
Exploring and Evaluating the Scalability and Efficiency 

of Apache Spark using Educational Datasets 

 

Jian Zhang 

 

 
A THESIS SUBMITTED TO 

THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  

FOR THE DEGREE OF MASTER OF ARTS 

 

Graduate Program in 

Information System and Technology 

 

York University 

Toronto, Ontario 

 

April 2018 

 

© Jian Zhang, 2018 

 



ii 
 

Abstract 

 

Research into the combination of data mining and machine learning technology with web-based 

education systems (known as education data mining, or EDM) is becoming imperative in order 

to enhance the quality of education by moving beyond traditional methods. With the worldwide 

growth of the Information Communication Technology (ICT), data are becoming available at a 

significantly large volume, with high velocity and extensive variety.  In this thesis, four popular 

data mining methods are applied to Apache Spark, using large volumes of datasets from Online 

Cognitive Learning Systems to explore the scalability and efficiency of Spark. Various volumes 

of datasets are tested on Spark MLlib with different running configurations and parameter 

tunings.  The thesis convincingly presents useful strategies for allocating computing resources 

and tuning to take full advantage of the in-memory system of Apache Spark to conduct the tasks 

of data mining and machine learning. Moreover, it offers insights that education experts and data 

scientists can use to manage and improve the quality of education, as well as to analyze and 

discover hidden knowledge in the era of big data.  

  



iii 
 

Acknowledgements 

 

I would like to express my gratitude to my supervisor Professor Zijiang Yang for the useful 

comments, remarks and engagement through the learning process of my master thesis and the 

research. Her guidance helped me in all the time of my pursuing of the master academic learning.  

I also own a deep sense of gratitude to Professor Marin Litoiu for his keen informative interest 

and support with my thesis. His course offered me extensive and clear clue on the research of the 

thesis.  

 

Furthermore, I would like to thank Professor Huaiping Zhu for his support with my thesis. Also, 

I want to thank Professor Michael Chen for the support with his laboratory of Apache Spark 

Cluster in York University.  

 

Finally, I would extend my appreciation to my family and my mother for their supports and 

encouragement during various phases of my study in York University.   

  



iv 
 

Table of Contents 

Abstract ......................................................................................................................................................... ii 

Acknowledgements ...................................................................................................................................... iii 

Table of Contents ......................................................................................................................................... iv 

List of Tables ............................................................................................................................................... vi 

List of Figures ............................................................................................................................................. vii 

Chapter 1. Introduction ................................................................................................................................. 1 

1.1 Motivation ..................................................................................................................................... 1 

1.2 Problem Definition .............................................................................................................................. 4 

1.3 Significance......................................................................................................................................... 7 

1.4 List of Contributions ........................................................................................................................... 8 

1.5 Thesis Outline ..................................................................................................................................... 8 

Chapter 2. Literature Review ...................................................................................................................... 10 

2.1 Cognitive Learning System Analytics with Data Mining ................................................................. 10 

2.1.1 Cognitive Tutor System ............................................................................................................. 11 

2.1.2 Educational Data Mining and Big Data ..................................................................................... 11 

2. 2 KDD Competition Paper Review ..................................................................................................... 16 

Chapter 3. Data Mining Methodologies ...................................................................................................... 20 

3.1 Data Mining Process ......................................................................................................................... 20 

3.2 Data Preparation ................................................................................................................................ 23 

3.2.1 Data Transformation .................................................................................................................. 23 

3.2.2 Data Discretization ..................................................................................................................... 24 

3.2.3 Feature Selection ........................................................................................................................ 25 

3.2.4 Imbalanced and Sparse Data ...................................................................................................... 26 

3.2.5 Missing Values ........................................................................................................................... 27 

3.2.6 Normalization and Standardization ............................................................................................ 28 

3.3 Data Mining Algorithms ................................................................................................................... 30 

3.3.1 Logistic Regression .................................................................................................................... 30 

3.3.2 Decision Tree and Random Forest ............................................................................................. 31 

3.3.3 Support Vector Machine ............................................................................................................ 34 

3.3.4 Clustering ................................................................................................................................... 35 

Chapter 4. Big Data with Distributed Systems ........................................................................................... 37 

4.1 Apache Hadoop ................................................................................................................................. 37 

4.2 Apache Spark .................................................................................................................................... 40 



v 
 

Chapter 5. Methodology ............................................................................................................................. 47 

5.1 Data Pre-processing .......................................................................................................................... 48 

5.1.1 Feature Generation ..................................................................................................................... 49 

5.1.2 Feature Manipulation ................................................................................................................. 50 

5.1.3 Standardization .......................................................................................................................... 52 

5.2 Learning Algorithms ......................................................................................................................... 52 

5.3 Implementation with Python on Apache Spark ................................................................................ 53 

5.4 Scalability and Performance Evaluation Design ............................................................................... 55 

5.4.1 The Infrastructure of York University Spark Cluster ................................................................ 55 

5.4.2 The Infrastructure of Google Cloud Dataproc Spark Cluster .................................................... 57 

Chapter 6.   Results and Discussion ............................................................................................................ 59 

6.1 Datasets Overview ............................................................................................................................ 60 

6.2 Data Pre-processing .......................................................................................................................... 62 

6.2.1 Feature Generation ..................................................................................................................... 62 

6.2.2 Feature Manipulation and Standardization ................................................................................ 65 

6.3 Learning Algorithms Experiments on Spark Clusters ...................................................................... 66 

6.3.1 Classification Results with York University Lab Spark Cluster ................................................ 66 

6.3.2 Classification Models for Google Cloud Dataproc Spark Cluster ............................................. 72 

6.3.3 Experiments on Datasets with Varied Volumes ......................................................................... 79 

6.3.4 Experiment with Re-partition of One million Cases Dataset ..................................................... 86 

Chapter 7. Conclusion and Future Works ................................................................................................... 89 

7.1 Conclusion ........................................................................................................................................ 89 

7.2 Future Work ...................................................................................................................................... 91 

Reference .................................................................................................................................................... 93 

Appendix ................................................................................................................................................... 102 

A. Coding Reference ............................................................................................................................. 102 

1. Logistic Regression on Spark version 2.2.0/2.0.0 ......................................................................... 103 

2. Support Vector Machine on Spark version 2.2.0 .......................................................................... 104 

3. Decision Tree on Spark version 2.2.0 ........................................................................................... 105 

4. Random Forest on Spark version 2.2.0 ......................................................................................... 107 

 

  



vi 
 

List of Tables 

 

Table 1 KDD Competition Datasets ............................................................................................. 47 

Table 2 Results of Logistic Regression experiment I on York U Spark Cluster .......................... 67 

Table 3 Results of Logistic Regression experiment II on York University Spark Cluster ........... 69 

Table 4 Comparison of memory strategies on York U Spark Cluster .......................................... 71 

Table 5 Results of Logistic Regression(10-folded) on Cloud Spark Cluster................................ 73 

Table 6 Results of SVM (10-folded) on Cloud Spark Cluster ...................................................... 74 

Table 7 Results of Random Forest (non-folded) on Cloud Spark Cluster .................................... 75 

Table 8 Results of Decision Tree (non-folded) on Cloud Spark Cluster ...................................... 76 

Table 9 Results of SVM (non-folded) on Cloud Spark Cluster .................................................... 77 

Table 10 Results of LR (non-folded) on Cloud Spark Cluster ..................................................... 78 

Table 11 Results of LR (non-folded) with 2 Million cases dataset .............................................. 80 

Table 12 Results of SVM (non-folded) with 2 Million cases dataset ........................................... 81 

Table 13 Results of LR (non-folded) with One Million cases dataset .......................................... 81 

Table 14 Results of SVM (non-folded) with One Million cases dataset ...................................... 82 

Table 15 Results of LR (non-folded) with Half Million cases dataset ......................................... 83 

Table 16 Results of SVM (non-folded) with Half Million cases dataset ...................................... 83 

Table 17 Results of LR re-partition with One Million cases dataset ............................................ 87 

Table 18 Results of LR re-partition and the number of nodes with One Million cases dataset ... 88 

 

  



vii 
 

List of Figures 

 

Figure 1 Data mining working process ......................................................................................... 21 

Figure 2 Apache Hadoop Ecosystem ............................................................................................ 38 

Figure 3 Apache Spark Stack ........................................................................................................ 42 

Figure 4 Design of the experiments .............................................................................................. 48 

Figure 5 The York University Spark Cluster Architecture ........................................................... 56 

Figure 6 The Google Cloud Spark Cluster Architecture .............................................................. 57 

Figure 7 Feature break up ............................................................................................................. 63 

Figure 8 Results of Logistic Regression experiment I on York U Spark Cluster ......................... 68 

Figure 9 Results of Logistic Regression experiment II on York University Spark Cluster ......... 69 

Figure 10 Comparison of memory strategies on York U Spark Cluster ....................................... 71 

Figure 11 Results of Logistic Regression(10-folded) on Cloud Spark Cluster ............................ 73 

Figure 12 Results of SVM (10-folded) on Cloud Spark Cluster .................................................. 74 

Figure 13 Results of Random Forest (non-folded) on Cloud Spark Cluster................................. 75 

Figure 14 Results of Decision Tree (non-folded) on Cloud Spark Cluster................................... 76 

Figure 15 Results of SVM (non-folded) on Cloud Spark Cluster ................................................ 77 

Figure 16 Results of LR (non-folded) on Cloud Spark Cluster .................................................... 78 

Figure 17 Results of LR (non-folded) with 2 Million cases dataset ............................................. 80 

Figure 18 Results of SVM (non-folded) with 2 Million cases dataset ......................................... 81 

Figure 19 Results of LR (non-folded) with One Million cases dataset ........................................ 82 

Figure 20 Results of SVM (non-folded) with One Million cases dataset ..................................... 82 

Figure 21 Results of LR (non-folded) with Half Million cases dataset ........................................ 83 

Figure 22 Results of SVM (non-folded) with Half Million cases dataset .................................... 84 

Figure 23 Results of LR re-partition with One Million cases dataset........................................... 87 

Figure 24 Results of LR re-partition and the number of nodes with One Million cases dataset .. 88 

 



1 
 

 

Chapter 1. Introduction 

 

While the meteoric rise of digital technologies, including e-learning, has had a massive impact 

on education in practically every domain, including learner engagement, teaching management, 

content generation, and performance evaluation, and more, at the same time, vast volumes of 

data are being generated by innovated learning facilities that could be meaningful for both 

academic and scientific analysis. This thesis focuses on applying the data mining and machine 

learning methods to analyze the data of student’s online learning activities with the distributed 

computing system of Apache Spark. In doing so, it reveals the value of Apache Spark’s 

scalability and the performance in comparison to the big data analytics of online cognitive 

learning systems.  

 

1.1 Motivation 

 

For decades, experts and educators have been searching for more practical ways to assess student 

learning outcomes and curricular design without the requirement of human expertise or analysis. 

Does the knowledge structure meet the requirements of the subject or curriculum with proper 

difficulties that most of students could accept? Is there any variance in the learning rates between 

students? Is it possible to design the problems that suit learning outcomes and are based directly 

on the students’ performance data? Currently, K-12 education is focused on assessment using 

new, high-stakes standards-based tests, as required by the No Child Left Behind Act (NCLB) of 

the US government. However, this has put incredible pressure on schools to spend significant 



2 
 

time and effort to prepare and take these tests, often sacrificing valuable time that would 

otherwise be spent on deep learning (long-term retention, transfer and building the desire for 

future learning). The limited classroom time available in school mathematics classes causes a 

further dilemma in that it compels teachers to choose between time spent assisting students' 

development and time spent assessing students' abilities [6].  

 

To resolve this dilemma, the U.S. Department of Education built an integrated web-based 

tutoring system, ASSESSment, that can do assessment and provide assistance at the same time. It 

offers instruction to students while providing a more detailed evaluation of their abilities to the 

teacher.  

 

Online tutoring systems for mathematics are based on the cognitive model, which is a set of 

production rules or skills encoded in intelligent tutors to model how students solve problems. 

Productions embody the knowledge that students are trying to acquire, and they allow the tutor to 

estimate each student’s learning of each skill as the student works through the exercises [31]. 

Cognitive tutoring system help students work through complicated problems by breaking them 

into sub-steps with sub-knowledge components, while simultaneously collecting all the system 

interaction data of the students’ performance, including accuracy, speed and hints times. Used in 

more than 2,500 schools serving half a million students every year across the U.S., the cognitive 

tutors generate a vast amount of students’ interaction data that can be used as a rich source for 

making assessment and prediction of both individual students and groups.   

 



3 
 

Various statistical works and analyses have been developed by experts to help teachers better 

understand students’ performance and progress in order to improve instructions [1]. The 

important practical fact is that, with designed analyses and improved models, millions of hours 

of students’ time spent learning mathematics could be saved, and desired achievement levels 

could be increased. From the scientific perspective, discovering methods for accurately 

predicting students’ performance could help to uncover critical underlying factors of curricula 

and lesson design.  

 

Additionally, the development and application of data mining and machine learning with the use 

of big data can lessen the amount of expertise required to conduct analyses of cognitive tutoring. 

The combination of data mining technology with web-based education systems (known as 

education data mining, or EDM) is becoming an important research area in this regard, as it 

shows increasingly promising results. 

 

A variety of research has been conducted applying data mining approaches to education; these 

include predicting the student retention risk and academic performance, curricula design and 

more [32]. Yadav, Bharadwaj and Pal [33] used a machine learning algorithm to predict the 

dropping out risk for the first-year students in higher education, while Márquez-Vera, Cano, 

Romero and Ventura [22] proposed a genetic programming algorithm and different data mining 

approaches to predict the student failure in high school. Moreover, Kabakchieva [23] presented a 

method of classification for predicting students’ performance in college based on personal and 

pre-university characteristics. 

 



4 
 

Recently, cloud-based technologies like Apache Hadoop and Spark have enhanced our ability to 

conduct such analyses by offering significantly increased computing speed, flexibility and 

scalability. IT behemoths like Facebook, eBay, IBM and LinkedIn have used the MapReduce 

framework of Hadoop with the distributed file system HDFS for large volume data storing, 

managing and processing for many years. Apache Spark, the second generation of Hadoop, is 

becoming the de facto standard for big data analytics with some of its key features including in 

memory computing, fault tolerance and data structure abstraction.   

 

1.2 Problem Definition 

 

This thesis is based on the KDD Cup 2010 Educational Data Mining Challenge. KDD Cup is the 

annual data mining and knowledge discovery competition organized by the Association for 

Computing Machinery’s (ACM) Special Interest Group on Knowledge Discovery and Data 

Mining (KDD). ACM is the leading professional organization of data miners. This year’s 

competition provided student’s interaction log datasets from two Online Intelligent Tutoring 

Systems. The task was to use the development datasets or training sets to build learning models 

and accurately predict the students’ performance on the test datasets.  

Datasets for data mining from educational online learning systems normally have some common 

characteristics, that make both the data analytics and prediction works difficult to undertake with 

traditional, computer-based data mining and machine learning workflows. These include the 

following: 

• Variant structured data 

• Large amount of categorical features  



5 
 

• Super sparse value matrix 

• Imbalanced output 

• Streaming data 

The volume of data from web-based learning systems has been one of the main concerns for 

EDM, which needs various computing algorithms and high-level iterations for regression and 

classification analytics. For example, of the datasets in this thesis, the smallest one is from the 

Carnegie Learning Algebra system deployed in 2005-2006, which covers only 515 students with 

813,661 cases.  The data have variant data types, including string, integer, float, time sequences 

and categorical values, while some of the variables are extremely imbalanced and sparse. Some 

features, such as ‘KC’, which represents the knowledge components of each question, make for 

an extreme sparse vector matrix with an imbalance in the number of knowledge components in 

most cases. The feature with the highest number of categorical values is StepName, which has 

more than 180,000 different nominal values, making it difficult to perform the classification 

algorithms on a normal computing platform. With the tremendous growth of data sources, 

innovative technologies, including data distribution and parallelization computing, are becoming 

more appealing to conduct this kind of task of data mining and machine learning with massive 

data.   

Teams from all over the world joined in the competition. Two results attributes reflected the 

prediction accuracy from the applicants; these were Cup Score and Leaderboard Score. The Cup 

Score was the evaluation method of using the majority of the prediction files to reach an RMSE 

score, while the Leaderboard Score used the small portion of the prediction files to score the 

entry.  

 



6 
 

The teams on the Cup Score board took the processes of feature generation, feature selection, 

latent factor identification, regularization, loss function and ensemble together with a variety of 

classification and regression methods including Decision Tree, Linear classifier, Non-linear 

kernel method, Random Forest, Neural Network, Nearest Neighbor, Neighborhood/correlation 

based collaborative filtering and more. Some teams used very simple classification algorithms 

and only a portion of the dataset but finally got acceptable prediction results on the board. This 

phenomenon brings the probability of the information contained in the datasets coming with 

limitation, so the performance on the accuracy of the prediction could be improved with limited 

extent even sophisticated data mining processes involved. Nevertheless, almost all of the teams 

were concerned with the size of the datasets and the running time required for model building 

and validation.   The Zach A. Pardos team, which reached fourth position on the All Teams 

board, indicated that the running time for the KC model they built with the hardware that 

included a 30 node rocks cluster with 4 CPUs per node and a 6 node rocks cluster with 8 CPUs 

per node was two days. This time requirement is neither acceptable nor practical in an industry 

that is growing at such a fast pace. Therefore, we must find methods to improve the performance 

of the prediction process. One method involves digging deeply into the processes of data mining 

algorithms in order to increase prediction accuracy results. This thesis, however, focuses on 

evaluating the running time and scalability of the popular distributed computing engine Apache 

Spark working for this large scale big data analytics with computing resources utilization and 

tuning.  

 

 



7 
 

1.3 Significance 

 

Previous research has revealed the potential scalability of the techniques of data mining and 

machine learning techniques on distributed computing systems when conducting the big data 

analysis [38][40][54][71][73][75].  The new platform, Apache Spark, based on the most famous 

distributed computing system, Apache Hadoop, can reach the speeds up to 100x faster than 

Hadoop MapReduce on most of the computing tasks [72]. Thus, it has emerged as the next 

generation of big data processing engines and is one of the most scalable and efficient platforms 

for big data analytics. Spark’s machine learning library (MLlib) makes practical machine 

learning scalable and easy by providing a few of the most commonly used data mining 

classification and regression algorithms as well as variety of utilities and tools, including feature 

processing, pipeline tuning and more. In this thesis, four classification methods including 

Logistic Regression, Linear SVM, Decision Tree and Random Forest in MLlib are coded in 

Python to predict student’s performance based on the massive data from the online cognitive 

learning systems.  The purpose of this thesis is to reveal the scalability of the Apache Spark on 

big data of education data mining. The experiments were performed on a local Hadoop YARN 

based Spark cluster and a Google Cloud Hadoop YARN managed Spark cluster. The results of 

the thesis provide consolidated supports for the scalability and efficiency of Spark in terms of 

resource allocation and management as well as the run-time tuning for the EDM purposes. While 

such work continues to require extensive exploration in the future, the findings of this thesis can 

help education experts to discover important information regarding students’ learning and predict 

future academic performance based on the big data resolution of the students’ historical records. 

 



8 
 

1.4 List of Contributions 

 

This thesis provides some notable contributions to the employment of Apache Spark’s 

distributed computing platform to conduct data mining on big data produced by educational 

online learning systems. 

• Feature analysis and processing: This thesis presents a full path of feature analysis and 

manipulation during the process of data mining with the datasets from the Online 

Learning Systems. 

• Experiments on the scalability of Spark: A few experiments are made with the Cloud and 

local YARN based Apache Spark clusters to reveal the scalability and efficiency of the 

platform of Spark on the tasks of big data analytics with education purpose.  

• Resource allocation, utilization and tuning analysis of Spark: A thorough discussion and 

analysis of the results of Spark resource allocation and utilization as well as run-time 

parameter tuning for optimization.  

 

1.5 Thesis Outline 

 

The remainder of the thesis is organized as follows:  

Chapter 2 is the literature review that introduces the cognitive tutor systems and discusses data 

mining techniques as well as data mining for educational purposes. In Chapter 3, the most 

commonly used data mining and data processing methodologies and approaches are introduced, 

and the process of the data mining presented here is revealed. Chapter 4 introduces the 

Distributed Computing System of Apache Hadoop and Spark.  Chapter 5 provides the 



9 
 

methodologies designed for this thesis. In Chapter 6 the results and discussions are presented 

based on the outputs of the experiments, while Chapter 7 concludes the thesis and summarizes 

suggestions for future work.    



10 
 

Chapter 2. Literature Review 

 

Emerging data mining and big data technologies have made it possible to explore the potential 

understanding of the students and the quality of teaching materials using the increasingly large-

scale data being produced by the domain of educational technology. The data can come from 

online interactive learning systems or schools’ administrative records and may contain 

meaningful information for the educators and experts to improve the teaching quality and gain 

more insight into the design of the learning environments and educational resources.  

 

2.1 Cognitive Learning System Analytics with Data Mining 

 

Cognitive learning refers to how a person processes and reasons information. Cognitive learning 

systems are intelligent tutoring systems that employ cognitive learning by using a set of 

production rules or skills to model how students learn and solve problems. With the development 

and incorporation of innovative technologies, including data mining, machine learning, artificial 

intelligence and more, online cognitive tutoring systems have the potential to significantly 

improve education by accelerating learning speed, saving learning time, providing insights that 

can improve education theories and learning outcomes and more.  

 

 

 



11 
 

2.1.1 Cognitive Tutor System 

 

A cognitive tutor is a type of theory based intelligent tutor. Intelligent tutors draw on artificial 

intelligence technology to provide interactive instructions that adapt to individual students’ needs 

and, most typically, supports student practice in learning complex problem solving and reasoning 

skills. The theory of cognitive psychology of problem solving and knowledge components 

structure for learning experience makes the cognitive tutor system an effective method to 

evaluate and make prediction for the performance of students [3]. Koedinger and Aleven [3] 

provided a few examples of experiments within cognitive tutors that explored trade-offs between 

giving and withholding instructional assistance, which provided support for cognitive tutors to 

balance the giving and withholding of information and for individual interactive elements. 

 

Cen, Koedinger and Junker [4] proposed a semi-automated method to improve a cognitive model 

called Learning Factors Analysis (LFA), which was combined with a statistical model, human 

expertise and combinatorial search, to measure the difficulty and learning rates of knowledge 

components and to predict student performance. With the statistical method, a multiple 

regression model was developed to quantify the skills.  

  

2.1.2 Educational Data Mining and Big Data      

 

Data mining is defined as the process of discovering patterns in data. The process must be 

automatic or semiautomatic. The patterns discovered must be meaningful in that they lead to 

some advantage, usually an economic one. The data is invariably present in substantial quantities 



12 
 

[2]. Data mining involves various modern technologies including machine learning, database 

technology and statistics. The purpose of data mining is to discover and reveal the hidden 

patterns that may have significant importance to industry, business and science as well as normal 

human life. Enormous efforts have been made in the domain of data mining from the 

perspectives of learning algorithms, dataset manipulation, feature selection and system design 

and implementation. 

 

Data mining technology has been applied in the education domain for a long time, and numerous 

studies involving a variety of learning algorithms have been conducted with the goals of 

improving learning quality, predicting retention possibilities, discovering learning curves and 

more. Romero and Ventura [26] surveyed the most relevant studies carried out in the field of 

education data mining. They introduced EDM and described the diverse groups of users, types of 

educational environments and the data users provided. They also listed the most typical/common 

tasks in the educational environment that had been resolved through data mining techniques and 

discussed some of the most promising future lines of research in EDM. 

 

Ben Daniel’s [19] research identified contemporary challenges that institutions of higher 

education worldwide are facing and explored the potential of big data to address these challenges. 

Slater, Joksimović, Kovanovic, Baker and Gasevic [29] highlighted some of the most widely 

used, most accessible, and most powerful tools available for the researchers interested in 

conducting education data mining/ learning analytics research.  

 



13 
 

Abuteir and El-Halees [21] conducted a case study about how educational data mining could be 

used to improve graduate students’ performance and to overcome the problem of graduate 

students’ low grades. They conducted four data mining tasks, including association, 

classification, clustering and outlier detection to present the extracted knowledge and describe its 

importance in the educational domain.   

 

Feng, Heffernan and Koedinger [6] built a “lean” Rasch model (1-PL IRT model) and used 

Linear Regression to predict student proficiency and MCAS test scores based on each student’s 

performance history in the ASSISTment Tutor System. They also ran a stepwise regression 

analysis, called the assistance model, based on the interactions between the student and the 

system. With these models, new features were generated and fitted into a new stepwise 

regression model called the mixed model. They concluded that the mixed model made 

significantly good predictions for the student’s performance in the system. 

 

Yu, DiGangi, Jannasch-Pennell and Kaprolet [7] brought in a new perspective by exploring 

student retention possibilities with three data mining technologies: classification trees, 

multivariate adaptive regression splines (MARS), and neural networks. They discovered some 

useful insights into various factors that impact student retention, including transferred hours, 

residency, and ethnicity.  

  

Ramaswami and Bhaskara [8] built a tree-based CHAID prediction model to predict students’ 

performance based on the dataset from a detailed questionnaire using an experimental 

methodology. The model indicated that features such as medium of instruction, marks obtained 



14 
 

in secondary education, location of school, living area and type of secondary education were the 

strongest indicators of the students’ performance in higher secondary education.  

 

Hung, Hsu and Rice [10] investigated an innovative approach to program evaluation through 

analyses of student learning logs, demographic data, and end-of-course evaluation surveys in an 

online K–12 supplemental program. Clustering analysis was applied to reveal the students’ 

characteristics, while decision tree was used to predict student performance and satisfaction level 

about the course. Their study demonstrated the benefits of incorporating data mining into the 

program evaluations of K-12 online education. 

 

Vandamme, Meskens and Superby [11] conducted a study in which they classified university 

students into three groups based on their chances of success in academic learning. They created a 

questionnaire to collect a large amount of information from students and distributed this 

questionnaire to first-year students in three French-speaking universities in Belgium. After the 

feature selection they chose the most significantly correlated variables. Decision trees, neural 

networks and a linear discriminant analysis were applied to make the prediction.  

 

In this new era, enormous increases in data generation and storage have shifted attention in the 

domain of data science toward the techniques of big data. The development of distributed and 

cloud computing and storage systems greatly extends the scalability, as well as the performance 

of traditional process of data mining and machine learning techniques. Kumar and Rath [71] 

proposed methods of MapReduce based tests for feature selection along with the MapReduce 

based proximal support vector machine (mrPSVM) classifier to classify the microarray datasets 



15 
 

on the distributed framework of Hadoop cluster with four slave (data) nodes and a conventional 

system. The performance of the classifier for various datasets was evaluated by varying the 

number of features. Their experiment presented the significance of distributed computing for 

better storage and faster processing of datasets, as well as system scalability. 

 

As a part of the Apache Hadoop Ecosystem, Apache Spark was introduced to solve the 

drawbacks of Hadoop by adding much faster in-memory computing speed, especially for large 

scale data processing. Maillo, Ramírez, Triguero, and Herrera [72] presented an alternative 

distributed kNN model for big data classification using Spark, which was denoted as kNN-IS. 

They reduced the complexity of kNN to m tasks without requiring any preprocessing in advance 

and relied on Spark to reuse the previously split training set with different chunks of the test set. 

All the operations were performed within the RDD objects provided by Spark. Compared with 

the traditional way of dealing with large scale data using the algorithm of kNN, the use of 

Apache Spark has provided them with a simple, transparent and efficient environment to 

parallelize the kNN algorithm as an iterative MapReduce process. 

 

Scalability has always been a prolific field of study in the areas of data mining and machine 

learning [73]. Arias, Gamez, and Puerta [73] experimented with the adaptability of the family of 

Bayesian Network Classifiers (BNCs) to the MapReduce and Apache Spark frameworks. Their 

proposal focused on the learning stage of such models, for which they introduced a general 

framework that characterized the full family of BNC classifiers under the MapReduce paradigm. 

To evaluate their proposal, they conducted a series of experiments over a broad range of both 

synthetic and real problems on a competitive cluster of computers. Their approach was based on 



16 
 

the general framework of learning the probabilistic models from large scale datasets and high 

dimensional feature space. 

 

Mavridis, and Karatza [38] investigated log file analysis with the cloud computational 

frameworks Apache Hadoop and Apache Spark to study and compare the performance of the two 

frameworks in terms of scalability and resource utilization. They used an IaaS (Infrastructure as 

a Service) to create a private cloud infrastructure and then developed and ran realistic log 

analysis applications with real log files. They compared the two frameworks, evaluating the 

performance of execution time, scalability, resource utilization, cost and power consumption. 

Finally, they reached the conclusion that the rising Spark outmatched Hadoop in almost all cases 

with faster speed, higher mean utilization for resources and more flexible implementation, while 

both frameworks offered significant scalability. 

 

2. 2 KDD Competition Paper Review 

 

This thesis is based on the KDD 2010 Cup competition on education data mining. The goal of 

the competition was to predict the student’s first attempt to solve a question with the given 

datasets as model training and verifying, while the test datasets were supplied to evaluate the 

correctness of the prediction models.  

 

Yu, et al. [46] were organized as six student sub-teams and each student sub-team extracted 

different features from the data sets according to their analysis and interpretation of the data. 

Each team chose different classifiers for learning based on the internal set. The feature 



17 
 

engineering approaches can be categorized into two types: sparse feature sets generated by 

binarization and discretization techniques, and condensed feature sets using simple statistics on 

the data. Finally, ensemble methods were applied to the testing results from sub-teams. They 

adopted the LIBLIENAR as an easy-to-use tool to deal with large scale classification problems. 

The tool supports L2-regularized logistic regression(LR), L2-loss and L1-loss linear support 

vector machines (SVMs). It inherits many features of the popular SVM library LIBSVM, while it 

offers better performance and efficiency than LIBSVM on large-scale classification [60]. They 

used Random Forest, AdaBoost and Logistic Regression as the classifiers, and some linear 

ensemble approaches including simple averaging, linear SVM and linear regression were applied 

for the ensemble of results from each student group.  

 

T¨oscher and Jahrer [45] used an ensemble of collaborative filtering technology with neural 

network blending to fit the competition. They got the idea from the recommender systems with 

the same characteristics as missing values, big matrix and sparse data. They chose the 

collaborative filtering method with the algorithms K Nearest Neighbor (KNN), Singular Value 

Decomposition (SVD), Factor Model 1 (FM1), Factor Model 2 (FM2), Factor Model 3 (FM3), 

Group Factor Model (GFM) and Restricted Boltzmann Machines (RBM). For calculating 

similarities between users, they used the Pearson correlation between students calculated on the 

subset of commonly answered steps [45]. Every model was trained and evaluated using 8-fold 

cross validation. Finally, the neural network with two hidden layers was adopted as the blender 

to combine the results of all the algorithms.  

 



18 
 

Pardos and Heffernan got the second place student prize in the competition with their method of 

combining Bayesian Hidden Markov Models (HMMs) and bagged decision trees. The model 

learns individualized student specific parameters (learn rate, guess and slip) and then uses these 

parameters to train skill-specific models. The resulting model, which considers the composition 

of user and skill parameters outperforms models that only consider parameters of the skill [62].  

During the data pre-processing stage, they paid a lot of attention to clean the Step duration 

variable, which reflected the time spent on the step. Bayesian Networks were used to model 

students’ knowledge over time. Based on the parameters of the HMM for that skill and the 

student’s past responses, a probability of knowledge was inferred [62]. The new feature sets 

generated by HMM were brought into Random Forest for training and making predictions 

 

Shen et al. team [48] came in third in the student competition with the framework of a vague 

prediction procedure. First, they built a scoring machine from the training set. The scoring 

machine was designed to return a score vector when given a test record (that is, a test set step 

record), and the scores in the returned vector were intended to reflect relevant information from 

the Correct First Attempt, including student performance, step difficulty and more. Second, they 

used the scoring machine to compute a score vector for every test record. Third, they made 

predictions from the score vectors. 

 

Tabandeh and Sami [49] used a relatively simply framework to come in fourth in the student 

competition. During the feature selection stage, they removed all the features that did not appear 

on the test data and made a conversion algorithm that converted highly categorical features to 

numerical ones based on their “percentages of positive class instances”. To reduce the running 



19 
 

time and avoid the limitation of the hardware requirement on big volume datasets, they sampled 

the data by deleting one-third and one-seventh of all data. Then, C4.5 and Linear Regression 

algorithms were applied to predict the student’s performance.  

  



20 
 

 

Chapter 3. Data Mining Methodologies 

 

Data mining is the computing process of discovering patterns in large data sets involving 

methods at the intersection of machine learning, statistics, and database systems[38]. The overall 

goal of data mining is to discover information from the existing data and interpret it into an 

understandable format with reasonable computing costs. The era of big data is coming, which 

brings increasing sources of data that can be used to generate meaningful knowledge from 

hidden patterns, while the fast-developing progresses of both hardware and software computer 

technologies combined with various data mining algorithms make it possible to discover and 

fully use of that hidden information in the massive data. Various data mining and statistical 

algorithms have been designed and deployed to build analytic and predictive models across a 

variety of industries and domains. Some most popular ones, including Logistic Regression, k-NN, 

Decision Tree, Support Vector Machine, Random Forest and more, are widely applied and have 

made signification contributions to the development of data science.  

 

3.1 Data Mining Process 

 

Business-driven needs push the fast development of processes in data mining technology, 

including business understanding, data source retrieval, data manipulation, feature selection, 

model building and output prediction. A simple chart in Figure 1 shows the working process of 

data mining: 

https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Database_system


21 
 

 

Figure 1 Data mining working process 

 

The process of data preparation or data pre-processing can be divided into several sub-processes, 

including data cleaning, data integration, feature selection and data transformation. Among them, 

feature selection has always been of greatest interest with the fast growth of real-world data 

sources at both the dimensional aspect and mass quantity side.  

 

Modeling is the process through which various software and modeling techniques are selected 

and applied with tuned parameters to find optimal solutions. With different forms of data and 

final requirements, different techniques and algorithms should be used to build models. The most 

well-known data mining models are normally classified as supervised models and un-supervised 

models:  

• Regression is the most straight forward and well known predictive model. Linear 

Regression and Logistic Regression are the most popular ones used in a variety of 

domains.  

• Association Rule Discovery is a rule-based machine learning method for discovering 

relationships between variables in large databases [50].  



22 
 

• Classification is used to classify big data according to the format and characteristics of 

the data. Many classification methods and algorithms are used based on the application 

selected and the problem that needs to be solved. Some of the most popular supervised 

classification methods, including Decision Tree (DT) and Support Vector Machine (SVM) 

are used widely on a variety of data mining applications and platforms.  

• Clustering is the un-supervised method of grouping of sets of data based on their 

characteristics and similarities. Within a clustering model, clustering algorithms can be 

categorized into different models. Among them, the most well-known model is k-means 

clustering.    

 

Model evaluation is an important part of the data mining process, because it is through 

evaluation that the best model and parameters for the future stages are found. There are two most 

commonly used methods of model evaluation in data science are Hold-Out and Cross-Validation. 

The former method randomly divides the dataset into three subsets called training set, validation 

set and test set. The latter method is known as k-fold cross-validation, which divides the dataset 

into k equal size subsets and leaves out k-1 of the subset for training with the test set.   

 

After the model is validated and evaluated, it will be produced and implemented with other 

processes, such as reporting systems or predicting applications. New data will be applied to the 

final production, and the results will be used for the business decisions or other activities.  

 

 



23 
 

3.2 Data Preparation 

 

Data preparation is one of the most important parts of the data mining workflow. For one or 

more of the following reasons, raw data is not normally ready for immediate analysis by data-

mining computing algorithms: data is not clean or missing values, data format needs to meet the 

input requirements of analysis algorithms, data has noise, input/output values are imbalanced and 

more. In most cases, the data mining and machine learning results can be improved markedly by 

suitable manipulations of the data before analysis. In this section, some of the most commonly 

used data preparation methods for data mining are illustrated.  

 

3.2.1 Data Transformation 

 

During data transformation, data are transformed or integrated into appropriate forms for data 

mining using different methods and strategies as well as software or computing tools. The 

general process for data transformation can be broken down as follows:  

• Data discovery: The first step of the process, when data are profiled with designed 

structures. 

• Data mapping: The process of defining how individual fields are manipulated to the final 

output 

• Code generation: The process of generating or producing executable code that transforms 

data into the desired format or output following the designed data mapping rules. 

• Code executing: The process of executing the generated code on the data to get the 

desired output.  



24 
 

• Data review: The process of ensuring the output data meets the requirements.  

In the process of data mining, data transformation methods and strategies vary depending on 

business scenarios and the data characteristics that are being analyzed.  

 

3.2.2 Data Discretization 

 

Data discretization is an essential step if the input dataset variables involve numerical or 

continuous format and the chosen learning schemes or algorithms can only deal with categorical 

attributes. In the real world, many data mining or machine learning tasks come with the 

continuous attributes. When working with categorical attributes, some induction algorithms 

significantly increase the computing speed compared with continuous ones. In practice, 

discretization can be viewed as a data reduction method, since it maps data from a huge spectrum 

of numerical values to a greatly reduced subset of discrete values [55]. Continuous variable 

discretization has received significant attention in the data mining and machine learning 

community; for example, the Decision Tree C4.5 algorithm will discretize numerical variables 

during the learning process. There are a variety of categories of discretization methods based on 

their characteristics; these include static-dynamic, univariate-multivariate, supervised-

unsupervised, splitting-merging-hybrid, global-local, direct-incremental, and evaluation measure. 

Analogous to supervised and unsupervised learning methods, the supervised-unsupervised data 

discretization methods are the most widely adopted in the data mining process. Supervised 

methods, such as error-based, entropy-based or statistics-based, consider the class values, while 

the unsupervised methods, such as equal-width and equal-frequency based, only focus on the 

attributes being discretized. Even in a classification process that involves more supervised 



25 
 

discretization methods, there are still many cases in which unsupervised methods offer equal or 

better performance. It is of vital importance to select the proper discretization methods based on 

the chosen datasets and the learning algorithms.  

 

3.2.3 Feature Selection 

 

The feature selection process in data mining or machine learning is the process of selecting 

subsets of relevant variables or features for the model building. Feature selection is one of the 

most important processes in the data mining and machine learning workflow. With proper 

methods, it could reduce the number of variables for building the model, remove irrelevant and 

redundant data, clean the noise data, etc. In most cases, feature selection can significantly speed 

up the computing time for data mining algorithms, improve the accuracy or performance of the 

model and result in comprehensibility.  

 

Normally there are three categories of feature selection methods: Filter-based, Wrapper-based 

and Embedded-based ones. The Filter-based methods do feature selection and evaluation before 

the data mining algorithms are applied and they are independent of the algorithms used in the 

data mining. In most cases, the feature relevance scores are calculated, and those features with 

low relevance scores and low correlation results are removed. Afterward, the features left will 

build the subset of features for the final data mining algorithms. The advantage of Filter-based 

feature selection is simple and fast, while the disadvantage side is that it ignores the interaction 

with the data mining algorithms, which may lead to the worse performance of the data mining 

output.  



26 
 

The Wrapper-based feature selection approaches embed the data mining algorithms hypothesis 

with the feature subset search. This method generates all the possible feature subsets and 

evaluates them by putting them into the data mining algorithms and gets the classification results. 

Then finally a tailored subset of the data mining algorithms is obtained considering the 

evaluation of the results.  The advantage of the Wrapper-based approach is the interaction 

between selected feature subset and the classification model, which may lead to better 

performance, while the drawback is the problem of overfitting and the high computational cost.  

The Embedded-based method is the way embedding the search for feature subset into the 

classifier construction. The advantage of Embedded-based is that it builds the interaction with 

the classification models, while at the same time needs less computational cost than Wrapper-

based approach.  

 

3.2.4 Imbalanced and Sparse Data 

 

In many supervised learning applications, there is a significant difference between the prior 

probabilities of different classes, i.e., between the probabilities with which an example belongs 

to the different classes of the classification problem. This situation is known as the class 

imbalance problem, and it is common in many real problems from telecommunications, web, 

finance-world, ecology, biology, medicine not only, and which can be considered one of the top 

problems in data mining today [57].  The problem with imbalanced data is that many standard 

classification learning algorithms tend to generate biased results toward the majority class while 

leading to higher misclassification for the minority class. For imbalanced datasets several 

categories were brought out as follows:  



27 
 

• Data sampling: It is the method of sampling the imbalanced data into balanced class 

distribution dataset as the input of the learning algorithms. 

• Algorithmic modification: This procedure is oriented towards the adaptation of base 

learning methods to be more attuned to class imbalance issues.  

• Cost-sensitive learning: This type of solution incorporates approaches at the data level, at 

the algorithmic level, or at both levels combined, considering higher costs for the 

misclassification of examples of the positive class with respect to the negative class, and 

therefore, trying to minimize higher cost errors [57]. 

 

In data science, sparse data are also named as sparse matrix or sparse array, meaning in the 

matrix, most of the elements are zero, while on the other hand, if most of the elements are 

nonzero, then the matrix can be considered as dense data. In many data mining and machine 

learning cases especially those with high dimensional variables, the sparse datasets are often 

applied with specialized algorithms and data structures, which will take advantage of the sparse 

matrix structure.  

  

3.2.5 Missing Values 

 

Missing values are frequently indicated by out-of-range entries: perhaps a negative number (e.g., 

–1) in a numerical field that is normally only positive, or a 0 in a numerical field that can never 

normally be 0. For nominal attributes, missing values can be indicated by blanks or dashes [2]. 

There are a variety of reasons that cause missing values such as the fault of measure facilities, no 

response or information provided or the change of data collecting methods and more.  



28 
 

There are some approaches that could be applied to the data of missing values: 

• Discard instances: It is the simple solution to discard the instances with missing values. 

This is the method appropriate for those cases that the missing values are completely at 

random. 

• To get the missing values: It is the method to obtain the missing values with extra costs 

such as from the third party.  

• Imputation: It is the methods to make estimation or prediction of the missing values 

following their distribution or through designed models. Some well-known treatment 

named Multiple Imputation has emerged to deal with the missing value problem with the 

method of generating multiple simulated versions of data sets where each is analyzed, 

and the results are combined to generate inference [58]. 

• Reduced-feature Models: It is an alternative approach to Imputation, which incorporates 

only attributes that are known for the test instance [58]. 

 

3.2.6 Normalization and Standardization  

 

Both of normalization and standardization are referred as scaling the attribute values to fit in a 

specific range. In most cases, they are important parts during the pre-processing stage of data 

mining. Some measurements like Euclidean distance are sensitive to the variable difference in 

the magnitudes of scales, so the methods of normalization and standardization are used to scale 

down the magnitudes while keeping the equal weighting information of the variables.  The most 

commonly used normalization techniques are Min-Max, Z-Score, and Decimal Scaling 



29 
 

normalization. The Min-Max method of normalization performs a linear alteration on the 

original data which could be described as [74]:  

 

𝑣𝑛𝑒𝑤 =
𝑣 − 𝑀𝑖𝑛𝐴

𝑀𝑎𝑥𝐴 − 𝑀𝑖𝑛𝐴

(𝑁𝑒𝑤_𝑀𝑎𝑥𝐴 − 𝑁𝑒𝑤_𝑀𝑖𝑛𝐴) + 𝑁𝑒𝑤_𝑀𝑖𝑛𝐴 

(1) 

 

The value 𝑣  of an attribute A with range [ 𝑀𝑖𝑛𝐴, 𝑀𝑎𝑥𝐴 ] is mapped to a new range 

[𝑁𝑒𝑤_𝑀𝑖𝑛𝐴, 𝑁𝑒𝑤_𝑀𝑎𝑥𝐴]. The Z-Score or Standardization is the method to map data based on 

the mean and standard deviation. The formula is [74]:   

 
𝑣𝑛𝑒𝑤 =

𝑣 − 𝑣̅

𝜎
 

(2) 

 

Here 𝑣̅ is the mean of the feature, and 𝜎 is the standard deviation of the feature.  

 

The Decimal Scaling method just simply scales the data by moving the decimal point of the 

value of the features needed to be normalized, which could be described as [74]: 

 
𝑣𝑛𝑒𝑤 =

𝑣

10𝑗
 

(3) 

 

where j is the smallest integer so that 𝑀𝑎𝑥(|𝑣𝑛𝑒𝑤|) < 1.  

 

In the data mining process, which method of normalization and standardization to choose 

depends on the characteristics of the datasets and the learning algorithms which will be applied.  

Typically, normalization will reach the output range of values between 0 to 1, while 

standardization is to measure how much the values deviate to the means with the assumption of 

data having a Gaussian distribution.  

 



30 
 

3.3 Data Mining Algorithms  

 

3.3.1 Logistic Regression 

 

Logistic regression is a mathematical modeling approach that can be used to measure the 

relationship between the categorical dependent variable and one or more independent variables 

by estimating probabilities using a logistic function [30]. Logistic Regression could be classified 

with the outcome as binominal(binary), ordinal and multi-nominal logistic regression, and it is 

used in various domains including machine learning, medical science, social science and more.  

 

The logistic regression is based on the logistic function. In [30], the logistic model is detailed 

described as: 

 

 𝑧 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ 𝛽𝑘𝑋𝑘 (1) 

 

 

𝑓(𝑧) =
1

1 + 𝑒−(𝛼+∑ 𝛽𝑖𝑋𝑖)
 

(2) 

The linear regression model 𝑧  is the dependent variable, while the 𝑋1 …𝑋𝑘  are independent 

variables. The 𝑓(𝑧) will get the probability of the output of 0~1, which could be denoted by the 

conditional probability statement: 

 𝑃(𝐷 = 1|𝑋1, 𝑋2, ⋯ 𝑋𝑘) 

 

(3) 

 

 𝑃(𝑋) < µ →′ 0′
 (4) 



31 
 

   

 𝑃(𝑋) > µ → ′1′ (5) 

 

In this thesis, the prediction output is a binary variable and the binominal logistic regression 

model is built as the main algorithm to evaluate computing resources cost.  

 

3.3.2 Decision Tree and Random Forest 

 

A decision tree is a decision support tool that uses a tree-like graph or model of decisions and 

their possible consequences in business or computer programming. The branches of the tree 

represent choices with associated risks, costs, results, possibilities, event outcomes, resource and 

more. Based on the approach of top-down strategy and classification rules, the family of the 

decision tree is constructed with the root of the tree and proceeding to the leaves through the 

values of a set of attributes or properties.  The decision tree is a very effective method of 

supervised data learning method.  

 

The algorithm ID3 (Iterative Dichotomiser 3) is one of a series of programs developed from 

Concept Learning System CLS framework (Hunt, Marin and Stone, 1966) in response to a 

challenging induction task posed by Donald Michie, viz. to decide from pattern-based features 

alone whether a particular chess position in the King-Rook vs King-Knight endgame is lost for 

the Knight's side in a fixed number of ply [34]. ID3 was designed where there are many 

attributes and the training set contains many objects, but a reasonably good decision tree is 

required without much computation. The basic structure of ID3 is iterative. A subset of the 



32 
 

training set called the window is chosen at random and a decision tree is formed from it. This 

tree correctly classifies all objects in the window. All other objects in the training set are then 

classified using the tree. If the tree gives the correct answer for all these objects, then it is correct 

for the entire training set and the process terminates. If not, a selection of the incorrectly 

classified objects is added to the window and the process continues [34]. The ID3 algorithm 

begins with the original set S as the root node. On each iteration of the algorithm, it iterates 

through every unused attribute of the set S and calculates the entropy H(S) or information gain 

IG(S) of that attribute. It then selects the attribute which has the smallest entropy (or largest 

information gain) value. The set S is then split by the selected attribute to produce subsets of the 

data. The algorithm continues to recur on each subset and only selects those attributes never 

selected before. The entropy H(S) is measured with the method as [76]:  

 
𝐻(𝑆) = ∑ −𝑝(𝑥)

𝑥∈𝑋

log2 𝑝(𝑥) 
(6) 

 

S– the dataset to be calculated 

X – set of classes in S 

p(x) – the portion of element class x in the dataset of S 

 

The information gain IG(S) is measured with the method as [76]: 

 
𝐼𝐺(𝐴, 𝑆) = 𝐻(𝑆) − ∑ 𝑝(𝑡)

𝑡∈𝑇

𝐻(𝑡) 
(7) 

H(S)– the entropy of dataset S 

T– the subsets created from splitting dataset S by attribute A  

p(t) – the portion of number of element t in the dataset of S 



33 
 

H(t)– the entropy of dataset t 

 

The algorithm of C4.5 is an extension of the earlier ID3 algorithm [2]. It uses Information gain 

as the splitting criterion, while it has some improvements over the classical algorithm ID3 

including numerical values, pruning procedure and handling missing values and more. The 

splitting criterion is based on the information value or entropy: 

 

 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑝1, 𝑝2, ⋯ 𝑝𝑛) = −𝑝1𝑙𝑜𝑔𝑝1 − 𝑝2𝑙𝑜𝑔𝑝2 ⋯ − 𝑝𝑛𝑙𝑜𝑔𝑝𝑛 (8) 

 

The multistage decision information value can be described as: 

 

 
𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑝, 𝑞, 𝑟) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑝, 𝑞 + 𝑟) + (𝑞 + 𝑟) × 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(

𝑞

𝑞 + 𝑟
 ,

𝑟

𝑞 + 𝑟
 ) 

(9) 

 

Random forest is a combination of tree predictors such that each tree depends on the values of a 

random vector sampled independently and the same distribution for all trees in the forest. A 

random forest is a classifier consisting of a collection of tree-structured classifiers {h(x, Ɵk ), k = 

1, . . .} where the { Ɵk } are independent identically distributed random vectors and each tree 

casts a unit vote for the most popular class at input x [35].  Random Forest algorithm was 

developed as the extension of Bagging of Classification Tree and has been demonstrated to have 

excellent performance compared to other machine learning algorithms. Bagging predictor is a 

method for generating multiple versions of a predictor and using these to get an aggregated 

predictor. The aggregation averages over the versions when predicting a numerical outcome and 



34 
 

does a plurality vote when predicting a class. The multiple versions are formed by making 

bootstrap replicates of the learning set and using these as new learning sets [52]. 

 

3.3.3 Support Vector Machine 

 

The original support vector machine SVM algorithm was invented by Vladimir N. 

Vapnik and Alexey Ya. Chervonenkis in 1963 [78]. Then in 1992, a way to create non-linear 

classifier by applying the kernel trick o maximum margin hyperplane was proposed by Bernhard 

E. Boser, Isabelle M. Guyon and Vladimir N. Vapnik [77]. The SVM is a kernel-based 

computing algorithm that assigns labels to cases based on the margin maximization hyperplane 

principle by learning the characteristics of the examples. The instances that have the least 

distances to the maximum margin hyperplane are called support vectors, while the set of support 

vectors could uniquely define the maximum margin hyperplane for the learning problem [2]. 

With the example of two attributes case, a hyperplane separating the two classes could be 

described as [2]: 

 𝑥 = 𝑤0 + 𝑤1𝑎1 + 𝑤2𝑎2 (8) 

The two attributes are 𝑎1 and 𝑎2, while the three weights 𝑤0 , 𝑤1 and 𝑤2 need to be learned. In 

terms of support vectors, a 𝑦 with the class values of either 1 or -1 is designed to the maximum 

margin hyperplane concept as [2]: 

 
𝑥 = 𝑏 + ∑ 𝑎𝑖𝑦𝑖

𝑖 𝑖𝑠 𝑠𝑢𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟

𝛼(𝑖) ∙ 𝛼 
(9) 

  

https://en.wikipedia.org/wiki/Vladimir_N._Vapnik
https://en.wikipedia.org/wiki/Vladimir_N._Vapnik
https://en.wikipedia.org/wiki/Alexey_Chervonenkis
https://en.wikipedia.org/w/index.php?title=Bernhard_E._Boser&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Bernhard_E._Boser&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Isabelle_M._Guyon&action=edit&redlink=1
https://en.wikipedia.org/wiki/Vladimir_N._Vapnik


35 
 

In equation (9) 𝑦𝑖 is the class value of the training instance 𝛼(𝑖), while 𝑏 and 𝑎𝑖 are numerical 

parameters that need to be generated by the learning algorithm. The term of 𝛼(𝑖) ∙ 𝛼 represents 

the dot product of the test instance with one of the support vectors: (𝑖) ∙ 𝛼 = ∑ 𝛼(𝑖)𝑗𝛼𝑗𝑗  . Finally, 

𝑏  and 𝑎𝑖  are parameters that determine the hyperplane [2]. Then it leads to the problem of 

finding the support vectors with the training sets and determine the parameter of 𝑏 and 𝑎𝑖, which 

is a typical optimization problem. 

 

3.3.4 Clustering 

 

Clustering is the task of grouping a set of objects in such a way that objects in the same group 

(called a cluster) are more similar (in some sense or another) to each other than those in other 

groups (clusters). It can be stated as follows: given a representation of n objects, find k groups 

based on a measure of similarity such that the similarities between objects in the same group are 

high while the similarities between objects in separate groups are low [43].  Clustering analysis 

has the main task of exploratory data mining, and it is one of the common techniques for 

statistical data analysis. As an unsupervised data mining method, clustering is used in many 

fields, including machine learning, pattern recognition, image analysis, information retrieval, 

bioinformatics, data compression, and computer graphics. 

 

A variety of clustering models were employed by researchers with the concept of “a group of 

data objects”, which led to different clustering algorithms based on these models. Some popular 

ones are Connectivity-based clustering (hierarchical clustering), Centroid-based clustering (k-

means clustering), Distribution-based clustering (EM clustering), Density-based 



36 
 

clustering(DBSCAN), etc. Among all the algorithms, the most popular and simplest one is k-

means Clustering due to its ease of implementation, simplicity, efficiency, and empirical success 

in a variety of domains for more than 50 years.  

 

The algorithm k-means Clustering could be described as follows. Let 𝑋 = {𝑥𝑖}, 𝑖 = 1, . . . 𝑛 be the 

set of n d-dimensional points to be clustered into a set of K clusters, 𝐶 = {𝑐𝑘 , 𝑘 = 1, . . . 𝐾}. The 

k-means algorithm finds a partition such that the squared error between the empirical mean of a 

cluster and the points in the cluster is minimized. Let 𝜇𝑘 be the mean of cluster 𝑐𝑘. The squared 

error between 𝜇𝑘  and the points in cluster 𝑐𝑘 is defined as [43]:  

 
𝐽(𝑐𝑘) = ∑ ‖𝑥𝑖 − 𝜇𝑘‖ 

𝑥𝑖∈𝑐𝑘

 
(10) 

The goal of k-means is to minimize the sum of the squared error over all K clusters, 

 

𝐽(𝐶) = ∑  

𝐾

𝑘=1

∑ ‖𝑥𝑖 − 𝜇𝑘‖2

𝑥𝑖∈𝑐𝑘

 

(11) 

 

Anil [43] described the main steps of k-means algorithm as follows: 

1. Select an initial partition with K clusters; repeat steps 2 and 3 until cluster membership 

stabilizes. 

2. Generate a new partition by assigning each pattern to its closest cluster center. 

3. Compute new cluster centers.  

  



37 
 

 

Chapter 4. Big Data with Distributed Systems 

 

The continuous increase of the volume and feature dimensions captured by organizations, such 

as the rise of social media, Internet of Things (IoT), and multimedia, has produced an 

overwhelming flow of data in either structured or unstructured format [53]. The rise of big data 

brought tremendous opportunities and conveniences, on the other hand, some challenges came 

with it including the scalability, data storage, analytics speed based on the computer architecture 

and more. The traditional centralized data mining technologies in some cases are not appropriate 

for the increasing new challenges. Then the distributed data mining environments and cloud 

computing architectures offer better solutions for the need of faster and safer data mining 

techniques. The distributed systems have the distributed computational units connected and 

organized by network, which meets the requirement of large-scale and high-performance 

computing. There are many kinds of distributed systems like Grids, Cloud Computing Systems, 

P2P systems, and etc. The distributed systems made a significant improvement to data mining on 

both scalability and performance. Apache Hadoop and Apache Spark are becoming the most 

popular ones used across various domains.  

 

4.1 Apache Hadoop 

 

Apache Hadoop was first developed in 2003 based on the Apache Nutch project [79]. The 

genesis of Hadoop originated from the Google File System paper published in October 2003. 



38 
 

Hadoop is the open source software framework used for distributed storage and processing 

of dataset of big data using the MapReduce computational paradigm. It is one of the most well-

established software platforms that support data-intensive distributed applications [54]. There are 

four main parts of the framework: Hadoop Common, Hadoop Distributed File System(HDFS), 

Hadoop YARN and Hadoop MapReduce. Based on this basic ecosystem, some other software 

package or models were developed and installed such as Apache Pig, Apache Hive, Apache 

HBase, Apache Spark, and etc. which built the whole Apache Hadoop Ecosystem shown in 

Figure 2. 

 

Figure 2 Apache Hadoop Ecosystem 

 

The Hadoop Distributed File System(HDFS) was developed as a distributed and scalable file 

system that stores large files across multiple machines. It links together the whole files on local 

nodes building one single file system. HDFS has the features of scalable, fault-tolerant, 

flexibility and reliability, which makes HDFS a fault-tolerant and self-healing distributed file 

system to a massively scalable pool of storage. HDFS divides files into smaller blocks and stores 



39 
 

them in different nodes of Hadoop clusters, which makes it possible to store much bigger size 

files than the disk capacity of each node.  

  

The MapReduce Framework was developed by Google with the highly distributed large clusters 

of computers to automatically process large-scale datasets. MapReduce is based on the divide 

and conquer method and works by recursively breaking down a complex problem into many 

sub-problems until these sub-problems is scalable for solving directly. After that, these sub-

problems are assigned to a cluster of working notes and solved in separate and parallel ways. 

Finally, the solutions to the sub-problems are then combined to give a solution to the original 

problem [54]. The framework is designed on the base of two phases: Mapping and Reducing. As 

a revolutionary programming model, MapReduce was designed as the Map function processing 

the Key/Value pair to generate the set of intermediate pairs, while the Reduce function merging 

these intermediate pairs with the matching keys and distributing them across nodes to 

independent processing. With the MapReduce model, Hadoop becomes a powerful framework 

for easily writing applications which process vast quantities of data in parallel on large clusters 

of commodity hardware in a reliable, fault-tolerant manner [54]. The MapReduce Framework 

has features of accessibility, flexibility, reliability and scalable, which makes it a popular batch-

processing tool for big data. 

 

The Apache Mahout aims to provide scalable and commercial machine learning techniques for 

large-scale and intelligent data analysis applications [54]. Apache Mahout has some core 

machine learning algorithms for clustering, classification, batch based collaborative filtering 

which is implemented on the base of Apache Hadoop using MapReduce method.   



40 
 

Apache YARN is the foundation of the 2nd generation of Hadoop that enables users on various 

locations to explore the modern data architecture with multiple data processing engines. Thanks 

to the decoupling of resource management and programming framework, YARN provides 1) 

greater scalability, 2) higher efficiency, and 3) enables a large number of different frameworks to 

efficiently share a cluster. These claims are substantiated both experimentally (via benchmarks), 

and by presenting a massive-scale production experience of Yahoo!—which is now 100% 

running on YARN [55]. 

 

4.2 Apache Spark 

 

Apache Spark is an open source in-memory computing,  cluster-based data processing API 

framework. Originally developed at the University of California, Berkeley's AMPLab, the 

Spark codebase was later donated to the Apache Software Foundation, which has maintained it 

since. Spark runs on the Apache Hadoop YARN and provides an interface for programming 

entire clusters with implicit data parallelism and fault-tolerance. Spark brought out the new data 

structure system named Resilient Distributed Dataset (RDD) to respond to limitations of 

MapReduce cluster computing paradigm. An RDD is a read-only, partitioned collection of 

records. RDDs provide fault-tolerant, parallel data structures that let users store data explicitly on 

disk or in memory, control its partitioning and manipulate it using a rich set of operators [41]. 

Instead of with disk to perform Input & Output functional manipulations, Spark offers users a 

fast and versatile processing structure and storage model based on the distributed shared memory, 

which boasted 100 times faster than Hadoop.  

 

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/UC_Berkeley
https://en.wikipedia.org/wiki/AMPLab
https://en.wikipedia.org/wiki/Codebase
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Data_parallelism
https://en.wikipedia.org/wiki/Fault-tolerant_computing


41 
 

There are three main deployment architectures of Spark which are [80]:  

Standalone Cluster: It is the simplest deployment of Spark Cluster with the static nodes of 

master and workers running with MapReduce in parallel. The master node manages and drives 

all the worker nodes and resources, while the worker nodes take on the task of computing and 

data processing. The Standalone Cluster deployment mode can also run alongside with the 

existing Apache Hadoop deployment and access to the Hadoop Distributed File System (HDFS). 

The Standalone Cluster mode gracefully supports the failure of the worker nodes. With the help 

of Apache ZooKeeper, it also has the ability to use multiple standby master nodes as a backup, 

which gives high availability to the production jobs.  

Spark on Hadoop YARN:  The main benefit of this Spark deployment mode is the dynamically 

sharing the cluster resources between different frameworks that running on YARN. Spark can 

also get support from YARN schedulers and the cluster security management. Running Spark on 

Hadoop YARN can make it directly and quickly to access the data stored in HDFS on the same 

nodes.  

Spark on Apache Mesos: As a general-purpose cluster manager that can run both analytical 

jobs and long-term services on the cluster, the Mesos master will replace the Spark master as the 

cluster manager in this mode, which will bring the advantages of dynamic partitioning between 

Spark and other frameworks and scalability between multiple Spark instances.  

 

Based on the structure of RDD, Spark brings out the strategy of series of parallel operations 

called: Transformations and Actions.  Transformations are deterministic but lazy, operations 

which define a new RDD without immediately computing it [40]. The processes of actions will 

launch the computation with the RDD finally and return the results to shared memory or disks. 



42 
 

Transformations are only really executed when an action is called. With this strategy, Spark 

could break the computation into tasks to run paralleled on separated machines. With the 

function of the pipeline, these tasks are organized into multiple stages and separated by 

distributed shuffle operations for redistributing data [40].  

 

Spark extends the popular MapReduce model and supports the combination of a wider range of 

data processing techniques, such as SQL-type queries and data flow processing. For ease of use, 

Spark has Python, Java, Scala and SQL APIs [38]. Since its release, Apache Spark has seen rapid 

adoption by enterprises across a wide range of domains. Some big brand online platforms such as 

Netflix, Yahoo, and eBay have deployed Spark at massive scale, processing multiple petabytes 

of data on clusters of over 8,000 nodes. Spark grows quickly that became the largest open source 

community in big data domains. Spark was designed with features for data mining and 

knowledge learning. Spark MLlib provides a library with a growing set of machine learning 

algorithms and utilities for data science techniques including classification, regression, clustering, 

collaborative filtering and feature selection as well as model evaluation utilities and tools.  

 

Figure 3 Apache Spark Stack 

The ecosystem of Spark empowers it a powerful open source processing engine with fast speed, 

ease of use, and data science analytics. The components build the Spark ecosystem are illustrated 

as Apache Spark Stack showed in Figure 3: 



43 
 

 

• Apache Spark Core API: It is the foundation of parallel and distributed processing 

component of the huge datasets. All the functional manipulations by Spark are built on 

the top of Spark Core. It has the capabilities of fast speed in-memory computing and 

generalized execution models which support a wide variety of application like Scala, Java, 

Python, and R for the convenient of development.  

• Apache Spark SQL + DataFrames: It is designed for structured data processing with the 

abstract concept of DataFrames based on the RDD. It acts as the distributed SQL query 

engine with extraordinary faster running speed than former unmodified Hadoop Hive. It 

also provides the integration with other components of the Spark ecosystem.  

• GraphX: It is a graph computation API built on top of Spark that enables users to 

interactively build, transform and analyze graph-structured data with remarkable speed 

while retaining Spark’s flexibility, fault tolerance and ease of use.  

• Streaming Analytics: It enables the real-time processing the interactive and analytical 

applications with both streaming and historical data. It also perfectly integrates with most 

popular data source like HDFS, Twitter, Flume, and Kafka.  

• MLlib: It is a scalable machine learning library that is implicitly suitable for iterative 

processes with both high-performance algorithms and computing speed. The library was 

developed with Java, Scala and Python, and could be easily included into the application 

workflow. MLlib contains a large set of popular learning algorithms with the new 

versions mainly based on DataFrames including Classification, Regression, Clustering 

and Feature selections and more.  

 



44 
 

For machine learning, Apache Spark supplies the MLlib scalable machine learning library, which 

provides machine learning algorithms and tools list below:  

• ML Algorithms: common learning algorithms such as classification, regression, 

clustering, and collaborative filtering 

• Featurization: feature extraction, transformation, dimensionality reduction, and selection 

• Pipelines: tools for constructing, evaluating, and tuning ML Pipelines 

• Persistence: saving and loading algorithms, models, and Pipelines 

• Utilities: linear algebra, statistics, data handling, etc. 

Spark’s MLlib has two main packages: spark.mllib and spark.ml. The former one was designed 

on the top of RDD based API and is only in maintenance mode, while the latter one is based on 

DataFrames with the new Pipelines API and some other new features and will be the primary 

API. The DataFrames is conceptually equivalent to a table in Relational Database, but it can be 

constructed from a wide array of sources including structured data files, tables in Hive, external 

databases, or existing RDDs.  

 

Spark provides utilities for data mining and knowledge learning including: Summary Statistics 

(mean, variance, count, max, etc.), Correlation (Spearman and Pearson correlation), Stratified 

Sampling (sampleByKey and sampleByKeyExact), Hypothesis Testing (Pearson’s chi-squared 

test) and Random Data Generation (RandomRDDs, Normal, Poisson), Kernel Density 

Estimation ( kernelDensity).  

 

Spark MLlib supports various methods for classification and regression with RDD-based API. 

For binary classification and multiclass classification there are linear SVMs, logistic regression, 



45 
 

decision trees, random forests, gradient-boosted trees, naive Bayes methods, and for Regression 

linear least squares, Lasso, ridge regression, decision trees, random forests, gradient-boosted 

trees, isotonic regression are also available for data mining usage. 

 

Spark MLlib supports ALSModel as the model-based collaborative filtering method for the 

popular recommender system, in which users and products are described as small sets of latent 

factors and these factors can be used to predict missing entries for various usages.  

 

For unsupervised clustering both the DataFrames based API and RDD based API have some 

most popular methods like K-means, Latent Dirichlet allocation(LDA), Bisecting k-means, 

Gaussian Mixture Model(GMM) algorithms implemented in Scala, Java, and Python.  

 

Spark MLlib also supplies a set of methods and algorithms for extracting, transforming and 

selecting features in the process of data mining. For feature extraction, methods of TF-IDF, 

Word2Vec, CountVectorizer are some popular ones in text-mining domains. Various methods for 

feature transformation are supported such as Tokenizer, StringIndexer, VectorIndexer, and etc. 

Three feature selection methods are included in the MLlib which are VectorSlicer, RFormula and 

ChiSqSelector.  

 

The concept of ML Pipelines provides a uniform set of high-level APIs built on top of 

DataFrames that help users create and tune practical machine learning pipelines 

(spark.apache.org). The API enables the combination of multiple algorithms and data mining 

processes into one pipeline workflow. The Pipelines in Spark bring the concepts of Transformer 



46 
 

and Estimator. The transformer is an algorithm or data mining step which can transform one 

DataFrame into another DataFrame, while an Estimator fits the DataFrame to the learning 

algorithm model with parameters. Then the pipeline chains multiple Transformers and 

Estimators together to form a workflow with a common API for specifying parameters.  

 

Spark MLlib provides tools for tuning ML algorithms and Pipelines. Users can tune the entire 

pipeline at once instead of tuning each component in the pipeline separately. Two methods 

CrossValidator and TrainValidationSplit work as the tuning tools with some other methods 

including Estimator, ParamMaps, and Evaluator.    

  



47 
 

Chapter 5. Methodology 

 

The datasets in this thesis are from Intelligent Tutoring Systems (ITS) for thousands of students 

in the US with the spanning time of 2005-2009 school years. The competition was to predict the 

students’ future performance of solving algebra problems with their historical data on the ITS. 

The variable representing the ability of the student for the specific problem is 

Correct_First_Attemp, which has binary classes with ‘0’ for correct and ‘1’ for incorrect. All the 

participants of the competition need to build the prediction model with three training datasets and 

two development datasets which are for the further prediction. The participants’ finished models 

will be tested with a test data and the evaluation of their prediction accuracy will be compared 

with the real output with the RMSE method. 

 

The datasets for this competition have a large volume.  Some attributes have very high 

categorical distributions. The description of the datasets is listed as: 

Datasets Students Steps Attributes 

Development Data Sets    

Algebra I 2005-2006 575 813,661 22 

Algebra I 2006-2007 1840 2,289,726 22 

Bridge to Algebra 2006-2007 1146 3,656,871 20 

Challenge Data Sets    

Algebra I 2008-2009 3310 9,426,966 22 

Bridge to Algebra 2008-2009 6043 20,768,884 22 

 

Table 1 KDD Competition Datasets 

 

To evaluate and reveal the scalability of the architecture of Apache spark on predicting the 

performance of students with the online cognitive learning systems, the methodology designed 



48 
 

for this thesis is to apply different classification and regression algorithms with designed 

computing resources allocated including the number of executor nodes, nodes memory, executor 

cores and dataset partition with the Apache Spark cluster.  By analyzing and comparing the 

experiment results, the advantages, as well as the bottleneck of distributed system Apache Spark 

on education data mining, can be revealed. The design of the methodology for this experiment 

could be described in Figure 4: 

 

Figure 4 Design of the experiments 

 

5.1 Data Pre-processing  

To guarantee the accuracy of the predicting algorithms implemented on the stage of training and 

predicting, also to meet the requirements of different data mining algorithms in Spark, the raw 

datasets need to be pre-processed before the process of analyzing with Spark.  

 

 



49 
 

5.1.1 Feature Generation 

 

The raw datasets have the feature named KC which means the knowledge components separated 

with ‘~~’ for the problem. In according with KC there is the feature of Opportunity with same 

structure indicating the count of this student encounter of the KCs. Both variables need to be 

broken up into separate variables of each knowledge component and related times of encounter 

of the knowledge component. A new variable needs to be generated which has the number of 

knowledge components in the problem. It is possible that the number of knowledge components 

may lead to higher level of difficulty of the problem and less chance to answer it correctly.  

 

New groups of features reflecting student’s ability on mathematics and the difficulty level of the 

problem will be generated at this stage, which is listed below:  

• The Student group: It reflects the ability of the student on math based in his/her history 

data. New generated features come from the statistical count of the student’s history 

counts of problems solved, Hints times, Incorrect answers and Correct answers based on 

the students ID. 

• Problem Name group: It reflects the historical records of the problem from the variable of 

Problem Name. New generated features come from the statistical count of the Problem 

Name total number, Hints times, Incorrect answers and Correct answers. 

• Problem Unit group: It reflects the historical records of the problem from the variable of 

Problem Unit. New generated features come from the statistical count of the Problem 

Unit total number, Hints times, Incorrect answers, and Correct answers. 



50 
 

• Problem Section group: It reflects the historical records of the problem from the variable 

of Problem Section. New generated features come from the statistical count of the 

Problem Section total number, Hints times, Incorrect answers and Correct answers. 

• Knowledge Components group: It reflects the historical records of the separated 

knowledge components from the new generated KCs. New generated features come from 

the statistical count of the KCs total number, Hints times, Incorrect answers, and Correct 

answers. 

The feature generation processes will be finished with the tools of Microsoft SQL Server 12.0 

and IBM SPSS Statistics v22.0. These tools have high performance on data manipulation and 

more suitable for the other steps of data pre-processing like feature correlation analysis and 

selection.  

 

5.1.2 Feature Manipulation 

 

This process is done using the tool of IBM SPSS Statistics v22.0. At the beginning of this stage, 

all the variables connected with the label of ‘Time’ will be removed based on the rules of the 

competition and other applicants’ data analytics works [45] [46] [48] [49] [61].  

 

For the categorical variables with a high number of classes including ProblemName (819 

classes), Automatic Recode will be applied with SPSS to change the categorical variables values 

from string to numerical type (values between 1 and n classes). The reason for this step is to 

reduce the size of the dataset finally into the learning algorithms and to fit the type requirements 

of the input variable in some algorithms. 



51 
 

 

The newly generated variables of KCs are very sparse with null value because most of the 

problems only have 1-2 knowledge components. The highest number of components is 7 which 

only has 2 cases and the problems with 6 KCs have 48 cases. Thus, these two generated features 

and the related Opportunity features could be ignored when building the final feature subset. For 

the cases with features of KCs related Opportunities having the null value, a new designed value 

could be assigned to them with a number significantly more than the highest value in the column. 

This approach is based on the meaning of the variable Opportunity which represents the number 

of the encounter of the knowledge component before for this student. The higher the number 

means more chances the student has worked on the same knowledge component, and more 

chance he/she can make the correct choice on this problem. The null value of Opportunity means 

there is no knowledge component of this column in this problem. Then the opportunity to make 

the correct attempt will be even higher. The new value to replace the null is designed as: 

 𝑣𝑛𝑢𝑙𝑙 = 𝑣𝑚𝑎𝑥 + 𝑣̅ (12) 

 

The variable of 𝑣𝑚𝑎𝑥 is the maximum of the value in the column, and 𝑣̅ represents the mean of 

the values of the column.  

 

With the completion of the new features, basic correlation analysis is applied for both the 

categorical and numerical features toward the dependent variable which indicates the correctness 

of the problem. The method of correlation test takes the simple Filter way because we evaluate a 

variety of learning algorithms in the following process and there is no specific one for the data 

mining process.   

 



52 
 

 

 5.1.3 Standardization 

 

All the numerical attributes including the newly generated ones are standardized before final 

output. This work is completed in IBM SPSS Statistics v22.0.  The process of standardization for 

these numerical features is to map each value based on the mean and standard deviation of the 

features. It generates the ‘Z-scores’ for all the numerical variables and these newly generated 

standardized variables can be used in the future data mining algorithms. 

 

5.2 Learning Algorithms  

 

Since the purpose of this thesis is to explore and evaluate the scalability of the distributed system 

Apache Spark working in the field of education data mining (EDM) with large-scale datasets of 

cognitive learning systems, only a few most commonly used learning algorithms included in the 

Spark MLlib library are applied to the processed data for training and making prediction. This 

thesis only involves classification-based algorithms, and the experiments focus on the evaluation 

of the performance of vectorized categorical features with different mining algorithms. Before 

loading the dataset into the learning algorithms, all the re-coded categorical variables are 

converted to sparse vector LabeledPoints to fit in these DataFrame based algorithms.  

 

• Logistic Regression:  There are two LR models in spark.ml for both binomial logistic 

regression and multinomial logistic regression. In this thesis, the prediction output is 

binary class. Therefore, the binomial model is applied. The implemented L-BFGS 



53 
 

algorithm is chosen for training and making the prediction. The tuning parameters 

selected are regParam and maxIter with different assigned numbers.   

• Decision Trees: The spark.ml implementation supports decision trees for binary and 

multiclass classification and for regression, using both continuous and categorical 

features. The new implementation also working with DataFrame and ML Pipelines 

which offer more functionality than the original method. In this thesis, the 

DecisionTreeClassifier function is chosen as the classifier for the given dataset.  

• Support Vector Machine: LinearSVC in spark.ml supports binary classification with 

linear SVM. It is also trained with both L2 and L1 regularization. The tuning parameters 

with SVM classification are regParam and maxIter.  

• Random Forest: The spark.ml implementation supports random forest for binary and 

multiclass classification as well as for regression, and the features can be both continuous 

and categorical features. The implementation uses the existing decision tree 

implementation with the function name RandomForestClassifier.  

• Evaluation and Validation: 10-folded cross-validation is applied for some of the 

learning algorithms in the tuning part of the programs, and different algorithms are 

involved different parameters tuning that fit for the specific algorithms.  

 

5.3 Implementation with Python on Apache Spark 

 

Apache Spark supports various API like Java, Python, Scala and R. Before Spark 2.0, the main 

programming interface of Spark was the Resilient Distributed Dataset (RDD). After Spark 2.0, 

RDDs are replaced by Dataset, which is strongly-typed like an RDD, but with richer 



54 
 

optimizations under the hood. The Dataset API is one of the ways to interact with the module of 

Spark SQL which provides Spark with more information about the structure of both the data and 

the computation performed. DataFrame is a Dataset organized into name columns. It is 

conceptually like the ‘table’ in a relational database. DataFrames can be constructed from a wide 

array of sources including structured data files, tables in Hive, external databases, or the former 

version RDDs. In this thesis, only the learning methods in spark.ml are applied and all of them 

prefer DataFrames as the interaction API.  

 

Python-based API named Pyspark are used. Two versions of Spark including Spark 2.0.0 and 

Spark 2.2.0 are the platforms to run the Python programs. The Spark 2.0.0 is based on the York 

University Hadoop +Spark cluster with the resource manager as YARN. The Spark 2.2.0 is the 

Google Cloud Platform of Cloud Dataproc, which has the built-in Hadoop 2.7 and Spark 2.2.0 

for big data analytical tasks.  Both versions of Spark work with Python 2.6+ or Python 3.4+. It 

can use the standard CPython interpreter. Thus, C libraries like NumPy can be used.  PySpark 

shell is responsible for linking the Python API to the Spark core, and it provides the users with a 

variety of great tools for machine learning. The reasons for implementation with Python instead 

of Scala are that Python is a highly productive language and the learning curve is much shorter 

with its full package of libraries and tools for data science.  

 

For the reason of different Spark versions in different environments, both RDD based and 

DataFrame based PySpark libraries are involved in programing the data mining algorithms in 

Python.  

 



55 
 

York University Hadoop + Spark Cluster: Spark 2.0.0  

Logistic Regression    Tuning with 10-folded Cross-validation  

 

Google Cloud Dataproc Hadoop +Spark Cluster: Spark 2.2.0 

Logistic Regression    Tuning with 10-folded Cross-validation  

Decision Tree Classification   No tuning 

Random Forest Classification   No tuning 

Linear Support Vector Machine  Tuning with 10-folded Cross-validation 

 

5.4 Scalability and Performance Evaluation Design 

 

In this thesis, two infrastructures of Apache Hadoop +Spark cluster platforms are used to 

evaluate the scalabilities of data mining algorithms on distributed computing systems. One 

cluster is from York University with 19 nodes for research purpose. The other cluster is on 

Google Cloud Dataproc with the dynamic choice for the node number with Google core 

infrastructure for data analytics and machine learning.  

 

5.4.1 The Infrastructure of York University Spark Cluster 

 

The architecture of this Spark system is a Hadoop YARN managed Cluster with one master node, 

one secondary name node and 17 worker nodes, which is shown in Figure 5:  



56 
 

 

Figure 5 The York University Spark Cluster Architecture 

The setting of the nodes in the cluster are: 

Master node:     i7-3770 CPU @ 3.40GHz  16G RAM   

Secondary name node:  i7-3770 CPU @ 3.40GHz  8G RAM 

Worker nodes:   i7-3770 CPU @ 3.40GHz  8G RAM 

DHCP server:   i7-3770 CPU @ 3.40GHz  32G RAM 

The DHCP server is working as the function of network router with a designed firewall for 

remote cluster accessing and monitor. The Master node and Secondary name node will not take 

the task of computing. 

 

Considering the overhead memory for each instance and the executor when Spark node makes 

computing, 1G memory with 2 VCores for each container is set for the scalability evaluation of 

this distributed computing system with the limitation of 7G RAM on each worker node. The 

spark running instance properties configuration will be set as:  

spark.executor.memory  1G 



57 
 

spark.network.timeout  800000ms 

spark.executor.num   4, 8, 16, 32, 64  

Spark resource manager will dynamically assign a designed number of partitions to different 

nodes.  

Dataset is stored in the Hadoop Distributed File System (HDFS).  

The accessing and manipulations of this cluster are on remote terminal with SSH through Port 22. 

The monitor of the cluster and data nodes are remotely on terminal web browser trough Port 

8088 and 50070.  

 

5.4.2 The Infrastructure of Google Cloud Dataproc Spark Cluster 

 

Google Cloud Dataproc is a fast, easy-to-use and fully managed cloud service for data analytical 

works with Apache Hadoop and Spark. For this experiment a Hadoop 2.7 + Spark 2.2.0 YARN-

based cluster is built, which is shown in Figure 6: 

 

Figure 6 The Google Cloud Spark Cluster Architecture 



58 
 

The setting of the nodes in the cluster are: 

Master node:      16G RAM   

Worker nodes:      16G RAM 

The dataset is stored in the Google Cloud Storage Bucket, which has several advantages over 

HDFS like direct-data-access, HDFS compatibility, interoperability between Hadoop and Spark, 

better accessibility, higher availability, no storage management overhead and easy set-up.  

The Google Cloud Dataproc API takes the mission of monitoring the jobs, resizing the cluster 

and managing the cluster. The Pyspark computing jobs are submitted by the tools of Google 

Cloud SDK.   

   

Considering the Overhead memory consumption for each Spark instance, the spark running 

instance properties configuration is set as:  

spark.executor.memory  7G / 10G (re-partition experiments) 

spark.network.timeout  800000ms 

spark.executor.num   4, 8, 16, 32, 64 (2,4,8,16,32 for re-partition experiments) 

 

  



59 
 

Chapter 6.   Results and Discussion 

 

In this part, we use the Python API for Spark to evaluate the scalability of Spark with different 

data learning methods on the generated datasets from the Online Cognitive Learning Systems. 

The learning algorithms applied in this thesis are based on the package of spark.ml and 

spark.mlib on both versions of Apache Spark 2.2.0 and Spark 2.0.0, which support the new 

interfaces of Dataset as well as the former Resilient Distributed Dataset (RDD). The learning 

algorithms used in this thesis are Logistic Regression, Random Forests, Decision Tree and 

Support Vector Machine with the selected functions in spark.ml and spark.mlib.  

 

In this thesis, the categorical features most related to the problem are chosen to evaluate the 

scalability of the distributed system of Spark on different algorithms. At the same time, all the 

numerical features are still pre-processed and grouped for the future work. All the selected 

features are transferred, vectorized and assembled to sparse vector labeled point format to fit the 

data mining algorithms. 

 

This thesis is focused on the scalability and running time performance of Apache Spark. Hence, 

all the learning Pyspark programs are run on a different number of worker nodes with designed 

resource allocation to evaluate the relationship between computing resources and running time 

performance for different algorithms applied on Spark.  

 

 



60 
 

6.1 Datasets Overview 

 

The dataset in this thesis comes from the KDD Cup 2010 Educational data mining Challenge. All 

the datasets are students’ logs of two Mathematics Online Tutoring Systems called the Carnegie 

Learning Algebra system deployed as Algebra I 2005-2006 and 2006-2007, and the Bridge to 

Algebra system deployed 2006-2007. 

 

Development Datasets 

• Algebra I 2005-2006   575 students  813,661 cases 

• Algebra I 2006-2007   1,840 students  2,289,726 cases 

• Bridge to Algebra 2006-2007  1,146 students  3,656,871 cases 

Challenge Datasets 

• Algebra I 2008-2009   3,310 students  9,426,966 cases 

• Bridge to Algebra 2008-2009  6,043 students  20,768,884 cases 

 

All the datasets have the similar feature structure, with 20 features in Algebra I and 19 features in 

Bridge to Algebra. Considering the massive size and similar feature structure of the datasets, 

only the Algebra I 2005-2006 and Algebra I 2006-2007 are selected as the working data sets.  

Challenges of the dataset are provided as below:  

• Vast number of instances with high feature dimensions. (813,661 cases, 20 features) 

• Sparse data. 

• Highly categorical variables.  

 



61 
 

The original Algebra I 2005-2006 and Algebra I 2006-2007 data sets come with 20 features:  

• Row - The row number of the case 

• Anon Student Id – Unique student ID 

• Problem Name - Identifier of the problem that indicates a task for student to perform and 

normally contains multiple steps.  

• Problem View - Total number of time the student encountered this problem 

• Step Name - Unique identifier for the step which is an observable part of the solution to a 

problem. 

• Step Start Time - Start time of the step 

• First Transaction Time - First transaction time of the step 

• Correct Transaction Time - The time of correct attempt of the step 

• Step End Time - The time of last transaction of the step 

• Step Duration (sec) - The time to finish this step 

• Correct Step Duration (sec) - The step duration if the first transaction is correct for this step 

• Error Step Duration (sec) - The step duration if the first try of this step is not correct 

• Correct First Attempt - The evaluation of first try of the step, 1-correct, 0-error 

• Incorrects - Total number of incorrect attempts for this step 

• Hints - Total number of Hints the student used for this step 

• Corrects - Total correct attempts this student done for this step 

• KC(Default) - The skills involved in this problem. Each step can have more than one KCs 

separated with ‘~~’ 

• Opportunity(Default) - The number of times the student encountered the KCs before. 

Multiple Opportunities are separated by ‘~~’ 



62 
 

• Proble_Unit - The classification of the curriculum 

• Proble_Section - The portion of the Unit 

 

The performance is evaluated by the predicting accuracy of the binary class Correct First 

Attempt, which represents whether the student fully masters the knowledge components of the 

problem and makes the right choice at first try. 

 

6.2 Data Pre-processing  

 

Before the evaluation of the scalability of Spark on Education data mining, the original dataset is 

pre-processed to fit in different algorithms of data mining Pyspark programs. This process is 

mainly based on former KDD challenge winners’ papers [45][46][47][48], which have made 

feature correlation evaluations from different methods and algorithms.  

 

6.2.1 Feature Generation 

 

In this stage, all the manipulation and programming are completed with Microsoft SQL Server 

2012 and IBM SPSS Statistics 22.  

 

The variables of KC and Opportunity need to be broken into different components they 

embedded. The KC indicates the skills that are used in the problem and a problem step may 

contain multiple KCs. These KCs are separated by ‘~~ ‘(two tildes). The maximum number of 

KCs in one problem step is 7 and all the KCs will be separated into 7 different tiers as new 



63 
 

generated features of KC1-KC7. The variable of Opportunity is a chance for a student to 

demonstrate whether he or she has learned a given knowledge component. A student's 

opportunity value for a given knowledge component increases by 1 each time the student 

encounters a step that requires this knowledge component. According to the knowledge 

components (represented as KCs) in one step of problem, the variable of Opportunity contains 

the times the student encountered these knowledge components before, which are separated by 

‘~~ ‘(two tildes) too. The process of generating these new features is shown in Figure 7: 

 

Figure 7 Feature break up 

The features of the original dataset can be classified into 4 groups:  

• Useless for data mining process: Row, Anon Student Id 

• Time-related: Step Start Time, First Transaction Time, Correct Transaction Time, Step 

End Time, Step Duration (sec), Correct Step Duration (sec), Error Step Duration (sec) 

• Problem & Step related: Problem Name, Problem View, Step Name, Incorrects, Hints, 

Corrects, Correct First Attempt, Proble_Unit, Proble_Section 

• Knowledge Component related: KC(Default), Opportunity(Default) 

The new generated features will come from the Problem & Step related group and Knowledge 

Component related group of features. The tools used for this step are MS SQL Server and IBM 

SPSS Statistics 22.0 with the new group of generated features list below:  



64 
 

• KCnumber: to sum up the total KCs (knowledge components) in each question.  

• ProblemNameNominal, StepNameNominal, Proble_UnitNominal, 

Proble_SectionNominal:  These four categorical features is nominalized into integers 

with SPSS. The new generated features are applied with the One-Hot process in Pyspark.   

• Row_T, Hint_T, Incorrects_T, Corrects_T: the numerical variables calculated to represent 

for each student’s historical records of total questions answered, number of hints applied, 

total times of incorrect answers and total correct choices.  

• Row_P, Hit_P, Incorrects_P, Corrects_P: the numerical variables generated to describe 

for this question’s Problem attribute history records of total questions answered, number 

of hints applied, total times of incorrect answers and total correct choices.   

• Row_U, Hit_U, Incorrects_U, Corrects_U : the numerical variables generated to describe 

for this question’s Unit attribute history records of total questions answered, number of 

hints applied, total times of incorrect answers and total correct choices.  

• Row_S, Hit_S, Incorrects_S, Corrects_S: the numerical variables generated to describe 

for this question’s Section attribute history records of total questions answered, number 

of hints applied, total times of incorrect answers and total correct choices.  

• KC#_row, KC#_hint, KC#_incorrects, KC#_corrects: (# is from 1~6) the numerical 

variables generated to describe each KC history records of total questions answered, 

number of hints applied, total times of incorrect answers and total correct choices. 

 

 

 



65 
 

6.2.2 Feature Manipulation and Standardization 

 

All the time related features such as Step Start Time, First Transaction Time, Correct 

Transaction Time, Step End Time, Step Duration (sec), Correct Step Duration (sec), Error Step 

Duration (sec) are dropped due to the missing values in test datasets [45] [46] [47] [48]. The new 

generated features are made correlation test with the dependent variable in SPSS. Since the main 

purpose of this thesis is to evaluate the scalability of distributed computing system Apache Spark 

on the educational datasets, all the new generated features are standardized with SPSS and go 

into the data mining process in Spark.  

 

To lower the volume of the datasets, the categorical features are applied with Automatic Recode 

with the tool of SPSS to change the String values to nominal numbers. This procedure assigns 

each unique category with a number code and saves the converted values into a new variable. All 

the new generated categorical features are called recoded categorical features. 

All the numerical features including the newly generated ones are standardized. This work is 

completed in IBM SPSS Statistics.  The process generates the ‘Z-scores’ for all the numerical 

variables and these new generated standardized variables start with character ‘Z’ plus the old 

feature names. 

 

The selected features will be classified into two groups:  

• Recoded categorical features, mainly used to compare the scalability of Spark with 

different resources allocated.  

• Standardized numerical features: for future work.  



66 
 

 

6.3 Learning Algorithms Experiments on Spark Clusters  

 

Two Apache Spark platforms are used to execute the data mining programs. For different 

platform infrastructures and software version, different Python data mining programs are 

implemented as well as the job submission strategies and settings.  

 

6.3.1 Classification Results with York University Lab Spark Cluster 

 

Resource planning (executors, memory, cores etc.) plays a vital role when running Spark 

application on Hadoop YARN. The memory Overhead is one of the parameters that need to 

consider when designing the experiment strategy and tuning the configuration of Spark. Due to 

the limitation of the 7G RAM for each worker node, the fixed number 17 of worker nodes and 

the version of Spark 2.0.0, the classification algorithm of Logistic Regression with 10-folded 

cross-validation model is programmed with different resource allocated strategies. One 

parameter of maxIter is tuned with choice of [1,2,4] in the tuning process. The dataset is stored in 

the Hadoop HDFS distributed file system. Only the nominalized categorical features are 

transferred to vectors with a One-Hot process and fitted into the model. The dataset is split into 

70% training data and 30% test data.  Two experiments with different strategies are executed on 

this cluster.  

Experiment I: The Spark mining resource allocation strategy is designed as 1G RAM for each 

instance with dynamic executor selection by Spark and the number of instance selection is set as 



67 
 

4, 8, 16, 20, 32 and 64. The resource allocation of some main parameters of Spark case is shown 

below: 

Spark.driver.memory     1G 

Spark.executor.memory    1G 

Spark.yarn.executor.memoryOverhead  384MB 

The running results for different numbers of cluster usage and the speedup are shown in Table 2 

and Figure 8. The result shows when the number of executor increases from 4 to 8, the running 

speed gets significant 35.71% speedup ratio. From 8 to 16 instances the running speed increases 

by 16.39%, while more nodes added after this the running speed does not get significant 

improvement.   

Logistic Regression Number of Nodes Running Time Speedup Ratio 

1G / instance 

4 5774 

 
8 3712 35.71% 

16 
2766 

52.10% 

20 
2821 

51.14% 

32 
2743 

52.49% 

64 
2797 

51.56% 

Table 2 Results of Logistic Regression experiment I on York U Spark Cluster 

   

 



68 
 

 

Figure 8 Results of Logistic Regression experiment I on York U Spark Cluster 

 

Experiment II: The Spark mining resource allocation strategy is designed as 4G RAM for each 

instance with dynamic executor selection by Spark and the number of instance selection is set as 

1, 2, 4, 8, and 16. The resource allocation of some main parameters of Spark case is shown 

below: 

Spark.driver.memory     1G 

Spark.executor.memory    4G 

Spark.yarn.executor.memoryOverhead  spark.executor.memory * 0.1 =400MB 

 

The running results for a different number of cluster usage and the speedup for this experiment 

are shown in Table 3 and Figure 9. Significant speedup ratio could be observed from the results 

when more Spark worker nodes involved from one node to two (36.41%), two nodes to four 

(62.26%) and four nodes to eight (76.51%), while just the same as Experiment I results showed, 

when the number of worker nodes increase from 8 to 16, the running speed only increases to 

0

1000

2000

3000

4000

5000

6000

7000

4 8 16 20 32 64

R
u

n
n

in
g 

Ti
m

e

Number of Nodes

Logistic Regression 10 folded
1 G RAM / Instance

Running Time

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

8 16 20 32 64

Sp
ee

d
u

p
 R

at
io

Number of Nodes

Logistic Regression 10 folded
1 G RAM / Instance



69 
 

82.55% and from the curve we can see the increasing ratio of the speedup becomes steady. 

Because of the limit of total 119 G RAM (17 x 7 G) of this Hadoop cluster, for 4 G RAM / 

instance experiment cannot extend the worker number to 32.    

 

LR Number of Nodes Running Time Speedup Ratio 

4G/instance 

1 4751   

2 3021 36.41% 

4 1793 62.26% 

8 
1116 76.51% 

16 
829 82.55% 

Table 3 Results of Logistic Regression experiment II on York University Spark Cluster 

 

 

Figure 9 Results of Logistic Regression experiment II on York University Spark Cluster 

 

Based on Experiment I and Experiment II, we can also notice that with Spark distributed 

system resource allocation strategy, the running speed for Logistic Regression algorithm with 

this dataset can be increased significantly with more memory for each executor instance other 

than more nodes added with the dataset at this size. Hadoop works with the principle of data 

0

1000

2000

3000

4000

5000

1 2 4 8 16

R
u

n
n

in
g 

Ti
m

e

Number of Nodes

Logistic Regression 10 folded
4 G RAM / Instance

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

2 4 8 16

Sp
ee

d
u

p
 R

at
io

Number of Nodes

Logistic Regression 10 folded
4 G RAM / Instance



70 
 

locality and pushing computation to data.  Hadoop stores the data in HDFS. The data are split 

into blocks and distributed on different DataNodes.  Hadoop MapReduce schedules the 

computation tasks to executors, which are normally on various DataNodes. The computation 

tasks will be executed on the nodes where the data blocks stored or the nodes on the same rack. 

This minimizes the data transfer latency and significantly improve the performance. When Spark 

loads the data, by default the partition size for the dataset is set to 128M. The volume of this 

dataset is 840M, which is divided into seven partitions by default. Each executor on the 

DataNode can only work on one partition at one time. More executors than seven will not 

significantly improve the parallelism computing time on each executor when there is no 

repartition() progress to partition data into more blocks and distribute them on more nodes. 

While Spark works with the unique strategy of in-memory computing, which relies on the 

capacity of executor’s memory for iterative jobs. More memory on each executor will 

significantly improve the computing speed, which takes the dominant part of running time in this 

case. Table 4 and Figure 10 show the comparison of the memory of 1G /instance with 

4G/instance strategies with the same amount of total memory working on the program. 

Compared to 1G RAM per executor when running the LR prediction, the 4G RAM strategy 

shows significant advantage when total memory is over 16 G. For 1G / instance the number of 

worker nodes reaches 16, while for 4G/instance case the number of worker nodes is only 4, 

which still has the potential to raise the performance with more nodes involved. We can reach 

the point that the scalability of distributed system Spark has some strategies with the resources 

allocation design on YARN-based system. For this dataset, when limited executors are involved, 

the time of computing dominates the running time, while the costs of time for the processes of 

‘map-shuffle-reduce’ does not take significant parts. When executors are more than 8, compared 



71 
 

to the computing time, the ‘map-shuffle-reduce’ processes will have obvious negative effects to 

the whole running time performance. On the other hand, the increasing of the memory for each 

executor could significantly reduce the computing time.  We can conclude that the most 

optimized solution for the classification of this dataset on Spark can be increasing the memory 

on each executor and setting ‘number of executors’ to 8-16.  

  

LR/10 folded Memory 
1G / Instance Running 

Time 

4G / Instance 

Running Time 

Total 

Memory 

4 5774 4751 

8 3712 3021 

16 
2766 

1793 

32 
2743 

1116 

64 
2797 

829 

 

Table 4 Comparison of memory strategies on York U Spark Cluster 

  

 

Figure 10 Comparison of memory strategies on York U Spark Cluster 

0

1000

2000

3000

4000

5000

6000

7000

4 8 16 32 64

R
u

n
n

in
g 

ti
m

e 
(s

ec
.)

Total memory used

Comparasion of configuration of instance memory 

1G / Instance Running Time 4G / Instance Running Time



72 
 

 

6.3.2 Classification Models for Google Cloud Dataproc Spark Cluster 

 

The technology of Cloud computing service makes it possible to build the Hadoop distributed 

system with infinite resource and minimal management effort. This also gives us the best way to 

explore the scalability of data mining methods on educational dataset especially for the online 

real-time analytic with data mining methods. This part of the thesis is based on Google Cloud 

Dataproc, which is an easy-to-use and fully managed cloud service for building and running 

Hadoop and Spark cluster. To avoid the network latency between nodes, all the worker nodes in 

the cluster are selected in the location zone of ‘usa-east-1b’. The master node of the Spark cluster 

is 4 Cores Intel CPU, 15G memory and 20G hard drive. All the worker nodes in the Spark cluster 

are set as 4 Cores Intel CPU, 15 G memory and 10G hard drive. Four data mining algorithms are 

programmed and applied to the dataset with different strategies and resources to test the 

scalability of Spark on Google Cloud. To avoid the possible abnormal noise with the results, 

each submission of the Pyspark task is conducted three times. The average of the three results is 

used as the final output. 

 

Logistic Regression with 10-folded Cross-validation: The experiment is designed with 7G 

RAM/instance and the worker number is set to 1, 2,4, 8, 16 and 32. The tuning parameter in the 

Spark Pipeline falls on the maxIter with choice of [1,2,4].  The results of running speed with 

different worker nodes are shown in Table 5 and Figure 11. From the results, we can see the 

performance improves significantly from 1 worker node to 2 nodes with speedup ratio to 39.45%, 

and with the increasing of the node number to 4 the speedup ratio still gets a high increase with 

60.96%. After reaching to the number of 8 worker nodes the performance increases to 66.80% 



73 
 

while the curve becomes smooth, and with more nodes added there is no significant 

improvement to the running time.  

LR (10 folded) Num of Nodes 
Running 

Time(Sec.) 
Speedup Ratio 

7G / instance 

1 4063   

2 2460 39.45% 

4 1586 60.96% 

8 
1349 

66.80% 

16 
1371 

66.26% 

32 
1380 

66.03% 

Table 5 Results of Logistic Regression(10-folded) on Cloud Spark Cluster 

 

 

Figure 11 Results of Logistic Regression(10-folded) on Cloud Spark Cluster 

 

Support Vector Machine (SVM) with 10-folded Cross-validation: The experiment is 

designed with 7G RAM/ instance and the worker number is set to 1, 2,4, 8, 16 and 32.  The 

results of running speed with different worker nodes are shown in Table 6 and Figure 12. We can 

see the performance of SVM on Spark improves significantly when worker nodes added from 1 

to 2 (20.54%) as well as from 2 to 4 (34.72%), but after that when more nodes are involved in 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 8 16 32

R
u

n
n

in
g 

Ti
m

e(
Se

c)

Number of Nodes

Logistic Regression 10 folded
7G RAM / Instance

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

2 4 8 16 32

Sp
ee

d
u

p
 R

at
io

Number of Nodes

Logistic Regression 10 folded
7G RAM / Instance



74 
 

the distributed computing process there is an only minor improvement on the performance of 

running speed.  

  

SVM(10 folded) Num of Nodes Running Time(Sec.) Speedup Ratio 

7G / instance 

1 2497   

2 1984 20.54% 

4 1630 34.72% 

8 1624 34.96% 

16 1593 36.20% 

32 1653 33.80% 

Table 6 Results of SVM (10-folded) on Cloud Spark Cluster 

  

 

Figure 12 Results of SVM (10-folded) on Cloud Spark Cluster 

 

Random Forest Classification (non-folded): The experiment is designed with 7G 

RAM/instance and the worker number is set to 1, 2,4, 8, 16 and 32. When working with 10-

folded cross-validation, the running time for Random Forest is extremely long. Due to the 

purpose of the thesis is to explore the scalability of Distribute System of Spark, for Random 

Forest and Decision Tree classification there is no cross-validation during the mining process. 

The results of running time for Random Forest classification are shown in Table 7 and Figure 13. 

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32

R
u

n
n

in
g 

Ti
m

e(
Se

c)

Number of Nodes

SVM 10 folded
7G RAM / Instance

0.00%

10.00%

20.00%

30.00%

40.00%

2 4 8 16 32

Sp
ee

d
u

p
 R

at
io

Number of Nodes

SVM 10 folded
7G RAM / Instance



75 
 

We can see when the number of worker nodes increased from 2 to 4, the running speed 

performance improves significantly to 66.61%. When the number of nodes grows to 8, the 

improvement is 72.02% and the curve for speedup ratio becomes smooth. When the number of 

worker nodes is more than 8, the performance has no notable change.  

  

RF Num of Nodes 
Running 

Time(Sec.) 
Speedup Ratio 

7G / instance 

1     

2 4911   

4 1640 66.61% 

8 1393 
71.64% 

16 1374 
72.02% 

32 1405 
71.39% 

Table 7 Results of Random Forest (non-folded) on Cloud Spark Cluster 

  

 

Figure 13 Results of Random Forest (non-folded) on Cloud Spark Cluster 

 

Decision Tree Classification DT (non-folded): The experiment is designed with 7G 

RAM/instance and the worker number is set to 1, 2,4, 8, 16 and 32. The results of running time 

with a different number of worker nodes are shown in Table 8 and Figure 14. Just like Random 

0

1000

2000

3000

4000

5000

6000

2 4 8 16 32

R
u

n
n

in
g 

Ti
m

e(
Se

c)

Number of Nodes

Random Forest non-folded
7G RAM / Instance

62.00%

64.00%

66.00%

68.00%

70.00%

72.00%

74.00%

4 8 16 32

Sp
ee

d
u

p
 R

at
io

Number of Nodes

Randm Forest non-folded
7G RAM / Instance



76 
 

Forest, the Decision Tree Classification has significant speedup rate of performance when the 

number of worker nodes increases from 2 to 4 (44.43%), and minor improvement from 4 to 8 

(49.60%). It also has the bottleneck when the number of worker nodes is more than 8 for the 

improvement of running time.  

  

DT Num of Nodes 
Running 

Time(Sec.) 
Speedup Ratio 

7G / instance 

1     

2 2748   

4 1527 44.43% 

8 
1385 49.60% 

16 
1394 49.27% 

32 
1397 49.16% 

Table 8 Results of Decision Tree (non-folded) on Cloud Spark Cluster 

  

 

Figure 14 Results of Decision Tree (non-folded) on Cloud Spark Cluster 

 

Support Vector Machine SVM (non-folded): The experiment is designed with 7G 

RAM/instance and the worker number is set to 1, 2,4, 8, 16 and 32. For the prediction of 

student’s performance with this educational dataset, SVM and Logistic Regression have much 

0

500

1000

1500

2000

2500

3000

2 4 8 16 32

R
u

n
n

in
g 

Ti
m

e(
Se

c)

Number of Nodes

Decision Treee non-folded
7G RAM / Instance

40.00%

42.00%

44.00%

46.00%

48.00%

50.00%

4 8 16 32

Sp
ee

d
u

p
 R

at
io

Number of Nodes

Decision Tree non-folded
7G RAM / Instance



77 
 

higher running speed and accuracy than Decision Tree and Random Forest with the vectored 

categorical feature group. The results of running speed of different numbers of worker node are 

shown in Table 9 and Figure 15. As most of the experiments we made in this thesis, it has the 

same curve of performance increased significantly from 2 nodes to 4 nodes and from 4 nodes to 

8, but beyond 8 nodes the performance will drop or become smooth because of the mapping 

process to distribute the RDD to all executors.  

 

SVM Num of Nodes 
Running 

Time(Sec.) 
Speedup Ratio 

7G / instance 

1     

2 152   

4 115 24.34% 

8 
100 34.21% 

16 
109 28.29% 

32 
116 23.68% 

Table 9 Results of SVM (non-folded) on Cloud Spark Cluster 

  

 

Figure 15 Results of SVM (non-folded) on Cloud Spark Cluster 

 

0

20

40

60

80

100

120

140

160

2 4 8 16 32

R
u

n
n

in
g 

Ti
m

e(
Se

c)

Number of Nodes

SVM non-folded
7G RAM / Instance

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

4 8 16 32

Sp
ee

d
u

p
 R

at
io

Number of Nodes

SVM non-folded
7G RAM / Instance



78 
 

Logistic Regression LR (non-folded): The experiment is designed with 7G RAM/instance and 

the worker number is set to 1, 2,4, 8, 16 and 32. The results of running speed with a different 

number of worker nodes are shown in Table 10 and Figure 16.  

  

LR Num of Nodes Running Time(Sec.) Speedup Ratio 

7G / instance 

1     

2 114   

4 106 7.02% 

8 
89 21.93% 

16 
83 27.19% 

32 
90 21.05% 

Table 10 Results of LR (non-folded) on Cloud Spark Cluster 

 

 

Figure 16 Results of LR (non-folded) on Cloud Spark Cluster 

 

From the experiments on Google Cloud Spark cluster with this dataset, we can reach the point 

that the optimized resource allocation strategy could be around 8 to 16 executor nodes for 

Logistic Regression, Decision Tree, Random Forest and SVM. There is no process of ‘re-

partition’ and the block division for the dataset. This process is automatically done by Google 

0

20

40

60

80

100

120

2 4 8 16 32

R
u

n
n

in
g 

Ti
m

e(
Se

c)

Number of Nodes

Logistic Regression non-folded
7G RAM / Instance

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

4 8 16 32

Sp
ee

d
u

p
 R

at
io

Number of Nodes

SVM non-folded
7G RAM / Instance



79 
 

File System (GFS). The dataset volume size is around 830M, and by default Google File System 

chunk size is 64M. Based on the storage of dataset on GFS, Spark will automatically set the 

partition number to 13 for this dataset. Map tasks in MapReduce normally operate one block at a 

time. The mappers will map the jobs to these nodes and the computing time will be shortened 

when more executors involved. On the other hand, when the number of chunks is less than the 

number of nodes, the performance has no improvement when more nodes are added. We can 

conclude that the scalability of Spark for big data can be designed with the consideration of 

resource allocation based on the size of dataset besides the learning algorithms.  

 

6.3.3 Experiments on Datasets with Varied Volumes 

 

To explore the scalability and the bottleneck of Spark with classification algorithms on varied 

volumes of dataset, a new dataset of Algebra 2006-2007 from the KDD competition with the size 

of 2 million cases are pre-processed and split into a half million cases dataset and a one million 

cases dataset. The details of the new datasets are listed as: 

Whole2006_2007Trimed.csv  2,270,384 cases  36 features  

OneMill2006_2007.csv  1,135,020 cases  23 features  

HalfMill2006_2007.csv  567,619 cases   23 features   

 

In this experiment, SVM with 10-folded cross-validation and Logistic Regression with 10-folded 

cross-validation algorithms are applied to Google Cloud Dataproc Spark cluster. Only the 

vectored categorical variables of ProblemName, StepName, ProblemUnit, and ProblemSection 

are selected to make the prediction. The number of Spark cluster is designed as 1, 2, 4, 8, 16 and 



80 
 

32. The master node of the Spark cluster is 4 Cores Intel CPU, 15G memory and 20G hard drive. 

All the worker nodes in the Spark cluster are set as 4 Cores Intel CPU, 15 G memory and 10G 

hard drive. To reduce the network latency between each node, the cluster is set in the same 

Google Cloud Zone of USA-east-1b. The configuration spark.dynamicAllocation.enabled of 

Spark running environment is set to ‘false’ in order to get full use of all the worker nodes 

allocated. The results of the experiment are list below:  

  

Num of Nodes Running Time(Sec.) Speedup Ratio 

1 4039 0.00% 

2 3407 15.65% 

4 3310 18.05% 

8 3238 19.83% 

16 3355 16.93% 

32 3236 19.88% 

Table 11 Results of LR (10-folded) with 2 Million cases dataset 

  

  

Figure 17 Results of LR (10-folded) with 2 Million cases dataset 

 

 

 

0

1000

2000

3000

4000

5000

1 2 4 8 16 32

R
u

n
n

in
g 

Ti
m

e(
Se

c)

Number of Nodes

Logistic Regression 10 folded
10G RAM / Instance

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1 2 4 8 16 32

Sp
ee

d
u

p
 R

at
io

Number of Nodes

Logistic Regression 10 folded
10G RAM / Instance



81 
 

 

 

  

Num of Nodes Running Time(Sec.) Speedup Ratio 

1 3887 0.00% 

2 3433 11.68% 

4 3425 11.89% 

8 3427 11.83% 

16 3499 9.98% 

32 3543 8.85% 

Table 12 Results of SVM (10-folded) with 2 Million cases dataset 

  

  

Figure 18 Results of SVM (10-folded) with 2 Million cases dataset 

Num of Nodes Running Time(Sec.) Speedup Ratio 

1 1745 0.00% 

2 1569 10.09% 

4 1572 9.91% 

8 
1578 9.57% 

16 
1575 9.74% 

32 
1578 9.57% 

Table 13 Results of LR (10-folded) with One Million cases dataset 

3100
3200
3300
3400
3500
3600
3700
3800
3900
4000

1 2 4 8 16 32

R
u

n
n

in
g 

Ti
m

e(
Se

c)

Number of Nodes

SVM 10 folded
10G RAM / Instance

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

1 2 4 8 16 32

Sp
ee

d
u

p
 R

at
io

Number of Nodes

SVM 10 folded
10G RAM / Instance



82 
 

  

Figure 19 Results of LR (10-folded) with One Million cases dataset 

  

Num of Nodes Running Time(Sec.) Speedup Ratio 

1 1709 0.00% 

2 1528 10.59% 

4 1581 7.49% 

8 1566 8.37% 

16 1544 9.65% 

32 1555 9.01% 

Table 14 Results of SVM (10-folded) with One Million cases dataset 

  

  

Figure 20 Results of SVM (10-folded) with One Million cases dataset 

1450
1500
1550
1600
1650
1700
1750
1800

1 2 4 8 16 32

R
u

n
n

in
g 

Ti
m

e(
Se

c)

Number of Nodes

Logistic Regression 10 folded
10G RAM / Instance

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

1 2 4 8 16 32

Sp
ee

d
u

p
 R

at
io

Number of Nodes

Logistic Regression 10 folded
10G RAM / Instance

1400

1450

1500

1550

1600

1650

1700

1750

1 2 4 8 16 32

R
u

n
n

in
g 

Ti
m

e(
Se

c)

Number of Nodes

SVM 10 folded
10G RAM / Instance

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

1 2 4 8 16 32

Sp
ee

d
u

p
 R

at
io

Number of Nodes

SVM 10 folded
10G RAM / Instance



83 
 

 

  

Num of Nodes Running Time(Sec.) Speedup Ratio 

1 917 0.00% 

2 795 13.30% 

4 819 10.69% 

8 
844 7.96% 

16 
844 7.96% 

32 
833 9.16% 

Table 15 Results of LR (10-folded) with Half Million cases dataset 

  

  

Figure 21 Results of LR (10-folded) with Half Million cases dataset 

  

Num of Nodes Running Time(Sec.) Speedup Ratio 

1 789 0.00% 

2 774 1.90% 

4 804 -1.90% 

8 819 -3.80% 

16 886 -12.29% 

32 891 -12.93% 

Table 16 Results of SVM (10-folded) with Half Million cases dataset 

700

750

800

850

900

950

1 2 4 8 16 32

R
u

n
n

in
g 

Ti
m

e(
Se

c)

Number of Nodes

Logistic Regression 10 folded
10G RAM / Instance

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

1 2 4 8 16 32

Sp
ee

d
u

p
 R

at
io

Number of Nodes

Logistic Regression 10 folded
10G RAM / Instance



84 
 

  

  

Figure 22 Results of SVM (10-folded) with Half Million cases dataset 

 

From the experiment we can see, for the 2 million cases dataset, Logistic Regression algorithm 

gets the best performance at the point around 8 worker nodes (speedup ratio 19.83%) and beyond 

this point, the curve goes smoothly with more nodes added into the cluster. The algorithm of 

SVM reaches the highest performance around the point of 4 worker nodes (speedup ratio 11.89%) 

and with the increase of the number of nodes, the speedup ratio drops. The Spark running 

environment setting of ‘spark.default.parallelism’ and ‘spark.sql.shuffle.partitions’ are also 

manipulated during the experiment following the direction of YARN Cluster-Mode. 

 

To avoid the possible abnormal variance with the results on a small volume of datasets, each 

submission of the Pyspark task is conducted three times. The average running time is calculated 

based on the three results and will be used as the final output. If there is any WARN notice 

showed on the Cloud monitor SDK during the computing process, the result will be discarded. 

The WARN notice normally shows with ‘limited resources’ when 1-2 nodes allocated and bring 

10-15 seconds variance for the result. A new submission will be re-conducted in this case. For 

the one million cases dataset, there is no setting of parameter ‘spark.sql.shuffle.partitions’, which 

700

750

800

850

900

1 2 4 8 16 32R
u

n
n

in
g 

Ti
m

e(
Se

c)

Number of Nodes

SVM 10 folded
10G RAM / Instance

-15.00%

-10.00%

-5.00%

0.00%

5.00%

1 2 4 8 16 32

Sp
ee

d
u

p
 R

at
io

Number of Nodes

SVM 10 folded
10G RAM / Instance



85 
 

configures the number of partitions when shuffling data for aggregation. The partition number 

relies on the default partition strategy of GFS, which will partition the data into the blocks at the 

size of 64M.  The performances for both Logistic Regression and SVM get the peaks around 2 

worker nodes. Both the algorithms get the performance steady after the peak point. When more 

worker nodes added to the cluster, there is no significant improvement for the running time 

speedup. The reason is that the volume of the one million cases dataset is only 116M. By default, 

the partition number will be set to 2 with GFS. The Logistic Regression and SVM algorithms 

take high-speed computation on each node when a small volume of the partitioned block of data 

involved. Each executor works on one block of data every time. When more executors allocated 

in the computation task, it will lead to the situation of resource underused. For the concurrent 

jobs, Spark also offers the dynamic resource allocation as the solution for resources underused or 

misused. It helps to avoid the situation when the cluster composition doesn't fit the distributed 

computing workload. In this case, when more than two executors involve in the distributed 

computing, at the beginning stage all the executors allocated will be called to involve into the 

task. While based on the Spark solution of dynamic resource allocation, each time the real 

number of nodes working on the tasks is two. Other executors will be set as idle and no resource 

will be used. This can be observed and tracked from the Hadoop YARN monitor UI interface. 

The same issue happens on the experiment on half-million cases datasets. For the half million 

cases dataset, both the Logistic Regression and SVM get the best performance at the number of 2 

worker nodes, while the speedup curves start to drop down when more worker nodes are added 

into the cluster.  

 



86 
 

6.3.4 Experiment with Re-partition of One million Cases Dataset 

 

Tree Aggregate at LogisticRegression and map at BinaryClassificationEvaluator are two most 

time-consuming stages in the Spark classification process. Both stages involve heavy workloads 

of ‘Input’ and ‘Shuffle Write’ that connect with the subset of the partitions. In this experiment, 

different numbers of partitions will be set to test the scalability of Spark with Logistic 

Regression classification on the one million cases dataset. The ‘default’ partition value is the 

setting by Spark system during the computing process. Spark automatically sets the number of 

partitions of the input file according to its size. In most of the computing cases, the strategy that 

the number of partitions equals to the number of executors is recommended. While in data 

mining process, this needs a run-time tuning test based on the dataset and the algorithm involved 

in the computing. 

 

The first test is designed with 8 worker nodes using the same hardware as before on Google 

Cloud Dataproc. The dataset is loaded and re-partitioned with the function of ‘repartition()’. 

Even though this procedure takes some computing time, the whole classification performance 

gets significant improvement compared to the ‘default’ partition at some re-partition numbers. 

The results are shown in Table 17 and Figure 23. From the test, we can see when partition 

number is set to 8 it gets the best performance with 38.65% speedup ratio compared to the 

default number. With 8 partitions the stages of ‘treeAggregate at LogisticRegression’ and ‘map 

at BinaryClassificationEvaluator’ take around 7 to 8 seconds, but when the number of nodes 

reaches 32, both stages take around 17 to 19 seconds. From this test, we can get the conclusion 

that for the one million cases dataset, when making classification on Apache Spark with Logistic 



87 
 

Regression on the categorical features, one of the best resource tunings for performance can be 

around 8 worker nodes and 8 partitions.  

  

Number of Nodes Number of Partitions Running Time(Sec.) Speedup Ratio 
 default(13) 1995 0 

 2 1637 17.94% 

 4 1479 25.86% 

8 worker nodes 8 1224 38.65% 

 16 1835 8.02% 

 26 2247 -12.63% 

 32 2651 -32.88% 

 48 3046 -52.68% 

 Table 17 Results of LR re-partition with One Million cases dataset 

  

  

Figure 23 Results of LR re-partition with One Million cases dataset 

 

Another experiment on re-partition is designed to compare the effect of a re-partition dataset on 

the different number of nodes. This time for each comparison the number of re-partitions is set to 

the same number of the worker nodes. The node numbers are chosen as 2, 4, 8, 16 and 32. The 

experiment is also on Google Cloud Dataproc Spark cluster with the same configuration as the 

former experiments. The results are listed in Table 18 and Figure 24.  From the test, we can 

0

500

1000

1500

2000

2500

3000

3500

R
u

n
n

in
g 

Ti
m

e(
Se

c)

Number of Partitions

Logistic Regression 10 folded
10G RAM / Instance

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

Sp
ee

d
u

p
 R

at
io

Number of Partitions

Logistic Regression 10 folded
10G RAM / Instance



88 
 

observe that the process of re-partition on Spark can significantly increase the computing speed 

of the Logistic Regression classification on the one million cases dataset with 8 worker nodes in 

the cluster (38.65%). It also brings some improvement with the 4 nodes and 2 nodes cluster, 

while with the number of the nodes increases, the performance drops with the re-partition of data 

as the node number.   

 

Number of Nodes Number of Partitions Running Time(Sec.) 
Un-partition Running 

time(Sec.) 
Speedup Ratio 

2 2 1637 1739 5.87% 

4 4 1479 1819 18.69% 

8 8 1224 1995 38.65% 

16 16 1835 1910 3.93% 

32 32 3046 1835 -65.99% 

Table 18 Results of LR re-partition and the number of nodes with One Million cases dataset 

 

  

  

Figure 24 Results of LR re-partition and the number of nodes with One Million cases dataset 

  

0

500

1000

1500

2000

2500

3000

3500

2 4 8 16 32

R
u

n
n

in
g 

Ti
m

e(
Se

c)

Number of Nodes

Logistic Regression 10 folded
10G RAM / Instance

re-partitioned default partition -80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

2 4 8 16 32

Sp
ee

d
u

p
 R

at
io

Number of Nodes

Logistic Regression 10 folded
10G RAM / Instance



89 
 

Chapter 7. Conclusion and Future Works 

 

7.1 Conclusion 

 

In this thesis, experiments and analysis with the scalability of Apache Spark on big data are 

explored based on the datasets of Cognitive Online Learning Systems. A literature review of the 

concept of Cognitive Learning, the process and method introduction of data mining as well as the 

techniques of big data with the distributed computing system of Hadoop and Spark are presented.  

Varied sizes and volumes of the datasets are pre-processed and loaded into classification 

algorithms including Logistic Regression, Decision Tree, Random Forest and Support Vector 

Machine with parameter tuning on a local YARN-based Spark Cluster and a Cloud YARN-based 

Spark Cluster. With the experiments and the results discussions, we can conclude that the 

distributed system of Spark Cluster could significantly improve the data mining computing speed 

with properly designed resource allocation strategies that make full use of the scalability of the 

system.  For data mining with algorithms in Spark MLlib, the balance between the structure of 

datasets and strategies of resource allocation also needs to be considered and planned. The 

fundamental rule of optimization is to fully utilize the resources of the cluster, including 

maximum partition block size, re-partition of the datasets based on the number of executors and 

Vcores, increase of memory on each executor and avoid of network latency. For concurrent tasks 

on a cluster, the dynamic resource allocation of Spark can also be used as the solution for 

resources underused or misused. With the datasets and the algorithms for this thesis, the 

suggested resource utilization strategies to conduct the computing tasks are:   



90 
 

• Increase the memory for each worker node with maximum to reduce the computing time 

on each executor  

• Re-partition to the maximum block size with the datasets based on the file systems that 

the datasets stored on (HDFS or GFS) to reduce the times of map-shuffle-reduce 

processes 

• Submit the computing tasks to Spark with the same number of executors as the re-

partitioned number to avoid resources underused 

With the conclusions of the thesis, we can list some key factors for optimization of resource 

allocation when exploring data mining and big data analysis on the system of Apache Spark: 

• The infrastructure of the computing Spark system: master and worker node hardware 

configurations, network, I/O, cluster type and more. 

• Dataset characteristics: dataset volume, number of instances, storage strategies and more. 

• Resource allocation: number of worker nodes, executor cores, executor memory and 

more. 

• Runtime environment tuning: dataset partition number, data block size and more. 

For data science, the newest version of Spark 2.2.0 can support the most commonly used 

classification and regression algorithms including Logistic Regression, Linear SVM, Decision 

Tree, Random Forest, Naïve Bayes, and etc. The kernels of these algorithms fit the distributed 

computing system and can significantly improve the computing speed with excellent scalability. 

With the limitation of this thesis, some data mining methods like clustering, Naïve Bayes and 

collaborative filtering on Spark are not tested in the experiments. At the same time, the pre-

processed numerical attributes of the datasets are not involved in the algorithms in this thesis and 

will be explored in the future work.  



91 
 

7.2 Future Work 

 

The datasets involved in this thesis are relatively not big enough compared to some real industry 

production cases, and the scalability of Spark toward those vast volumes of big data has not been 

fully tested especially the relationship among the size of the data blocks, the partition number 

and the executor number when specific machine learning algorithm applied. The KDD 

competition also supplies 9.4 million cases and 20 million cases datasets to download for 

scientific research. We will use these datasets to make more extensive research with Spark 

MLlib machine learning library to reveal the scalability of this distributed computing system. 

 

Moreover, in this thesis, most of the experiments are done on the Google Cloud Dataproc 

platform with the Google File System (GFS) as the data file storage system. There are some 

limitations with the cloud computing like the network latency, the system infrastructure of 

different vendors, the skyrocketing cost, etc. In the future work, we will focus more on the local 

York University Spark Cluster with Hadoop HDFS to explore the scalability of Spark with 

different data mining algorithms and datasets. This could avoid the latency of network 

communication and data transfer between the nodes to the most extensive. It also gives us more 

space to explore some hidden features of Hadoop and Spark from the lower tier of the system.  

Other than the system infrastructure, we will continue to explore the scalability of the distributed 

system of Spark on big data with more classification and regression methods as well as the 

unsupervised clustering algorithm. Spark Streaming, Spark SQL, GraphX and Spark Structured 

Streaming make the full ecosystem of the Spark and could be applied in a variety of scenarios 

both in scientific and production domains. More researches can be taken to combine Spark with 



92 
 

some popular data mining and machine learning tools including numpy, pandas, scikit-learn, 

tensorflow, CUDA, etc. to evaluate the performance and scalability of the distributed system 

with different real-world datasets.   

  



93 
 

 Reference 

[1]. R. E. Clark, D. Feldon, J. van Merriënboer, K. Yates and S.  Early. Cognitive task analysis. 

In J. M. Spector, M. D. Merrill, J. J. G. van Merriënboer, & M. P. Driscoll (Eds.), Handbook of 

research on educational communications and technology (3rd ed., pp. 577-593), 2007.  

[2]. I. H. Witten, E. Frank, M. A. Hall and C. J. Pal.  data mining: Practical machine learning 

Tools and Techniques (4th Edition).  Morgan Kaufmann, 2016 

[3]. K. R. Koedinger and V. Aleven. Exploring the assistance dilemma in experiments with 

cognitive tutors [J]. Educational Psychology Review, 2007, 19(3): 239-264. 

[4]. H. Cen, K. Koedinger and B. Junker. Learning factors analysis–a general method for 

cognitive model evaluation and improvement[C]//International Conference on Intelligent 

Tutoring Systems. Springer Berlin Heidelberg, 2006: 164-175. 

[5]. H. Cen, K. Koedinger and B. Junker.  Is Over Practice Necessary?-Improving Learning 

Efficiency with the Cognitive Tutor through Educational data mining[J]. Frontiers in Artificial 

Intelligence and Applications, 2007, 158: 511. 

[6]. M. Feng, N. Heffernan and K. Koedinger. Addressing the assessment challenge with an 

online system that tutors as it assesses [J]. User Modeling and User-Adapted Interaction: The 

Journal of Personalization Research (UMUAI journal), 2009, 19(3): 243-266. 

[7]. C. H. Yu, S. DiGangi, A. Jannasch-Pennell and C. Kaprolet. A data mining approach for 

identifying predictors of student retention from sophomore to junior year [J]. Journal of Data 

Science, 2010, 8(2): 307-325. 

[8]. M. Ramaswami and R. Bhaskara. A CHAID Based Performance Prediction Model in 

Educational data mining, IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 

1, No. 1, January 2010 



94 
 

[9].  U. K. Pandey and S. Pal. data mining: A prediction of performer or underperformer using 

classification [J]. arXiv preprint arXiv:1104.4163, 2011. 

[10].  J. L. Hung, Y. C. Hsu and K. Rice. Integrating data mining in program evaluation of K-

12 online education [J]. Educational Technology & Society, 2012, 15(3): 27-41. 

[11].  J. P. Vandamme, N. Meskens and J. F. Superby. Predicting academic performance by 

data mining methods [J]. Education Economics, 2007, 15(4): 405-419. 

[12]. L. Yu and H. Liu. Feature selection for high-dimensional data: A fast correlation-based 

filter solution[C]//ICML. 2003, 3: 856-863. 

[13]. L. Yu and H. Liu. Efficient feature selection via analysis of relevance and redundancy [J]. 

Journal of machine learning research, 2004, 5(Oct): 1205-1224. 

[14]. K.G. Srinivasa, K. R. Venugopal and L. M. Patnaik. Feature extraction using fuzzy c-

means clustering for data mining systems [J]. IJCSNS, 2006, 6(3A): 230. 

[15]. C. Romero and S. Ventura. data mining in education. WIREs data mining Knowl Discov 

2013, 3: 12–27 doi: 10.1002/widm.1075   

[16]. J. R. Anderson, A. T. Corbett, K. R. Koedinger and R. Pelletier. Cognitive tutors: Lessons 

learned [J]. The journal of the learning sciences, 1995, 4(2): 167-207. 

[17]. A. Wolff, Z. Zdrahal, A. Nikolov and M. Pantucek . Improving retention: predicting at-

risk students by analyzing clicking behavior in a virtual learning environment[C]//Proceedings 

of the third international conference on learning analytics and knowledge. ACM, 2013: 145-

149. 

[18]. W. Xing, R. Guo, E. Petakovic and S. P. Goggins. Participation-based student final 

performance prediction model through interpretable Genetic Programming: Integrating learning 



95 
 

analytics, educational data mining and theory [J]. Computers in Human Behavior, 2015, 47: 

168-181. 

[19]. B. Daniel. Big data and analytics in higher education: Opportunities and challenges [J]. 

British journal of educational technology, 2015, 46(5): 904-920. 

[20]. W. He. Examining students’ online interaction in a live video streaming environment 

using data mining and text mining [J]. Computers in Human Behavior, 2013, 29(1): 90-102. 

[21]. M. M. Abuteir and A. M. El-Halees. Mining educational data to improve students' 

performance: a case study [J]. International Journal of Information, 2012, 2(2). 

[22]. C. Márquez-Vera, A. Cano, C. Romero and S. Ventura. Predicting student failure at 

school using genetic programming and different data mining approaches with high dimensional 

and imbalanced data [J]. Applied intelligence, 2013, 38(3): 315-330. 

[23]. D. Kabakchieva. Predicting student performance by using data mining methods for 

classification [J]. Cybernetics and Information Technologies, 2013, 13(1): 61-72. 

[24]. J. L. Hung and K. Zhang. Revealing online learning behaviors and activity patterns and 

making predictions with data mining techniques in online teaching [J]. MERLOT Journal of 

Online Learning and Teaching, 2008. 

[25]. A. Dutt, M. A. Ismail and T. Herawan. A Systematic Review on Educational data mining 

[J]. IEEE Access, 2017. 

[26]. C. Romero, S. Ventura. Educational data mining: a review of the state of the art[J]. IEEE 

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2010, 

40(6): 601-618. 



96 
 

[27]. A. Cano, A. Zafra and S. Ventura. An EP algorithm for learning highly interpretable 

classifiers [C]//Intelligent Systems Design and Applications (ISDA), 2011 11th International 

Conference on. IEEE, 2011: 325-330. 

[28]. A. Satyanarayana and M. Nuckowski. data mining using Ensemble Classifiers for 

Improved Prediction of Student Academic Performance [J]. ASEE Mid-Atlantic Section Spring 

2016 Conference, George Washington University, Washington D.C, April 8-9, 2016. 

[29]. S. Slater, S. Joksimović, V. Kovanovic, R. S. Baker and D. Gasevic. Tools for 

Educational data mining A Review [J]. Journal of Educational and Behavioral Statistics, 2016: 

1076998616666808. 

[30]. D.G. Kleinbaum and M. Klein. Survival analysis: a self-learning text [M]. Springer 

Science & Business Media, 2006. 

[31]. A. T. Corbett, J. R. Anderson, and A. T. O’Brien. Student modeling in the ACT 

programming tutor. Cognitively diagnostic assessment (1995): 19-41. 

[32]. R. S. J. D. Baker and K. Yacef. The state of educational data mining in 2009: A review 

and future visions. JEDM-Journal of Educational data mining 1.1 (2009): 3-17. 

[33]. S. K. Yadav, B. Bharadwaj and S. Pal. Mining Education data to predict student's 

retention: a comparative study.  arXiv preprint arXiv:1203.2987 (2012). 

[34]. J. R. Quinlan, "Induction of Decision Trees," machine learning, pp. 81-106, (1986). 

[35]. L. Breiman  Random forests. machine learning 45, no. 1 (2001): 5-32. 

[36]. B. E. Bernhard, I. M. Guyon, and V. N. Vapnik. "A training algorithm for optimal margin 

classifiers." In Proceedings of the fifth annual workshop on Computational learning theory, pp. 

144-152. ACM, 1992. 

[37]. "data mining Curriculum". ACM SIGKDD. 2006-04-30. Retrieved 2014-01-27. 

https://en.wikipedia.org/wiki/Association_for_Computing_Machinery


97 
 

[38]. I. Mavridis, and H. Karatza. "Performance evaluation of cloud-based log file analysis with 

Apache Hadoop and Apache Spark." Journal of Systems and Software 125 (2017): 133-151. 

[39]. Kurgan, Lukasz A., and Petr Musilek. "A survey of Knowledge Discovery and data 

mining process models." The Knowledge Engineering Review 21, no. 1 (2006): 1-24. 

[40] S. Salman, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang. "Big data analytics on 

Apache Spark." International Journal of Data Science and Analytics(2016): 1-20. 

[41]. Z. Matei. “An architecture for fast and general data processing on large clusters”. Morgan 

& Claypool, 2016. 

[42]. J. R. Quinlan. "Simplifying decision trees." International journal of man-machine 

studies 27, no. 3 (1987): 221-234. 

[43]. K. J. Anil, "Data clustering: 50 years beyond K-means." Pattern recognition letters 31, no. 

8 (2010): 651-666. 

[44]. T. Kanungo, M. M. David, S. N. Nathan, D. P. Christine, S. Ruth, and A. Y. Wu. "An 

efficient k-means clustering algorithm: Analysis and implementation." IEEE transactions on 

pattern analysis and machine intelligence 24, no. 7 (2002): 881-892. 

[45]. A. Toscher, and J. Michael. "Collaborative filtering applied to educational data 

mining." In KDD cup (2010). 

[46]. H. F. Yu et al.  "Feature engineering and classifier ensemble for KDD cup 2010." In KDD 

Cup. 2010. 

[47]. J. R. Anderson, A. T. Corbett, K. R. Koedinger, and R. Pelletier. "Cognitive tutors: 

Lessons learned." The journal of the learning sciences 4, no. 2 (1995): 167-207.). 

[48]. Y. Shen, Q. Chen, M. Fang, Q. Yang, T. Wu, L. Zheng, and Z. Cai. "Predicting student 

performance: A solution for the KDD cup 2010 challenge." In Proceedings of the KDD Cup 



98 
 

2010 Workshop held as part of the 16th ACM SIGKDD Conference on Knowledge Discovery 

and data mining, vol. 129. 2010. 

[49]. Y. Tabandeh, and A. Sami. "Classification of tutor system logs with high categorical 

features." In Proceedings of the KDD 2010 cup 2010 workshop: Knowledge discovery in 

educational data, pp. 54-61. 2010. 

[50]. Piatetsky-Shapiro, Gregory. "Discovery, analysis and presentation of strong rules." 

Knowledge discovery in databases (1991): 229-248. 

[51]. R. Agrawal, T. Imieliński, and A. Swami. "Mining association rules between sets of items 

in large databases." In Acm sigmod record, vol. 22, no. 2, pp. 207-216. ACM, 1993. 

[52]. Breiman  Leo. "Bagging predictors." machine learning 24, no. 2 (1996): 123-140. 

[53]. I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U. Khan. "The rise 

of “big data” on cloud computing: Review and open research issues." Information Systems 47 

(2015): 98-115. 

[54]. CL P. Chen, and C. Zhang. "Data-intensive applications, challenges, techniques and 

technologies: A survey on Big Data." Information Sciences 275 (2014): 314-347. 

[55]. V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves 

et al. "Apache hadoop yarn: Yet another resource negotiator." In Proceedings of the 4th annual 

Symposium on Cloud Computing, p. 5. ACM, 2013. 

[56]. G. Salvador, J. Luengo, J. A. Sáez, V. Lopez, and F. Herrera. "A survey of discretization 

techniques: Taxonomy and empirical analysis in supervised learning." IEEE Transactions on 

Knowledge and Data Engineering 25, no. 4 (2013): 734-750. 



99 
 

[57]. V. López, A. Fernández, S. García, V. Palade, and F. Herrera. "An insight into 

classification with imbalanced data: Empirical results and current trends on using data intrinsic 

characteristics." Information Sciences 250 (2013): 113-141. 

[58]. M. Saar-Tsechansky and F. Provost. "Handling missing values when applying 

classification models." Journal of machine learning research 8, no. Jul (2007): 1623-1657. 

[59]. M. Munk, M. Drlík, L. Benko, and J. Reichel. "Quantitative and Qualitative Evaluation of 

Sequence Patterns Found by Application of Different Educational Data Preprocessing 

Techniques." IEEE Access 5 (2017): 8989-9004. 

[60]. R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. "LIBLINEAR: A library for large 

linear classification." Journal of machine learning research 9, no. Aug (2008): 1871-1874. 

[61]. J. Huang, Y. F. Li, and M. Xie. "An empirical analysis of data preprocessing for machine 

learning-based software cost estimation." Information and software Technology 67 (2015): 

108-127. 

[62]. Z. A. Pardos, and N. T. Heffernan. "Using HMMs and bagged decision trees to leverage 

rich features of user and skill from an intelligent tutoring system dataset." Journal of machine 

learning Research W & CP (2010). 

[63]. Stamper, J., Niculescu-Mizil, A., Ritter, S., Gordon, G.J., & Koedinger, K.R. (2010). 

[Data set name]. [Challenge/Development] data set from KDD Cup 2010 Educational data 

mining Challenge. Find it at http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp 

[64]. M. A. Hall, "Correlation-based feature selection of discrete and numeric class machine 

learning." (2000). 

http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp


100 
 

[65]. M. Dash, K. Choi, P. Scheuermann, and H. Liu. "Feature selection for clustering-a filter 

solution." In data mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International 

Conference on, pp. 115-122. IEEE, 2002. 

[66]. Z. Pan, Y. Wang and W. Ku, "A new general nearest neighbor classification based on the 

mutual neighborhood information." Knowledge-Based Systems 121 (2017): 142-152. 

[67] N. E. I. Karabadji, Hassina Seridi, F. Bousetouane, W. Dhifli, and S. Aridhi. "An 

evolutionary scheme for decision tree construction." Knowledge-Based Systems 119 (2017): 

166-177. 

[68] B. Liu, Y. Xiao, and L. Cao. "SVM-based multi-state-mapping approach for multi-class 

classification." Knowledge-Based Systems 129 (2017): 79-96. 

[69] M. Pavlekovic, M. Bensic, and M. Zekic-Susac. "Modeling children’s mathematical gift 

by neural networks and logistic regression." Expert systems with applications 37, no. 10 (2010): 

7167-7173. 

[70] H. Lorentz, O. Hilmola, J. Malmsten, and J. S. Srai. "Cluster analysis application for 

understanding SME manufacturing strategies." Expert Systems with Applications 66 (2016): 

176-188. 

[71] M. Kumar, and S. K. Rath. "Classification of microarray using MapReduce based 

proximal support vector machine classifier." Knowledge-Based Systems 89 (2015): 584-602. 

[72] J. Maillo, S. Ramírez, I. Triguero, and F. Herrera. "kNN-IS: An Iterative Spark-based 

design of the k-Nearest Neighbors classifier for big data." Knowledge-Based Systems 117 

(2017): 3-15. 



101 
 

[73] J. Arias, J. A. Gamez, and J. M. Puerta. "Learning distributed discrete Bayesian network 

classifiers under MapReduce with Apache spark." Knowledge-Based Systems 117 (2017): 16-

26. 

[74] A. Shalabi, Luai, Z. Shaaban, and B. Kasasbeh. "Data mining: A preprocessing 

engine." Journal of Computer Science 2, no. 9 (2006): 735-739. 

[75] B. Yan , Z. Yang, Y. Ren, X. Tan, and E. Liu. "Microblog Sentiment Classification Using 

Parallel SVM in Apache Spark." In Big Data (BigData Congress), 2017 IEEE International 

Congress on, pp. 282-288. IEEE, 2017. 

[76] A. B. E. D. Ahmed and I. S. Elaraby. "Data Mining: A prediction for Student's 

Performance Using Classification Method." World Journal of Computer Application and 

Technology 2, no. 2 (2014): 43-47. 

[77] B. E. Boser, I. M. Guyon, and V. N. Vapnik. "A training algorithm for optimal margin 

classifiers." In Proceedings of the fifth annual workshop on Computational learning theory, pp. 

144-152. ACM, 1992. 

[78] Vapnik, V. N., and A. Ya Chervonenkis. "A class of algorithms for pattern recognition 

learning." Avtomat. i Telemekh 25, no. 6 (1964): 937-945. 

[79] White, Tom. "Hadoop: The definitive guide".  O'Reilly Media, Inc., 2012. 

[80] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia. "Learning spark: lightning-fast big 

data analysis. " O'Reilly Media, Inc., 2015. 

  



102 
 

 

Appendix 

A. Coding Reference 

In this thesis all the programs are coded and debugged with the environment of standalone Spark 

cluster of Pyspark + Jupyter Notebook on an Ubuntu 16.04 LTS. The experiments are finished 

on two YARN based Spark with different version of Spark. The Logistic Regression program 

works for both versions of Spark.   

  



103 
 

1. Logistic Regression on Spark version 2.2.0/2.0.0 

1. import csv   
2. import pyspark   
3. from pyspark import SparkContext, SparkConf   
4. from pyspark.sql.session import SparkSession   
5. import datetime   
6. from pyspark.ml import Pipeline   
7. from pyspark.ml.feature import OneHotEncoder, StringIndexer, VectorAssembler   
8. from pyspark.sql.types import IntegerType   
9. from pyspark.sql.types import DoubleType   
10. from pyspark.ml.classification import LogisticRegression   
11. from pyspark.ml.evaluation import BinaryClassificationEvaluator   
12. from pyspark.ml.tuning import ParamGridBuilder, CrossValidator   
13.    
14. starttime = datetime.datetime.now()   
15.    
16. conf=pyspark.SparkConf().setAppName("LR_test_10folded")   
17.    \.set("spark.executor.memory", "10g")   
18.    \.set("spark.executor.instances","1")   
19.    \.set("spark.yarn.executor.memoryOverhead", "1000M")   
20.    \.set("spark.executor.cores", "2")   
21.    
22. sc = pyspark.SparkContext(conf=conf)   
23. spark = SparkSession(sc)   
24.    
25. #Read dataset file from the Google Cloud File System   
26.    
27. rdd = sc.textFile("gs://xxxxx-xxxx.csv")   
28. rdd = rdd.mapPartitions(lambda x: csv.reader(x))   
29.    
30. #Create the Dataframe of dataset   
31.    
32. header = rdd.first()   
33. rdd = rdd.filter(lambda x: x!= header)   
34. df = spark.createDataFrame(rdd,header)   
35. df.cache()   
36.    
37. #One-Hot categorical variables   
38.    
39. categoricalColumns = ['ProbleNameNominal','StepNameNominal'   
40.    \,'Proble_UnitNominal','Porble_SectionNominal']   
41. for categoricalCol in categoricalColumns:   
42.     stringIndexer = StringIndexer(inputCol=categoricalCol, outputCol=categoricalCol+"In

dexed")   
43.     model_s = stringIndexer.fit(df)   
44.     df = model_s.transform(df)   
45. oneHotEncoder = OneHotEncoder(inputCol=categoricalCol+"Indexed",    
46.   \outputCol=categoricalCol+"classVec")   
47.     df = oneHotEncoder.transform(df)   
48.        
49. #Asseble all categorical variables in to one vector feature called "categAssembVec"   
50.    
51. vecAssembler = VectorAssembler(inputCols=["ProbleNameNominalclassVec"   
52.    \, "StepNameNominalclassVec"   
53.    \,"Proble_UnitNominalclassVec"   
54.    \,"Porble_SectionNominalclassVec"]   
55.    \, outputCol="categAssembVec")   
56. df_New=vecAssembler.transform(df)   



104 
 

57. df_New=df_New.withColumn("label",df_New["CorrectFirstAttempt"].cast(IntegerType()))   
58.    
59. # dataset split to 70% - 30%    
60.    
61. (trainingData, testData) = df_New.randomSplit([0.7, 0.3], seed = 100)   
62.    
63. # Create initial LogisticRegression model   
64.    
65. lr = LogisticRegression(labelCol="label", featuresCol="categAssembVec", maxIter=1)   
66. evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction")   
67.    
68. # Param tuning and CrossValidation    
69.    
70. paramGrid = ParamGridBuilder().addGrid(lr.maxIter, [1, 2, 4]).build()   
71. cv = CrossValidator(estimator=lr, estimatorParamMaps=paramGrid   
72.     \,evaluator=evaluator, numFolds=10)   
73. cvModel = cv.fit(trainingData)   
74. predictions = cvModel.transform(testData)   
75. Eval=evaluator.evaluate(predictions)   
76. endtime = datetime.datetime.now()   
77.    
78. print("Prediction Precision with 10-folded crosValidation:", Eval)   
79. print("Running time",(endtime - starttime).seconds,"seconds")   

 

2. Support Vector Machine on Spark version 2.2.0 

1. import csv   
2. import pyspark   
3. from pyspark import SparkContext, SparkConf   
4. from pyspark.sql.session import SparkSession   
5. import datetime   
6. from pyspark.ml import Pipeline   
7. from pyspark.ml.feature import OneHotEncoder, StringIndexer, VectorAssembler   
8. from pyspark.sql.types import IntegerType   
9. from pyspark.sql.types import DoubleType   
10. from pyspark.ml.classification import LinearSVC   
11. from pyspark.ml.evaluation import BinaryClassificationEvaluator   
12. from pyspark.ml.tuning import ParamGridBuilder, CrossValidator   
13.    
14. starttime = datetime.datetime.now()   
15.    
16. conf=pyspark.SparkConf().setAppName("LR_test_10folded")   
17. \.set("spark.executor.memory", "10g")   
18. \.set("spark.executor.instances","1")   
19. \.set("spark.yarn.executor.memoryOverhead", "1000M")   
20. \.set("spark.executor.cores", "2")   
21.    
22. sc = pyspark.SparkContext(conf=conf)   
23. spark = SparkSession(sc)   
24.    
25. #Read dataset file from the Google Cloud File System   
26.    
27. rdd = sc.textFile("gs://xxxxx-xxxx.csv")   
28. rdd = rdd.mapPartitions(lambda x: csv.reader(x))   
29.    
30. #Create the Dataframe of dataset   
31.    
32. header = rdd.first()   
33. rdd = rdd.filter(lambda x: x!= header)   



105 
 

34. df = spark.createDataFrame(rdd,header)   
35. df.cache()   
36.    
37. #One-Hot categorical variables   
38.    
39. categoricalColumns = ['ProbleNameNominal','StepNameNominal'   
40. \,'Proble_UnitNominal','Porble_SectionNominal']   
41. for categoricalCol in categoricalColumns:   
42.     stringIndexer = StringIndexer(inputCol=categoricalCol, outputCol=categoricalCol+"In

dexed")   
43.     model_s = stringIndexer.fit(df)   
44.     df = model_s.transform(df)   
45. oneHotEncoder = OneHotEncoder(inputCol=categoricalCol+"Indexed",    
46. \outputCol=categoricalCol+"classVec")   
47.     df = oneHotEncoder.transform(df)   
48.        
49. #Asseble all categorical variables in to one vector feature called "categAssembVec"   
50.    
51. vecAssembler = VectorAssembler(inputCols=["ProbleNameNominalclassVec"   
52. \, "StepNameNominalclassVec"   
53. \,"Proble_UnitNominalclassVec"   
54. \,"Porble_SectionNominalclassVec"]   
55. \, outputCol="categAssembVec")   
56. df_New=vecAssembler.transform(df)   
57. df_New=df_New.withColumn("label",df_New["CorrectFirstAttempt"].cast(IntegerType()))   
58.    
59. # dataset split to 70% - 30%    
60.    
61. (trainingData, testData) = df_New.randomSplit([0.7, 0.3], seed = 100)   
62.    
63. # Create initial SVM Model   
64. lsvc = LinearSVC(labelCol="label", featuresCol="categAssembVec", maxIter=3, regParam=0.

1)   
65. evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction")   
66.    
67. # Create ParamGrid for Cross Validation   
68.    
69. paramGrid = ParamGridBuilder().addGrid(lsvc.maxIter, [1, 2, 4]).build()   
70.    
71. # Create 10-fold CrossValidator   
72. clsvc = CrossValidator(estimator=lsvc, estimatorParamMaps=paramGrid   
73. \,evaluator=evaluator, numFolds=10)   
74.    
75. # Run cross validations   
76. clsvcModel = clsvc.fit(trainingData)   
77. predictions = clsvcModel.transform(testData)   
78. Eval=evaluator.evaluate(predictions)   
79.    
80. endtime = datetime.datetime.now()   
81. print("Prediction Precision with 10-folded crosValidation:", Eval)   
82. print("Running time",(endtime - starttime).seconds,"seconds")   

 

3. Decision Tree on Spark version 2.2.0 

1. import csv     
2. import pyspark     
3. from pyspark import SparkContext, SparkConf     
4. from pyspark.sql.session import SparkSession     
5. import datetime     



106 
 

6. from pyspark.ml import Pipeline     
7. from pyspark.ml.feature import OneHotEncoder, StringIndexer, VectorAssembler     
8. from pyspark.sql.types import IntegerType     
9. from pyspark.sql.types import DoubleType     
10. from pyspark.ml.classification import DecisionTreeClassifier     
11. from pyspark.ml.evaluation import BinaryClassificationEvaluator     
12. from pyspark.ml.tuning import ParamGridBuilder, CrossValidator     
13.      
14. starttime = datetime.datetime.now()     
15.      
16. conf=pyspark.SparkConf().setAppName("LR_test_10folded")     
17. \.set("spark.executor.memory", "10g")     
18. \.set("spark.executor.instances","1")     
19. \.set("spark.yarn.executor.memoryOverhead", "1000M")     
20. \.set("spark.executor.cores", "2")     
21.      
22. sc = pyspark.SparkContext(conf=conf)     
23. spark = SparkSession(sc)     
24.      
25. #Read dataset file from the Google Cloud File System     
26.      
27. rdd = sc.textFile("gs://xxxxx-xxxx.csv")     
28. rdd = rdd.mapPartitions(lambda x: csv.reader(x))     
29.      
30. #Create the Dataframe of dataset     
31.      
32. header = rdd.first()     
33. rdd = rdd.filter(lambda x: x!= header)     
34. df = spark.createDataFrame(rdd,header)     
35. df.cache()     
36.      
37. #One-Hot categorical variables     
38.      
39. categoricalColumns = ['ProbleNameNominal','StepNameNominal'     
40. \,'Proble_UnitNominal','Porble_SectionNominal']     
41. for categoricalCol in categoricalColumns:     
42.     stringIndexer = StringIndexer(inputCol=categoricalCol, outputCol=categoricalCol+"In

dexed")     
43.     model_s = stringIndexer.fit(df)     
44.     df = model_s.transform(df)     
45. oneHotEncoder = OneHotEncoder(inputCol=categoricalCol+"Indexed",      
46. \outputCol=categoricalCol+"classVec")     
47.     df = oneHotEncoder.transform(df)     
48.          
49. #Asseble all categorical variables in to one vector feature called "categAssembVec"     
50.      
51. vecAssembler = VectorAssembler(inputCols=["ProbleNameNominalclassVec"     
52. \, "StepNameNominalclassVec"     
53. \,"Proble_UnitNominalclassVec"     
54. \,"Porble_SectionNominalclassVec"]     
55. \, outputCol="categAssembVec")     
56. df_New=vecAssembler.transform(df)     
57. df_New=df_New.withColumn("label",df_New["CorrectFirstAttempt"].cast(IntegerType()))     
58.      
59. # dataset split to 70% - 30%      
60.      
61. (trainingData, testData) = df_New.randomSplit([0.7, 0.3], seed = 100)     
62.      
63. # Create initial Decision Tree Model     
64. dt = DecisionTreeClassifier(labelCol="label", featuresCol="categAssembVec", maxDepth=3)

     



107 
 

65.      
66. # Train model with Training Data     
67. dtModel = dt.fit(trainingData)     
68. predictions = dtModel.transform(testData)     
69. evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction")     
70.      
71. # Evaluate best model     
72.      
73. Eval=evaluator.evaluate(predictions)     
74. endtime = datetime.datetime.now()     
75. print("Prediction Precision:",Eval)     
76. print("Running time",(endtime - starttime).seconds,"seconds")     

 

4. Random Forest on Spark version 2.2.0 

1. import csv       
2. import pyspark       
3. from pyspark import SparkContext, SparkConf       
4. from pyspark.sql.session import SparkSession     
5. import datetime     
6. from pyspark.ml import Pipeline     
7. from pyspark.ml.feature import OneHotEncoder, StringIndexer, VectorAssembler     
8. from pyspark.sql.types import IntegerType     
9. from pyspark.sql.types import DoubleType     
10. from pyspark.ml.classification import RandomForestClassifier     
11. from pyspark.ml.evaluation import BinaryClassificationEvaluator     
12. from pyspark.ml.tuning import ParamGridBuilder, CrossValidator     
13.      
14. starttime = datetime.datetime.now()     
15.      
16. conf=pyspark.SparkConf().setAppName("LR_test_10folded")     
17. \.set("spark.executor.memory", "10g")     
18. \.set("spark.executor.instances","1")     
19. \.set("spark.yarn.executor.memoryOverhead", "1000M")     
20. \.set("spark.executor.cores", "2")     
21.      
22. sc = pyspark.SparkContext(conf=conf)     
23. spark = SparkSession(sc)     
24.      
25. #Read dataset file from the Google Cloud File System     
26.      
27. rdd = sc.textFile("gs://xxxxx-xxxx.csv")     
28. rdd = rdd.mapPartitions(lambda x: csv.reader(x))     
29.      
30. #Create the Dataframe of dataset     
31.      
32. header = rdd.first()     
33. rdd = rdd.filter(lambda x: x!= header)     
34. df = spark.createDataFrame(rdd,header)     
35. df.cache()     
36.      
37. #One-Hot categorical variables     
38.      
39. categoricalColumns = ['ProbleNameNominal','StepNameNominal'     
40. \,'Proble_UnitNominal','Porble_SectionNominal']     
41. for categoricalCol in categoricalColumns:     
42.     stringIndexer = StringIndexer(inputCol=categoricalCol, outputCol=categoricalCol+"In

dexed")     
43.     model_s = stringIndexer.fit(df)     



108 
 

44.     df = model_s.transform(df)     
45. oneHotEncoder = OneHotEncoder(inputCol=categoricalCol+"Indexed",      
46. \outputCol=categoricalCol+"classVec")     
47.     df = oneHotEncoder.transform(df)     
48.          
49. #Asseble all categorical variables in to one vector feature called "categAssembVec"     
50.      
51. vecAssembler = VectorAssembler(inputCols=["ProbleNameNominalclassVec"     
52. \, "StepNameNominalclassVec"     
53. \,"Proble_UnitNominalclassVec"     
54. \,"Porble_SectionNominalclassVec"]     
55. \, outputCol="categAssembVec")     
56. df_New=vecAssembler.transform(df)     
57. df_New=df_New.withColumn("label",df_New["CorrectFirstAttempt"].cast(IntegerType()))     
58.      
59. # dataset split to 70% - 30%      
60.      
61. (trainingData, testData) = df_New.randomSplit([0.7, 0.3], seed = 100)     
62. # Create an initial RandomForest model.     
63. rf = RandomForestClassifier(labelCol="label", featuresCol="categAssembVec")     
64.      
65. # Train model with Training Data     
66. rfModel = rf.fit(trainingData)     
67. predictions = rfModel.transform(testData)     
68.      
69. # Evaluate model     
70. evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction")     
71.      
72. Eval=evaluator.evaluate(predictions)     
73.      
74. endtime = datetime.datetime.now()     
75. print("Prediction Precision:", Eval)     
76. print("Running time",(endtime - starttime).seconds,"seconds")     

 


