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Abstract 

Recent research suggests that the specificity and precision in long-term declarative memory 

depend on pattern separation. Subfields within the mammalian hippocampus have been shown to 

mediate this neurobiological process, particularly the dentate gyrus (DG). This subfield interacts 

with other parts of the medial temporal lobe and neocortex to differentiate highly similar details 

belonging to separate, yet overlapping, events into discrete episodes at encoding. In humans, the 

brain-behavior correlates of pattern separation have been explored in modified associative 

memory tests, which tax the mnemonic discrimination of previously learned images of everyday 

objects from visually similar lures. Older individuals with reduced hippocampal volumes and 

patients with hippocampal lesions are impaired relative to controls on these tests. Based on this 

evidence, researchers have concluded that visual mnemonic discrimination tests are functionally 

sensitive to the process of hippocampal pattern separation. This assertion may be premature. 

Despite the preponderance of studies of visual pattern separation over the past 15 years, little is 

known about whether hippocampal pattern separation works 1) in other modalities or cognitive 

domains; 2) through interacting with prior knowledge or pre-experimentally novel information, 

and 3) in concert with activities of perceptual categorization. The present research addresses 

these issues. In Study 1, I examine whether presumed deficits in pattern separation apply to 

perception as they do to memory and are evident, even within vision, for stimuli such as faces, 

which presumably do not crucially depend on the hippocampus. In Study 2, I pursue whether 

pattern separation extends to modalities other than vision, notably audition. In Study 3, I aim to 

quantify the impact of prior knowledge on pattern separation and whether discrimination of 

abstract inputs can be measured at encoding and retrieval. Three groups of participants were 

tested throughout these studies: young adults, middle-older adults, and older adults. In addition, a 

rare individual with focal hippocampal lesions to his DG helped to contextualize hippocampal 
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involvement in Studies 1 and 2. The research I conducted on memory and perception combines 

novel behavioral paradigms and electrophysiological (EEG) techniques sensitive to the temporal 

dynamics involved in oddity detection to understand better the nature, extent, and brain 

dynamics of deficient pattern separation. The data analyzed allowed me to make inferences about 

the nature, scope, and brain dynamics of pattern separation in younger, middle-older, and older 

adults and in a hippocampal patient. The research addresses unanswered questions about pattern 

separation and the role of the hippocampus in learning and memory across other processing 

domains, modalities and involving different types of stimuli. As our population ages, so will the 

number of individuals who will suffer age-related cognitive impairment. One of the most 

common among them is a decline or loss of episodic memory, characterized by an inability to 

recall past personal experiences in detail, specificity, and precision. Similar losses of detail, 

specificity, and accuracy are observed in perception. Knowledge gained from this research helps 

to inform the development of tools for clinical assessment and intervention. 
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Chapter 1  
 

 General Introduction 

1.1 The mnemonic function of pattern separation 

The past 65 years have witnessed the accumulation of an impressive body of evidence that the 

hippocampus supports memory for experiences that are unique to time and place (Eichenbaum, 

2004; Moscovitch, 1992; Rosenbaum et al., 2008; Scoville & Milner, 1957; Vargha-Khadem et 

al., 1997). This reexperiencing is known as episodic memory, or declarative memory for 

personally experienced events defined by their spatiotemporal context and recollection processes 

(Tulving, 2002a, 1983). It is an impressive ability, considering humans’ potential to experience 

and maintain representations of thousands of unique items daily, even in response to a single 

exposure (Brady et al., 2008; Sherry & Schacter, 1987; Standing, 1973). Essential to the ability 

to encode so many events is the brain’s capacity to distinguish the minutiae that particularize 

highly similar memories. This function is thought to rely on pattern separation.  

Pattern separation is a neurobiological process through which the hippocampus, a structure 

within the human medial temporal lobe (MTL), differentiates elements belonging to separate, yet 

potentially overlapping, events into discrete neural codes (Marr, 1971; Norman & O’Reilly, 

2003; O’Reilly & McClelland, 1994; Treves & Rolls, 1994). Classical theories of the neural 

connectivity responsible for pattern separation have focused on four areas of the human 

hippocampal formation: 1) the entorhinal cortex; 2) the dentate gyrus (DG); 3) the CA3 subfield; 

and the CA1 subfield. See Figure 1-1 (Duvernoy, 2005) for an illustration of the hippocampus 

proper (the cornu ammonis) — or the CA1, CA2, CA3, and CA4 subfields — the DG and the 

subiculum. The interconnectivity among and between the entorhinal cortex and the DG, CA3, 

and CA1, also known as the trisynaptic circuit or loop (Blumenfeld, 2010), is key to our 

understanding of pattern separation (Hainmueller & Bartos, 2020). Pattern completion, 

sometimes thought of as the flip side to pattern separation, is the reinstatement of memories from 

partial cues facilitated by the recurrent collaterals or neurons synapsing upon neurons within the 

CA3 (Treves & Rolls, 1994).  
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The rise of the classical concepts of pattern separation paralleled advancements in the 

neuroanatomical knowledge of the MTL. Schematic diagrams of the rodent and monkey MTL 

(e.g., Amaral, 1993; Amaral et al., 1990; Amaral & Witter, 1989; Suzuki & Amaral, 1990; 

Witter & Amaral, 1991) influenced models of human hippocampal function and information 

processing. As the abstract to one paper began: “Anatomists involved with studies of the 

hippocampal formation are being prodded by computational modelers and physiologists who 

demand detailed and quantitative information concerning hippocampal neurons and circuits” 

(Amaral et al., 1990). Among the neurons and circuits of most interest were those which flowed 

from the entorhinal cortex (EC) via the perforant pathway through the subiculum to the DG and 

from the DG via the mossy pathway to the CA3 (Amaral, 1993; Lynch et al., 1976). Lesser-

studied projections also travel from the EC to the CA1 and CA3 (Blumenfeld, 2010; Rolls, 2016; 

Witter & Amaral, 1991). Furthermore, and essential to our understanding of pattern separation, 

the pyramidal cells of the CA3 receive inputs from the DG via the unmyelinated axons of the 

mossy fiber pathway (O’Reilly & McClelland, 1994). CA3 neurons project onto the CA1, and 

from there feedforward to the EC; CA3 neurons synapse onto other CA3 cell bodies through 

recurrent collaterals. This “EC → DG → CA3 [↔ CA3] → CA1 → EC” network is what is 

known as the trisynaptic circuit or loop (Blumenfeld, 2010). 

The EC’s projections onto the rat hippocampus had been detailed in anatomical papers for 

several decades (Blackstad, 1958; Hjorth-Simonsen, 1972; Steward, 1976; Witter et al., 1988), 

by the time computational modelers of pattern separation had begun to publish their work. See 

Figure 1-2. However, the entorhinal cortex had not yet achieved its status as it is today of being 

the primary gateway from the neocortex to the human hippocampus in the service of memory 

(Norman et al., 2008). Neuroanatomical data was emerging, however, that some sort of 

processing and segregation was happening to information as it flowed from the entorhinal cortex 

throughout the hippocampal regions (Amaral, 1993; Amaral & Witter, 1989).  

Cognitive scientists who reviewed these and other papers and prodded their authors were 

becoming aware of the evidence that integrative, higher-order association areas of the brain (e.g., 

frontal, temporal, and lobes) channeled information to the EC in humans and from there to the 

hippocampus  (e.g., Squire et al., 1989). That left them to work in the tradition of the “Hebb-

Marr” model (e.g., McNaughton & Morris, 1987) with the goal to “provide a framework for 
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associating functional properties of memory with the mechanisms of pattern separation, learning 

(synaptic modification), and pattern completion” (O’Reilly & McClelland, 1994).  

 

Figure 1-1. The human hippocampal formation 

Adapted from The Human Hippocampus (3rd ed.), H. Duvernoy, et al., p. 20. 

Consensus was reached that as sensory information flowed throughout the DG, it became more 

widely distributed across a broader field of neurons. From there, it was projected onto the CA3, 

where through this subfield’s recurrent collateral activity, sparsely encoded memories could be 

reinstated by a single component part of their representation. Others noted how CA3 neurons 

project onto the CA1 and feedforward to the EC and back to the higher-order association cortices 

of the brain. The result was that sensory information in higher-order areas of the brain that 

arrived at the EC and flowed through the hippocampus was changed. Experiences became more 

complex and mnemonically sparse. Thus, the classical model on pattern separation was born, 

without one human experiment on the theory being conducted. See Figure 1-3. 

Pattern separation fit well with the evolution of ideas about episodic memory, particularly the 

concept that humans rely on the hippocampus to bind together details about specific experiences. 

These make an episode unique and aid in its recollection (Kirwan & Stark, 2007; Kumaran et al., 

CA1 

CA2 

CA3 

SRLM 

DG + CA4 

Subiculum 
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2016; Tulving, 2002b). Pattern separation is what helps us make these learned episodes more 

distinguishable or more orthogonal in representation. Pattern completion allows us to auto-

associate an experience from one element of its input pattern. 

 

Figure 1-2. The rat hippocampal formation 

Reprinted from Amaral and Witter (1989), with permission from Elsevier. Abbreviations: DG 

(dentate gyrus); mf (mossy fibers); pp (perforant path); SC (Schaffer collaterals). 

A typical example used to illustrate pattern separation, dating back to at least the early 1990s 

(e.g., O’Reilly & McClelland, 1994), is that pattern separation helps us distinguish where we 

parked our car from one day to the next (e.g., Schapiro et al., 2017). I will instead use an 

example from Penny Lanes, not parking lots. Earlier this month, I overheard a radio host talking 

about an English musician whose illustrious career was overshadowed by playing the piccolo 

trumpet solo in Penny Lane. That got me wondering whether anyone has recently covered the 

Beatles song and how they would recreate that signature solo. I then discovered a marvelous 

performance of Elvis Costello performing in the East Room of the White House in 2010. The 
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guest of honour was Paul McCartney, who was being celebrated for receiving the Library of 

Congress Gershwin Prize for Popular Song. A stellar crowd, including President Barack Obama 

and Paul McCartney, were poised in the front row. The trumpet solo (piccolo trumpet solo) was 

played by a stalwart master sergeant from “The President’s Own” United States Marine Band (as 

Elvis Costello elatedly announced to much applause). Having started on this journey, I searched 

for more Penny Lanes and found James Corden’s Carpool Karaoke with the famous Beatle riding 

shotgun. They drove through Liverpool lanes, all the while carpool karaoke-ing Fab Four hits. 

Paul got out of the van and signed his name to the famous sign at the top of Penny Lane. They 

visited the barbershop where the barber (a woman now) still shows photographs on the wall.  

Suppose anyone mentions Penny Lane, piccolo trumpets, Carpool Karaoke or Elvis Costello, or 

barbers showing photographs. In that case, I have a dozen or so ways to complete my memories 

of that 30 minutes, or so I went down a Penny Lane roundabout. That recollection might be 

about my episodic memory of the White House performance or the carpool singalong with Sir 

Paul. These memories are intertwined, but through pattern separation, their elements are 

distinctive. So, I don’t remember James Corden sitting in the audience between Michelle Obama 

and Paul McCartney. Nor do I place a member of the marine guard marching along a Liverpool 

street while Elvis Costello barks about a fireman’s clean machine. Pattern separation and pattern 

completion make all my Penny Lanes — in my ears and in my eyes — shiny and wet beneath my 

own blue suburban sky. 

1.2 Evidence hippocampus is specialized for pattern separation 

Despite pattern separation fitting nicely into broader theories of episodic memory and the 

hippocampus, it is a relatively new arrival to the field of memory research. Twenty-five years 

ago, one would not have a found typical and atypical pattern separation being the subject of a 

Ph.D. dissertation. If deficiencies were found with the brain’s ability to keep memories unique, 

they likely would have been attributed to more general aspects of faulty memory, such as 

confabulation (Kopelman, 1987). Alternately, an inability to pattern separate might be 

considered a side effect of neurodegenerative processes that affect the delayed recall of memory 

more broadly, such as a symptom of Alzheimer’s disease (Locascio et al., 1995). Then, it is not 

surprising that the turn of the century authoritative Oxford Handbook of Memory (Tulving & 
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Craik, 2000) makes no mention of pattern separation (never mind its typicality or atypicality) 

anywhere within the 700 pages between its covers.  

 

Figure 1-3. The neural architecture of pattern separation and pattern completion 

Left: forward and back projections in the entorhinal cortex and hippocampal formation. Right: 

Detailed representation of excitatory neurons within the trisynaptic circuit. Figure reprinted from 

Neurobiology of Learning and Memory, 129, Edmund T. Rolls, Pattern separation, completion, 

and categorisation in the hippocampus and neocortex, 4–28, Copyright (2016), with permission 

from Elsevier. Figure Abbreviations. “D: Deep pyramidal cells. DG: Dentate Granule cells. F: 

Forward inputs to areas of the association cortex from preceding cortical areas in the hierarchy. 

mf: mossy fibers. PHG: parahippocampal gyrus and perirhinal cortex. pp: perforant path. rc: 

recurrent collateral of the CA3 hippocampal pyramidal cells. S: Superficial pyramidal cells. 2: 

pyramidal cells in layer 2 of the entorhinal cortex. 3: pyramidal cells in layer 3 of the entorhinal 

cortex. The thick lines above the cell bodies represent the dendrites.” (Rolls, 2016, p. 6). 
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1.2.1 Animal studies 

The first experimental evidence supporting computational models of pattern separation was 

found not in humans but in animal studies (Hunsaker & Kesner, 2013; J. Leutgeb et al., 2005, 

2007; S. Leutgeb et al., 2004). A common approach involved investigators training rodents on 

particular environments and then probing the rats’ ability to discriminate between modified 

versions of previously learned spatial/temporal events. Using this paradigm, Leutgeb et al. 

(2007) found that subtle changes to a rat’s environment alter place-modulated cells in the DG. 

When the scene was made even more different, the CA3 subfield, but not the DG, became active 

(J. Leutgeb et al., 2007). Other studies used rodents with lesions to regions-of-interest. Ahn & 

Lee (2014) found that rats with damage to their hippocampal formation could reach performance 

similar to controls on a visual pattern-scene learning task. However, when the patterns in the 

scenes were made ambiguous — for example, a striped pattern changing direction — the 

lesioned rats were significantly impaired at identifying the lures. As theorized from 

computational models, the conclusion here was that the DG is critical in discriminating between 

similar past events, even when using nonspatial stimuli (Ahn & Lee, 2014).  

1.2.2 Human behavioral testing 

The initial human study of “behavioral pattern separation” arrived in 2007 (Kirwan & Stark, 

2007). This study operationalized pattern separation as the ability to detect highly similar 

pictures in a continuous recognition memory paradigm. In the first of two experiments, young 

adults underwent fMRI testing while being presented with nameable visual objects (e.g., a rubber 

duck, a wheelbarrow). In the second experiment, faces were used as the test stimuli. Participants 

in both experiments were taxed on their ability to discriminate previously seen items (targets) 

from highly similar items (lures) or different items (foils). The investigators predicted the ability 

to identify the lures both as new and as similar depended on “adequate representation of 

differences between the stimuli, which is the definition of computational pattern separation” 

(Kirwan & Stark, 2007, p. 626). They found that participants were accurate at identifying visual 

object targets and foils as new and old. However, participants were relatively weak at identifying 

the pictures as similar (54.49% accurate), incorrectly calling them old 33.61% of the time 

(Kirwan & Stark, 2007). Neuroimaging results were unable to pinpoint activity in hippocampal 

subregions (e.g., DG/CA3). However, the authors observed signals in the hippocampus that they 

speculated corresponded with lure discrimination (Kirwan & Stark, 2007). 
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The Kirwan and Stark study set the template for most behavioral testing of pattern separation 

from 2007 to the present. The visual object-based paradigm they used was further developed and 

refined, eventually being reintroduced as the Behavioral Pattern Separation Task — Object 

Version (BPS-O; Stark et al., 2013), later renamed the Mnemonic Similarity Task (MST; Stark et 

al., 2015). The MST is available as a free, downloadable Windows-based program. The use of 

the MST in hundreds of studies has informed much of what we know about human behavioral 

pattern separation over the past decade. In addition, the MST’s value as a computerized cognitive 

screening tool for neurodegenerative pathologies such as Alzheimer’s disease is a promising area 

of study (Papp et al., 2021; Stark et al., 2019).  

One of the key ways the MST has helped broaden our knowledge of the relationship between the 

hippocampus and pattern separation is through pitting young versus old/patients versus control in 

tests of mnemonic discrimination. For example, older individuals with reduced hippocampal 

volumes, as well as patients with hippocampal lesions, are impaired relative to younger adults (or 

age-matched controls) on the MST (Baker et al., 2016; Bakker et al., 2008b; Bennett et al., 2019; 

Doxey & Kirwan, 2015; Nauer et al., 2020; Riphagen et al., 2020). Based on this evidence, 

researchers have concluded that the MST and other visual lure discrimination (or mnemonic 

discrimination) tests are functionally sensitive to hippocampal pattern separation (Kirwan & 

Stark, 2007; Stark et al., 2013, 2019; Stark & Stark, 2017).  

1.2.3 Human neuroimaging 

Exposing participants to visual lures during high-resolution functional magnetic resonance 

imaging (fMRI) has helped localize the neural correlations of pattern separation. Bakker et al. 

(2008) and Lacy et al. (2011) used 3 Tesla (T) fMRI to scan young adults. Bakker et al. found 

that the participants’ DG/CA3 was more active than other subregions of the hippocampus when 

presented with lure items. Lacy et al. (2011) reported that the DG/CA3 responds to incoming 

signals in a stepwise manner, where small changes in the input result in a marked shift in 

representation. In contrast, the CA1 subfield activity varied in a seemingly more graded increase 

in intensity depending on the relative similarity of the item presented and whether it was a first 

or second presentation (Lacy et al., 2011). Doxey and Kirwan (2015) discovered that precision in 

pattern separation in older and younger participants correlated with brain volumes in the left DG 

and CA3, more than it did in other areas of the MTL (Doxey & Kirwan, 2015). More recently, 
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ultra-high-resolution 7 T MRI and multivariate pattern analysis (Berron et al., 2016; Molitor et 

al., 2021) have provided a way to distinguish between brain signals localized to DG or CA3 

subfields. In a paradigm using a spatial scene-similarity task, it was found that the DG, more so 

than the neighbouring CA3, pattern separates representations of similar scenes (Berron et al., 

2016). 

Furthermore, broader, whole-brain neuroimaging has expanded our knowledge of neocortical 

areas, which may pattern separate in conjunction with hippocampal subregions (Nash et al., 

2021; Stevenson et al., 2020). Nash et al. found a concentration of hippocampal activity 

(localized to the subiculum) in an MST-based functional neuroimaging study of young adults. 

The exploratory analysis also revealed widespread brain activity, although no regions were found 

to indicate a pattern separation profile similar to that found in the hippocampus (Nash et al., 

2021). However, a connectivity analysis revealed significant pattern separation activation 

patterns between the left hippocampus and the dorsal medial prefrontal cortex (Nash et al., 

2021). 

1.2.4 Patient testing 

Detailed observations and descriptions of single cases of individuals with focal damage to 

specific hippocampal subfields are rare. That is likely because patients with memory 

impairments following hippocampal damage typically have lesions that cannot be localized to 

the DG/CA3. Indeed, their brain damage often extends beyond the MTL. Such widespread 

deficits make it difficult to localize pattern separation impairments to the human DG or CA3. 

Despite these qualifications, the few patient studies that have been published have provided 

intriguing results. For example, Kirwan et al. (2012) tested three hippocampal amnesic cases in a 

modified recognition memory paradigm (using images of objects or faces). As with healthy 

controls, the amnesiacs could identify targets and foils correctly; but unlike controls, they were 

impaired at recognizing lures. These findings were interpreted as a deficit in pattern separation 

due to hippocampal lesions, possibly due to a dysfunctional DG (Kirwan et al., 2012). 

Target and foil accuracy within normal limits of controls was also found in MST testing of 

patient BL (Baker et al., 2016). This patient stands out in the literature as being the only known 

case of suspected bilateral ischemic lesions thought to be limited to the DG of the hippocampus 

(Baker et al., 2016). BL’s accuracy for lure discrimination was severely impaired relative to 



10 

 

controls, supporting computational theories, animal studies and human neuroimaging. As BL is 

the focus of two studies described in this dissertation, I will expand more upon the presumed 

etiology of his behavioral pattern separation deficits in proceeding sections.  

1.3 Missing empirical evidence for pattern separation  

Based upon the evidence summarized above, researchers have concluded that visual mnemonic 

discrimination tests are functionally sensitive to the neurobiological process of hippocampal 

pattern separation (Baker et al., 2016; Kirwan & Stark, 2007; Stark et al., 2013, 2019). This 

assertion may be premature. Despite the preponderance of studies of pattern separation over the 

past 15 years, little is known about whether hippocampal pattern separation works 1) in other 

modalities or cognitive domains; 2) through interacting with prior knowledge or pre-

experimentally novel information; and, 3) in concert with nonmnemonic perceptual activities. 

My research systematically examines these gaps in our understanding of pattern separation as a 

hippocampally dependent episodic memory process. 

1.3.1 Pattern separation in non-visual domains 

In theory, pattern separation “expansion recoding” (Knierim & Neunuebel, 2016) can be 

performed across any sensory/perceptual domain (Hunsaker & Kesner, 2012; Kent et al., 2016). 

Despite the reliability and ubiquity of studies on behavioral discrimination of visual stimuli, 

investigators lack evidence to confirm whether pattern separation generalizes to other modalities 

(Liu et al., 2015). Our understanding of behavioral discrimination in humans also lags our 

broader knowledge of episodic recognition memory. For example, modality-specific differences 

are apparent when contrasting auditory and visual objects in recognition memory experiments 

(M. Cohen et al., 2009; Gloede et al., 2017), including those using naturalistic sounds (Bigelow 

& Poremba, 2014). Even within the visual modality, it is unclear if the hippocampus and its 

subfields have a bias towards discriminating specific perceptual inputs, particularly those which 

assist in spatial mapping (Gilbert et al., 2001; O’Reilly & Rudy, 2001) or respond to oddball 

visual stimuli (Barense et al., 2007, 2010). 

The dearth of evidence from outside the visual domain is particularly problematic for pattern 

separation theorists operating within the camp of complementary learning systems (CLS; 

McClelland et al., 1995; Norman & O’Reilly, 2003). They conceive the hippocampus as agnostic 



11 

 

to the modality of information processed when encoding similar memories (Huffman & Stark, 

2014; Larocque et al., 2013). With each representation in the hippocampus encoded distinctly, 

pattern separation and pattern completion would facilitate learning and memory across multiple 

perceptual domains (Huffman & Stark, 2014; Hunsaker & Kesner, 2013; O’Reilly & 

McClelland, 1994).  

1.3.2 Pattern separation of non-semantically familiar stimuli 

Just as we know relatively little about behavioral pattern separation outside of the visual domain, 

we also have a limited understanding of how pattern separation operates upon stimuli with no 

pre-experimental familiarity. The use of visual stimuli with pre-experimental associations — for 

example, stimuli that can be semantically identified (e.g., a tricycle) — could point to other 

confounds: that is, whether the conceptual knowledge of the item leads participants to produce a 

linguistic semantic association when mentally processing the object (e.g., “tricycle”), or an 

episodic autobiographical association (e.g., “that looks like the trike I received for my fourth 

birthday”). This conscious elaboration facilitated by these semantic or episodic conceptual “tags” 

may influence pattern separation/pattern completion and compromise the experimental paradigm 

(Hunsaker & Kesner, 2013; Liu et al., 2015). Alternately, some stimuli may evoke domain-

specific semantic processing in the neocortex or other areas upstream of the hippocampus 

(Hunsaker & Kesner, 2013; Kent et al., 2016).  

1.3.3 Extra-hippocampal perceptual and cognitive relationships 

Kent and colleagues (2016) described five “surprising hypotheses” of how pattern separation is 

incorporated with other brain activities. Number one on their list was the hypothesis that pattern 

separation may not be limited to the DG and that it is “fundamental to many aspects of cognition, 

including perception; it is not just for memory” (Kent et al., 2016, p. 2). Tentative support for 

this speculation on the perceptual side comes from recent findings that older adults’ performance 

on the MST is significantly and positively correlated with their visual acuity (Davidson et al., 

2019). Early support for Kent et al.’s assertion on the cognitive side is evidence that MST 

accuracy correlates with general cognitive abilities, not necessarily with long-term memory 

(Foster & Giovanello, 2020; Pishdadian et al., 2020). Furthermore, a high-resolution whole-brain 

investigation of young adults completing the MST showed that the task involves areas of the 
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hippocampus and a network of brain regions outside of the MTL, including the dorsal medial 

prefrontal cortex (Nash et al., 2021).  

1.4 Rationale for present studies 

We must investigate the gaps in our understanding of how pattern separation works in domains 

other than visual object perception and in concert with perceptual activities. These insights will 

help clinicians better construct and administer pattern separation tests as neuropsychological 

indicators of hippocampal integrity (Stark et al., 2019). Filling these gaps will also help us better 

understand the extent of hippocampal processing of highly similar inputs to building a unifying 

theory of hippocampal-neocortical interactions (Kent et al., 2016). Furthermore, given the 

critical role ascribed to pattern separation for episodic memory, it is crucial to determine whether 

pattern separation effects can be detected through visual lure discrimination in memory and other 

tests requiring fine mnemonic and perceptual discrimination. A key question here is whether 

these effects are related to performance on other tests of episodic memory that decline with age 

and in hippocampal patients whose deficits resemble age-related disorders. 

Pursuing answers to these questions is at the heart of this dissertation. The proposed research on 

memory and perception will combine novel behavioral paradigms and electrophysiological 

(EEG) techniques sensitive to the temporal dynamics involved in oddity detection to better 

understand the nature, extent, and brain dynamics of deficient pattern separation. Participants 

will include older and younger adults and a rare individual with lesions to his DG. The research 

will address unanswered questions about pattern separation and the hippocampus’s role in 

learning and memory across other processing domains, modalities and involving different types 

of stimuli. I will also investigate the question of whether pattern separation involves non-

mnemonic abilities and, if so, whether it interacts with other neural and cognitive processes such 

as categorical perception, visual perceptual memory, and predictive coding.  

1.5 Methodological approach 

1.5.1 Objectives and participants 

The research described in this work primarily aimed to determine if presumed deficits in pattern 

separation: a) apply to perception as they do to memory (Aim 1); b) extend to modalities other 

than vision, notably audition (Aim 2); and, c) interact with prior knowledge or can be detected 
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using abstract stimuli (Aim 3). In addition, three secondary aims were also intended for this 

work: whether presumed deficits in pattern separation a) are evident, even within vision, for 

stimuli such as faces, which presumably do not crucially depend on the hippocampus (Aim 4); b) 

can be measured at encoding, as well as during retrieval (Aim 5); and, c) are detectable in a 

patient with a hippocampal lesion (Aim 6). Three groups of participants were recruited: young 

adults (Experiment 2 and 3; age range: 18-29 years old); middle older adults (Experiment 1 and 

2; age range 48–66); older adults (Experiment 2; age range 67–93); and an individual with a 

hippocampal lesion (patient BL, Experiments 1 and 2). I expected performance related to pattern 

separation to be worse in both middle older and older adults than young adults and worse in a 

patient with a hippocampal lesion relative to controls.  

To address the aims described above, I ran three experiments. These experiments were 

comprised of novel and traditional pattern separation tests. The novel tests also assessed 

perceptual discrimination and categorization. The data I collected and analyzed allowed me to 

make inferences about the nature, extent, and brain dynamics of pattern separation in younger, 

middle older, and older adults and in a hippocampal patient. 

Healthy older and younger adults were recruited from York University, Baycrest Health Sciences 

(via an internal research participant database), and the community. Sample sizes were based on 

power analyses or sample sizes from previous studies. All non-student participants received 

monetary compensation for their participation. Student participants recruited via the York 

University Research Participant Pool received course credits. Informed consent was obtained in 

accordance with the ethics review boards at York University and Baycrest and conformed to the 

Canadian Tri-Council Research Ethics guidelines. 

Included in two of the three studies was patient BL, a male in his late 50s with 13 years of 

education. In 1985, BL was diagnosed with hypoxic-ischemic brain injury following an electrical 

injury and cardiac arrest (Kwan et al., 2015). Standard neuropsychological testing with BL has 

revealed mildly impaired anterograde memory and moderately impaired retrograde episodic 

memory. High-resolution 3T MRI scans of BL’s hippocampus have indicated that he has 

selective bilateral ischemic lesions limited to the DG and a portion of CA3, CA3 (See Figure 

1-4). Other regions implicated in pattern separation and pattern completion, including entorhinal 

and perirhinal cortices, appear unaffected. A 2016 study reported that BL has difficulty 
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distinguishing between studied targets and unstudied lures that are visually similar (Baker et al., 

2016). In addition, he displays a heightened tendency to recognize studied scenes from degraded 

pictures. Findings converge on evidence that volume loss within the DG/CA3 tracks the brain’s 

ability to pattern separate (Bennett et al., 2019; Chadwick et al., 2014; Doxey & Kirwan, 2015; 

Riphagen et al., 2020).  

1.5.2 Statistical analyses  

Statistical analyses were done using SPSS Version 28 or the Palamedes toolbox (Prins & 

Kingdom, 2018) for MATLAB. When necessary, I ran t-tests, Pearson correlations, and 

ANOVAs; multiple comparison corrections were applied using the Bonferroni or Games-Howell 

procedures (Field, 2018; Sauder & DeMars, 2019). Confidence intervals for correlations and 

paired-samples t-tests have been reported and interpreted according to accepted guidelines 

(Field, 2018; Howell, 2010), including using the bias-corrected accelerated (BCa) option in 

SPSS (Field, 2013). To better gauge recognition memory performance, the sensitivity measure d’ 

was calculated as the normalized difference between hits and false alarms (Macmillan & 

Creelman, 2005). Variations on d’ calculations have been described in specific studies. To ensure 

the reliability of findings in a single case, we compared BL’s performance to healthy controls 

using Crawford and Howell’s modified t-test for single cases (Crawford & Garthwaite, 2002).  

1.6 Overview of Studies 

1.6.1 Experiment 1: Does pattern separation mediate the interplay of 
memory and perception?  

Experiment 1 examines the extent to which lesions to the DG also affect categorizing and 

discriminating familiar and unfamiliar morphed faces. Recent evidence suggests that the ability 

to differentiate highly confusable faces could involve pattern separation, mediated by the DG. 

Hippocampal involvement, however, may depend on existing face memories (Hoover et al., 

2010). I tested patient BL and healthy controls in a categorical perception (CP) identification and 

discrimination experiment using images of famous and nonfamous faces to investigate these 

possibilities.  
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Figure 1-4. MRI scans of BL’s hippocampus revealing lesions to the dentate gyrus 

Notes. (A) Reference image, adapted from Duvernoy (2005), illustrates normal anatomy of the 

left hippocampus. The hippocampal strata (SRLM) lie along the interface between the dentate 

gyrus and CA1-CA3 subfields and subiculum. The SRLM is exposed as a band of hyperintensity 

on the inverted coronal T2-weighted hippocampal images as seen in B, and is a landmark to 

define the area of dentate gyrus. (B) The inverted T2 through the middle body of BL’s 

hippocampus shows a hypointense lesion (hyperintense in non-inverted T2) almost exclusively 

affecting dentate gyrus. (C) T2 of the sagittal view depicts the length of the hippocampal lesion, 

which extends across almost the entire dentate gyrus in both hemispheres (arrows). 
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1.6.2 Experiment 2: Are comparable deficits in pattern separation observed 
across vision and audition in young versus older participants and in 
patients versus healthy controls? 

Experiment 2 sheds light on the relatively unexplored aspect of human behavioral discrimination 

in the auditory domain. Modality differences in performance would suggest that vision has 

privileged access to pattern separation mechanisms. Variations in performance across the 

lifespan — as well as in patient BL — will implicate hippocampal involvement as, within the 

hippocampus proper, volume loss to the DG/CA3 subfields and connecting pathways are also 

associated with age-related functional declines (Small et al., 2002; Wu et al., 2008; Yassa, 

Mattfeld, et al., 2011). Furthermore, volume loss within the DG/CA3 tracks declines in the 

brain’s ability to pattern separate (Bennett et al., 2019; Chadwick et al., 2014; Doxey & Kirwan, 

2015; Riphagen et al., 2020).  

1.6.3 Experiment 3: Does auditory pattern separation rely on prior 
knowledge? 

In Experiment 3, I combine a behavioral paradigm with the brain’s perceptual discrimination 

index, known as “mismatch negativity” (MMN; Näätänen et al., 1978), to determine the neural 

substrates enabling pattern separation. Humans are very good at pattern separating or 

differentiating highly similar inputs belonging to separate yet overlapping events into discrete 

episodes at encoding. This process likely depends on our ability to encode similar sensory input 

into distinct memory representations automatically. MMN experiments with clinical populations 

provide some suggestions that the MMN response transcends its role as an index of perceptual 

discrimination and relates to higher-order cognitive processes, such as long-term memory (Alain 

et al., 1998; Baldeweg & Hirsch, 2015; Näätänen, 2019), although this has never been directly 

tested. In humans, behavioral pattern separation is classically illustrated by assessing 

participants’ ability to differentiate pre-experimentally known visual objects that were studied 

from those that were unstudied, some of which are visually and semantically similar to the 

studied items (Bakker et al., 2008b; Stark et al., 2015). Unclear is the extent to which mnemonic 

discrimination applies to the auditory domain or unknown abstract stimuli (Liu et al., 2015). 

 



17 

 

 

Chapter 2 , Study 1 
 

 The human dentate gyrus contributes to categorical 
face perception 

2.1 Preface 

For years, I have been intrigued by whether the hippocampus, independent of surrounding MTL 

areas, plays a role in face perception. The hippocampus has been ascribed a role in processing 

scenes; the extent to which its role applies to other stimuli, such as faces, is debated. Recent 

evidence suggests that the ability to differentiate highly confusable faces could involve pattern 

separation mediated by the hippocampus's DG subfield. Hippocampal involvement, however, 

may depend on existing face memories, which may or may not be dependent on this area of the 

MTL.  

To answer these questions, I set out to examine the status of categorical face perception in BL, a 

rare individual with selective lesions to the DG of his hippocampus and an established deficit in 

pattern separation. CP, which possesses research literature dating back to the 1950s, shares 

psychophysical properties with pattern separation. For example, both phenomena include the 

presumption of sparse and invariant coding and all-or-none thresholds that transform linear 

inputs into nonlinear representations. I was encouraged by the prospect that both pattern 

separation and CP could be combined in one experiment that could test the relationship between 

memory and perception. Furthermore, the use of faces, which can be morphed from one identity 

to another, allowed me to examine whether face perception depends on hippocampal integrity. 

At a time when scientific findings are under intense scrutiny and converging evidence vital, this 

lesion study set out to provide a direct test in humans of a specific role for the hippocampus that 

extends beyond memory to perception and beyond scenes to faces. This study, which I ran in 

collaboration with Dr. R. Shayna Rosenbaum, Dr. Morris Moscovitch, Yarden Levy, and Ariana 

Youm, provides an essential missing link in understanding the perceptual and mnemonic 

processes involved in face processing by the DG. 
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2.2 Introduction 

A morphed image of Vladimir Putin and Donald Trump on the cover of Time magazine (July 30, 

2018) appears to have equal parts Trump and Putin (Figure 2-1). By straddling an identification 

boundary between the two political figures, the illustration, created by artist Nancy Burson, 

achieves the publication’s editorial purpose. The unsettling ambiguity created by the hybrid 

image’s reduced discriminability also highlights a unique property of human perception and 

memory: our natural bent to a) generalize categorically, and b) differentiate perceptually between 

items that lie along a physical (sensory) continuum. This process is known as categorical 

perception (CP; Studdert-Kennedy et al., 1970). CP is clearly illustrated in our treatment of 

speech sounds, or colors in a rainbow, as discrete from one another, although they lie on 

uninterrupted continua of sound and light wavelengths, (Goldstone & Hendrickson, 2010). The 

tendency to categorize and differentiate endures even when a continuum is artificially created, as 

in the Putin-Trump mash-up (Beale & Keil, 1995). Here, we examine the extent to which lesions 

to the DG — a subfield of the hippocampus necessary for disambiguating similar input in 

memory through a process known as pattern separation (Berron et al., 2016) — may also have 

differential effects on the perception of familiar and unfamiliar morphed faces.  

Although researchers have considered the core face network to be implicated in CP of faces 

(Freeman et al., 2010), none has suggested an essential role for the hippocampus. Recent work, 

however, indicates that differentiating highly similar faces may also be mediated by the 

hippocampus (Inhoff et al., 2019; Robin et al., 2019), possibly through pattern separation (Bein, 

Duncan, et al., 2020; Yaros et al., 2019). Indeed, such mnemonic discrimination of faces in 

middle-aged and older adults can be predicted by left DG and CA3 volume size (Kern et al., 

2021). CP categorization mechanisms potentially also enlist the CA3 or CA1 hippocampal 

subfields, which receive inputs from the DG (Rolls & Kesner, 2006). These areas are implicated 

in pattern completion/generalization of visual stimuli (Bakker et al., 2008b; Schapiro et al., 

2014) and could play a role in transforming face perceptual codes into memory representations 

(Quiroga, 2017).  
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Figure 2-1 “Trump/Putin 2018” (© Nancy Burson 2018) 

Complicating whether pattern separation, completion, or generalization are factors in CP of faces 

is the role of perceptual expertise. For example, memory is cited as a reason why CP effects 

seem stronger for familiar faces than for faces learned in the lab (Angeli et al., 2008; Y. Lee et 

al., 2014). On the pattern separation side of the equation, perceptual expertise, represented by a 

person’s pre-existing social categorization of faces (i.e., the “other race” effect), was found by 

Chang and colleagues (A. Chang et al., 2015) to play a role in the ability of young adults to 

discriminate morphed faces.  

Still, direct evidence of the interaction of CP with memory remains elusive (Damper & Harnad, 

2000). We hypothesized that the pattern separation function of the DG and the pattern 

completion/generalization functions of CA3/CA1, together with personal expertise, influence CP 

categorization/identification. Specifically, these elements push and pull on the operational 

markers of CP: the attendant effects of within-category “compression” (i.e., reducing perceived 

differences of faces within one identity category) and between-category “expansion” (i.e., 
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amplifying perceived differences of faces straddling a category boundary (Studdert-Kennedy et 

al., 1970). 

To test this hypothesis, we presented BL, an amnesic person with rare bilateral hippocampal 

lesions selective to the DG (Baker et al., 2016) and age-matched controls with blended images of 

famous faces (FF) and nonfamous faces (NF) in a CP identification and discrimination 

experiment. Baker et al. (2016) established that BL has a deficit in visual object pattern 

separation (also known as mnemonic discrimination). We predicted that if CP relies on the 

process of pattern separation, then BL would exhibit atypical behavior in identifying and 

discriminating NF relative to FF, as the former would show the greatest reliance on the DG in 

learning new face-identity information. Meanwhile, CP tasks that rely on generalization (i.e., 

within-category discrimination) would be more dependent on pattern completion or 

generalization, mediated, respectively, by BL’s relatively intact CA3 and CA1 (Baker et al., 

2016). The results of our tests provide a critical bridge between perception and memory in 

general and CP and hippocampally mediated pattern separation in particular. 

2.3 Materials and methods 

2.3.1 Control participants 

We assessed CP in 38 neurotypical adults, matched in age and education to an individual with 

bilateral DG lesions and impaired pattern separation (BL, described next). Three controls were 

excluded from final analyses due to a mismatch between identification and discrimination faces 

(a programming error) and one control was excluded for being unable to discriminate faces at 

endpoints, resulting in a final test group of 34 middle-older control participants, 50–64 years of 

age [mean (SD) = 55.82 (4.18), 19 female]. We recruited all controls from the community via 

advertisements or participant databases at York University and Baycrest Health Sciences. 

Controls had a Montreal Cognitive Assessment (MoCA) score at or above 26 (out of a 30-point 

maximum). Participants provided written, informed consent in accordance with the ethics review 

boards at York University and Baycrest and standards of the Canadian Tri-Council Research 

Ethics guidelines. 
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2.3.2 Patient BL 

To better understand how the DG region is also involved in learning and representing face 

categories, we examined CP abilities in BL, a memory-impaired individual with lesions to the 

DG. BL, who was 57.9 years old at the time of his last testing session, sustained a hypoxic-

ischemic brain injury in 1985 following an electrical injury and cardiac arrest (Kwan et al., 

2015). In 2015, high-resolution 3T MRI scans of BL’s hippocampus revealed bilateral ischemic 

lesions that appeared to be restricted to the DG and a portion of the CA3 hippocampal subfield 

(Baker et al., 2016; Kwan et al., 2015). Whole-brain imaging (Baker et al., 2016) revealed that 

BL has relative volume loss in regions within his left superior-posterior parietal cortex (27% 

lower in volume than that of 8 controls) and right precuneus (26% lower in volume than that of 8 

controls). Neuropsychological testing (Kwan et al., 2015) demonstrated that BL has borderline-

low average memory for verbal material and impaired memory for unfamiliar visual material in 

the context of average intellectual function. We found BL’s motor speed and dexterity were also 

affected. In addition, BL is impaired on a test of mnemonic discrimination (behavioral pattern 

separation) of visual objects (Baker et al., 2016). As measured by the Benton Facial Recognition 

Test, BL’s face recognition was found to be within normal limits.  

For the CP task, BL was tested on three different occasions: Session 1 (S1, September 2017), 

Session 2 (S2, December 2017), and Session 3 (S3, October 2018). Throughout S1, we found BL 

to be impaired at categorizing FF and NF, leading to shallow slopes (See Table 2-1), which were 

more indicative of continuous than categorical perception. His labeling of FF, but not NF, 

improved in S2. Nevertheless, S2 was characterized by biased FF discrimination at the 10–30% 

endpoint relative to the 70–90% endpoint (see Table 2-1). This skewed discrimination raised the 

possibility of learning effects between S1 and S2 and called into question our ability to average 

across these pairs for within-category FF analysis. After S2, we speculated that a large number of 

trials (856) and multiple learning sessions across the CP experiment might be placing a 

significant cognitive load on BL, impairing task performance. To address this concern, an 

experimenter responded on BL’s behalf in S3. This last session took place 315 days after S2 (to 

mitigate learning effects). It was the only one in which BL’s identification of both face types was 

within the limits of controls and, therefore, the only one in which we could attempt to contrast 

his performance with that of controls. That the experimenter responded on BL’s behalf and not 

for control participants is similar to studies in which patients are equated with controls by 
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reaching a specified criterion, even if it takes more trials to reach that criterion relative to 

controls. Unless otherwise stated, the results of the last session are those reported here.  

Table 2-1. BL’s identification and discrimination over three sessions 

 Identification Discrimination (Within-Category) 

 Threshold (α) Slope (κ) 10–30% 70–90% 

Session FF NF FF NF FF NF FF NF 

S1 .45 .72 0.49 0.05 .30 .20 .40 .20 

S2 .58 .85 2.43 0.47 .10 .15 .60 .20 

S3 .49 .35 2.08 1.14 .25 .15 .25 .20 

Note.  FF = famous faces. NF = nonfamous faces. Threshold (α) = category boundary (Face 2 

intensity proportion). Slope (κ) = the slope of the logistic curve at the contrast detection 

threshold (i.e., the first derivative of , or the slope of logistic curve). Identification scores are 

reported in terms of proportion reported as Face 2. Discrimination scores are reported in terms of 

proportion correct. 

2.3.3 Experimental design and statistical analyses 

2.3.3.1 Face stimuli 

Evidence from Beale and Keil (1995) have suggested that categorical perception can occur when 

using faces as a categorical item and morphing one face to another along an artificial continuum. 

For the present study, stimulus selection for the morphed pairs was initiated by downloading 

from the Internet pictures of faces of American and Canadian public figures (e.g., politicians, 

actors, musicians) who rose to fame within the last 30 years. For NF, pictures of faces of people 

who were not famous or recognizable were selected from an existing database (Y. Lee et al., 

2014). We paired faces within FF and NF according to age, race, and gender (e.g., Ryan Gosling 

and Benedict Cumberbatch).  

We processed all faces/face pairs according to Lee et al. (Y. Lee et al., 2014). Briefly, faces were 

cropped into ovals. An oval-shaped mask was generated for each image using Adobe Photoshop, 

consisting of a horizontal and a vertical region. The horizontal region consisted of 0.5 

centimeters from the leftmost left eye to 0.5 centimeters to the rightmost right eye, a precise way 

to remove hair and ears from each face. The vertical region consisted of the length spanning 

from the forehead to the chin of each image. The resulting facial mask provided a consistent way 



23 

 

to reduce facial position variations across images within the oval and facilitated face morphing. 

This consistency was maintained by centering each facial mask at 3.0 x 4.7 degrees within the 

oval.  

The resulting images were matched in pairs and morphed using FaceMorpher Lite (Luxand, 

Inc.), allowing one image to be morphed with another while matching for face feature 

coordinates. Morphs were created for 9, 10-degree interval transitions and labeled for the 

percentage of Face 2 in the pair. For example, 90% Benedict contained 10% Ryan and 90% 

Benedict; 80% Benedict contained 20% Ryan and 80% Benedict; 70% Benedict contained 30% 

Ryan and 70% Benedict; and, 60% Benedict contained 40% Ryan and 60% Benedict. In 

addition, a matching morph pair was created (50% Ryan and 50% Benedict). Face stimuli were 

presented electronically using E-Prime 2.0 software running on a Dell Latitude E5540 computer 

(Intel Core i7-4600U). The computer’s screen size was 15.6 inches with a 1366 x 768 x 60-hertz 

resolution. 

2.3.4 Procedure 

Our experiment followed standard operationalization of CP (Liberman et al., 1957; Studdert-

Kennedy et al., 1970) and was divided into two phases: an identification (or categorization) 

phase and a discrimination phase. General procedures mirrored those followed by Lee et al. (Y. 

Lee et al., 2014). 

2.3.4.1 Famous face name recognition 

Before testing, participants completed a famous face recognition task, allowing the experimenter 

to select a group of famous faces well-known to each participant. During this pre-test, the 

experimenter read a list of names, and the participant was required to note the context in which 

the celebrity was famous. The participant was also required to describe the celebrity’s general 

appearance. Following these tasks, four pairs of famous faces (two pairs of women and two pairs 

of men) were selected for the FF category. Four pairs of NFs (two pairs of women and two pairs 

of men) were preselected to accompany the FF pairs.  
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2.3.4.2 Identification task 

2.3.4.2.1 Training trials  

We presented face image pairs in blocks of paired morphs. These blocks were randomized across 

participants, and trial order was randomized within blocks. In order to ensure that participants 

could demonstrate a benchmark capacity for successfully labeling FFs and NFs appearing in 

subsequent trials, each identification block was introduced with a learning task. Participants were 

presented with the cropped face pairs that would feature in the subsequent identification blocks 

during these training trials. The faces were shown side-by-side and without morphing (e.g., 

100% Ryan and 100% Ben). Below each face, the celebrity’s real name, or an invented name for 

the nonfamous person, was displayed. Participants had two minutes to study the face-name pairs. 

This training phase was accompanied by a recognition test of single faces at 100% to ensure 

participants could label each face appropriately (participants had a choice of two names). During 

the training trials, participants obtained feedback about whether their responses were correct. 

Training was complete after participants demonstrated on three consecutive trials that they could 

correctly select the name corresponding to each image presented at 100%.  

2.3.4.2.2 Face-name labelling 

During the identification blocks, participants categorized images that were morphed along the 

nine-interval continuum of contrasts described above and that spanned the two prototypes 

studied at training. Each image trial consisted of one morphed face presented in the middle of the 

screen, with one name appearing above the face and one name presented below the face. These 

trials were randomly presented five times per morph pair per interval, leading to 20 faces (5 x 4 

pairs) appearing in each morph step per category, with 180 trials in total for each level of face. 

We instructed controls to respond accurately and quickly to the identification question, Who is 

this?, for each morph by clicking the up or down arrow key in the direction of the perceived 

identity name (Figure 2-2). Patient BL named the face verbally and the experimenter responded 

on his behalf. All participants were given up to 4 s to make their choices. If they did not respond 

within 4 s, the image disappeared. The face names then remained alone on the screen until the 

participant made a selection.  
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2.3.4.3 Discrimination task 

The images presented during the discrimination phase were identical to those presented during 

the identification task except that they were presented simultaneously as pairs to assess 

participants’ ability to discriminate between highly similar morphed exemplars of the endpoint 

prototypes. The discrimination task began with participants studying each of the four famous and 

four nonfamous face pairs at 100% for two minutes. We did not test participants on their ability 

to identify the faces at 100%. Instead, the participants were randomly presented with 62 trials per 

pair at the following intensity levels of Face 2: 10-10%; 10-30%; 20-20%, 20-40%, 30-30%, 30-

50%, 40-40%, 40-60%, 50-50%, 50-70%, 60-60%, 60-80%, 70-70%, 70-90%, 80-80%, 90-90%. 

For each “same” face (e.g., 10-10%), there were three trials per image pair, giving a total of 12 

same trials across each same condition for each intensity interval. For each different FF or NF 

morph step (e.g., 10-30%), there were five trials per image pair, giving of total of 20 different 

trials across each FF or NF different intensity interval. To reduce the load of memory inherent in 

ABX or similar tasks (Gerrits & Schouten, 2004), we programmed face pairs to be presented at 

the same time, side-by-side on the screen (Figure 2-2). We instructed participants to focus on the 

two images presented in each trial instead of the identity of the faces and respond by way of an 

arrow press, within four seconds, if the images presented were the same or different. 

2.3.4.4 Scene classification and discrimination task  

At the same time, we administered the experiment with FF and NF, we also ran a pilot 

identification and discrimination task. It consisted of morphed scene stimuli. It was run on 

controls and patient BL (during his first two testing sessions). The scene trials were ordered after 

the face trials (i.e., faces classification, scene classification, faces discrimination, scene 

discrimination). These data are not reported here because the stimuli we created did not serve 

their intended purpose. 

2.4 Analysis 

Although we followed a standard CP identification and discrimination two-phase experimental 

approach, we expanded on traditional data analyses in several ways. First, we applied a 

goodness-of-fit test to evaluate the logistic function used to model the measured psychometric 

function (i.e., participant classification). This function relates the proportion of trials assigned to 
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Figure 2-2. CP identification and discrimination phases with sample images 

a progressive series of identification steps to the intensity of the stimulus in that continuum. 

When graphed, the logistic function takes on a sigmoidal or S-shaped curve. We anticipated that 

we would find distinct labeling combined with a sharp boundary between categories, thus 

meeting one of four operational criteria traditionally used to demonstrate CP in the domain of 

speech perception (R. E. Pastore et al., 1984; Studdert-Kennedy et al., 1970). The goodness-of-fit 

(A) Identification Phase: who is this? 
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test is well-suited to describe participants’ ability to meet this criterion in other perceptual 

domains, such as face recognition. 

Two additional operational criteria are usually evaluated during the discrimination phase (R. E. 

Pastore, 1987). Here, participants in CP experiments must display a detectable advantage, or 

“peaks” (Harnad, 1987b; Studdert-Kennedy et al., 1970) in discriminating stimuli that cross a 

category boundary (e.g., 40% of Benedict Cumberbatch’s face and 60% of Benedict 

Cumberbatch’s face). A closely related third operational criterion is the presence of “troughs” of 

inferior discrimination (Harnad, 1987b; Studdert-Kennedy et al., 1970) for within-category 

stimuli (e.g., 70% of Benedict Cumberbatch’s face and 90% of Benedict Cumberbatch’s face). 

These “peaks and troughs” criteria are traditionally analyzed by contrasting proportion (or 

percentage) correct in within-category versus between-category trials. We expanded on such 

traditional CP data analysis by using signal detection measures (d’) to evaluate differential 

sensitivity in within- and between-category conditions. Signal detection measures are thought to 

be particularly appropriate for analyzing discrimination when using same-different tasks (Angeli 

et al., 2008; Macmillan & Creelman, 2005). 

A final CP operational criterion — sometimes referred to as a “strong form” of CP (Macmillan & 

Creelman, 2005) — is thought to occur when there is a close correspondence between the 

identification phase and the discrimination phase (Liberman et al., 1957; Macmillan, 1987; 

McKone et al., 2001; Studdert-Kennedy et al., 1970). In this scenario, discrimination 

performance can be predicted from identification judgments. Researchers often fail to find 

evidence of such a relationship; discrimination is typically better than that expected from 

identification labelling ability alone (Macmillan, 1987; R. E. Pastore, 1987). Nonetheless, the 

strong criterion has historically dominated the other operational criteria, with some considering it 

CP’s defining concept (Liberman et al., 1957; Macmillan et al., 1977; Massaro, 1987a; R. E. 

Pastore, 1987; Studdert-Kennedy et al., 1970). For our part, we chose to investigate predicted 

and obtained discrimination accuracy — and the concomitant relationship between discrete 

identification thought to rely primarily on memory and discrete discrimination thought to rely 

principally on perception (Y. Lee et al., 2014). We did so by analyzing predicted versus obtained 

results using mean absolute error (MAE) tests. We also implemented a novel approach for 

prediction, which predicts d’ discrimination from identification results.  
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Analysis of the identification and discrimination data were done using IBM SPSS Statistics 27 or 

the Palamedes Toolbox (Version 1.10.9; Prins & Kingdom, 2018) for MATLAB. Where 

appropriate, effect sizes were reported and interpreted according to accepted guidelines (Field, 

2013). We conducted post hoc comparisons using the Bonferroni correction. Specific analysis 

measures using this software for the two phases of the experiment are described below.  

2.4.1 Identification analysis 

2.4.1.1 Endpoint identification accuracy 

Endpoint accuracy, or participants’ ability to learn and identify faces at 90% intensity of Face 1 

versus Face 2, was evaluated across face type using paired-samples t-tests in SPSS. The 

dependent variable was identification accuracy. We computed this value as the proportion of 

correct trials averaged across each face-name combination at each endpoint (i.e., 20 trials for 

10% of Face 2 and 20 trials for 90% of Face 2). We considered endpoint accuracy as a measure 

of participants’ ability to correctly match faces with names and a way of investigating potential 

biases in face-name combinations.  

2.4.1.2 Identification psychometric function 

For each participant, we coded the number of faces at each point along the 9-point continuum of 

stimuli intensity that participants perceived as Face 2 over Face 1 (i.e., Face 1 = 0 and Face 2 = 

1). These identification counts, a function of a single predictor (Face 2 intensity), were used to 

compute the identification psychometric function (PF). The PF was derived through fitting a 

binary logistic regression model (Field, 2013; Kingdom & Prins, 2016) to each participant’s data 

using the Palamedes toolbox for MATLAB. The model specifies a nonlinear function for the 

regression of a dichotomous Y (e.g., Face 1 or Face 2) on a single predictor, Xi (e.g., Face 2 

intensity = .10) and can be given as follows (Kingdom & Prins, 2016; Wegrzyn et al., 2015): 

Equation 1 

𝐹𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑥; 𝛼, 𝛽) =
1

1 + 𝑒(−𝛽(𝑥−𝛼))
 

in which parameters  and  correspond, respectively, to the threshold and slope of the PF 

(Kingdom & Prins, 2016) estimated from each participant’s identification data. The threshold () 
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is the point at which the proportion of responses of one stimulus relative to another reaches a 

criterion. This point is usually 50% in CP experiments using morphed faces (Angeli et al., 2008; 

Beale & Keil, 1995; Y. Lee et al., 2014; Levin & Beale, 2000; McKone et al., 2001; Rotshtein et 

al., 2005; Wegrzyn et al., 2015). In our experiment, the threshold aligns with the category 

boundary, or the point of subjective equality, beyond which participants began to identify a 

morphed face as Face 2 more than Face 1. A plot of the logistic function typically takes on a S-

shaped (sigmoid) curve (Kingdom & Prins, 2016; Wegrzyn et al., 2015). The threshold is 

assumed to be the steepest point of the sigmoidal curve (McKone et al., 2001; Prins & Kingdom, 

2018). 

We expected that participant identification data would be best characterized nonlinearly, as 

represented by the logistic function. This sigmoidal or S-shaped change tracks identification 

from left to right as contrasts of the stimuli moved stepwise from one endpoint prototype (e.g., 

90% of Ryan Gosling’s face and 10% of Benedict Cumberbatch’s face) to another (e.g., 10% of 

Ryan Gosling’s face and 90% of Benedict Cumberbatch’s face). The logistic function is thought 

to express the tendency of neurons to become “saturated” once a firing threshold (e.g., where 

perception changes qualitatively and confidently from one face to another) is reached (Rolls, 

2008). We also expected that the sharpest change (i.e., the steepest slope) in classification would 

occur at the threshold (or category boundary). This boundary would be at, or near, a predicted 

point of subjective equality/maximum ambiguity (approximately 50%), where a concomitant 

change in identification from one face-name category to another typically occurs (Angeli et al., 

2008; Beale & Keil, 1995; Y. Lee et al., 2014; Rotshtein et al., 2005).  

We fit the logistic function to each participant’s data using a maximum likelihood criterion in the 

Palamedes toolbox (Prins & Kingdom, 2018) for MATLAB. We created a series of vectors to 

contain the data, including stimulus intensity levels and the proportion of responses of a Face 2 

judgment over a Face 1 judgment across morph steps. To attenuate potential bias in the 

parameter estimates, relatively small guess and lapse rates for the model function were set at .02 

(Kingdom & Prins, 2016; Klein, 2001; Stokes et al., 2019). The steepness of the estimated 

threshold () for each participant was generated by finding the first derivative of the slope at the 

point of subjective equality.  
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2.4.1.3 Identification goodness-of-fit  

In order to determine how well the identification of faces aligned with the logistic regression 

model, we ran a goodness-of-fit routine in the Palamedes toolbox for MATLAB (Prins & 

Kingdom, 2018) on each participant’s data. This routine supplied deviance estimates, or a 

measure of the lack-of-fit of the observed data to the model PF (J. Cohen, 2003). We then 

analyzed the aggregate deviation scores in each condition using the chi-square cumulative 

distribution function, chi2cdf(x,v,’upper’), in MATLAB. We followed guidelines that an 

unacceptable fit corresponds to a probability value of p < 0.05 (Kingdom & Prins, 2016). 

2.4.2 Discrimination analysis 

2.4.2.1 Obtained discrimination: Proportion correct 

As we wanted to use signal detection measures (Macmillan & Creelman, 2005) to evaluate the 

unbiased discrimination sensitivity of participants, we first averaged hits (percentage correct) for 

endpoint morph steps (.10–.30 and .70–.90). To establish that these within-category faces were 

strongly correlated and without statistical variation, we assessed their differences using paired-

samples t-tests. We also calculated hits for between-category faces, using the 40–60% morph 

step. False alarms were calculated for the respective identical pairs which could be matched with 

the within- or between-category endpoints (e.g., 10–10%, 60–60%). False alarms were calculated 

as the ratio of incorrectly responding different to these same pair trials.  

2.4.2.2 Obtained discrimination: d’ 

The d’ values for within-category faces and between-category faces were determined using 

Palamedes MATLAB routines for a one alternative-forced-choice same-different (1AFC Same-

Different) task within a differencing model, or one in which stimuli rove along a continuum 

(Kingdom & Prins, 2016; Macmillan, 1987). The decision strategy assumed by this model is that 

participants respond different only when the perceived dissimilarities in each pair exceeds a 

criterion (Kingdom & Prins, 2016; Macmillan & Creelman, 2005). This criterion is thought to be 

conservative in same-different tasks, with observers more likely to answer “same” than different. 

The d’ strategy outlined above responds to this bias inherent in same-different tasks (Kingdom & 

Prins, 2016; Macmillan & Creelman, 2005; Prins & Kingdom, 2018). Subsequent analysis of the 

discrimination data in SPSS Version 27 took advantage of the experiment’s factorial design to 
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produce a 2x2 repeated-measures ANOVA. The factors were Familiarity (two levels) and 

Categorical Boundary (two levels), with the dependent variable being discrimination d’.  

2.4.2.3 Prediction of discrimination from identification 

A theoretical constant from the earliest CP experiments with speech sounds (e.g. Liberman et al., 

1957) is that discrimination performance can be predicted from identification performance. The 

supposition is that participants can only discriminate to the extent in which they can categorize 

(Liberman et al., 1957; Macmillan et al., 1977; R. E. Pastore, 1987; Studdert-Kennedy et al., 

1970). Therefore, the expected proportion correct in any discrimination trial, for example, one in 

which two stimuli (e.g. Face 2 at 10% intensity and Face 2 at 30% intensity) are presented, can 

be estimated from the proportion correct of Face 2 at 10% intensity and Face 2 at 30% intensity 

during the identification phase (Macmillan & Creelman, 2005; Massaro, 1975; Pollack & Pisoni, 

1971). In other words, the probability of discriminating the two faces in any trial is consistent 

with the combined probabilities of the two faces measured at classification. We computed 

predicted discrimination scores for the proportion of correct, “different” responses to different 

trials using Eq. (2) (Massaro, 1975). We used it to estimate the correct discrimination accuracy 

(proportion correct) for any combination of two different stimuli as follows:  

Equation 2 

𝑃(𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡|𝐹1 𝐹2) =  𝑃 ("Face2"|𝐹1)𝑃("Face1"|𝐹2) + 𝑃 ("Face1"|𝐹1)𝑃("Face2"|𝐹2), 

in which “Face2” equals the proportion of Face 2 responses during identification, “Face1” equals 

the proportion of Face 1 responses during identification (i.e., 1-Face 2); F1 equals the first face in 

the image pair and F2 equals the second face in the image pair.  

 We also employed a novel discrimination method to predict d’ scores for identification, 

which involved computing the probability of correct “same” responses to same trials using Eq. 

(3) (Massaro, 1975), given as: 

Equation 3 

𝑃 (𝑠𝑎𝑚𝑒) =  (𝑃 𝐹𝑎𝑐𝑒 2)2 +  (𝑃 𝐹𝑎𝑐𝑒 1)2, 
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in which P Face 2 and P Face 1 (i.e., 1-Face 2) correspond to the identification scores, and P 

(same) equals the estimated proportion correct at discrimination. 

2.4.3 Patient analysis 

To ensure the reliability of findings in single cases, we used Crawford and Howell’s modified t-

test for single cases (Crawford & Garthwaite, 2002; Crawford & Howell, 1998). This test treats a 

control sample’s data as sample statistics rather than population parameters (Crawford & 

Howell, 1998). In doing so, the Crawford and Howell t-test provides a way to control for Type I 

errors when testing whether a single case’s score is significantly below that of a control group 

with fewer than 50 participants (Crawford & Garthwaite, 2002; Crawford & Howell, 1998). This 

modified t-test can limit the power of statistical inference applied to a data set. Consequently, it 

can lead to overly conservative conclusions and Type II errors (false negatives). The program 

used to calculate the modified t-test, Singlims_ES (Crawford et al., 2010), reports estimates of 

the percentage of the normal population falling below a single case’s score. Furthermore, it 

provides details on the confidence interval (CI) of the observed result and the estimated effect 

size (Crawford et al., 2010). The effect size supplied by Singlims_ES, zcc, is a direct analog to 

Cohen’s d (Crawford et al., 2010). Thus, it measures the standardized difference between the 

single case’s score and the control mean. Interpreting these additional statistics (i.e., confidence 

intervals, effect sizes) provides researchers with more meaningful ways to evaluate a single 

case’s data when typical significance levels (e.g., p < 0.05) are not met.  

2.5 Results 

2.5.1 Identification task 

2.5.1.1 Controls competent at identifying the least confusable faces 

To establish that participants could learn and correctly label faces, including those with no pre-

experimental familiarity, we used paired-samples t-tests to contrast the identification accuracy of 

endpoint faces (10 versus 90% of Face 2). We found that controls showed a strong ability to 

identify FF at the 10% endpoint (M = .97, SE = .01) as well as at the 90% endpoint (M = .96, SE 

= .01). We failed to find evidence that the difference between the two endpoints, 0.01, which has 

a bias-corrected and accelerated confidence interval (BCa) 95% CI [–.01, .03], was significant 

t(33) = 1.16, p = .256, d = .20. Although participants had greater difficulty identifying the NF 
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endpoints, they could label both the 10% endpoint (M = .90, SE = .02) as well as at the 90% 

endpoint (M = .94, SE = .01) well above chance. We did not find evidence that the difference 

between the two NF endpoints, –.04%, was significant, BCa 95% CI [–.09, .00], t(33) = –1.97, p 

= .057. The difference represented a small-to-medium effect d = –.34, 95% CI [–.68, .01], 

leading us to speculate that — in line with what Lee and colleagues (2014) reported in one of 

their NF conditions — there might be a moderate bias to identify some NF faces.  

2.5.1.2 Does identification follow a comparable logistic function in controls 
and patient BL? 

2.5.1.2.1 Controls have typical midpoint identification thresholds 

The underlying sensory, perceptual, and mnemonic mechanisms typifying the psychometric 

function of face categorization can be revealed by comparing the logistic function parameters of 

the FF and NF values. We found the thresholds for the logistic function for both FF (M = .50, SE 

= 0.01) and NF (M = .50, SE = 0.01) to be at .50, or the predicted point of subjective equality (). 

We did not find evidence that the very small divergence between the two thresholds, –0.005, was 

significantly different, BCa 95% CI [–.02, .01], two-tailed t-test, t(33) = –.53, p = .602, d = –.09. 

These findings illustrate middle-older, healthy controls’ ability to categorize familiar and 

unfamiliar faces in a binary way. Such an ability, however, is a necessary but not a sufficient 

indicator of CP (McKone et al., 2001; Studdert-Kennedy et al., 1970).  

Table 2-2. Logistic function parameters, BL vs. controls 

Logistic Parameter 

Control sample 

(N = 34) 

BL’s score Mean SE 

FF threshold (α) .50 .01 .49 

NF threshold (α) .50 .01 .35 

FF slope (κ) 3.08 .22 2.08 

NF slope (κ) 2.57 .20 1.14 

Note.  FF = famous faces. NF = nonfamous faces. Threshold (α) = category boundary (Face 2 

intensity proportion). Slope (κ) = the slope of the logistic curve at the contrast detection 

threshold (i.e., the first derivative of , or the slope of the tangent line to the curve at the 

threshold). Values for controls are averaged across participants in the group. 
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Figure 2-3. Identification data: Best-fitting logistic function for each participant 

Top. Identification (one line per participant, with thresholds marked in crosses) of famous faces 

in controls (blue) and BL (orange). Bottom. Identification (one line per participant) of 

nonfamous faces by controls (blue) and BL (orange). 
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2.5.1.2.2 Controls have shallow slopes for NF 

Following previous CP studies using morphed faces (Y. Lee et al., 2014; Wegrzyn et al., 2015), 

we analyzed the steepness of the threshold slopes. The difference, 0.52, in the steepness of the 

average slope for controls at the contrast-detection threshold for FF (M = 3.08, SE = 0.22) and 

NF (M = 2.57, SE = 0.20) was significant, BCa 95% CI [0.003, 0.981], two-tailed t-test, t(33) = 

2.18, p  = .036, d = .37. To determine how well the identification of FF and NF aligned with 

respective logistic functions, we ran a goodness-of-fit routine from the Palamedes toolbox for 

MATLAB (Prins & Kingdom, 2018) on each participant’s data. We then analyzed the aggregate 

deviation scores in each condition using the chi-square cumulative distribution function, 

chi2cdf(x,v,’upper’), in MATLAB. We followed guidelines that an unacceptable fit corresponds 

to a probability value of p < 0.05 (Kingdom & Prins, 2016). Data for FF exceeded that value, 

chi2cdf (235.39, 238, ‘upper’), p = 0.5356. By contrast, deviation scores for NF did not reach the 

benchmark, chi2cdf (374.37, 238, ‘upper’), p <.001, indicating that these data points stray from 

the model fit. Our a priori assumption that the logistic function can best fit the identification data 

in a CP experiment was not met for both morphed face conditions. 

2.5.1.2.3 BL’s threshold and slope within normal limits for FF, but not NF 

Although results indicate that BL had a contrast-detection threshold close to .50 for FF (.49), his 

performance for NF deviated substantially from that of controls (Table 2-2 and Figure 2-3). In 

this latter condition, his category boundary was .35. The data indicate that, unlike controls, BL 

did not switch his responses from Face 1 to Face 2 near the middle of the continuum of noisy 

exemplars of unfamiliar faces but did so earlier, around the 30–40% intensity of Face 2. To 

compare the differences in category thresholds between BL and those of controls, we used 

Crawford and Howell’s modified t-test for single cases (Crawford & Garthwaite, 2002; Crawford 

& Howell, 1998). Using this measure, we found a significant difference between BL’s boundary 

results and those of controls, t(33) = 2.36, p = .01, one-tailed t-test. Indeed, BL’s results place 

him at the 1.22 percentile.  

The steepness of BL’s slope for FF was within normal limits, t(33) = –0.79, p = 0.218, one-tailed 

t-test, 𝓏𝒸𝒸= –.80. His slope value score (2.08) was at the 21.8 percentile, 95% CI [11.85, 34.16]. 

In terms of steepness of the NF slope, we did not find evidence that the difference between BL 



36 

 

and controls, 1.43, at this boundary was significant, t(33) = –1.19, p = 0.121, (one-tailed), 𝓏𝒸𝒸= –

1.21. His slope at the NF threshold was at the 12.13 percentile, 95% CI [4.99, 22.43]. 

The identification results reported above clearly indicate that controls showed CP effects for FF. 

Their performance on NF, however, could not be confirmed by a logistic fit of their data. BL also 

appeared within normal limits for FFs, but his NF threshold was substantially lower than that of 

controls. BL’s skewed categorization performance for NFs seems to indicate his inability to 

mnemonically discriminate the key perceptual/conceptual information of faces learned in the lab.  

2.5.2 Discrimination task 

During the perceptual discrimination task, participants were required to differentiate between 

two highly similar face pair morphs. Prior studies have suggested that perceptual expertise, 

bolstered by mnemonic discrimination, results in more sharply tuned representations for 

discrimination (A. Chang et al., 2015). We thought participants would engage in high-

interference memory to discriminate between two highly similar morph pairs. We further 

predicted that patient BL would perform worse than age-matched controls because of focal 

lesions to areas of the hippocampus known to be implicated in behavioral pattern separation. In 

concert with classic findings from categorical perception, we also believed that controls would 

perform with a higher degree of accuracy on between-category face pairs than within-category 

face pairs (Beal & Keil, 1995). Lastly, we hypothesized that aged-matched controls would 

perform better with familiar stimuli than with unfamiliar new face pairs (Chang, Murray, & 

Yassa, 2015). 

2.5.2.1 Identification-based within- and between-category discrimination 

In order to test whether participants differentially discriminated within- and between-category 

faces, we elected to create one within-category condition out of 10–30 and 70–90 face pairs and 

one between-category condition out of 40–60 face pairs. An exception to the 40–60 between-

category assignment was made for three controls in the FF category and four controls in the NF 

category. The between-category face pair was deemed to be at the 50–70 interval for these 

exceptions, a decision made based on their threshold values at identification. We estimated BL’s 

between-category face pair to be within the 30–50 interval, again based on his identification 

boundary.  
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Before proceeding with within-category analysis, we ensured that discrimination accuracy of the 

10–30 and 70–90 face pairs was not markedly different by contrasting them using a paired-

samples t-test. We found that controls’ discrimination of FF at the 10–30 endpoint (M = .33, SE 

= .05), as well as at the FF 70–90 endpoint (M = .38, SE = .04), differed by –.05, BCa 95% CI 

[–.12, .02]. We found no evidence that this difference was significant, t(33) = –1.36, p = .182, d 

= –.23. Despite speculation that controls had an identification bias towards the NF 90 endpoint, 

we did not find that the difference between the NF 10–30 within-category face pair (M = .45, SE 

= .04) and the NF 70–90 within-category face pair trials (M = .42, SE = .05), .03, BCa 95% CI 

[–.03, .08], was significant t(33) = .93, p = .359, d = .17. BL’s FF within-category discrimination 

scores were the same (.25), and his NF within-category discrimination scores for NF 10–30 (.15) 

and NF 70–90 (.20) differed by 0.5, a difference within the 95% CI for controls. Therefore, we 

concluded that combining controls’ and the patient’s 10–30 and 70–90 discrimination trials into 

within-category conditions was a valid approach. 

2.5.2.2 Assessing CP model performance: Predicted versus obtained 
(proportion correct) 

In assessing CP model performance, we found higher than predicted results for controls, but not 

for patient BL. As shown in Table 2-4 (left panel), the obtained proportion of different pairs 

correctly identified as different (proportion D|D) was higher than predicted for controls across 

most within-category intervals (10–30, 20–40, 60–80, 70–90), except for those on either side of 

the between-category interval (30–50 and 50–70). These latter “shoulder” intervals tracked 

closely to predicted values. Also, the 40–60 pair was lower than expected for both FF and NF. 

BL’s obtained scores (Table 2-4, right panel) were marginally higher than the expected values 

for only two image pairs (FF 10–30, FF 70–90 and NF 60–80). BL’s responses tracked closely to 

predicted values (e.g., FF 50–70, NF 50–70) for the remainder of the discrimination trials or 

were lower than anticipated, particularly for his between-category conditions (FF 40–60 and NF 

30–50).  

Next, we wanted to determine if BL was able to discriminate beyond his identification abilities. 

Mean absolute error (MAE) scores provide additional insight into average model-performance 

error expressed in units of proportion D|D, the variable of interest (Willmott & Matsuura, 2005). 

Averaged across all FF different intervals, the MAE for controls was .25, 95% CI [.21, .29]; 

across all NF different intervals, the MAE for controls was .28, 95% CI [.24, .32] (). These 
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relatively large average differences between modeled values and obtained values lead us to 

speculate the following about healthy controls: a) they do not discriminate faces to the same 

equivalence as they identify faces; and/or b) they are biased to respond “same” in a same-

different task, thus explaining their inability to rise above chance discrimination across 

conditions and face-pair intensity levels. BL’s average model-performance absolute error (AE) 

scores for FF (.11) and NF (.15) were smaller than those of controls by .14 and .13, respectively. 

When considered along with the above observation that BL’s obtained scores were typically 

lower than predicted scores, it appears that BL was unable to discriminate beyond the limits of 

his identification abilities. 

 

Figure 2-4. Obtained versus predicted discrimination accuracy (proportion correct) 

Obtained versus predicted accuracy (proportion correct for different responses to different pairs) 

for FF (top) and NF (bottom). Control results are in the left column, BL’s in the right column. 

                                     Controls         BL 

A) FF Obtained  and Predicted   

      

B) NF Obtained  and Predicted  
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Table 2-3. Predicted vs. obtained discrimination, (MAE) proportion correct 

 FF NF 

Interval MAE Bootstrapped 

95% CIs (controls) 

MAE Bootstrapped 

95% CIs (controls) 

 Controls BL Lower Upper Controls BL Lower Upper 

10–30 .23 .07 .16 .31 .33 .26 .25 .40 

20–40 .25 .12 .19 .31 .27 .17 .19 .34 

30–50 .25 .04 .20 .31 .25 .23 .19 .30 

40–60 .26 .33 .21 .30 .21 .13 .16 .26 

50–70 .23 .02 .18 .28 .21 .01 .17 .27 

60–80 .27 .20 .22 .34 .33 .07 .27 .39 

70–90 .27 .03 .20 .35 .35 .18 .27 .42 

Mean .25 .11 .21 .29 .28 .15 .24 .32 

2.5.2.3 Assessing CP model performance: Within- and between-category 
discrimination 

Controls were 35.79% (FF) and 43.23% (NF) accurate in within-category conditions and 49.61% 

(FF) and 48.09% (NF) accurate in between-category conditions (Table 2-4). BL achieved 25% 

discrimination accuracy in both famous face conditions. He was 17.5% accurate in the NF 

within-category condition and 35% accurate in the NF between-category condition. Middle-older 

participants’ below-chance (50%) performance for within-category faces is to be expected 

considering within-category compression, a typical CP effect (Harnad, 1987b). However, their 

inability to rise above chance performance for between-category faces may reflect something 

different, namely, a response bias that participants typically have toward answering “same” in 

same-different discrimination paradigms (Kingdom & Prins, 2016; Macmillan, 1987; Macmillan 

& Creelman, 2005). Therefore, we next analyzed the discrimination data using d’ methods, 

which compensate for these forced-choice decision biases. 

Table 2-4. Obtained discrimination accuracy: within- and between-categories 

  Controls BL 

Discrimination category FF NF FF NF 

 M SE M SE M SE 

Within (%) 35.79 3.97 43.23 4.23 25.00 17.50 

Between (%) 49.61 4.67 48.09 4.30 25.00 35.00 

Within (d’) 1.81 0.15 2.19 0.17 0.43 0.0 

Between (d’) 2.31 0.17 2.22 0.17 1.48 1.16 
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As the below-chance scores and disconnect between predicted versus obtained results help to 

illuminate the bias in participant responding evident in same-different tasks, a 2x2 (categorical 

boundary x familiarity) repeated-measures ANOVA was used to determine if control data varied 

across discrimination conditions. The dependent variable for this roving, forced-choice task, was 

discrimination d’ scores (Kingdom & Prins, 2016; Macmillan & Creelman, 2005).  

We found that healthy controls performed significantly better in between-category trials 

compared to within-category trials, F(1,33) = 7.45, p = .01, r = .43, a medium-sized effect. Face 

familiarity approached, but did not reach significance, F(1,33) = 3.82, p = .059, although this 

contrast yielded a medium-sized effect, r = .32. The category boundary x familiarity interaction 

was significant F(1,33) = 6.01, p = .02, r = .39.  

The results above indicate that the categorical boundary had different effects on the 

discrimination sensitivity of controls depending on their pre-experimental face familiarity. To 

break down this interaction, we ran tests of simple effects to compare the two levels of face 

familiarity (FF and NF) for each of the two levels of category (within and between). Post hoc 

comparisons using the Bonferroni correction indicated that healthy controls were significantly 

worse (p <.001) at discriminating within-category FF (M = 1.81, SE = 0.15) than between-

category FF (M = 2.31, SE = 0.17). We found no indication that within-category NF (M = 2.19, 

SE = 0.17) had a similar perceptual disadvantage relative to between-category NF (M = 2.22, SE 

= 0.17), p = .859. This last result is unsurprising, as the within-category NF and between-

category NF differed by only –0.03, 95% CI [–.34, .28]. Moreover, healthy controls were 

significantly worse (p = .002) at discriminating within-category FF than within-category NF. A 

similar finding was not evident when comparing between-category famous faces with between-

category nonfamous faces, (p = .514). See Figure 2-5. 
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Figure 2-5. Discrimination accuracy (d’) for within-category versus between-category faces 

FF = famous faces. NF = nonfamous faces. Blue bars = controls. Orange bars = BL.  

As can be seen in Table 2-4, BL’s lowest d’ accuracy score was found in within-category NF. 

BL had a d’ score of 0 (i.e., random responding) in this condition. Using Crawford and Howell’s 

modified t-test for single cases (Crawford & Garthwaite, 2002; Crawford & Howell, 1998), we 

found this d’ difference between BL and controls for NF, –2.19, to be significant, t(33) = –2.13, 

p = 0.02, one-tailed, 𝓏𝒸𝒸= –2.16. BL’s results place him at the 2nd percentile, 95% CI [0.27, 6.19]. 

Meanwhile, we could not find evidence that BL’s sensitivity to within-category FF was 

statistically different from that of controls, t(33) = –1.51, p = 0.07, one-tailed, 7th percentile, 95% 

CI [2.13, 15.15]. The difference between BL and controls for within-category FF, however, did 

represent a large effect 𝓏𝒸𝒸 = –1.53, 95% CI [–2.03, –1.03]. Indeed, only one control scored lower 

than BL in within-category FF d’ sensitivity. We did not find that BL’s performance was 

significantly different from that of controls in the between-category conditions for either FF or 

NF. 

 

 

*** 
* 

** 
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Table 2-5. Obtained discrimination accuracy (d’) 

 

Control 

sample 

(n = 34) 

BL’s 

score 

Significance 

test 

(one-tailed)a 

Estimated percentage 

of the control population 

obtaining a lower score 

than BLb 

Estimated 

effect size (𝓏𝒸𝒸)c 

Discrimination 

category 
Mean SE t p Point (95% CI) Point (95% CI) 

FF Within 1.81 0.15 0.43 -1.51 .07 7.00 
(2.13 to 

15.15) 
-1.53 

(-2.03 to 

-1.03) 

FF Between 2.31 0.17 1.48 -0.81 .21 21.10 
(11.30 to 

33.36) 
-0.83 

(-1.21 to 

-0.43) 

NF Within 2.19 0.17 0.00 -2.13 .02 2.02 
(0.27 to 

6.19) 
-2.16 

(-2.78 to 

-1.54) 

NF Between 2.22 0.17 1.16 -1.03 .16 15.57 
(7.26 to 

26.81) 
-1.04 

(-1.46 to -

0.62) 

Note.  FF = famous faces. NF = nonfamous faces. Controls and BL within = faces averaged 

across 10–30% and 70–90% face pairs; Controls between = faces in 40–60% face pair (except 

for three controls at the FF 50–70% face pair and four controls at the NF 50–70% face pair). BL 

FF between = faces in 40–60% face pair. BL NF between = faces in 30–50% face pair. 
aCrawford & Howell (1998). bCrawford & Garthwaite (2002). cCrawford, Garthwaite & Porter 

(2010). 

In summary, our evaluation of CP model performance for controls reveals that they show typical 

CP boundary effects for FF but not NF. As for patient BL, he appears to show boundary effects 

for both face types, but his responses for within-category NF are difficult to interpret. In the next 

section we use the obtained d’ discrimination values to see how well they reflected predicted 

values from the identification phase of the experiment. 

2.5.2.4 Assessing CP Model Performance: Predicted Versus Obtained (d’) 

As we saw above, controls and BL varied in their mnemonic sensitivity to FF versus NF faces 

and in within- versus between-categories. We next sought to see how well, if at all, our obtained 

discrimination results reflected what we predicted from identification, the last operational 

criterion of CP.  

Our findings for predicted versus obtained d’ scores for within- and between-category conditions 

show that controls exceeded predicted mnemonic sensitivity values for every condition in both 

face types (Figure 2-6, left panels). BL’s obtained d’ scores for FF within- and between-category 
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faces were aligned with (slightly above) predicted values (Figure 2-6, right panel). His NF 

between-category obtained d’ discrimination score was somewhat lower than predicted, and his 

NF within-category d’ discrimination score, as noted previously, was at floor and lower than 

predicted.  

 

Figure 2-6. Obtained versus predicted discrimination accuracy (d’) 

Control results are pictured in the left column, BL’s findings in the right column. 

MAE scores (Table 2-6) provide additional insight into average model-performance error 

expressed in units of d’ for this novel analysis of predicted versus obtained sensitivity. For 

within-category FF, controls had an MAE of 1.44 (33 of 34 controls had obtained values higher 

than anticipated), 95% BCa [1.19, 1.70] compared with an AE of 0.19 for BL. Clearly, BL’s 

results are outside of the estimated range of 95% of the population. We found controls had an 

MAE of 1.03 for between-category FF, 95% BCa [0.76, 1.32], compared with an AE of 0.22 for 

                                     Controls         BL 

A) FF Obtained  and Predicted   

      

B) NF Obtained  and Predicted  
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BL. Again, BL’s result is outside of the estimated range of 95% of the population. In response to 

within-category NF, controls had an MAE of 1.81 (all controls had obtained NF within-category 

values higher than predicted), 95% BCa [1.50, 2.13] compared with an AE of 0.68 for BL. We 

found controls had an MAE of 0.89 for between-category NF, 95% BCa [0.65, 1.18], compared 

to an AE of 0.21 for BL. As with FF, BL’s NF results put him outside of the range of 95% of the 

population. 

The above data shows that the CP model is not good at predicting discrimination of faces from 

identification of faces in neurotypical adults. Actual discrimination results are much better than 

predicted, a common finding (Macmillan & Creelman, 2005; Massaro, 1987b; R. E. Pastore, 

1987). Evidently, controls are not limited by identity labels when making perceptual 

discriminations in high-interference situations. They seem to be able to integrate featural 

information, and perhaps information from other dimensions including memory (Massaro, 

1987b, 1987a). With BL, however, we do find some evidence of perceptual equivalence between 

identification and discrimination, a point we consider in greater detail below. 

Table 2-6. Predicted vs. Obtained Discrimination (d’), (MAE) 

 FF NF 

Interval 
MAE Bootstrapped 

95% CIs (controls) 

MAE Bootstrapped 

95% CIs (controls) 

 Controls BL Lower Upper Controls BL Lower Upper 

Within 1.44 0.19 1.19 1.70 1.81 0.68 1.50 2.13 

Between 1.03 0.22 0.76 1.32 0.89 0.21 0.65 1.18 

2.6 Discussion 

We investigated if CP, like pattern separation, is modulated by hippocampal DG integrity and is 

influenced by prior knowledge. As predicted, healthy controls exhibited three of the four criteria 

necessary to index successful CP effects for FF, including within-category compression and 

between-category expansion during discrimination (Harnad, 1987b; Studdert-Kennedy et al., 

1970). The one criterion that was not met for FF is the close correspondence between actual and 

predicted discrimination, a criterion that is rarely used or met in the literature on CP (Massaro, 

1987b; Studdert-Kennedy et al., 1970). On the other hand, controls’ results for NF failed to meet 

that criterion and most of the other CP benchmarks. These data suggest that familiarity is a factor 
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in CP of highly confusable faces and illuminate differing perspectives on the subject (Angeli et 

al., 2008; Campanella et al., 2003; Levin & Beale, 2000). Like controls, BL, an individual with 

bilateral DG lesions, met the operational criteria demanded for FF (identification thresholds and 

slopes within normal limits, lower discrimination of within-category faces than between-

category ones). Unlike controls, however, BL’s FF discrimination and identification abilities 

were aligned with one another; BL could not discriminate faces better than he could identify 

them. This CP operational criterion was established during the foundational studies of the 

phenomenon with unidimensional speech sounds (Liberman et al., 1957; Studdert-Kennedy et 

al., 1970) but is rarely achieved in that or other domains, including face perception (Campbell et 

al., 2001; Massaro, 1987a). DG integrity, therefore, is crucial for  supporting discrimination of 

highly confusable faces, suggesting that the perceptual act of CP and the mnemonic act of pattern 

separation are interrelated via a common hippocampal substrate. 

Similar perceptual and mnemonic relationships can be pieced together from process, 

psychophysics, or neuroanatomical approaches to CP or pattern separation. In a process 

approach, such interpretation is conceptualized as the tendency for individuals to categorize and 

discriminate based on stored information, such as category exemplars or prototypes (Angeli et 

al., 2008; Damper & Harnad, 2000; Goldstone & Hendrickson, 2010). Indeed, early neural 

network models of CP incorporated mechanisms of associative memory based on prototype 

models. According to these models, noisy perceptual stimuli are replaced by noise-free 

prototypes from memory (Damper & Harnad, 2000; Goldstone & Hendrickson, 2010). Within 

the scope of such approaches, reliance on previously stored exemplar information depends on 

maintaining the distinctiveness of this information through hippocampal pattern separation 

(Pickering, 1997). Retrieving a canonical pattern to replace a noisy one would also, presumably, 

engage the autoassociative circuitry of CA3 (Quiroga, 2017). Pattern separation activity within 

the DG/CA3, in turn, would track or support CP.  

The interrelatedness of CP and pattern separation is emphasized in all phases of the experimental 

paradigm used to operationalize the phenomenon. For example, the CP task begins with the 

repeated presentation of morphed faces. In theory, these exemplars of the prototype faces are 

sparsely coded by pattern separation processes (Yaros et al., 2019). The orthogonal episodic 

representations of each morphed face — or possibly their identity-defining structural features (L. 

Chang & Tsao, 2017; Chauhan et al., 2020) — are then projected from the DG onto the CA3 
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hippocampal cell layer via the mossy fiber pathway (Rolls & Kesner, 2006). Recurrent 

collaterals within the CA3 ensure the episodic elements are bound together and can be pattern 

completed from partial cues (Rolls & Kesner, 2006).  

In this manner, the CP task resembles a widely used test of pattern separation, the MST (Stark et 

al., 2015). Unlike tests of CP, however, presentation and discrimination of highly similar stimuli 

(i.e., unstudied lures) occurs during the retrieval phase of the MST. Nevertheless, the morphed 

faces in the CP paradigm would undergo pattern separation regardless of whether they were later 

tested in memory; in effect, the CP discrimination phase is an assessment of how well the faces 

are pattern separated. 

Due to his DG lesion, BL was unable to pattern separate highly similar faces as well as controls 

during the identification phase. As a result, he lacked the sparse encoding necessary for the 

perceptual, fine-tuned discrimination required to expand beyond the abstract, conceptual labeling 

act. Based on BL’s memory performance on the MST in a previous study, in which he was able 

to recognize dissimilar foils (Baker et al., 2016), we surmised that BL could encode coarser face 

representations during face-name labeling. These more generalized representations may have 

prompted him to autoassociate highly similar within-category faces to an endpoint identity in 

memory. This interpretation could explain why BL’s discrimination for within-category NF was 

at floor, and his FF within-category discrimination was near chance.  

As BL’s pattern separation of exemplars was limited, he was challenged to discriminate morphs 

based on their perceptual differences. Instead, he relied on successful face-name labelling (for 

FF) of the endpoint identity that he recognized during identification. In support of this 

interpretation, BL’s FF identification and discrimination were closely aligned. Although BL’s 

purported discrimination strategy was based on finding perceptual differences in the face pairs 

(see Appendix B: 

BL’s Face Discrimination Strategy), he seemed only to be able to discriminate the faces to the 

degree to which they were identified. This represents a CP ideal case rarely achieved through 

experimentation (Harnad, 1987a; R. E. Pastore, 1987; Studdert-Kennedy et al., 1970).  

Controls, too, showed significantly worse discriminability for within-category FF pairs relative 

to between-category ones. In this way, controls revealed one of the definitional criteria of CP 

effects (Harnad, 1987b; Studdert-Kennedy et al., 1970), albeit without BL’s within-category 
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indiscriminability and close alignment with identification. This within-category compression of 

controls might reflect something akin to a “perceptual magnet effect” (Feldman et al., 2009), 

working upon their neurotypical pattern-separated perceptual abilities. We believe this 

perceptual pull could be caused by shared connectivity within CA3. It works to elicit “same” 

rather than “different” judgments, leading to reduced d’ scores for highly similar within-category 

images, consistent with the role of CA3 in pattern completion, as was the case with his 

performance on MST (Baker et al, 2016). 

An alternative, but not incompatible, view (particularly applicable for the NF faces) is that such 

compression reflects the mechanisms inherent in the representational-hierarchical (R-H) model 

(Saksida & Bussey, 1998, 2010), which delineates the involvement of the perirhinal cortex (PRh) 

in object perception. These limits are thought to be challenged when visualizing highly similar 

objects and thus highly confusable if presented simultaneously. When such interference is 

present, the PRh can become “overloaded,” and feature-level representations of objects revert to 

the inferior temporal cortex (ITC; hence the concept of a hierarchy in the R-H paradigm). High 

interference can particularly impact perceptual decision-making (Bakkour et al., 2019) and 

activities of categorization and discrimination. When a novel item is presented that is similar to a 

previously seen one, the new item may be confused with the old. Without input from the PRh, 

the ITC must mediate this interference, which it does across broadly tuned neurons, leading to 

objects with similar perceptual features seeming familiar, or previously seen (Yeung, Ryan, 

Cowell, & Barense, 2013). An alignment of CP and R-H comes from our speculation that in the 

visual object domain the within-category, high-interference NF items are operated on, and 

perceptually “compressed” by the ITC; at the same time, the more distinct, finer-grained, 

between-category items are discriminated and “expanded” upon by the PRh, with the support of 

pattern separation/completion processes in the hippocampus.  

BL’s improved performance for between-category FF, a heightened performance shared with 

controls, can also be interpreted in terms of his reliance on labeling. These face pairs (i.e., .40–

.60) straddled identification boundaries. They had associations split between two concepts rather 

than one. BL could not pattern complete both of the face pairs to one of the endpoints. 

Consequently, the perceptual-conceptual tension inherent in these cross-category pairs helped 

BL (and control participants) to satisfy their conservative internal criterion of “different.” 

Similarly, pattern separation of morphed faces has been found to vary depending on the relative 
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familiarity and invariance of the faces involved in any particular trial (Bein, Duncan, et al., 2020; 

A. Chang et al., 2015; Yaros et al., 2019).  

Overall, our findings indicate that the role of the hippocampus in face identification and 

discrimination needs to be taken into account along with the functions of structures within the 

core face network, such as the lateral occipital cortex, fusiform gyrus, anterior temporal cortex, 

and prefrontal cortex (L. Chang & Tsao, 2017; Haxby et al., 2000; Kanwisher et al., 1997). 

Having established that the hippocampus contributes to at least one aspect of face perception, we 

lay the groundwork for future investigations on how pattern separation interacts with the core 

face network. Thus, the name of the face, a person’s familiarity with the face, and the myriad of 

meaningful associations and emotional biases or connections humans have for depictions of 

other humans, such as in the Trump-Putin morph, are equally important. These elements bring 

the conceptual richness of any face into being, as described in classic cognitive models of face 

processing (Bruce & Young, 1986; Haxby et al., 2000). For any face, the semantic face-name 

identity is incredibly important. The ability to disambiguate the nose and eyes of Ryan Gosling 

from the chin and cheekbones of Benedict Cumberbatch should have little bearing on 

consciousness if one could not assign a holistic identity to these features. This identity 

information is associated with faces by the hippocampus and neocortex (Sperling et al., 2001; 

Zeineh et al., 2003). Intriguing recent finding point to temporal pole as being the location of 

long-term semantic information about faces (Landi et al., 2021). We believe such semantic 

knowledge is central to the identification and discrimination of highly similar faces.  

A growing literature suggests that the MTL may engage in different mnemonic or perceptual 

processing expressions, possibly due to its projections to and from the neocortex (Poppenk et al., 

2013). Previously, the perirhinal cortex was thought to be the last stop within the MTL for this 

process, with perceptual contributions of the hippocampus limited to the spatial domain (A. C. H. 

Lee et al., 2005) or relational processing (Olsen et al., 2016). Using a previously established 

measure of CP for faces, we draw a parallel between both phases of identification and 

discrimination for controls and for a person with a focal brain lesion and a deficit in behavioral 

pattern separation. In doing so, our findings provide strong evidence that the hippocampus, and 

the DG, in particular, aid in processing faces in a high-interference task. These abilities are 

necessary for CP. Insofar as CP has been shown to be functionally dependent on perceiving 

differences and similarities in perceptual data, it appears to be intertwined with mnemonic 
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pattern separation. The current study brings us closer to understanding this relationship and, 

more generally, how the hippocampus enables both perception and memory. 
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Chapter 3 , Study 2 
 

 Hippocampal mnemonic discrimination across the 
auditory and visual domains 

3.1 Preface 

Behavioral pattern separation is operationally defined by our ability to distinguish between 

episodic memories, or temporally dated, personally experienced past events. In theory, it should 

not matter whether these episodic memories are within or between categories or within or 

between modalities. Indeed, complementary learning systems (CLS; McClelland et al., 1995) 

theorists conceive the hippocampus as representationally agnostic to the modality of information 

processed when discriminating similar memories (Huffman & Stark, 2014; Hunsaker & Kesner, 

2013; Kumaran et al., 2016). However, in practice, the items to be remembered in a pattern 

separation task, such as the commonly used Mnemonic Similarity Task (MST; Stark, Stevenson, 

Wu, Rutledge, & Stark, 2015), are semantically and visually related.  

After learning about pattern separation, one of my earliest desires was to test its limits by 

investigating whether mnemonic discrimination can be found in the auditory domain. I 

conceived of various ways to do this, including using music clips of similar sounds but different 

bands (AKA the “Beatles versus the Rolling Stones” test). These early conceptions never left the 

piloting stage for various reasons, including the difficulty of standardizing semantically familiar 

musical clips to be played to participants. Through consultation with my supervisor, Dr. Shayna 

Rosenbaum, I eventually settled on using a collection of realistic sounds. These sounds were 

provided to me from the Alain lab at the Rotman Research Institute 

The path of least resistance was to use these sounds in a paradigm the same as the visual standard 

for behavioral pattern separation, the MST. In this way, the concept of a Mnemonic Auditory 

Similarity Task (MAST) was born and later implemented in collaboration with Dr. R. Shayna 

Rosenbaum, Dr. Morris Moscovitch, and Nick Hoang. The prospect of testing the MAST versus 

the MST became an exciting one. By testing both on the same participants, I could investigate 

whether the hippocampus may be equally representationally “agnostic” for discriminating 
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overlapping stimuli presented in either the visual or auditory modality. Furthermore, by testing a 

patient with focal hippocampal lesions restricted to the DG, we could better localize any 

potential cross-modality effects in behavioral discrimination.  

The hippocampus is inundated by many unique representations a day, including events that we 

will later remember through recognition of previous experiences. If each of these representations 

in the hippocampus is encoded distinctly, pattern separation and pattern completion facilitate 

learning and memory across any perceptual domain (Huffman & Stark, 2014; Hunsaker & 

Kesner, 2013; O’Reilly & McClelland, 1994; O’Reilly & Rudy, 2001). Therefore, the 

hippocampal neural mechanisms you use to create a unique memory of where you parked your 

car on Monday versus Tuesday morning seem be the exact hippocampal neural mechanisms you 

use to discriminate the memory of the cheery robin song above you as you walked to work on 

Monday, as opposed to the starling chatter bothering you after you slammed the car door on 

Tuesday. Using a novel test of auditory behavioral discrimination, I set out to provide the first 

evidence of such an ability in humans. 

3.2 Introduction 

In humans, the brain-behavior correlates underpinning pattern separation have been explored in 

modified recognition memory tests, most of which use visual stimuli (Liu et al., 2015). The 

MST, for example, taxes the mnemonic discrimination of previously learned images of everyday 

objects from visually similar lures (Kirwan & Stark, 2007; Stark et al., 2015). Studies using the 

MST have helped researchers make inferences about pattern separation and its reliance on the 

hippocampus. For example, older individuals with reduced hippocampal volumes, as well as 

patients with hippocampal lesions (e.g., to the DG and CA3/CA1 subfields) are impaired relative 

to younger adults (or age-matched controls) on the MST (Baker et al., 2016; Bakker et al., 

2008b; Bennett et al., 2019; Doxey & Kirwan, 2015; Nauer et al., 2020; Riphagen et al., 2020). 

Based on this evidence, researchers have concluded that the MST and other visual lure 

discrimination (or mnemonic discrimination) tests are functionally sensitive to hippocampal 

pattern separation (Kirwan & Stark, 2007; Stark et al., 2013, 2019; Stark & Stark, 2017).  

In theory, pattern separation “expansion recoding” (Knierim & Neunuebel, 2016) can be 

performed on any sensory input to the hippocampus (Hunsaker & Kesner, 2013). Indeed, the 

multimodal nature of episodic memory suggests that elements from any sensory modality that 
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arrives on the doorstep of the hippocampus can be sparsely coded by the cellular rooms within 

the structure (Turk-Browne, 2019). Or so goes the theory. In reality, most tests of pattern 

mnemonic discrimination in humans use visual stimuli (Liu et al., 2015). Scant experimental 

evidence exists to support hippocampal pattern separation outside of the visual domain. Notably, 

these investigations are confined to rodent studies using olfactory inputs (Weeden et al., 2014; 

Woods et al., 2020). Despite the handful of these animal studies, it is unclear whether pattern 

separation in humans generalizes in modalities other than vision (Liu et al., 2015).  

Auditory stimuli, in particular, are notable for their absence of evidence in mnemonic 

discrimination tests. Yet, neurons in the mammalian hippocampus are known to respond to 

discrete sounds (Aronov et al., 2017; Berger et al., 1976; Christian & Deadwyler, 1986; Itskov et 

al., 2012; Jablonowski et al., 2018; Jirsa et al., 1992; Knight, 1996; Sakurai, 1994; Vinnik et al., 

2012). In humans, these hippocampal responses to acoustic inputs can occur during learning 

episodes (Jablonowski et al., 2018; Kumar et al., 2014). Consequently, patients with lesions to 

the hippocampus that include the DG are impaired in their ability to discriminate new from old 

sounds in memory tests (Milner, 1972; Squire et al., 2001). Therefore, it is not incongruent with 

computational models of hippocampal function that auditory stimuli might be pattern separated 

within the MTL.  

Knowing more about how hearing and memory interact is critical. As evidence grows to support 

a link between cochlear hearing loss and dementia (Griffiths et al., 2020), as well as 

hippocampally mediated neurogenesis and long-term memory (Kraus et al., 2010; Manohar et 

al., 2020), it is crucial that we better understand the degree to which sounds are, or are not 

discriminated by the hippocampus. These insights will help clinicians better construct and 

administer pattern separation tests as neuropsychological indicators of hippocampal integrity 

(Stark et al., 2019). Filling these gaps will also help us better understand the extent of 

hippocampal processing of highly similar inputs to building a unifying theory of hippocampal-

neocortical interactions (Kent et al., 2016). Furthermore, given the critical role ascribed to 

pattern separation for episodic memory, it is crucial to determine whether pattern separation 

effects can be detected through visual lure discrimination in memory and other tests that require 

fine mnemonic and perceptual discrimination. A key question here is whether these effects are 

related to performance on other tests of episodic memory that decline with age and in 

hippocampal patients whose deficits resemble age-related disorders. 
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Pursuing answers to the questions is at the heart of this study. To determine whether human 

behavioral discrimination occurs in the auditory domain using naturalistic sounds, we 

constructed the MAST. We tested the MAST against the MST — essentially pitting acoustic 

versus visual performance of behavioral discrimination — on three groups of adult participants 

(younger, middle-older, and older) as well as on an individual with a rare hippocampal lesion. 

We hypothesized that our research would address unanswered questions about pattern separation 

and the hippocampus’s role in learning and memory across visual and auditory modalities. In 

order to further delineate whether subtleties of interpreting sounds holistically or by elements of 

pitch and volume, we also tested participants on their experiences of these sounds in 

discrimination tests. 

Based upon findings in recognition memory tests and differences in other head-to-head modality 

tests (Bigelow & Poremba, 2014; M. Cohen et al., 2009; Stark & Stark, 2017), we predicted a 

difference in behavioral discrimination for visual versus auditory stimuli, with visual 

performance (as measured by the MST) being superior. We also forecast we would find a 

MAST-MST correlation in target versus lure and target versus foil performance, with lure 

sensitivity yielding the lower score. Such discrimination difficulty was predicted to be consistent 

across both auditory and visual modalities. This difficulty in discriminating targets from lures is 

hypothesized to be further exacerbated across the lifespan. Consequently, we also predicted that 

older adults would perform significantly worse than younger adults. Finally, we expected that 

relative to age-matched controls, a patient with a lesion to his DG would perform poorly and 

even worse than the healthy older adults in discriminating targets from lures. 

3.3 Materials and methods 

3.3.1 Participants — Experiment 1 

To evaluate auditory mnemonic discrimination as a proof of concept and as a diminishing ability 

across the lifespan, we tested 128 participants across three age groups: 1) 18–29 years of age 

(young adults or YA, N = 62), mean age = 20.61 (SD = 2.47 years), 40 females; 2) 48–66 years 

of age (middle-older adults or MO; N = 29), mean age = 56.79 (SD = 4.55 years), 14 females; 

and, 3) 67–92 years of age (older adults or OA, N = 37), mean age = 75.51 (SD = 6.00 years), 24 

females. These age groups are similar to the three categories used by Nauer et al. (2020) in their 

study of mnemonic discrimination across the adult lifespan.  
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Inclusion criteria required participants to be proficient in English, normal or corrected-to-normal 

vision and hearing, and no history of neurological or psychological disorders. All participants, 

except for YAs, were assessed on the Montreal Cognitive Assessment (MoCA). Older adults 

under 80 had to have a score at or above 26 (out of a 30-point maximum). Participants above 80 

were required to have a score at or above 25 (Rossetti et al., 2011). The number of participants 

used does not include the following exclusions: 16 YAs, 2 MOs, and 10 OAs for either a) a 

history of head injury, hearing or memory impairment, b) apparent disregard or inattention to 

instructions, or c) MoCA scores below the cutoff. YAs were recruited through the York 

University Undergraduate Research Participant Pool (URPP). MOs and OAs were recruited 

through the community or via the participant database at Baycrest Health Sciences. Participants 

provided written, informed consent in accordance with the ethics review boards at York 

University and Baycrest and standards of the Canadian Tri-Council Research Ethics guidelines. 

3.3.1.1 Experiment 1 trimmed sample 

Sound quality evaluations were administered to a portion of the YA participants from 

Experiment 1. The performance of these YA participants was used as a baseline to collect a 

trimmed sample across the other two age categories. These sound quality tests (described below) 

followed the study and test administration of the MAST. The demographic composition of this 

subset for YAs was as follows: n = 28, mean age = 20.54 (SD = 2.38 years), 19 females. Most 

MO participants agreed to the sound quality screens, n = 27, mean age = 56.93 years (SD = 

4.56), 13 females. OAs were also represented by most participants from the main testing group, n 

= 35, mean age = 74.97, SD = 5.70, 23 females.  

A trimmed sample of the MO and OA participants — whose sound quality ratings for identical 

items were within two standard deviations of the YA sound quality rating group — was collected 

from this subset. The purpose of this trimmed sample was to run auditory tests across all groups 

with individuals who were matched with the non-subjective sound rating abilities of the YA 

group. Descriptive statistics for this trimmed sample are as follows: YA, n = 26, mean age = 

20.65 (SD = 2.43 years), 18 females; MO, n = 27, mean age = 56.93 (SD = 4.56 years); OA, n = 

22, mean age = 74.91 (SD = 6.05 years), 15 females. 
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3.3.2 Participants — Experiment 2 

To compare auditory mnemonic discrimination with visual mnemonic discrimination across the 

adult lifespan, we used a subset of participants from Experiment 1. These participants were 

administered both the MAST and the MST. The demographic composition of this subset for YAs 

was as follows: n = 26, mean age = 21.00 (SD = 2.37 years), 18 females. The subset for MOs 

resulted in n = 26 participants, mean age = 56.50 years (SD = 4.20), 12 females. OAs were 

represented by 29 participants, mean age = 74.28, SD = 5.28, 20 females. 

3.3.2.1 Experiment 2 trimmed sample 

As with Experiment 1, we collected a trimmed sample of participants for Experiment 2. These 

participants were those whose sound quality ratings for identical items were within two standard 

deviations of the experiment 1 YA group. (Not every YA participant was administered both the 

sound quality ratings and the MST; the overall pool for those who did both was n = 18. Two of 

these individuals were subsequently eliminated for low sound quality ratings). Descriptive 

statistics for this sample are as follows: YA, n = 16, mean age = 20.94 (SD = 2.43 years), 11 

females; MO, n = 25, mean age = 56.36 (SD = 4.24 years), 12 females; OA, n = 18, mean age = 

73.89 (SD = 4.93 years), 12 females. 

3.3.2.2 Experiment 2 — Patient BL 

To better understand the neural basis of pattern separation in two domains, we examined 

auditory versus mnemonic discrimination in patient BL. See section 2.3.2 for a description of 

patient BL, who was 56.72 years old at testing. The inclusion of this patient in Study 2 provided 

a way to explore the role of the hippocampus in producing distinct mnemonic representations 

necessary for the behavioral discrimination of overlapping details. More importantly, we sought 

to identify whether focal lesions to the DG would yield behavioral differences in stimulus 

discrimination and sensitivity, especially in response to modal changes to the input signals. 

3.3.3 Experimental design  

3.3.3.1 Mnemonic Auditory Similarity Task (MAST) 

To evaluate the auditory mnemonic discrimination abilities of participants relative to their 

respective control groups, we created the Mnemonic Auditory Similarity Task (MAST). The 
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MAST is analogous to the visual object-based MST (Kirwan & Stark, 2007; Stark et al., 2015). 

We used the MST paradigm as a template for programming our experiment. However, we 

inserted auditory “objects” or 1 s clips of everyday, naturalistic sounds in place of common 

visual objects.  

Like the MST, the MAST consists of a study phase and test phase. At study, participants were 

presented with a total of 40 easily recognizable, everyday auditory events (e.g., duck quacking, 

baby crying, fax machine buzzing) played in succession, each presented for 1 second with a 

corresponding response time of 4 seconds followed by a 0.5-second inter-stimulus interval (ISI). 

At encoding, participants were asked to classify the sounds as animate (e.g., duck) or inanimate 

(e.g., piano). At test, participants heard a total of 60 sounds — 20 old or repeated sounds 

(targets), 20 new sounds (foils), and 20 similar sounds (lures) — played in succession, each 

presented for 1 second followed by a 0.5 second ISI. After each trial, participants were asked to 

classify by way of a button press whether the sound was old, similar, or new. See Figure 3-1.  

Compared to the MST, the MAST presents fewer stimuli at test (60 sounds versus 128 

photographs). We used fewer stimuli to accommodate discrimination fatigue in older adults and 

amnesic participants, a condition we discovered while piloting the MAST with younger adults. 

In addition, we acknowledged the reduced number of auditory trials in other behavioral tests of 

older adults or adults with neurodegenerative disorders (e.g., Goll et al., 2011).  

3.3.3.1.1 MAST sound ratings 

In a post-experimental session, participants were played pairs of sounds back-to-back. The items 

in each pair were different from each other, identical to each other, or similar to each other. 

Participants were asked to compare how similar the sounds were on a Likert scale of 1 to 5. On 

this scale, 1 equaled no similarity, and 5 was the highest similarity (i.e., identical).  

Participants were presented with the stimulus sounds from the MAST, one at a time, and asked to 

rate each one on vividness for the amount of auditory, visual, and any other sensory details 

(across the five senses) that may have been elicited in response to each sound. The first rating 

group asked participants for their subjective reactions to the overall acoustic quality of the two 

sounds. The second rating was specific to pitch (high vs. low) for the pairs, and the third one was 

specific to volume (loud vs. quiet). As we detected strong correlations among the three different 
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sound rating groups, we averaged them into one group with three levels (different sounds, 

identical sounds, and similar sounds). The second series of rating screens was phrased in terms 

of subjective vividness during encoding and retrieval. We found the results of this second series 

challenging to interpret (e.g., many participants could not distinguish which sounds were 

presented at study versus test), and they have not been reported here. 

We administered this posttest for two reasons. The first aim was to quantify participants’ 

conscious ability to report attributes of sounds. This ability is thought to be present in 

neurotypical adults, but some studies have found this ability absent in amnesiac patients (Howe 

& Lee, 2021). Our second motive was to obtain a proxy for a hearing or an attentional test, 

particularly by objectively ascertaining participants’ ability to note correctly if two sounds were 

identical. By including this posttest as a screening measure for trimmed samples, we were also 

able to control for the influence of perceptual abilities on mnemonic discrimination, a missing 

element from the MST (Davidson et al., 2019).  

3.3.3.2 MST: Visual mnemonic discrimination 

Visual mnemonic discrimination was evaluated using the MST (Kirwan & Stark, 2007; Stark et 

al., 2013, 2015). The MST has been used to test neurotypical adults and participants with 

hippocampal lesions, and together with fMRI to help establish the neural basis of pattern 

separation, the brain’s way of encoding unique memory traces (Baker et al., 2016; Bakker et al., 

2008b; Kirwan et al., 2012; Rolls, 2016). The MST consists of a study phase and test phase, 

administered following a published protocol (Stark et al., 2013). Participants viewed 128 color 

images of everyday objects (e.g., picnic basket, fishbowl, saxophone) for 2 seconds each, 

followed by a 0.5 second ISI during the study phase. For each picture, participants indicated via 

button press whether the object depicted was primarily an outdoor item (e.g., a picnic basket) or 

an indoor thing. A test phase followed the study phase. In the test phase, participants were 

administered a surprise recognition memory test. They were randomly presented with 192 

images, each onscreen for 2 seconds, followed by a 0.5 second ISI. The photographs at test 

included 64 targets (studied objects), 64 unrelated foils, and 64 similar lures. Participants had to 

classify whether the image was old, new, or similar to the items presented at study. 
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Figure 3-1. Visual depiction of the Mnemonic Auditory Similarity Task (MAST) 

3.3.4 Apparatus 

The MST was administered as a Windows stand-alone application on either a Lenovo ThinkPad 

or a Dell Latitude laptop. The MAST was run on identical laptops as a stand-alone application 

programmed in E-Prime 2.0 (Psychology Software Tools). The sound files on the MAST were 

presented to participants in a quiet room binaurally through headphones (Bose QuietComfort 25 

Over-Ear Noise Cancelling).  
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3.3.5 Scoring and analysis 

3.3.5.1.1 Mnemonic discrimination 

Mnemonic discrimination performance on the MST and the MAST was estimated by measuring 

mean recognition accuracy (proportion correct) across conditions. This statistic reflected the 

ability of participants to identify foils as new, lures as similar, and targets as old. Calculations 

were made by totaling the correct number of old, similar, and new responses in the visual or 

auditory trials and then dividing these by 30 (for the MST) or 20 (for the MAST) to determine 

proportional accuracy in each condition. We then assessed performance biases on both the 

MAST and the MST through the Lure Discrimination Index (LDI) score. It rectifies response 

biases to lures in the face of unlearned items (Stark et al., 2015) by subtracting the proportion of 

similar responses given to foils from the proportion of similar responses given to lures. In 

addition to the LDI, we calculated a standard recognition score (REC) by subtracting the 

proportion of old responses to foils (false alarms) from old responses to targets.  

3.3.5.1.2 Memory sensitivity d’ scores 

In order to determine whether differences in mnemonic sensitivity could be detected using signal 

detection measures (Green & Swets, 1966; Macmillan & Creelman, 2005; Stanislaw & Todorov, 

1999), we computed d’ scores for target items relative to foils d’ (T,F) and for target items 

relative to lures d’ (T,L). These d’ scores allow for better cross-modality comparisons across 

studies (Loiotile & Courtney, 2015); hence, these standardized scores facilitated direct MAST 

and MST comparisons in Experiment 2. Traditional recognition memory sensitivity d’ (T,F) was 

calculated in SPSS as the normalized difference between the hit rate for targets versus the false-

alarm rate for foils. Target versus lure discrimination sensitivity d’ (T,L) was calculated as the 

normalized difference between the hit rate for old items and the rate of calling lure items old.  

3.4 Results 

3.4.1 Experiment 1 

3.4.1.1 Age effects displayed using the MAST 

In Experiment 1, we set out to determine whether age-related effects on mnemonic 

discrimination extend to the auditory modality as they have been found in the visual memory 
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(Stark et al., 2013, 2015). Marginal means (proportion response) for all conditions across the 

three age groups for the MAST (participants used in Experiment 1) and the MST (participants 

from Experiment 2) can be found in Table 3-1. Regardless of age, participants recognized lures 

at a significantly lower accuracy rate than targets and foils. All MST results in each condition 

across the three age groups are within one standard deviation (SD) of those reported by Nauer 

and colleagues (Nauer et al., 2020).  

Table 3-1. Experiments 1 and 2, proportion endorsed for each age group and stimulus type 

The correct column is shaded; standard errors are in parentheses below. 

Age 

group 

Study 

& n 

Targets  Lures  Foils 

Old Similar New  Old Similar New  Old Similar New 

18–29 

MAST 

One 

62 

.70 

(.02) 

.18 

(.01) 

.12 

(.01) 

 .31 

(.02) 

.38 

(.01) 

.31 

(.02) 

 .04 

(.01) 

.17 

(.01) 

.79 

(.02) 

18–29 

MAST 

Two 

26 

.66 

(.03) 

.20 

(.02) 

.14 

(.02) 

 .28 

(.03) 

.37 

(.02) 

.35 

(.03) 

 .05 

(.01) 

.15 

(.02) 

.80 

(.03) 

18–29 

MST 

Two 

26 

.77 

(.02) 

.14 

(.01) 

.09 

(.02) 

 .40 

(.02) 

.43 

(.03) 

.17 

(.02) 

 .05 

(.01) 

.13 

(.02) 

.81 

(.02) 

48-66 

MAST 

One 

29 

.61 

(.03) 

.23 

(.02) 

.16 

(.02) 

 .32 

(.03) 

.38 

(.04) 

.30 

(.02) 

 .06 

(.01) 

.18 

(.02) 

.76 

(.02) 

48-66 

MAST 

Two 

26 

.61 

(.03) 

.22 

(.02) 

.17 

(.02) 

 .33 

(.04) 

.37 

(.04) 

.31 

(.03) 

 .06 

(.01) 

.18 

(.02) 

.77 

(.02) 

48-66 

MST 

Two 

26 

.83 

(.02) 

.11 

(.01) 

.06 

(.01) 

 .49 

(.02) 

.40 

(.02) 

.12 

(.02) 

 .03 

(.01) 

.11 

(.02) 

.86 

(.02) 

67-92 

MAST 

One 

37 

.54 

(.03) 

.26 

(.02) 

.20 

(.02) 

 .35 

(.02) 

.34 

(.02) 

.31 

(.02) 

 .09 

(.01) 

.22 

(.02) 

.69 

(.03) 

67-92 

MAST 

Two 

26 

.54 

(.03) 

.27 

(.02) 

.19 

(.02) 

 .36 

(.02) 

.32 

(.02) 

.32 

(.02) 

 .07 

(.01) 

.20 

(.02) 

.73 

(.02) 

67-92 

MST 

Two 

29 

.84 

(.02) 

.09 

(.02) 

.07 

(.01) 

 .61 

(.03) 

.23 

(.03) 

.16 

(.02) 

 .06 

(.01) 

.09 

(.02) 

.85 

(.02) 
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3.4.1.1.1 Auditory mnemonic discrimination 

We focused on MAST LDI scores as the most sensitive measures to determine age-related 

differences in auditory mnemonic discrimination (Stark & Stark, 2017). For LDI scores, 

Levene’s F indicated the assumption of homogeneity of variance was not met across the three 

age groups (p = .002). Therefore, to analyze the mean differences among the age categories, we 

used the obtained Welch’s F ratio. This robust method corrects for degrees of heterogeneity in a 

data set (Field, 2013; Welch, 1951). It showed a significant main effect of age on discriminating 

auditory lures, Welch’s F(2, 56.56) = 4.44, p = .016. A significant linear trend in the data, 

F(1,125) = 8.12, p = .005, suggested that as age increased, auditory LDI decreased. See Figure 

3-2. Post hoc comparisons using the Games-Howell procedure were conducted to determine 

which pairs of the three LDI means differed significantly. These procedures indicated that OA 

group members performed significantly worse at auditory lure discrimination (M = .12, SE = 

.03) than the YA group (M = .21, SE = .01; Games-Howell p = .011). The OA group also 

performed worse than the MO group (M = .19, SE = .04), and the MO group reported results 

than were below the YA group, but these two post hoc tests did not reach significance using the 

Games-Howell method (p > .05 for both comparisons). 

3.4.1.1.2 Auditory recognition memory 

We analyzed REC scores to establish whether there were also age-related differences in auditory 

recognition memory, using a traditional measure often applied to the MST (e.g., Stark & Stark, 

2017). Unlike the LDI results, the REC scores did not violate the assumption of homogeneity of 

variance. A one-way ANOVA indicated there was a significant effect of age on standard 

recognition of auditory targets, F(2,125) = 21.80, p <.001, ω = .25. In addition, a significant 

linear trend in the data, F(1,125) = 42.84, p <.001, revealed that as age increased, auditory 

recognition memory decreased proportionately. See Figure 3-2. Post hoc comparisons using the 

Games-Howell procedure were conducted to determine which pairs of the REC means differed. 

This test indicated that the OA group (M = .45, SE = .03) had significantly worse recognition 

memory for sounds than both the YA group (M = .66, SE = .02), and the MO group (M = .55, 

SE = .03); Games-Howell p <.05 for both comparisons. Furthermore, the MO group had 

significantly worse auditory REC scores than the YA individuals (Games-Howell p = .018). 
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Figure 3-2. Experiment 1: LDI and recognition memory scores 

Performance scores for lure discrimination (blue line) and recognition memory (green line) 

across the three age groups tested. Error bars represent standard error (SE). 

3.4.1.2 Auditory memory sensitivity d’ scores 

We investigated mnemonic sensitivity using signal detection methods by contrasting d’ scores 

for targets relative to lures d’ (T,L) and targets relative to foils d’ (T,F). Levene’s F confirmed 

the assumption of homogeneity of variance was met across the three age groups for both these 

measures. Therefore, we proceeded with a 3x2 mixed design ANOVA (age category x 

mnemonic sensitivity) to determine the statistical degree to which participants’ target 

identification sensitivity varied over the three age groups.  

Collapsed across age, participants were significantly better at discriminating old items relative to 

foils (M = 1.91, SE = .05) than they were at discriminating old items relative to lures (M = 0.83, 

SE = .04), F(1,125) = 650.87, p <.001, 𝑛𝑝
2 = .84. However, we failed to find evidence that this 

difference in sensitivity interacted with the age group of the participant F(2,125) = 0.61, p = 

.547, 𝑛𝑝
2 = .01. There was, however, a significant difference between age groups for mean 

sensitivity scores, F(2,125) = 26.91, p <.001, 𝑛𝑝
2 = .30. Post-hoc tests corrected using the 
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Games-Howell test indicated that the OA group (M = 1.02, SE = .07) performed significantly 

worse than both the YA group (M = 1.71, SE = .06) and the MO group (M = 1.37, SE = .08; p 

<.001 and p = .017, respectively). Likewise, participants in the MO group were significantly 

worse than the YA group (p = .015). 

3.4.1.2.1 Correlation with sound ratings 

We investigated the relationship between average d’ sensitivity scores and sound ratings on those 

participants who completed the MAST, as well as the post-test sound ratings (see section 

3.3.3.1.1). Using bivariate Pearson correlations, we found that d’ (T,L) was significantly related 

to participants’ ability to identify identical sounds as identical , r = .31, 95% BCa CI [.11, .45], p 

= .003. A weaker yet significant correlation was found between d’ (T,F) and the ability of 

participants to identify identical sounds as the same, r = .21, 95%, BCa CI [.03, .41], p = .044. 

We failed to find evidence that participants’ ratings of different sound trials as different or 

similar sound events as similar correlated with auditory mnemonic sensitivity.  

3.4.1.3 Age effects in trimmed sample 

Pursuing the investigation of the ability of individuals to identify pairs of sounds as the same, we 

analyzed the data on participants who completed the sound quality ratings. We trimmed the 

sample to include only those individuals who performed within two standard deviations of young 

participants' mean sound quality rating. We chose the YA group as the benchmark because this 

group performed significantly better than the other two age categories on our tests of auditory 

mnemonic sensitivity. In effect, this meant that all participants in the trimmed sample had to 

have an average correct response to identical items across the three sound ratings (pitch, volume, 

sound quality) equal to or higher than 4.78 out of 5.00 (a 95.60% success rate).  

A 3x2 mixed-design ANOVA (age category x sensitivity) was applied to this trimmed sample of 

participants who performed within normal limits relative to the YA benchmark of 4.78. We again 

found that participants (averaged over groups) were significantly better at discriminating old 

items relative to foils (M = 1.92, SE = .06) than they were at discriminating old items relative to 

lures (M = 0.86, SE = .06). As with the untrimmed sample, the difference in mnemonic 

sensitivity was significant, F(1,72) = 371.43, p <.001, 𝑛𝑝
2 = .84. We again failed to find evidence 

that this difference in sensitivity interacted with age F(2,72) = 0.76, p = .473, 𝑛𝑝
2 = .02. As with 
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the untrimmed sample, there was a significant difference between age groups for auditory mean 

sensitivity scores, F(2,72) = 10.48, p <.001, 𝑛𝑝
2 = .23. Post-hoc tests corrected using the Games-

Howell indicated that older adults in the trimmed sample showed average sensitivity scores 

which were slightly higher than those of the untrimmed sample (untrimmed M = 1.02, SE = .07; 

trimmed M = 1.11, SE = .10). This trimmed subset of OAs continued to significantly 

underperform the YA group (M = 1.72, SE = .09; p < .001). A replication of the MO group’s 

significantly worse performance (M = 1.35, SE = .09) in comparison to the YA group was also 

found (p = .021). 

When accounting for perceptual abilities to identify sounds, the primary difference between the 

whole and trimmed samples was that the OA group’s weaker performance in auditory mnemonic 

sensitivity in the trimmed sample failed to reach significance (p = .207) when using a Games-

Howell pairwise comparison with the MO group.  

3.4.2 Experiment 2  

By testing a subset of participants from Experiment 1 on both the MAST and the MST, we were 

able to make inferences about relative perceptual and mnemonic abilities of healthy adults across 

the lifespan. Furthermore, we could make these comparisons with groups similar in sample sizes 

(n = 26, 26, and 29 in YA, MO, and OA categories, respectively). Additionally, the testing of 

patient BL in Experiment 3 provided a way to gauge the involvement of hippocampal subfields 

known to facilitate pattern separation in the visual modality in auditory mnemonic discrimination 

and sensitivity.  

3.4.2.1 Age effects in auditory and visual memory 

3.4.2.1.1 Auditory and visual mnemonic discrimination 

To see if age effects could be found both in auditory and visual memory in the same participants, 

we again began our analysis on LDI and REC scores. Marginal mean accuracy for recognition 

memory discrimination and sensitivity for this subset of participants can be found in Table 3-2. 

For auditory LDI scores, Levene’s F again indicated the assumption of homogeneity of variance 

was violated across the three age groups for auditory LDI scores (p = .022). A one-way ANOVA 

using a robust method to correct this heterogeneity specified a significant main effect of age on 
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the ability to discriminate auditory lures, Welch’s F(2,49.61) = 3.96, p = .025. Multiple 

comparisons using the Games-Howell procedure indicated that the OA group (M = .12, SE = 

.03) performed significantly worse (p = .018) on auditory lure discrimination than younger adults 

(M = .23, SE = .02). Although the OA group members were weaker on average in auditory lure 

discrimination than the MO individuals (M = .19, SE = .04), we failed to find evidence that the 

difference between OA and MO groups was significant (p = .311). In addition, the relatively 

poor performance of the MO group compared to the YA group failed to reach significance. (p = 

.738). The above results of significant versus non-significant pairwise comparisons parallel those 

found in Experiment 1. 

Table 3-2. Experiment 2: Mnemonic discrimination and sensitivity by age group 

Standard errors are in parentheses below. 

Age group LDI REC d’ T,L d’ T,F 

18–29 MAST 
.23 

(.02) 

.61 

(.03) 

1.13 

(.08) 

2.09 

(0.09) 

18–29 MST 
.30 

(.03) 

.71 

(.03) 

1.03 

(.08) 

2.44 

(.11) 

46-64 MAST 
.19 

(.04) 

.55 

(.04) 

0.82 

(0.12) 

1.91 

(0.12) 

46-64 MST 
.29 

(.02) 

.80 

(.02) 

1.06 

(.07) 

2.89 

(.11) 

66-92 MAST 
.12 

(.03) 

.47 

(.03) 

0.49 

(0.08) 

1.64 

(0.07) 

66-92 MST 
.16 

(.02) 

.78 

(.02) 

0.77 

(0.07) 

2.70 

(0.09) 

BL MAST .15 0 0 0 

BL MST –.21 .64 0.29 1.97 

 

Visual LDI scores from the MST did not violate the assumption of equal variances. Therefore, 

we ran a one-way ANOVA to determine whether there were age-related differences in LDI 

scores, as has been found in previous investigations using this metric (Stark et al., 2015). Results 

revealed a main effect of age group on the ability to discriminate visual lures, F(2,78) = 8.80, p 

<.001, 𝑛𝑝
2 = .18. Multiple comparisons using the Games-Howell procedure showed that the OA 

group (M = .16, SE = .02) had significantly worse LDI scores than both the YA (M = .30, SE = 

.03; p = .004) and the MO groups (M = .29, SE = .02; p <.001). MO means were very similar to 
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the younger group and the difference in visual discrimination for the two groups was not found 

to be significant (p = .953). 

3.4.2.1.2 Auditory and visual recognition memory 

Auditory and visual REC scores in Experiment 2 met the assumption of homogeneity of variance 

across the three age groups (p > .05). Therefore, one-way ANOVAs were used to determine 

whether there were differences in means across the three age groups. For auditory REC, there 

was a significant effect of age on standard recognition of auditory targets, F(2,78) = 5.15, p = 

.008, 𝑛𝑝
2 = .12. Post hoc comparisons using the Games-Howell method indicated that the OA 

group (M = .47, SE = .03) had significantly worse REC scores than the YA group (M = .61, SE 

= .03; p = .003). Although the OA group had lower mean REC scores than the MO group (M = 

.55, SE = .03) and the MO group had weaker performance than the YA group, the pairwise 

differences failed to reach statistical significance (p >.05).  

As with the auditory values, traditional recognition memory scores from the MST also exhibited 

a main effect of age category, F(2,78) = 4.11, p = .02, 𝑛𝑝
2 = .10. We detected a significant 

quadratic tendency in the data, F(1,78)  = 4.06, p = .047, indicating a curvilinear trend. Indeed, 

multiple comparisons showed that YAs (M = .71, SE = .02) had lower average visual REC 

scores than OAs (M = .78, SE = .02), although the difference in their scores was not found to be 

significant (p = .116). A different story was found between the YA group and the MO group. 

The former group performed significantly worse on visual REC scores than the MO group (M = 

.80, SE = .02). The difference between these two groups was significant (p = .031). 

3.4.2.1.3 Mnemonic sensitivity for auditory vs. visual memory 

As well as evaluating mnemonic discrimination in experiment two, we also assessed whether 

age-related effects on mnemonic sensitivity (as measured by d’) are different for auditory versus 

visual stimuli. To see if we could find a significant main effect of the modality of stimuli on 

mnemonic sensitivity, we first used paired-samples t-tests to contrast d’ scores for the MAST 

and the MST. Irrespective of age category, participants performed worse at lure mnemonic 

sensitivity for everyday sounds (M = 0.81, SE = .06) than for everyday visual objects (M = 0.95, 

SE = .04; Figure 4). The difference in d’ sensitivity means, –0.15, 95% BCa CI [–.28, –.01], was 

significant t(80) = –2.27, p = .026, albeit a small effect d = –0.25. A study of foil mnemonic 
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sensitivity differences across modality illustrated that participants were worse at recognizing d’ 

for targets relative to foils in the auditory relative to the visual domain. The mean difference in d’ 

(T,F), –0.81, 95% BCa CI [–0.94, –.68] was significant, t(80) = –11.70, p <.001, and represented 

a large effect, d = –1.30. See Figure 3-3. 

Despite the significant differences in performance in mnemonic sensitivity across the auditory 

and visual domains, d’ comparative pairs values had medium correlations. As measured using 

the bivariate Pearson correlation, we found that d’ (T,L) of sound objects was significantly 

related to d’ (T,L) of visual objects, r = .30, 95% BCa CI [.04, .51], p = .007. See Figure 3-4. In 

addition, the auditory d’ (T,F) trials were significantly correlated with the visual trials for d’ 

(T,F), r = .36, 95%, BCa CI [.19, .51], p = .001.  

3.4.2.1.4 Auditory versus visual memory sensitivity 

 Auditory versus visual mnemonic sensitivity to lures 

Our computation of d’ scores allowed for the direct testing of memory sensitivity in the acoustic 

versus visual domains. A review of mean participant sensitivity to discriminating target items 

from foils and lures (see Table 3-2) shows that they progressively declined over the three groups 

tested. Two separate 3x2 mixed-design ANOVAs, with factors of age and modality, were run on 

the d’ scores for targets relative to lures d’(T,L) and targets relative to foils d’(T,F). We aimed to 

determine the statistical degree to which participants’ auditory memory sensitivity varied across 

the lifespan.  

The d’ (T,L) results exhibited a main effect of age, F(2,78) = 12.92, p <.001, 𝑛𝑝
2 = .25, and a 

main effect of modality, F(1,78) = 5.08, p = .027, 𝑛𝑝
2 = .06. These results must be interpreted in 

light of a significant age x modality interaction, F(2,78) = 3.63, p = .031, 𝑛𝑝
2 = .09. Post hoc 

comparisons using the Bonferroni correction indicated that younger adults’ mean d’ (T,L) scores 

for the MAST (M = 1.13, SE = .08) were slightly higher than their mean d’ (T,L) sensitivity 

scores for the MST (M = 1.03, SE = .08). The difference between the two means failed to reach 

levels of significance (p = .380).  

Differences between groups, however, amplify in the other age categories. MO adults were 

significantly worse at lure sensitivity in the auditory domain (M = 0.82, SE = .12) than the visual 

one (M = 1.06, SE = .07; p = .034). OAs reported poor sensitivity at detecting targets relative to 
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lures in both the auditory (M = 0.49, SE = .08) and visual (M = .77, SE = .07) modalities. 

However, they were significantly worse the auditory domain, d’ (T,L), p = .009.  

 

Figure 3-3. Experiment 2: MAST and MST lure and recognition mnemonic sensitivity 

Performance averaged across all participants. Error bars represent standard error (SE). 

For simple effects of lure discrimination by modality, we found that auditory d’ (T,L) scores for 

the OA group were significantly worse than auditory d’ (T,L) for both the YA group (p <.001) 

and the MO group (p = .046). We failed to find evidence that the MO group was significantly 

different than the YA group (p = .082). These MAST results found parallels with the MST 

findings: visual d’ (T,L) scores for the OA group were again significantly worse than the YA 

group (p = .034) and the MO group (p = .017). The marginal difference between visual 

mnemonic sensitivity for the MO group compared to the YA group failed to reach significance 

using the post hoc comparisons (p = 1.00)  

 Auditory versus visual mnemonic sensitivity to foils 

Unlike mnemonic sensitivity to targets relative to lures, d’ (T,F) results did not exhibit a similar 

main effect of age group, F(2,78) = 1.89, p = .158, 𝑛𝑝
2 = .05, although these results must again 

be interpreted within the context of a main effect of modality, F(1,78) = 176.01, p <.001, 𝑛𝑝
2 = 
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.69, and a modality x age interaction, F(2,78) = 13.80, p <.001, 𝑛𝑝
2 = .26. Post hoc comparisons 

using the Bonferroni correction indicated the YA group mean d’ (T,F) scores for the MAST (M 

= 2.09, SE = .09) were worse than their mean scores for the MST (M = 2.44, SE = .11). The 

difference between the two means, –0.35 (SE = .11), was significant (p = .001). We also found 

that the MO group d’ (T,F) scores for the MAST (M = 1.91, SE = .12) were significantly worse 

(p < .001) than that group’s d’ (T,F) performance for the MST (M = 2.89, SE = .11). Similarly, 

the OA group had significantly worse performance (p < .001) in detecting auditory targets from 

foils (M = 1.64, SE = .07) compared to their sensitivity for discriminating visual targets relative 

to foils (M = 2.70, SE = .09).   

 

Figure 3-4. Experiment 2: Correlation between MAST and MST d’ scores 

Interestingly, recognition memory sensitivity for visual objects was lowest for the YA group, 

whereas it peaked in this group for the auditory stimuli and then declined in a linear fashion 

across the MO and OA groups. We find this relationship further quantified in the data when 

comparing the MAST d’ (T,F) for OAs compared to that of the YAs. The OA group showed 

significantly worse MAST d’ (T,F) performance than the YA group (p  = .005). The OA group 

also had lower sensitivity to auditory foils than the MO group, but this difference was not 
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significant (p = .157). For their turn, the MO individuals had lower auditory d’ (T,F) means than 

the YA group, but we again failed to find evidence this difference was significant (p = .628). 

In contrast, visual mnemonic sensitivity for targets relative to foils showed that this ability 

increases in middle-to-older age and then plateaus in older age. For example, we found that the 

YA group members were significantly worse than those in the MO group for their sensitivity to 

target items relative to foils (p = .009). The YA individuals were also worse than the OA 

participants for d’ (T,L), although the difference between the groups failed to reach significance 

(p = .227). The OA group performed slightly worse than the MO group, but again, this 

comparison could not reach significance (p = .535).  

3.4.2.2 Age effects in trimmed sample 

We re-ran the analyses from sections 3.4.2.1.4.1 and 3.4.2.1.4.2 on a trimmed sample of 

Experiment 2 participants (see 3.3.2.1 for a description of this sample). Two separate 3x2 mixed-

design ANOVAs (age category x sensitivity) were applied to this group.  

3.4.2.2.1 Auditory versus visual mnemonic sensitivity to lures 

As with the untrimmed sample, the d’ (T,L) results exhibited a main effect of age, F(2,56) = 

7.63, p = .001, 𝑛𝑝
2 = .21. However, unlike the untrimmed sample, we failed to find a main effect 

of modality, F(1,56) = 1.95, p = .168, 𝑛𝑝
2 = .03, nor a significant age x modality interaction, 

F(2,56) = 1.37, p = .263, 𝑛𝑝
2 = .05. See Figure 3-5. Post hoc comparisons using the Games-

Howell procedure indicated that the OA group (M = .63, SE = .09) showed significantly worse 

(p < .001) performance for mean d’ (T,L) scores than younger adults (M = 1.12, SE = .09). The 

individuals in the OA group also performed significantly worse (p = .032) in average lure 

sensitivity than the MO group (M = .94, SE = .07). The difference between the average means 

for the MO and YA groups failed to reach levels of significance (p = .277).  

 Auditory versus visual mnemonic sensitivity to foils 

Results of our investigation of auditory versus visual mnemonic sensitivity to foils for the 

trimmed sample were unchanged (in terms of significance detected) from those for the 

untrimmed sample. 
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Figure 3-5. Experiment 2 (trimmed sample): MAST vs. MST lure sensitivity 

Mean mnemonic sensitivity (Y-axis) of targets relative to lures, d’ (T,L). MAST results are 

represented by the light bar, MST results by the dark bar. Error bars represent standard error. 

As with the larger sample, the d’ (T,F) sample trimmed by participants’ perceptual sound quality 

ratings did not exhibit a main effect of age group, F(2,56) = 0.71, p = .498, 𝑛𝑝
2 = .02. These 

results must again be interpreted within the context of a main effect of modality, F(1,56) = 

112.53, p <.001, 𝑛𝑝
2 = .67, and a modality x age interaction, F(2,56) = 9.86, p <.001, 𝑛𝑝

2 = .26. 

Post hoc comparisons using the Bonferroni correction indicated the YA group mean d’ (T,F) 

scores for the MAST (M = 2.15, SE = .13) were worse than their mean scores for the MST (M = 

2.45, SE = .14). The difference between the two means, –0.30 (SE = .14), was significant (p = 

.036). We also found that the MO group d’ (T,F) scores for the MAST (M = 1.88, SE = .11) 

were significantly worse (p < .001) than that group’s d’ (T,F) performance for the MST (M = 

2.86, SE = .11). Similarly, the OA group had significantly worse performance (p < .001) in 

detecting auditory targets from foils (M = 1.66, SE = .12) compared to their sensitivity for 

discriminating visual targets relative to foils (M = 2.74, SE = .13). See Figure 3-6.Error! 

Reference source not found. 
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Figure 3-6. Experiment 2 (trimmed Sample): MAST vs. MST foil sensitivity 

Mean mnemonic sensitivity (Y-axis) of targets relative to foils, d’ (T,F). MAST results are 

represented by the light bar, MST results by the dark bar. Error bars represent standard error. 

Again, as is illustrated in Figure 3-6, recognition memory sensitivity for visual objects was 

highest for the MO group, followed closely by the OA individuals. In contrast, auditory 

recognition memory sensitivity peaked with the YA group and then declined in a linear fashion. 

We find this relationship further quantified in the data when comparing the MAST d’ (T,F) for 

OAs compared to that of the YAs. Post hoc comparisons using the Bonferroni correction 

indicated the OA group showed significantly worse MAST d’ (T,F) performance than the YA 

group (p  = .030). The OA group also had lower sensitivity to auditory foils than the MO group, 

but this difference was not significant (p = .543). For their turn, the MO individuals had lower 

auditory d’ (T,F) means than the YA group, but we again failed to find evidence this difference 

was significant (p = .379). 

Remarkably, the main difference between the trimmed and untrimmed sample for d’ (T,F) 

performance was in the visual, not the auditory domain. Whereas we found significant 

differences between YA and MO participants in simple effects of d’ (T,F) for the untrimmed 

MST sample, these findings were not apparent in the smaller trimmed sample. The YA group 
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members were worse than those in the MO group for their sensitivity to target items relative to 

foils, but the difference between the two age groups failed to reach significance (p = ..075). The 

OA group performed slightly worse than the MO group, but again, this comparison could not 

reach significance (p = 1.00).  

3.4.3 Patient BL: a dissociation between lure versus foil discrimination and 
sensitivity across modalities 

We were interested in determining if critical regions of the hippocampus / MTL are implicated in 

facilitating mnemonic recognition and discrimination. Therefore we tested an amnesic patient 

(BL) on both the MAST and the MST. We compared his results with those of the untrimmed MO 

group from Experiment 2 (see Table 3-2). (In regard to BL’s sound quality rating, his aggregate 

sound quality rating of 4.88 was within limits used to define the trimmed sample. His lowest 

sound quality rating score was for pitch. Here we did find that his ability to identify two sounds 

as having identical acoustic properties was significantly worse than controls).  

To compare auditory lure discrimination as measured by the LDI for BL with the mean of the 

MO control group, we applied Crawford and Howell’s modified t-test for single cases (Crawford 

et al., 2010; Crawford & Garthwaite, 2002; Crawford & Howell, 1998). Using this measure, we 

could not find that the difference, –0.04, between BL and controls for the ability to discriminate 

highly similar sounds was significant, t(25) = –0.19, p = 0.424, one-tailed t-test, 𝓏𝒸𝒸= –0.20. 

Indeed, BL’s results place him at the 42.41 percentile, 95% CI [28.00, 57.65]. In contrast, BL 

was significantly worse (Mdiff = –.55) in his auditory recognition memory (REC) performance 

compared to the MO group, t(25) = –2.94, p = .003, one-tailed t-test, 𝓏𝒸𝒸= –3.00. These REC 

results place BL at the 0.35 percentile, 95% CI [.005, 1.872]. The data indicate that BL’s source 

memory for whether a sound was old or new was impaired. See Table 3-3. 

Consistent with Baker et al. (2016), BL’s visual lure discrimination was impaired relative to 

controls on LDI scores, t(25) = –4.32, p <.001, one-tailed t-test, 𝓏𝒸𝒸= –4.40. BL’s suboptimal 

results place him at the 0.01 percentile, 95% CI [<.001, 0.089]. BL’s visual recognition memory 

(REC) score was not found to be significantly different than controls, t(25) = –1.44, p = .081, 

one-tailed t-test, 𝓏𝒸𝒸= –1.44. Still, his visual recognition performance placed BL relatively low in 

percentile terms, with the estimated percentage of the neurotypical population falling below BL’s 

score being 8.07%, 95% CI [2.16, 18.23].  
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Table 3-3. Patient BL vs. MO controls 

 

Control 

sample 

(n = 26) 

BL’s 

score 

Significance 

test 

(one-tailed)a 

Estimated percentage 

of the control population 

obtaining a lower score 

than BLb 

Estimated 

effect size (𝓏𝒸𝒸)c 

Test Mean SD t p Point (95% CI) Point (95% CI) 

LDI –

MAST 
.19 .20 .15 -0.19 .42 42.41 

(27.98 to 

57.65) 
-0.20 

(-0.58 to 

-0.19) 

LDI – 

MST 
.29 .11 -.21 -4.32 <.001 0.01 

(<.001 to 

.089) 
-4.40 

(-5.67 to 

-3.12) 

REC – 

MAST 
.55 .18 0 -2.94 .003 0.35 

(.005 to 

1.872) 
-3.00 

(-3.90 to 

-2.08) 

REC – 

MST 
.80 .11 .64 -1.44 .081 8.07 

(2.16 to 

18.23) 
-1.47 

(-2.02 to 

-0.91) 

d’ (T,L) 

MAST 
.82 .62 0 -1.29 .10 10.45 

(3.32 to 

21.80) 
-1.31 

(-1.84 to 

-0.78) 

d’ (T,L) 

MST 
1.06 .37 0.29 -2.02 .027 2.73 

(.31 to 

8.63) 
-2.06 

(-2.73 to 

-1.36) 

d’ (T,F) 

MAST 
1.91 .63 0 -2.97 .003 0.32 

(.004 to 

1.77) 
-3.03 

(-3.94 to -

2.10) 

d’ (T,F) 

MST 
2.89 .56 1.97 -1.61 .060 5.97 

(1.29 to 

14.86 
-1.64 

(-2.23 to 

-1.04) 

Notes.  aCrawford & Howell (1998), bCrawford & Garthwaite (2002). cCrawford, Garthwaite & 

Porter (2010). 

As was noted above, computation of d’ scores allowed us to run direct tests of memory 

sensitivity in the auditory versus visual domains. We applied our calculation of these d’ scores 

on the trials comparing mnemonic sensitivity of BL and the MO control group within the 

auditory and visual modalities. In respect to auditory lure sensitivity, we failed to find evidence 

that BL’s mean d’ (T,L) score was significantly different than controls, t(25) = –1.29, p = .104, 

one-tailed t-test, 𝓏𝒸𝒸= –1.31, which places BL at the 10.45 percentile, 95% CI [3.32, 21.80]. In 

contrast, BL’s mnemonic sensitivity to auditory targets relative to foils was significantly worse 

than controls, t(25) = –2.97, p = .003, one-tailed t-test, 𝓏𝒸𝒸= –3.03, 0.324 percentile, 95% CI 

[.004, 1.773]. As with his visual LDI scores, BL’s visual d’ (T,L) performance was significantly 

worse than controls, t(25) = –2.02, p = .027, one-tailed t-test, 𝓏𝒸𝒸= –2.06, 2.73 percentile, 95% CI 
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[0.31, 8.63]. Yet, we failed to find evidence that BL’s visual recognition memory sensitivity, like 

his visual REC scores, was significantly different than controls, t(25) = –1.61, p = .060, one-

tailed t-test, 𝓏𝒸𝒸= –1.64, 5.97 percentile, 95% CI [1.29, 14.86]. 

 

Figure 3-7. Experiment 2: Mean mnemonic sensitivity for MO controls and patient BL 

Error bars represent standard error (SE). 

3.5 Discussion 

Over two experiments, we set out to test whether mnemonic discrimination and sensitivity in the 

auditory domain have similar performance declines across the lifespan as has been found in the 

visual domain (Nauer et al., 2020; Riphagen et al., 2020; Stark et al., 2013, 2015). Furthermore, 

we investigated whether variations in ability can be found in a patient with an established 

behavioral pattern separation deficit. The tools we used to determine these abilities in all 

participants were an established test of visual behavioral pattern separation (MST; Kirwan & 

Stark, 2007; Stark et al., 2015) and a novel test of auditory mnemonic discrimination and 

sensitivity, the MAST, modeled after the MST.  

In experiment one, we established that the auditory MAST, like the visual MST, can be used to 

detect age-related declines in mnemonic discrimination (as measured by a conventional lure 

discrimination index using an untrimmed sample) in older adults compared to young adults. Yet, 
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the MAST failed to find significant differences for auditory lure discrimination between young 

adults and middle-older adults or between middle-older participants and older ones. These results 

suggest differences in auditory mnemonic discrimination for semantically overlapping sounds 

are most apparent when testing participants at extreme ends of the lifespan. In terms of 

mnemonic sensitivity, as measured by SDT methods (d’), we found that combined d’ scores (for 

targets relative to lures and targets relative to foils) significantly declined over the three age 

groups tested. These age-related effects varied slightly when we trimmed the sample of 

participants by their auditory perceptual abilities. Here, we failed to find a difference in 

mnemonic sensitivity scores between the middle-older adults and older adults.  

In experiment two, we ran a subset of participants on both the MAST and the MST. For the 

MAST, we found similar age effects for mnemonic discrimination as was found in experiment 

one. For the MST, visual mnemonic lure discrimination declines across the three age groups 

were apparent and paralleled linear decreases with age found in a study with three similar age 

categories (Nauer et al., 2020). As for traditional recognition memory discrimination using 

naturalistic sounds, we found that OAs were significantly worse than YAs at recognizing 

whether an everyday sound was previously encountered. Recognition memory results for visual 

objects, however, did not decline with aging. The only significant difference to be found was 

between the YA and the MO group, with the younger adults performing significantly worse than 

adults in middle-older age. The absence of evidence for visual recognition memory deficits 

between the YA group and the OA group supports findings of a lack of age-related recognition 

memory declines across the lifespan (Nauer et al., 2020; Stark et al., 2013).  

3.5.1 Modality effects: Agnostic hippocampus for sound and vision 

3.5.1.1 Targets versus lures 

In direct testing of the MAST and the MST in the untrimmed sample, we found that target vs. 

lure sensitivity scores, d’ (T,L), were similar for both sounds of objects and pictures of things in 

the YA participants. However, significant variations in ability were found in the MO and OA age 

groups. In these older individuals, acoustic performance was significantly worse than visual 

performance. This finding of a significant discrimination difficulty for target items relative to 

highly auditory lures seems to contradict the postulation that mnemonic representations of 

sensory/perceptual stimuli should occur across modalities as per the attributes model of the 
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memory system (Hunsaker & Kesner, 2013). We say seems to contradict, because these 

significant modality differences in the older age groups vanished when we controlled for 

auditory perceptual abilities in a trimmed sample. Rather than challenging the notion that the 

hippocampus is representationally agnostic to stimulus modality (Huffman & Stark, 2014; 

Larocque et al., 2013), our results with this trimmed sample seem to support this theory. 

3.5.1.2 Targets versus foils 

Unlike target vs. lure mnemonic sensitivity, traditional memory sensitivity d’ scores, d’ (T,F) 

showed a frank dissociation between modality of the stimuli used. Participants’ ability to identify 

targets relative to foils was significantly worse for sounds of objects in comparison to pictures of 

objects. This deficit was found in all three age categories in both the larger and the trimmed 

samples. These findings appear to support previous research showing that auditory recognition 

memory is weaker than visual recognition memory (Bigelow & Poremba, 2014; Gloede et al., 

2017; Cohen et al., 2011). Why is this so? One possibility is that auditory recognition memory 

relies on multiple areas of the brain outside of the hippocampus (e.g., Zimmermann, Moscovitch, 

& Alain, 2016), making its processing within the MTL less robust than that of visual 

information. Alternately, auditory recognition memory could be more dependent on hippocampal 

subfields, and we expand on this argument below. 

3.5.2 Aging effects: Converging evidence for lure but not foil performance 

3.5.2.1 Targets versus lures 

We found that the OA group had significantly poorer performance for target versus lure 

sensitivity than the YA and MO groups for auditory and visual items. (The only exception to this 

finding being in the trimmed sample, where we failed to find significant differences between the 

OA and MO groups.) Our research, then, provides converging evidence for auditory and visual 

age-related declines in lure mnemonic sensitivity across the lifespan. In interpreting these results, 

we reason that the OA group’s lower mnemonic sensitivity to lures reflects a dependency on a 

hippocampus that has lost volume and otherwise deteriorated with age due to neurobiological 

alterations (Bettio et al., 2017; Raz et al., 1998). These age-related changes are theorized to 

significantly impact mnemonic discrimination in the visual domain (Nauer et al., 2020; Stark et 

al., 2013, 2015). We provide developing evidence of concomitant deficits in the auditory 

environment. 
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3.5.2.2 Targets versus foils 

Traditional memory sensitivity d’ scores showed aging effects interacted with the modality of the 

test stimuli. Older adults in the MAST, but not the MST, were significantly worse than their 

younger counterparts in foil sensitivity. This cross-lifespan finding of auditory recognition 

decline was apparent in both the larger sample and a trimmed sample which accounted for 

potential hearing deficits. This result appears challenging to interpret in light of our speculation 

above about auditory foil discrimination being less reliant on the hippocampus. However, as we 

argue below in discussing BL’s result, we speculate the decline in auditory sensitivity for targets 

relative to foils is partly attributable to an aging or inefficient hippocampus. 

As for d’ (T,F) results for the MST, results again diverged from the MAST. The only significant 

difference found when measuring visual d’ (T,F) was with the MO group, which appeared (in the 

untrimmed but not trimmed sample) to have significantly better mnemonic sensitivity relative to 

foil items than the YA group. There were no significant differences between age categories for 

visual d’ (T,F) in the trimmed sample, which might have been attributable to the lower power of 

the smaller sample to detect age-related differences in recognizing a common object as 

previously encountered. However, previous studies using the MST or similar paradigms have 

found variable within- and between-group visual recognition memory results (e.g., Holden et al., 

2013). Furthermore, a recent meta-analysis of aging and recognition memory (Fraundorf et al., 

2019) identified multiple variables that influence recognition memory in aging, including the 

semantic richness of the material to be studied. 

3.5.3 Focal lesion effects: Auditory and visual dissociations? 

One of the aims of Study 2 was to investigate whether there was a causal role of the human 

hippocampal DG subfield in discriminating studied items from similar unstudied items in both 

the auditory and visual domains. We pursued this goal through testing patient BL, an individual 

with hippocampal lesions selective to the DG who has been found to show selective behavioral 

discrimination impairment on the MST, as well as a bias toward pattern completion (Baker et al., 

2016).  
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3.5.3.1 Targets versus lures 

When comparing amnesiac patient BL to healthy, age-matched MO controls, we replicated his 

lure discrimination difficulty for visual objects compared to age matched-controls (Baker et al., 

2016). By analyzing his sensitivity to target items relative to foils, we also replicated the finding 

that patient BL’s visual recognition memory is within normal limits of healthy controls. In other 

words, in our novel analyses, that of auditory lure mnemonic discrimination and sensitivity, we 

found that BL’s poor (i.e., floor) performance at discriminating similar sounds was not 

significantly different than controls as measured by his LDI and d’ (T,L) scores. Due to the 

variability in the MO group for identifying similar naturalistic sounds, BL’s total absence of 

sensitivity did not register as significantly different than control results.  

The inability to detect a mnemonic discrimination deficit with BL using the MAST could point 

to a potential limitation of this novel paradigm: the variability found within the age categories, 

particularly with the middle-older adults. These individuals had a SE of .04 for auditory LDI 

scores, which was twice as high as .02 recorded for the YA group. Less variability was found in 

the visual realm, where MST LDI scores had a SE of .02 for the MO individuals. Middle-aged 

adults are under-represented in associative recognition memory tasks (Nordin et al., 2017; 

Riphagen et al., 2020), so it is difficult for us to determine whether the variability in our sample 

was a typical result of this age group or an interaction between participants in the MO and the 

auditory stimuli used. Future testing that attempts to normalize a larger sample of naturalistic 

sounds with participants in the 40–66 age range would shed more light on this issue, particularly 

in light of individuals' idiosyncratic brain-behaviour mnemonic discrimination performance in 

midlife (Riphagen et al., 2020). Lessening the variability in the data would also help to determine 

whether a 0 score is actually indicative of impaired auditory lure sensitivity in a patient with a 

focal hippocampal lesion.  

3.5.3.2 Targets versus foils 

BL’s results when comparing auditory target items relative to foils exposed additional deficits, 

which may also contribute to this lure discrimination deficits for sounds. His frank impairments 

in mnemonic discrimination, as measured by the traditional REC score, and his significantly 

worse performance in mnemonic sensitivity for targets versus foils as measured by d’ (T,F) 

appear to implicate the DG as playing a crucial role in auditory recognition memory. Such a 
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finding would seem to indicate a dissociation between the DG’s function for auditory versus 

visual recognition memory, as a similar deficit was not found for BL in response to visual 

recognition memory assessment using the MST. 

Not all of these results are surprising. The dependency of auditory recognition memory on the 

hippocampus on has been established in a variety of patient studies, including at least one 

conducted with Henry Molaison (Milner, 1972). That patient was famous for having his 

hippocampus (and areas of his surrounding MTL) surgically removed. Squire and colleagues 

(Squire et al., 2001), in an investigation with amnesiac patients, also showed that lesions 

restricted to the hippocampus could severely impair auditory recognition memory for sounds. 

However, the authors note that these deficits are exacerbated in individuals with lesions, 

including the broader MTL. Squire et al. (citing Suzuki and Amaral, 1994) noted that one of the 

avenues for auditory (but not visual) inputs to the MTL is through projections to the anterior TH 

region of the parahippocampal cortex.  

In nonhuman mammals, indirect projections have been found which connect the auditory cortex 

to the hippocampus via the parahippocampus (Cenquizca & Swanson, 2007; Insausti & Amaral, 

2008). A recent study in humans and monkeys found a common effective connectivity signature 

directly from the auditory cortex directly to the ventrolateral prefrontal cortex and indirectly to 

the hippocampus via the parahippocampal gyrus (Rocchi et al., 2021). The established 

projections from the parahippocampal cortex to the lateral entorhinal cortex (van Strien et al., 

2009; Witter et al., 2017) and from there to hippocampal subfields via the perforant path 

(Hainmueller & Bartos, 2020) may explain why a lesion to the DG may severely impact auditory 

recognition memory in humans, as it appears to have done in patient BL. 

Other clues of DG sensitivity to auditory inputs are found in studies which have not directly set 

out to investigate memory. Recently, Kurioka and colleagues offered evidence that auditory 

deprivation in rodents severely impairs neurogenesis in the DG (Kurioka et al., 2021). A similar 

decrease in hippocampal neurogenesis was found in rats after loud noises that diminished the 

neural output of the cochlea (Manohar et al., 2020). These rats with “blast-induced hearing loss” 

also had difficulties remembering spatial information (Manohar et al., 2020). It appears through 

both these studies that a link exists between how acoustic inputs and the DG are interrelated, to 

the extent that neural plasticity in the hippocampus can be drastically affected when hearing is 



81 

 

impaired. As we learn more about the role hearing impairment plays in mild cognitive 

impairment and dementia, these and future studies will help pinpoint interventions that might 

defer such cognitive slowing. This study with patient BL helps lay the groundwork for future 

human studies on the involvement of the DG in this context. 
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Chapter 4 , Study 3 
 

 Mismatch negativity predicts pattern separation 

4.1 Preface 

We are so tuned to sensory changes in our environment that we can detect novelty within 

hundreds of milliseconds. To what extent does our capacity to automatically discriminate 

auditory stimuli influence our ability to differentiate highly similar inputs belonging to separate 

yet overlapping events into discrete episodes at encoding, a process known as pattern separation? 

In Study 3, I combine a behavioral paradigm with the brain’s perceptual discrimination index, 

known as mismatch negativity (MMN), to determine if prediction error is a component enabling 

mnemonic discrimination.  

In collaboration with Dr. R. Shayna Rosenbaum, Dr. Claude Alain, Deena Herman, and Jaime 

Cazes, I expand upon the question — posed in Study 2 — of whether mnemonic discrimination 

can be detected using auditory inputs. To make the investigation more process pure, my 

colleagues and I used auditory stimuli stripped of any semantic associations. In addition, we 

structured the experiment to offer insights into neural activity at encoding through the use of 

scalp-recorded EEG technology.  

An exciting thing about Study 3 was that it provided a way to formalize the link between brain 

signals that detect perceptual differences (MMN) and memory mechanisms thought to 

orthogonalize similar inputs (pattern separation). Until now, these phenomena have been studied 

separately, even though they bear a striking resemblance. As with Study 2, the quest was to unite 

disparate literatures and reduce theoretical redundancies across fields. A candidate framework I 

offer is that of prediction error. Prediction errors, a constant in the MMN signal, are thought to 

shape perception, and it seemed conceivable to me that they also facilitate pattern separation. 

Study 2, then, is a novel addition to the pattern separation field for three reasons. Firstly, it uses 

abstract auditory stimuli. Secondly, it tracks neuroelectric brain activity at encoding. Thirdly, it 

offers a unifying framework between mismatch detection and our ability to differentiate highly 

similar memories. 
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4.2 Introduction 

It has been over 45 years since a Finnish research team discovered that our brain’s ability to 

discriminate auditory stimuli could be indexed by the mismatch negativity (MMN) signature 

(Näätänen et al., 1978). It reveals itself in EEG experiments whenever an oddball event violates 

predictions established from preceding events (Picton et al., 2000). These auditory oddballs 

generate an MMN response peaking approximately 125–225 ms after the onset of the deviant 

stimulus (Garrido et al., 2009; Picton et al., 2000; Schröger, 1994). The MMN amplitude and 

latency vary as a function of the perceptual distance between standard and deviant sounds, as 

well as the irregularity of the deviant relative to the standard (Alain et al., 1998; Baldeweg et al., 

2004; Picton et al., 2000). For decades, investigators have found the MMN to be a reliable 

change-detection, event-related potential (ERP) component (Näätänen, 2019). However, 

researchers have yet to establish a clear relationship between the MMN and subsequent long-

term memory effects. The inability to draw such a conclusion sets the MMN apart from other 

“difference due to memory” (Dm) ERPs (Paller et al., 1987). These Dm ERPs have been found 

to index the successful encoding of long-term declarative memories in response to incidental 

learning tasks (Brady et al., 2019; Olofsson et al., 2008; Paller et al., 1987, 1988; West, 2011). 

Whether ERP old/new effects can also be correlated with the brain’s ability to reduce 

interference among similar memories at encoding or retrieval (also known as pattern separation 

or mnemonic discrimination) is an ongoing yet unresolved research question (Anderson et al., 

2017; Morcom, 2015).  

MMN experiments with clinical populations provide some suggestion that the MMN response 

transcends its role as an index of perceptual discrimination and relates to higher-order cognitive 

processes, such as long-term memory (Alain et al., 1998; Baldeweg & Hirsch, 2015; Näätänen, 

2019). The MMN might do so in neurotypical adults by interacting with the cognitive 

mechanisms involved in the domains of statistical learning (Saffran et al., 1996) and implicit 

learning (Reber, 1993). These overlapping theoretical approaches describe how humans 

incidentally learn by acting upon or adapting to consistent environmental stimuli (Perruchet & 

Pacton, 2006). Statistical and implicit learning, however, rely on humans attending to the to-be-

learned stimuli in their environments, even if such attention is below the level of conscious 

awareness (Frensch & Runger, 2003; Perruchet & Pacton, 2006). We propose that the 

preattentive or preconscious (Näätänen et al., 2011) elements of MMN, particularly the 
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mechanisms of prediction error and predictive coding, are at the heart of the statistical inferences 

underlying statistical and implicit learning; further, we propose that these preattentive elements 

enable the neurobiological mechanisms of long-term memory, or personally experienced past 

events (Tulving, 1983), in particular pattern separation, a memory process by which similar or 

overlapping information is disambiguated into unique events at encoding (Rolls, 2016).  

There are hints in the literature that the MMN might enable pattern separation or pattern 

completion (recollection of memories from partial cues; Rolls, 2016). Data from animal models 

suggest mismatch responses manifested within the auditory cortex are detected by the 

hippocampus (Ruusuvirta et al., 2013), an area essential for episodic memory (Rosenbaum et al., 

2008; Vargha-Khadem et al., 1997), possibly within the DG or CA1/CA3 (Bein, Duncan, et al., 

2020; Hindy et al., 2016). Additional links between the MMN and elements of episodic memory 

can be inferred from human studies. These show that a model of hierarchical inference may 

explain the neuronal mechanisms responsible for MMN generation (i.e., predictive coding and 

predictive error; Cacciaglia et al., 2019; Garrido et al., 2009). Indeed, a leading theory of the 

MMN response is that it involves the interplay of predictive coding, or top-down perceptual 

inferences, with prediction error, or neural responses following violations of expected inputs 

(Friston, 2003, 2005; Garrido et al., 2009), including in the hippocampus (Kok et al., 2017; Kok 

& Turk-Browne, 2018). Experiments used to investigate the MMN offer a non-attentive learning 

situation involving unique patterns of stimuli that vary in a systematic, quantifiable way.  

In the current investigation, participants were presented with standard and deviant (i.e., oddball) 

sound patterns, and an associated MMN was computed. We hypothesized that the MMN strength 

would indicate a robust representation of the standard and deviant sound patterns in memory. 

Those acoustic representations were further investigated by correlating MMN amplitudes with 

the results from a surprise recognition memory test using previously heard old items (targets) and 

new sound patterns. The new patterns were similar to the old ones (lures) or markedly distinct 

from target items and lures (foils). In fMRI studies of pattern separation in the visual domain, 

activity in the DG/CA3 region has been associated with correction rejection rates of both lures 

and foils (Bakker et al., 2008a). Through investigating participants’ sensitivity to abstract and 

highly similar sounds, we hoped to establish, for the first time, that prediction errors associated 

with preconscious auditory discrimination reflected in the MMN might enable conscious 
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recognition memory of target items relative to foil, as well as mnemonic discrimination of target 

items relative to lures.  

4.3 Materials and Methods 

4.3.1 Participants 

To determine if the MMN relates to behavioral discrimination, 36 healthy adults (18–32 years, 

19 female) took part in an experiment that included passive listening at study and a recognition 

task at test. Participants were recruited through the Undergraduate Research Participant Pool at 

York University and within the broader community. Participants were provided with credit 

towards their first-year psychology course or were paid $15 per hour. Informed consent was 

obtained in accordance with the ethics review boards at York University and Baycrest and 

conformed to the standards of the Canadian Tri-Council Research Ethics guidelines. We 

excluded six participants from the final data analysis for the following reasons: one fell asleep 

during EEG recording, two had pitch discrimination deficits, one was left-handed, one had a 

shorter interstimulus interval than other participants that could have affected performance, and 

one failed to understand test instructions. Data analysis, therefore, included 30 individuals (18 

females) with an average age of 22 (SD = 4.4). This sample size is similar to previous 

investigations using a comparable age range (Gottselig et al., 2004; Hindy et al., 2016; Todd et 

al., 2014). All participants were right-handed, and none reported learning disabilities or 

neuropsychological disorders. Participants were screened for anxiety and depression symptoms 

using the Generalized Anxiety Disorder 7-item scale (GAD7) and the Patient Health 

Questionnaire Depression 8-item scale (PHQ8). Three participants reported a current diagnosis 

of a mood disorder, but only one of the three exceeded the severity threshold of 15 on both tests. 

Before ERP acquisition, we administered an audiogram; all participants had normal pure-tone 

thresholds of ≤ 25 decibels (dB) hearing level (HL) at each octave frequency from 250 to 8000 

Hz in both ears.  

4.3.2 Pre- and post-tests 

4.3.2.1 Pre-test: mnemonic similarity task (MST) 

To ascertain participant’s behavioral discrimination abilities in a non-auditory domain, we 

evaluated participants using the MST (Stark et al., 2015). The MST was administered on a laptop 
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running Windows 7. Participants were randomly assigned one of two MST stimulus sets and 

then administered the task following an established protocol (Stark et al., 2013, 2015). See 

section 3.3.3.2 for a summary of this protocol. One participant was excluded from the final MST 

data analysis for failing to understand test instructions, resulting in a comparative sample size of 

n = 29 (18 female) for the MST. 

4.3.2.2 Post-test: Same-different forced-choice discrimination task 

We concluded our experiment with a discrimination task. We intended to ensure that the 

participants could discriminate the micropatterns from one another when they were presented 

back-to-back. During the task, two micropatterns were played in succession and participants 

were asked whether they were the same or different. Participants indicated their answers via an 

arrow key. Every micropattern was presented against itself and every other micropattern. There 

were 42 unique combinations of different micropatterns (as the different pairs could be presented 

in a different order). Trials were randomly presented twice, leading to 84 discrimination trials. 

One female participant was unable to complete this task; therefore, analysis was conducted on 29 

participants.  

4.3.3 Experimental tasks 

4.3.3.1 Stimuli 

The stimuli used to generate the MMN were auditory micropatterns (Näätänen et al., 1993; 

Schröger, 1994; Schröger et al., 1992; Watson et al., 1975), constructed using a sequence of five, 

100-ms tones. All micropatterns were generated using Audacity(R) 2.3.3. Six different auditory 

micropatterns were used in our study. Each consisted of a different temporal arrangement of 100-

ms tones (Figure 4-2), with a 10-ms fade in and 10-ms fade out to prevent click sounds 

associated with abrupt frequency changes. The five tones had frequencies of 350 Hz, 500 Hz, 

638 Hz, 720 Hz, and 920 Hz, similar in range to those used in previous auditory pattern studies 

(e.g., Leek & Watson, 1988; Schröger, 1994; Schröger et al., 1992; Watson et al., 1975).  

We designed each of the micropatterns to be similar (in terms of mean frequency) and be 

discriminable (in terms of pitch contour). For example, the contour of the standard micropattern 

was M-shaped (i.e., up, down, up, down). In contrast, the temporal pattern of the deviant 

micropattern was more U-shaped (i.e., down, up, down, down). At test, we presented an 
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additional four micropatterns (three lures and a foil). The lures were assembled so as to be highly 

similar to the two micropatterns presented at study. Lure one and lure two switched contour 

direction once, and lure three switched contour twice. The easily distinguishable foil had a 

straight increasing contour from low to high. Its five tonal frequencies were pitched down 12 

semitones making it sound low and distinct from the other micropatterns. 

 

 

Figure 4-1. Schematic Illustration of the 500-ms Micropatterns 

4.3.3.2 Study phase: Passive auditory memory encoding 

We divided the experiment into two phases. During the initial listening (study) phase, we 

presented one micropattern 70% of the time (700 trials). It was designated as the “standard.” A 

second micropattern, delivered 30% of the time (300 trials), was the de facto “deviant.” We 

played the micropatterns while participants watched 25 minutes of a muted movie (Toy Story) 

(Lasseter, 2005). Participants viewed the film from where they sat in a double-walled, sound-

attenuating booth. We instructed participants to attend to the visually engaging movie. Our aim 

was to prevent attention-elicited ERP signals that might obscure the MMN. At the same time, 

participants were exposed to the auditory input of the standard and deviant micropattern trials. 

Each 500-ms trial was separated by a jittered (900 – 1150 ms) interstimulus interval (ISI).  
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4.3.4 EEG recording and analysis  

We used EEG to record ERPs to determine if a MMN signal, elicited by deviation from 

preceding stimuli, predicted participants’ ability to discriminate the micropatterns presented at 

study from the lures and foils presented at test. During the study phase, we recorded ERPs for 

each micropattern trial. The EEG was recorded from 76 scalp electrodes using a BioSemi Active 

Two acquisition system (BioSemi V.O.F., Amsterdam, Netherlands) with a bandpass of 0.16-100 

Hz and a sampling rate of 512 Hz. Electrode positions were based on the International 10–20 

system (Silverman, 1963). Horizontal and vertical eye positions were recorded by 

electrooculography using four electrodes positioned around each eye. Two additional electrodes 

were placed on the left and right mastoids. EEG recording was grounded by an active Common 

Mode Sense electrode and a passive Driven Right Leg electrode. EEG recordings were processed 

offline using Brain Electrical Source Analysis 7.0 software (BESA 7.0; MEGIS GmbH, 

Gräfelfing, Germany). 

The EEG data were visually inspected to identify segments contaminated by imperfect readings. 

If noisy electrodes were detected, they were interpolated using values from surrounding ones (no 

more than eight interpolations per participant). The EEG was then re-referenced to the average of 

all electrodes and digitally filtered with 1 Hz high-pass filter (forward, 6dB/octave) and 40 Hz 

low-pass filter (zero phase, 24 dB/octave). For each participant, a set of ocular movements was 

identified from the continuous EEG recording and used to generate spatial components that best 

account for eye movements. The spatial topographies were then subtracted from the continuous 

EEG to correct for lateral and vertical eye movements as well as for eye blinks. After correcting 

for eye movements, the EEG was scanned for artifacts. The data were parsed into 500-ms 

epochs, including 100 ms of pre-stimulus activity. Those including deflections exceeding ± 60 

µV were marked and excluded from further analysis. The remaining epochs were averaged 

according to electrode position and stimulus type. Each average was baseline-corrected with 

respect to a 200-ms pre-stimulus baseline interval. Approximately 5-10% of trials were rejected 

for each participant.  

The ERP results from the time domain and the distributed source analysis (see below) were 

exported into BESA Statistics 2.0 for statistical analyses. This program identifies clusters in 

time, frequency, and space using a series of t-tests that compare the ERP amplitudes between 
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experimental conditions at every time point. This preliminary step identified clusters both in time 

(adjacent time points) and space (adjacent electrodes) where the ERPs differed between the 

conditions. The channel diameter was set at 4 cm, which led to approximately four neighbors per 

channel. We used a cluster alpha of .05 for cluster building. A Monte-Carlo resampling 

technique (Maris & Oostenveld, 2007) was then used to identify those clusters that had higher 

values than 95% of all clusters derived by random permutation of the data. The number of 

permutations was set at 1,000. 

The cluster-based statistics revealed a significant difference between standard and deviant 

micropatterns, with the three strongest MMN signals approximately 250, 350 ms and 650 ms 

after onset of the first tone in the micropattern. Figure 2B shows the group mean ERPs elicited 

by the standard and deviant micropatterns and the corresponding difference wave. The standard 

and deviant amplitudes were calculated as a mean voltage averaged over an approximate 50-ms 

period on either side of the peak latencies in the individual participant waveforms collected from 

three fronto-central and three frontal electrodes (FCz, Fz, F1, F2, FC1, FC2), where the largest 

response was obtained. The MMN amplitude for each individual was calculated by subtracting 

the mean standard amplitude from the mean deviant amplitude across these electrodes during this 

100-ms window. For the purpose of correlation analyses, we chose to focus on the second and 

strongest MMN signal, referred henceforth as the MMN. 

4.3.5  ERP source analysis 

BESA 7.0 was used to estimate distributed source activity for ERPs elicited by the standard and 

deviant trials. To enhance accuracy and reduce noise, we used distributed source analysis for 

each participant and each condition. We modelled the standard and deviant events and then 

compared the strength of the source activity. This was done using an iterative application of 

Low-Resolution Electromagnetic Tomography (LORETA), which reduces the source space in 

each iteration. The imaging approach, termed Classical LORETA Analysis Recursively Applied 

(CLARA), provides more focal localizations of the brain activity and can separate sources 

located in close vicinity. The voxel size in Talairach space was 7 mm; this default setting is 

appropriate for the distributed images in most situations. The regularization parameters that 

account for the noise in the data were set with a single value decomposition cutoff at 0.01%. We 

used a four-shell ellipsoidal head model with head radius of 85 mm, and thickness for scalp, 
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bone and cerebrospinal fluid of 6, 7, 1 mm, respectively. The relative conductivities were 0.33, 

0.33, 0.0042, and 1 for brain, scalp, bone and cerebrospinal fluid, respectively. 

4.3.6 Test phase: Recognition Memory Test 

During the test phase, participants were presented with the standard and deviant (target) 

micropatterns from the passive listening phase, randomly intermixed with four unstudied (new) 

micropatterns. As was noted in section 2.4.1, three of the new micropatterns were similar to the 

standard and deviant and were designated as lures, while a fourth — more distinct in pitch and 

temporal arrangement — was deemed to be the foil.  

The test phase assessed the recognition memory of the participants for the micropatterns. 

Participants were presented with a micropattern and asked, “Did you hear this tone during the 

movie?” Participants were then instructed to respond “Yes” by pressing the left arrow key, or 

“No” by pressing the right arrow key. The six micropatterns (two old, three lures, and one foil) 

were presented ten times each throughout the test phase, for a total of 60 trials, in randomized 

order, with a 500-ms interval between stimulus presentation and instruction screens. The correct 

response to hearing the standard or deviant micropatterns was the left arrow key. The correct 

response to the three lure micropatterns and the foil micropattern was the right arrow key. 

4.4 Analysis 

Analysis of the recognition and discrimination data were done using IBM SPSS Statistics 27, 

except A scores, which were calculated using a Microsoft Excel spreadsheet (Mueller, n.d.). The 

relationship between d’ sensitivity and MMN1 amplitudes was conducted using bivariate 

Pearson correlations. (Negative correlations being indicative of a positive relationship between 

d’ and the MMN values.) Where appropriate, effect sizes for all analyses have been reported and 

interpreted according to accepted guidelines (Field, 2013). Confidence intervals for correlations 

were computed, including using the bias-corrected accelerated (BCa) option in SPSS. Other 

analysis measures for the experimental tasks are described below. 

4.4.1 Proportional responses: Loglinear method 

Participant performance in all conditions was corrected through the application of the loglinear 

rule (Hautus, 1995). This method converts response frequencies by adding 0.5 to each frequency 
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and dividing by N+1 (where N is the number of trials in each condition). This method was 

developed to respond to extreme values (i.e., hit rate = 1; false alarm = 0) in experiments that use 

techniques derived from signal detection theory (SDT). Although its primary purpose in SDT is 

to mitigate infinite d’ values (Hautus, 1995; Macmillan & Creelman, 2005; Snodgrass & Corwin, 

1988; Stanislaw & Todorov, 1999), the loglinear approach is recommended even when SDT 

measures are not calculated (Snodgrass & Corwin, 1988). Hence, we have applied the above 

transformation to the proportion of correct responses (i.e., hit rates and correct rejections) and the 

proportion of incorrect responses (i.e., misses and false alarms) during recognition memory 

analyses. Response time analysis and MST scores were not corrected in this manner. 

4.4.2 Sensitivity indexes 

The two response choice (“yes”/“no”) recognition memory component of our study allows for 

the calculation of SDT sensitivity indexes (d’ and alternatives) based on single hit and false-

alarm rates per condition (Green & Swets, 1966; Macmillan & Creelman, 2005; Stanislaw & 

Todorov, 1999). We calculated the statistic d’ in SPSS as the normalized difference between the 

hit rate (H) versus the false-alarm rate (F). Values of d’ can range from 0 (no sensitivity) to 

approximately 4.65 (perfect sensitivity). We supplemented our d’ investigation with an analysis 

using the SDT measure, A (Zhang & Mueller, 2005). A, which is equivalent to the average areas 

of minimum and maximum receiver operating characteristic (ROC) curves through a point, does 

not assume equal variances across conditions (Zhang & Mueller, 2005). For this area-based 

measure of sensitivity, perfect performance is indicated with a score of 1.0 and random or 

undistinguishable performance by a score of 0.5 (Zhang & Mueller, 2005). Promoters of d’ 

variants, such as A’ (Grier, 1971; Pollack & Norman, 1964), have been criticized for creating the 

mistaken impression that these variants are non-parametric (MacMillan & Creelman, 1996; R. 

Pastore et al., 2003). Nonetheless, these variants have been applied in recognition memory 

experiments, including studies of visual pattern separation as a more rigorous complement to d’ 

(e.g., Stark et al., 2015). Such measures of sensitivity are also recognized as a viable alternative 

when the memory strength distributions of lures and targets cannot be assumed to be Gaussian in 

form and/or where there are ceiling or floor effects evident in the data (Mickes et al., 2007; 

Zhang & Mueller, 2005). 
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4.5 Results 

4.5.1 EEG results and source analysis 

We anticipated and found that the presentation of the unexpected deviant — calculated as the 

difference between the standard and deviant waveforms (Näätänen, 2019) — elicited a negative 

deflection in the ERP waveform. We found the MMN was concentrated in six frontocentral 

electrodes with three peaks, approximately 250, 350 ms and 600 ms after onset of the first tone 

in the deviant micropattern. Schröger (2007) suggested that the auditory environment is parsed 

into 300 ms units, which might explain the finding of two strong MMN signals at the 350 and 

650 ms mark. Since earlier segments of higher intensity sound sequences are thought to be more 

salient in memory and sensory sound discrimination (Shestakova et al., 2003), we focused 

analyses on the strongest, and second earliest, of the three peaks, at the 350 ms point, as it was 

expected to be more predictive of behavioral performance than the other two peak signals. 

Using an iterative application of low-resolution electromagnetic tomography (BESA v7.0), we 

found that standard and deviant sounds were associated with source activity in the auditory 

cortex of the superior temporal gyrus. The contrast in activity between the standard and deviant, 

however, revealed greater source activity for the deviant in the superior temporal gyrus and the 

MTL (See Figure 4-2). 

4.5.2 Recognition rates and discrimination 

4.5.2.1 Collapsing treatment levels 

Before investigating participants’ mnemonic sensitivity levels, we investigated the 

appropriateness of combining levels of old items (targets) and similar items (lures) into binned 

conditions. Our primary criterion guiding this decision was the similarity of accuracy rates (hits 

or correct rejections). We began with an examination of the old stimuli. A review of the boxplots 

and of the probability-probability (P-P) plots (Field, 2013) of the standard hit rates (M = .91, SE 

= .01) and deviant hit rates (M = .85, SE = .02) indicated that both distributions deviated from 

normality.  
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Figure 4-2. Micropatterns at study 

Notes: (A) Schematic illustration of the 500-ms standard and deviant micropatterns. (B) Grand average 

frontal-central pole (FCz) ERPs in response to the standard (blue line) and the deviant (red line) 

micropatterns. Black arrows indicate the 200 ms tone; detection of the mismatch here is responsible for 

the MMN1 amplitude spike at approximately 350 ms, 150 ms after the onset of the mismatch with the 

deviant micropattern. The dotted black line indicates the MMN waveform. (C) Four views of the CLARA 

source analysis of the difference in activity between deviant and standard conditions (300-400 ms 

latency). Red and yellow shading represents areas where deviant micropattern activity is significantly 

greater (p<.001) than standard micropattern activity. 

A 
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The apparent cause was the pile-up of high scores. Consistent with this supposition, we found the 

standard hit rates were negatively skewed (p <.001); deviants also exhibited a concentration of 

high scores, although to a lesser degree (p = .043). To determine whether there was a significant 

difference between hit rates for these old items, the non-parametric sign test — which makes few 

assumptions about normality (Howell, 2010) — was used to detect if deviant micropatterns had 

lower accuracy rates than standard ones. The measure failed to show any difference between the 

standard and deviant hit rates, z = –1.835, exact binomial p (2-tailed) = .064. Consequently, we 

derived one treatment level for old items by combining the standard and deviant scores into one 

target condition. We failed to find significant evidence of skewness (p = .103) in the hit rates for 

the resulting target condition (M = .88, SE = .01). See Figure 4-3. 

 

Figure 4-3. Recognition memory accuracy (proportion correct) 

Regarding lures, a review of the boxplots and P-P plots of correct rejections for lure 1 (M = .57, 

SE = .05 ) and lure 3 (M = .54, SE = .04), suggested that accuracy rates for these two treatment 

levels were normally distributed. Greater hit rate variability was found in Lure 2 (M = .68, SE = 

.06). It likewise showed evidence of non-normality and negative skew (p = .035). However, the 

nonparametric sign test did not indicate that the difference between lure 2 and lure 1 correct 

rejections, z = 1.20, was significantly different, exact binomial p (2-tailed) = .230. Furthermore, 
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the difference between lure 2 and lure 3, z = 1.70, was not significantly different, binomial p (2-

tailed) = .09. Therefore, we combined all three lure levels into one derived lure condition. We 

failed to find significant evidence of non-normality or skewness (p = .966) in the hit rates for the 

resulting lure condition (M = .60; SE = .03).  

As expected, foils were found to have a high correct rejection rates (M = .91, SE = .02). The 

concentration of high foil values resulted in a negatively skewed distribution (p <.001).  

4.5.2.2 Reaction times 

We analyze reaction times (RTs) in order to help determine participants’ sensitivity to the 

acoustic difference between sounds (Aaltonen et al., 1987; Barascud et al., 2016; Savela et al., 

2003; Winkler et al., 1999). The consensus among researchers is that the greater difference 

between the sound or sound patterns, the shorter latency time to respond to a behavioral task 

during an MMN study (Savela et al., 2003). In studies of visual pattern separation, longer RTs 

are associated with lure correct rejections relative to target hits (Kirwan & Stark, 2007). It has 

been speculated that the additional time involved in correctly discriminating lures (but not foils) 

is related to a “recall-to-reject” strategy (S. Clark & Gronlund, 1996; Kirwan & Stark, 2007; 

Norman & O’Reilly, 2003; Rotello & Heit, 1999). Central to this process is the act of recalling 

an encoded memory trace as a comparator for similar items. This process takes more time than 

correctly rejecting highly dissimilar foils. Neuroimaging studies have found the DG/CA3 region 

of the hippocampus to be active during such correct rejection of similar lures (Bakker et al. 

2008). 

With the goal of ascertaining whether there were any variations in RTs of targets (M = 655.14, 

SE = 56.71), lures (M = 916.74, SE = 83.70) and foils (M = 589.85, SE = 44.02), we entered 

average participant RTs (in ms) for hits and correct rejections into a 1X3 ANOVA. The 

differences in RT among the three conditions was significant, F (2, 58) = 11.61, p <.001, 𝜂𝑝
2 = 

.29, (Figure 4-4). Post hoc tests using the Bonferroni correction revealed that the mean difference 

between the RTs for targets and lures, –288.32, 95% CI [–496.86 –79.78], was significant (p = 

.004). In addition, the mean difference between the RTs for foils and lures, –353.35, 95% CI [–

580.18, –126.53], was significant (p = .001). We failed to find evidence, however, that the mean 

RT difference between targets and foils, 65.03, 95% CI [–86.95 217.02], was significant (p = 

.858). The results suggest the lures (but not the targets they resembled) were processed in a 
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slower, more deliberate way, possibly due to the additional time required to detect subtle 

differences between the sounds in a recall-to-reject strategy. We ran a paired-samples t-test to 

help determine whether correct rejections for lures, which might involve additional processing 

time (Morcom, 2015), led to even slower RTs. (Before running the test, we excluded one 

participant who did not have any lure false alarms.) On average, participants responded more 

slowly to lure micropatterns they incorrectly perceived as target ones (M = 1088.89, SE = 

122.12) compared to lure micropatterns they correctly recognized as new ones (M = 923.33, SE 

= 101.67). We failed to find evidence, however, that this fraction of a second difference, 165.55 

ms, BCa 95% CI [–43.28, 396.16] was significant, t(28) = 1.37, p = .180, d = .26. See Figure 

4-4. 

 

Figure 4-4. Reaction times for hits and correct rejections by condition 

4.5.2.3 Recognition memory discrimination — signal detection results 

In order to compare recognition memory performance of passively studied old micropatterns 

versus unstudied lures and foils we incorporated methods from SDT described in section 2.5.2. 

Our dependent variables were two indexes of SDT sensitivity to the pattern of yes (old) and no 

(new) responses: d’ and A. The independent variables were target micropatterns (T) versus lure 

 

 

*** *** 
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micropatterns (L) or target items versus foil micropatterns (F). Using paired-samples t-tests, we 

found participants showed higher sensitivity to the old/new difference when recognizing target 

micropatterns relative to the foil, d’ (T,F), M = 2.70, SE = .11, than they were at identifying 

target micropatterns relative to the lures, d’ (T,L), M = 1.53, SE = .11. This difference, 1.17, 

(BCa) 95% CI [.95, 1.37], was significant t(29) = 10.58, p < .001, and represented a large-sized 

effect, d = 1.93. Using the A measure of detection sensitivity (Zhang & Mueller, 2005), we again 

found that participants had greater sensitivity in recognizing the target micropatterns relative to 

the foils, A (T,F), M = .93, SE = .01, than they were at identifying target micropatterns relative 

to the lures A (T,L), M = .82, SE = .01. This difference, .11, (BCa) 95% CI [.09, .14], was 

significant t(29) = 8.81, p < .001, d = 1.61. 

4.5.2.4 Recognition memory discrimination — correlation with MMN signal 

To disentangle the MMN representation and its relationship with recognition memory 

discrimination, we correlated the MMN peak amplitudes with d’ and A scores. We found the 

MMN was significantly related to lure discrimination, d’ (T,L), r = –.54, 95% BCa CI [–.78, –

.19], p = .002, and to foil discrimination, d’ (O,F), r = –.37, 95% BCa CI [–.58, –.08], p = .047. 

Using the purportedly more rigorous measure of A, we found the MMN was again significantly 

related to lure discrimination, A’ (T,L), r = –.48, 95% BCa CI [–.76, –.17], p = .008 (Figure 4-5). 

We failed to find evidence, however, that the MMN correlated with foil discrimination, A (T,F), 

r = –.28, 95% BCa CI [–.49, –.06], p = .135. This primary finding that the MMN and d’ (T,L) 

and A (T,L) are correlated is consistent with our prediction that strong mnemonic representation 

is formed from the MMN and that it may predict recognition memory specificity.  

4.5.3 Pre- and post-tests 

4.5.3.1 MST 

In this test of visual object behavioral pattern separation, participants were able to identify 

79.70% (SE = 2.37%) of the targets as old, 50.04% (SE = 3.14%) of the lures as similar, and 

80.55% (SE = 2.41%) of the foils as new. These results are comparable to the target/lure/foil 

accuracy rates of 81.2%/47.6%/82.0%, found in a group of 26 healthy adults (16 females), 20–39 

years of age, tested by Stark et al. (2013). Performance on the MST was further evaluated 

through the Lure Discrimination Index (LDI) score (Stark et al., 2015). The LDI is calculated by 

subtracting the percentage of incorrect similar responses to foil trials from the percentage of 
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correct similar responses for lure trials. Consequently, the LDI represents the percent of lure 

trials correctly identified, while accounting for false alarm responses. The average LDI score was 

35.25% (SE = 3.04%), compared to approximately 36.0% for the younger adult group tested by 

Stark and colleagues (2013; the LDI is referred to as the BPS in this paper). Performance on the 

MST was also evaluated through traditional recognition memory performance (REC) by 

calculating the difference between the proportion of targets endorsed as “old’ less the proportion 

of foils named as “old”. The average REC score was 75.04% (SE = 2.67%), compared to 

approximately 78.6% for the younger adult group tested by Stark and colleagues (2013). 

4.5.3.2 Same-different forced-choice discrimination task 

Participants showed high discrimination rates (M = 96.63%, SE = 0.86%) averaged across the 21 

pairs in this post-test, with slightly higher overall rates for discriminating same stimuli as “same” 

(M = 97.70%, SE = 0.57%) versus discriminating different stimuli as “different” (M = 96.21%, 

SE = 1.18%). 

 

Figure 4-5. Scatterplot of MMN correlation with d’ (T,L) 
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4.6 Discussion 

We set out to investigate whether the strength of the MMN at encoding correlates with 

recognition memory performance. We show that the strength of the auditory MMN predicts 

subsequent memory in healthy young adults, a novel finding. We do so by demonstrating a 

significant correlation between MMN amplitudes and mnemonic discrimination of acoustic 

information in recognition memory. This result indicates that the MMN reflects participants’ 

ability to encode a lasting representation of the standard versus deviant; this representation has a 

monotonic relationship with the ability to subsequently differentiate old items from unstudied 

tonal patterns, even those which are highly similar but unstudied. Such a finding advances our 

understanding of the preattentive MMN signal by connecting it with conscious cognitive 

abilities. We also promote new avenues of research possibilities for ERP studies of learning and 

memory encoding by grounding our results in developing theories of predictive error within the 

hippocampus.  

Previous studies have interpreted the MMN difference wave as an index of discrimination and 

change detection, localized in the frontal and auditory cortices (Näätänen, 2019). However, 

evidence is lacking for the significance of the amplitude of the MMN in predicting 

hippocampally mediated episodic memory discrimination in neurotypical humans. Indeed, most 

studies that have found a link between the MMN and higher-order cognitive abilities are those 

that focused on clinical populations, particularly people with schizophrenia or bipolar disorder 

(Alain et al., 1998; Baldeweg & Hirsch, 2015) or older adults with neurodegenerative conditions 

(e.g., Laptinskaya et al., 2018). A theory derived from some of these experiments is that the 

MMN is sensitive to a deficient N-methyl-D-aspartate (NMDA) receptor function in cortical 

areas of the brain. MMN investigators speculate that this NMDA deficit impairs synaptic 

plasticity and prevents memory encoding and higher-order cognition in the clinical conditions 

studied and in age-related neurological conditions such as Alzheimer’s disease (Baldeweg & 

Hirsch, 2015; Näätänen et al., 2012; Näätänen, Kujala, Kreegipuu, et al., 2011; Stephan et al., 

2006). 

Evidence from a transgenic mouse model has shown that NMDA receptors in the granule cells of 

the hippocampal DG are likewise crucial to pattern separation of visual inputs (McHugh et al., 

2007). There is further evidence that the MMN signal in rats is elicited in both the auditory 
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cortex and the DG, subiculum, and CA1 cellular layers (Ruusuvirta et al., 2013). In humans, 

these hippocampal subfields play essential roles in pattern separation/pattern completion of 

visual objects (Baker et al., 2016; Bakker et al., 2008b; Rolls, 2016). Based on our observations, 

these MTL areas might also be sensitive to discriminating acoustic information in response to the 

MMN signal in humans. Our findings indicate that individual differences in the increase of 

MMN amplitude in response to standard vs. deviant micropatterns correlate with performance 

variability in behavioral pattern separation. An MMN-NMDA-DG link could facilitate this 

mnemonic discrimination of abstract auditory stimuli. Such a link would provide the rationale for 

our finding that the MMN predicts higher order cognition in a neurotypical population, as has 

been previously found in neuroatypical groups (Baldeweg & Hirsch, 2015).  

Our electrophysiological results — and source strength activity in the auditory cortex and MTLs 

— then, may reflect deviance or mismatch detection registered by the hippocampus at encoding. 

This inference is supported by ERP findings of hippocampal sensitivity to oddball verbal events 

(Vila-Ballo et al., 2017). The CA1 of the hippocampus receives input from the DG via the CA3 

(Rolls, 2016). It also back projects onto the neocortex to activate modality-specific cortical areas 

involved in episodic memory (Hindy et al., 2016; Rolls, 2016). Thus, the auditory cortical source 

of the MMN might represent the back projections from the CA1 to the auditory cortex in service 

of the representation of the deviant in memory (Parras et al., 2017; Vila-Ballo et al., 2017), in the 

same way abstract visual information is hypothesized to interact with the visual cortex (Hindy et 

al., 2016).  

A complementary, yet novel explanation for the relationship between the MMN and mnemonic 

discrimination is in the context of prediction coding (Friston, 2003, 2005; Garrido et al., 2009; 

Hohwy, 2013). Within this framework, the MMN is conceptualized as a detectable signal when 

the brain’s predictive coding mechanism fails to predict anomalous, bottom-up input, resulting in 

prediction errors (Friston, 2003, 2005; Garrido et al., 2009). A growing body of research has 

found that prediction errors influence episodic memory (Sinclair & Barense, 2018). Importantly, 

prediction error minimization has been theorized to facilitate difference-based coding rather than 

stimulus-based coding (Northoff, 2013), possibly by biasing hippocampal subfields to certain 

receptive states (Bein, Duncan, et al., 2020). In addition, the integration of predictive coding into 

neurobiological models of the MMN depends on NMDA-dependent plasticity to modulate 

synaptic weights in response to prediction errors (Wacongne et al., 2012). 



101 

 

In our paradigm, the bottom-up input sustaining predictive coding would be the regularly 

occurring standard micropattern. As participants sat in a soundproof booth, watching a movie 

and passively being exposed to the repetitive standard, they became attuned to the acoustic 

regularity within their environment. When the deviant micropattern violated these regularities, 

prediction errors occurred and were registered by the MMN. Our analysis suggests that the 

magnitude of this MMN predicts mnemonic discrimination. We speculate but cannot verify that 

the neural responses following the deviant — or prediction error minimization (Friston, 2003, 

2005, 2010) — are responsible for this recognition memory performance. Support for this 

thought may be found in vision science. Here, prediction errors in response to violations of 

perceptual expectations have been found to bias hippocampal CA3 and CA1 subfields (Bein, 

Duncan, et al., 2020). These biases lead to “states,” whereby the hippocampus is more conducive 

to pattern separation or pattern completion (Bein, Duncan, et al., 2020). In our study, the deviant 

auditory input’s predictive errors would similarly bias hippocampal subfields towards sparse 

encoding (Bein et al., 2020; Kok & Turk-Browne, 2018). These specific representations which 

would facilitate more precise discrimination in high-interference memory situations (i.e., pattern 

separation), along with other, less demanding memory judgments.  

As for these less demanding memory judgments — the sensitivity to foils relative to targets — 

our evidence of a significant effect using a d’ measure was not corroborated with a non-

parametric measure of sensitivity. The inability to detect an effect using both tests may be 

attributable to overall high accuracy rates for foils. These rates make that condition insensitive to 

a potential correlation with MMN amplitudes. Alternatively, it could be that the pitched-down 

foil was so distinctive that it did not rely on a recall-to-reject post-retrieval process, which is 

more demanding of the memory trace detected by the MMN. This assumption is reinforced by 

the RTs for the foils, which were significantly faster than the lures, and not found to be 

significantly different than target RTs.  

Overall, our findings of a significant relationship between the MMN amplitude for pre-

experimentally unknown, incidentally encoded auditory stimuli and mnemonic discrimination of 

micropatterns lends credence to our position that the MMN could be a direct measure of acoustic 

pattern separation at encoding. This mechanism helps discriminate between highly similar lures 

vs. targets and possibly less similar foils vs. targets. To our knowledge, this is the first study to 

examine the nature of pattern separation with novel auditory stimuli and to describe the MMN as 
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a neural signature of recognition memory discriminability. This link is significant, as much of 

our knowledge of mnemonic discrimination in human recognition memory comes from studies 

that use semantically recognizable visual stimuli (Liu et al., 2015). For example, the MST 

evaluates performance using pictures of everyday objects (e.g., picnic basket, fishbowl, 

saxophone). Despite the reliability and ubiquity of studies on mnemonic discrimination of visual 

stimuli using the MST, it is unclear if this process generalizes to other modalities (Liu et al., 

2015). Evidence of a significant correlation between the MMN and mnemonic discrimination, d’ 

(T,L), illustrates that mnemonic discrimination is not a modality-specific ability, dependent on 

conceptual processing conferred by semantic stimuli. Instead, the enhanced encoding reflected in 

the MMN waveform is resilient to interference from highly similar inputs and facilitates 

behavioral pattern separation of incidentally learned, pre-experimentally novel, auditory 

information. This finding substantiates our paradigm as a test of behavioral pattern separation for 

abstract auditory objects, with potentially similar reliability as the MST for visual objects. A 

leading view is that the MMN is an overall barometer of neuronal dynamics and brain plasticity 

(Garrido et al., 2009; Näätänen, 2019). Our study suggests that such perceptual and mnemonic 

malleability is a manifestation of pattern separation, prediction error, and match-mismatch 

detection — all different iterations of similar neurophysiological, hippocampally dependent 

processes. 
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Chapter 5  
 

 General discussion 

5.1 Summary 

In this dissertation, I set out to investigate the multimodal nature and limits of pattern separation 

and whether they are dependent on processing within the hippocampus as theorized by classical 

theories of pattern separation/pattern completion (O’Reilly & McClelland, 1994; Treves & Rolls, 

1994; Yassa & Stark, 2011). By combining different research techniques, I hypothesized that I 

could better investigate the purported functions and neural correlates of pattern separation. To do 

so, it was necessary to address three primary research questions during the conceptualization of 

the three studies described here. The first two relate to whether presumed deficits in pattern 

separation/pattern completion — following hippocampal lesions or through age-related 

hippocampal deterioration — can:  

1. Interact with perception as they do with memory (Aim 1); and, 

2. Extend to modalities other than vision, notably audition (Aim 2). 

The last research question pursued the question of whether pattern separation, as evidenced by 

lure discrimination:  

3. Can be detected using abstract stimuli (Aim 3). 

This section will elaborate on the studies’ main findings and discuss how they provide insight 

into the aims above. I will further expand on some of the key points discussed in the dissertation, 

including what BL’s performance reveals about the necessity of the DG in pattern separation and 

perception. Finally, I will discuss how these results integrate with two theories of hippocampal 

involvement in pattern separation throughout the hippocampus and in connection with the 

neocortex. Finally, I outline some of the clinical implications of these findings and future 

research to address outstanding issues. 
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5.1.1 Deficits in pattern separation affect perception as well as memory 

In Study 1, I showed how hippocampal involvement in categorical perception of faces might 

depend on mnemonic and perceptual discrimination. I tested BL, an individual with selective 

bilateral DG lesions, and age-matched controls. Participants were administered morphed images 

of famous and nonfamous faces in a standard categorical perception (CP) identification and 

discrimination experiment (Studdert-Kennedy et al., 1970). All participants exhibited nonlinear 

identification of famous faces with a midpoint category boundary. However, controls identified 

newly learned nonfamous faces with lesser fidelity, while BL showed an unusual shift in his 

category boundary.  

The complementary learning systems (CLS; McClelland et al., 1995) theory conceives the 

hippocampus as being agnostic to the modality of information processed when encoding similar 

memories (Huffman & Stark, 2014; Hunsaker & Kesner, 2013; Larocque et al., 2013). Yet, the 

first human neuroimaging study of pattern separation (Kirwan & Stark, 2007) found slightly 

different activation patterns within the hippocampus for faces relative to objects. Indeed, 

activation patterns associated with faces were more diffuse, leading to later conjecture that the 

orthogonalization of faces happens upstream of the hippocampus, likely in the fusiform face area 

(Kirwan et al., 2012).  

Faces have also been associated with different behavioral response profiles when contrasted with 

objects in pattern separation tests (Kirwan et al., 2012; Kirwan & Stark, 2007). For example, 

healthy controls were significantly more likely to respond “similar” to face foils than to object 

foils, even if their overall lure discrimination was intact (Kirwan et al., 2012). These differences, 

however, did not lead to significant overall category differences in lure discrimination in controls 

(Kirwan et al., 2012; Kirwan & Stark, 2007), although patients with hippocampal damage exhibit 

predicted lure discrimination deficits for both faces and objects (Kirwan et al., 2012).  

Huffman and Stark conducted more intentional testing of CLS using objects and faces to 

investigate differences in the degree of pattern separation in the hippocampus and the “summed 

similarity” in the broader MTL (Huffman & Stark, 2014). Their experiment had the advantage of 

high-resolution fMRI and multivariate pattern analysis. Results revealed significant differences 

in classification accuracy (i.e., generalization of similar stimuli) for faces versus objects/scenes 

in the parahippocampal and perirhinal cortices (Huffman & Stark, 2014). Similar category 
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discrimination was not detected in the hippocampus, although activity in that region did 

distinguish between images of all types and a non-mnemonic baseline (Huffman & Stark, 2014). 

More recently, high-resolution fMRI suggests that prior knowledge mediates the role of the 

hippocampus — in conjunction with cortical face processing areas — in differentiating highly 

confusable faces (Bein, Reggev, et al., 2020).  

A pillar of the CLS theory, reinforced by Huffman and Stark ( 2014), is that the neocortex, 

including extra-hippocampal areas in the MTL (e.g., the perirhinal cortex), are responsible for 

categorizing or summing similar information (Huffman & Stark, 2014). This supposition is 

relevant to Study 1. In the first part of the CP experiment, we found that prior knowledge helped 

participants categorize faces. Both controls and BL, who has a focal hippocampal lesion but an 

intact perirhinal cortex, identified famous faces with an expected 50% category boundary 

between face morphs. BL and controls, however, were less competent at categorizing nonfamous 

faces.  

We found the most remarkable performance divergence between BL and controls in the 

discrimination of faces. In theory, discrimination should place fewer demands on memory, as 

participants looked at two faces side-by-side and only had to respond whether they were the 

same or different. Yet, we found that BL could not improve beyond his categorization accuracy 

to discriminate faces as distinct. If the faces were of the same category, he was likely to identify 

them as similar. On the other hand, controls, who presumably relied on their ability to pattern 

separate faces and combined these with higher-order cortical representations, could make these 

perceptual distinctions. These results suggest that hippocampally mediated pattern separation is 

necessary for perceptual discrimination beyond the limits of categorization or prior conceptual 

knowledge about faces.  

Study 1 thus provides an essential missing link in understanding the perceptual and mnemonic 

processes involved in face processing by the DG. Traditionally considered a declarative memory 

structure, our findings show that the hippocampus may also contribute to visual perception.  

5.1.2 Evidence exists for pattern separation in the auditory modality 

In Study 2, we compared the performance of neurotypical younger, middle-older, and older 

adults and patient BL on an original recognition memory paradigm using auditory stimuli. As 
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was noted previously, CLS theorists conceive of the hippocampus as being agnostic to the 

modality of information processed when encoding similar memories (Hunsaker and Kesner, 

2013; Huffman and Stark, 2014; LaRocque et al., 2013). However, visual items are most often 

used in behavioral tests of pattern separation tasks, such as the commonly used MST (Stark et 

al., 2015). Speculation exists that the hippocampus is biased towards processing inputs from the 

visual domain (Zammit et al., 2017). Indeed, the hippocampus has well-established afferents 

from the ventral visual stream, and it has been purported to play a specialized role in spatial 

memory and complex spatial perception, which is highly visual in humans (A. C. H. Lee et al., 

2012; Saksida & Bussey, 2010). Thus, behavioral studies of pattern separation that use the MST 

may be limited in their generalizability to other domains (Liu et al., 2015).  

A novel task, the Mnemonic Auditory Similarity Task (MAST), was developed to detect 

recognition memory for auditory stimuli of participants. At test, participants were asked to 

distinguish among semantically recognizable auditory stimuli that were previously heard 

(targets), were highly similar to those previously heard (lures), or were new and semantically 

different from targets or lures (foils). Regardless of age, participants recognized lures at a 

significantly lower accuracy rate than targets and foils. This lure discrimination difficulty 

paralleled similar results found in the visual modality (Bakker et al., 2008a; Kirwan & Stark, 

2007; Stark et al., 2013). In addition, similar to previous visual memory studies in healthy 

younger and older adults (Stark et al., 2015; Yassa, Lacy, et al., 2011), there was an age-related 

decline in performance accuracy for auditory lure discrimination. This finding suggests that the 

hippocampus may play a similar role in pattern separation of highly similar sounds as it does 

with highly similar visual images.  

In testing performance on the MAST and the MST across the three age groups, we found that 

target vs. lure sensitivity scores in young adults were similar for both sounds and pictures of 

everyday objects. However, significant variations in ability were found in the middle-older and 

older age groups. In these individuals, acoustic performance was significantly worse than visual 

performance. However, these modality differences vanished when we controlled for auditory 

perceptual abilities in a trimmed sample. Thus, rather than challenging the notion that the 

hippocampus is representationally agnostic to stimulus modality (Huffman & Stark, 2014; 

Larocque et al., 2013), our results seem to support this theory when the age-related auditory 

decline is taken into account. 
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BL’s results for target items relative to lures and foils raised additional questions related to the 

theoretically agnostic nature of the hippocampus. Although we could not find a significant 

impairment in BL’s lure sensitivity relative to controls, his performance was at floor, exhibiting a 

total lack of behavioral discrimination. In addition, BL was significantly worse than controls in 

recognition memory performance for acoustic but not visual objects. We speculate that BL’s 

frank impairments in mnemonic discrimination, as measured by traditional metrics and signal 

detection analysis, might have uncovered an unexpected finding: the DG plays a crucial role in 

auditory recognition memory. Such a finding would also seem to indicate a dissociation between 

the DG’s function in acoustic versus visual recognition memory, as a similar deficit was not 

found for BL in response to visual recognition memory assessment using the MST.  

Indirect and direct connectivity thought to support episodic memory between the human auditory 

cortex and hippocampus has been found in humans and monkeys (Munoz-Lopez et al., 2010; 

Rocchi et al., 2021). However, the interconnectivity between human hippocampal subfields, 

which might support recognition memory for sounds, has yet to be established. As technological 

advancements are made in functional imaging, I expect that the connectivity involved in 

delineating all sensory information (including auditory) within the hippocampus will be defined 

more precisely. Until then, this finding of a potential recognition memory disruption caused by a 

lesion to the DG offers initial human evidence of a brain-behaviour relationship between the DG 

and the auditory cortex in recognition memory of everyday sounds.  

5.1.3 Pattern separation can be detected using abstract auditory stimuli 

In humans, behavioral pattern separation is classically illustrated by assessing participants’ 

ability to differentiate pre-experimentally known visual objects studied from those that were 

unstudied, some of which are visually and semantically similar to the studied items (Bakker et 

al., 2008a; Stark et al., 2015). In Study 2, we provided evidence that auditory lure discrimination 

declines across the lifespan, suggesting that age-related declines found in visual behavioral 

discrimination (Stark et al., 2015) are also detectable in at least one other category. The sounds 

used in Study 2 had strong semantic associations, as do the visual objects included in the MST. 

However, the use of stimuli with pre-existing semantic representations risks biasing participants 

towards pattern completion in behavioral tests of pattern separation (Deuker et al., 2014; 

Hunsaker & Kesner, 2013; Liu et al., 2015).  
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Study 3 set out to control for the potential bias inherent in semantically familiar sounds by using 

micropatterns of pure tones. By doing so, we removed any mnemonic advantage conferred by 

deeper-level processing of semantically meaningful items. Participants heard the clusters of 

sounds for the first time on the day of the experiment. The micropatterns were not musical and 

avoided the emotional richness or memorability of musical passages, which activate the 

hippocampus and the broader MTL (Levitin & Tirovolas, 2009). Devoid of pre-experimental 

semantic familiarity, these micropatterns met the goal of being process pure (Deuker et al., 

2014). At study, we measured ERPs of young adults as they passively listened to the standard 

and deviant micropatterns. We controlled for possible confounds due to attention by instructing 

participants to attend to a movie being played without an audible soundtrack. During the 20 

minutes they watched the movie, the young adults were presented with standard and deviant 

sound patterns, and an associated MMN was computed.  

The second test phase of the experiment was adopted from a typical visual pattern separation 

behavioral paradigm (Kirwan & Stark, 2007; Stark et al., 2013, 2015). During this part of the 

experiment, participants completed a surprise memory test in which they were presented with 

target micropatterns, highly similar lures, and relatively different foils. We found the healthy 

young adults exhibited a high degree of sensitivity at recognizing target items relative to foils. 

Unexpectedly, we found an even stronger correlation between the MMN amplitude and 

recognition accuracy for target micropatterns versus lures than for target items versus foils. 

These findings suggest that the MMN translates to recognition memory discrimination, possibly 

facilitated by mechanisms of prediction error (Friston, 2010; Garrido et al., 2009).  

There are hints in the literature that the MMN interacts with long-term memory (Näätänen & 

Kreegipuu, 2010; Snyder & Michelon, 2006). We believe this extends to the signs of pattern 

separation we found in Study 3. Evidence for similar interactions can be found in studies using 

phoneme stimuli (Cheour et al., 1998; Näätänen et al., 1997). In these experiments, a larger-

amplitude MMN appears when a phoneme deviant is in a participant’s mother tongue, relative to 

when it is a vowel sound from outside a native language. Furthermore, the MMN provides 

evidence that the ability to discriminate familiar phonemes from unfamiliar, but highly similar, 

phonemes is learned before 12 months of age (Cheour et al., 1998; but see also Cooray et al., 

2015). These findings lead to our conjecture that the MMN also reflects behavioral pattern 

separation of long-term memory traces of speech sounds.  
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In animal experiments (Ruusuvirta et al., 1995, 2013), the MMN has been found to activate the 

hippocampus, a brain structure crucial to episodic memory integrity (Rosenbaum et al., 2008; 

Vargha-Khadem et al., 1997). Specific hippocampal subfields engaged include the DG 

(Ruusuvirta et al., 2013), which, as I have stressed throughout this work, is a part of the 

hippocampus on which pattern separation depends.  

In a mouse study, significant hippocampal activity was found when the rodents were presented 

with random, relative to self-generated, auditory stimuli (Rummell et al., 2016), suggesting that 

the hippocampus may also subserve novelty detection/suppression modulation. Such activity 

would align the MMN within the larger predictive coding framework. This theory hypothesizes 

that neural responses are shaped by expectations in advance of, and prediction errors following 

the presentation of, sensory input (Garrido et al., 2009). Interestingly, prediction errors in human 

participants in response to a violation of expectations of visual stimuli have also been found to 

involve hippocampal subfields (Bein, Duncan, et al., 2020).  

Efforts to casually link the MMN with episodic memory processes beyond language acquisition 

in neurotypical humans, however, have been untested. We confirmed a link between MMN brain 

dynamics and behavioral pattern separation to test our prediction that the MMN signal mediates 

both recognition memory and behavioral pattern separation in healthy young adults. In doing so, 

we show that pattern separation is not a modality-specific ability, nor is it dependent on 

conceptual processing conferred by semantic stimuli. 

5.2 Further interpretation and implications 

The research reported throughout chapters 2 to 4 of my dissertation speaks to several influential 

theories and previous empirical findings, which I elaborate upon in this section. 

5.2.1 Complementary Learning Systems (CLS)  

In many ways, the CLS account of the functional organization of memory (McClelland et al., 

1995) is intertwined with the rise of the study of pattern separation. Indeed, the CLS account 

drew upon ideas proposed by David Marr (Kumaran et al., 2016; McClelland et al., 1995), who 

was also a key figure in explicating pattern separation/completion concepts (Becker, 2017; 

Hasselmo & Hinman, 2016; Marr, 1971). Furthermore, the CLS account was developed and 

refined by individuals involved in computational modeling of pattern separation (Kumaran et al., 
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2016; McClelland et al., 1995; Norman & O’Reilly, 2003). The CLS account also integrates 

models of computational systems of human perception and cognition (including learning and 

memory) known as connectionist or Parallel Distributed Processing (PDP) models (McClelland & 

Cleeremans, 2010; Rumelhart & McClelland, 1986). These connectionist models propose 

interconnected layers or patterns of units (e.g., neuronal clusters) that exhibit neuron-like 

behaviour when interacting with units in other parts of the brain (Banich, 2011). As was stressed 

in 5.1.2, the CLS propounds that the hippocampus is agnostic to the modality of the sensory 

input it processes (Huffman & Stark, 2014). This approach is not incompatible with O’Keefe and 

Nadel’s position that “the hippocampus is the core of a neural memory system providing an 

objective spatial framework within which the items and events of an organism’s experience are 

located and interrelated,” (O’Keefe & Nadel, 1978, p. 1; emphasis mine). 

One of the central tenets of the CLS computational framework is that the brain has a fast and 

slow system of representing and retrieving memories (McClelland et al., 1995; Schapiro et al., 

2017). The hippocampus in general, and the DG and the CA3 in particular, are part of the fast 

learning system. The DG allows for rapid learning by arbitrarily and automatically 

orthogonalizing distinct (i.e., pattern-separated) representations for each memory episode to 

minimize interference. These patterns are transmitted to the CA3, where specific experiences can 

be reinstated (or auto-associated) from partial cues. (Within connectionist models, pattern 

completion is also a central aspect of recurrent and inter-connected networks within the 

neocortex; e.g., Palmer, 1999; Rolls, 2008). The neural connectivity within this system adapts 

and changes much more rapidly than synaptic connections among the slow system or units 

within the neocortex (Frankland & Bontempi, 2005; McClelland et al., 1995; Yassa & Reagh, 

2013). Connections from the hippocampus to the broader MTL or neocortex (see Figure 1-3), 

however, provide for more gradual, incremental generalization, which facilitates categorization. 

This process relies on layering overlapping representations or on the assimilation of novel inputs 

so as to generalize about how they relate to similar representations. Thus, the CLS model can 

account for both specificity and generalizability of memories, as well as the modification of 

existing memories based on new statistical regularities within the environment (Kumaran et al., 

2016; McClelland et al., 1995; Norman & O’Reilly, 2003).  

Importantly, the CLS framework predicts that patients with focal lesions to the hippocampus 

(which spare the perirhinal cortex) should be impaired in modified recognition tests with related 
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lures. These high-interference items would not be pattern separatable and thus would be 

perceived as similar (Norman, 2010). Studied items (targets), however, would be discriminable 

from new, unstudied items (foils) as the studied items would have a finer tuned neural signature 

in the perirhinal cortex, even after only one exposure (Brown et al., 1987; Norman, 2010; 

Norman & O’Reilly, 2003; Viskontas et al., 2006). 

Since its articulation as an account of human learning and memory in the mid-1990s 

(McClelland et al., 1995), the CLS theory has been expanded and reinterpreted in critical ways. 

For example, in its reliance on hippocampal-neocortical interactions, the CLS account has been 

seen to be compatible with “non-connectionist,” cross-cortical systems of learning and memory 

(McClelland, 2000), including the Competitive Trace Theory (Yassa & Reagh, 2013). The CLS 

account is also acknowledged as a close cousin to the representational-hierarchical framework of 

the cortical organization (Cowell et al., 2010; Kent et al., 2016; Saksida & Bussey, 2010) 

discussed in section 2.6. However, the CLS model is less specific on how representations of 

visual objects culminate in the perirhinal cortex, the termination point for the ventral visual 

stream hierarchy (Norman, 2010).  

A significant update of the CLS theory by Kumaran, Hassabis, and McClelland in 2016 

expanded the role of the hippocampus within the context of the CLS. One of the updates 

Kumaran and colleagues proposed — citing a decade or so of new data and empirical 

considerations of the CLS (e.g., Eichenbaum, 2004; Kumaran & McClelland, 2012; Schapiro et 

al., 2014; Zeithamova et al., 2012) — is that hippocampus supports “some forms of 

generalization that go beyond those originally envisaged” (Kumaran et al., 2016, p. 512). The 

mechanisms by which this generalization occurs within the hippocampus are the subject of 

current theoretical debate and ongoing investigation. However, two leading candidate processes 

(which might not be mutually exclusive) are the recurrence of pattern separated codes in the 

DG/CA3 with the EC (Kumaran et al., 2016; Kumaran & McClelland, 2012) and within the 

synthesis of generalities by the hippocampus through statistical learning. The latter process, 

potentially intertwined with the CLS, can learn regularities from environmental cues over time 

(Schapiro et al., 2014, 2017; Schapiro & Turk-Browne, 2015). The time necessary to form these 

generalities in the hippocampus can be much faster (on the order of minutes) than was initially 

envisioned for neocortical learning (Kumaran et al., 2016; Schapiro & Turk-Browne, 2015). 

Interestingly, there is evidence that statistical learning may be supported within the hippocampus 
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by the EC to CA1 monosynaptic pathway (Schapiro et al., 2017), which is believed to be intact 

in patient BL. 

5.2.1.1 Support for the CLS account: Study 1 

The CP results in Study 1 can be interpreted in light of the CLS. Participants likely relied upon 

neocortical representations of pre-experimentally known FF during identification, perhaps 

residing in the temporal pole (Landi et al., 2021). This act of categorization, where humans 

recognize the functional “purpose” (e.g., being that famous movie star, politician, singer, etc.) 

with a semantically known conceptual set of properties (e.g., who was in that movie, who was 

our last prime minister, who sings now in Vegas, who has that wide nose), is informed by 

experience and is thought to be the ultimate goal of perception (Palmer, 1999). Participants’ 

(including patient BL) responses were in a typical sigmoidal function for the FF condition. In a 

connectionist CLS model approach, the sigmoidal function is indicative of the weighted all-or-

none communication between units in a neural network (Rolls, 2008). As BL’s identification 

performance was not found to be significantly different than that of controls, the CLS 

supposition of the neocortex being representationally categorical for faces and not necessarily 

dependent on rapid hippocampal learning (Huffman & Stark, 2014) is borne out. 

However, the NF condition would not have had enough exposure (at least in the original CLS 

conception) to obtain the slow learning necessary to possess these neocortical associations. 

These faces were learned on the day of testing, and thus their identification elements were those 

which had been learned quickly, pattern separated by the hippocampus. This reliance on fast 

learning may explain why the controls’ identification of NF did not follow a sigmoidal function 

as did FF. Hippocampally based representations could also account for the ability of participants 

to discriminate the within-category and between-category faces with equal skill. The NF were 

distinguishable, then, but they lacked generalizability. Paradoxically, this lack of overlapping 

representations seems to have helped the NFs discriminability within the context of a CP 

experiment. The NF, in effect, had little interference from neocortical identification associations 

and thus did not appear to be similarly tied to one identity. 

On the other hand, BL lacked the circuitry to pattern separate the NF. In theory, he was doubly 

disadvantaged, as he could not reply upon either neocortical generalities or hippocampal 

specificity. As a result, he could not categorize the NFs at a reasonable boundary when asked, as 
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he had no conceptual or perceptual representation of the identities. His discrimination 

performance reflected his impaired identification, with the caveat that one could also interpret his 

results as being “ideal” CP. This ideal derives from his zero sensitivity at within-category 

discrimination (i.e., all the within-category faces looked identical to BL). Alternatively, these 

results could be interpreted in terms of what we know about BL’s intact hippocampal subfields 

(Baker et al., 2016). Suppose his EC to DG/CA1 pathways are still intact, as I believe they are. 

In that case, BL could still encode coarse representations of the faces or generalize about the NFs 

based on statistical learning along the monosynaptic pathway. The result would be potentially 

overactive pattern completion/generalization without the mediating effect of pattern separation. 

In this scenario, we would see that there would be little, if no, discriminability of the within-

category NF.  

5.2.1.2 Challenges to the CLS account: Study 2 and Study 3 

Huffman and Stark (Huffman & Stark, 2014), in their positioning of pattern separation within the 

CLS account, famously referred to the hippocampus as “representationally agnostic” (Huffman 

& Stark, 2014). This term distinguished the functions of these hippocampal subfields from areas 

of the neocortex that are “representationally categorical” and show classification accuracy 

between categories of inputs (e.g., faces versus scenes). This agnostic conception of the 

hippocampus regarding pattern separation dates back to seminal theories of pattern separation 

and pattern completion (e.g., Marr, 1971; O’Reilly & McClelland, 1994). The agnostic view has 

also been articulated in different ways by those who propose that pattern separation is a process 

that operates on information across any sensory or perceptual domain (Hunsaker & Kesner, 

2013; Kent et al., 2016). Failure to provide evidence of such agnosticism would threaten the 

positioning of pattern separation within the CLS framework. In addition, such an absence of 

evidence could limit our understanding of pattern separation. Rather than being an agnostic 

process, it would be confined to the visual object or visuospatial world. These are the type of 

stimuli that have most often been used in human and animal testing to support the 

operationalization of pattern separation (Liu et al., 2015).  

In Study 2, I provided support that the hippocampus is representationally agnostic by showing 

that everyday sounds show similar lure discrimination difficulties across the lifespan as do 

everyday visual objects. Notably, young adults did not differ in their lure discrimination ability 
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between modalities. This result appears to implicate hippocampal decline as the cause of 

behavioral pattern separation deficits for everyday sounds. This is a significant finding, as 

auditory stimuli, to my knowledge, have not been used until now in human mnemonic 

discrimination tests. Yet, unlike the visual objects, we also found that overall recognition 

memory performance for auditory objects was significantly worse in the older adult groups than 

the young adult group.  

Further complicating the question was that patient BL had even worse auditory recognition 

memory performance than age-matched controls. His lure discrimination was at floor but was not 

statistically different from that of controls, possibly due to variability in the control data or a lack 

of power in the MAST test. Both issues could be addressed by increasing the sample size of the 

number of participants tested (Howell, 2010). 

The role of the hippocampus in recognition memory has been the subject of considerable debate 

(Bird, 2017; Brown et al., 2010; Burwell & Furtak, 2008; I. A. Clark & Maguire, 2016; Norman, 

2010; Ranganath, 2010; Sauvage et al., 2008; Wixted & Squire, 2004; Yonelinas et al., 2010). 

Studies of humans with focal hippocampal damage have contributed data suggesting that the 

hippocampus is necessary (Kopelman et al., 2007; Manns et al., 2003). Evidence for a “dual-

process” — the theory that the hippocampus is essential for recall but not recognition 

(Yonelinas, 2001) — also exists (Baddeley et al., 2001; Mayes et al., 2002; Patai et al., 2015; 

Vargha-Khadem et al., 1997). In a previous study using the MST (Baker et al., 2016) and in 

Study 2, BL exhibited visual object recognition memory performance (i.e., ability to identify 

targets as old) comparable to age-matched controls. However, others have found that recognition 

memory performance for auditory recognition memory is impaired in hippocampal amnesiacs 

(e.g., Squire et al., 2001). Animal studies are also often divided on this issue, with further 

nuances identified by the task and stimuli involved (Eichenbaum, 2004). 

An extensive account of the CLS model as applied to recognition memory, including one that 

accommodates findings in hippocampal amnesiacs (Norman & O’Reilly, 2003), includes a multi-

faceted account with several key variables. These variables include the type of paradigm used in 

a behavioral study, pre-experimental familiarity with the stimuli (which affects encoding), and 

the extent of the lesion and its location within hippocampal subfields. Within the model proposed 

by Norman and O’Reilly, it is difficult to say whether BL’s performance supports the CLS 
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approach to recognition memory for auditory stimuli. However, other studies of auditory 

recognition memory have consistently shown that recognition memory for sounds is worse than 

visual objects (Bigelow & Poremba, 2014; Gloede et al., 2017). More direct testing of behavioral 

pattern separation across modalities is needed to tease apart these modality-specific differences. 

A potential area of focus would be to investigate pitch detection. This ability has been found to 

be a variable of interest in behavioral discrimination studies with rodents (e.g., Aronov et al., 

2017).  

5.3 MMN, predictive coding, and pattern separation 

We recorded ERPs of healthy young participants using a novel task that measures auditory 

pattern separation of pre-experimentally unknown stimuli. Our goal was to determine if, during 

the study phase, a mismatch negativity (MMN) signal, elicited by deviation from preceding 

stimuli, predicts participants’ ability to discriminate studied items from highly similar, unstudied 

items.  

A component of ERPs, the MMN is associated with a change-detection process driven by 

prediction errors. A leading theory of the MMN response is that it involves the interplay of 

predictive coding, neural difference responses following the onset of change detection with 

prediction error, or neural expectancy responses in advance of sensory input (Garrido et al., 

2009; Näätänen, 2019; Näätänen et al., 1978). Hindy, Ng, and Turk-Browne (2016) discovered 

that predictive coding links perceptual mismatches. These occur between erroneous mnemonic 

expectations — expressed through pattern completion in the CA3 — with perceptual inputs of 

abstract visual images (Hindy et al., 2016). In this way, prediction errors registered in the 

hippocampus for visual inputs may initially reflect arbitrary binding of co-occurring events; 

these representations may sharpen over time as they are consolidated within the visual cortex 

(Hindy et al., 2019).  

Nevertheless, in humans, it is unclear if the MMN, which signals a change in input at perception, 

plays a causal role in maintaining a separation of overlapping auditory representations in long-

term memory. Tentative evidence supports the notion that the hippocampus plays a role in 

learning complex acoustic patterns (Barascud et al., 2016; Geiser et al., 2014). Furthermore, 

MMN experiments with clinical populations have provided some suggestions that the MMN 

response transcends its role as an index of perceptual discrimination and relates to higher-order 
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cognitive processes, such as long-term memory (Alain et al., 1998; Baldeweg & Hirsch, 2015; 

Näätänen, 2019). However, speculation that the MMN correlates with behavioral discrimination 

of sounds has not been subjected to empirical testing.  

In Study 3, we answer the outstanding question of whether the MMN extends beyond its role as 

an index of perceptual discrimination and correlates with higher-order cognitive processes, such 

as episodic memory. We establish for the first time that automatic auditory discrimination is 

related to behavioral pattern separation in episodic memory. By linking MMN amplitudes with a 

surprise recognition memory test using previously heard and new sound patterns, our 

investigation also shows that our capacity to discriminate abstract auditory inputs, as measured 

by MMN, translates into new, unique memories.  

5.4 Clinical Implications 

As our aging population increases, so will the number of individuals who will suffer age-related 

cognitive impairment. One of the most common among them is a decline or loss of episodic 

memory, characterized by an inability to recall past personal experiences in detail, specificity, 

and precision. Similar losses of detail, specificity, and accuracy are also observed in perception. 

The evidence provided throughout this dissertation suggests that age-related decline in 

specificity and precision, and possibly in perceptual detail, is related to deficiencies in pattern 

separation. This loss of specificity may lead to reliance on gist rather than detailed information.  

Pattern separation is thought to depend on the functional integrity of the hippocampus, 

particularly the DG, which atrophies in aging and age-related neurological disease, including 

amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD). Recent research has 

shown that the hippocampus and related MTL structures are implicated in perception in addition 

to memory (Aly et al., 2013; Graham et al., 2010; Murray et al., 2007; Turk-Browne, 2019) but, 

to my knowledge, no one has examined if that is true also of pattern separation. We provide 

evidence that impaired pattern separation also contributes to perceptual deficits seen in older 

adults over and above those caused by deterioration of peripheral sensory mechanisms through 

testing patient BL.  

Although a deficit in pattern separation has been proposed as one of the main causes of memory 

decline with age, the test typically used to assess pattern separation, the MST, is a visual one. 
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Older adults and people with aMCI and AD all show deficient performance on the MST, because 

they have difficulty distinguishing targets from similar foils. Previously, it was not known if 

comparable deficits would also be observed in perception. Given the critical role ascribed to 

pattern separation for episodic memory, it is crucial to determine whether its effects can be 

detected not only with the MST, useful as it is, but also with other tests that require fine 

mnemonic and perceptual discrimination and whether these effects are related to performance on 

other tests of episodic memory that decline with age and age-related disorders such as aMCI and 

AD.  

Knowledge gained from this research could directly inform the development of tools for clinical 

assessment and intervention, particularly concerning auditory function. Mounting evidence 

points to the relationship between hearing loss and dementia (Griffiths et al., 2020; Lin et al., 

2011; Livingston et al., 2017; Loughrey et al., 2018). We provide data showing that the 

mnemonic discrimination and recognition — both likely mediated by the hippocampus — 

decline with age and may be detectible as early as midlife (see also Griffiths et al., 2020). 

Through building on these findings, future research could point to ways to mediate hearing loss 

as an independent risk factor for dementia (Griffiths et al., 2020), perhaps through fitness 

activities that boost neurogenesis within the DG (Han et al., 2016; Marlatt et al., 2012). 

5.5 Limitations and future directions 

Although the findings across all three studies have succeeded in whole or in part in meeting the 

main aims of my dissertation, some limitations are apparent. A discussion of these limitations 

also points to future directions for potential follow-on studies. 

Regarding the CP study (Chapter 2), a companion pattern separation study run at the same time 

would have helped disentangle the findings. Such a study would build on previous pattern 

separation studies using faces as stimuli, with a variation of adding famous and nonfamous faces 

into the mix or faces that vary by social dimension or ethnicity.  

It is well established that humans rapidly and effortlessly make generalities (many of them 

accurate) between another person’s facial features or expressions and that person’s character or 

personality (Zebrowitz & Montepare, 2015). In looking upon another’s face, we also commonly 

seek social information about that person’s age, sex, and attractiveness. In response to such 
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widespread first impressions, social psychologist Leslie Zebrowitz formulated the 

“overgeneralization hypothesis” (Zebrowitz, 1997). Zebrowitz’s hypothesis posits that humans 

are attuned to certain psychological qualities in others and may overgeneralize or overinterpret 

facial structures resembling these qualities. For example, we may create stereotypes of faces that 

project a certain level of fitness, particular emotions, or identity or remind us of babies 

(Zebrowitz & Montepare, 2015). Others have expanded upon Zebrowitz’s overgeneralization 

effects to look at other nonverbal information we perceive in faces and which may initiate our 

attitudes or behaviors towards others (Bjornsdottir & Rule, 2017; Zebrowitz & Montepare, 

2015). For example, Bjornsdottir and Rule (Bjornsdottir & Rule, 2017) studied young adults’ 

ability to infer social class from first impressions of faces. The subtle cues participants gleaned 

from these faces correlated with stereotypes that more affluent faces appear happier than poorer 

ones, even though the expressions on rich and poor faces were ostensibly neutral.  

As convincing as Bjornsdottir and Rule were on identifying social class as a dimension that can 

be conceptualized within Zebrowitz’s “overgeneralization hypothesis” (Zebrowitz, 1997), the 

researchers failed to illustrate whether social class is a dimension that is discrete or continuous, 

or how various degrees of wealth may influence first impressions. Therefore, one way of 

studying how we infer social class would be within the context of a CP experiment, accompanied 

by a companion pattern separation study. 

A related research question would be whether the ethnicity of the participants might interact with 

these determinations (e.g., Friesen et al., 2019). Here the phenomenon being explored would be 

the cross-race effect (CRE; also known as the other-race effect; Malpass & Kravitz, 1969). The 

CRE has been investigated in many studies of facial perception; a common finding is that 

recognition memory is stronger for same-race (SR) compared to cross-race (CR) faces 

(Hugenberg et al., 2012; Meissner & Brigham, 2001). Although infrequently studied in CP 

studies, Levin and Angelone found that categorical effects were more apparent when moving 

from one race to another (e.g., white faces to black faces) than when morphing from one white 

face or one black face to another white face or another black face (Levin & Angelone, 2002). If a 

similar effect influences judgments of faces with varying social class, then I would expect to find 

an interaction in categorical identification and discrimination due to the race of the participants 

viewing the target faces in such an experiment.  
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Additionally, much speculation occurred in the CP study as to the neural correlates potentially 

involved in categorization and discrimination and the extent to which these perceptual activities 

are potentially involved with pattern separation. A companion study with participants undergoing 

ultra-high-resolution fMRI during both phases of the study would reveal hippocampal 

dependencies during the identification and discrimination phases.  

The MAST study (Chapter 3) is another paradigm that could be adapted for a neuroimaging 

experiment to better understand the brain mechanisms of pattern separation in the non-visual 

domain. However, before that takes place, further refinement of the MAST may be needed. Just 

as the visual object-based MST has undergone rigorous improvement to select stimuli with 

varying degrees of similarity (divided into lure bins), the MAST could be improved by norming 

the stimuli. In addition, the paradigm could be expanded by introducing at least a dozen or more 

sounds to each condition (e.g., 32 trials each of repetitions, similar lures, and novel foils), which 

could allow for sharper performance distinctions among conditions. In piloting the task, we 

found that participants had a hard time with more than 20 sounds per condition. However, longer 

presentations of trials might help participants form representations of the sound files. 

Our novel use of the MMN signal to measures auditory pattern separation of pre-experimentally 

unknown stimuli had promising results with young adults. I had planned to test and report how 

their results would compare with a cohort of middle-older adults, as well as patient BL.1 I am 

confident our lab will finish this testing in the coming years. A comparison between age groups 

and additional patients with focal lesions within and without the hippocampus can also be 

conducted at that time.  

As part of this follow-up study, several limitations of the present paradigm could be addressed, 

particularly the ceiling effects in identifying target and foil micropatterns. These changes could 

include increasing the passive listening phase to acquire electrophysiological data on the MMN 

signal. In addition, limiting the number of lures in the behavioral portion of the study (which in 

the end were combined in our analysis) might make the study more efficient, as would asking 

participants to identify whether an item was old, new, or similar to better separate lures from 

foils. A future experiment using more difficult standard and deviant tones to counter the ceiling 

effects may be worthwhile.  
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5.6 Conclusion 

This work shows that the hippocampus, traditionally viewed as a declarative memory structure, 

also contributes to the perception and pattern separation of non-visual information. This finding 

helps to support speculation that the established role of the hippocampus in memory is a by-

product of its more fundamental role in fine discrimination of perceptual detail (Moscovitch et 

al., 2016). Furthermore, I have helped to establish that automatic auditory discrimination is 

related to behavioral pattern separation in episodic memory. Notably, this mnemonic 

discrimination can be achieved using abstract auditory stimuli. Together, these findings and three 

studies broaden our understanding of pattern separation, traditionally confined to research using 

semantically known visual objects. The testing done over three studies and discussed in this 

dissertation provides a critical bridge between perception and memory. It provides a path 

forward to explore pattern separation in previously unexamined domains.  
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Appendices 

Appendix A: Abbreviations 

CP:  categorical perception 

DG:  dentate gyrus 

EC:  entorhinal cortex 

ERP:  event-related potential 

FF:  famous faces 

MAST:  Mnemonic Auditory Similarity Test 

MST:   Mnemonic Similarity Test 

MTL:  medial temporal lobe 

NF:  nonfamous faces 
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Appendix B: 

BL’s Face Discrimination Strategy 

The following transcript is of patient BL’s response to the question of strategies he used to 

discriminate faces in Study 2. SB = Stevenson Baker, the experimenter during this session. 

SB: What were you doing to tell the faces apart? What sort of strategies, if any? 

BL:  I was trying to match up the eyes. And the eyebrows. The nose, not so much. And the 

lips. The position of the lips. And trying to like, see if they had large irises or small 

irises. Like their eyes, if they were bigger or smaller. 

SB:  OK. 

BL:  I didn’t notice if anyone had ears. [Laughs] 

SB:  What about eye colour, or colour of the skin? 

BL:  Yes, I was looking for that too.  

SB:  What you are saying to me is that you were looking at the features a lot. 

BL:  Yeah. 

SB:  Would you say that is a strategy you used for most of the faces, or were there any 

faces you just got right away? Sort of like the whole face, rather than the individual 

features. 

BL:  Well, yeah, but then I would sort of pick it apart, compared to the one next to it, sort 

of thing. 

SB:  So it’s really dwelling on the features is what I’m hearing you say. 

BL:  Comparing. Comparing for, like . . . differences.
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1 Limitations on EEG testing related to the COVID-19 outbreak prevented me from completing 

this planned testing.  


