disparity, where it is integrated across time. The 
spatiotemporal disparity is then sent to the unit SIM, called spatiotemporal similarity measure, where is goes through an 

inverting and normalizing function. The spatiotemporal similarity measure is used for making a call on the sameness of the 
cause of the two received signals.  B) The complete model of gaze-shift, target selection in cross-modal situations. The 
visual (V) and auditory (A) signals are stored in a multisensory memory (M) structure. In parallel, the visual and auditory 

signals are used for computation of spatiotemporal similarity measure (SIM), as illustrated in detail in A. The three 
alternative plans are constructed as saliency maps from the memorized information and are represented initially in the plan 

layer in three units PL_V, PL_AV, PL_A. The unisensory plans are the unisensory stimulus positions along with their 
reliabilities which are regarded as equivalent to their saliencies. The multisensory plan is the weighted average (by 

reliabilities) position of the cross-modal stimuli along with the similarity measure as its saliency. The decision variable is 
constructed in the unit DV by communicating the saliencies of the three plans. The result of the decision is computed in DR 
by a function which implements the idea that the multisensory plan wins if the similarity measure is greater than a threshold  

and the more reliable of the unisensory plans wins if the similarity measure is lower than the threshold. The spatial 
components of the three plans are communicated from the plan layer to three units EX_V, EX_AV, EX_A in the execution 

layer. The result of the decision is materialized by selective inhibition of the plan representations in the execution layer. Only 
the winning plan is disinhibited, based on the decision result, and is sent for execution.
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We propose our model within a decision-making framework. Decision making is the 

process of deliberation resulting in the commitment to one of multiple alternative plans 

(Gold and Shadlen, 2007, Heekeren et al., 2008, Cisek and Kalaska, 2010). The 

deliberative process consists in the accumulation of evidence through processing the 

available information. This is realized in the evolution of systemic decision variables 

through time. The result of the decision is determined by a rule which is applied to the 

decision variables. Decision rules determine how or when the decision variable is 

interpreted to arrive at a commitment to a particular plan (Churchland et al., 2008). The 

decision result is the output variable of the evidence accumulation and rule application, 

that determines which plan is to be executed. Accumulation of evidence changes the 

decision variables and may change the decision result (Bogacz, 2007). As we shall see, 

each of these features has been incorporated into our model (green in figure 1B).  

The first part of the decision is to decide whether there is a unique cause for the two signals 

or if they correspond to two separate events.  As explained before, the experimental 

evidence shows that this decision is determined based on the spatial and temporal 

relationship between the cross-modal stimuli (Wallace et al., 2004). We propose a measure 

of spatiotemporal similarity between the two received signals that is used for making this 

decision. Figure 1A shows how this measure is calculated in working memory. The 

spatiotemporal pattern of stimuli presentation is captured in a temporally changing spatial 

position signal, decoded from the representations of sensory space in the brain. Spatial 

distance (𝐷𝐼𝑆𝑇) between the two stimuli, as a function of time, is first calculated. Spatial 

distance is integrated through time to calculate the spatiotemporal disparity (𝐷𝐼𝑆𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ). 

Spatiotemporal similarity measure (𝑆𝐼𝑀) is calculated by applying a function that inverts 

and normalizes the spatiotemporal disparity. This time-varying, similarity measure 

decreases with increases in the spatial disparity and / or temporal disparity between the two 

presented stimuli.  

The complete problem can be conceptualized as choosing between three possible scenarios: 

1) the signals are coming from one same object. In this case the target for gaze-shift is 

constructed as a weighted average of the visual and auditory estimates.  2) The signals are 

coming from different objects and the visual stimulus is more salient, in which case the 
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target is chosen to be at the location of the visual stimulus. 3) The signals are coming from 

different objects and the auditory stimulus is more salient, so, the target is chosen to be at 

the location of the auditory stimulus. Thus, the main task for our model is to infer one of 

these three scenarios from a given pair of multisensory inputs. 

The complete model is shown in figure 1B. The inputs to the system are the temporally 

changing position signals of the visual and auditory stimuli along with their reliabilities (𝑉⃗  

and 𝐴 ). These spatial position signals are temporarily stored in a memory structure (𝑀⃗⃗ ). 

The spatiotemporal similarity measure (𝑆𝐼𝑀) is computed from the position signals stored 

in memory. The previously mentioned three possible scenarios are physically realized in 

the form of three plan representations. Each plan unit represents the potential goal for an 

attention shift (if that plan wins) along with the saliency of the plan. The visual (𝑃𝐿_𝑉⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ) and 

auditory (𝑃𝐿_𝐴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) plan units represent the position of the corresponding stimuli along with 

their reliabilities (Kording et al., 2007, Rowland et al., 2007) (as our stimuli don’t bear any 

emotional significance or semantic meaning, their saliency is reduced to their reliability). 

Reliability in our model is a one-dimensional, real-valued parameter, which can change 

between 0 and 1 for the least to most reliable, and is an input to the model. We presume 

that this reliability can be calculated, upstream of our model, based on the representation 

of the spatial position, e.g. the inverse of the variance for a normal distribution (Kording et 

al., 2007, Ohshiro et al., 2011). The multisensory plan (𝑃𝐿_𝐴𝑉⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) unit represents average of 

the positions of the two stimuli weighted in proportion to their respective reliabilities (Alais 

and Burr, 2004). The saliency of the multisensory plan is proposed to be the spatiotemporal 

similarity measure. 

The decision variable (𝐷𝑉⃗⃗ ⃗⃗  ⃗) is constructed from the saliencies of the three alternative plans. 

The decision on same or separate causes for the signals is made by comparing the saliency 

of the multisensory plan with a threshold. We assume this threshold is tunable, and one 

possible way to account for the effects of emotional or semantic value of stimuli on sensory 

fusion is to be able to adjust this threshold. However, as this is beyond the scope of our 

model, we set the threshold to 0.5 (to match the experimental evidence, see below) and for 

consistency we use the same value for all of our predictive simulations. As long as saliency, 
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i.e. the spatiotemporal similarity measure, is above threshold the decision that they are from 

the same source is preferred. If the similarity measure drops below threshold the decision 

changes to that they originate from separate sources. In this case, the decision concerning 

which cause forms the goal of a shift of attention is made by comparing the saliencies of 

the two unisensory plans. The overall result of this three-way decision (𝐷𝑅⃗⃗ ⃗⃗  ⃗) is stored as a 

3-D signal that allows communication of only the winning plan to the execution units 

(𝐸𝑋_𝑉⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝐸𝑋_𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝐸𝑋_𝐴𝑉⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ). This is implemented through the decision result. 𝐷𝑅⃗⃗ ⃗⃗  ⃗ keeps all 𝐸𝑋 

units under constant inhibition. When a plan wins, its corresponding 𝐸𝑋 unit is disinhibited.  

The general outline of the model is inspired by known properties of the visual, auditory, 

and gaze control systems. The visual signal is the position of the visual stimulus in eye-

centered coordinates (Andersen et al., 1997, Maier and Groh, 2009). Auditory space is 

encoded initially in a craniocentric frame of reference (Knudsen and Konishi, 1978, 

Knudsen and Knudsen, 1983) as the auditory receptors are fixed to the head. For 

multisensory information processing and motor planning, the two sensory signals, 𝑉⃗  and 

𝐴 , should be in a common reference frame (Jay and Sparks, 1987, Andersen et al., 1997) 

which has been shown to be eye-centered for action involving the gaze-control system and 

early aspects of reach planning (Groh and Sparks, 1992, Cohen and Andersen, 2000, 

Pouget et al., 2002). The sensory signals are then sent to the distributed network of working 

memory. Posterior parietal and dorsolateral prefrontal cortex have been shown to actively 

maintain such signals (Funahashi et al., 1989, Cohen et al., 1997), similar to the short-term 

memory 𝑀⃗⃗  in our model. The prefrontal cortex is involved in the higher-order, executive 

functions of working memory (D'Esposito and Postle, 2015), including integration of the 

signals into unique events, realized in our model through 𝐷𝐼𝑆𝑇⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝐷𝐼𝑆𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , and 𝑆𝐼𝑀⃗⃗⃗⃗⃗⃗⃗⃗ . It is 

thought that the working memory then feeds the plan representations of the decision 

making circuitry in frontal cortex (Jones et al., 1977, Canteras et al., 1990, Berendse et al., 

1992, Yeterian and Pandya, 1994, Levesque et al., 1996), like our plan representations in 

plan layer 𝑃𝐿. Plan representations are then thought to send bids, e.g. their saliencies as in 

our case, to a central arbitrating system (Redgrave et al., 1999), e.g. the telencephalic 

decision centers, that gate their access to effectors. This is represented in our model through 

𝐷𝑉⃗⃗ ⃗⃗  ⃗ and 𝐷𝑅⃗⃗ ⃗⃗  ⃗ and their connection which realizes a decision rule. The basal ganglia are 
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thought to receive the result of the decision from cortex (Beiser and Houk, 1998, Koos and 

Tepper, 1999, Gernert et al., 2000) and implement it through selective disinhibition of 

cortical channels, which is abstracted in our model through the multiplicative effect of the 

𝐷𝑅⃗⃗ ⃗⃗  ⃗ on plan representations in execution layer 𝐸𝑋. In order to plan a gaze-shift, for 

example, the final winning plan is sent to the superior colliculus (Munoz and Guitton, 1989, 

Klier et al., 2001). This command could then be used to drive the eye-head coordination 

system (Klier et al., 2003, Daemi and Crawford, 2015) to reorient the line of sight to the 

appropriate target.  

2.4 Mathematical Formulation 

2.4.1 Method 

Our model implements causal inference through a decision making network for planning 

actions in a dynamic environment. This contrasts to previous approaches which either 

described 1) inference as chains of if-then rules which statically transform the internal 

states of the system (Newell and Simon, 1972, Anderson, 1983) or 2) goal-directed motor 

planning within the time constraints of environmental interactions (van Gelder, 1998). 

While the former approach ignores the short-term dynamics of perception and action, the 

latter ignores the internal system, and sacrifices the high-level linguistic processes, such as 

complex planning and deductive reasoning. Our goal was to integrate both “dynamic 

perception / action” and “high-level inference” in a way consistent with our knowledge of 

human and animal cognitive systems (see section 3).  

To do this, we adopt a unified approach where a model is identified by functions of both 

the internal state variables and the time. Inspired by the brain, such more general models 

are realized through a distributed network of parallel processing units. This approach 

simultaneously accounts for syntactic manipulations of representations underlying 

inference, and flexible control of information routing between different units through time 

(Eliasmith, 2013). Although we do not deal here with the neural implementation of the 

model, all the representations and transformations are designed based on the known 

neurophysiology, and can be neurally realized by a recent theoretical approach, neural 

engineering framework, which unifies the symbolic, connectionist, and dynamicist 

viewpoints (Eliasmith and Anderson, 2003, Eliasmith et al., 2012). The relatively high 
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number of variables in such models is because we are modelling an adaptive, robust 

biological system which can behave and survive in an uncertain, changing environment. 

More specifically, we implement an evidence-based decision making process, whose 

representations are evolving through time. The inference’s syntactic manipulations are 

realized through selective inhibition of plan representations, as inspired by the brain. 

Routing the information through the system is realized in a unified architecture where all 

attractor networks are controlled integrators which include a dimension (controlled leak) 

whose value controls whether the structure updates its value by it input, retains its current 

value, or clears its content. Information routing is controlled by the dynamics of the system 

not by the choice of modeler, as it is in the brain. As a result, inference is realized through 

time, evolving as empirical evidence is accumulated, helping us to survive in a highly 

dynamic environment. 

2.4.2 Unisensory Signals 

When visual or auditory stimuli occur in the environment, they are percieved at specific 

spatial locations, within specific time windows. The visual stimulus is encoded in retinal 

coordinates, i.e. an eye-centered frame of reference. The auditory stimulus is initially 

encoded relative to head, however, for cognitive and motor purposes, this code is 

transformed into an eye-centered reference frame as well (Maier and Groh, 2009). The 

unisensory input signals in our model are transient, time-varying, four-dimensional 

vectors. The four dimensions include a first component for existence of the signal, a second 

component for reliability of the signal and two last components for the eye-centered 

position of the signal in the spherical coordinates. The existence component gets value 1 

or 0 based on whether or not a stimulus is detected in the environment, by stimulation of 

the sensory receptors. It controls the interaction of the sensory information with memory 

(explained next). The reliability component, changing between 0 and 1 for least to most 

reliable, is computed from the early representation of the signal (Kording et al., 2007, 

Ohshiro et al., 2011), and indicates how reliable the representation is about the position of 

the stimulus. 
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𝑉⃗ (𝑡) =  [

 𝑒𝑥𝑡𝑣
 𝑟𝑒𝑙𝑣
 𝑒𝑐ℎ𝑣
 𝑒𝑐𝑣𝑣

] (1)  

𝐴 (𝑡) =  [

 𝑒𝑥𝑡𝑎
 𝑟𝑒𝑙𝑎
 𝑒𝑐ℎ𝑎
 𝑒𝑐𝑣𝑎

] (2)  

2.4.3 Short-Term Memory 

The transiently presented sensory signals need to be temporarily stored for further cognitive 

processing, e.g. inference (D'Esposito et al., 1995, Baddeley, 2003a), and then feeding the 

decision making circuitry. Accordingly, the unisensory signals are first communicated a 

short-term memory structure. It is a state space of finite dimensions which temporarily 

stores the unisensory signals in a unique representation. It consists of leaky integrators with 

controllable leaks. Sensory information is retained across eight dimensions of this state 

space, four dimensions for each modality. Those four modality-specific dimensions include 

a first component controlling the integrator’s leak, and three components storing the last 

three dimensions of the unisensory signals: 

𝑀⃗⃗ (𝑡) =  

[
 
 
 
 
 
 
 
 𝑙𝑘𝑚𝑣
 𝑟𝑒𝑙𝑚𝑣
 𝑒𝑐ℎ𝑚𝑣
 𝑒𝑐𝑣𝑚𝑣
 𝑙𝑘𝑚𝑎
 𝑟𝑒𝑙𝑚𝑎
 𝑒𝑐ℎ𝑚𝑎
 𝑒𝑐𝑣𝑚𝑎]

 
 
 
 
 
 
 

 (3)  

This memory structure, in connection with the transient sensory signals, is governed by 

these nonlinear state-space equations. In a general sense, such state space equations are the 

basis of constructing attractor neural networks which is believed to underlie memory 

structures in the brain (Conklin and Eliasmith, 2005, Singh and Eliasmith, 2006). The 

boundary and input conditions of these differential equations are dictated by a dynamic 

environment. Therefore, the current state of the state space is controlled internally, by the 
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controllable leaks, in constant interaction with the environment. However, more 

specifically, before any input comes in, all dimensions of the state space are zero.   

[
 
 
 
 
 
 
 
 
 
 𝑙𝑘𝑚𝑣̇

 𝑟𝑒𝑙𝑚𝑣̇

 𝑒𝑐ℎ𝑚𝑣̇

 𝑒𝑐𝑣𝑚𝑣
 𝑙𝑘𝑚𝑎̇

 𝑟𝑒𝑙𝑚𝑎̇

 𝑒𝑐ℎ𝑚𝑎̇

 𝑒𝑐𝑣𝑚𝑎̇

̇

]
 
 
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
 
 

0 0 0 0 0 0 0 0
0 (1 − 𝑙𝑘𝑚𝑣)0 0 0 0 0 0

0 0 (1 − 𝑙𝑘𝑚𝑣)0 0 0 0 0

0 0 0 (1 − 𝑙𝑘𝑚𝑣) 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 (1 − 𝑙𝑘𝑚𝑎)0 0

0 0 0 0 0 0 (1 − 𝑙𝑘𝑚𝑎)0

0 0 0 0 0 0 0 (1 − 𝑙𝑘𝑚𝑎)]
 
 
 
 
 
 
 
 

 ×

[
 
 
 
 
 
 
 
 𝑙𝑘𝑚𝑣
 𝑟𝑒𝑙𝑚𝑣
 𝑒𝑐ℎ𝑚𝑣
 𝑒𝑐𝑣𝑚𝑣
 𝑙𝑘𝑚𝑎
 𝑟𝑒𝑙𝑚𝑎
 𝑒𝑐ℎ𝑚𝑎
 𝑒𝑐𝑣𝑚𝑎]

 
 
 
 
 
 
 

   

+ 

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
 0 0 0 0 1 0 0 0
 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 1 0
 0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

×  

[
 
 
 
 
 
 
 
 𝑒𝑥𝑡𝑣
 𝑟𝑒𝑙𝑣
 𝑒𝑐ℎ𝑣
 𝑒𝑐𝑣𝑣
 𝑒𝑥𝑡𝑎
 𝑟𝑒𝑙𝑎
 𝑒𝑐ℎ𝑎
 𝑒𝑐𝑣𝑎]

 
 
 
 
 
 
 

 

(4)  

The controllable leaks characterize the behavior of the controlled integrator (table 1) 

(Eliasmith, 2005). The two leaks are fed by the existence component of the corresponding 

sensory input. The existence component is 1 when the stimulus is present and is 0 when it 

is not, so the leaks always assume digital values 0 or 1. This means the integrator is updated 

by the new input when the input is present and maintains the current value when no input 

is present.  
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 Leak = 0 Leak = 1 

No input coming Keeps the current value Clears the memory 

Input coming Integrates and accumulates the input Updates to the input 

Table 1: the effect of the leak on the behavior of a leaky integrator. Theoretically 

speaking, if the leak gets a value between 0 and 1, when there is no input the integrator 

clears the memory with a speed controlled by the leak, and when there is an input the 

integrator integrates the input with a speed controlled by the leak. However, both our 

integrator structures always assume digital values of 0 or 1.   

2.4.4 Spatiotemporal Similarity Measure 

The cognitive processing in working memory, in our model, consists of computing a 

measure of similarity between the two unisensory signals based on their spatial positions 

and temporal profiles. Figure 1A illustrates the connectivity of structures for calculating 

this measure. We start with the spatial distance 𝐷𝐼𝑆𝑇. The spatial distance between the two 

unisensory stimuli is calculated from the information stored in the short-term memory 

about the spatial positions of the stimuli. It is computed, in spherical coordinates, in the 

connection from 𝑀⃗⃗  to 𝐷𝐼𝑆𝑇: 

𝐷𝐼𝑆𝑇(𝑡) =  [𝑑𝑖𝑠𝑡]

=  cos−1[cos( 𝑒𝑐ℎ𝑚𝑣) × cos( 𝑒𝑐ℎ𝑚𝑎)  

+  sin( 𝑒𝑐ℎ𝑚𝑣) × sin( 𝑒𝑐ℎ𝑚𝑎) × cos( 𝑒𝑐𝑣𝑚𝑣 −  𝑒𝑐𝑣𝑚𝑎)] 

(5)  

The spatiotemporal disparity 𝐷𝐼𝑆𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is then calculated from the spatial distance by 

integrating it across time. Our proposed structure is a state space of two dimensions. This 

is, again, a leaky integrator with controllable leak. The two dimensions of this state space 

include a first component controlling the integrator’s leak and a second component where 

the integrated value of the spatial distance is accumulated. 
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𝐷𝐼𝑆𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡) =  [
 𝑙𝑘𝑑𝑖𝑠𝑝
𝑑𝑖𝑠𝑝

] (6)  

These state space equations characterize the behavior of this integrator. Before introduction 

of inputs, all dimensions of the state space are zero. 

[
𝑙𝑘𝑑𝑖𝑠𝑝̇

𝑑𝑖𝑠𝑝̇
] =  [

0                    0
0 (1 − 𝑙𝑘𝑑𝑖𝑠𝑝)

]  × [
 𝑙𝑘𝑑𝑖𝑠𝑝
𝑑𝑖𝑠𝑝

] + [
0
1
]  × [𝑑𝑖𝑠𝑡] (7)  

Here, the leak does not need to be controlled based on existence of the input. The leak is 

internal to the functioning of the integrator, and represents a value 0 all through the stimulus 

presentation window. That is because we want it to integrate the input when there is any, 

and retain the current value when there is no input (table 1). The result of this integration 

gives us a measure of spatiotemporal disparity between the visual and auditory stimuli. A 

tangent hyperbolic function is then applied on the disparity measure to calculate a measure 

of similarity between the two stimuli: 

𝑆𝐼𝑀(𝑡) = [𝑠𝑖𝑚] =  1 −  𝑡𝑎𝑛ℎ(0.5 × 𝑑𝑖𝑠𝑝) (8)  

This makes the similarity measure change between 0 and 1 for the least to the most similar. 

Equations in this section might not be supported by a known brain mechanism, however, 

we will later show that using spatiotemporal similarity as the criterion to infer unique or 

separate causes can explain the experimental evidence about the relation of such 

judgements with the spatial and temporal disparities between cross-modal stimuli.  

2.4.5 Decision Making Process 

The information processed in working memory is then communicated to the decision 

making circuitry (Bechara et al., 1998), which realizes the causal inference in our model. 

We introduce three plan units, visual, auditory and multisensory, which are fed by the 

working memory. Each of these channels is a 3-dimensional vector whose first component 

represents the saliency of that plan. The saliency of each of the unisensory plans is reduced 

to its reliability. The last two components of the two unisensory plans represent their 

respective spatial positions as stored in short-term memory:   
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𝑃𝐿_𝑉⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ (𝑡) =  [

 𝑠𝑎𝑙𝑝𝑙𝑣
 𝑒𝑐ℎ𝑝𝑙𝑣
 𝑒𝑐𝑣𝑝𝑙𝑣

] =  [
𝑟𝑒𝑙𝑚𝑣
 𝑒𝑐ℎ𝑚𝑣
 𝑒𝑐𝑣𝑚𝑣

] (9)  

𝑃𝐿_𝐴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡) =  [

 𝑠𝑎𝑙𝑝𝑙𝑎
 𝑒𝑐ℎ𝑝𝑙𝑎
 𝑒𝑐𝑣𝑝𝑙𝑎

] =  [
𝑟𝑒𝑙𝑚𝑎
 𝑒𝑐ℎ𝑚𝑎
 𝑒𝑐𝑣𝑚𝑎

] (10)  

Integration of the unimodal signals, which might be used to drive a gaze-shift, is 

implemented in working memory, in its connection to multisensory plan representation. 

The multisensory channel represents a weighted average of the positions of the two stimuli, 

weighted by their reliabilities. The saliency of the multisensory plan is considered to be the 

spatiotemporal similarity between the two stimuli, which varies between 0, for least 

similar, and 1, for most similar: 

𝑃𝐿_𝐴𝑉⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡) =  [

 𝑠𝑎𝑙𝑝𝑙𝑎𝑣
 𝑒𝑐ℎ𝑝𝑙𝑎𝑣
 𝑒𝑐𝑣𝑝𝑙𝑎𝑣

] =   [

𝑠𝑖𝑚
 𝑟𝑒𝑙𝑚𝑣 ×  𝑒𝑐ℎ𝑚𝑣 +  𝑟𝑒𝑙𝑚𝑎 ×  𝑒𝑐ℎ𝑚𝑎
 𝑟𝑒𝑙𝑚𝑣 ×  𝑒𝑐𝑣𝑚𝑣 +  𝑟𝑒𝑙𝑚𝑎 ×  𝑒𝑐𝑣𝑚𝑎

] (11)  

Now, we are ready to construct our decision variable, realizing a central decision center 

(Gold and Shadlen, 2007). We propose a three-dimensional vector as the decision variable 

𝐷𝑉⃗⃗ ⃗⃗  ⃗ which is completely characterized by the saliency of the plan (PL) representations:  

𝐷𝑉⃗⃗ ⃗⃗  ⃗(𝑡) =  [

𝑑𝑣𝑣
𝑑𝑣𝑎
𝑑𝑣𝑎𝑣

] =  [

𝑠𝑎𝑙𝑝𝑙𝑣
𝑠𝑎𝑙𝑝𝑙𝑎
𝑠𝑎𝑙𝑝𝑙𝑎𝑣

] (12)  

The values of the components of 𝐷𝑉⃗⃗ ⃗⃗  ⃗ determine the decision about which of the visual, 

auditory or multisensory channels drives the final goal of gaze-shift. The result of this 

decision is to disinhibit the desired channel and keep inhibiting the undesired ones 

(explained below). The result of the decision making process is temporarily stored in 

another structure that we call ‘decision result’ or 𝐷𝑅⃗⃗ ⃗⃗  ⃗. The decision function, which 

transforms 𝐷𝑉⃗⃗ ⃗⃗  ⃗ to 𝐷𝑅⃗⃗ ⃗⃗  ⃗, is the abstract underlying mechanism of inference in our model, and 

is formed through this idea:  
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𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑠𝑢𝑙𝑡 =  

{
 
 
 
 

 
 
 
 [
1
0
0
]                                         𝑖𝑓 𝑠𝑖𝑚 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

[
0
1
0
]         𝑖𝑓 𝑠𝑖𝑚 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑛𝑑 𝑟𝑒𝑙𝑣 > 𝑟𝑒𝑙𝑎

[
0
0
1
]         𝑖𝑓 𝑠𝑖𝑚 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑛𝑑 𝑟𝑒𝑙𝑎 > 𝑟𝑒𝑙𝑣

 (13)  

Which is mathematically realized by this proposed functionality:  

𝐷𝑅⃗⃗ ⃗⃗  ⃗(𝑡) =  [

 𝑑𝑟𝑣
𝑑𝑟𝑎
𝑑𝑟𝑎𝑣

] =   

[
 
 
 
 
  

1

1 + 𝑒−𝑠𝑙𝑎𝑣(𝑡ℎ𝑎𝑣− 𝑑𝑣𝑎𝑣)
×

1

1 + 𝑒−𝑠𝑙𝑢(𝑑𝑣𝑣−𝑑𝑣𝑎)

 
1

1 + 𝑒−𝑠𝑙𝑎𝑣(𝑡ℎ𝑎𝑣− 𝑑𝑣𝑎𝑣)
×

1

1 + 𝑒−𝑠𝑙𝑢(𝑑𝑣𝑎−𝑑𝑣𝑣)

 
1

1 + 𝑒−𝑠𝑙𝑎𝑣(𝑑𝑣𝑎𝑣−𝑡ℎ𝑎𝑣) ]
 
 
 
 
 

 (14)  

𝑡ℎ𝑎𝑣 is the tunable threshold for the similarity measure above which we perceive the two 

signals as coming from the same object and below which we can differentiate the cause of 

the two signals. 𝑠𝑙𝑎𝑣 and 𝑠𝑙𝑢 are function parameters which determine the speed and 

confidence of the transition between alternative decisions.  

The decision result controls the communication of the plan representations from the plan 

layer, 𝑃𝐿, to the execution layer, 𝐸𝑋. Accordingly, the plan representations in 𝐸𝑋 are 

governed by:  

𝐸𝑋_𝑉⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡) =  [
 𝑒𝑐ℎ𝑒𝑥𝑣
 𝑒𝑐𝑣𝑒𝑥𝑣

] =  𝑑𝑟𝑣  ×   [
 𝑒𝑐ℎ𝑝𝑙𝑣
 𝑒𝑐𝑣𝑝𝑙𝑣

] (15)  

𝐸𝑋_𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡) =  [
 𝑒𝑐ℎ𝑒𝑥𝑎
 𝑒𝑐𝑣𝑒𝑥𝑎

] =  𝑑𝑟𝑎  ×   [
 𝑒𝑐ℎ𝑝𝑙𝑎
 𝑒𝑐𝑣𝑝𝑙𝑎

] (16)  

𝐸𝑋_𝐴𝑉⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡) =  [
 𝑒𝑐ℎ𝑒𝑥𝑎𝑣
 𝑒𝑐𝑣𝑒𝑥𝑎𝑣

] =  𝑑𝑟𝑎𝑣  ×   [
 𝑒𝑐ℎ𝑝𝑙𝑎𝑣
 𝑒𝑐𝑣𝑝𝑙𝑎𝑣

] (17)  

𝐷𝑅⃗⃗ ⃗⃗  ⃗ implements the decision concerning which plan drives the gaze-shift. This is applied 

by selective inhibition of plan representations in the execution layer (𝐸𝑋). 𝐸𝑋 plan 

representations are selectively inhibited to determine the winning plan. Here, this is shown 
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by the multiplicative effect of the corresponding 𝐷𝑅⃗⃗ ⃗⃗  ⃗ component. Such functionality can be 

neurophysiologically realized by an inhibitory connection from a neural population 

representing 𝐷𝑅⃗⃗ ⃗⃗  ⃗ to the neural populations representing the execution layer (𝐸𝑋) plans 

(Redgrave et al., 1999, Sajad et al., 2015).     

2.5 Results  

Psychophysicists record the observable behavior of subjects during experiments. However, 

the neurocognitive internal system underlying the behavior is not accessible to the 

psychophysicist. For example, for causal inference studies in cross-modal spatial 

localization, the “report of sameness” is the only measureable behavior, while the whole 

host of internal mechanisms, e.g. sensory representations, working memory and decision 

making units, which are responsible for the behavior are not measurable. In this paper we 

propose a model of the internal cognitive system underlying the implementation of such 

tasks. In this section: 1) we verify our model against the limited number of psychophysical 

studies of causal inference during cross-modal spatial localizations which systematically 

varied both the spatial and temporal features (Slutsky and Recanzone, 2001, Wallace et al., 

2004). We do so (in 5-1) by comparing our model’s output with the only measureable 

behavior “report of sameness” in such experiments. 2) At this stage, we have verified the 

ability of the model to reproduce the human behavior when the spatial and temporal 

configurations of the cross-modal stimuli are varied. We then look into the internal system 

by illustrating the dynamics of the decision variable and decision result when we change 

the spatial (5-2) or temporal (5-3) disparities between the stimuli. 3) We then use the model 

to predictively simulate the human behavior in some novel situations where experimental 

evidence is not yet available. We first simulate what happens when the reliability of the 

stimuli vary, when separate sources are perceived (5-4). Then we will illustrate how 

accumulation of evidence through exposure of the model to temporally extended stimulus 

presentations may change the decision (5.5).   

2.5.1 Inference of a Unique Cause for Cross-Modal Stimuli   

The percentage of the times that an audio-visual stimulus is judged as arising from a unique 

cause varies with the spatial and temporal features of the stimuli (Slutsky and Recanzone, 

2001, Wallace et al., 2004). Slutsky and Recanzone (2001) kept the position, duration, and 
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onset of the auditory stimulus fixed, and varied the onset and position of the visual stimulus 

and found how this report of unique cause changes. They found that a unique cause was 

elicited for small temporal disparities even at large spatial disparities, and also for large 

temporal disparities for small spatial disparities (Slutsky and Recanzone, 2001). 

Figure 2 shows the output of our model when stimulus parameters are varied in the same 

way as Slutsky and Recanzone (2001). Our proposed criterion for this decision is the 

measure of spatiotemporal similarity. This measure is shown as a function of temporal 

disparity for different spatial disparities in figure 2A and as a function of spatial disparities 

for different temporal disparities in 2B. The decision is made by applying a threshold (set 

to 0.5 throughout all of our simulations) function to the similarity measure: if it is above 

threshold, the decision is that there is a unique cause, if it is below threshold the decision 

is that there are separate causes. The results of this decision are shown in figure 2C as a 

function of temporal disparity for different spatial disparities and in 2D as a function of 

spatial disparities for different temporal disparities.  
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A

B

C

D

th = 0.5

th = 0.5

Figure 2: Spatiotemporal similarity measure as the criterion for the decision on the uniqueness of the 

cause. Here we replicate a task where participants were asked to report if two cross-modal stimuli emanated 
from a unique cause (Slutsky and Recanzone, 2001). While all features of the auditory stimulus were kept fixed, 

they systematically varied the spatial position and the onset time of the visual stimulus and studied how the 
sameness report changes. A) Spatiotemporal similarity measure as a function of temporal disparity for different 
spatial disparities. B) Spatiotemporal similarity measure as a function of spatial disparity for different temporal 
disparities. C) Sameness call as a function of temporal disparity for different spatial disparities.  D) Sameness 
call as a function of spatial disparity for different temporal disparities. The values  1  and  0  for the sameness 
call indicate the same source and separate sources respectively. The symbols  sd  and  dt  indicate the spatial 

(degrees) and temporal disparities (seconds) respectively. The grey dashed lines in A and B indicate the 
threshold applied to the similarity measure.   
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The average percentage of the reports of a unique cause, among a number of participants 

and through multiple trials, changing by the spatial and temporal disparities, follow a 

meaningful pattern, as experimentally observed  (Slutsky and Recanzone, 2001). This 

pattern is closely captured by the trends produced by our model which infers the causal 

structure based on the spatiotemporal similarity. Unique cause is predicted for a wide range 

of temporal disparities if the spatial disparity is very small, as shown in figure 2A and 2C 

for a spatial disparity of 1.83ᵒ (ventriloquism effect). The “sameness call” changes at some 

point for most spatial disparities if the temporal disparity becomes greater than threshold. 

Similarly, the “sameness call” changes for a given temporal disparity if the spatial disparity 

exceeds some threshold. Thus, although we did not tinker extensively with our model 

parameters to exactly match the experimental results quantitatively, we conclude that the 

model replicates the key results and principles of the published experiment.   

2.5.2 Effect of Spatial Disparity  

Spatial proximity is one of the features used to judge whether or not two signals have a 

common source (Hairston et al., 2003, Wallace et al., 2004). Figure 3 shows the 

performance of our model for a task in which visual and auditory stimuli have the same 

onset time (0.2 seconds) and duration (0.3 seconds). While the position of the visual 

stimulus was fixed, the position of the auditory stimuli was varied systematically (spatial 

disparities from 1.5ᵒ to 21.7ᵒ, figure 3A). The end behavior, “sameness call”, of our model 

for this task has already been validated by experimental results in section 5-1, the yellow 

lines (very low temporal disparity) in figures 2-B and 2-D, and we want to show the internal 

dynamics here. Figure 3B shows the similarity measure, represented in the multisensory 

dimension of the decision variable, for the five spatial disparities. Figure 3C shows the 

“sameness call”, represented in the multisensory dimension of the decision result, for each 

spatial disparity. For a fixed temporal structure, the similarity measure decreases when the 

spatial distance increases. There is a point, around 10ᵒ of spatial distance for this case, 

where the decision about the uniqueness of the cause changes. Our model proposes that the 

reason is that the similarity measure drops below threshold, and when this happens the 

unisensory plan with the higher saliency wins and is executed (not shown here). These 

simulations show how the temporal evolution of the internal system is influenced when the 
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spatial disparity between cross-modal stimuli varies, sometimes leading to a change in 

decision through time (sd = 15.6ᵒ or 21.7ᵒ here).  

A

B

C

th = 0.5

Figure 3: Effect of spatial disparity of cross-modal stimuli on target selection. Five different conditions have been 
considered (illustrated by color coding). The spatial and temporal features of the visual stimulus and the temporal 

features of the auditory stimulus are fixed for all conditions. The spatial position of the auditory stimulus changes in each 
condition. A) The spatial position of the visual stimulus and the five different spatial positions of the auditory stimulus, in 
the five conditions, are shown. B) The multisensory component of the decision variable is shown for different conditions 

as a function of time. It changes based on the spatial disparity of the stimuli in each condition. The unisensory 
components do not change. C) The multisensory component of the decision result is shown for the different conditions. It 
is one for smaller spatial disparities (indicating a common cause) and changes to zero (indicating separate causes) when 

the spatial disparity exceeds the threshold (shown as a dashed line in B).   
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2.5.3 Effect of Temporal Disparity  

Temporal disparity is another feature that contributes to the decision about the sameness 

of the cause of the signals (Wallace et al., 2004, Chen and Vroomen, 2013). In figure 4 we 

show the simulations of our model under a task in which the visual and auditory stimuli 

have fixed positions close to each other. The duration of the auditory stimulus and visual 

stimulus are fixed (0.3 seconds). As shown in figure 4A, while the onset time of the visual 

stimulus is fixed (0.2 seconds), the onset time of the auditory stimulus varies systematically 

(from 0.25 to 0.45 seconds). The end behavior, “sameness call”, of our model for this task 

has already been validated by experimental results in section 5-1, the blue lines (spatial 

disparity around 7ᵒ) in figures 2-A and 2-C, and we want to show the internal dynamics 

here. Figure 4B shows the similarity measure, represented in the multisensory dimension 

of the decision variable, for five temporal disparities. Figure 4C shows the sameness calls, 

represented in the multisensory dimension of the decision result. For a fixed spatial 

structure, the similarity measure decreases when the temporal disparity increases. There is 

a point, around 0.1 seconds of temporal disparity for this case, that the decision about the 

uniqueness of the cause changes. Based on the mechanism proposed in our model, the 

change in the sameness call occurs when the spatiotemporal similarity between the stimuli 

falls below threshold which leads to the more reliable of the unisensory plans to win (not 

shown here). These simulations show how the temporal evolution of the internal system is 

influenced when the temporal disparity between cross-modal stimuli varies, sometimes 

leading to a change in decision through time (dt = 0.1(s) or 0.15(s) here). 
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A

B

C

th = 0.5

Figure 4: Effect of temporal disparity of cross-modal stimuli on target selection. Five different conditions are 
considered (illustrated by color coding). The spatial and temporal features of the visual stimulus and the spatial features 
of the auditory stimulus are fixed for all conditions. The onset time of the auditory stimulus varies from 0.25 to 0.45 sec. 
A) The temporal profile of the visual stimulus (lower curve, fixed) and the auditory stimulus (5 upper curves, changing). 

B) The multisensory component of the decision variable is shown for different conditions as a function of time. It 
changes for different conditions based on the temporal disparity of the stimuli in each condition. The unisensory 

components (not shown) don t change for different conditions. C) The multisensory component of the decision result is 
shown for different conditions. It is  1  (single source) for smaller temporal disparities and changes to  0  (multiple 

sources) when the temporal disparity exceeds the threshold (shown as a dashed line in B). 
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2.5.4 Effect of Stimulus Reliability  

For the cases in which there is a large spatiotemporal misalignment between the two 

stimuli, human subjects often infer that two separate sources exist (Chen and Vroomen, 

2013, Ursino et al., 2014) and plan a gaze-shift toward the more salient of the two separate 

signals. In figure 5 we show the performance of our model under a task in which the visual 

and auditory stimuli are far from each other in space. The spatiotemporal structure is fixed, 

and the reliability of the visual stimulus (0.5) is also not changing. The variable factor is 

the reliability of the auditory stimulus which is changing from unreliable (0.2) to highly 

reliable (0.8) in four conditions (Figure 5A). Figure 5B shows how the decision variable 

changes through time for the four conditions. The multisensory (crosses) and visual 

dimensions (dashed lines) of the decision variable are the same for all conditions, but the 

auditory dimension is different under each condition because the reliability of auditory 

stimulus changes. Figure 5C shows result of the auditory plan winning, represented in the 

auditory dimension of the decision result, for each condition. At the time 0.4 (s) the 

multisensory component of the decision variable drops below the threshold (figure 5-B), 

the multisensory component of the decision result changes from zero to one, the unisensory 

component of the decision result (corresponding to the more reliable stimulus) changes 

from one to zero, and two separate sources are recognized. When the reliability of visual 

stimulus is higher than the auditory stimulus the visual plan wins, and if it is lower the 

auditory plan wins. These simulations show how the temporal evolution of the internal 

system is influenced when the reliabilities of stimuli vary, leading to selection of the more 

reliable stimulus as the goal.  
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visual stimulus

auditory stimuli

A

B

C

th = 0.5

Figure 5: Effect of the reliability of the unimodal stimuli on target selection. Four different conditions are considered 
(illustrated by color coding) The spatiotemporal features of both stimuli are fixed and are chosen such that the similarity 

measure is always small enough that separate causes are distinguished in all conditions. A) The visual stimulus with fixed 
reliability is shown by a square. The auditory stimulus with varying reliability is illustrated by concentric circles of 

different levels of blur. B) The decision variable is shown for different conditions as a function of time. The visual (thick 
dashed line) and multisensory components (line of crosses) are the same for all conditions. The auditory component 

(solid colored lines) varies between different conditions based on the reliability of the auditory stimuli, as shown in A. C) 
The decision result for the auditory component is shown for different conditions as a function of time. The multisensory 

component (line of crosses) is the same for all conditions. The auditory component is unity when the reliability of the 
auditory stimulus is higher than the visual stimulus and changes to zero when the auditory stimulus is more reliable than 

the visual stimulus. The visual component of decision changes in the opposite way.
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2.5.5 Effect of Evidence Accumulation  

Accumulation of evidence may lead the decision to lean towards an alternative category 

other than the currently preferred category (Gold and Shadlen, 2007). This has been 

observed in many oculomotor tasks, for instance, in “anti-saccade” task where the subjects, 

by default, would plan a saccade towards the presented target, unless some instructive cue 

commands them to plan a saccade in the mirror opposite direction to the target, in contrast 

to the default (Everling and Fischer, 1998, Munoz and Everling, 2004). Another example 

is the “saccade countermanding” task where the subject, by default, has to make a saccade 

toward the visual target, unless some cue instructs it to stop the motor plan and keep 

fixating (Hanes and Schall, 1995, Schall et al., 2000). In our case, when stimuli from 

multiple modalities are presented, we postulate that the default is to assume a common 

cause for them. This default can be changed to another decision, i.e. separate causes, by 

accumulation of evidence over time. This concept has been materialized in our model by 

the development of the similarity measure and its effect on the decision result. We illustrate 

this concept in two tasks shown in the left and right columns of figure 6.  
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A D

B E

C F

th = 0.5th = 0.5

Figure 6: Effect of accumulation of evidence about cross-modal stimuli on changing target selection decision. In each of the columns (A, B, C and D, E, F) four different conditions are 
considered (illustrated by color coding). In the left column, the temporal features of the two stimuli are exactly the same. The stimuli are presented at a fixed, small spatial distance from 

each other in all conditions. Only the duration of presentation of the stimuli varies for the different conditions (from 0.25 to 0.55 sec). In the right column, the spatial and temporal features 
of the visual stimulus are fixed (purple curve in D). The two stimuli have a same onset time (0.2 sec) and are presented at a fixed distance from each other, in all conditions. However, the 
duration of presentation of the auditory stimulus changes from 0.25 to 0.55 (s) (curves 1-4 in D). A, D) temporal profiles of the stimuli. B, E) The multisensory component of the decision 

variable is shown for different conditions as a function of time. It changes for different conditions. The unisensory components do not change for different conditions (not shown). The 
threshold value is shown as a horizontal dashed line. C, F) The multisensory component of the decision result is shown for the different conditions. It is initially unity (common cause) first 

when the stimuli appear. However, it may change to zero (separate causes) if and when enough evidence has accumulated to support the existence of two separate causes.   
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The left column shows the model’s predictions for a case where two stimuli are presented 

at fixed positions close to each other. As illustrated in figure 6A, the duration of time that 

the stimuli are present is varied (from 0.25 seconds to 0.55 seconds).  Figure 6B shows the 

similarity measure, represented in the multisensory dimension of the decision variable 

(𝑑𝑣𝑎𝑣), and figure 6C shows the sameness call, represented in the multisensory dimension 

of the decision result (𝑑𝑟𝑎𝑣), developing across time. When the two stimuli are presented 

briefly and at the same time, they are perceived as belonging to a common source even if 

they are not presented at exactly the same position in space. But for the same spatial 

configuration, if the duration of stimulus presentation increases, the similarity measure 

decreases. There is a point, around 0.4 seconds of presentation duration for this case, that 

the decision about the uniqueness of the cause changes. 

The right column shows the model’s prediction for a case where one stimulus appears 

briefly but the other stimulus might stay on for a longer time. The auditory and visual 

stimuli, presented at fixed positions very close to each other, have the same onset time (0.2 

seconds) but the auditory stimulus is on from 0.05 to 0.35 seconds longer than the visual 

stimulus (which has a duration of 0.2 seconds) (figure 6D).  Figure 6E shows the similarity 

measure, represented in the multisensory dimension of the decision variable, and figure 6F 

shows the sameness call, represented in the multisensory dimension of the decision result, 

developing over time. By extending the presentation duration of one stimulus, while the 

other is presented only briefly, the similarity measure decreases. Therefore, the sameness 

decision which was for a common source for shorter durations changes to being for separate 

sources for longer durations. These examples show that the default decision (that stimuli 

arise from a common cause) can be altered over a period of time during which evidence 

accumulates indicating (perhaps) that they are in fact separate. The duration over which 

evidence needs to accumulate may correspond to the temporal binding window. 

2.6 Discussion 

In summary, we have proposed a computational model of the cognitive internal system 

underlying causal inference in spatial localization of cross-modal stimuli. The emerging 

output of this internal system (report of sameness), not itself, is measurable by 

psychophysicists. We first showed that our model can replicate the behavioral reports of 
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the perception of a common cause measurable in psychophysical experiments. Having 

verified the model, we then moved on to illustrate the dynamics of the decision variable 

and decision result when spatial and temporal features of the stimuli were changing, like 

the existing tasks. We then showed the system dynamics for novel situations were separate 

causes would be inferred or when the decision would change from common to separate 

sources through evidence accumulation. These dynamic simulations may be tested by new 

experiments that force the subject’s report at specific times and see if the decision changes 

based on the timing of this forced decision.  

Importantly, this new model incorporates several novel features that we expect to be 

valuable for understanding multisensory integration in the real brain. Based on the ability 

of our model to replicate known behavioral results (References), and contingent on the 

further verification of our model’s new predictions, we propose that 1) the brain’s 

distributed working memory is multisensory and should retain and process the sensory 

information to perform this task. 2) Separate computational units are required for 

representing alternative plans (probably in the cortex) whose selective inhibition (perhaps 

through basal ganglia connections to cortex) implements the result of the decision. 3) A 

central decision-making unit should exist capable of applying decision rules, and choosing 

between multiple causal scenarios based on sensory evidence. 4) Our spatiotemporal 

similarity measure, capturing how similar the spatial and temporal features of the stimuli 

are, is the criterion for inferring a common cause. In short, we suggest that the real brain 

incorporates similar features as our model at the computational level. Further, the current 

computational-level model is constructed in such a way as to provide a potential formal 

framework for models that generate physiological predictions at the level of single units 

and networks.    

Finally, the model framework that we have proposed here (simulating causal inference 

from one visual and one auditory stimulus) has the potential to generalize to a number of 

other, more complex situations where working memory is a limiting factor. For example: 

1) one can tackle target selection between more than two stimuli (Schall and Hanes, 1993, 

Hill and Miller, 2010) by enhancing the capacity of our short-term memory, increasing the 

number of possible plan representations and the dimensions of the decision variable, and 
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defining a multi-dimensional distance variable. 2) One can address causal inference and 

integration for other modality combinations like visual / tactile and auditory / tactile 

(Menning et al., 2005, Katus et al., 2015). 3) One can address a situation where a subject 

has a prior expectation of where the target would appear  (Van Wanrooij et al., 2010). 

When the target is presented one has a causal inference problem to solve, which is whether 

or not the presented and expected signals are the same, and whether or not to integrate the 

internal and sensory representations. 4) One can extend the features of the stimuli to include 

semantic or emotional values (Robertson, 2003). This requires expansion of our concept of 

similarity to include the more cognitive and linguistic aspects assigned to the stimuli. 

  



62 
 

3 Reaction Time Variability of Multimodal Gaze-Shifts: A 

Computational Study in a Decision Making Framework 

 

 

 

Mehdi Daemi1, 2, 3, 4,  J. Douglas Crawford1, 2, 3, 4, 5, 6 † 

 

1 Department of Biology and Neuroscience Graduate Diploma, York University, Toronto, ON, Canada 

2 Centre for Vision Research, York University, Toronto, ON, Canada 

3 Canadian Action and Perception Network 

4 Department of Psychology, York University, Toronto, ON, Canada 

5 School of Kinesiology and Health Sciences, York University, Toronto, ON, Canada 

6 NSERC CREATE Brain in Action Program, York University, Toronto, ON, Canada 

 

 

Submitted  

                                                           
† Correspondence:  

   Dr. J. Douglas Crawford,  

   Center for Vision Research  

   Room 0009, Lassonde Bldg.  

   York University  

   4700 Keele Street  

   Toronto, Ontario, Canada, M3J 1P3  

   jdc@yorku.ca  

 



63 
 

3.1 Abstract 

When goal directed movements are aimed toward multimodal stimuli, cognitive processes 

during the delay period can influence action planning in both the spatial and temporal 

domains. In our previous paper (Daemi et al. 2016) we modeled causal inference, based on 

the spatiotemporal features of multimodal (visual and auditory) stimuli, in order to 

determine the spatial location of goal for saccade. Here, we extend this framework in the 

temporal domain, proposing that “confidence” on selecting a winning plan relative to other 

alternatives should influence the timing of execution of the winning action plan. 

To model these concepts we build upon the evidence-accumulation decision-making 

framework we previously used to solve the causal inference problem for saccades (Daemi 

et al. 2016). Once a winning motor plan has been chosen based on causal inference, an 

instantaneous measure of confidence is computed based on the relative saliency of the 

winning motor plan compared to the alternate plans. A winning plan is only initiated when 

enough evidence is accumulated in its favor. This is realized by introducing an 

accumulative measure of confidence which integrates the instantaneous measure through 

time. A threshold is then set on the accumulative confidence and a GO command is released 

whenever it reaches the threshold.  

Using this model, we produced simulations that replicate and explain several experimental 

multisensory observations, including: 1) Lower reaction time for unimodal targets of 

higher reliability due to more confidence on a unimodal plan. 2) Higher reaction time for 

multi-modal targets of higher reliability due to less confidence on a unique cause. 3) Higher 

reaction time for more spatially distant multi-modal targets due to less confidence on a 

same origin. 4) Higher reaction time for more temporally distant multi-modal targets due 

to less confidence on a unique cause.  Thus, our model provides a unified viewpoint to 

explain, for the first time, the effects of both spatial and temporal factors on reaction time 

variability, and assign each of these effects to a unique cognitive function upstream from 

sensorimotor transformations. 
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3.2 Introduction 

Reaction time (RT) is a measure of speed with which a subject responds to the stimuli 

within the context of a task. RT has been used to investigate hypotheses about the mental 

and motor processes to implement different tasks (Sternberg, 1969). In multisensory 

integration (MSI) research specifically, RT has been used to assess how combining 

multimodal stimuli with various intensities affect task implementation and response 

generation (Hershenson, 1962, Rubinstein, 1964). Here, we contemplate the possibility of 

a unified mechanism which can explain the effects of spatial, temporal, and intensity 

features of cross-modal stimulation on RT. 

It is well known that bimodal stimuli, e.g. visual and auditory, affect the reaction times of 

goal-directed saccadic eye movements. In particular, when the two stimuli are aligned in 

space and time, a considerable reduction of the saccade RT is typically observed relative 

to visual stimulus alone or to auditory stimulus alone. Conversely, RT increases more 

slowly or even decreases when the stimuli are presented farther from each other or when 

the delay between them gets larger (Frens et al., 1995, Corneil et al., 2002, Diederich and 

Colonius, 2004, Navarra et al., 2005, Diederich and Colonius, 2008a, b, Navarra et al., 

2009, Van Wanrooij et al., 2010).  

Through the years, there have been various attempts to model the variability of RT in 

multisensory tasks. They have mostly focused on the effect of temporal configuration of 

the cross-modal stimuli on the RT. The first group of models is referred to as “separate 

activation” or “race” models. They assume parallel and completely separate channels of 

sensory processing for stimuli from different modalities. Each channel builds up some 

independent activation. Response is triggered by the channel which reaches some threshold 

level first. Average RT to multisensory stimuli is lower than unimodal stimuli because the 

average of winner’s processing time is smaller than average processing time in each single 

channel (statistical facilitation). Independent Gaussian distributions (Raab, 1962) and 

experimentally observed distributions (Gielen et al., 1983) were used as unimodal 

distributions to estimate the minimum distribution in the bimodal conditions. Nevertheless, 

statistical facilitation couldn’t account for facilitation in data (Diederich and Colonius, 

2008a).  
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The second group of models is called “coactivation” models. They assume that activation 

raised in different sensory channels by presenting multimodal stimuli is combined to satisfy 

a single criterion for response initiation. The discrete realization of this idea gave rise to 

the so-called superposition models while its continuous realization brought about 

multichannel diffusion models (Schwarz, 1989, Diederich, 1992). In all such models, the 

stimulus intensity is represented by some internal indicator (“counter” for superposition 

models and “drift” for diffusion models). For multimodal stimuli, these internal variables 

from multiple sensory channels are added together during some peripheral stage of 

processing. This leads to faster reaching some threshold (fixed number of counts for 

superposition models and threshold limits for diffusion models) and lower RT.  

Previous models could not account for distinguishing a target modality from a nontarget 

modality in experiments like the focused attention paradigm (Amlot et al., 2003, Diederich 

and Colonius, 2007). To consider such effects, time-window-of-integration (TWIN) 

models combine basic ideas of the previous groups of models (Colonius and Diederich, 

2004). They consider two stages of processing. The first stage consists of separate and 

parallel processing in unisensory pathways. The second stage comprises the combination 

of the unisensory activations and response initiation. Second stage occurs only if the 

peripheral processes of the first stage all terminate within a given time interval (Colonius 

and Diederich, 2010). Such two-stage models  support the idea that the race between the 

sensory channels takes place upstream from the SC, and that the SC itself is part of the 

second stage (Sparks and Mays, 1990a).  

None of these models, briefly described above, account for effects of spatial disparity of 

the cross-modal stimuli on the reaction time. These models also ignore the internal 

perception of the subjects, namely whether they perceive the multimodal stimuli as 

belonging to a unique event to separate events. Here we propose a model which explains 

the variability of saccadic reaction time as a function of both temporal and spatial 

configurations of the stimuli. We build this model upon a previous model of causal 

inference spatial localization in multi-modal situations (Daemi et al. 2016).  A decision-

making circuitry was proposed, where different plans represented different possibilities for 

the inferred cause, namely same or separate sources. A spatiotemporal similarity measure 
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was proposed, and was compared to the reliabilities of the unimodal stimuli to make the 

decision on the causal structure. Here we extend that framework to model how the timing 

of an action based the inference is determined. The saccadic reaction time is proposed to 

depend on a measure of accumulated confidence on the decision made about the causal 

structure. This expanded framework can explain variability of the reaction time as 

functions of 1) spatial configuration of the stimuli 2) temporal configuration of stimuli 3) 

reliabilities of the stimuli. This means we can explain the interesting patterns of variability 

in reaction times of gaze-shifts towards cross-modal stimuli, which could not be explained 

based on psychophysical models of sensory-driven reactions. We do so by proposing an 

internal model and assigning a cognitive significance, namely accumulative confidence, to 

the factor governing the reaction time.  

3.3 Model Overview 

Generally, in terms of action initiation, two types of tasks are possible: 1) a forced-reaction-

time (forced-RT) task, and 2) a choice-reaction-time (choice-RT) task. In the forced-RT 

task the time for onset of the action is a requirement of the task and is forced by a higher-

order, top-down command. In the choice-RT task the subject is free to start the action as 

soon as it is ready. Here, we want to build a model of gaze-shift initiation, in multi-modal 

situations, for a choice-RT task. We propose that the readiness for initiating a winning 

action plan is measured by the confidence on the decision that determined that plan is 

winning.  

Consider a situation where visual and / or auditory stimuli, with possible spatial and 

temporal disparity and different intensities are presented to a subject who is instructed to 

make a gaze-shift to the most reliable of the targets. We previously proposed a model of 

how subjects may infer the cause of the stimuli, a common source or separate sources, by 

introducing a spatiotemporal measure of similarity (Daemi et al. 2016). Here we extend 

that model to account for the variability of multi-modal reaction times. Figure 1 illustrates 

this extended, unifying framework, containing three color-coded sections, explained in the 

following paragraphs.  
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Figure 1: The model of reaction time variability of gaze-shifts towards cross-modal stimuli. Upstream of this 
model (not shown), the spatiotemporal similarity between stimuli was measured and the multimodal signals were 

integrated in working memory. The three possible plans were constructed in units PL_V, PL_AV, PL_A as saliency 
spatial maps. The decision variable is constructed in the unit DV by sending the saliency of the three plans as their 

bids. The decision is made in the decision result DR, by materializing the concept that if the similarity measure is 
bigger than a threshold, then the multisensory plan wins and if not, the unisensory plan with higher reliability wins. 

The instantaneous, CI, and accumulative, CA, measures of confidence on the decision are calculated from the 
decision variable. The plan representations in the execution layer, three units EX_V, EX_AV, EX_A, are 

constructed as confidence maps buy communicating the spatial information from plan layer and the corresponding 
accumulative confidence value. The decision result is realized by selective inhibition of the plan units in execution 

layer (not shown). The confidence map of the winning plan is then sent to the unit WIN. The confidence value of the 
winning plan is sent to GO. The spatial information of the WIN is sent to GOAL. GOAL is under constant inhibition 

of GO. When the confidence reaches a threshold, GOAL is disinhibited.
  



68 
 

The green parts of the model include the decision making circuitry underlying causal 

inference. This is where the three alternative plans, realizing the three possible solutions to 

the causal inference problem, are represented. These include a unisensory plan (𝑃𝐿_𝑉⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ) that 

manifests separate sources and gaze-shift to the visual signal, another unisensory plan 

(𝑃𝐿_𝐴⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) that manifests separate sources and gaze-shift to the auditory signal, and a 

multisensory plan (𝑃𝐿_𝐴𝑉⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) that manifests a common source and gaze-shift to the weighted 

average of their spatial positions. Each of these plans include a saliency component, and 

the decision on the causal structure is made by systematically comparing these saliencies. 

The saliencies are of the unisensory plans are the reliability of the unimodal stimuli (that 

can be simplified to their intensities). The saliency of the multisensory plan is a measure 

of spatiotemporal similarity between the cross-modal stimuli. For making the decision, the 

saliencies of the alternative plans are sent to construct a decision variable (𝐷𝑉⃗⃗ ⃗⃗  ⃗). A decision 

rule is then applied on the decision variable in its transformation to the decision result (𝐷𝑅⃗⃗ ⃗⃗  ⃗). 

The decision rule realizes a specific comparison between the plan saliencies: the 

multisensory plan is chosen if its saliency is greater than a threshold, and the more reliable 

of the unisensory plans is chosen if the similarity measure is smaller than the threshold.  

The blue parts of the model are involved in calculating when to send the winning plan for 

execution and initiation of the action. An instantaneous measure of confidence (𝐶𝐼⃗⃗⃗⃗ ) is first 

constructed by transforming the decision variable, realizing the idea of immediate 

confidence on a plan to guide action if it is winning the competition among alternative 

plans. So, at any time, 𝐶𝐼⃗⃗⃗⃗ ’s component corresponding to a plan is zero if that plan is not 

winning and it is equal to the momentary confidence on the decision that the plan is 

winning, if it is winning. As the decision result could be changing by accumulation of 

evidence, a 𝐶𝐼⃗⃗⃗⃗  component could be changing between zero and a positive value through 

time. Then, an accumulative measure of confidence (𝐶𝐴⃗⃗⃗⃗  ⃗) is constructed by integration, 

through time, of the instantaneous measure of confidence. This measure reflects 

accumulation of evidence, through time, against or in favor of a plan to guide the action. 

Each component of 𝐶𝐴⃗⃗⃗⃗  ⃗ indicates the amount of confidence on implementing a plan, 

accumulated through time.  
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We have salience maps of space in the plan layer (𝑃𝐿_𝑉⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ , 𝑃𝐿_𝑉⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ , 𝑃𝐿_𝑉⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ), which represented 

alternative causal structure. In order to implement the decision on the preferred causal 

structure, another layer of plan representations is constructed in an execution layer. This 

involves three confidence maps of space, which receive their spatial components from the 

corresponding representations in the plan layer, and their confidence components from 

corresponding components of the accumulative measure of confidence. They include a 

unisensory map (𝐸𝑋_𝑉⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) that manifests the victory of the visual plan, another unisensory 

map (𝐸𝑋_𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) that manifests the victory of the auditory plan, and a multisensory map 

(𝐸𝑋_𝐴𝑉⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) that manifests the victory of the multisensory plan. These plan representations 

are selectively inhibited by the decision result to implement the selection of the inferred 

causal structure.  

The red parts of the model are involved in implementing the timing of action initiation. In 

previous parts, a spatial plan was chosen to guide the action, and the confidence on the 

decision to choose that plan was calculated. All this information is reflected in the one 

confidence map of space, in the execution layer, which was disinhibited by the decision 

result. That winning plan is now communicated to a computational unit called 𝑊𝐼𝑁⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗. The 

spatial plan, only, is then communicated from 𝑊𝐼𝑁⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ to another computational unit called 

𝐺𝑂𝐴𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. However, 𝐺𝑂𝐴𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is constantly inhibited by a 𝐺𝑂 command, by default, when we 

are not confident enough to execute a plan. The 𝐺𝑂 command is constructed by applying 

a threshold function on the confidence measure in 𝑊𝐼𝑁⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗. The result of this function is that 

the 𝐺𝑂 signal is ‘zero’ if the 𝑊𝐼𝑁⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗’s confidence measure is smaller than a threshold and it 

becomes ‘one’ if the confidence rises above the threshold. 𝐺𝑂𝐴𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is inhibited by 𝐺𝑂 if 𝐺𝑂 

is ‘zero’. However, if 𝐺𝑂 becomes ‘one’ the 𝐺𝑂𝐴𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is disinhibited and the spatial plan of 

WIN is allowed to be communicated into 𝐺𝑂𝐴𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝐺𝑂𝐴𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ then sends the winning plan to the 

machinery involved in eye-head coordination and implementing the gaze-shift. 

The general outline of the model is inspired by known properties of the decision making, 

action selection, and gaze control systems in the brain. The model’s representations of 

alternative plans involved in decision making, i.e. the plan (𝑃𝐿) and execution (𝐸𝑋) layers, 

are inspired by such neural codes in frontal cortex (Jones et al., 1977, Canteras et al., 1990, 
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Berendse et al., 1992, Yeterian and Pandya, 1994, Levesque et al., 1996). A central 

arbitrating system is thought to  receive bids, plan saliencies as in our case, from alternative 

plans for further processing (Redgrave et al., 1999). This information processing, e.g. in 

the telencephalic decision centers, underlies constructing a decision variable, 

implementing a decision rule, computing a decision result, and calculating the confidence 

on the decision. The units 𝐷𝑉⃗⃗ ⃗⃗  ⃗, 𝐷𝑅⃗⃗ ⃗⃗  ⃗, 𝐶𝐼⃗⃗⃗⃗ , 𝐶𝐴⃗⃗⃗⃗  ⃗, and 𝐺𝑂⃗⃗⃗⃗  ⃗, the internal connections between them 

and their projections from plan representations have been inspired by the known 

physiology of this central decision making system in the brain (Gold and Shadlen, 2007, 

Cisek and Kalaska, 2010). The basal ganglia are thought to receive the result of the decision 

from cortex (Beiser and Houk, 1998, Koos and Tepper, 1999, Gernert et al., 2000) and 

implement it through selective disinhibition of cortical and sub-cortical representations. 

This is realize in our model, through a multiplicative effect on plan representations, in two 

occasions: 1) selective inhibition of the execution layer 𝐸𝑋 by the decision result 𝐷𝑅⃗⃗ ⃗⃗  ⃗, 2) 

selective inhibition of the goal representation 𝐺𝑂𝐴𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ by the ‘go’ command 𝐺𝑂. We assume 

the winning plan in 𝐸𝑋 is sent to the gaze control system to plan a gaze-shift (while it could 

possibly be sent to other motor circuitries to plan a reach or grasp, for example). So, our 

final spatial maps are specifically inspired by the saccade-related neural populations in the 

superior colliculus (Munoz and Wurtz, 1995b, a): 1) confidence map in  𝑊𝐼𝑁⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ is thought 

to be implementing the function of the buildup neurons, 2) motor map in 𝐺𝑂𝐴𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is inspired 

by the physiology of the burst neurons. The final winning plan 𝐺𝑂𝐴𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is then assumed to 

be sent to the brainstem (Sparks, 2002, Girard and Berthoz, 2005) to drive the eye-head 

coordination system (Klier et al., 2003, Daemi and Crawford, 2015) to reorient the line of 

sight to the selected target.  

3.4 Mathematical Formulation 

3.4.1 Method 

The proposed model incorporates a concept “confidence” on the selected plan within a 

decision making framework as the underlying factor which determines the timing of its 

execution (see Model Overview), and we show that this concept can explain the complex 

variability of reaction times in cross-modal configurations (see Results). We are linking 

the time dimension of action planning to the dynamics of the evidence-based decision 
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making, a high-level cognitive process. To model this, we need to move beyond 1) the 

classic cognitive architectures that neglect the time dimension of inferential and logical 

transformations (Newell and Simon, 1972, Anderson, 1983), and 2) traditional approaches, 

like classic-control theory and cybernetics, which constrain goal-directed motor planning 

with real time constraints of environmental interactions, but ignore the high-level 

cognitions (van Gelder, 1998). A more general framework realizes cognitive processes 

within the time constraints of interacting with and surviving in a dynamically changing 

environment, just like the brain. 

In this model, an approach that considers “perception-action” and “high-level cognition” 

in a unified framework (Eliasmith, 2013) has been adopted. Inspired by the brain 

neurophysiology (Fuster, 2005), models within this more general framework are 

implemented in distributed networks of parallel processing units. This characterizes 

sensorimotor and cognitive transformations by functions of both the internal state variables 

and the time, realized in connections between the units. Routing of information between 

the units (attentional control), through time, is flexibly controlled. Even though we do not 

address how the model could be realized in a neural architecture in the current study, most 

units and their connections in the model were developed based on the known 

neurophysiology, and can be neurally implemented by the Neural Engineering Framework, 

a recent method that unifies the symbolic, connectionist, and dynamicist viewpoints 

(Eliasmith and Anderson, 2003, Eliasmith et al., 2012). Modelling an adaptive, robust 

biological system which can behave and survive in an uncertain environment justifies the 

relatively high number of variables in such models. Taking this approach, we modeled 

causal inference, in an evidence-based decision making circuitry, as a process evolving 

through time which can help us dynamically interact with the environment, executing 

actions in proper times.  

3.4.2 Decision Making  

Multimodal signals are detected from the environment and encoded in early sensory areas 

whose dynamics reflect the temporal aspect of the stimuli presentation. These sensory 

signals are then communicated to the working memory to be retained and further processed. 

Spatiotemporal similarity measure, our criterion to infer the origin of the stimuli, is 
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calculated from the sustained signals in the working memory. The plan representations in 

𝑃𝐿 are then constructed to manifest the possible causal structures. The two unimodal plans 

represent the spatial position of the unimodal stimuli along with their reliabilities as the 

plan saliencies (𝑠𝑎𝑙𝑝𝑙𝑣 and 𝑠𝑎𝑙𝑝𝑙𝑎). The multisensory plan represents the weighted average 

of the unimodal position signals along with the spatiotemporal similarity measure as plan 

saliency (𝑠𝑎𝑙𝑝𝑙𝑎𝑣). The decision variable is constructed by the saliencies of the plans:  

𝐷𝑉⃗⃗ ⃗⃗  ⃗(𝑡) =  [

𝑑𝑣𝑣
𝑑𝑣𝑎
𝑑𝑣𝑎𝑣

] =  [

𝑠𝑎𝑙𝑝𝑙𝑣
𝑠𝑎𝑙𝑝𝑙𝑎
𝑠𝑎𝑙𝑝𝑙𝑎𝑣

] (1)  

The decision rule is realized by a transformation of the 𝐷𝑉⃗⃗ ⃗⃗  ⃗ resulting in decision result, 𝐷𝑅⃗⃗ ⃗⃗  ⃗: 

𝐷𝑅⃗⃗ ⃗⃗  ⃗(𝑡) =  [

𝑑𝑟𝑣
𝑑𝑟𝑎
𝑑𝑟𝑎𝑣

] =   

[
 
 
 
 
 

1

1 + 𝑒−𝑠𝑙𝑚(𝑡ℎ𝑎𝑣− 𝑑𝑣𝑎𝑣)
×

1

1 + 𝑒−𝑠𝑙𝑢(𝑑𝑣𝑣−𝑑𝑣𝑎)

 
1

1 + 𝑒−𝑠𝑙𝑎𝑣(𝑡ℎ𝑎𝑣− 𝑑𝑣𝑎𝑣)
×

1

1 + 𝑒−𝑠𝑙𝑢(𝑑𝑣𝑎−𝑑𝑣𝑣)

 
1

1 + 𝑒−𝑠𝑙𝑎𝑣(𝑑𝑣𝑎𝑣−𝑡ℎ𝑎𝑣) ]
 
 
 
 
 

 (2)  

𝑡ℎ𝑎𝑣 is a threshold value applied on the similarity measure, determining whether or not a 

unique object originated the signals. 𝐷𝑅⃗⃗ ⃗⃗  ⃗ controls the implementation of the decision of 

which plan to drive the gaze-shift. This is applied by selective inhibition of plan 

representations in execution, cortical layer (𝐸𝑋). Plan representations in 𝐸𝑋 are governed 

by these equations:  

𝐸𝑋_𝑉⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡) =  [
𝑐𝑛𝑓𝑒𝑥𝑣
 𝑒𝑐ℎ𝑒𝑥𝑣
 𝑒𝑐𝑣𝑒𝑥𝑣

] =  𝑑𝑟𝑣  ×   [

𝑐𝑎𝑣
 𝑒𝑐ℎ𝑝𝑙𝑣
 𝑒𝑐𝑣𝑝𝑙𝑣

] (3)  

𝐸𝑋_𝐴⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑡) =  [
𝑐𝑛𝑓𝑒𝑥𝑎
 𝑒𝑐ℎ𝑒𝑥𝑎
 𝑒𝑐𝑣𝑒𝑥𝑎

] =  𝑑𝑟𝑎  ×   [

𝑐𝑎𝑎
 𝑒𝑐ℎ𝑝𝑙𝑎
 𝑒𝑐𝑣𝑝𝑙𝑎

] (4)  

𝐸𝑋_𝐴𝑉⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡) =  [
𝑐𝑛𝑓𝑒𝑥𝑎𝑣
 𝑒𝑐ℎ𝑒𝑥𝑎𝑣
 𝑒𝑐𝑣𝑒𝑥𝑎𝑣

] =  𝑑𝑟𝑎𝑣  ×   [

𝑐𝑎𝑎𝑣
 𝑒𝑐ℎ𝑝𝑙𝑎𝑣
 𝑒𝑐𝑣𝑝𝑙𝑎𝑣

] (5)  
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𝐸𝑋 plan representations are selectively inhibited to determine the winning plan. This effect 

is shown by the multiplicative effect of the corresponding 𝐷𝑅⃗⃗ ⃗⃗  ⃗ component. We have 

actually employed a parallel basal ganglia circuitry for implementation of this selection 

process. However, we are not including the formulations for the basal ganglia 

computational units because our main focus is on how the decisions are made but not on 

how they are implemented. 𝐸𝑋 plan representations are assumed to be action initiation 

confidence maps. The first dimension of 𝐸𝑋 plan representations indicates how confident 

we are on selecting the corresponding plan if this plan is actually winning. The next section 

explains how the confidence measures are computed.   

3.4.3 Confidence Measure 

We intend to propose a criterion of when to initiate a gaze-shift when it is free to implement 

the decision at any time, i.e. the choice-reaction-time case. Conceptually, it is proposed 

that this timing is determined by the confidence on the decision. First, an instantaneous 

measure of confidence (𝐶𝐼⃗⃗⃗⃗ ) is introduced. The confidence on the decision at each time-

point is measured by the distance between the bid of the winning plan and the bids of the 

losing plans. This variable is constructed as a 3-D signal each component of which 

indicates at any time, if its corresponding plan is winning, how confident the decision that 

it is winning is.   

𝐶𝐼⃗⃗⃗⃗ (𝑡) =  [
𝑐𝑖𝑣
𝑐𝑖𝑎
𝑐𝑖𝑎𝑣

] =   

[
 
 
 
 
 
 
 √(𝑑𝑣𝑣 − 𝑑𝑣𝑎𝑣)2 + (𝑑𝑣𝑣 − 𝑑𝑣𝑎)2

(1 + 𝑒−𝑠𝑙𝑚(𝑡ℎ𝑎𝑣− 𝑑𝑣𝑎𝑣))  × (1 + 𝑒−𝑠𝑙𝑢(𝑑𝑣𝑣−𝑑𝑣𝑎))
 

 
√(𝑑𝑣𝑎 − 𝑑𝑣𝑎𝑣)2 + (𝑑𝑣𝑎 − 𝑑𝑣𝑣)2

(1 + 𝑒−𝑠𝑙𝑎𝑣(𝑡ℎ𝑎𝑣− 𝑑𝑣𝑎𝑣))  ×  (1 + 𝑒−𝑠𝑙𝑢(𝑑𝑣𝑎−𝑑𝑣𝑣))

 
√(𝑑𝑣𝑎𝑣 − 𝑑𝑣𝑣)2 + (𝑑𝑣𝑎𝑣 − 𝑑𝑣𝑎)2

1 + 𝑒−𝑠𝑙𝑎𝑣(𝑑𝑣𝑎𝑣−𝑡ℎ𝑎𝑣) ]
 
 
 
 
 
 
 

 (6)  

This confidence grows through time with a slope which is dependent on the value of the 

instantaneous confidence at any time-point. This concept can be materialized in a structure 

called ‘accumulative confidence’ by integrating the components of ‘instantaneous 

confidence’ through time. This is a leaky integrator with a controllable leak. The state space 

vector of this integrator has four dimensions. The first component is the leak and the other 
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three components are the accumulative confidence on the corresponding plans to drive the 

gaze-shift, if it is winning:  

𝐶𝐴⃗⃗⃗⃗  ⃗(𝑡) =  [

𝑙𝑘𝑐𝑜𝑛𝑓
 𝑐𝑎𝑣
 𝑐𝑎𝑎
 𝑐𝑎𝑎𝑣

] (7)  

The state space equations characterizing this structure are: 

[
 
 
 
𝑙𝑘𝑐𝑜𝑛𝑓̇

 𝑐𝑎𝑣̇
 𝑐𝑎𝑎̇
 𝑐𝑎𝑎𝑣̇ ]

 
 
 

=  [

0 0 0 0
0 (1 − 𝑙𝑘𝑚𝑣) 0 0

0 0 (1 − 𝑙𝑘𝑚𝑣) 0

0 0 0 (1 − 𝑙𝑘𝑚𝑣)

]  × [

𝑙𝑘𝑐𝑜𝑛𝑓
 𝑐𝑎𝑣
 𝑐𝑎𝑎
 𝑐𝑎𝑎𝑣

] + [

0 0 0
0 0 0
0 0 0
0 0 0

]  ×  [

𝑐𝑖𝑣
𝑐𝑖𝑎
𝑐𝑖𝑎𝑣

]  +  [

1
0
0
0

]  

×  [𝑐𝑙𝑒𝑎𝑟] 

(8)  

Conceptually, the subject is to make a gaze-shift when its confidence about its decision 

reaches a threshold.  

3.4.4 GO Command 

We propose that all the plan representations in 𝐸𝑋, along with their corresponding 

confidences, converge to the another computational unite that is called 𝑊𝐼𝑁⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗: 

𝑊𝐼𝑁⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡) =  [
𝑐𝑛𝑓𝑤𝑖𝑛
𝑒𝑐ℎ𝑤𝑖𝑛
𝑒𝑐𝑣𝑤𝑖𝑛

] =  [
𝑐𝑛𝑓𝑒𝑥𝑣
 𝑒𝑐ℎ𝑒𝑥𝑣
 𝑒𝑐𝑣𝑒𝑥𝑣

] + [
𝑐𝑛𝑓𝑒𝑥𝑎
 𝑒𝑐ℎ𝑒𝑥𝑎
 𝑒𝑐𝑣𝑒𝑥𝑎

] + [
𝑐𝑛𝑓𝑒𝑥𝑎𝑣
 𝑒𝑐ℎ𝑒𝑥𝑎𝑣
 𝑒𝑐𝑣𝑒𝑥𝑎𝑣

] (9)  

However, because of the selective inhibition applied on 𝐸𝑋 by 𝐷𝑅⃗⃗ ⃗⃗  ⃗, only one plan, which 

is winning the decision making process, is feeding 𝑊𝐼𝑁⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ at any time. The confidence map 

of the winning plan in 𝐸𝑋 is now communicated to 𝑊𝐼𝑁⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗. The 𝐺𝑂 command is constructed 

by transformation of the confidence component of 𝑊𝐼𝑁⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗:  

𝐺𝑂(𝑡) =  [𝑔𝑜] =  
1

1 + 𝑒−𝑠𝑙𝑔𝑜(𝑐𝑛𝑓𝑤𝑖𝑛−𝑡ℎ𝑔𝑜)
 (10)  

According to this transformation, as soon as the confidence on the winning plan passes a 

threshold, the value of the 𝐺𝑂 signal changes from 0 to 1. The winning plan is 

communicated from 𝑊𝐼𝑁⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗ to a final computational unit called 𝐺𝑂𝐴𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗.  
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𝐺𝑂𝐴𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡) =  [
𝑒𝑐ℎ𝑔𝑜𝑎𝑙
 𝑒𝑐𝑣𝑔𝑜𝑎𝑙

] =  𝑔𝑜  ×   [
𝑒𝑐ℎ𝑤𝑖𝑛
 𝑒𝑐𝑣𝑤𝑖𝑛

] (11)  

𝐺𝑂𝐴𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is under constant inhibition of 𝐺𝑂 which determines action initiation. When the 𝐺𝑂 

signal has the value zero (the default configuration) the 𝐺𝑂𝐴𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is inhibited. 𝐺𝑂𝐴𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ gets 

released out of the 𝐺𝑂’s inhibition whenever the 𝐺𝑂 signal becomes one.   

3.5 Results 

Here the model is used to reconstruct experimental paradigms where saccadic reaction 

times have been recorded. Hence, the internal mechanisms suggested in the model are 

verified by reproducing the wide range of the variability of RT during these tasks. We will 

first investigate the behavior of our model in a simple unisensory task where only one, 

unisensory stimulus is presented, and a gaze-shift is planned towards it (section 5.1). We 

then examine the model in cross-modal situations where the spatial and temporal 

configurations of the presented stimuli vary, similar to previous experimental results, and 

report their effects on the reaction time (sections 5.2 & 5.3). Next, we use the model to 

predict the variation of reaction time when the reliability of the cross-modal stimuli change 

(section 5.4). Finally, we will summarize the results in the last section where we draw the 

reaction time as functions of temporal disparity, spatial disparity, unimodal stimulus 

reliability, and cross-modal stimulus reliability (section 5.5).   

3.5.1 Unisensory Situation 

It has been experimentally observed that reaction time of gaze-shifts towards unimodal 

stimuli decreases if the intensity of the stimulus increases (Bell et al., 2006). Here we test 

our model in such a task where only the visual stimulus is present. This is illustrated in Fig. 

2, where panel A shows the changing stimulus parameters of the task, whereas panels B-E 

represent internal states within the model, culminating in the internal GO signal that 

determines saccade latency. 
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Figure 2: Effect of target reliability on reaction time when only one stimulus modality is presented. The auditory target is not presented. The position, onset time, and 
duration of the visual target is fixed. The reliability of the visual target varies within four different conditions. A) The visual stimulus having different reliabilities in different 
conditions is illustrated by different levels of blurriness. B) The decision variable is shown being developed through time. The multisensory and auditory components are zero 

for all conditions. The visual component is changing between conditions because the reliability (rel) of visual target varies. C) The instantaneous confidence on decision is 
shown through time. Only the visual component has non-zero value. D) The accumulative confidence on decision is shown as a function of time. Only the visual component is 

not zero. E) The GO signal is shown for execution of the winning plan. It changes from zero to one whenever the accumulative confidence passes a threshold. 
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The gray boxes in figure 2-A illustrate visual stimuli with the same spatial and temporal 

features, but different levels of reliability. The reliability of the visual stimulus changes in 

four levels, as illustrated in figure 2-A by different levels of blurriness (shades of gray) of 

the stimulus. Figure 2-B shows the reliability of the visual stimulus in the visual 

component of the decision variable (color-coded for different conditions). As there exists 

only one stimulus modality, the similarity measure, represented in the third dimension of 

the decision variable is always zero (DV_AV in figure 2-B).  

The reaction time in such a situation depends on how dominant the visual plan is in the 

decision variable. This dominance increases when saliency of the visual plan is bigger 

relative to other plans’ saliencies (which are zero) and that happens when the reliability of 

the visual stimulus increases. This is reflected in higher instantaneous confidence on the 

decision for higher reliabilities (figure 2-C). Consequently the accumulative confidence 

reaches its threshold faster relatively (figure 2-D). As a result, the GO command is issued 

earlier for higher reliabilities of the visual stimulus (figure 2-E).  

Thus, our model reproduces the experimental finding that reaction time decreases by 

increasing the unisensory stimulus reliability (Bell et al., 2006). This is accomplished in the 

model by implementing the idea that when there is no distracting stimulus, whose relation 

to the main stimulus should have been inferred, the confidence on a unique stimulus as the 

target for shifting the attention increases when its reliability increases.   

3.5.2 Effect of Spatial Disparity 

Reaction time of gaze-shifts towards cross-modal stimuli increases if the spatial distance 

between the two presented stimuli increases, as experimentally observed (Frens et al., 

1995). Here we test our model in such a task. This is illustrated in Fig. 3, where panel A 

shows the changing stimulus parameters of the task, whereas panels B-E represent internal 

model variables, culminating in the GO command. 
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Figure 3: Effect of spatial disparity of cross-modal stimuli on reaction time. Five different conditions have been considered (illustrated by color coding). The visual 
stimulus has a fixed position, onset time, duration, and reliability for all conditions. The onset time, duration and reliability of the auditory target is also fixed. A) The 

spatial position of the auditory target varies, which is reflected in different spatial distances (sd) for different conditions, while the visual target is fixed. B) The 
decision variable is shown being developed through time. The unimodal components are the same for all conditions (dashed and crossed lines). The multisensory 
component is changing between conditions because the spatial distance varies. C) The instantaneous confidence on decision is shown through time. The unimodal 
components are always zero because the multisensory plan is always winning, because its saliency, i.e. the similarity measure, is greater than the threshold. D) The 
accumulative confidence on decision is shown as a function of time. Only the multisensory component is not zero. E) The GO signal is shown for execution of the 

winning plan. It changes from zero to one whenever the accumulative confidence passes a threshold.
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The visual and auditory targets have the same fixed temporal features (onset time 0.2s and 

duration 0.3s). The position of the visual stimulus is invariable while the position of the 

auditory stimulus is changing within five conditions, from 0.8ᵒ to 8.6ᵒ from the visual 

stimulus (figure 3-A). The reliabilities of the stimuli are invariant as depicted in figure 3-

B in the unisensory dimensions of the decision variable (DV_V and DV_A). The similarity 

measure, coded in the multisensory dimension of the decision variable, is shown in 

different colors for different spatial distances in figure 3-B. In all conditions the two targets 

are close enough together that they are perceived to be coming from the same origin.  

The reaction time in such a situation depends on how dominant the winning, multisensory 

plan is in the decision variable. This dominance increases when similarity measure is much 

greater than the unisensory target reliabilities and that happens by decreasing the spatial 

disparity (see figure 3-B and compare the saliency of plans). This is reflected in higher 

instantaneous confidence on the decision for smaller spatial disparities (figure 3-C). 

Consequently the accumulative confidence reaches its threshold relatively faster. As a 

result, the GO command is issued earlier for smaller spatial disparities (figure 3-E).  

Thus, the model replicates the experimentally found result that the reaction time increases 

by increasing the spatial disparity between the stimuli (Frens et al., 1995). This is 

accomplished in the model by implementing the idea that the confidence on the sameness 

of the origin decreases when the spatial distance between the stimuli increases.   

3.5.3 Effect of Temporal Disparity 

As experimentally observed (Frens et al., 1995), the reaction time of gaze-shifts towards 

cross-modal stimuli increases if the temporal disparity between the two presented stimuli 

increases. Here we test our model in such a task where the visual and auditory stimuli are 

presented at the same positions and with the same time duration (0.3 (s)) all the time (figure 

4). However, while the onset time of the visual target is invariable (0.2 (s)), the onset time 

of the auditory target changes within five conditions from 0.215 (s) to 0.275 (s) (figure 4-

A). The unimodal, stimulus reliabilities are fixed (DV_V and DV_A in figure 4-B). The 

spatiotemporal similarity measure, coded in the multisensory component of the decision 

variable, increases for higher temporal disparities as depicted (color coded) in figure 4-B. 
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In all conditions the two targets are presented close enough together in time, so that they 

are perceived to be coming from the same origin.  

The reaction time in such a situation depends on how dominant the winning, multisensory 

plan is in the decision variable. This dominance increases when similarity measure is much 

greater than the unisensory target reliabilities and that happens by decreasing the temporal 

disparity (figure 4-B). This is reflected in higher instantaneous confidence on the decision 

for smaller temporal disparities (figure 4-C). Consequently the accumulative confidence 

reaches its threshold faster relatively (figure 4-D). As a result, the GO command is issued 

earlier for smaller temporal disparities (figure 4-E).  

Thus, the model reproduces the experimental finding that reaction time increases when the 

temporal disparity between the cross-modal stimuli increases (Frens et al., 1995). The 

model accomplishes this by implementing the idea that the confidence on the unique-object 

causal structure decreases when the temporal distance between the stimuli increases.   

 

  



81 
 

A

B

C

D

E

th = 4

Figure 4: Effect of temporal disparity of cross-modal stimuli on reaction time. Five different conditions have been considered (illustrated by color coding). The visual target 
has a fixed position, onset time, duration, and reliability for all conditions. The position, duration and reliability of the auditory target is also fixed. A) The onset time of the 

auditory target varies changes relative to the onset time of the visual target from temporal disparity (dt) of 0.015 to 0.075 (s). B) The decision variable is shown being developed 
through time. The unimodal components are the same for all conditions. The multisensory component is changing between conditions because the spatial distance varies. C) The 
instantaneous confidence on decision is shown through time. The unimodal components are always zero because the multisensory plan is always winning, because its saliency, 

i.e. the similarity measure, is greater than the threshold. D) The accumulative confidence on decision is shown as a function of time. Only the multisensory component is not zero. 
E) The GO signal is shown for execution of the winning plan. It changes from zero to one whenever the accumulative confidence passes a threshold.
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3.5.4 Inverse Effectiveness 

In section 5.1 we showed that for a unimodal stimulus, the reaction time decreases by 

increasing the reliability of the stimulus, as seen in experiments (Bell et al., 2006). 

However, it has been experimentally seen (Diederich and Colonius, 2004) that, for the 

multisensory case, this effect is reversed and the reaction time increases by increasing the 

reliability (reduced to intensity in our model) of the cross-modal stimuli. Here we test our 

model in such a task where visual and auditory stimuli are presented at fixed positions and 

with invariant temporal features all the time (figure 5). However, the reliabilities of the two 

stimuli are the same but changing within four conditions, illustrated in figure 5-A by the 

varying levels of blurriness of the stimuli. Figure 5-B shows the unisensory, stimulus 

reliabilities in the unisensory component of the decision variable (color-coded for different 

conditions). In all conditions the two targets are presented close enough together, in space 

and time, that they are perceived to be coming from the same origin, as is clear by the 

saliency of the multisensory plan (similarity measure in DV_AV) in figure 5-B.  
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Figure 5: Effect of the reliability of cross-modal stimuli on reaction time. Four different conditions have been considered for all of which both visual and auditory targets 
have fixed positions, onset times, and durations. A) The reliability of the stimuli are the same for the two modalities but changing between different conditions, as illustrated 
by the varying levels of blurriness of stimuli. B) The decision variable is shown being developed through time. The multisensory component is the same for all conditions. 

The unimodal components are changing between conditions (while they are the same for the two modalities in one condition) because the reliabilities vary. C) The 
instantaneous confidence on decision is shown through time. The unimodal components are always zero because the multisensory plan is always winning, because its 
saliency, i.e. the similarity measure, is greater than the threshold. D) The accumulative confidence on decision is shown as a function of time. Only the multisensory 

component is not zero. E) The GO signal is shown for execution of the winning plan. It changes from zero to one whenever the accumulative confidence passes a threshold.   
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The reaction time in such a situation depends on how dominant the winning, multisensory 

plan is in the decision variable. This dominance increases when similarity measure is much 

greater than the unisensory target reliabilities and that happens when the intensity of the 

unisensory stimuli decreases (figure 5-B). This is reflected in higher instantaneous 

confidence on the decision for lower intensities (figure 5-C). Consequently the 

accumulative confidence reaches its threshold faster relatively (figure 5-D). As a result, the 

GO command is issued earlier for lower intensities (figure 5-E).  

Thus, our model reproduces the experimental finding that reaction time is faster when the 

cross-modal stimuli are weaker and less intense, and consequently less reliable seen 

(Diederich and Colonius, 2004). The model accomplishes this by implementing the idea 

that the confidence on the sameness of the source of the cross-modal signals decreases if 

the intensity of the unimodal components increases.  

3.5.5 Summary of Results 

We tested our proposed mechanisms in different tasks where the spatial, temporal and 

reliability features of cross-modal stimuli were systematically changed. Figure 6 

summarizes the preceding results by plotting reaction time as a function of the various task 

parameters described above. We could replicate these experimentally observed 

phenomena: 1) the higher the spatial disparity between the stimuli the higher the reaction 

time as illustrated in figure 6-A (Frens et al., 1995). 2) The higher the temporal disparity 

between the stimuli the higher the reaction time as depicted in figure 6-B (Frens et al., 

1995). 3) If only one of the stimuli is presented, the higher its intensity, the lower the 

reaction time will be as explained in figure 6-C (Bell et al., 2006). 4) If two stimuli are 

presented close to each other in space and time, the higher their intensities the higher the 

reaction time will be, as illustrated in figure 6-D (Diederich and Colonius, 2004). Our 

model explains this wide variety of reaction times by introducing various causal structures 

(represented in alternative plans) for possible environmental phenomena, and suggesting 

that the relative confidence on a specific causal structure drives the reaction time (see 

Results for details, and see Discussion for more interpretations).  
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Figure 6: Summary of the results. Here, we want to summarize the predictions of our model for how the reaction time 
varies as different features of the stimuli change. A) The reaction time is drawn as a function of spatial disparity between the 
cross-modal stimuli. B) The reaction time is drawn as a function of the temporal disparity between the cross-modal stimuli. 
C) The reaction time is drawn as a function of the reliability of a single unimodal stimulus. D) The reaction time is drawn as 

a function of the reliabilities of the cross-modal stimuli.   
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3.6 Discussion 

Here we proposed that the patterns of variability of saccadic reaction times (RT) towards 

bimodal stimuli are due to high-level cognitive processing. More specifically, the decision-

making process for inference of a causal structure, and the confidence on that decision, is 

proposed to constitute such cognitive processing. We also consider a wider range of 

stimulus features including spatial, temporal and reliability aspects of the stimuli, which 

have shown to be affecting the reaction time (Frens et al., 1995, Bell et al., 2006). As 

summarized in Figure 6, this allowed us to simulate and explain that: 1) RT increases by 

increasing the spatial distance of the stimuli, 2) RT increases by increasing the temporal 

distance of the stimuli, 3) RT decreases by increasing the unimodal stimulus reliability, 4) 

RT increases by increasing the multimodal stimulus reliability. These findings are 

considered in more detail below. 

3.6.1 Implications for theories of multisensory action initiation 

Previous attempts to model the variability of reaction time towards bimodal stimuli assume 

the temporal relationships, between the presentations of the two stimuli, as the factor 

governing the reaction time. Either being race models that consider two separate parallel 

unimodal channels (Raab, 1962, Gielen et al., 1983), or the coactivation models that 

consider one additive stage of processing for multimodal stimuli (Schwarz, 1989, 

Diederich, 1992), or the time-window-of-integration models that combine the two previous 

ideas, they all focus on temporal processing, ignoring the spatial effect (Frens et al., 1995). 

They also isolate this problem from the internal cognitive processing underlying causal 

inference.  

Our model not only considers the effects of both spatial and temporal configuration in a 

dynamic network, but also relates the perceptual problem of causal inference and the 

executive problem of action planning in a unifying framework. The model follows the more 

general idea that when reactionary motor responses towards sensory stimuli are avoided, 

we allow ourselves to plan actions based on a more complete set of information inferred 

from the sensory evidence (Eliasmith, 2013). Such inference extends our perception 

beyond the sensory information, and provides us with a wider range of action plans than 

sensory-driven reflexive movements (Fuster, 2005). Selection of one of such action plans 
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and the timing of its execution, then, depends on high-level cognitive processes, rather than 

reactionary sensorimotor paradigms.  

The proposed cognitive system has been characterized by transformations of internal state 

variables through time. Time evolution of the state space is completely defined, 

constraining the cognitive system by the limits of planning behaviors in an uncertain, 

changing environment (Healy and Rowe, 2014). This dynamic nature of the signals in the 

model provides us with the possibility of designing new psychophysical experiments. For 

example, one can change the patterns of presentation of the stimuli on the time axis 

systematically, and see how the accumulation of evidence, through time, for and against 

different causal structures, change the reaction time. Or one can change the spatial and 

reliability features during time and see their effects on action initiation. Finally, our 

introduced measure of accumulative confidence can be applied to explain the reaction time 

other dynamic decision making tasks, where the go command is not forced by the task. 

3.6.2 Significance for interpreting previous behavioral findings  

It has been observed that the reaction time of planning a gaze-shift towards cross-modal 

stimuli is affected by the amount of spatial distance between the visual and auditory targets, 

and by the temporal distance between their presentations (Frens et al., 1995, Bell et al., 

2005). These studies rule out statistical facilitation (Raab, 1962) by emphasizing the effect 

of spatial factor, besides the temporal features, on the facilitation of the reaction time. They 

hypothesize that the variability of reaction time is due to a multimodal stage of information 

processing, at a higher level than the primary unisensory processing, although they do not 

propose a theory for what they hypothesize.  

The current model accounts for these effects, as illustrated in figures 3 and 4, by 

computationally and systematically realizing the intuitive idea that the confidence on the 

sameness of the origin of the stimuli decreases when the spatial or temporal distance 

between the stimuli increases. This is accomplished in two steps: 1) introduction of the 

spatiotemporal similarity of the multimodal stimuli as the criterion for the causal inference, 

and the saliency of the multisensory plan, 2) defining confidence, driving the reaction time, 

as how much higher the saliency of the selected plan is than the other alternatives. This 

meant that the plan to integrate the visual and auditory information and a gaze-shift towards 
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their weighted average becomes less dominant relative to unimodal gaze-shift plans, when 

the spatial or temporal distance between the stimuli increases. And this leads to a higher 

reaction time. Thus, our model proposes a cognitive theory for what previous studies 

hypothesized as a higher-level multisensory stage of processing.  

This more general framework enables us to test the system in a wider range of tasks as 

well. As a first example, in gaze-shifts towards unimodal stimuli, it has been shown that 

the reaction time decreases by increasing the reliability (intensity) of the stimulus (Bell et 

al., 2006). They interpreted this as caused by reduced processing time for higher-intensity 

stimuli, but do not explain why the processing time decreases. Our model explains this 

phenomenon, as illustrated in figure 2, by the increased confidence on a unisensory gaze-

shift plan, when the stimulus intensity increases. This happens because when, for example, 

only a visual target is present, the saliencies of the auditory and multisensory plans are 

zero. So, when the reliability of the visual target increases, the dominance of its 

corresponding gaze-shift plan increases, and the reaction time decreases.  

As another example, in gaze-shifts towards multimodal stimuli presented close to each 

other in time and space, a reduction in reaction time has been observed when the 

reliabilities (intensities) of the stimuli change decrease (Diederich and Colonius, 2004). 

They associate this to the principle of inverse effectiveness in superior colliculus, but do 

not theorize a mechanism for neither of them. Our model, also, predicts that reaction time 

increases when the reliabilities (intensities) of the multimodal stimuli increase. This is 

accounted for by the relative nature of the confidence measure. With a fixed spatiotemporal 

configuration, and consequently a constant spatiotemporal similarity, the dominance of the 

multisensory plan relative to the unisensory plans decreases when the saliencies of the 

unisensory plans, i.e. their stimulus reliabilities, increase. And this leads to a higher 

reaction time.    

3.6.3 Implications for neurophysiology of multisensory processing 

Both the causal inference and reaction time parts of the model were designed based on the 

known neurophysiology about multisensory integration, working memory, decision 

making, gaze-shift planning and action selection. The functionalities suggested for the 

expert units, and the transformations realized in their connections, have been defined based 
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on architectural connectivity between different brain areas with known neural behavior. 

Sustained memory activity, contingent on action, has been shown in posterior parietal 

cortex (Fuster and Alexander, 1971, Cohen et al., 1997), in accord with the working 

memory structures in the causal inference model. The idea of multiple plan representations 

was inspired by laminar organization of frontal cortex (Jones et al., 1977, Canteras et al., 

1990, Berendse et al., 1992, Yeterian and Pandya, 1994, Levesque et al., 1996). The 

inhibitive effect of decision result on plan representations was considered based on tonic 

inhibition of cortical and subcortical areas by the basal ganglia (Hikosaka and Wurtz, 

1983b, a, Horak and Anderson, 1984). 

The form in which this model is presented is a network of parallel processing units, whose 

states temporally change, similar to the structure of the brain. So this model of gaze-shift 

planning towards cross-modal stimuli can potentially be used to simulate spiking neural 

networks (Eliasmith et al., 2012) and then be compared to neurophysiological findings. 

More specifically, such a model might shed light on the mechanisms underlying the 

multisensory behavior of the neurons in the superior colliculus (Stein and Stanford, 2008). 

This might explain the spatiotemporal principles, inverse effectiveness, and unisensory 

behavior of SC neurons within a framework that also explains causal inference and decision 

making in a multisensory task. 

3.6.4 Conclusion  

In this paper we built up a model of action initiation, on top of our previous causal inference 

model. The model explained various effects on the reaction time of gaze-shifts towards 

cross-modal stimuli. The spatial, temporal, and reliability features of the cross-modal 

stimuli were systematically changed and their effects on the reaction time were reported. 

In accord with experimental evidence, the reaction time increased when the spatial or 

temporal distance between the stimuli, or their reliabilities increased.  

This model introduced cognitive mechanisms, within the decision making framework of 

the previous model, that determine when the winning plan is sent to downstream 

sensorimotor machinery to be implemented (Sparks, 2002, Daemi and Crawford, 2015). 

Our model applied the idea of confidence on a winning plan, as the significance of that 

plan relative to other possible alternative plans, to control the initiation of action. Therefore, 
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we suggested that, in absence of a top-down command to execute the action at a fixed time, 

the winning plan is executed only when an accumulative measure of confidence, on a 

selected action plan, reaches a certain threshold.  

The dynamic nature of the model allows us to predict the reaction time variability in other 

tasks where spatial position or reliability of the stimuli change across time, or where their 

temporal extensions take various forms. Also the parallel processing units in this 

computational model can be neurally implemented in a spiking neural network, which may 

help us explain firing behavior of specific brain areas or look for specific patterns of neural 

behavior in others. 
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4 A Kinematic Model for 3-D Head-Free Gaze-Shifts  
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4.1 Abstract 

Rotations of the line of sight are mainly implemented by coordinated motion of the eyes 

and head. Here, we propose a model for the kinematics of three-dimensional (3-D) head-

unrestrained gaze-shifts. The model was designed to account for major principles in the 

known behavior, such as gaze accuracy, spatiotemporal coordination of saccades with 

vestibulo-ocular reflex (VOR), relative eye and head contributions, the non-commutativity 

of rotations, and Listings and Fick constraints for the eyes and head respectively.  

The internal algorithms of the model were inspired by known and hypothesized elements 

of gaze control physiology. Inputs included retinocentric location of the visual target and 

internal representations of initial 3-D eye and head orientation, whereas outputs were 3-D 

displacements of eye relative to the head and head relative to torso. Internal transformations 

decomposed the 2-D gaze command into 3-D eye and head commands with the use of three 

coordinated circuits: 1) a saccade generator, 2) a head rotation generator, 3) a VOR 

predictor.   

Simulations illustrate that the model can implement 1) the correct 3-D reference frame 

transformations to generate accurate gaze shifts (despite variability in other parameters), 

2) the experimentally verified constraints on static eye and head orientations during 

fixation, and 3) the experimentally observed 3-D trajectories of eye and head motion during 

gaze-shifts. We then use this model to simulate how the relative contributions of the eyes 

and head to vertical and horizontal gaze motion interact with constraints on torsion to 

influence the range of orientations of the eye in space, and the implications of these 

strategies for spatial version. 
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4.2 Introduction 

Gaze-shifts, i.e. rapid reorientations of the line of sight, are the primary motor mechanism 

for re-directing foveal vision and attention in humans and other primates (Bizzi et al., 

1971b, Tomlinson and Bahra, 1986a, Tomlinson, 1990, Guitton, 1992, Corneil and Munoz, 

1996). Natural gaze-shifts in most mammals incorporate the complex coordination of eye-

head movements (see Fig.2A) including a saccade towards the target, a more sluggish head 

movement and usually the vestibulo-ocular reflex (VOR) which keeps the eye on target 

during the latter parts of the head motion (Tomlinson and Bahra, 1986b, Guitton et al., 

1990, Freedman and Sparks, 1997, Roy and Cullen, 1998). These components have been 

modeled with considerable success by several authors (Robinson, 1973, Jurgens et al., 

1981, Galiana and Guitton, 1992), but the three-dimensional (3-D) aspects of gaze control 

have been modeled once (Tweed, 1997), and many more recently discovered properties not 

at all.  

In the current study, we incorporate recent experimental findings into a new model for 

three-dimensional (3-D) gaze control, verify our mathematical approach with the use of 

simulations, and then use the model to explore some poorly understood aspects of eye-head 

coordination. In particular, we explore the interactions between the spatiotemporal rules of 

eye-head coordination, the 3-D constraints on eye/head orientation, and the resulting 

orientations of the eye (and thus retina) in space. These interactions are crucial both for 

understanding gaze motor coordination, and for understanding its visual consequences. 

Before addressing such interactions, we need to consider the basic kinematics of the eye-

head gaze control system, progressing from one dimensional (1-D) to 3-D aspects. 

4.2.1 Overview of Gaze Kinematics 

In one dimension, gaze control kinematics reduces to the amplitudes and temporal 

sequencing of eye and head motion (Tomlinson and Bahra, 1986b, Guitton and Volle, 

1987, Guitton, 1992, Sparks et al., 2002). The typical sequence of events includes a 

saccade, followed by a slower head movement and a compensatory vestibuloocular eye 

movement (Figure 3). The aspects of this progression that we will explore here include the 

variable timing of saccade, head movement and VOR, the influence of initial eye and head 
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orientations, relative magnitudes of the contribution of these different phases to the gaze-

shift and where the head falls in space after the gaze-shift.  

Additional complexity emerges when one considers gaze-shifts from a two-dimensional 

(2-D) perspective. For example, the eye and head provide different relative contributions 

to horizontal and vertical gaze motion, which must be predictably accounted for saccades 

to produce accurate gaze shifts (Freedman and Sparks, 1997, Goossens and Van Opstal, 

1997), and for the eye and head to end up in the right positions after the VOR (Crawford 

and Guitton, 1997b, Misslisch et al., 1998).  

Finally, gaze control reaches its highest degree of complexity in 3-D (Glenn and Vilis, 

1992, Crawford et al., 2003). First, there is an added dimension of motion control: torsion, 

which roughly corresponds to rotations of the eyes and/or head about an axis parallel to the 

line of sight pointing directly forward. Torsion influences direction perception for non-

foveal targets (Klier and Crawford, 1998), binoclular correspondence for stereo vision 

(Misslisch et al., 2001, Schreiber et al., 2001), and must be stabilized for useful vision 

(Crawford and Vilis, 1991, Fetter et al., 1992, Angelaki and Dickman, 2003). More 

fundamentally, a 3-D description requires one to account for the non-commutative (order-

dependent) properties of rotations (Tweed and Vilis, 1987, Hepp, 1994). These properties 

influence not only ocular torsion and the degrees of freedom problem, but also gaze 

accuracy, for reasons related to reference frame transformations. 

The location of a visual stimulus is initially described in an eye-centered reference frame 

by the pattern of light that falls on the retina and the resulting activation of eye-fixed 

photoreceptors (Westheimer, 1959). Whereas the orientation of the eye and the motor 

commands for its movement are encoded in a head-centered reference frame (Crawford 

and Vilis, 1992a, Crawford, 1994)  while head orientation and head movements are 

encoded in a coordinate system attached to the torso (Klier et al., 2007). This is because 

the eye muscles which move the eyes are fixed to the head and the neck muscles which 

move the head are fixed to the shoulder, although the dynamic actions of the muscles are 

also modulated by the orientations of the bodies that they control (Farshadmanesh et al., 

2007).  Given the descriptions of these signals in different reference frames, sensory-driven 

planning of gaze-shifts consists in a structured set of reference frame transformations 
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(Sparks and Mays, 1990b, Klier et al., 2001). This is often circumvented in 1-D and 2-D 

models of gaze-shift that borrow the math of the translational motion to approximate 

rotation, but when the full properties of 3-D rotation are realistically incorporated into such 

models, reference frame transformations cannot be avoided. Instead, they must be 

embedded in the fundamental structure of the model (Crawford and Guitton, 1997d, 

Tweed, 1997, Blohm and Crawford, 2007). This too will be incorporated into our model 

and simulated (Figure 4). 

Another factor to consider is that biological constraints that limit the degrees of freedom 

of the range of eye and head orientations to a subset of their mechanically possible range 

(simulated below in figures 5 and 6). Suppose an arbitrary rotating rigid body (whose 

orientation is defined as the rotation which moves it from a set reference direction to face 

another specific direction) is described in a fixed coordinate system. Different patterns, or 

even combinations, of rotations can possibly bring the rigid body onto a specific direction. 

If the rigid body obeys Donders’ law, there is an injective map between the domain of the 

directions (3-D vectors) and the domain of the orientations (3-by-3 rotation matrices), i.e. 

each time the rigid body faces in a particular direction, it only assumes one 3-D orientation 

(Glenn and Vilis, 1992, Crawford et al., 2003). Orientation of the eye relative to the head 

and orientation of the head relative to the shoulder obey Donders’ law between gaze-shifts 

when the head and body are normal upright postures (Misslisch et al., 1994, Klier and 

Crawford, 2003). Orientation of eye-in-head has also been shown to obey the Listings’ law 

(Ferman et al., 1987b, a, Tweed and Vilis, 1990, Straumann et al., 1991); If torsion is 

defined as rotation about the axis parallel to gaze at the primary eye position, then Lesting’s 

law states that eye orientation always falls within a 2-D horizontal-vertical range with zero 

torsion known as Listing’s plane. Orientation of head-on-shoulder has been shown to obey 

the Fick strategy (Glenn and Vilis, 1992, Crawford et al., 1999b, Klier et al., 2007); where 

torsion is constrained to be zero in Fick coordinates described as a sequence of three 

successive rotations about vertical (fixed in the body), horizontal (mounted on the vertical 

axis) and torsional (mounted on the first two, i.e. fixed in the head) axes. Mechanical 

factors appear to aid these constraints by implementing some of the position-dependencies 

required to deal with non-commutitivity (Demer et al., 2000, Ghasia and Angelaki, 2005, 

Klier et al., 2006). But ultimately mechanical factors cannot enforce these constraints 
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without blocking torsion altogether. On the contrary, these constraints are violated (e.g. 

leading to large torsional rotations) whenever required by other behavioral circumstances 

(Misslisch et al., 1998, Crawford et al., 1999b).  

Note that these systems seem to be primarily concerned with enforcing Donders’ law 

during fixations at the end of the gaze-shift when both the eye and head are relatively stable, 

perhaps because of their various implications for sensory perception. Listing’s law is also 

obeyed during saccades with the head-fixed (Ferman et al., 1987b, Tweed and Vilis, 1990). 

However, when the head is free to move, both the eye (Crawford and Vilis, 1991, Crawford 

et al., 1999b)  and head (Ceylan et al., 2000) are known to depart from their Donders’ 

ranges during gaze movement, for reasons that will be described below and simulated in 

figures 6 and 7. This also suggests additional aspects of neural control that, to date, have 

only been considered for the eye.  

Thus, a complete model of the head-free gaze-shifts needs to incorporate both the reference 

frame transformations and some solution to the behavioral constraints described above. 

Further, such a model should plan for spatial and temporal coordination of saccade, head 

movement and VOR. Furthermore, variability of the contribution of head movement to the 

gaze-shift, the variability of the sizes of saccade and VOR and the variability of these 

contributions in different spatial directions have to be considered.  These factors interact in 

complex fashions (Figures 5, 8, 9) that have only partially been explored. Again, this 

remains an important topic, because it has fundamental implications for both vision and 

motor control. But before attempting to address this goal, we will briefly review previous 

attempts to model gaze control, ranging from early models of the 1-D saccade system to 

the most recent 3-D model of eye-head coordination. 

4.2.2 Gaze Control Models: from 1-D Saccades to 3-D Eye-Head Control 

Attempts to model the gaze control system have generally advanced from 1-D models of 

head-restrained saccades towards multi-dimensional models of head-unrestrained gaze-

shifts. The first models of gaze-shift were dynamic models of one-dimensional head-fixed 

saccades. Robinson (1973) assumed that saccades are driven by a fast feedback loop 

allowing trajectory corrections on the fly (Robinson, 1973). Jurgens et.al (1981) observed 

that despite the variability of the duration and speed of the saccades their accuracy is almost 
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constant, and considered this observation favoring the hypothesis of local feedback 

(Jurgens et al., 1981). The next question addressed was if the 1-D saccade models could be 

generalized for oblique and 3-D saccades. Van Gisbergen et.al (1985) observed for oblique 

saccades that the horizontal and vertical components of the movement start simultaneously 

and are adjusted relatively such that straight trajectories are produced (van Gisbergen et 

al., 1985). Then they found that a model based on a common source of motor command 

for horizontal and vertical components agrees with the data rather than a model based on 

independent 1-D motor commands for the two components. In parallel to this, many of 

these principles, combined with models of the VOR, were incorporated into models of eye-

head gaze control. For example, Bizzi et.al (1973) developed this idea that the head 

movement during gaze-shift attenuates the saccade amplitude by an amount equal to the 

VOR (Morasso et al., 1973). Galiana et.al (1992) proposed a kinematic model of eye-head 

coordination in one dimension, in which they introduced the idea of VOR gain changing 

as a function of gaze-shift amplitude (Galiana and Guitton, 1992). 

The development of 3-D models of gaze-shifts followed a similar course, but shifted 

forward by a decade. Tweed and Vilis (1987)  mathematically proved, through non-

commutativity of 3-D rotations, that the 3-D saccades should be planned based on 3-D 

kinematics of the eye rather than linear generalization of the 1-D models (Tweed and Vilis, 

1987). Subsequent 3-D models of the saccade generator either focused on the question of 

eye muscle contribution to Listing’s law (Quaia and Optican, 1998, Raphan, 1998), 

reference frame transformations for saccades (Crawford and Guitton, 1997c), or 

interactions between saccades and vestibular system (Crawford et al., 2011). Tweed (1997) 

proposed the first (and to date only) three-dimensional kinematic model of eye-head 

saccadic system (Tweed, 1997). This model starts by selecting a specific desired 3-D 

orientation of the eye-in-space and then the eye and head are driven by a dynamic gaze 

error signal and he defined the constraints on the velocity signals, i.e. the head, for instance, 

is always rotating around Fick axes. Some aspects of Tweed’s framework have since been 

used for modeling other vision-based goal-directed actions (Blohm and Crawford, 2007), 

but otherwise the advance of theoretical models of 3-D eye-head gaze control seems to 

have halted for the past 17 years. 



98 
 

In contrast, our knowledge of the physiology and behavior of 3-D gaze control has grown 

considerably in the past 17 years. For example, a 3-D analysis of head-unrestrained gaze 

shifts evoked by stimulation of the superior colliculus (SC), frontal eye-fields (FEF) and 

supplementary eye fields (SEF) suggests that these structures encode desired 2-D gaze 

direction, rather than desired 3-D eye orientation in space (Martinez-Trujillo et al., 2003, 

Monteon et al., 2010). Based on the experimental literature, it appears that elaboration into 

3-D commands does not happen until the level of the brainstem reticular formation, likely 

with aid from the cerebellum, and occurs separately for eye and head orientation signals 

(Klier et al., 2003).  

4.2.3 Aims of the Current Study 

In this paper, we are proposing a model for the kinematics of 3-D head unrestrained gaze-

shifts towards visual targets. Our motivation for this study is 1) that a number of 

experimental advances in understanding 3-D eye-head gaze-shifts have occurred in the past 

17 years that were not considered or incorporated into Tweed’s 1997 model, 2) we wished 

to build a kinematic framework to inspire further experiments, modeling approaches (e.g. 

neural network studies), and data interpretation, and 3) we wished to use this model to 

explore several questions that have largely been overlooked (except in thought 

experiments) in the 3-D gaze control literature, in particular how the various aspects of 

control described above interact and specially how they influence eye orientation, and thus 

the orientation of visual stimuli in space relative to the retina.  

In brief, we apply the behavioral constraints of eye and head on their respective final 

orientations such that their instantaneous orientations during the gaze-shift do not 

necessarily obey these rules. Instantaneous orientations of eye and head can be derived 

assuming that the axis of rotations remain constant during the movements. Desired head 

position is assumed to be dependent on the desired gaze position. We have defined two 

parameters that control this dependence in horizontal and vertical directions. The larger the 

values of these parameters the closer the head would fall to the desired gaze direction. For 

very small values of these parameters, the model is reduced to an experimentally-verified 

model for the head-fixed gaze-shifts obeying all geometrical constraints for saccade. 

Unlike the eye, one unique head rotation is planned for the gaze-shift. A parameter has 
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been defined to break this single head rotation into a part which contributes to gaze and 

one which is cancelled out by VOR. This parameter subsequently determines the amount 

of VOR eye movement as well. The model parameters are independent of the model 

structure and constraints. Assigning different values to these parameters, we can plan 

various patterns of eye-head coordination for making a gaze-shift. The mathematical 

formalisms of this model are described in the next section, followed by simulations 

designed to test the success of the model and then extend it to predict/interpret new 

situations. 

4.3 Model Formulation 

4.3.1 Overview 

In mechanics, for determination of mechanical behavior of a component, the classic 

approach is to solve the governing laws of conservation (of mass, momentum and energy) 

for a specific geometry, material and initial / boundary / loading conditions. In this 

approach one can find general analytic solutions for the distribution of motion 

(displacement, velocity and acceleration), deformation and stress. However, this approach 

is not applicable to most real practical situations. Therefore, we have used an alternative 

approach that is usually used in “engineering design”. This approach includes three levels: 

the first level, static kinematic model, includes deriving the desired positions and patterns 

of motion for different components in the plant for meeting a kinematic end. The second 

level, temporal discretization, includes determination of a time-framework and associating 

specific temporal growth functions to different desired motions and then deriving the 

velocities and accelerations of different components as functions of time. The third level 

includes putting the known kinematic variables, external loads and the mechanical 

properties of the plant into the equations of conservation of momentum and solving them 

for the unknown force / torque functions. In this paper, we describe our model at the first 

level of this general approach: a static kinematic model for 3-D head-unrestrained gaze-

shifts towards visual targets.  

Figure 1 shows a summary of the signals in the model and their relations with each other. 

The small red and blue boxes are inputs and outputs of the system respectively. Each signal 

is mathematically computed from its input signals. The major internal computations can be 
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divided into three groups: one group responsible for calculating the total head rotation 

(large green box), one responsible for predicting the VOR-related eye rotation (large violet 

box), and one responsible for calculating the saccadic-related eye rotation (large red box).  
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Figure 1: Flow of Information in the Static Kinematic Model. Red and blue rectangles show model inputs and outputs, 

respectively. Black ovals are the model parameters. Big thick red box shows the part of the model involved in computation of the 

saccadic eye movement. Big thick green box shows the part of the model which computes the head movement. Big thick violet 

box shows the VOR predictor. Each signal is computed from the signals that have inputs to it.
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This sequence of calculations begins when light is emitted from a target in the periphery 

onto the retina and the sensory signal to drive the gaze-shift is constructed as retinal error, 

the eye-centred 2-D vector which characterizes the distance and direction of the retinal 

image of the target relative to the fovea. In our model, this is geometrically equivalent to 

gaze 2-D motor error in retinal coordinates, and thus could represent spatial activity in the 

brain at any point from the retina to the superior colliculus (Klier et al., 2001, DeSouza et 

al., 2011). Desired gaze (eye-in-space) vector, a unit vector directing towards the target, is 

calculated from retinal error and the internal knowledge of the initial 3-D orientations of 

eye-in-head and head-on-shoulder, which could be derived from proprioceptive signals 

(Steinbach, 1987, Wang et al., 2007) and / or efference copies from ‘neural integrators’ in 

the brainstem (Cannon and Robinson, 1987, Crawford et al., 1991, Farshadmanesh et al., 

2007). Note that this gaze vector does not yet specify torsion of the eye in space; it is 

intermediate computational stage useful in decomposing retinal error into both eye and 

head components (see below). Thus, the initial stages of the model is based on experimental 

observations that early gaze centres specify 2-D direction, with implementation of 3-D eye 

and head constraints further downstream (van Opstal et al., 1991, Klier and Crawford, 

2003).  

In order to calculate the desired head movement (Fig. 1; green box), the desired gaze vector 

is first converted into angular gaze position, a 2-D version of desired gaze vector in 

spherical coordinates. Desired angular gaze position, a 2-D version of desired gaze vector 

in spherical coordinates, is then calculated. Desired angular head position is computed from 

the desired angular gaze position and two of the model parameters: α, β. These two 

parameters, α & β,  have been defined to determine where the head falls relative to the gaze 

in horizontal and vertical directions respectively. The 3-D desired head vector is computed 

from the 2-D desired angular head position. Desired head orientation that conforms to the 

Fick strategy (zero torsion in Fick coordinates) is then calculated from the desired head 

vector. Knowing the initial and desired head orientations, the total head rotation is 

calculated, and then converted into a head displacement command (see below for 

physiological interpretation of this output). 
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In order to generate a saccade that is correctly coordinated with head movement (Crawford 

et al., 1999b), our model first predicts the VOR eye movement that will occur toward the 

end of the movement (Fig. 1; violet box). This is not as difficult as it might sound. 

Assuming the constancy of the axis of head rotation throughout the gaze shift, the total 

head rotation is broken down into two parts with the aid of one of the model parameters, 

δ. This parameter defines two phases of the head rotation; a first one which contributes to 

the gaze-shift and a second one which is cancelled out by vestibulo-ocular reflex (VOR). 

Then, knowing the initial head orientation and the two parts of head rotation, then one can 

predict the ideal VOR eye movement that would stabilize 3-D gaze orientation during the 

second phase of the head rotation. This is not the same physiological mechanism as the 

actual VOR (which is driven by signals from the semicircular canal), but in our simulations 

we assume an ideal VOR model and use the same signal. In real world conditions this 

behavior would occur thousands of times each day, and thus provide ample opportunity to 

train a dynamic neural network to learn the calculations described here. The physiological 

basis for this hypothetical network could involve the brainstem and cerebellum. 

The last part of the model is involved in computing the 3-D saccade vector (Fig. 1; Red 

box), meaning a saccade that also includes the torsional components required to offset the 

oncoming VOR (Crawford et al., 1999a). Having computed the desired head orientation 

and desired gaze vector, we first calculate the desired final 2-D eye direction vector relative 

to head (after saccade and VOR). We then covert this into desired eye orientation (after the 

saccade and VOR) to fall in the Listing’s plane. Knowing the initial and desired eye 

orientations, we calculate the total eye rotation. Having computed the total eye rotation and 

the VOR eye rotation, we can finally calculate the saccadic eye rotation. This rotation not 

only helps foveate the target but also compensates for all VOR components in a predictive 

fashion. This is then converted into the desired final eye orientation after the saccade, and 

initial eye orientation is subtracted from this to produce desired 3-D eye displacement in 

Listing’s plane coordinates, the command that is mathematically appropriate to drive the 

known 3-D coordinates of premotor oculomotor structures (Crawford and Vilis, 1992a, 

Crawford, 1994), and henceforth derivatives of eye orientation coded within the phasic 

burst of motoneurons (Ghasia and Angelaki, 2005, Klier et al., 2006, Farshadmanesh et al., 

2012a). The torsional component of this displacement command might be generated by the 
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nucleus tegmenti reticularis pontis (Van Opstal et al., 1996), eventually leading to 

activation of the torsional burst neurons. Thus, these parts of the model reflect what might 

happen in the real brain between the superior colliculus (Klier et al., 2001)and the 

oculomotor burst neurons (Henn et al., 1991, Crawford and Vilis, 1992b, Crawford, 1994). 

Very little is known about the mathematical details of brainstem and spinal motor 

commands for the head, but they appear to follow similar principles to that seen in the 

oculomotor system (Klier et al., 2007, Farshadmanesh et al., 2012a). Therefore, to model 

the final output of our head control system we also subtracted initial 3-D eye orientation 

from desired 3-D eye orientation to obtain a 3-D dispacement command. Note that for such 

displacement outputs, it is necessary that any further position-dependences, such as the 

half-angle rule of eye velocities for Listing’s law, are implemented further downstream, 

likely at the level of muscles (Demer et al., 2000, Ghasia and Angelaki, 2005, Klier et al., 

2006, Farshadmanesh et al., 2012a, Farshadmanesh et al., 2012b).      

4.3.2 Basic Mathematical Framework 

As illustrated in figure 2, eye vector (red) is a vector fixed to the eye ball aligned from the 

center of the eye ball to the fovea. Assuming the head as a sphere, head vector (green) is a 

vector fixed to the head, aligned from the center of this sphere to the nose.  Initially, eye 

vector intersects with the screen at the initial fixation point. Gaze-shift is to be planned to 

foveate the desired target, i.e. move the eye vector to intersect the desired target location 

on the screen. This shift of eye vector is executed by a coordinated pattern of eye and head 

movements.  
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Figure 2: Illustration of the Geometrical Framework for Studying Head-Free Gaze-Shift. (A) Head 
coordinate system, shown by the green axes fixed to the head, explains everything relative to the head. 
Shoulder or space coordinate system, shown by the blue axes fixed to the shoulder, explains everything 
relative to the space. Green vector is the head vector which is fixed to the head and moving with it. Red 
vector is the eye vector which connects center of the eye ball to the fovea. In the reference condition eye 
and head vectors are aligned in the same direction and intersect with the center of the screen. Eye vector, 

defined in head coordinate system, is called eye-in-head vector and eye vector, defined in space coordinate 
system, is called gaze vector. Head vector is defined only relative to space. (B) Space coordinate system is 
drawn again to show how eye vector is characterized in space to represent the gaze vector. Gaze vector, or 

eye vector in space coordinates, is a unit vector which shows where the eye is fixating. Gaze vector can 
have a 2-D angular representation based on the angles it creates in spherical coordinates with the axes (the 
same applies to the head vector with angles not shown here). Gaze vector can be derived if we know where 

on the screen the subject is fixating, which is characterized by vector. 
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As illustrated in figure 2, we define a coordinate system attached to the shoulder and fixed 

to the space. {𝑋, 𝑌, 𝑍} of this so-called space coordinate system are respectively orthogonal 

to the coronal, sagittal and axial anatomical body planes. We also define a coordinate 

system attached to the head which moves with the movement of the head. We define 

reference condition as the straight-ahead configuration of eye and head where {𝑥, 𝑦, 𝑧} of 

the head coordinate system is aligned with {𝑋, 𝑌, 𝑍} and eye vector is aligned with 𝑥 and 

𝑋. For instance, in a conventional experimental setup for eye movement research, where 

the subject is sitting in front of a screen, reference condition is typically when the subject 

is fixating the center of the screen and eye vector and head vector are parallel. 

Eye vector is called eye-in-head vector, 𝑒 , when defined in head coordinate system and is 

called gaze vector, 𝑔 , when defined in space coordinate system. Head vector, ℎ⃗ , is only 

defined relative to space coordinate system. For any configuration of oculomotor system, 

eye-in-head orientation, 𝑬, head orientation, 𝑯, and gaze orientation, 𝑮, are rotation 

matrices which rotate 𝑒 , ℎ⃗ , 𝑔  respectively, from the reference condition to their current 

configuration (letters “r”, “i” and “d” as subscripts, denote reference, initial and desired 

conditions): 

𝑒 = 𝑬 × 𝑒 𝑟 (1)  

ℎ⃗ = 𝑯 × ℎ⃗ 𝑟 (2)  

𝑔 = 𝑮 × 𝑔 𝑟 (3)  

At any arbitrary configuration, if we rotate the eye-in-head vector by head orientation 

matrix we will derive the gaze vector. So, gaze orientation is always the multiplication of 

head and eye-in-head orientations:  

𝑮 = 𝑯 × 𝑬 (4)  

We define 𝑐 , the 2-D angular gaze position and 𝑏⃗ , the 2-D angular head position based on 

the defining angles of the eye and head vectors in the spherical version of the space 

coordinate system (these angles are shown for eye vector in figure 1-B. the same applies 

for the head vector.)  
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𝑐 = [
𝜋

2
− 𝛾𝑒 ;  

𝜋

2
− 𝜂𝑒] (5)  

𝑏⃗ = [
𝜋

2
− 𝛾ℎ ;  

𝜋

2
− 𝜂ℎ] (6)  

Gaze and head vectors can be directly derived from the spherical angles:   

𝑔 = [sin 𝜂𝑒 . sin 𝛾𝑒  ;  sin 𝜂𝑒 . cos 𝛾𝑒  ;  cos 𝜂𝑒] (7)  

ℎ⃗ = [sin 𝜂ℎ . sin 𝛾ℎ  ;  sin 𝜂ℎ . cos 𝛾ℎ  ;  cos 𝜂ℎ] (8)  

We also define the target position on the screen by the vector 𝑇⃗ = [𝑎; 𝑏] as it is illustrated 

in figure 1-B. If "𝑡" is the distance between the eye and the center of the screen, 𝑇⃗  and 𝑔  

can be derived from each other:  

𝑔 =
1

√𝑡2 + 𝑎2 + 𝑏2
[𝑡 ;  𝑎 ;  𝑏] (9)  

𝑇⃗ = 𝑡 × [𝑔(2) ;  𝑔(3)] (10)  

The main input of the oculomotor system is supposed to be the retinal error. In our 

formulation, we define a 3-D version of this signal, 𝑔 𝑅𝐸, as the desired gaze vector 

relative to the initial gaze orientation:  

𝑔 𝑅𝐸 = 𝑮𝒊
−1 × 𝑔𝑑⃗⃗ ⃗⃗   (11)  

A 2-D angular version of this signal can also be derived from the previous vector:  

𝑅𝐸 = [cos−1(𝑔𝑅𝐸(3)) ;  cos
−1(

𝑔𝑅𝐸(2)

sin(cos−1(𝑔𝑅𝐸(3)))
)] (12)  

4.3.3 Motor Mechanisms of Eye-Head Movement 

There are three distinct motor mechanisms that move the effectors (eye and head). For 

planning a gaze-shift, the brain has the luxury of choosing an arbitrary combination of these 

three mechanisms by determining the amount of their contribution and the pattern of their 

temporal implementation. The subject is initially fixating an arbitrary target and 

orientations of eye and head at initial condition are known variables of our problem:  
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𝑒 𝑖 = 𝑬𝒊 × 𝑒 𝑟 (13)  

ℎ⃗ 𝑖 = 𝑯𝒊 × ℎ⃗ 𝑟  (14)  

𝑔 𝑖 = 𝑯𝒊 × 𝑬𝒊 × 𝑔 𝑟 (15)  

Saccade 

Saccade is the movement of eye relative to the head. Eye rotates in the head by rotation 

matrix 𝑹𝒆 and head stays fixed:  

𝑒 = 𝑹𝒆 × 𝑬𝒊 × 𝑒 𝑟 (16)  

ℎ⃗ = 𝑯𝒊 × ℎ⃗ 𝑟  (17)  

𝑔 = 𝑯𝒊 × 𝑹𝒆 × 𝑬𝒊 × 𝑔 𝑟 (18)  

Eye-Carrying Head Rotation 

Head is driven towards the target while no motor command is sent to eye muscles. Head 

rotates, moving eye with itself such that eye-in-head position remains unchanged (Guitton 

et al., 1984). Head and eye rotate together by unknown rotation matrix 𝑹𝒉:  

𝑒 = 𝑬𝒊 × 𝑒ℎ⃗⃗⃗⃗ 𝑟 (19)  

ℎ⃗ = 𝑹𝒉 ×𝑯𝒊 × ℎ⃗ 𝑟 (20)  

𝑔 = 𝑹𝒉 × 𝑯𝒊 × 𝑬𝒊 × 𝑔 𝑟 (21)  

Gaze-Stabilized Head Rotation 

This is the arbitrary movement of the head while the gaze is fixated. Head rotates while 

eye rotates in head to compensate for head movement and keep the gaze stabilized. This 

type of eye movement is called vestibulo-ocular reflex. While head is rotating by unknown 

rotation matrix 𝑹𝒘, eye is moving in the opposite direction by rotation matrix 𝑹𝒗:  

𝑒 𝑑 = 𝑹𝒗 × 𝑬𝒊 × 𝑒ℎ⃗⃗⃗⃗ 𝑟 (22)  
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ℎ⃗ 𝑑 = 𝑹𝒘 ×𝑯𝒊 × ℎ⃗ 𝑟 (23)  

𝑔 𝑑 = 𝑹𝒘 × 𝑯𝒊  × 𝑹𝒗 × 𝑬𝒊  ×  𝑔 𝑟 (24)  

4.3.4 Static Kinematic Model  

As it is experimentally observed and schematically illustrated in figure 3-A, the gaze-shift 

typically begins when the saccadic eye movement rapidly changes the positions of the eyes 

relative to the head and it ends when the line of sight is directed toward the visual target, 

and the rapid eye movement component of the gaze-shift ends at approximately the same 

time. The head continues moving towards the target while the eyes move in the opposite 

direction at a velocity that is approximately the same as that of the head. As a result, the 

direction of the line of sight changes very little (Bizzi et al., 1971b, Bizzi et al., 1972, 

Zangemeister et al., 1981). 
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Figure 3: Sequential Structure of Rotations in the Kinematic Model. In the first two panels, blue, red and green curves respectively 
depict gaze, eye-in-head and head trajectories. (A) Typical 1-D behavioral diagram from the experiments on natural head-unrestrained 
gaze-shift (Guitton et al., 1990, Freedman and Sparks, 1997). This observed pattern has inspired the sequence of events devised in the 
static kinematic model. (B) Succession of movements in the kinematic model. Head remains fixed while the eye is moving in the head. 

Then, head rotates, moving eye with itself such that eye-in-head position remains unchanged; this rotation foveates the target. Then, head 
rotates to its definite position, while eye rotates in head to compensate for head movement and keep the target foveated. (C) Having solved 
the equations of the model based on our physiologically inspired assumptions and constraints, we find that the saccadic eye movement has 
its independent axis and can be implemented in any duration of time which ends before onset of VOR (red double-headed arrows). Onset 
of head movement is arbitrary but its two parts are implemented continuously after each other (green double-headed arrows). Eye rotation 

during VOR is implemented right at the time when the second part of head movement is happening (violet double-headed arrow).
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According to observations of visual orienting behavior it is clear that movements of the 

eyes and head can begin at approximately the same times. However, recording the activity 

of neck and eye muscles reveals that even when movement onsets are synchronous, the 

command to move the head precedes the command to move the eyes (Bizzi et al., 1971a, 

Zangemeister et al., 1981). Furthermore, inspection of the behavior over a broad range of 

gaze-shift amplitudes, task requirements, and target predictability indicates that the relative 

timing of eye and head movements is variable (Zangemeister and Stark, 1982, Guitton and 

Volle, 1987, Freedman and Sparks, 1997, Crawford et al., 1999b): the head can lag the 

onset of eye movements during small amplitude gaze-shifts, but during large amplitude 

movements, or movements to target locations that are predictable head movements can 

begin well before saccades. Electrical stimulation in the omnipause neuron region can 

delay saccade onset without altering the initiation of head movements (Gandhi and Sparks, 

2007); evidence that the triggering mechanisms for the eyes and head are not shared.  

According to the evidence about temporal coupling of eye and head movements described 

above, a separation (at least with respect to movement initiation) of head and eye command 

signals can be identified within the brainstem structures that control coordinated eye–head 

movements. This may indicate that the brain plans a gaze-shift at different levels. 

Accordingly, inspired by the fundamentals of engineering design, we propose that a 

complete model of gaze-shift is planned in three levels of information processing. At a 

higher level, illustrated in figure 3-B, we propose a succession of movements as a structure 

for computing the motor commands for eye and head. At a middle level, sketched in figure 

3-C, a temporal structure for implementation of these movement commands should be 

proposed. It can be shown that these two levels are independent, i.e. succession used for 

computation of motor commands does not dictate the timing of their implementation. 

Rather, saccadic eye movement can start before or after the onset of head movement and 

can finish well before the onset of VOR. At a lower level, the required torques are 

calculated by putting the then-known kinematic variables in governing conservation 

equations, and then, knowing the structure of motoneurons and muscles, the required neural 

signals could be derived. Having emphasized this hierarchical structure, in this paper, we 

are only concerned with the higher level. 
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As it is shown in figure 3-B, our proposed higher-level kinematic strategy consists of three 

stages and systematically combines the three previously mentioned motor mechanisms. In 

the first stage, head remains fixed while the eye is moving in the head. In the second stage, 

head rotates, moving eye with itself such that eye-in-head position remains unchanged; this 

rotation foveates the target. In the third stage, head rotates to its definite position, while 

eye rotates in head to compensates for head movement and keeps the target foveated 

(vestibulo-ocular reflex). Table 1 shows the orientations of the eye, head and gaze after any 

of the three stages of the model. 

 𝑒  ℎ⃗  𝑔  

Initial 

Condition 
𝑬𝒊 × 𝑒 𝑟 𝑯𝒊 × ℎ⃗ 𝑟 𝑯𝒊 × 𝑬𝒊 × 𝑔 𝑟 

After 1st 

Stage 
𝑹𝒆 × 𝑬𝒊 × 𝑒 𝑟 𝑯𝒊 × ℎ⃗ 𝑟 𝑯𝒊 × 𝑹𝒆 × 𝑬𝒊 × 𝑔 𝑟 

After 2nd 

Stage 
𝑹𝒆 × 𝑬𝒊 × 𝑒 𝑟 𝑹𝒉 ×𝑯𝒊 × ℎ⃗ 𝑟 𝑹𝒉 ×𝑯𝒊 × 𝑹𝒆 × 𝑬𝒊 × 𝑔 𝑟 

Desired 

Condition 

𝑹𝒗 × 𝑹𝒆 × 𝑬𝒊

× 𝑒 𝑟 
𝑹𝒘× 𝑹𝒉 × 𝑯𝒊 × ℎ⃗ 𝑟 

𝑹𝒘 × 𝑹𝒉 × 𝑯𝒊 × 𝑹𝒗 × 𝑹𝒆 × 𝑬𝒊

× 𝑔 𝑟 

Table 2: mathematical description of eye, head and gaze orientations at different stages  

So, desired orientations can be written as a function of initial orientations and the rotations: 

𝑬𝒅 = 𝑹𝒗 × 𝑹𝒆 × 𝑬𝒊 (25)  

𝑯𝒅 = 𝑹𝒘 × 𝑹𝒉 ×𝑯𝒊 (26)  

𝑮𝒅 = 𝑹𝒘× 𝑹𝒉 × 𝑯𝒊 × 𝑹𝒗 × 𝑹𝒆 × 𝑬𝒊 (27)  

4.3.5 Solving the Static Model 

Dependence of Desired Head Position on Desired Gaze Position  

When the desired target appears in the visual field, the main signal for planning the gaze-

shift and the main known input of our model is constructed in the form of the 2-D desired 
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angular gaze position 𝑐 𝑑. We define the parameters α, β to determine how much the head 

would move, in horizontal and vertical directions respectively, relative to initial head 

position. Setting α, β to zero, the model is reduced to a model of head-fixed gaze-shift. 

Model parameters α, β determine how the 2-D desired angular head position 𝑏⃗ 𝑑 would be 

derived from 𝑐 𝑑 and the initial conditions:  

𝑏⃗ 𝑑  =  [𝑏𝑖(1) + 𝛼 × (𝑐𝑑(1) − 𝑏𝑖(1)) ; 𝑏𝑖(2) + 𝛽 × (𝑐𝑑(2) − 𝑏𝑖(2))] (28)  

Where 0 < 𝛼 < 1 and 0 < 𝛽 < 1. Desired gaze and head vectors, 𝑔 𝑑 and ℎ⃗ 𝑑, can then be 

derived from 𝑐 𝑑 and 𝑏⃗ 𝑑 based on equations (7) and (8).  

Fick Constraint for Head Orientation 

Fick system represents a general rotation as successive rotations with magnitudes 𝜃, 𝜑, 𝜓 

about local vertical, horizontal and torsional axes respectively. Rotation matrix in Fick 

system is:  

[

cos(𝜑)cos(𝜃) −cos(𝜑)sin(𝜃) sin(𝜑)

cos(𝜓)sin(𝜃) + sin(𝜓)sin(𝜑)cos(𝜃) cos(𝜓)cos(𝜃) − sin(𝜓)sin(𝜑)sin(𝜃) −sin(𝜓)cos(𝜑)

sin(𝜓)sin(𝜃) − cos(𝜓)sin(𝜑)cos(𝜃) sin(𝜓)cos(𝜃) + cos(𝜓)sin(𝜑)sin(𝜃) cos(𝜓)cos(𝜑)

] 
(29)  

It has been shown that after a natural head-free gaze-shift, desired head orientation obeys 

the Fick constraint. This constraint states that if one represents 𝑯𝒅 in the Fick system, then 

the torsional component of this representation is zero:   

𝑯𝒅 = [

cos(ρ𝑯𝒅)cos(𝜃𝑯𝒅) −cos(ρ𝑯𝒅)sin(𝜃𝑯𝒅) sin(ρ𝑯𝒅)

sin(𝜃𝑯𝒅) cos(ρ𝑯𝒅)cos(𝜃𝑯𝒅) 0

−sin(ρ𝑯𝒅)cos(𝜃𝑯𝒅) sin(ρ𝑯𝒅)sin(𝜃𝑯𝒅) cos(ρ𝑯𝒅)

] (30)  

Knowing h⃗ d, Fick angles of desired head orientation, 𝜃𝑯𝒅 , ρ𝑯𝒅, can be derived based on 

general relation (2) and the equation (30):  

𝜃𝑯𝒅  =  sin
−1(ℎ𝑑(2)) (31)  

ρ𝑯𝒅  =  sin
−1(−

ℎ𝑑(3)

cos(sin−1(ℎ𝑑(2)))
) 

(32)  
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So, desired head orientation 𝑯𝒅 would now become known to us.  

Uniqueness of Head Rotation Command  

From observations of the behavior in head-unrestrained experiments, it has been seen that 

only one head rotation command is implemented during one planned gaze-shift. However, 

two distinct measures of the head movement have been defined: the total movement of the 

head from start to finish and the amount that the head movement contributed to the 

accomplishment of the gaze-shift, often referred to as the head contribution (Bizzi et al., 

1972, Morasso et al., 1973). So, in our model structure, we assume that the head rotations 

in the 1st and 2nd stages of our model are just two successive parts of one head rotation 𝑹𝒕:  

𝑹𝒕 =  𝑹𝒘 × 𝑹𝒉 (33)  

This means that 𝑹𝒘 and 𝑹𝒕 have the same axis of rotation:  

𝑢⃗ 𝑹𝒕 = 𝑢⃗ 𝑹𝒘 = 𝑢⃗ 𝑹𝒉 (34)  

And rotation magnitudes of 𝑹𝒉 and 𝑹𝒘 are complementary fractions of 𝜏𝑹𝒕:  

𝜏𝑹𝒉 = δ × 𝜏𝑹𝒕 (35)  

𝜏𝑹𝒘 = (1 − δ) × 𝜏𝑹𝒕 (36)  

Where 0 < 𝛿 < 1 and δ is a model parameter which could depend on different factors, 

most importantly the total head rotation. After finding 𝑯𝒅 from equations (30-32), we can 

derive 𝑹𝒕 based on equations (26) and (33):  

𝑹𝒕 =  𝑯𝒅 × 𝑯𝒊
−𝟏

 (37)  

 𝑹𝒉 and 𝑹𝒘 will be found as we know their axis and magnitude of rotation. 

Listings’ Law for Eye Orientation  

𝐇𝐝 and 𝑔 𝑑 being known, we can find 𝑒 𝑑 from:  
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𝑒 𝑑  =  𝑯𝒊
−𝟏 × 𝑔 𝑑  (38)  

Based on Listing’s law, if one represents eye-in-head orientation by the classical 

magnitude/axis convention, then the axis of rotation would always be in the Listings plane 

(LP). LP is a plane fixed to the head and rotating with it. LP is orthogonal to the straight 

ahead sight/gaze axis. According to this constraint, the third component of the unit vector, 

which denotes the axis of rotation for eye-in-head orientation matrix, is zero. For the 

desired eye-in-head orientation:  

𝑢⃗ 𝑬𝒅 = [𝑢𝑬𝒅(1); 𝑢𝑬𝒅(2); 0] (39)  

𝐸𝑑 =

[
 
 
 
 𝑐𝑜𝑠(𝜏𝐸𝑑) + 𝑢𝑬𝒅(1)

2 × (1 − 𝑐𝑜𝑠(𝜏𝐸𝑑)) 𝑢𝑬𝒅(1) × 𝑢𝑬𝒅(2) × (1 − 𝑐𝑜𝑠(𝜏𝐸𝑑)) +𝑢𝑬𝒅(2) × 𝑠𝑖𝑛 (𝜏𝐸𝑑)

𝑢𝑬𝒅(1) × 𝑢𝑬𝒅(2) × (1 − 𝑐𝑜𝑠(𝜏𝐸𝑑)) 𝑐𝑜𝑠(𝜏𝐸𝑑) + 𝑢𝑬𝒅(2)
2 × (1 − 𝑐𝑜𝑠(𝜏𝐸𝑑)) −𝑢𝑬𝒅(1) × 𝑠𝑖𝑛 (𝜏𝐸𝑑)

−𝑢𝑬𝒅(2) × 𝑠𝑖𝑛 (𝜏𝐸𝑑) 𝑢𝑬𝒅(1) × 𝑠𝑖𝑛 (𝜏𝐸𝑑) 𝑐𝑜𝑠(𝜏𝐸𝑑) ]
 
 
 
 

 (40)  

Substituting (40) into (1) and knowing 𝑒 d from (38), we can solve the system of equations 

for 𝑢𝑬𝒅(1) and 𝑢𝑬𝒅(2) and 𝜏𝐸𝑑:  

𝜏𝑬𝒅 = cos−1(𝑒𝑑(3)) (41)  

𝑢𝑬𝒅(1) =
−𝑒𝑑(2)

𝑠𝑖𝑛 (𝜏𝑬𝒅)
⁄  (42)  

𝑢𝑬𝒅(2) =
𝑒𝑑(1)

sin (𝜏𝑬𝒅)
⁄  (43)  

So, from (40) we have 𝑬𝒅. Let’s define rotation matrix 𝑹𝒂 as:  

𝑹𝒂 =  𝑹𝒆 × 𝑹𝒗 (44)  

Knowing 𝑬𝒊 and 𝑬𝒅, we can derive 𝑹𝒂 from (25):  

𝑹𝒂 =  𝑬𝒅 × 𝑬𝒊
−1

 (45)  

Gaze Stability during VOR 

We are assuming that gaze direction does not change during the third stage of the model 

and by the execution of 𝑹𝒘 and 𝑹𝒗. Then, by looking at the table 1, we have:  
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𝑹𝒉 ×𝑯𝒊 × 𝑹𝒆 × 𝑬𝒊  =  𝑹𝒘 × 𝑹𝒉 ×𝑯𝒊 × 𝑹𝒗 × 𝑹𝒆 × 𝑬𝒊 (46)  

From (46), we can derive 𝑹𝒗:  

𝑹𝒗 =  𝑯𝒊
−𝟏 × 𝑹𝒉−𝟏 × 𝑹𝒘−𝟏 × 𝑹𝒉 × 𝑯𝒊 (47)  

Knowing 𝑹𝒂 and 𝑹𝒗, 𝑹𝒆 can be derived from (44):  

𝑹𝒆 =  𝑹𝒗−𝟏 × 𝑹𝒂 (48)  

Therefore, all the unknown parameters of the model have been derived from the governing 

equations of the model considering the assumptions and constraints.  

4.3.6 Simulation of full Movement Trajectories 

The model described above was designed to simulate the key kinematic events in the gaze 

shift illustrated in Figure 3-B. For simulation purposes, this was sufficient to show initial 

and final eye (saccade and VOR) and head movement positions. A complete dynamic 

model of the system would require neural and mechanical elements downstream from the 

model in Figure 1, and goes beyond the goals and scope of the current paper. However, for 

some of the simulations shown below it was desirable esthetically or scientifically to show 

intermediate points along the entire trajectory. In brief, to do this we assumed constancy of 

the axis of rotation for all eye and head motions except VOR (whose axis of rotation is 

determined online from the online spatial orientation of head). We then discretized the 

magnitude of rotation based on specific growth functions in a time-frame illustrated in 

figure 3-C. The 3-D constraints in our model were applied on initial and final eye/head 

orientation and we do not analyze velocity or acceleration in this paper, so, the details of 

these growth functions have no bearing on any of the questions asked here. 

4.4 Results & Discussion 

Here we test the model by comparing its simulated output to previously reported or 

expected performance of the real system in several different tasks. Unless otherwise stated, 

the model parameters are set to α = β = δ = 0.5. 
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4.4.1 Gaze Accuracy and the 3-D Reference Frame Transformations 

It has been shown both with saccade simulations (Crawford and Guitton, 1997c) and real 

saccade data (Klier and Crawford, 1998) that retinal error only corresponds directly to the 

gaze movement vector for saccades directed toward, across, or away from Listing’s 

primary eye position. For all other saccades, retinal error needs to be mapped onto different 

saccade vectors as a function of initial eye orientation. This is simply a function of the 

geometry of the system; it cannot be any other way. However, failure to properly account 

for this, in our model (or the real gaze control system), would result in saccade errors that 

increase with the position component and length of retinal error (which did not occur). This 

has not been measured behaviorally with head-unrestrained gaze shifts, but the predicted 

errors here would be so large (up to 90º) that it is obvious that the system accounts for this. 

Moreover, the converse has been shown with simulations and experimentally: a single 

retinal vector evoked from stimulation of the brain (e.g. in superior colliculus) results in 

very different eye-head gaze trajectories as a function of initial eye orientation (Klier et al., 

2001, Martinez-Trujillo et al., 2004). Tweed’s (1997) model supports this behavior, and 

was used as the basis for the latter simulations. 

We have simulated this behavior with our model in figure 4. Here, the model generated 

rightward gaze-shifts from different vertical positions but the same horizontal components 

(○), either with a fixed rightward gaze trajectory toward the symmetric target on the 

opposite side (left column) or with a fixed rightward retinal error input (right column). The 

intersection point of gaze on a forward-facing target screen is shown in the top row (with 

end points shown as ×), the instantaneous points of stimulation of the corresponding 

positions on the retina (initial retinal error being the main model input) are shown in the 

middle row, and the resulting angular gaze trajectories (the model output) are shown in the 

bottom row. The trajectories in the upper and bottom rows are very similar, starting from 

the left and proceeding right. The trajectories in the middle row proceed in the opposite 

direction because the desired targets start to the right in retinal coordinates (dispensing with 

the optical inversion) and then proceed to the left as they converge toward (0,0), i.e. the 

retinal coordinates of the fovea. This indicates the accuracy of the model in bringing the 

image of the desired target to the fovea.  
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Figure 4: Gaze Accuracy and the 3-D Reference Frame Transformations for Gaze-Shifts. Rightward gaze-
shifts are simulated from five different vertical altitudes with either a fixed symmetric horizontal gaze-shift, -40cm 
left to 40cm right, on a flat target screen (left column), or from the same initial positions with a fixed retinal error 
of 60 degrees right (right column). First row shows the initial and desired target positions on the screen and the 
development of gaze direction on the screen during the gaze-shift. Second row shows the development of the 

target position in retinal coordinates during gaze-shift. Third row shows the development of the 2-D angular gaze 
position during gaze-shift. For both conditions, the model parameters are set to α = ß = δ = 0.5 . Circles show 

initial target locations while stars show the desired positions of target. Note that in B even though the targets are 
due right in spatial coordinates, they have variable vertical components in retinal coordinates, whereas conversely 

retinal errors in E start and end at the same positions, and correspond to different gaze trajectories.
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More importantly, these simulations illustrate the non-trival relationship between retinal 

error vectors and gaze shift direction, and the ability of our model to handle this. As the 

left column shows, when the target is due right of initial gaze position (4-A), this 

corresponds to non-horizontal retinal errors (4-B) as a non-linear function of initial vertical 

position, but the model correctly converts this into rightward gaze shifts (4-C). Conversely, 

the right column shows that a rightward retinal error (4-E) corresponds to different 

directions of target position releative to initial position (4-D), but again the correct 

movement trajectory is generated (4-F). We obtained analogous results for every 

combination of retinal error and position that we tested. There can be no linear trivial 

mapping between the retina and motor output, unless one models the pulling actions of the 

eye and neck muscles into retinal coordinates and aligns the centres of rotation of the eyes 

and head, which is not realistic. Thus, the model must (and does) perform an internal 

reference frame transformation, based on its retinal inputs and its eye / head orientation 

inputs.  

4.4.2 Eye, Head and Gaze Orientations and their Constraints 

Donders’ law, as originally stated, suggested that the eye should only attain one torsional 

orientation for each gaze direction, irrespective of the path taken to acquire that position. 

This rule has since been applied and elaborated to a number of situations and more specific 

rules. Behavioral data from 3-D head-fixed and head-free tasks (Glenn and Vilis, 1992, 

Radeau, 1994, Crawford et al., 1999b) have shown that the 1) orientation of eye relative to 

head at the end of the gaze-shift lies in the Listing’s plane and has zero torsional 

component, 2) the final orientation of head relative to shoulder obeys the Fick law, i.e. the 

torsional component of head orientation in Fick system is zero, and 3), the orientation of 

the eye-in-space during gaze fixations also adheres to a form of Donder’s law similar to 

the Fick rule. 

Importantly, in our model, the Listings and Fick constraints on final eye and head 

orientation were directly implemented, whereas in our model torsion of the eye in space 

was an emergent property of the above constraints. What would this look like? The final 

positions of gaze-shifts of various amplitudes and directions are simulated in figure 5 for 

the eye-in-head (left column), head-in-space (middle column), and eye-in-space (right 
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column), where the 1st row shows the 2-D components of this range and the 3rd row shows 

horizontal position plotted as a function of torsional position. As one can see in figure 5-

D, irrespective of the magnitude or direction of eye or head rotations during gaze-shifts, 

this kinematic model always produces a final eye-in-head orientation that obeys Listing’s 

law, forming a flat range of zero torsional positions. In contrast, Fick constraint manifests 

as a bow-tie shape of the distribution of head orientations in horizontal-torsional rotation 

plane. As one can see in figure 5-E, all final head positions, irrespective of the magnitude 

or direction of head rotation, obey the Fick law for head orientation. A similar, but less 

pronounced, Fick-like twist in the range of final orientation is seen for the eye in space 

(Figure 5-F). In other words, in our model the Fick range of eye orientation in space was 

an emergent property of the eye and head constraints implemented in our model.  
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Figure 5: Distributions of Head, Eye and Gaze Orientations for Equal Contributions of Eye and Head 

Rotations to Horizontal and Vertical Directions. Model simulations producing gaze-shifts from the central 
fixation point (reference condition) to a uniform distribution of targets on the screen in range (-40,40) degrees 

horizontal and (-40,40) degrees vertical. The first, second and third columns respectively show eye-in-head (red), 
head-in-space (green) and eye-in-space orientations after the gaze-shift. First row illustrates the horizontal (right/
left) against the vertical (up/down) components while the third row shows the horizontal (right-left) against the 

torsional (CW/CCW) components. The parameters of the model are set to α = ß = δ = 0.5. The black curve shows 
gaze orientations for targets aligned horizontally on top of the screen.
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Tweed (1997) was also able to simulate similar behaviors, but in that case it was assumed 

that eye-in-space orientation was explicitly controlled and other 3-D parameters were 

derived from this. However, there are maybe some potential differences between the 

predictions of our models. First, our model seems to be more consistent with the consistent 

observation that eye-in-space torsion is more variable than eye or head torsion (Glenn and 

Vilis, 1992, Radeau, 1994, Crawford et al., 1999b). We could simulate this by summating 

independent random noise in eye and head torsion, but the result would be trivial. In 

contrast, Tweed’s model could predict a tighter constraint on eye-in-space torsion 

(particularly if errors in the decomposition of 3-D gaze commands produced anti-correlated 

noise in eye and head torsion).  

4.4.3 Development of the Eye, Head and Gaze Orientations during Gaze-Shift 

The previous section only described end point kinematics of the entire eye-head gaze shift. 

The 3-D trajectories of the eye and head during motion, and their relationship to the end-

point constraints, are potentially much more complex. It is generally agreed that Listing’s 

law is obeyed during head-restrained saccades (Ferman et al., 1987b, Tweed and Vilis, 

1990), although small torsional ‘blips’ near the ends of the trajectories have been 

scrutinized to test the role of eye mechanics in implementing the position-dependent ‘half 

angle rule’ that describes 3-D eye velocities for Listing’s law (Straumann et al., 1995, 

Straumann et al., 1996). We have assumed that these rules are perfectly implemented 

downstream from the output of our model so our model cannot predict any such ‘blips’. 

However, eye trajectories become much more complicated in the head-unrestrained 

situation because saccades must be coordinated with the VOR, which does not obey 

Listing’s law, resulting in large transient deviations of eye position from Listing’s plane 

(Crawford and Vilis, 1991, Tweed et al., 1998, Crawford et al., 1999b, Klier et al., 2003). 

Likewise, during rapid gaze shifts in monkeys the head appears to deviate from the static 

Fick constraint when it takes the shortest path between two points on the curved Fick range 

(Crawford et al., 1999b). These saccade/VOR behaviors have been considered in a previous 

modeling study (Tweed, 1997), but not the above-mentioned head behavior.  

Here, we consider the ability of our model to simulate these behaviors, based on its static 

implementation of the Listing and Fick rules, and the simple discretization of trajectories 
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described in section 2. Figure 6 shows example eye, head, and gaze trajectories between 

three initial (○) and final (×) gaze positions (corresponding to the same symbols / positions 

shown in Figure 5). Figure 6 thus shows the development of gaze-shift, in different rotation 

planes, between two groups of vertically aligned targets on the screen. Likewise, figure 7 

illustrates the temporal development of the horizontal (upper row), vertical (middle row) 

and torsional (bottom row) components of eye (left column), head (middle column) and 

gaze (right column) orientations during the same set of gaze shifts as shown in figure 6. 
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Figure 6: Spatial Path of the Development of Eye, Head and Gaze Orientations during Gaze-Shift. Three 
example gaze-shifts have been planned from three targets, vertically aligned at -40 cm on the screen, to another three 
targets, vertically aligned at 40 cm. The locations of eye, head and gaze in initial condition are shown by circles while 

their locations in desired condition are shown by crosses. First and second rows show the temporal development of 
eye, head and gaze in vertical-horizontal and torsional-horizontal planes respectively.
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Figure 7: Temporal Pattern of Development of Eye, Head and Gaze Orientations during Gaze-Shift. For 
the same nine gaze-shifts, between two groups of vertically aligned targets, we have shown the development of 
the orientations. 1st, 2nd, and 3rd columns show orientations of eye, head and gaze respectively. 1st, 2nd and 3rd 
rows describe the development of horizontal, vertical and torsional components of orientations respectively.
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First, we consider the eye-in head behavior. In real time, the VOR is evoked through 

vestibular stimulation after the saccade, but in our model (and we propose in real 

physiology) the brain implicitly predicts the VOR from intended head movement signals 

in order to program the right amount of torsion and also bring the eye onto the correct final 

2-D orientation (Crawford and Guitton, 1997a, Misslisch et al., 1998). This is illustrated in 

the left columns of Figure 6 and Figure 7.  Eye orientation relative to head goes out of its 

range during saccade and comes back to the planned configuration by VOR (Fig 6-A). 

Particularly, the eye-in-head torsion starts at the Listings’ plane, deviates from the LP 

during the saccade and gets back into the LP by the VOR (Fig 6-D). The reasons for this 

are more clearly illustrated in figure 7. Here, one can see that the gaze-shift is implemented 

in two time phases: 1- Eye undergoes a saccade, head contributes to gaze, and gaze is 

placed on the target. 2- Head undergoes its second-stage movement (cancelled out by the 

VOR), the eye is driven by the VOR, and gaze is stabilized. The eye torsion (Figure 7-C) 

starts at zero which indicates that initial eye orientation obeys the Listing’s law. Thus, 

torsions in these two phases neutralize each other such that the torsion of the final eye 

orientation is zero in Listings’ plane coordinates. Similar principles hold for horizontal and 

vertical eye position (Figure 7-A, 7-B), except that these saccade components are larger 

than the corresponding VOR components. This replicates the behaviors observed in 

monkey and human gaze shifts (Crawford and Vilis, 1991, Tweed et al., 1998, Crawford 

et al., 1999b, Klier et al., 2003). 

In our model, the head’s Fick constraint is only explicitly specified at its initial and final 

positions, and the head is moved uniformly through the gaze shift by a single rotation 

command. As a result, in our simulations, the head starts and ends in the Fick range, moves 

smoothly between these positions, and often violates the Fick constraint during the 

movement (Figure 6-E, Figure 7-F). The deviations from Fick are made clear by comparing 

figures 6-E and 5-E, which has been imposed in gray beneath 6-E for easy reference. If the 

head always obeyed the Fick constraint during gaze-shifts, it would take a path passing 

through the bow-tie shape. Instead, the head takes an almost direct path between the two 

Fick-obeying points. This is most clear in the head movements between corners with 

similar torsion (e.g. the two left-side corners and two right side corners in Fig 6-E), where 

the head completely leaves the normal Fick range. This replicates the experimental 
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observations  in the monkey (Crawford et al., 1999b). However, more experiments are 

required to know if the head always follows the same strategy. 

Finally, note again that in our model, gaze (eye orientation in space) torsion is not explicitly 

controlled during the trajectory either, but is rather is an emergent property (roughly the 

simultaneous sum) of eye and head torsion during the gaze shift. Thus, not surprisingly, 

gaze torsion also deviates from its normal qausi-Fick range during the gaze shift (Fig. 7F).  

4.4.4 Eye-Head Coordination Strategies Influence Eye-in-Space Orientation 

During visual fixations, the entire 3-D range of eye orientation is important because this 

determines the orientation of the retina relative to the visual world (Ronsse et al., 2007). 

However, this topic (eye orientation in space) has received surprisingly little attention 

compared to 2-D gaze direction. Our physiologically-inspired model assumes that eye-in-

space torsion is an emergent property of separate constraints on eye and head torsion. As 

we shall see, this gives rise to the possibility that eye-head coordination strategies could 

interact with these constraints to produce different ranges of eye orientation in space. In 

this section we consider several possible, experimentally testable situations where this 

could occur. 

It has been shown in many experiments (and is also intuitively obvious from personal 

experience) that the amount that the head rotates for a constant gaze-shift changes 

depending on many factors, including initial head orientation (Guitton and Volle, 1987), 

visual range (Crawford and Guitton, 1997a), behavioral context (Land, 1992), expected 

future gaze targets (Monteon et al., 2012), and inter-subject differences. In order to reflect 

this variability, we have defined two variables α & 𝛽 (changing in range [0, 1]) which 

respectively determine the horizontal and vertical angular positions on which head falls 

after the gaze-shift. This allowed us to explore the kinematic consequences of 1) utilizing 

different overall eye vs. head contributions to gaze-shift, and 2) differential vertical vs. 

horizontal contributes of the head to gaze-shift. 

Infinitesimal values of α & 𝛽 correspond to nearly head-fixed saccades (Fig 8, top row), 

reflecting situations such as watching television and reading (Proudlock et al., 2003). Here, 

eye orientation occupies almost the same area as gaze (Fig 8-A vs. C) while head 
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orientation is limited to a very small area (Fig 8-B). In this condition, gaze orientation 

comes very close to following Listing’s law (Fig 8-C). In contrast, large values of α & 𝛽 

(Fig 8, bottom row) were used to simulate the situation where final head orientations 

occupied almost the same area as gaze distribution, and eye-in-head orientation returns to 

a central range near primary position after the VOR. This emulates behavioral situations 

such as driving a car (Land, 1992) and certain experiments in which subjects were required 

to rotate their head more (Ceylan et al., 2000). Here, the head’s greater contribution to gaze 

orientation (while maintaining final eye-in head torsion at zero) results in a Fick-like range 

of eye-in-space orientations identical to that of the head (Fig 5-F)., and thus more ‘twisted’ 

than observed  when the eye and contribute equally. 
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Figure 8: Distributions of Head, Eye and Gaze Orientations for Two Extreme Cases of Almost Only Eye 

Contribution (Head-Fixed Saccade) and Almost Only Head Contribution. We have made the model to plan 
gaze-shifts from the central fixation point (reference condition) to a uniform distribution of targets on the screen 

in range (-40,40) degrees horizontal and (-40,40) degrees vertical. Eye-in-head (first column in red), head-in-
space (second column in green) and eye-in-space (third column in blue) orientations are illustrated. Only the 

horizontal (right-left) against the torsional (CW/CCW) diagrams are included in this figure. The parameters of 
the model for the first row is set to α = ß = 0.15 and δ = 0.5 while for the second row they are set to be α = ß = 
0.85 and δ = 0.5. The black curve shows gaze orientations for targets aligned horizontally on top of the screen.
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Note that the latter simulations assumed that constraints on eye and head orientation are 

not influenced by these different eye head coordination strategies. To our knowledge, this 

has not been directly tested for the ‘eye-only’ situation, but, experimental studies that 

increased the amount of head orientation to equal gaze orientation (by training subjects to 

look through a head-fixed ‘pinhole’ or point a head-fixed light toward the target) caused 

the head to develop a more Listing-like strategy (Crawford et al., 1999b, Ceylan et al., 

2000) and thus producing a less twisted eye-in-space range our simulation. This could be 

simulated here by replacing our head’s Fick constraint with a Listing’s law constraint as 

used in the eye pathway. The more important point is that in the Ceylan et al. (2000) study 

concluded that these head constraints are purely motor, whereas the current analysis 

suggests that their result might have been related to orientation of the eye in space and its 

implications for vision (see section 3.5). If so, then the brain would have to be aware of the 

interactions between eye-head coordination and 3-D orientation constraints, and alter the 

latter accordingly to achieve the right position range.  

Another interaction between eye-head coordination and orientation constraints is perhaps 

more surprising, and yet inevitable if the assumptions behind our model are correct. It has 

been experimentally observed that the contribution of the head to the gaze-shift can be 

different in horizontal and vertical directions, usually providing more horizontal 

contribution (Freedman and Sparks, 1997, Crawford et al., 1999b). Figure 9 shows the 

ability of the model to plan such distinct gaze-shifts, and uses these simulations to illustrate 

how relative vertical-horizontal contributions of the head to gaze shifts could have a 

profound influence on orientation of the eye in space.  
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Figure 9: Distributions of Head, Eye and Gaze Orientations for Two Extreme Cases of Almost Only 

Head Contribution to Horizontal Gaze-Shift or Almost Only Head Contribution to Vertical Gaze-Shift. 
We have made the model to plan gaze-shifts from the central fixation point (reference condition) to a uniform 
distribution of targets on the screen in range (-40,40) degrees horizontal and (-40,40) degrees vertical. Eye-in-

head (first column in red), head-in-space (second column in green) and eye-in-space (third column in blue) 
orientations are illustrated. The horizontal (right-left) against the torsional (CW/CCW) diagrams are only 

included in this figure. The parameters of the model for the first row is set to α = 0.05, ß = 0.95, and δ = 0.5 
while for the second row they are set to α = 0.95, ß = 0.05, and δ = 0.5. The black curve shows gaze 

orientations for targets aligned horizontally on top of the screen.   
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In the first row of figure 9, the eye (A) contributes mainly to vertical component (not 

shown) and the head (B) is mainly contributing to the horizontal component of the gaze-

shift. This essentially reduces eye and head orientation each to rotation about two fixed 

axes and a one-dimensional range, but results in a strong ‘Fick-like’ twist in the eye-in-

space orientation range (C), even stronger than in our default simulations (Fig 5-F). This is 

because here we have essentially turned the system into a true Fick Gimbal, where the head 

rotates about a body-fixed vertical axis and the eye rotates about a head-fixed horizontal 

axis. This supports the notion that the relatively larger contribution of the head to horizontal 

rotation in most situations contributes to the Fick-like range of eye-in-space (Crawford et 

al., 1999a). 

In the second row of figure 9, the directional contributions of the head and eye have been 

reversed: the eye mainly rotates horizontally about a vertical axis and the head main rotates 

vertically (not shown) about a horizontal axis. Physically, this now resembles a Helmholtz 

system, where the vertical axis is embedded on a fixed horizontal axis. This results in a 

range of eye-in-space orientations (Fig 9-F) with an opposite twist to what we have seen 

so far, in other words, the opposite amount of torsion for a given gaze direction. This 

simulation predicts that if subjects can be induced to make gaze shifts with pure vertical 

head rotation, they should develop a similar range of eye-in-space orientation, unless 

constraints on torsion are modified in some way that has not yet been observed. This 

prediction could be easily tested by instructing subject to use the head vertically or 

horizontally in a gaze shift. In the event that people do switch to the Helmholtz constraint, 

this would be strong support for our model and in turn would provide an interesting 

experimental model for studying the influence of eye-in-space torsion on visual perception.  

Thus, even if one assumes that 2D eye-head coordination and 3D eye / head constraints are 

implemented independently (as we have assumed here), they still interact in complex ways 

to influence 3D eye-in-space torsion as a function of 2D gaze direction. Since all three 

components of eye orientation (horizontal, vertical, and torsional) interact with 2D visual 

stimulus direction in a complex non-linear fashion to determine the retinal location of 

visual stimulation (Crawford and Guitton 1997, Henriques et al. 2000, Blohm et al. 2007), 

this has non-trivial implications for vision. First, it has been shown previously that the brain 
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accounts for 3D eye orientation in decoding patterns of visual stimulation in some 

behaviors (Klier and Crawford 1998; Henriques et al., 1998, Blohm and Crawford, 2007, 

Blohm et al., 2008), but this has not been tested in the situations simulated here. Second, it 

is possible that patterns of eye-head coordination are chosen to simplify or optimize 

patterns of retinal stimulation. Third, it is known that (contrary to the simplifying 

assumptions above) 3-D torsional constraints on the head are sometimes altered for 

different patterns of 2-D eye-head coordination (Crawford et al. 1999; Ceylan et al. 2000). 

This suggests the possibility that implementation of 2-D eye-head coordination and 3-D 

constraints might be linked in some way as to optimize vision. In short, our simulations 

highlight a large potential for experimental studies of the relationships between eye-head 

coordination and vision. 

4.5 Concluding Remarks 

We have proposed a kinematic model that plans accurate and coordinated eye-head gaze 

shifts that obey Donders’ laws of the eyes and head. The following features were 

specifically built into the model: 1) the model transforms eye-centered retinal inputs into 

eye and head rotations in head and shoulder-fixed coordinate systems respectively, 2) the 

model applies experimentally observed behavioral constraints on the final orientations of 

eye (Listings law) and head (Fick strategy), and 3) variability in both eye-head contribution 

(including relative horizontal-vertical contributions) and influence of the VOR were 

implemented, without affecting the accuracy of the gaze shift or the spatial constraints 

named above. Our simulations show that the model was successful in realistically rendering 

each of these properties. 

Two further novel and important properties emerged from our model simulations. First, 

without placing any additional dynamic constraints on the model, it predicted deviations in 

eye and head trajectories from the Listing and Fick between stable visual fixations that 

have been observed experimentally. Second, the model predicts that different patterns of 

eye-head coordination interact with the 3-D eye (Listing) and head (Fick) constraints to 

produce very different ranges of final eye-in-space orientations, with quite different 

consequences for vision.  
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Thus, our model provides both explanatory and predictive power for understanding known, 

and yet-to-be tested, aspects of 3-D gaze behavior. And as illustrated in Figure 1, our model 

provides a general framework for understanding the neural control system for the 

kinematics of head-free gaze control. Finally, the kinematic framework provided here 

provides a convenient stepping stone for further modeling studies of gaze dynamics and 

artificial neural network models that may further help to understand the neurophysiology 

of brain areas involved in gaze control. 
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5 General Discussion 

In this thesis, we have proposed a computational framework that explains three levels of 

planning a gaze-shift towards cross-modal stimuli: 1) the subjects’ causal inference of 

whether or not the cross-modal stimuli belong to a unique source, 2) the subjects’ timing 

of making a gaze-shift towards the most reliable source of information in presence of cross-

modal stimuli, 3) the kinematic coordination of eye and head movements in order to shift 

the line of sight. Here, in the first three sections, we discuss the results produced by our 

models in relation with the existing experimental observations. Then, we will describe the 

three models as different parts of one single executive program. Next, we will discuss the 

neurophysiological implications of our first two models. Then, some practical implications 

of the models are explained. Finally, conclusions are made and some future directions are 

described.    

5.1 Review of Causal Inference for Multimodal Gaze-Shift Planning 

We formulated the spatial causal inference problem in an executive program, i.e. we 

assumed that this inference is to be used to shift the focus of attention by planning a gaze-

shift. This was conceptualized as choosing between three possible scenarios: 1) the signals 

are coming from one same object. In this case the target for gaze-shift is constructed as a 

weighted average of the visual and auditory estimates. 2) The signals are coming from 

different objects and the visual stimulus is more salient, in which case the target is chosen 

to be at the location of the visual stimulus. 3) The signals are coming from different objects 

and the auditory stimulus is more salient, so, the target is chosen to be at the location of the 

auditory stimulus. We realized the causal inference, within a decision making framework, 

through selection of one of these plans, based on the spatiotemporal similarity measure.  

The proximity of the visual and auditory stimuli, in both space and time, have been 

experimentally shown to affect the subjects’ judgement of the origin of the signals 

(Hairston et al., 2003, Wallace et al., 2004). The theoretical studies of causal inference have 

isolated these two effects leading them to reductionist models of the problem. Some have 

tried to model the effect of spatial disparity on the report of a common cause (Kording et 

al., 2007, Sato et al., 2007), ignoring the temporal dimension. Some other theoretical 

studies reduce the criterion for fusion to the temporal features of the events, ignore the 



133 
 

spatial disparity, and propose that the cross-modal events are bound together if they happen 

within a relative time window (Colonius and Diederich, 2010, Diederich and Colonius, 

2015). However, in our model, spatiotemporal features are modeled as various dimensions 

of one signal.  

The average percentage of the reports of a unique cause, among a number of participants 

and through multiple trials, changing by the spatial and temporal disparities, follow a 

meaningful pattern, as experimentally observed  (Slutsky and Recanzone, 2001). This 

pattern is closely captured by the trends produced by our model, which infers the causal 

structure based on the spatiotemporal similarity. Unique cause is predicted for a wide range 

of temporal disparities if the spatial disparity is very small, as shown in figure 2A and 2C 

for a spatial disparity of 1.83ᵒ (ventriloquism effect). The “sameness call” changes at some 

point for most spatial disparities if the temporal disparity becomes greater than threshold. 

Similarly, the “sameness call” changes for a given temporal disparity if the spatial disparity 

exceeds some threshold. Thus, although we did not tinker extensively with our model 

parameters to exactly match the experimental results quantitatively, we conclude that the 

model replicates the key results and principles of the published experiment.   

This general framework, which simultaneously considers spatial and temporal effects, 

provides a leap to understanding of other aspects of the problem. One such aspect is how 

different patterns of extension of presentation time of the cross-modal stimuli may change 

the decision. This is taken into account using the evidence-based nature of the proposed 

decision making circuitry, and its accumulative evolution across time. As two examples of 

this capability we showed that: 1) when the two stimuli are presented briefly and at the 

same time, they are perceived as belonging to a common source even if they are not 

presented at exactly the same position in space. But for the same spatial configuration, if 

the duration of stimulus presentation increases, the similarity measure decreases, and the 

decision about the uniqueness of the cause changes at some point. 2) By extending the 

presentation duration of one stimulus, while the other is presented only briefly, the 

similarity measure decreases. Therefore, the sameness decision which was for a common 

source for shorter durations changes to being for separate sources for longer durations.   
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5.2 Review of Variability of Reaction Times of Multimodal Gaze-Shifts 

Previous attempts to model the variability of reaction time of saccades towards bimodal 

stimuli assume the temporal relationships, between the presentations of the two stimuli, as 

the factor governing the reaction time. Either being race models that consider two separate 

parallel unimodal channels (Raab, 1962, Gielen et al., 1983), or the coactivation models 

that consider one additive stage of processing for multimodal stimuli (Schwarz, 1989, 

Diederich, 1992), or the time-window-of-integration models that combine the two previous 

ideas, they all focus on temporal processing, ignoring the spatial effect (Frens et al., 1995). 

They also isolate this problem from the internal cognitive processing underlying causal 

inference. 

Our model not only considers the effects of both spatial and temporal configurations in a 

dynamic network, but also relates the perceptual problem of causal inference and the 

executive problem of action planning in a unifying framework. Our model proposes that 

the patterns of variability of saccadic reaction times (RT) towards bimodal stimuli are due 

to high-level cognitive processing. More specifically, the decision-making process for 

inference of a causal structure, and the confidence on that decision, is proposed to constitute 

such cognitive processing. Our model explains, in a unified framework and based on 

cognitive assignments, the effects of a wider range of stimulus features, including spatial, 

temporal and reliability aspects of the stimuli, on the reaction time (Frens et al., 1995, Bell 

et al., 2006). 

It has been observed that the reaction time of planning a gaze-shift towards cross-modal 

stimuli is affected by the amount of spatial distance between the visual and auditory targets, 

and by the temporal distance between their presentations (Frens et al., 1995, Bell et al., 

2005). Our model accounts for these effects by computationally and systematically 

realizing the intuitive idea that the confidence on the sameness of the origin of the stimuli 

decreases when the spatial or temporal distance between the stimuli increases. This is 

accomplished in two steps: 1) introduction of the spatiotemporal similarity of the 

multimodal stimuli as the criterion for the causal inference, and the saliency of the 

multisensory plan, 2) defining confidence, driving the reaction time, as how much higher 

the saliency of the selected plan is relative to the other alternatives. This meant that the 
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plan to integrate the visual and auditory information and a gaze-shift towards their 

weighted average becomes less dominant relative to unimodal gaze-shift plans, when the 

spatial or temporal distance between the stimuli increases.  

In gaze-shifts towards unimodal stimuli, it has been shown that the reaction time decreases 

by increasing the reliability (intensity) of the stimulus (Bell et al., 2006). Conversely, in 

gaze-shifts towards multimodal stimuli presented close to each other in time and space, a 

reduction in reaction time has been observed when the reliabilities (intensities) of the 

stimuli decrease (Diederich and Colonius, 2004). Our model explains both of these results 

based on the relative nature of the measure of confidence, introduced as the criterion for 

action initiation. The unisensory case occurs because of the increased confidence on a 

unisensory gaze-shift plan, when the stimulus intensity increases. The multisensory case 

happens because the dominance of the multisensory plan relative to the unisensory plans 

decreases when the saliencies of the unisensory plans, i.e. their stimulus reliabilities, 

increase. And this leads to a higher reaction time. 

5.3 Review of 3D Kinematics of Head-Free Gaze-Shifts 

A kinematic model was proposed for the coordinated movement of head-on-shoulder and 

eye-in-head in order to reorient the line of sight towards the target in the environment. The 

spatiotemporal eye-head coordination strategies were proposed such that the final 

orientations of eyes and head obey their Donders’ laws, while the target is accurately 

foveated. The eye-centered retinal position of the target (retinal error) was used as the main 

input, and it was used to calculate eye and head movements relative to head- and shoulder-

centered frames of reference, respectively. The free variability in the proportions of 

contributions of eye and head movements to gaze-shift, and the variability in the amount 

of vestibule-ocular eye movement, were both integrated in the model, without deviating 

from an accurate gaze-shift or diverging from the spatial constraint.  

An accurate shift of eye orientation in space (gaze) towards the target is the main purpose 

of the gaze-shift machinery. This movement is trivially equal to the retinal error, for head-

fixed saccades, if and only if the eyes are initially at the Listing’s plane (Crawford and 

Guitton, 1997c, Klier and Crawford, 1998). For all other saccades, a nonlinear 

transformation of the retinal error is required, which depends on the initial eye and head 
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orientations. Failure to account for this mapping results in saccade errors that increase with 

the length of the retinal error. Our model does not produce such errors, and generates 

accurate gaze-shifts starting from any eye and head orientations. This is accomplished by 

systematically planned sequences of reference frame transformations between eye, head 

and shoulder-centered coordinates.  

Spatial constraints on the orientations are of utmost importance to solve the gaze-shift 

problem. It has been behaviorally observed, in 3D head-fixed and head-free tasks (Glenn 

and Vilis, 1992, Crawford et al., 1999b), that eye, head and gaze orientations obey different 

forms of Donders’ law. Eye orientation relative to head, at the end of gaze-shift, has zero 

torsional component in Euler’s system (Listing’s law). Head orientation relative to 

shoulders has zero torsion in Fick system (Fick constraint). Gaze orientation also adheres 

to a form of Fick-like rule. Our model directly formulates and applies the Listing’s and 

Fick’s laws on the eye and head, and shows that the Fick-like pattern shown for final gaze 

distributions emerge from the constraints on eye and head.   

The next concern is whether or not the spatial constraints are obeyed during the temporal 

course of the gaze-shift. For head-fixed saccades, the Listing’s law is generally believed to 

be obeyed (Ferman et al., 1987b, Tweed and Vilis, 1990) during the saccade, except for 

small torsional blips near the end of the trajectory. However, during head-free gaze-shifts, 

eye trajectories become much more complicated, as saccade should be coordinated with 

VOR, which does not obey the Listing’s law (Crawford and Vilis, 1991, Klier et al., 2003). 

Likewise, the head deviates from the Fick range during the gaze-shift (Crawford et al., 

1999b). Our model provides clear predictions for the eye, head, and gaze trajectories in 3D 

space, during time. Specifically, eye-in-head starts and ends the gaze-shift in the Listing’s 

plane (LP), but deviates from LP during the gaze-shift. The starting saccade moves the eye 

out of the LP, while the following VOR brings the eye back to LP. The head’s Fick 

constraint is also only applied at its initial and final orientations. The head takes the shortest 

path between these positions, hence violating the Fick law during the gaze-shift. Gaze 

trajectory, again, is not explicitly controlled, and rather is emerged from the eye and head 

trajectories. Gaze also deviates from its stable, quasi-Fick range during the gaze-shift.  
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5.4  Implications for a Complete, Multisensory Cognitive-Motor System 

5.4.1 A single program of gaze-shift control, encoded in prefrontal cortex 

Prefrontal cortex, at the highest level of the executive hierarchy, is involved in representing 

complex programs of action (Quintana and Fuster, 1999). Such programs consist of 

integration of multiple actions and perceptions across time, in order to achieve a goal 

(Petrides et al., 2012). Lesioning of prefrontal cortex causes deficits in learning to formalize 

action plans, by temporal integration of sensory and motor information. We would like to 

think of our models as parts of such a complex program of actions. While its realizing 

network is distributed across the cortex and subcortex, we would like to think of it as coded 

as a whole in prefrontal cortex. Such a unified code will activate different parts of the 

network at the appropriate stages of the program.  

This is a program of planning a first reaction towards a possibly multimodal object in the 

environment. Its first element is to make the perceptual choice of whether or not the 

received cross-modal signals originate from a common source. This is done by constructing 

a spatiotemporal similarity measure and comparing it to the reliabilities of the unimodal 

estimates of position. The second element is to decide when to implement a gaze-shift 

based on the inferred cause. This is done by constructing a measure of confidence and 

applying a threshold on it. The third element is to move the eyes and head in a coordinated 

fashion spatiotemporally. This is done automatically in brainstem gaze centers.  

A very important point is that an adult human develops a large number of such programs. 

During a real-life situation, an individual chooses one program among many. This choice 

is made based on the context of the situation, the type of environment, and the alertness or 

emotional state of the individual, among others. The program represented by our model 

may be used when you know multimodal information is available about the objects in the 

environment, and it is better to react only after you have an idea about the nature of the 

object. However, in similar situations, one may choose to react based on some other 

program of action, e.g. reacting immediately to the first stimulus appearing.     
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5.4.2 Attentional control and realization of working memory 

Attention is an essential and inherent component of any cortical neural processing (Neisser, 

1976). Every associative network of neural populations, representing and processing 

sensory or motor information, has as its core, the capabilities and connections to both exert 

attentional control and accept it. There is no evidence of a separate structure in the brain 

dedicated to attention as an independent function. Attention is the selective activation / 

deactivation of perceptual and motor networks, in a timely fashion, by some other strongly 

activated network, to serve the purpose of that network. When a program is executed 

through time, various elements of the program send attentional control signals to specific 

neural populations, to retain their represented signal, or process it in some special manner, 

through the time of the execution of the program (Fuster, 2005). What we call working 

memory refers to this attentional control process. The essential properties of working 

memory are those of a perceptual or executive memory, which is held active, in the focus 

of attention, as required by information processing underlying the prospective action. 

We explained how we could think of the model as being coded as a unique program in 

prefrontal cortex. This program commands execution of different actions during time. 

When each element of this program is executed, a specific part of the network is chosen 

(attentional control) to remain active and process the corresponding information (working 

memory). The multisensory, short-term memory structure gets opened by the program, at 

first, to be updated by sensory information and to retain those signals. It then gets closed 

when the winning plan is sent to brainstem to drive a gaze-shift. This attentional control is 

applied by changing the controllable leak of this integrator. The same type of top-down 

attentional control is applied on the integrators that compute the spatiotemporal similarity 

and accumulative confidence measures. The neurons in these networks show sustained 

activity, similar to the signature of working memory neurons, during implementation of 

such programs. There are also more automatic attentional control in lower level of this 

program’s network, an example of which is the automatic switch from “updating by the 

input” mode to “retaining the current content” mode in the short-term memory, based on 

availability of input.  
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5.5 Implications for Neurophysiology of Multisensory Processing 

Both the causal inference and reaction time parts of the model were designed based on the 

known neurophysiology about multisensory integration, working memory, decision 

making, gaze-shift planning and action selection. The form in which this models are 

presented is a network of parallel processing units, whose states temporally change, similar 

to the structure of the brain. So this model of gaze-shift planning towards cross-modal 

stimuli can potentially be used to simulate spiking neural networks (Eliasmith et al., 2012) 

and then be compared to neurophysiological findings. Here we explain a number of 

instances where our models have directly realized neurophysiological findings. 

 

5.5.1 Different levels of decision making realized in frontal cortex 

We introduced three different alternative plans and three levels of decision making. The 

three alternative plans realize the three possible causal structures that may govern the shift 

of attention, and the reorientation of the line of sight. The three levels of decision making 

include: 1) A plan level where all the possible plans are represented. The plans that should 

not be considered in an instance of the task (a trial), based on the sensory context, are 

inhibited out of the decision making process. For example, when only visual signal is 

presented, the auditory and audiovisual plans are inhibited, the visual plan is the only viable 

one. 2) An execution level where the winning plan is disinhibited, while the other 

alternatives are kept under inhibition. This selective inhibition is controlled by a central 

decision variable that receives the bids of all viable plans and make a decision accordingly. 

3) A timing level that determines when to execute the winning plan, by sending it to 

subcortical oculomotor machinery.  

The frontal cortex includes multiple layers of neural populations with laminar 

organizations that are in-register representationally in each single area (Jones et al., 1977, 

Canteras et al., 1990, Berendse et al., 1992, Yeterian and Pandya, 1994, Levesque et al., 

1996). Accordingly, the multiple alternative plans, at all the different levels of decision 

making, may be considered to exist in the columnar laminar structure of a single frontal 

area. We may choose that single frontal area to be the frontal eye fields (FEF), as it is 

shown to be involved in oculomotor control (Sommer and Wurtz, 2000, Wurtz et al., 2001). 
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A neural implementation of our model proposes that FEF represents all possible plans to 

guide the saccade, constructed through cognitive processing in frontal cortex, and SC 

represents confidence and motor maps of space at the output. FEF can possibly send any 

of these plans to SC for execution of a saccade. Multisensory effects in SC, then, should 

be interpreted as emergent property of cognitive processing in higher cortical areas 

reflected in plan representations in FEF. This is in line with the observation that in the lack 

of cortico-collicular inputs, SC neurons are incapable of integrating cross-modal signals 

and producing the unique response patterns (Wallace et al., 1993, Jiang et al., 2001, 

Alvarado et al., 2007). 

5.5.2 Cortical and collicular connections of basal ganglia  

A necessary feature of a neural population to qualify as a plan representation is that it can 

be selectively included in or suppressed from the cognitive processing. FEF neural 

populations are valid candidates in this respect as well, as their reciprocal connections with 

the basal ganglia imply (Stanton et al., 1988, Lynch et al., 1994). The implementation of a 

decision result can then be thought to be realized in multiple BG circuitries work in parallel 

(Alexander and Crutcher, 1990, Middleton and Strick, 2000). It may be proposed that, for 

each BG circuitry, a population of medium spiny neurons (SPN), in rostral striatum, 

represents the result of the decision, received from cortex. Another population of 

GABAergic neurons, in substantia nigra par reticulate (SNr), implements the decision 

result by selective disinhibition of the corresponding plan representations (Handel and 

Glimcher, 2000, Bayer et al., 2004). Such a model may recruit two such striato-cortical 

circuitries, for the implementing the first two levels of decision making. One loop may be 

recruited for selecting the viable plans based on the sensory context. Another loop may be 

recruited for selecting the winning causal structure based on the spatiotemporal similarity 

and the reliability of the unimodal signals.  

The burst of activity in BNs of SC is dependent on a reduction of tonic inhibition in this 

layer. This tonic inhibition is thought to be majorly originated from the SNr (Hikosaka and 

Wurtz, 1985b, a, Liu and Basso, 2008). The reduction in the SNr’s tonic inhibition seems 

to open a gate, allowing a gaze-shift plan to be communicated within SC. A neural 

implementation of our model may use this mechanism to guide the timing of the gaze-shift. 
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A SC-BG-SC loop may be proposed. The BuNs may be suggested to construct a confidence 

map of space. The confidence on the execution of a gaze-shift, based on the spatial position 

encoded, may control a GO signal that commands the BG part of the loop to stop inhibiting 

the BNs. Whenever this confidence ramps up above a threshold, the BNs get released out 

of BG’s inhibition, and the spatial code is sent to brainstem to guide a gaze-shift. 

5.6 Practical Implications 

The kinematic part of the model proposes a strategy that may be used by the brain to 

coordinate oculomotor, vestibular, and head movement systems. There are a lot of patients 

who suffer from neck injuries, e.g. whiplash, and have problem moving their heads. Others 

suffer from vestibular problems like dizziness, vertigo, and lightheadedness. Our model 

can be used to design the internal dynamics of a training program with the goal of 

rehabilitation of such problems. Such training programs could, for example, be 

implemented in a game-like environment in virtual reality.  

On one hand, as mentioned earlier in section 5.5, our model’s action selection part may be 

neurally implemented by a model of cortico-striatal connectivity. On the other hand, 

Parkinson’s disease has been shown to be caused by lesions or degenerations in basal 

ganglia neurons. A distributed neural network of BG and its projections, based on our 

model, may help identify neurophysiological mechanisms causing Parkinson. Also, 

training programs could be designed, whose internal dynamics are designed according to 

our model, and is used to treat Parkinson, or at least alleviate its symptoms.  

A major challenge in robotics, and artificial intelligence in general, is their lack of ability 

to robustly interact with uncertain, changing environment. One approach to solve this 

problem is to develop AI algorithms whose governing equations account for temporal 

variabilities of their input signals and output systems. In such systems, reasoning, inference 

and decision making are processes whose results may change by time as signals temporally 

evolve. These systems account for taking different courses of action if the result of 

cognition changes over time. Our model is an example of such models and may be used to 

improve the AI systems in various industries.  
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5.7 Concluding Remarks 

5.7.1 Conclusions  

Shifting the line of sight is the major mechanism for changing the focus of attention and, 

consequently, updating the visual perception of the world. Such gaze-shifts may be 

governed by various mechanisms, e.g. the reaction to sensory perception of a stimulus in 

the environment, the need to update the memory of the environment, or cognitive 

computations based on both sensory perception and memory. One such gaze-driving 

mechanism was developed in this thesis for situations when sensory information from 

multiple modalities are presented, and the subject needs to make the most accurate gaze-

shift towards the most reliable source of information. We attempted to understand how the 

brain plans such a gaze-shift. We proposed three parts of a unique executive program 

underlying this gaze-shift planning: 1) a causal inference part for identifying whether or 

not the signals originate from the same or different sources, 2) a timing part for determining 

when to implement the gaze-shift, 3) a kinematic part for coordinating eye and head 

movement in time and space to shift the gaze orientation. 

In conclusion, the variabilities in the report of sameness, as functions of the spatiotemporal 

configuration of the cross-modal stimuli, result from inference of various causal structures 

as the source(s) of the received signals. The variabilities in the gaze-shift reaction times, as 

functions of the spatial temporal and reliability features of the stimuli, result from the 

relative confidence on the previous spatial, causal inference. The variabilities in eye-head 

contributions to gaze-shift and the paths they take result from the initial orientations eye 

and head, and also the spatial constraints applied on the stable orientations of eye and head. 

The final orientations and the trajectories of gaze (eye-in-space) emerge from the strategies 

and constraints of head-on-shoulder and eye-in-head movements.   

5.7.2 Future Directions 

A neural implementation of our model might shed light on the mechanisms underlying the 

multisensory behavior of the neurons in the superior colliculus (SC) (Stein and Stanford, 

2008). This might explain the spatiotemporal principles, inverse effectiveness, and 

unisensory behavior of SC neurons within a framework that also explains causal inference 

and decision making in a multisensory task. This is achieved by associating the unit WIN 
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in the model to the population of saccade-related build-up neurons (BuNs), and the unit 

GOAL to the population of saccade-related burst neurons (BN).  

The fundamental evidence that shaped neurophysiological multisensory research was about 

multimodal neurons in SC. They respond to cross-modal stimuli, aligned in time and space, 

with a significant enhancement of firing rate compared to their response to the more 

effective of the unisensory stimuli (Meredith and Stein, 1983, Stein et al., 1993). However, 

when the stimuli are presented far from each other in space or time, SC neurons show either 

no change or a response depression (Meredith and Stein, 1986, Frens et al., 1995). Also, 

the highest gain of multisensory enhancement occurs when the intensities of individual 

stimuli are weak. As these intensities increase the relative gain of enhancement decreases 

(Meredith et al., 1987, Stein and Stanford, 2008). 

These findings are in direct agreement with our produced simulations of the behaviors of 

the units WIN and GOAL in similar tasks, and their implications about reaction times. A 

neural implementation of our model may explain these experimental trends by the 

reduction of the confidence in cortex about the notion that the stimuli come from one same 

source, when the spatial or temporal misalignments, or the intensities of the stimuli, 

increase. This can be understood by the slower build-up of activity in BuNs (representing 

the unit WIN), and later burst of activity in BNs (representing the unit GOAL), when the 

spatial or temporal distances or the intensities of the stimuli increase. 
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