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Abstract

This thesis examines the agency problem surrounding the corporate hedging de-

cision. It gives insight on how managerial incentives impact corporate hedging de-

cisions and on how executive compensation can be used to minimize the agency

problem and factors determining the optimal compensation. The model predictions

are then tested against empirical data. One of the factors affecting optimal execu-

tive compensation is volatility of commodity prices. To explore this, the last chapter

develops an empirical model to forecast commodity prices.

Past theoretical and empirical studies found that risk-averse managers tend to

overhedge, without analyzing how to align shareholders’ and managers’ hedging

strategies. In this dissertation I develop a model aligning hedging strategies using ex-

ecutive compensation, incorporating a risk-averse manager’s utility into the hedging

decision. Consistent with standard theories, the model show managers hedge more of

the expected production than shareholders. The model shows there is a decrease in

corporate hedging with the presence of managerial equity-based incentive pay. It also

shows managerial incentives can be used to impact corporate hedging to minimize

agency problem. To align and optimize managerial hedging decisions, the optimal

managerial incentive should comprise more of the equity-based portion when there
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is a low risk tolerance, or low price volatility, or a low variable cost. In contrast,

when there is high coefficient of absolute risk aversion, or low price volatility, or

high variable cost, it is best to compensate the manager with a lower equity-based

portion in order to optimally align hedging decisions. In other words, by determin-

ing and examining the primary factors affecting compensation scheme includes risk

aversion, price volatility, and profit margin we can determine the optimal compen-

sation scheme. When there is a low (high) coefficient of absolute risk aversion, low

(high) price volatility, or low (high) variable cost, then optimal compensation should

comprise more (less) equity-based incentives.

Next, using empirical data I test the model predictions from the theoretical frame-

work; (i) when incentive pay increases, the optimal hedge ratio decreases, (ii) when

price volatility increases, the optimal hedge ratio decreases, while price volatility have

a negative relation with equity-based incentive, (iii) when risk aversion increases,

the optimal hedge ratio decreases, while risk aversion have a negative relation with

equity-based incentive, and (iv) when variable cost increases, the optimal hedge ratio

decreases, while variable cost have a negative relation with equity-based incentive.

The predictions are tested against data obtained from oil and gas firms using a stan-

dard regression approach. I find that the model predictions are further supported

by empirical evidence from the oil and gas industry showing (i) a negative rela-
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tionship between incentive pay and hedge ratio, (ii) a negative relationship between

price volatility and hedge ratio/incentive pay, (iii) a negative relationship between

risk aversion and hedge ratio/incentive pay, and (iv) a negative relationship between

price volatility and hedge ratio/incentive pay. Overall, the first two chapters clarifies

the optimal compensation scheme under varying economic environments in order to

mitigate the agency problem associated with hedging decisions.

Last, a new model for the series of West Texas Intermediate (WTI) crude oil

prices process is introduced, which accommodates spikes and local trends in its tra-

jectory, as well as the multimodality of its sample distribution. The model relies on

the convolution of two stationary processes, causal and noncausal processes, which

allows for the estimation of the monthly WTI crude oil prices series. As an alter-

native specification, the mixed causal-noncausal autoregressive (MAR) models are

estimated and used for oil price prediction. Two forecasting methods developed in

the literature on MAR processes are applied to the data and compared. In addi-

tion, this chapter examines the long-term relationships between the WTI crude oil

price, the Ontario Energy Price Index (OEP) and the Ontario Consumer Price Index

(OCPI). These relationships are established using the cointegration analysis. The

vector error correction (VEC) model allows us to predict the Ontario price indexes

and the WTI crude oil prices. This chapter shows an alternative simple method of
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forecasting Ontario price indexes from stationary combinations of WTI crude oil price

forecasts obtained from the mixed causal-noncausal autoregressive (MAR) models.

This chapter shows that both method of prediction yields forecasts that are close

approximation of the out of sample value.
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Chapter 1

Introduction
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Commodity prices are volatile and difficult to predict. Hedging reduces the risk of

sudden financial losses due to adverse market movements. The hedging decision does

not always lie in the hands of the shareholder; instead it is often made by managers.

Managers are risk-averse, and their hedging strategies do not always maximize firm

value (Jin and Jorion, 2006). The first part of my thesis focuses on how executive

compensation can be used to align the shareholders’ and managers’ hedging decision

to maximize firm value. The last part of my thesis focuses on how commodity prices

can be forecasted. In particular, I examine the bi-modality in the distribution of the

West Texas Intermediate (WTI) crude oil prices, which appears to disregarded the

existing literature and the co-movements between WTI crude oil prices, the Ontario

Energy Price Index (OEP) and the Ontario Consumer Price Index (OCPI).

The second and third chapters examine how the hedging decisions between man-

agers and shareholders can be aligned using executive compensation, as there is a

tendency for risk-averse mangers to over-hedge (Holmstorm and Ricart i. Costa,

1986; Smith and Stulz, 1985). My research develops a model to solve this agency

problem in an attempt to align hedging using executive compensation. First, fac-

tors used to determine the optimal executive compensation schemes are identified.

Second, the role these factors play in aligning the conflicting incentives in hedging de-

cisions is assessed, with the findings then applied in practice to minimize the agency
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problem.

The second chapter uses a standard principal-agent model and endogenously de-

termines the hedging strategy and compensation. The one period model incorporates

the risk-averse manager’s utility into the hedging decision while keeping shareholder

risk neutral; the model focuses on a linear derivative setting. Two scenarios are com-

pared: first best, and second best. First best is fully observable; shareholder observes

effort and makes the hedging decision, while second best is when managers make the

hedging decision and have information of effort. The manger is paid a salary and

equity incentive, with the latter tied to firm value. By comparing the two scenarios

with changing parameters, I can determine [isolate] the factors that affect optimal

hedging and optimal compensation. The model finds that there are three factors:

risk aversion, price volatility and profit margin that determine optimal compensation.

This is in line with Brown and Toft (2002) which find that optimal hedge depends

strongly on price and quantity volatilities, and also correlation between prices and

profit margin. In this chapter my model shows how managerial equity incentive pay

impacts corporate hedging decisions as compared to the absence of incentive pay.

With the presence of incentive pay the model shows a decrease in hedging. The

model can also show the agency problem in hedging is more pronounced with high

risk aversion, low price volatility and high profit margin. Using this model we can
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determine the optimal managerial compensation scheme that mitigates the agency

problem. The optimal managerial compensation scheme should be comprised of less

equity-based incentives when there is high risk aversion, high price volatility or low

profit margin.

The third chapter examines the model prediction derived from the previous chap-

ter. The predictions are: (i) when incentive pay increases, the optimal hedging ratio

decreases, (ii) when price volatility increases, the optimal hedge ratio decreases, while

price volatility exhibits a negative relation with equity-based incentive, (iii) when

risk aversion increases, the optimal hedge ratio decreases, while risk aversion shows

a negative relation with equity-based incentive, (iv) when variable cost increases, the

optimal hedge ratio decreases, while variable cost displays a negative relation with

equity-based incentive. The validity of these model predictions are then empirically

test against a sample of U.S. oil and gas firm data from 2011-2014, which allows the

focus to center on commodity hedges.

In January 1997 financial reporting release No. 48 was released which require

firms to discloser of derivative instruments and quantitative information about mar-

ket risks. This financial reporting release allows for the examination of hedging

activities in each firm. Using that data we used a simple OLS model to test the

model predictions. The companies in the sample use both linear and non-linear
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derivatives to hedge their price risk. The model prediction was based on a linear

derivative setting, however, the empirical test includes both those derivatives. The

empirical testing shows that equity-based executive compensation is negatively re-

lated to hedging which is consistent with prior research from Chen, Jin, and Wen

(2011), and Tufano (1996). The chapter further shows evidence that price volatility

is negatively related to hedging, while risk aversion is negatively related to hedging.

Therefore, in general, the model predications are in line with empirical evidence.

The fourth chapter develops an econometric model to forecast the WTI crude oil

prices, the OCPI, and the OEP. As illustrated in the previous chapters, one of the

factors affecting optimal executive compensation is volatility of commodity prices.

Being able to estimate commodity prices can give some insight to the economic

environment, thus providing some indication to the optimal compensation scheme.

Therefore, to explore how commodity prices can be forecasted, the next chapter

develops an empirical model to predict future commodity prices.

The WTI crude oil price forecast is obtained by using the convolution approach

of stationary causal and noncausal processes. To forecast the Ontario price index,

this chapter estimates the long-term co-integrating relationships between the OCI,

OEP and WTI crude oil prices. Then, given these estimated long-term relationships,

the forecasts of both the Ontario price indexes can be obtained as functions of the
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WTI crude oil price forecast, combined with the forecast of the stationary series of

departures from the long-run equilibrium.

The WTI crude oil price forecast can be obtained by forecasting the convoluted

series or from a simple mixed causal/noncausal model of WTI crude oil prices. The

latter approach allows comparing two methods of forecasting for noncausal processes

developed by Lanne, Luoto and Saikkonen (2012) and by Gourieroux and Jasiak

(2016). While, the convolution of stationary causal and noncausal process is parsi-

monious and accommodates the local trends and spikes in the oil price, it also takes

into account the bi-modality of its sample distribution which has not been studied

in the existing research. The presented convolution approach shows a viable alterna-

tive approach for modelling the monthly WTI crude oil prices to accommodate the

bi-model sample distribution.

As can be observed in my research, both the OCPI and OEP display a parallel

global upward trend, while OEP exhibits local trends and spikes. The local trends

and spikes in both the series of OEP and OCPI indexes appear to occur simultane-

ously as those observed in the trajectory of the WTI crude oil prices. Therefore, by

estimating the long-term cointegrating relationships between the series, this chap-

ter finds that Ontario price indexes can be forecasted using the forecasts of crude

oil prices provided from the mixed causal-noncausal model and the co-movements
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between the series.
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Chapter 2

Aligning Corporate Hedging Deci-

sions with Executive Compensation
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2.1 Introduction

Financial derivatives are widely used in corporations as a mean of risk management,

with hedging strategies affecting firm value. While shareholders/principals hire man-

agers/agents to manage the firm involving them and to increase the valuation of the

firm, hedging strategies employed by managers do not always maximize firm value

(Jin and Jorion, 2006). Both past theoretical and empirical studies indicate a ten-

dency for risk-averse managers to overhedge (Holmstrom and Ricart i Costa, 1986;

Smith and Stulz, 1985). Yet surprisingly, there is limited research examining how to

align shareholders’ and managers’ incentives in terms of corporate hedging decisions.

To help fill the gap, this chapter develops a principal-agent model, and examines

how executive compensation can be used to align such hedging decisions. The overall

objective of the chapter is to identify factors used to determine the optimal executive

compensation schemes, assess the role these factors play in aligning the conflicting

incentives in hedging decisions, and apply these findings in practice to minimize the

agency problem.

In this chapter, executive compensation is used to achieve a balance in the con-

flicting hedging incentives between shareholders and managers. Tufano (1996) sug-

gests that executive compensation can influence how managers choose to hedge. Sim-

9



ilarly, Prendergast (2002) and Core, Guay, and Larcker (2003), find that hedge risk

affects the amount of annual executive compensation. The latter provides evidence

that executive compensation includes a risk-premium for exposure to risk. Futher-

more, empirical research (Rogers, 2002 and Rajgopal and Shevlin, 2002) indicates

that there is a link between risk management and managerial incentive, suggesting

that managerial compensation design plays a key role in optimizing hedging deci-

sions. Building on these studies, this chapter shows that in addition to how certain

managerial executive compensation schemes can be utilitzed to help align hedging

decision, it also explains when to deploy a more (versus less) equity-based compen-

sation scheme to yield the optimal hedging strategy. To examine how to align these

incentives, I examine the optimal hedging strategy of shareholders and compare it

to the optimal hedging strategy of managers. Similar to Smith and Stulz (1984),

the model incorporates the risk-averse manager’s expected utility into hedging deci-

sion. As noted, the hedging decision and executive compensation affect one another;

therefore, unlike Smith and Stulz (1984), the hedging decision and executive compen-

sation are endogenously determined. In my model, the risk-averse agent’s expected

utility increases with firm value, in line with Smith and Stulz (1985). Their paper

however, does not examine how this compensation can solve the conflicting interest

in hedging decisions.
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To study the difference in optimal hedging strategies, I examine two scenarios.

Under the first scenario, there is hidden information whereby only managers observe

effort and have information on the hedging decision, and shareholders decide on the

compensation scheme. The compensation received by managers can be bifurcated

into fixed (i.e. salary) and equity-based incentive (i.e. performance-related bonus)

components. Given the compensation scheme, managers will choose effort and a

hedging strategy that maximizes their expected utility. The risk-averse managers

exhibit a concave expected utility function, with the degree of concavity dependent

on their coefficient of absolute risk aversion, while their compensation (i.e. wealth)

is a convex function of the firm’s value. It is noted in Smith and Stulz (1984) that

the optimal hedging policy is to hedge the firm completely if the manager’s end

of period utility is a concave function of the end of period firm’s value; in which

case, managers will only take on risk if they are compensated to do so. If, on the

other hand, the manager’s end of period wealth is a convex function of the end of

period firm value, then some of the hedging will be eliminated. If managers are not

properly compensated, they may not manage risk in a way that maximizes firm value.

The risk-averse managers will only maximize shareholder wealth if doing so will also

maximize their own expected utility. In this case, the solution to the maximization

problem yields a second best solution.
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In the second scenario, both effort and hedging are contractible. Shareholders

observe the amount of effort, and devise both the hedging strategy and compensation

scheme. In this case, there is perfect information and would be considered the first

best solution. Here, shareholders maximize their utility, which is to maximize the

firm value by choosing the effort exerted, the hedging strategy and the compensation

scheme. However, this case is not achievable in practice, as information about effort

is hidden, and managers are the ones managing the firm’s operational risk.

In both cases, this chapter assumes that the policy of corporate risk management

only allows for the use of linear contracts, which in turn, allows for the closed-

form solution of the model to be interpreted. In this model, hedging decisions and

executive compensation are studied together. The addition of a risk-averse manager’s

utility and executive compensation to the hedging decision yield a non-standard

result.

The analysis support the view that managers will only take on risk when paid to

do so. As observed in the numerical example, managers hedge more of the expected

production than the shareholders. This means that shareholders take on more risk

than managers.

This model also yields a set of intuitive outcomes. For example, when the equity-

based incentive pay increases, the optimal hedge ratio decreases, because the manager
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is both compensated to undertake increased risk and a larger portion of their wealth

is linked with firm value. This is consistent with Chen, Jin, and Wen (2011), who

empirically show that higher managerial equity incentives result in lower degrees

of hedging. Additionally, the model shows that when the firm’s volatility in price

increases, the optimal strategy is to hedge closer to the firm’s average production

(where the hedge ratio is closer to 1), and the compensation scheme should have

a lower incentive portion. As a result of heightened uncertainty under increased

price volatility, it is natural to lower expected losses by hedging close to average

production. Moreover, the agency problem is less pronounced when price volatility

is high, therefore the manager would require less equity based compensation to close

the gap between their incentives.

The model also indicates that idiosyncratic aspects such as volatility in hedge-

able price risk, variable cost, and executive risk aversion, in aggregate, influence

optimal hedging and compensation decisions. These findings can help delineate an

optimal compensation strategy that aligns the hedging decisions under different en-

vironments/firm characteristics. For instance, when variable costs are high, the

shareholder can lower the equity incentive-pay portion to align the hedging deci-

sion. Given the model results are expressed in closed form, the role of how each

factor affects the optimal compensation and hedging strategy can be interpreted and
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analyzed.

Overall, this chapter endeavors to bridge the gap in the past literature by using a

principal-agent model to examine the optimal hedging strategies between risk-averse

agents versus risk-neutral principals in a linear financial derivatives setting, and also

proposes an optimal compensation structure. The model shows how incorporating

managerial incentive pay will impact the hedging decision. By considering the man-

agerial incentive decision, the model shows that the optimal hedge would decrease.

In additionally, it also provide insights into how the optimal compensation scheme

should be used when faced with different firm-specific characteristics to minimize

the agency problem in the hedging decision. The model shows that optimal manage-

rial incentive should comprise more of the equity-based portion when there is a low

risk tolerance, or a low price volatility, or a low variable cost, to align and optimize

managerial hedging decisions. In contrast, when there is high coefficient of absolute

risk aversion, or high price volatility, or high variable cost, it is best to compensate

the manager with a lower equity-based portion in order to optimally align hedging

decisions.

The chapter is organized as follows: The next section includes a brief literature

review of hedging. Section 2.3 describes the model and framework of the study by first

examining the agent’s optimization problem, followed by the principal’s optimization
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problem. Section 2.4 compares the optimal hedging strategy under different scenarios

and changes in parameters. Section 2.5 displays the model findings and prediction.

Concluding remarks are provided in Section 2.6.

2.2 Literature Review

Past research focuses on why firms hedge, and how firms should hedge, while others

have examined the agency problem in the risk management area. Up to now, these

studies do not provide a solution on how exactly to align the corporate hedging

decision using executive compensation, and do not provide insight on how executive

compensation could be adjusted under certain economic environments. The following

are some of the past literature that relates to this topic.

Numerous papers focus on why firms hedge, for example, Smith and Stulz (1984)

studies why some firms hedge and others do not, and they show that a value maxi-

mizing firm would hedge for three reasons: (i) reduction in expected taxes, (ii) lower

costs of financial distress, and (iii) managerial risk aversion. Others argue that firms

hedge: (i) to increase debt capacity (Ross 1997 and Leland 1998), (ii) to ensure suffi-

cient internal funds for investment when external funds are costly (Froot, Scharfstein,

and Stein 1993), or (iii) to reduce probability of downside risk (Stulz 1996). Thus,

the reasons why firms hedge can be generalized into two categories: (i) increase firm
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value, and (ii) managerial risk aversion.

There are many theories that suggest managerial risk aversion plays a prominent

role in affecting hedging behavior. Bodnar, et al. (2004) document why firms hedge

by questioning the managers and find that personal risk aversion plays an important

role. While Tufano (1996) and Rogers (2002) find empirical evidence that manager’s

risk aversion is the key determinant to hedging strategy; in particular they find

that, managers will hedge less when they are compensated more with risk taking

incentives. Rajgopal and Shevlin (2002) also show that risk incentive compensation

is crucial in determining hedging policy, while Chen, Jin, and Wen (2011) provide

evidence that hedging may be motivated by managerial risk aversion in particular.

Jin and Jorion (2006) meanwhile, show that hedging does not increase firm value

for U.S. oil and gas producers, but instead serve as a function of managerial risk

aversion. Overall, these studies all indicate that risk-averse managers directly affect

firm hedging strategy.

On the other hand, there are studies documenting how firms should hedge. Brown

and Toft (2002) find that optimal hedge depends strongly on price and quantity

volatilities, and also correlation between prices and profit margin. They examined

environments where firms should use a linear vs. non-linear hedging strategy, and find

that when price risks are high, quantity risk is low, or when there are no correlations
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between price and quantity, it is better to use a linear hedging strategy. Though

Brown and Toft (2002) examine how firms hedge, they do not examine the impact

of a risk-averse agent on hedging strategy. In addition to examining hedge strategy,

this chapter also looks at the role of the risk-averse agent under different economic

environments, similar to Brown and Toft (2002). Smith and Stulz (1985) meanwhile,

note that the optimal hedging policy is to hedge the firm completely, and the manager

will only take on risk if they are paid to do so. Lastly, Kuwornu, et al (2005)

use a classical principal-agent model to derive and provide a tool to determine the

optimal hedge ratio, but neglect to provide a link between hedging ratio and optimal

compensation structure. Therefore, when determining optimal hedge strategy under

the optimal compensation, the role of the compensation structure and risk-averse

agent has yet to be explored.

There are studies that attempt to solve the agency problem in the risk manage-

ment area. The model Smith and Stulz (1984) devises takes the manager’s compen-

sation as given, despite the fact that manager’s compensation and hedging strategy

are often endogenously determined. Holmstrom and Ricart i Costa (1986) formulate

a model that examines optimal contracting when the risk-averse manager makes the

investment decision. They find that managers accept few investments. However,

it does not specifically study the risk-averse manager’s role in hedging decision nor
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does it examine how the compensation can be used in difference environments to

align the investments. Chang (1997) use a simple model to look at what the factors

are in determining both hedging and compensation policies. In it, they examine the

scenarios where the manager can either hedge or not hedge, and gives zero or 100

percent effort. They find that optimal hedging policy and stock-based compensa-

tion contract are determined by the firms’ abandonment value, profitability, and the

extent of its risk exposure. However, their model is not done in a principal-agent

framework and does not include non-hedgeable risks. They also do not examine the

difference in hedging strategy and the optimal compensation scheme when managers

versus shareholders make the decision. Both of those are dually important as Chao

et al (2011) provide empirical evidence on the impact of hedging and executive com-

pensation on firm value. This chapter takes it a step further whereby the model

endogenously determines the optimal manager’s compensation and hedging strategy.

In addition, the empirical testing examines the hedge ratio and factors affecting the

hedging decision, and how to align the hedging decision with managerial equity-based

incentives.

Studies also examine Moral Hazard problems in which the manager has more in-

formation of risk exposure then the shareholders (DeMarzo and Duffie 1991). How-

ever, all these previous studies do not closely examine the role of the risk-averse
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manager when determining the optimal hedge strategy along with the optimal com-

pensation scheme to align conflict in hedging. This chapter addresses how executive

compensation can be use to align the hedging strategies under varying economic

environments and finds empirical support for the model predictions.

2.3 Framework and Model

Given that managers are known to have non-diversified human capital investment

in the firm, and that risk neutral shareholders can diversify risk across investments,

differences in risk tolerance arises resulting in conflicting optimal hedging strategies.

Here, two different risk tolerance cases are modelled, and the effects they have on

optimal hedging strategy and optimal compensation scheme. Taking the standard

agency theory approach, this model is a one period model with a risk-averse agent, the

manager, and a risk neutral principle, the shareholder. The optimal hedging strategy

and optimal compensation scheme are endogenously determined in the model.

In the first case, there is information asymmetry regarding the agent’s effort;

the principal can only observe the outcome, but not the level of effort. The risk-

averse agent chooses to maximize the expected utility by choosing the level of effort

and the amount to hedge, given the compensation schedule is determined by the

principle. The agent will receive a fixed salary and an incentive portion (equity-
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based incentive). This incentive portion is given as a percentage of the firm value.

The agent is subjected to a participation constraint where the agent will only take

on employment opportunity if the compensation package meets a minimum expected

utility, reservation utility. As opposed to the agent, the risk neutral principal can

diversify their investment across multiple assets, and thus, is only concerned about

expected payoff. The principal maximizes their expected utility by selecting the

compensation method and amount. The asymmetry of information yields a ′second

best solution′.

The second case is one with perfect information resulting in a ′first best solution′.

The principal contracts directly on effort and decides the amount to hedge along

with the compensation scheme. In practice, the effort of the manager is unobserved

and the hedging decisions are in the hands of the risk-averse managers. However,

modelling this case can serve as a benchmark when comparing ′second best solution′

against the ′first best solution′.

Similar to other risk management studies, the Value of the firm ′V ′t is determined

by revenue minus expense. Revenue is calculated by taking the number of hedged

contracts ′h′ at the Forward Price ′F ′o
1 subtracted by the Spot price ′S ′t

2 plus

1The forward price is given by:
Fo = Soe

t(r−q)

r is the risk free rate and q is the carry cost

2Given the Black-Scholes Return:
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the product of quantity ′qt(a)′ produced multiplied by the Spot rate. The quantity

produced is a function of the agent’s effort.

Vt = h(Fo − St) + q(a)St − c1(q(a))− c2 (2.3.1)

Agent’s Payoff and Utility:

The agent’s return/payoff ′π′t is given by, equation 2.3.2, adding the fixed salary ′s′,

with the incentive component ′b′ (percentage of firm value) multiplied by the firm

value ′V ′t , before subtracting the disutility of effort ′g(.)′. Next substitute equation

2.3.1 to equation 2.3.2 to get the payoff function in terms of all the variables.

πt = s+ bVt − g(a) (2.3.2)

πt = s+ b[h(Fo − St) + q(a)St − c1(q(a))− c2]− g(a)

Note, the quantity produced ’q(a)’ is equal to the production function f(a) plus

white noise ε with zero mean and variance σ2
ε .

q(a) = f(a) + ε

c1(q(a)) = c1(f(a) + ε)

ds
s = µdt+ σ

√
∂W , where W ∼ N(0, t) and ∂W =

√
dtε, the spot price at time t ′S′t is:

St = Soe
µt−σ

2
st

2 +σsWt

E(St) = Soe
µt
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The agent is risk-averse and has a negative exponential utility; stated in certainty

equivalent terms their expected utility can be written as:

CEAt = Et(πt)−
1

2
γV art(πt) (2.3.3)

See Appendix 1 for Calculation for Et(πt) and V art(πt)

CEAt = s+ b[h(Fo − Soeµt) + f(a)St − c1(f(a))− c2]− g(a)−

γ

2
[S2
ob

2(eσ
2
s t − 1)e2µt(h− f(a)2 + b2σ2

ε [S
2
oe
σ2
s t+2µt − 2Soc1e

µt + c2
1]]

To examine the cases closely and to deduct a close form solution, both ′f(a)′ and

′g(a)′ will take on a simple functional form; the agent exhibits linear productivity and

quadratic effort (f(a) = ka and g(a) = 1
2
ηa2 , where k is the marginal productivity,

η is the effort aversion).

2.3.1 Case 1 - Hidden Information (Second Best)

Agent’s problem

In this case, the agent’s problem is solved by maximizing the expected utility, this is

given in terms of certainty-equivalent approximation, CEA. Here, the agent chooses

effort ′a′ and hedge amount ′h′, then the principal chooses salary ′s′ and incentive

pay ′b′:
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By taking the First Order Condition, FOC, with respect to ′a′ to maximize the

effort it gives the following solution:

γb2V ar(S)[h− ka]k − ηa+ bk(Soe
µt − c1) = 0 (2.3.4)

By taking the FOC with respect to hedge amount ′h′ gives:

h− ka = Fo−Soeµt
γbV ar(S)

(2.3.5)

As ′h′ is the amount hedge and ′ka′ is the average production, ′h − ka′ shows the

difference between the hedge amount and average production. Substitute ′(h− ka)′

from equation 2.3.5 into 2.3.4 to solve for ′a′

a =
bk[Fo − c1]

η
(2.3.6)

h = b
k2[Fo − c1]

η
+

1

b

Fo − Soeµt

γV ar(S)
(2.3.7)

Equation 2.3.6 shows that effort (a) depends on the incentive based pay (b); the

higher the incentive pay the more effort the manager is willing to exert. With higher

incentive pay the manager will receive a higher return by increasing the value of the

firm through production. Therefore, they will demonstrate more effort to increase

production in order to increase their return. The equation also shows that if the

marginal productivity (k) increases, then effort (a) will also increase. As marginal

productivity (k) increases, the manager can produce more with the same level of
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effort. Consequently, the higher the marginal productivity, the greater the effort the

manager will exert as there is a higher return per effort.

To interpret equation 2.3.5, as ′ka′ gives the average production, when the co-

efficient of absolute risk aversion (γ), equity incentive pay (b), volatility in price

(V ar(S)) or spot price (So) increases, it would decrease the difference between the

number of hedge and average output. If the parameters γ, V ar(S) and spot price

(So) increases, the agent would want to hedge closer to average production. It seems

intuitive that if the agent is more risk averse, they would limit risk and hedge close

to the output. Similarly, when price volatility is high, risk-averse managers face

increased price uncertainty and would want to hedge closer to average production.

Equation 2.3.5 also illustrates that if forward price at time 0 is greater than the

expected spot price at time t, F > E(S), the optimal amount hedged would be closer

to the average production (as the prices are expected to decrease). If the forward

price today is higher, selling outputs at the forward price would yield a higher return.

On the other hand, if F < E(S) then it would make sense to hedge less than average

production and sell the output at the expected spot price(as the prices are expected

to increase).
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Principal’s problem

In certainty equivalent terms, the principal’s expected payoff/utility, CEP, is given

by Et((1− b)V − s), which is the left over firm value after compensating the agent.

Since the principal is risk neutral they only care about maximizing firm value. By

substituting V with equation 2.3.1 the expected utility becomes:

CEP = (1− b)[h(Fo − Soeµt) + f(a)Soe
µt − c1f(a)− c2]− s (2.3.8)

The principal’s optimization problem is to maximize the following equation:

maxs,b((1− b)[h(Fo − Soeµt) + f(a)Soe
µt − c1f(a)− c2]− s) (2.3.9)

The maximization problem is also subjected to the following constrains on effort ′a′,

hedge amount ′h′ and participation constrains:

a =
bk[Fo − c1]

η

h = b
k2[Fo − c1]

η
+

1

b

F − Soeµt

γV ar(S)

The participation constrain is given by the following formula:

s+ b[h(F − Soeµt) + kaSoe
µt − c1ka− c2]− g(a)−

γ

2
[b2S2

oe
2µt(eσ

2
s t − 1)(h− ka)2 + b2σ2

ε [S
2
oe
σ2
s t+2µt − 2Soe

µtc1 + c2
1] > Wo
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Wo is certainty equivalent value that defines the agent’s reservation utility. 3

Below is the principal’s expected payoff, CEP, after including the participation

constrain:

CEP = h(Fo−E(St))+f(a)E(St)−c1f(a)−c2−Wo + g(a) +
γ

2
b2V ar(S)[h− f(a)]2 +

γ

2
b2G

CEP = bkAFo +B(Fo−E(St))b
−1− c1bkA− c2−Wo− g(a)− γ

2
V ar(S)B2 +

γ

2
b2G

To solve the principal’s optimization problem, take the first order condition, FOC,

with respect to salary ′s′

s = −b[h(Fo − Soeµt) + kaSoe
µt − c1ka− c2] + g(a)+

γ

2
[b2S2

oe
2µt(eσ

2
s t − 1)(h− ka)2 + b2σ2

ε [S
2
oe
σ2
s t+2µt − 2Soe

µtc1 + c2
1] +Wo

and take the FOC with respect to agent’s incentive value ’b’, which is given as a

3Given that :

A = k(Fo − c1)η

B =
Fo − Soeµt

γV ar(S)

G = σ2
ε [S2

oe
σ2
st+2µt − 2Soe

µtc1 + c21]

h = bkA
B

b

a = Ab
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portion of the firm’s value.

kAFo −B(Fo − E(S))b−2 − c1Ak − γbG = 0

Finally, multiply by b2 gives:

ψ(b) = −γGb3 + [kA(Fo − c1)]b2 −B(Fo − E(S)) = 0 (2.3.10)

ψ
′
(b) = 2[kA(Fo − c1)]b− 3γGb2

The equation cannot be explicitly interpreted. Figure 2.1 is the graphical solution of

’b’ under the base case parameters, it examines the incentive portion in the agent’s

optimization problem, The base case numerical parameter values are detailed and

analyzed in 2.4.

[Insert Figure 2.1:Graphical solution of the equity base incentive, b, that opti-

mizes ψ(b) under the base case detailed in session 2.4]

2.3.2 Case 2 - Observable (First Best)

Alternatively, in the second case (’first best solution’), the principal is able to observe

effort ′a′ and chooses amount hedge ′h′, incentive pay ′b′ and salary ′s′.

The principal would maximize their payout subject to the agent’s participation
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constraint.4

maxa,h,s,b(1− b)V − s

maxa,h,s,b((1− b)[h(Fo − Soeµt) + f(a)Soe
µt − c1f(a)− c2]− s)

Take the FOC with respect ’h’ to maximize the hedging decision :

[Fo − Soeµt]− γV ar(St)b2[h− f(a)] = 0

[h− ka] =
1

b2

(Fo − Soeµt)
γV ar(S)

(2.3.11)

Take the FOC with respect to ’a’ 5 and substituting in [h− ka] from equation 2.3.11

into 2.3.12 to solve for ’a’:

Soe
µt − c1k − ηa− γ[b2V ar(St)[h− ka]k] = 0 (2.3.12)

a =
k(Fo − c1)

η
(2.3.13)

4Subjected to the following participation constraint

s = b[h(Fo − Soeµt) + f(a)Soe
µt − c1f(a)− c2] + g(a)+

γ

2
[b2S2

oe
2µt(eσ

2
st − 1)(h− f(a))2 + b2σ2

ε [S2
oe
σ2
st+2µt + 2Soe

µtc1 + c21] +Wo

5This gives the First Order Condition with respect to effort, ’a’ : f ′(a)Soe
µt − c1f ′(a)− g′(a)−

γ[b2V ar(S)[h− f(a)]f ′(a)] = 0
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Take the FOC with respect to ′b′ then substitute [h − ka] from equation 2.3.11 to

solve for ′b′ 6:

b =
|Fo − E(St)|
γ
√
GV ar(St)

, where0 ≤ b ≤ 1 (2.3.14)

The optimal soluiton for incentive pay, ′b′, can result in a corner solution where

there is no incentive pay, b = 0. This solution is reasonable as the shareholders are

making all the decisions and observe effort. Comparing the case with no incentive

pay (i.e. Brown and Toft, 2002) versus the presence of incentive pay shows how

managerial equity incentives change the optimal hedge decisions. It indicates how

hedging decision would be affected in the absence of managerial equity incentives

along with the effort exerted by the managers.

h

ka
= 1 +

1

b2

(Fo − Soeµt)
γV ar(S)ka

In the special case where there is no incentive pay, b=0 , the hedging ratio

would be higher as compared to the case with some incentive pay involved in the

6This gives the FOC solution to incentive pay ′b′: −γV ar(St)(h− ka)2b− γGb = 0. Which can
result in a corner solution where b = 0 (which is a reasonable soluation given that shareholders are

chosing all variables), or after further substitution the equation becomes 1
b2

(Fo−E(St))
2

γV ar(St)
− γG = 0.

The optimal hedging decision can be further examined by substituting optimal ’b’ from equation
2.3.14 and optimal ’a’ from equation 2.3.13 back into 2.3.11.

h =

√
σ2
ε [S2

oe
σ2
st+2µt + 2Soeµtc1 + c21]

V ar(St)
+
k2(Fo − c1)

η
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compensation scheme. That is consistent with the fact that managers are risk averse

and will only take on risk when compensated. In other words, when incentive pay is

taken in consideration it would encourage managers to take on additional risk and

to hedge less.

2.3.3 Summary Results Case 1 and Case 2

To compare Case 1 (second best scenario) and Case 2 (first best scenario), the opti-

mization solutions from both the cases are summarized in Table 2.1.

[Insert Table 2.1: Results from Case 1 and Case 2]

It compares the (i) principal-agent’s problem where the agent chooses both effort

and the amount to hedge, while the principal chooses the amount of fixed salary and

equity-base pay, with (ii) the case where the principal chooses all the aforementioned

choice variables. First, as seen from the table, when comparing the level of effort

to exert, ′a′, the only difference between the two cases is the incentive portion the

agent receives, ′b′. This outcome is intuitive as the agent will increase effort only if

given the incentive to do so, as there is a disutility of effort. As compared to case 2,

the effort is not determined by the incentive pay since principal observes and chooses

effort, thus the agent will have to deliver full effort.

Second, in both the scenarios the hedge amount depends on the average produc-
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tion (k) and an adjustment term. This adjustment term includes the firm/market

specific parameters. The solution in the second case provides insight into which pa-

rameters affect equity incentive pay. However, the difference in the amount of hedge,

′h′, between the two cases is not easily interpreted. This difference in hedge amount

is also due to the equity incentive portion, which is consistent with previous studies

(Tufano, 1996). The first and second terms both have incentive pay ′b′ embedded

in it, but this is endogenously determined and cannot be meaningfully interpreted

here. Though the variables are endogenous, some insight can be gain by rearranging

the equations:

Case 1 : h− ka =
1

b

Fo − E(St)

γV ar(St)

Case 2 : h− ka =
1

b2

Fo − E(St)

γV ar(St)

The term ′h− ka’ is the difference in the amount hedge and average production,

thus, in the ’Case 2: first best case’, the principal will hedge 1
b

(where ’b’ between

0 and 1) of what the agent would hedge. However the average production, ′ka′, is

different in both cases as it depends on effort, which in turn is dependent on equity

incentives, ′b′ as well. The incentive portion, ′b′, cannot be easily interpreted, because

in the first case a closed form solution is not prevalent.

Since incentive pay, ′b′, is endogenously determined we cannot directly com-

pare/interpreted the difference in amount hedge and incentive pay, but using this
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model, in the next section I will compare different economic environments numer-

ically, showing the difference between the ’first best solution’, where the principal

makes all the decisions, and the ’second best solution’, where the manager makes

some decisions.

2.4 Compare optimal hedging strategies

This section examines the solutions derived in the model by analyzing the factors that

determine the optimal hedge. The solutions can be analyzed by assigning numerical

values to the parameters in the equations from Table 2.2. It examines the effect

of risk aversion, price volatility and variable costs on the optimal hedging strategy

and compensation scheme under the ’first best solution’ and ’second best solution’.

The spot price So is normalized to 1. The base case includes reasonable parameters

estimates that are taken from past literature (i.e. Brown and Toft, 2002) where:

� variable costs are 0.25 and fixed costs are 0.3

� agent’s marginal productivity k = 2

� effort aversion η = 3

� ρ=1.03, where ρ = et(r−q)

� µ is 0.05
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� σ2
S = 0.55, quantity volatility = 0.15, thus Variance in St = 0.3904

� Base case coefficient of absolute risk aversion γ = 5

Table 2.2 shows the difference between the two optimal hedging strategies and

incentive pay under the base case scenario.

[Insert Table 2.2: Base Case of Numerical Example]

In the base case, the agent would choose to hedge closer to average production of

the firm, while the principal is willing to take on additional risk by hedging further

away from average production. As expected, the effort is higher in the first best

solution because there is no hidden information, and the principal can observe and

choose effort. The optimal incentive is higher when managers are the ones making

hedging decisions; this aligns with previous research where principal will have to pay

the agent to take on risk. This incentive portion can be lower when the principal

makes all the decisions.

2.4.1 Change in coefficient of absolute risk aversion

Next, the effect on change in risk aversion to the hedging strategy and optimal

compensation is examined. To study this effect, the base case is examined where

γ =5, which is then adjusted both upwards and downwards to γ = 7 and γ =3,

respectively, to compare the results.
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[Insert Table 2.3: Change in coefficient of absolute risk aversion]

Table 2.3 shows the change in coefficient of absolute risk from 3 to 7. An increased

coefficient of absolute risk aversion means that the agent is more risk averse, which

leads to a reduction in effort. The change in effort is intuitive, when the agent’s

risk tolerance decreases, they would not be willing to work as hard for unforeseeable

results. Under the first best scenario, changes in risk aversion does not affect effort

or the hedge ratio, as effort is observed and the shareholders are the ones making the

hedging decisions. Surprisingly, an agent’s hedge ratio decreases with risk aversion,

while in both cases, an increase in risk aversion shows a decrease in the incentive

portion for optimal compensation. One would expect that as risk aversion increases,

the optimal hedge ratio would increase, and the incentive pay would be higher when

risk aversion increases. However, the solutions from the model shows the opposite

which could be due to a higher level of optimal incentive portion in compensation

when coefficient of absolute risk aversion is lower.

h

ka
= 1 +

η(Fo − E(St))

k2b2γV ar(S)(Fo − c1)

In the base case scenerio, the assumption is that the spot price at time t is greater

than forward price at time 0. This means that the price is expected to increase,
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Fo < E(St). Holding all parameters the same, if risk averison increases the hedge

ratio is expected to also increase. However, when incentive pay, ′b′, is endogenously

determined this relationship is not observed. The solutions from the model illustrates

that the optimal incentive pay is lower with an increase in risk aversion. When the

agent is more risk-averse they would rather receive a compensation schedule with

a higher portion in fixed amount and a lower portion in incentive based pay. This

can be due to the fact that when managers are highly risk averse, they prefer a fixed

salary rather than a higher incentive base pay, since the latter is not optimal/efficient.

The increase in risk aversion is met with a decrease in incentive pay and the net effect

(when the prices are expected to increase, Fo < E(St)) results in a decrease in hedge

ratio.

From the FOC, we see the first term is 1. When h
ka

= 1 the firm is hedging

100% of average production. Here, when the prices are increasing, the second term

is negative, therefore when the second term is higher it means a lower amount of

the average production is being hedged. Since the prices are expected to increase,

hedging less of the average production is in turn less risky. As an agent is risk

averse, they would want to take less risk and therefore would want to hedge less of

the average prodcution when prices are expected to increase. This explains why a

decrease is observed in hedging activities even though the risk aversion is increasing.

35



On the contrary, when prices are decreasing the agent is already hedging close to

average production. The second term from the FOC would be positive when prices

are expected to decrease, therefore when the second term is higher it means a higher

amount of average production is being hedged. Hedging more of the average pro-

duction translates into taking on less risk since the prices are expected to decrease.

In the case where, Fo > E(St), if the manager’s risk aversion increases it will cause

the hedge ratio to also increase. This would be in line with standard theory whereby

when the agent is more risk averse they have a tendency to overhedge.

[Insert Figures 2.2 and 2.3: Graphical solution to optimal equity-base incentive,

′b′ when γ =3 and γ =5 and graphical solution to optimal equity-base incentive, ′b′

when γ =7]

Figures 2.2 and 2.3 represents the case 1 graphical solution to the FOC with

respect to equity base incentive, ′b′, as the coefficient of absolute risk aversion changes

from 3 to 7. This is when the manager decides the level of effort and chooses the

amount to hedge and the shareholder pays them a fixed and equity base incentive

portion. In general, as risk aversion increases, the equity base incentive portion

should correspondingly decrease.
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2.4.2 Change in price volatility

The change in economic environment would change the optimal hedging strategy.

For example, when prices are volatile, the firm would likely want to hedge closer

to average production. The effect of change in price volatility in hedging strategy

between the ’first best solution’ and ’second best solution’ can be determined by

comparing the results when σ2
s = 0.55 changes to σ2

s = 0.20 (i.e. The price volatil-

ity/variance St changes from 0.39 and 0.045). Empirical data shows crude oil price

volatility ranged from 28% to 46% between the years 2011 and 2015.

[Insert Table 2.4: Change in price volatility]

Table 2.4 shows the change in price volatility. The difference in hedge ratio

between the managers and shareholders decreases when volatility increases. For

example when σ2
s = 0.55 decrease to σ2

s = 0.2, the difference between managers’ and

shareholders’ hedge ratio increases from 0.9610 (= (0.9610) − (0.0378)) to 1.1174

(= (0.7626)− (−0.3548)). In both cases when volatility increases, the optimal hedge

ratio moves closer to average production. In a high price volatility environment,

both the agent and principal would hedge closer to average production as both the

manager and the shareholder would want to reduce the increase risk due to increase

in volatility. Thus, their hedging strategy would be closer to each other, as compared

to when price volatility is low. Therefore optimal compensation schedule in low price
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volatility environments should comprise more of the incentive portion to close the

gap between the differing hedging incentives. When volatility in prices are high, an

agent would need a lower incentive portion to make the optimal hedging decision.

2.4.3 Change in Variable Cost

Next, the change in variable cost on the model is examined. In both cases, when

variable cost is high the manager would put in less effort, as it would take more

effort to produce the same amount of product. The solution also shows the optimal

compensation scheme consist of a lower incentive pay portion when variable cost is

high. In both cases, the hedge ratio would decrease with increase in variable cost.

When variable cost is low the agent’s hedge ratio is further away from the principal’s

hedge ratio, in other words, the agency problem is more pronounced when the variable

is low.

[Insert Table 2.5: Change in Variable Cost]

The above could be due the fact that low variable cost translates into a higher gross

margin, which means more funds are generated per sale. The firm will make more

with each additional sale, therefore managers will want to hedge more to manage

their risk exposure. This is becasue both average production and effort will increase

when variable cost is low.
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2.5 Summary of Model Findings and Prediction

The above model shows that the agent’s hedge ratio is further away from the optimal

hedge ratio for the principal when (i) the agent’s coefficient of absolute risk aversion

is high, (ii) volatility in spot price is low and (iii) variable cost is low under the

optimal compensation scheme devised in each scenario. This optimal compensation

scheme is determined by the firm specific economic environments for example, when

the agent’s coefficient of absolute risk aversion is high, when volatility in spot price

is high, or when variable cost is high the equity-based incentive portion should be

lower.

h

ka
= 1 +

η(Fo − Soeµt)
k2b2γV ar(S)(Fo − c1)

Model Prediction 1 : When incentive pay increases, the optimal hedge ratio

decreases

Model Prediction 2 : When price volatility increases, the optimal hedge ratio

increases, while price volatility has a negative relation with equity-based incentive

Model Prediction 3 : When risk aversion increases, the optimal hedge ratio

decreases, while risk aversion has a negative relation with equity-based incentive

Model Prediction 4 : When variable cost increases, the optimal hedge ratio
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decreases, while variable cost has a negative relation with equity-based incentive

2.6 Conclusion

This chapter develops a theoretical model to examine the moral hazard problem in

corporate hedging decisions between risk neutral shareholders and risk-averse man-

agers. It examines how this conflict of interest can be aligned through the use

of optimal executive compensation scheme by comparing the ’first best solution’

(shareholders decide on hedging strategy) to the ’second best solution’ (managers

decide on hedging). Depending on the different economic states the firm faces, the

shareholders should deploy different incentive structures to align manager’s hedging

decisions with theirs. More specifically, the optimal compensation should comprise

of more(less) equity-based incentive if the coefficient of absolute risk aversion is low

(high), price volatility is low(high), or variable cost is low (high).

Past research examined why and how firms should hedge; however, it does not

closely examine the role of the risk-averse agent when determining optimal hedge

strategy and the optimal compensation scheme. Moreover, it does not provide an-

swers to how the shareholders’ and managers’ hedging strategies can be aligned. This

chapter bridges this gap by integrating the risk-averse manager’s expected utility and

executive compensation into the corporate hedging decision.
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The theoretical model find that managers have the tendency to overhedge, which

is consistent with other researchers have found. Under the optimal compensation

scheme, managers will hedge closer to the expected production of the firm as com-

pared to the shareholders. This chapter also gives practical insights to how to com-

pensate managers in different states.

The theoretical model focuses on the linear financial derivatives setting a possible

extension is to develop a formal theoretical model studying the effects of different

types of derivatives while considering the role of the risk-averse managers. Developing

such a model can provide insight into which derivative is most beneficial for different

types of firms when the managers make the hedging decision under varying envi-

ronments. Future research in this area can also consider extending this one-period

model to a continuous model to examine its effects.
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Figure 2.1: Graphical solution of the equity base incentive, b, that optimizes ψ(b) under
the base case detailed in section 2.4
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Table 2.1: Results from Case 1 and Case 2

� Case 1: Agent choose a,h & Principal choose b,s Case 2: Principal choose a,h,b,s

’a’ = bk(F0−c1)
η

k(F0−c1)
η

’h’ = bk
2[Fo−c1]

η
+ 1

b
F−E(St)
γV ar(St)

k2(Fo−c1)
η

+ 1
b2
Fo−E(St)
γV ar(St)

’b’ = γGb3 + [kA(Fo − c1)]b2 −B(Fo − E(St)) = 0
|Fo−E(St)|
γ
√
GV ar(St)

or =0

In case 1, the manager chooses the effort ’a’ to exert and the amount to hedge ’h’, while the
shareholder chooses the fixed salary ’s’ and the equity based incentive ’b’. In case 2, the shareholder
observes effort ’a’ and choose amount to hedge and the compensation structure.

Note: G = σ2
ε [S2

oe
σ2
st+2µt + 2Soe

µtc1 + c21] and B = Fo−Soeµt
γV ar(S)

Note: The following gives the equation to the optimal ’h’ in case 2 if the optimal ’a’ and ’b’ was

substituted in h =

√
σ2
ε [S

2
oe
σ2st+2µt+2Soeµtc1+c21]

V ar(St)
+ k2(Fo−c1)

η
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Figure 2.2: Graphical solution to optimal equity-base incentive, ’b’ when γ =3 and

γ =5

Figure 2.3: Graphical solution to optimal equity-base incentive, ’b’ when γ =7
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Table 2.2: Base Case of Numerical Example

� Case 1: Second Best Case 2: First Best

Effort ′a′ 0.2696 0.5200

Hedge Amount ′h′ 0.5183 0.1452

Incentive ′b′ 0.5185 0.1104

Average Quantity ′f(a)′ 0.5392 1.0400

Hedge Ratio ′h/f(a)′ 0.9610 0.0378

The table presents the base case results. It shows the optimal level of effect ′a′ , amount hedge
′h′, equity-base incentive portion ′b′, expected production ′f(a)′ and hedge ratio ′h/f(a)′ that
maximizes utility in the both cases (Case 1: hidden information and Case 2: perfect information.).

Table 2.3: Change in coefficient of absolute risk aversion

γ 3 5 (Base Case) 7

2ndBest 1st Best 2ndBest 1st Best 2ndBest 1stBest

a 0.4496 0.5200 0.2696 0.5200 0.1925 0.5200

h 0.8782 0.1452 0.5183 0.1452 0.3640 0.1452

b 0.8646 0.1425 0.5185 0.1104 0.3702 0.0932

f(a) 0.8992 1.0400 0.5392 1.0400 0.3850 1.0400

h/f(a) 0.9766 0.0378 0.9610 0.0378 0.9454 0.0378

As the coefficient of absolute risk aversion increases the manager’s optimal level of effort decreases
while they hedge less and the optimal compensation should comprise of an increase in the equity
incentive portion. In first best scenario, the manager effort is observed, thus the effort exerted does
not change with coefficient of absolute risk aversion. The hedge amount increases along with the
equity incentive portion.
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Table 2.4: Change in price volatility

σ2
s 0.55 (Base Case) 0.3 0.25 0.2

2ndBest 1st Best 2ndBest 1st Best 2ndBest 1st Best 2ndBest 1st Best

′a′ 0.2696 0.5200 0.3120 0.5200 0.3174 0.5200 0.3214 0.5200

′h′ 0.5183 0.1452 0.5558 -0.5695 0.5370 -0.8870 0.4903 -1.3645

′b′ 0.5185 0.1104 0.6000 0.1594 0.6104 0.1760 0.6182 0.1981

f(a) 0.5392 1.0400 0.6240 1.0400 0.6348 1.0400 0.6429 1.0400

h/f(a) 0.9610 0.0378 0.8908 -0.1481 0.8460 -0.2306 0.7626 -0.3548

As the price volatility decreases the manager’s optimal level of effort increases, while they hedge
less and the optimal compensation should comprise of a decrease in equity incentive portion. In
Case 2: First Best Scenario, the manager effort is observed; thus the effort exerted remains constant
with price volatility. The hedged amount increases, while the optimal compensation increases in
the equity incentive portion.

Table 2.5: Change in Variable Cost

c1 0.45 0.25 (Base Case)

2ndBest 1st Best 2ndBest 1st Best

Effort ′a′ 0.0866 0.3867 0.2696 0.5200

Hedge Amount ′h′ 0.1244 -0.2346 0.5183 0.1452

Incentive ′b′ 0.2238 0.1040 0.5185 0.1104

Average Quantity ′f(a′) 0.1731 0.7733 0.5393 1.0400

Hedge Raio ′h/f(a)′ 0.7188 -0.0454 0.9610 0.0376

Variable Cost, c1, changes from 0.25 to 0.45. As c1 increases the manager’s optimal level of effort
decreases while they hedge less and the optimal compensation should comprise of a decrease in
equity incentive portion under the Case 1: 2nd Best Scenario.
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Chapter 3

Empirical Application in aligning Cor-

porate Hedging Decisions with Ex-

ecutive Compensation

47



3.1 Introduction

Risk averse managers tends to overhedge (Holmstrom and Ricart i Costa, 1986; Smith

and Stulz, 1985). To examine how the hedging decision can be aligned between

shareholders and managers, I develop a theoretical model in the previous chapter

that examines the factors that optimizes both executive compensation and hedging

strategy. The model also shows how the divergent corporate hedging incentives

can be mitigated in practice by using executive compensation. In this chapter I

empirically test the validity of the theoretical model predictions obtained from the

last chapter with US oil and gas firm data and find in general, the model predictions

are supported by empirical data.

The relationship between hedge ratio and executive compensation has previously

been documented in literatures from Tufano (1996), Prendergast (2002), and Core,

Guay and Larcker (2003). Empirical research such as Rogers (2002) and Rajgopal

and Shevlin (2002) indicates that there is a relationship between risk management

and managerial incentive. While, Chen, Jin, and Wen (2011) extend on past liter-

ature and examine empirically the endogenous relationship between executive com-

pensation and hedging decisions, and the effects on firm value. However, the use

of executive compensation to reduce the managers’ overhedging tendency has not
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been studied. As suggested by the theoretical model in the previous chapter, this

agency problem can be mitigated by deploying different compensation schemes under

varying economic environments.

To examine the validity of the various model predictions in practice, this chap-

ter goes beyond the theoretical model in the previous chapter and empirically tests

model predictions: (i) hedging decision is negatively correlated with executive com-

pensation, which is consistent with studies from Tufano (1996) and Chen, Jin, and

Wen (2011), (ii) price volatility is negatively related to hedging, (iii) variable cost is

negatively related to hedging, and (iv) risk aversion is negatively related to hedging.

The first model prediction from the previous chapter suggests that as equity-

based incentive pay increases, the optimal hedge ratio decreases. This is supported

by Chen, Jin, and Wen (2011) which shows evidence supporting this model finding.

Their study focuses on the oil and gas industry, while taking into account the en-

dogeneity between hedging and executive risk-taking incentives; they find significant

negative correlation between the hedging incentives and executive compensation.

While, Tufano (1996) also finds equity-based executive compensation is negatively

related to hedging.

The other model predictions suggest that price volatility and variable cost (gross

margin) are negatively (positively) related to hedging. Although their relationship is
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not directly examined in Brown and Toft (2002), these factors have been documented

to affect the hedging decision. Their study shows that the decision on how firms

should hedge is affected by the price volatility the firm faces and also the correlation

between price and profit margin.

Furthermore, there is evidence in past literature supporting the last model pre-

diction, which predicts that while risk aversion increases, the optimal hedge ratio

decreases. For example, Tufano (1996) finds that hedging is generally negatively

associated with the tenure of firm executives. While Tenure is often seen as a proxy

for executive risk aversion, as executive wealth is more invested in the firm with

increased tenure.

Beginning in January 1997, annual 10K filings are required to include risk-

management activities, including the nominal amount of hedge that was not pre-

viously available nor widely used in many related research studies. Thus, the model

predictions can be empirically tested against a sample of U.S. oil and gas firm data.

The use of the oil and gas sector allows for the control of market risk faced by each

firm, and to focus hedging activity on commodity hedges. Firms are required to dis-

close both the nominal amount hedged and the annual production, which collectively

allow for the examination of the percentage of production hedged.

Consistent with Core and Guay (2002), the executive risk-incentive compensation
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is measured by delta following value-increasing incentives. The theoretical model in

the previous chapter is based on linear derivatives, while the empirical test is based

on the general case which includes both the aforementioned derivatives to examine

if the model prediction is valid. As the companies in the sample use both linear and

non-linear derivatives to hedge their price risk.

In this chapter, to test the validity of the previous chapter’s results, OLS regres-

sions are used to show the linear relationships between the economic factors and the

hedging decision while taking into account the executive’s incentive pay. The empir-

ical testing reveals that in general, the model predications are in line with empirical

evidence.

The chapter is organized as follows: The next section includes a brief description

of the model prediction. Section 3.3 describes the data. Section 3.4 shows the

empirical analysis of model prediction and results. Concluding remarks are provided

in Section 3.5.

3.2 Model Findings and Prediction

The previous chapter develops a theoretical model to examine the agency prob-

lem surrounding the corporate hedging decision between shareholders and managers,

where the managers have been documented to over-hedge. The model examines
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two hedging scenarios; the observable case and the hidden information case. In the

observable case the shareholder makes the hedging decision, while, in the hidden

information case, the manager makes the hedging decision. The model compares the

two cases and shows that the agency problem is more pronoun when (i) the manger’s

risk aversion is higher, (ii) the price volatility is low, and (iii) the variable cost is

high. The model further suggests that the optimal compensation scheme should be

comprised of a lower portion of equity-based incentive when Manager’s risk aversion

is high, when price volatility in high, or when variable cost is high. In this chap-

ter, I preform empirical testing of the following model predictions from the previous

chapter against firm data to analyse the model validity.

Model Prediction 1 : When incentive pay increases, the optimal hedge ratio

decreases

Model Prediction 2 : When price volatility increases, the optimal hedge ratio

decreases, while price volatility have a negative relation with equity-based incentive

Model Prediction 3 : When risk aversion increases, the optimal hedge ratio

decreases, while risk aversion have a negative relation with equity-based incentive

Model Prediction 4 : When variable cost increases, the optimal hedge ratio

decreases, while variable cost have a negative relation with equity-based incentive

These predictions are tested against empirical data in the following section.

52



3.3 Data

Standard and Poor’s ExecuComp data was used to test the theoretical model

findings. This set of data provides information on executive compensation on over

2,500 companies and more than 24,000 executives. Focusing on the oil and gas

industry in particular, only companies with NAICS code 211 from years 2011 and

2014 in the sample are included. The advantages in using the oil and gas industry are

(i) the oil and gas price exposure can be identified, (ii) the reserves and productions

are disclosed in the financial statements, and (ii) the commodity risk is easily hedged

with derivatives sold on the exchange.

3.3.1 Incentive Pay

Consistent with past empirical research, delta is used to measure the incentive pay.

The estimation of delta follows Core and Guay’s (2002) approach. Delta measures

the dollar change in wealth associated with a 1 percent change in a firm’s stock

price. It calculates the executives’ value-increasing based on their stock and option

holdings. Delta is comprised of two components, (i) share delta and (ii) option delta.

Share delta represents the number of shares multiplied with the share price, which

is then multiplied by ’0.01’. Option delta uses the Black-Scholes Model to calculate

option price, which includes the use of data on exercise price, ex-date, volatility,
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dividend yield, and risk-free rate. It also examines the amount of options vested and

unvested (in the money unexercised exercisable/unexercisable options). Adding the

two components gives the value of delta. Refer to Core and Guay (2002) for complete

description on delta calculation.

Delta = Share delta+Option delta

Deltamean =

∑
deltai

#executivesi

3.3.2 Risk Aversion

Risk aversion is difficult to model. In past literature, tenure, age, gender and wealth

were often associated with risk aversion. Thus, CEO’s tenure and age data collected

from ExecuComp Data were used (iii) it as proxies for absolute risk aversion for the

model testing. Risk taking has commonly been negatively associated CEO tenure,

age, gender and wealth. This risk-averse arises because of the non-diversified human

capital investment. Two proxies are used for risk-aversion in the testing, CEO tenure

and age. The CEO tenure is estimated by taking the difference between the year-

end date, and the date they become CEO. Due to the low amount of executives

and CEO’s in opposite genders, risk aversion cannot be proxy by gender and the

information on wealth of the executives are linked to compensation.
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3.3.3 Hedge Ratio

In January 1997 the Financial Reporting Release No. 48 (FRR 48) was released

which requires firms to disclose Derivative Instrument and Quantitative Information

about market risk. As a result, this allows for the examination of hedging activities

on the firm. The sampled firms typically have commodity hedges on Crude Oil,

Natural Gas Liquid, and Natural Gas. This data is manually collected through the

firm’s 10-K that is available for download on Edgar. The 10-K’s provide the types of

derivatives used, the notion amount hedge and the production for the year. The 10-

Ks separate different risks that are being hedged; to test the model, focus is placed on

the commodity risk hedges that are measured in various units (Bcf, Mbbl, MMbtu,

MMgal, Boe) that are manually converted to Millions of Barrel Equivalent(MMBoe).

Crude Oil, Natural Gas Liquid, and Natural Gas are then combined before samples

are taken thereafter. The samples are then winsorized to 1th percentile and 95th

percentiles, resulting in 34 companies and 685 observations. The majority of the

companies use both forwards and options, however, if companies were to choose only

one method of hedging, it would be the linear contract (i.e. forwards). Tables 3.1

to Table 3.4 summarizes the number of firms that uses linear, non-linear, or both

derivatives. The combined notional amount of different types of hedging is used to

estimate the hedge ratio. The hedge ratio is estimated by taking the total volume
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hedged divided by the total volume produced.

Hedge ratio =
total vol hedged

total production

Table 3.1: 2011

Options
Total

No Yes �

Forwards
No 2 3 5

� Yes 7 22 29

Total 9 25 34

Table 3.2: 2012

Options
Total

No Yes �

Forwards
No 3 1 4

� Yes 6 24 30

Total 9 25 34

Table 3.3: 2013

Options
Total

No Yes �

Forwards
No 1 1 2

� Yes 6 26 32

Total 7 27 34

Table 3.4: 2014

Options
Total

No Yes �

Forwards
No 4 1 5

� Yes 6 22 28

Total 10 23 33
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3.3.4 Volatility

Price volatility is the simple average of crude oil and natural gas, as most companies

in the sample produces both in various portions. This annualized price volatility

was calculated for each year (2011 to 2014) by taking the standard deviation of the

change in percentage daily spot prices multiplied by the square root of the trading

days in any given year (assumed 252 days) for crude oil and natural gas. The price

volatility in crude oil alone ranged from 23% to 35% between 2011 to 2014.

%4 S =
St − St−1

St−1

PriceV ol = (σ%4S)(2521/2)

3.3.5 Controls and Variable Cost

S&P’s Compustat North America Annual Fundamental Data contains company fi-

nancial, statistical, and marketing information. The variable cost is estimated using

the one minus gross margin of the company. The companies report total revenue and

cost of good sold. The gross margin is calculated by taking the difference between

the total revene and cost of good sold, this is then divided by the total revenue. The

gross margin is a percentage of each dollar of revenue that the company retains as
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gross profit, while one minus gross margin is the variable cost. Therefore, the proxy

for variable cost (’VC’) was obtained by taking one minus gross margin.

V C = 1− [
Total Revenue− Cost of Good Sold

Total Revenue
]

The data on location, firm size, leverage and capital expenditure ’Capexp’ was

extracted for each company, these were then used as control variables in the empirical

model. The firm size would affect hedging as larger firms tend to hedge than more

than small firms. This size effect is proxy by log total asset. Leverage affects firm’s

capital structure, which in turn may be related to its value. Leverage would be

measured by debt in current liabilities plus long-term debt, scaled by total assets.

Capex is the net capital expenditure scaled by total assets. The location of the

company might also play a role in hedging ratio due to transportation costs, where

a city variable would need to be included to control for this.

3.3.6 Summary Statistics

Below is the summary statistics of the variables.
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Table 3.5: Summary Statistics:

Variables Obs Mean Std. Dev. Min Max

hedge ratio 111 0.4842 0.2657 0 1.0240

deltamean 115 202.2711 269.2205 6.4668 1720.6930

VarS 120 0.3345 0.0522 0.2471 0.3842

VC 112 0.4379 0.4134 0.1275 4.1980

3.4 Empirical Analysis of Model Prediction and Results

To test model predictions, the following empirical models was examined. The first

prediction suggests that ’when incentive pay increases the optimal hedge ratio de-

creases’. This prediction is in line with previous studies. When incentive pay in-

creases, the manager’s pay is more linked to equity and options. With increase risk

the optionvalue increases and it also gives an upside potential/benefit for equity

holders. As a result, with more equity-based pay, the manager is more motivated to

increase the risk of firm (because doing so will increase the manager’s equity-based

pay). To increase the risk of the firm, the manager will reduce the hedge ratio in

the firm because less hedging will increase firm risk. If the prediction is accurate β1

should be negative and significant in equation 3.4.1.

Hedge ratioit = αi + β1

∑
deltait

#executivesit
+ β2Controlsit + εit (3.4.1)
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Table 3.6: Empirical testing of Prediction 1

Hedge ratio

Deltamean -0.000165*

(-2.39)

Delta -0.0000457

(-0.62)

City 0.0225** 0.0212*

-2.71 -2.37

B2M -0.140* -0.107

(-2.21) (-1.62)

Size -0.00496 -0.00433

(-0.21) (-0.18)

Leverage 1.426* 1.237

(-2.14) (-1.77)

Capexp 0.427 0.547

(-1.35) (-1.7)

Constant 0.378 0.333

(-1.36) (-1.14)

# Obs 95 86

R2 0.201 0.161

t statistic in parentheses, *p<0.05,**p<0.01,***p<0.001

From Table 3.6 , deltamean is negative and significant. Therefore, the results from

the empirical testing were in-line with the model prediction (i.e. when incentive pay

increases the optimal hedge ratio decreases). This is because executives are often

paid for the risk they take, and when some of the risks are hedged, the incentive pay

would decrease. This is consistent with findings in Tufano (1996), Rogers (2002),

Rajgopal and Shevlin (2002) Supanvanij and Strauss (2006) Chen, Jin, and Wen

(2011).
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The size effect and capital expenditure was not significant. The model did not

produce the same result when the CEO’s delta was examined in isolation. This

could be because the CEO pay is very noisy as compared to the average delta across

executives at the same firm, which would otherwise produce a much more reliable

result. Consistent with Graham and Rogers (2002), the empirical model result show

that firms with higher leverage will hedge more.

The second model prediction is: ’when price volatility increases the optimal hedge

ratio decreases, and the compensation scheme will have a lower incentive portion’.

Applying the empirical model below, if the prediction stands β1 will be significant

and negative.

Hedge ratioit = αi + β1V olatilityt + β2Controlsit + εit (3.4.2)

Hedge ratioit = αi + β1

∑
deltait

#executivesti
+ β2V olatilityt + β3Controlsit + εit (3.4.3)

From Table 3.7, it is observed that both the coefficients for delta and price volatil-

ity was significant and negative suggesting that our model prediction holds. When

price volatility increases, the hedge ratio decreases. This is surprising as the hedging

ratio would be expected to increase when the price is volatile. A possible explana-

tion might be that the relationship between price volatility and average incentive pay

(deltamean) is negative, suggesting that in a volatile price environment the company
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Table 3.7: Empirical testing of Prediction 2

Hedge ratio

Deltamean -0.000169* -0.0001695*

(-2.05) (-2.04)

PriceVol -0.980* -0.960* -1.015* -0.969

(-2.18) (-2.06) (-2.27) (-1.92)

Size -0.00482 0.00486 -0.0105 -0.00982

(-0.20) (0.21) (-0.52) (-0.51)

Capexp 0.609* 0.678* 0.750** 0.727*

(2.1) (2.42) (-2.89) (-2.63)

Leverage 0.669 0.230* 1.524*

(1.92) (-2.26) (-2.3)

City 0.0231**

(-2.94)

B2M -0.0230 -0.0804

(-0.48) (-1.40)

constants 0.744* 0.614* 0.711** 0.584*

(2.55) (2.08) (-2.63) (-2.11)

# Obs 106 102 107 96

R2 0.136 0.183 0.143 0.224

t statistic in parentheses, *p<0.05,**p<0.01,***p<0.001

compensates the executive with less incentive pay. On the other hand, the relation-

ship between hedge ratio and incentive pay is also negative, this therefore counteracts

the effect of price volatility on hedge ratio. Price volatility varied significantly be-

tween 2011 and 2014, and the results may have been stronger if the data spanned

over a longer period of time. In additionally, the relationship between price volatil-

ity and average incentive pay (deltamean) was negative but not significant in the

empirical data.

Model prediction three postulated: ’when risk aversion increases, the optimal
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hedge ratio decreases and the compensation scheme will have a lower incentive por-

tion’. The risk aversion of the executive cannot be observed as it is hard to proxy.

However, as explained in prior sections, a CEO’s tenure and age is used to proxy

for this risk aversion. If the model prediction is correct, β1 and β2 and β3 would be

negative and significant.

Hedge ratioit = αi+β1

∑
deltait

#executivesti
+β2CEOtenureit+β3ageit+β4Controlsit+εit

(3.4.4)

Hedge ratioit = αi+β1deltait+β2CEOtenureit+β3ageit+β4Controlsit+εit (3.4.5)

Measuring risk-aversion is difficult, here CEO tenure and age were used to proxy

risk-aversion. Even though both proxies for risk aversion, CEO tenure and age,

are significant, but the coefficient for CEO tenure is not as predicted by the model.

According to the model prediction with increased risk aversion, there is a tendency for

the hedge ratio to decrease, and compensation should have a lower incentive portion,

thus the coefficient CEO tenure should be negative. This result might be due to

the poor proxy for risk-aversion and minimum data available. In addition to CEO

tenure, the mean tenure across executives in each companies were tested but yielded

the same result. There is a negative relationship between ’Deltamean’ and CEO

tenure which suggests when risk aversion is high, there would be a lower incentive

pay portion, this relationship was not statistically significant from the empirical data.

63



Additional to tenure, risk-aversion can also be proxy by wealth, however the wealth

of the manager cannot be measured and part of the wealth was captured in the

variable ’Deltamean’ in the form of executive compensation.

Table 3.8: Empirical testing of Prediction 3

Hedge ratio

Deltamean -0.000207**
(-3.20)

Delta -0.000117*
(-2.14)

Ceotenure 0.0151*** 0.0180***
(-3.45) (-3.73)

Age -0.0125* -0.0134*
(-2.18) (-2.46)

City 0.00787 0.00761
(-0.72) (-0.69)

B2M -0.124 -0.128
(-1.92) (-1.83)

Size 0.0457 0.0445
(-1.68) (-1.61)

Leverage 0.849 0.863
(-1.15) (-1.15)

Capexp 0.377 0.384
(-1.2) (-1.19)

Constant 0.676 0.721
(-1.47) (-1.64)

# Obs 86 86

R2 0.277 0.268

t statistic in parentheses, *p<0.05,**p<0.01,***p<0.001

Finally, for the last model prediction:’when price variable cost increases, the opti-

mal hedge ratio decreases, and the compensation scheme will have a higher incentive

portion’. If this is the case, then β1 should be significant and negative and β2 should

64



Table 3.9: Empirical testing of Prediction 4

Hedge ratio

Deltamean -0.000231**
(-3.31)

Delta -0.0000508
(-0.69)

VC -0.186 -0.128 -0.0409
(-1.16) (-0.77) (-0.30)

City 0.0139 0.0155 0.0191*
(1.69) (1.92) (2.44)

B2M -0.0882 -0.0681 -0.0529
(-1.83) (-1.25) (-1.03)

Size -0.0486 -0.0675* -0.0447
(-1.42) (-2.01) (-1.55)

Capexp -0.458 -0.409 0.143
(-1.12) (-0.97) (0.37)

Leverage 0.670 0.770 1.456*
(1.00) (1.15) (2.19)

Constant 1.145** 1.216** 0.744*
(2.79) (2.92) (2.01)

# Obs 82 82 92

R2 0.2257 0.1866 0.1803

t statistic in parentheses, *p<0.05,**p<0.01,***p<0.001
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be significant and positive.

Hedge ratioit = αi + β1

∑
Deltait

#executivesti
+ β2V Cit + β3Controlsit + εit (3.4.6)

From Table 3.9, the coefficient of the variable cost, ′V C ′, is negative which follows

the model prediction that: ’the hedge ratio decreases when variable cost increases’.

The coefficient of ′V C ′ is not significant in the regressions, however the relationship

in general is in the correct direction and the significance could possiblity improve

with additional years of data. An alternative measure of variable cost can also be

explored, such as variable cost as a proportion of total cost, which should produce

the same relationship with hedge ratio. The relationship between variable cost and

average incentive pay (deltamean) is negative, which suggests that when variable

cost is high, there would be a lower incentive pay portion (this relationship is also

insignificant in the empirical data).

3.5 Conclusion

The theoretical model developed in Chapter 2 was empirically tested to validate

model results. The theoretical model focuses on the linear financial derivatives set-

ting, while the model prediction holds empirically with both linear and non-linear

financial derivatives. In practice, managers select their level of effort and make the

hedging decisions; therefore the theoretical model results comparing the observable
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case (best solution), to the hidden information case (second best solution), cannot

be tested empirically due to the absence of a control group. With consideration of

empirical data from oil and gas companies, the testable results of the theoretical

model suggest that (i) when incentive pay increases, the optimal hedge ratio de-

creases, (ii) when price volatility increases, the optimal hedge ratio decreases, with a

negative relationship between price volatility and equity-based incentive, (iii) when

risk aversion increases, the optimal hedge ratio decreases, with a negative relation-

ship between risk aversion and equity-based incentive, and (iv) when variable cost

increases, the optimal hedge ratio decreases, with a negative relationship between

variable cost and equity-based incentive.

This chapter finds empirical evidence supporting these predictions. First, the

empirical test shows that there is a negative relationship between hedging and in-

centive pay, which supports the prediction that when incentive pay increases, the

optimal hedge ratio decreases. Second, the paper finds a negative relationship be-

tween hedging and volatility, with a negative relationship between incentive pay and

volatility. This is in line with the second prediction when price volatility increases,

the optimal hedge ratio decreases. Third, the empirical results shows a negative rela-

tionship between hedging and risk aversion when using age as a proxy, but a positive

relationship when using tenure as a proxy. In the previous literature, age and tenure
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has been used as a proxy, however the low evidence on the relationship between

hedging and risk aversion can be attributed to poor proxy. There is also a negative

relationship between incentive pay and risk aversion that supports the theoretical

prediction. Lastly, the results show a negative relationship between hedging and

variable cost, and a negative relationship between incentive pay and variable cost.

The empricial model presents endogeneity issues as all regressions are performed with

contemporaneously observed variables. To reduce the impact of endogeneity, inde-

pendent variables can be lagged. However, the empirical models in this chapter were

mainly used to test the theoretical model and the relationship between the variables.
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Chapter 4

Ontario Energy Prices Analysis: A
Convolution Approach
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4.1 Introduction

This chapter introduces a new approach for modelling and forecasting the West Texas

Intermediate (WTI) crude oil prices. We estimate the WTI crude oil prices using

a convolution model of two stationary processes and, alternatively, a mixed causal-

noncausal autoregressive (MAR) model. This approach allows us to accommodate

the multimodality, heavy tails and various asymmetric local trends observed in the

WTI data distribution, which was not explored in previous literatures. The long-

run relationships between the Ontario consumer price index (OCPI), Ontario energy

price index (OEP) and the WTI series are established by using the cointegration

analysis. Then, we can use the WTI crude oil price forecasts to predict the Ontario

price indexes (OCPI and OEP) by exploiting the long-run relationships between the

Ontario consumer and energy price indexes.

To illustrate the dynamics of comovements between the OEP, OCPI and WTI,

Figure 4.1 displays each monthly series recorded between January 2000 to December

20187, where the WTI series is expressed in US Dollars and the price indexes are

expreseed in Canadian Dollars with the base year 2002:

[Insert Figure 4.1: Dynamics of OCPI, OEP and WTI crude oil price]

In Figure 4.1 we observe that the OCPI series is upward trending and smooth, while

7https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1810000413
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the OEP series shows both a global trend and local trends and spikes. In general, the

global trend of the OEP series is parallel to that of the OCPI and the local trends

and spikes in both the series of OEP and OCPI indexes seem to occur at the same

time as those observed in the trajectory of the WTI crude oil prices (WTI). The

WTI series does not display a global trend, but is characterized by local trends and

spikes.

The first contribution of this chapter is to model and forecast the WTI crude

oil prices and estimate the long-run relationships between the Ontario price indexes

(OCPI and OEP), adjusted for the exchange rate, and the WTI crude oil prices. The

cointegration analysis provides the forecasts of the Ontario price indexes and WTI

crude oil prices. Alternatively, the forecasts of Ontario price indexes can be obtained

as functions of the WTI crude oil price forecasts combined with the forecast of the

stationary series of departures from the long run equilibrium.

In addition, the WTI crude oil price process is modelled as a convolution of

stationary causal and noncausal autoregressive processes. This model is parsimonious

and accommodates the local trends and spikes in the trajectory of the oil price

process as well as the bi-modality of its sample distribution. The bi-modality in the

distribution of the WTI crude oil price data evidenced in this paper seems to be

disregarded in the existing literature.
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The forecast of the WTI crude oil prices can also be obtained from the mixed

causal -noncausal model of WTI crude oil prices. We explore this approach, which

allows us for comparing two methods of forecasting for noncausal processes devel-

oped by Lanne, Luoto and Saikkonen (2012) and Gourieroux and Jasiak (2016). A

comparison of these two methods in an empirical application is an additional contri-

bution of this paper. A simulation-based comparison of the two forecasting methods

for noncausal processes is given in Voisin, Hecq (2019). Given the WTI crude oil

price forecast and the estimated long-term relationships, the Ontario price indexes

can be forecast as well, as functions of the WTI crude oil price forecast.

There exists a large body of literature on oil price forecasting. A commonly used

heuristic model for oil price prediction is the no-change model, which is also used in

the literature as a benchmark for comparison of forecast performance.

For example, the existing oil price forecasting literature provides evidence that

the structural models of real oil prices outperform the no-change forecast at short

horizons (Alquist, Kilian, and Vigfusson, 2013 and Baumeister and Kilian, 2012,

2014, 2015, among others). The forecast combination model proposed by Baumeister

and Kilian (2015), includes six models, in which only four models appears to be

essential to price prediction: global oil market VAR model, model based on non-oil

commodity prices, model based on oil future spreads and time-varying product spread
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model. They construct an inverse mean squared prediction error MSPE weight based

on recent forecasting performance of each model. They then allocate larger weight

to models in the combination forecasts that have smaller MSPE date t. The model

use a predictor’s lags of the real price of oil, current oil spot prices and oil future

prices, current spot prices in the market for refined products and current and lagged

data on economic fundamentals. They find placing equal weights on all forecasting

models produces the most accurate forecasts. In particular, forecasts obtain by the

combination forecasts from (i) global oil market VAR model, (ii) model based on

non-oil commodity prices, (iii) model based on oil future spreads, and (iv) time-

varying product spread model are systemically more accurate than the no change

forecast at horizon 1 month to 18 months.

Li, Xu and Tang (2016) introduce sentiment analysis, a useful big data analysis

tool, to understand the relevant information of on-line news and formulate an oil

price trend prediction method with sentiment.

Gao and Lei (2017) propose a novel approach for crude oil price prediction based

on a machine learning paradigm called stream learning. The main advantage of

the stream learning approach is that the prediction model can capture the changing

pattern of oil prices since the model is continuously updated whenever new oil price

data are available. In the literature, a model trained with artificial neural networks
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(ANN), is a classical machine learning model for oil price prediction (Yu et al.,

2008; Kulkarni and Haidar, 2009). Li, Shang and Wang (2019) apply deep learning

techniques to crude oil forecasting, and to extract hidden patterns within online news

media using a convolutional neural network (CNN). Chen, He and Tso (2017) use

the deep learning model to capture the unknown complex nonlinear characteristics

of the crude oil price

Snudden (2018) uses a high-order VAR (p=24) and proposes the method of tar-

geted growth rate filtering using spectral analysis , which is a modification of the

standard forecasting method. The lags in growth rate transformations are chosen in

order to target lower frequencies. The method removes high frequencies and empha-

sizes certain low frequencies which correspond to particular forecast horizons. Li,

Xu and Tang (2016) introduce sentiment analysis, a useful big data analysis tool, to

understand the relevant information of on-line news and formulate an oil price trend

prediction method with sentiment.

This paper is organized as follows. Section 4.2 describes the data. Section 4.3

examines the comovements between the Ontario price indexes and the cointegrating

relationships between the WTI crude oil prices and the Ontario price indexes. Sec-

tion 4.4 presents the convolution model and the alternative mixed causal-noncausal

autoregressive (MAR) specifications. Section 4.5 discusses the forecasting from MAR
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models and the application of the available methods. Section 4.6 concludes the paper.

Additional results are provided in Appendices 1 and 2.

4.2 Data Description

This section describes the three series of 228 monthly observations on the OCPI, OEP

and the WTI crude oil prices observed over the period January 2000 to December

2018.

Ontario CPI and Ontario Energy Price Index

The data on OCPI and OEP are provided by Statistics Canada 8. Our sample

contains monthly data from January 2000 to December 2018, which is seasonally

non-adjusted and consists of 228 observations.

The OCPI compares the cost of a static or equivalent quantity and quality fixed

basket of goods and services purchased by consumers, therefore the OCPI reflects a

pure price change indicating the general level of inflation. The goods and services’

price movements in the OCPI are weighted according to the relative importance

to the total expenditures of consumers. Each good or service is an element in the

basket, and price movements of these elements are assigned a share in the basket

that is proportional to the total consumption expenditure. Amongst the elements in

8The source of monthly data is the Statistics Canada website:
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1810000401 from table 18-10-0004-
01 (formerly CANSIM 326-0020)
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the ’basket of goods’ is energy. The OCPI index measures the inflation based on the

price increases of goods in a predetermined ‘basket of goods’. Consumers typically

switch between products as the relative prices of goods change. Thus, the price index

is based on a fixed-basket as opposed to the cost-of-living.

The base period of the CPI was chosen as 2002, which means the CPI in 2002

is set equal to $100. The change allows the percentage changes between any two

periods to remain the same as it is an arithmetic conversion, which alters the index

levels.

The OCPI series shows a global upward sloping trend in Figure 4.1.

The aggregate Ontario Energy Price Index is one of the components of OCPI

which includes: ’electricity’, ’natural gas’, ’fuel oil and other fuels’, ’gasoline’, and

’fuel, parts and accessories for recreational vehicles’. All the prices listed within

energy are also consumer prices. The fuel oil data is collected at least once a year.

The energy does not seem to include transportation cost, as it is listed as a separate

element of OCPI. The base year for Ontario Energy Price Index is 2002, which is

consistent with the base year for OCPI.

The dynamic of the OEP series shows a global upward sloping trend and local

trends and spikes in Figure 4.1.

WTI Crude Oil Prices
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The monthly WTI crude oil price data from January 2000 to December 2018 (in

US dollars per barrel) are provided by the U.S. Energy Administration (EIA) 9. The

WTI crude oil is produced in Texas and Southern Oklahoma. It is often used as

a benchmark for oil pricing and serves as a reference point for pricing a number of

other crude streams traded in the Cushing, Oklahoma spot market. The price of oil

is the market spot price, i.e. the price of a one time open market transaction for

immediate delivery of a specific quantity of product at a specific location where the

commodity is purchased ”on the spot” at a current market rate. The monthly data

provided by EIA are computed as the unweighted average of the daily closing spot

prices over a specific month.

The oil series shows two significant troughs due to considerable crude oil price

drops in years 2008 and 2014. The first price drop in 2008 coincides with the begin-

ning of the economic recession tiggered in part by the Lehman Brothers bankruptcy

filing on September 15,2018. This economic recession caused strain in the banking

system and the demand for oil fell. The Organization of the Petroleum Exporting

Countries (OPEC) subsequently announced a 16 percent reduction in production

over 8 months with the intent to help stabilize oil prices.

The second price drop occured after Thanksgiving 2014, following the period

9https://www.eia.gov
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between January 2011 and June 2014 when oil prices were relatively stable. A decline

in oil prices started in June 2014 due to an increased supply of oil prompted by a

technological advancement that enabled the ”shale” oil production. However, the

increased supply was not matched by the anticipated increase in oil demand. At

the same time, OPEC countries maintained their output at a constant level, thus

increasing the overall supply. In the second quarter of 2014, OPEC changed its policy

and decreased the production, causing a drop in oil prices, which is observed in the

dataset after October 2014.

The monthly OCPI and OEP Index data from January 2000 to December 2018

are expressed in Canadian dollars. In order to establish the relation between the

series and the WTI crude oil expressed in US Dollars, we need to use a common

currency of reference. Therefore, we adjust the OEP and OCPI indexes for the

CAD/USD exchange rate to make them comparable.

Exchange Rate

The exchange rate is obtained through the Bloomberg terminal ”USDCAD BGN

Curncy” series. The Bloomberg series of exchange rates is displayed in Figure 4.12,

Appendix 2.

The monthly exchange rates are representative of the Bloomberg Generic Com-

posite rate (BGN). It is a representation based on indicative rates contributed by
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market participants. The data is not based on any actual market trades. BGN is a

pricing algorithm that produces indications of bid and ask quotes that are derived

from hundreds of quality sources, including indicative and executable price quotes

from money-center and regional banks, broker-dealers, inter-dealer brokers, and trad-

ing platforms. BGN is designed to track executable bid/ask rates and to be resistant

to manipulation by market participants. To adjust for the difference in currency

between OCPI, OEP and WTI crude oil price data we used the monthly mid price

exchange rate from Bloomberg BGN rates between January 2000 to December 2018

. The Mid Price is the average of the Bid Price and Ask Price. If there is no bid

value or ask value provided, the mid price will simply be the value provided.

The exchange rate series does not have a global trend. It shows a local downward

sloping trend in the first part of the sampling period and a local upward trend in the

second part of the sampling period. It also shows a spike around the crisis of 2008.

Exchange Rate Adjusted Series

The exchange rate adjusted series of OCPI and OEP indexes are displayed in

Figure 4.2 below along with the WTI crude oil prices:

[Insert Figure 4.2: Dynamics of transformed OCPI, OEP and WTI crude oil

price]

After adjusting for the exchange rate, the dynamics of OCPI and OEP series
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change. The global upward trends in these series have been flattened because of the

patterns revealed in the exchange rate dynamics. The most noticeable changes are in

the OCPI dynamics. The OCPI series no longer has a smooth trajectory resembling

a linear trend and becomes more volatile with local trends. Moreover, the local

trends in the OCPI and the OEP series occur at the same time as those in the oil

price series. The global trends in OEP and OCPI series remain parallel, as before

the adjustment for exchange rates.

The QQ-plot in Figure 4.13 shows that the sample quantiles of OCPI differ from

those of a normally distributed stationary variable. This could be due to the fact

that the series is either non-normally distributed, or non-stationary, or both. More

specifically, either the sample quantiles have not converged to the quantiles of the

limiting distribution, causing deviations from the line, or they have converged and

the deviations are caused by the non-normal distribution of the series, such as the

multimodality and thin or thick tails. The QQ-plot in Figure 4.14 shows that a

similar conclusion can be drawn for the OEP series as well. The next section examines

the stationarity of the series.

4.3 Dynamic analysis

Let us now examine the dynamics of the adjusted series. The OCPI and OEP

series display parallel global trends, which suggest nonstationarity due to a possible
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presence of a unit root. The WTI series does not have a global trend and features

local trends and spikes. Nevertheless, in the early time series literature this behaviour

was called ”meandering” and attributed to unit root dynamics as well.

A simple method of testing for stationarity can be linked to the test of normality,

as suggested in the previous Section. This method is used in the natural sciences.

For example, the stationarity of encephalographic signals is often inferred from the

results of the Shapiro–Wilk test for Gaussianity [see Bender et al. 1992].

Let us now test the variables of interest for normality by using the Shapiro-Wilk

test and its simplified version the Shapiro-Francia test. The implicit null hypothesis

is that each series is normally distributed and stationary while the implicit alternative

hypothesis is that each series is either non-normally distributed or non-stationary.

Tables 4.1 and 4.2 below show the outcomes of the tests.

Table 4.1: Shapiro-Wilk W’ Test

Obs W ′ V ′ z Prob > z
OCPI 228 0.92486 12.568 5.862 0.00000
OEP 228 0.94285 9.560 5.229 0.00000
Oil 228 0.95488 7.547 4.681 0.00000

Table 4.2: Shapiro-Francia W’ Test

Obs W ′ V ′ z Prob > z
OCPI 228 0.92930 12.878 5.329 0.00001
OEP 228 0.94715 9.625 4.722 0.00001
Oil 228 0.95770 7.704 4.258 0.00001

Both tests reject the null hypothesis in the OCPI, OEP and WTI crude oil prices
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at the significance level 1%. This outcome is explored further to determine whether

the series are non-stationary.

Unit Root Tests

We proceed to test each series for unit root, using the DF (Dickey-Fuller) and

ADF (Augmented Dickey Fuller) tests. The null hypothesis H0 is that the given

series has a unit root and the alternative HA is that the series is stationary. Tables

4.3, 4.4 and 4.8 below test the null hypothesis H0 : γ = 0 against HA : γ < 0 in the

three following specifications:

∆pt = γpt−1 + vt

∆pt = µ+ γpt−1 + vt

∆pt = µ+ δt+ γpt−1 + vt

where t is a sequence of time indexes, t = 1, ..., 228, pt is the series of price indexes

or prices considered, and process vt is a strong White Noise, with finite moments of

order 4, which may not necessarily be Normally distributed.

The results of the Dickey Fuller test with no constant for the three series are

given in Table 4.3 below:
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Table 4.3: Dickey Fuller Test with no constant

Obs coefficient τ
OCPI 227 0.0009 0.487
OEP 227 0.0002 0.057
Oil 227 -0.0025 -0.459

Note: All three series exhibit unit roots

The results of the Dickey Fuller test with a constant for the three series are given

in Table 4.4 below:

Table 4.4: Dickey Fuller Test with Constant

Obs constant coefficient τ
OCPI 227 1.73285 -0.0163793 -1.732
OEP 227 2.80832 -0.0214907 -1.876
Oil 227 1.605374 -0.0242862 -1.788

All three series exhibit unit roots

Under the null hypothesis, the t-ratio is non-standard and its asymptotic distri-

bution is non-normal. Therefore, it is denoted by symbol τ . It is compared with the

critical values of the unit root test. We find that the unit root hypothesis cannot be

rejected in all three series at the significance level 5%. The results of the ADF with

constant are given in Tables 4.5, 4.6, 4.7 below:

Table 4.5: Augmented Dickey Fuller OEP

Constant Coefficient L1 Coefficient LD Coefficient L2D Coefficient L3D τ Observations
2.704 -0.022 � � � -1.876 227
(1.96) (-1.88) � � �

2.760 -0.022 0.119 � � -1.932 226
(1.99) (-1.93) (1.79) � �

2.807 -0.023 0.110 0.079 � -1.966 225
(2.00) (-1.97) (1.65) (1.18) �

2.987 -0.024 0.115 0.085 -0.031 -2.052 224
(2.11) (-2.05) (1.72) (1.26) (-0.46)

τ-statistic is reported in the parenthesis.
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Table 4.6: Augmented Dickey Fuller OCPI

Constant Coefficient L1 Coefficient LD Coefficient L2D Coefficient L3D τ Observations
1.733 -0.016 � � � -1.732 227
(1.86) (-1.73) � � �

1.730 -0.016 -0.061 � � -1.701 226
(1.84) (-0.92) (-1.70) � �

1.739 -0.016 -0.058 0.053 � -1.705 225
(1.83) (-1.71) (-0.86) (0.80) �

1.831 -0.017 -0.054 0.050 -0.057 -1.767 224
(1.91) (-1.77) (-0.81) (0.75) (-0.84)

τ-statistic is reported in the parenthesis.

Table 4.7: Augmented Dickey Fuller WTI Crude Oil Prices

Constant Coefficient L1 Coefficient LD Coefficient L2D Coefficient L3D τ Observations
1.605 -0.024 � � � -1.788 227
(1.75) (-1.79) � � �

1.957 -0.030 0.394 � � -2.443 226
(2.29) (-2.44) (6.39) � �

2.128 -0.034 0.359 0.099 � -2.637 225
(2.46) (-2.64) (5.43) (1.46) �

2.111 -0.033 0.364 0.124 -0.070 -2.535 224
(2.41) (-2.54) (5.49) (1.74) (-1.03)

τ-statistic is reported in the parenthesis.

The test results suggest that the null hypothesis of a unit root cannot be rejected

at the significance level 5%. The outcomes of the DF tests with a constant and trend

are given in Table 4.8:

Table 4.8: Dickey Fuller Test with Trend

constant trend coefficient τ Obs
OCPI 1.754093 0.0001633 -0.0167924 -1.193 227

(1.63) (0.04) (-1.19)
OEP 2.806635 -0.0000289 -0.0214495 -1.315 227

(1.86) (-0.00) (-1.32)
Oil 1.656705 -0.0011774 -0.0229507 -1.494 227

(1.73) (-0.19) (-1.49)
t-statistic is reported in the parenthesis. All three series exhibit unit roots

Table 4.9 shows the outcomes of the ADF test with a trend.
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Table 4.9: Augmented Dickey Fuller Test with Trend

constant trend coefficient L1 coefficient LD coefficient L2D τ Obs
OCPI 1.745804 0.0000498 -0.0165538 -0.0575078 0.0535956 -1.151 225

(1.59) (0.01) (-1.15) (-0.85) (0.79)
OEP 3.035848 0.0039103 -0.0286789 0.1151561 0.0843935 -1.719 225

(2.05) (0.49) (-1.72) (1.70) (1.24)
WTI Oil 1.96958 0.0036452 -0.0379302 0.3617519 0.1025899 -2.617 225

(2.18) (0.62) (-2.62) (5.45) (1.51)
t-statistic is reported in the parenthesis. All three series exhibit unit roots

The results shows that we cannot reject the null hypothesis at the significance

level 5% either. In the WTI series, the unit root hypothesis can be rejected at level

10%.

Common Trends Analysis

The evidence of unit root tests suggests that all series have a stochastic global

trend.

For the OEP and OCPI series, this result is consistent with the patterns displayed

in Figure 4.2. The OEP and OCPI series have a parallel upward sloping global trend,

resembling the dynamics of a pair of cointegrated variables. The presence of the

common trend follows from the construction of the price indexes and the fact that

the energy prices are included in the OCPI. Technically, the presence of unit roots

in both price indexes suggests that we can test for the common stochastic trend. If

the presence of the common stochastic trend is not rejected, we can establish a long

term relations between the Ontario price indexes using the cointegration approach.

To estimate the long-run relation between the OEP series and the consumer price
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index OCPI series, we regress the OEP on OCPI.

OEPt = β0 + β1OCPIt + et

ÔEP t = −39.047 + 1.610OCPIt (4.3.1)

The regression coefficient β1 has a standard error of 0.021 with a t-ratio of 75.82. To

check if the above regression represents a long-term relation rather than a spurious

regression, we examine the residual series , displayed in Figure 4.3.

[Insert Figure 4.3 : Departures from long-term relation of OCPI and OEP]

The residual seems stationary over time. To confirm this observation, we use

the cointegration test. The cointegration test performed on the residual, using the

Engle-Granger approach consists in testing the null hypothesis of the residuals being

non-stationary i.e. H0 : γ = 0 against HA : γ < 0 that the residuals are stationary.

The test is based on the model:

∆et = γet−1 + vt

where vt is a assumed to be a strong White Noise and the residuals êt of equation

(4.3.1) are used as the proxies of the true errors et. The Engle-Granger critical value

at the significance level 5% is -3.35, while the τ statistic for the γ coefficient, is
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-4.005. The results in Table 4.10 show that the regression of OEP on OCPI is valid

and represents a long-run relation.

Table 4.10: Cointegration Test

Coefficient τ
Regression -0.1412 -4.016
Residuals are stationary at probability level 5%

Let us now examine the relations between the Ontario price indexes and WTI

series. The evidence on the presence of a unit root in the WTI series is more difficult

to interpret. As shown in Figure 4.2 , the WTI series does not display a global

trend. Instead, it has short-lived local trends. As the local trends are short-lived,

the dynamics of the WTI does not resemble the behavior of stock prices or interest

rates, which are known to be non-stationary random walk processes. The WTI

resembles rather the behavior of the commodity price processes, which are modelled

in the recent literature as stationary processes with non-causal components.

We know that both Ontario price indexes are based on baskets that include oil

and depend on oil prices. As the weight of oil in the basket varies over time and

is consumer rather than producer price based, the econometric relationship in the

long run will reflect a complex accounting relationship. The evidence of a unit root

suggests that we can regress the price indexes on the WTI, and search for the presence

of a common trend. The problem is how to reconcile the lack of a global trend in
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the WTI with the upward global trends in the price indexes.

We first consider the relationship between the exchange rate adjusted OEP and

the WTI crude oil prices and regress the OEP on WTI. Due to the difference between

the global trends of OEP and WTI this relationship is invalid as the residuals of

the regression are non-stationary. More specifically, the residuals display an upward

sloping trend, displayed in Figure . The tests does not reject the unit root in residuals,

given the value of τ = −1.80.

In order to ”lift up” the WTI series, we can add a deterministic trend to the linear

relationship, by analogy to adding a deterministic trend to a cointegrating relation.

The regression estimated with a linear (deterministic) trend is:

OEPt = β0 + β1t+ β2WTIt + ut

ÔEP t = 41.6163 + 0.1700t+ 0.8905WTIt (4.3.2)

The regression coefficient β1 has a standard error of 0.007907 and t-ratio of 21.51.

The regression coefficient β2 has a standard error of 0.019468 and t-ratio of 45.74. We

perform the cointegration test on the residuals from equation (4.3.2) by estimating

∆ut = γut−1 + vt

and testing H0 : γ = 0 with residuals ût used as the proxies of errors ut. Table

4.11 below shows the results. We find that the τ statistic exceeds the Engle-Granger
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adjusted critical value at 5%. Accordingly, we can reject the unit root in the residuals

at level 5%. The residuals of regression (3.2) displayed in Figure 4.4 below are

stationary and the regression can be considered as a long-run relation between the

OEP and WTI series with a deterministic trend.

Table 4.11: Cointegration Test

Coefficient τ
Regression -0.19732 -4.818
Residuals are stationary at probability level 10%

[Insert Figure 4.4 : Rgression of OEP on oil prices - Residuals]

To compare the differences in global trends between the price indexes and the

WTI, we also regress the OCPI series on the WTI. Without a deterministic trend,

this regression is not valid either. The residuals of the regression of OCPI on WTI

without a deterministic trend displayed in Figure 4.6 show an upward sloping trend.10

The cointegration tests does not reject the unit root in the residuals with τ = −2.32.

The residuals of equation (4.3.1) êt [resp. residuals of equation (4.3.2) ût] can be

interpreted as a series of departures of the OEP and OCPI [resp. OEP and WTI]

series from the long run relations given in equation (4.3.1) [resp.(4.3.2)]. The sample

densities of these residuals are estimated and plotted in Figures 4.15, 4.17, Appendix

2. The qq-plots are given in Figures 4.16 and 4.18, Appendix 2. We observe that the

10The normality of errors is not required for the validity of cointegration analysis.
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residuals have distributions rather close to the Normal, although residual êt seems

to display some departures from Normality due to the thick right tail. Residual û

shows slight asymmetry in its distribution and a thin right tail.

The absence of a global trend in the WTI series and the presence of short-lived

local trends suggests that this series may indeed be stationary with a noncausal

dynamic, which is explored later in the text. The forecast of the stationary noncausal

WTI series would then be available and could be exploited to forecast the Ontario

price indexes.

Forecasting

The stationary residual series êt and ût are autocorrelated and can be estimated

by an ARMA model. These series represent stationary combinations of components

displaying various types of trend: global and local in terms of duration and stochastic,

and deterministic in terms of nature.

Tables 4.17 and 4.18 in Appendix 3 provide the estimates of simple ARMA(p,q)

models fitted to the series of residuals from equations (4.3.1) and (4.3.2). The au-

toregressive AR(2) models are found to provide the best fit for both series. Hence,

both series of residuals can be easily forecast using standard software, such as SAS

or STATA.

Then, the forecast of the WTI crude oil prices combined with the forecast of
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residual (4.3.2) provides a forecast of OEP as follows:

Let ŴTIT+1 denote the one step ahead out of sample forecast of the WTI crude

oil price and ûT+1 denote the one step ahead forecast of the error term provided by

the AR(2) model. We can use equation (4.3.2) to obtain the forecast of the energy

index based on the forecast of WTI crude oil price:

ÔEP T+1 = 41.6163 + 0.1700(T + 1) + 0.8905ŴTIT+1 + ûT+1

where et ÔEP T+1 denotes the one step ahead out of sample forecast of the Ontario

energy index. In practice, the regression parameters can be estimated locally by

rolling to capture the potential changes in the slope of the trend function:

ÔEP T+1 = θ0,T + θ1,T (T + 1) + θ2,T ŴTIT+1 + ûT+1

where θi,T , i = 0, 1, 2 denote the coefficients updated by rolling. This method can be

used for short term forecasting.

Next, we can forecast the OCPI series from equation (4.3.2) one step ahead out

of sample using the predicted energy index and residual ûT+1 as follows:

ÔCPIT+1 = 24.2528 + 0.621118ÔEP T+1 − 0.621118êT+1

.
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The above forecasts are not optimal in the sense that ÔEP T+1 and ÔCPIT+1 are

not equal to their conditional expectations, given the past values of the right hand

side series. However, the forecast is unbiased as the expected forecast error is 0. The

forecast error variance depends on the quality of the component forecasts and needs

to be examined in a simulation study.

The proposed approach resembles a simple neural network that combines two

layers of regressions. It is a simplified alternative to the Vector Error Correction

(VEC) model presented below.

The VEC Model

The specifications of the VEC model examined in this study are based on the

insights on common trends given earlier in this Section. The bivariate model of price

indexes with the current value of WTI as an explanatory variable provides the best

forecasts of Ontario price indexes. The VECX(2) model is specified as follows:

∆pt = const+ Πpt−1 + Φ∆pt−1 +WTIt + εt

where pt contains the series of OEPt and OCPIt, matrix Π = αβ′ is of rank 1 and the

errors are a white noise process with finite moments up to order 4. The parameters

α1 = 0.513, α2 = 0.157 are both significant at 5%. The cointegrating vector β′ =

[−0.927, 1] under the normalization with respect to OCPI. The coefficients on the
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WTI, as well as the lagged first difference of OEP, are statistically significant. The

detailed estimation results are provided in Appendix 3.

The out-of sample forecasts of Ontario price indexes at horizons from 1 up to 5

months are as follows:

Var. Obs Forecast St. Error 95% Conf. Int. Actual Residual

oep 224 128.553 4.641 119.455 , 137.650 128.139 -0.413

225 128.363 5.929 116.742, 139.985 127.514 -0.848

226 128.404 6.591 115.484, 141.323 122.140 -6.263

227 125.888 7.037 112.094, 139.682 114.654 -11.233

228 122.549 7.425 107.994, 137.104 108.089 -14.460

ocpi 224 104.166 2.612 99.046, 109.286 104.213 0.047

225 104.220 3.398 97.560, 110.881 104.738 0.518

226 104.289 4.049 96.353, 112.225 103.063 -1.226

227 103.655 4.612 94.614, 112.697 101.639 -2.016

228 102.933 5.124 92.890, 112.976 98.996 -3.937

The presence of WTIt improves the forecasts of price indexes. We observe that the

forecasts of OEPt worsen quickly with the forecast horizon, while the forecast of

OCPIt remains quite reliable.

Next, we model jointly the two Ontario price indexes and the WTI series. Under

this approach the three series satisfy a cointegrating relation with a linear trend.
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The model is the following VEC(2):

∆pwt = const+ α(β′, β1)(pw′t−1, t)
′ + Φ∆pwt−1 + εwt,

where pwt denotes the vector containing OEPt, OCPIt and WTIt, t denotes the

linear trend, matrix Π is of rank 1 and the errors are a white noise process with finite

moments up to order 4. The coefficients in vector α are 0.333, 0.089 and 0.461. The

α coefficients on OEP and WTI are statistically significant at 5%, while coefficient

αOCPI is not, due to its p-value of 0.06. The coefficients in the cointegrating vector β

are -0.483, 1, -0.122, under the normalization with respect to OCPI. The parameter

estimates are given in Appendix 3.

This trivariate VEC(2) specification provides the best forecasts of the WTI series

up to horizon 3, as compared with the VEC(2) model with matrix Π of rank 2

and a linear trend, which provides better forecasts of WTI at horizons 4 and 5

and is the second best WTI forecast provider. The forecasts of the Ontario prices

obtained from both trivariate VEC(2) models are worse than those obtained from

the VEXC(2) model with the WTI as an explanatory variable. However, the price

indexes help forecast the WTI.

The out-of-sample WTI forecasts at horizons 1 up to 5 from the trivariate VEC

model with 1 cointegrating vector and a linear trend are as follows:
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Obs Forecast St. Error 95% Conf. Int. Actual Residual er(NC)

224 70.946 4.575 61.978, 79.913 68.060 -2.886 -2.92

225 69.549 7.502 54.845, 84.253 70.230 0.680 -0.75

226 67.820 9.691 48.826, 86.815 70.750 2.929 -0.23

227 66.223 11.375 43.927, 88.519 56.960 -9.263 -14.02

228 64.909 12.759 39.901, 89.917 49.520 -15.389 -21.46

The last column shows the errors of a forecast based on the ”no-change” (NC)

method, which assumes that the best forecast of a future value is the last observed

one. We find that the VEC-based forecasts outperform the NC forecast one-step

ahead and in terms of the forecast MSE up to horizon 5. The MSE of the VEC

forecast is 67.915, while the MSE of the NC forecast is 133.246.

4.4 Estimation of Dynamic Oil Price Models

The unit root analysis suggests potential nonstationarity of the WTI crude oil price

series. However, the WTI series does not have an explosive behaviour, although

its ”meandering” can be interpreted as a nonstationary pattern due to a unit root,

according to the early time series literature. More recent literature however [see e.g

Perron (1989)] has revealed that the unit root tests have low power in applications to

processes with level shifts. In Section 2, we pointed out two major declines in the oil

prices, which may have led to spurious results of unit root test. Moreover, the unit
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root tests are flawed in applications to stationary recurrent processes with non-normal

distributions that display local trends [see, Gourieroux and Jasiak (2018)]. This is

because the unit root test does not distinguish between the stationary processes with

local trends and nonstationary processes with global trends. Hence, the unit root

tests tend to accept the null hypothesis in the presence of either type of trend.

In this section, we examine various models to find a suitable stationary repre-

sentation for the WTI crude oil price process. Let us first examine its distributional

properties while assuming its stationarity.

Table 4.12: Summary Statistics

count mean min max sd skewness kurtosis

WTI 228 62.010 19.39 133.88 26.79109 0.344 2.141

Table 4.13: Summary Statistics - quantiles of empirical density

1% 5% 10% 25% Median 75% 90% 95% 99%

WTI 19.72 26.43 28.39 38.56 59.175 84.96 100.54 104.67 125.4

The summary statistics in Tables 4.12 and 4.13 show that the sample

mean of WTI is 62.01, and the median is 59.17, respectively. The standard deviation

of WTI is 26.79 and the range is 114.49. respectively. Figure 4.7 below shows the

histogram of the Oil Price.

[Insert Figure 4.7: Histogram: WTI Crude Oil Price]
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The sample distribution reveals a bimodal pattern. We compare this distribution to

the Normal distribution in the quantile plot (QQ-plot) displayed in Figure 4.8 below.

[Insert Figure 4.8: Crude Oil - QQ Plot]

Figure 4.8 reveals departures of the WTI crude oil price from Normality due to

heavy tails, despite the low sample kurtosis value. Such a contradictory outcome can

arise in multimodal distributions. These finding motivates us to fit to the WTI crude

oil prices a stationary mixture model, to accommodate both the multimodality, and

heavy tails displayed in Figure 4.9 below:

[Insert Figure 4.9: Crude Oil - Hill Estimator]

Below, we explore the fit of the mixed causal-noncausal MAR models that can ac-

commodate various asymmetric local trends. As an alternative mixture specification,

we also explore a convolution model with causal and noncausal components.

All estimations reported below concern the process yt = oilt −median(oil). We

refer to this process as the ”demeaned” oil prices.

The behaviour of the demeaned series over time is displayed in Figure 4.10 below.

[Insert 4.10: Demeaned WTI Crude Oil Prices]

We observe that the series tends to revert to the level close to 0 over time. It displays

spikes and bubbles which are short lasting local trends with a growth phase followed
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by a sudden drop, like the one observed around observation 100 in Figure 4.8, for

example.

4.4.1 Noncausal Models

The noncausal processes have simple linear dynamics in the reverse time, while dis-

playing non-linearities in the calendar time. They can accommodate spikes and local

trends in the trajectory of a process, including the bubbles.

The mixed autoregressive causal-noncausal model is:

Φ(L)Ψ(L−1)yt = εt, (4.4.3)

where Φ(L) is the autoregressive polynomial in lag operator L of order r, Ψ(L−1) is

the autoregressive polynomial in lead operator L−1 of order s and errors εt are i.i.d.

Cauchy distributed variables with location 0 and scale coefficient γ. For stationarity,

we require both autoregressive polynomials to have roots outside the unit circle.

Let θ = [φ1, ...φr, ψ1, ..., ψs, γ]′. We use the Approximate Likelihood Method

(AML) [Lanne, Saikkonnen(2011)] and maximize the log-likelihood function 11:

L(θ; y1, ....yT ) =
T−s−1∑
t=r+1

[−ln(π)− lnγ − ln(1 + (εt(θ)
2/(γ2))];

11The standard error and t-ratio are asymptotically valid for the scale estimator γ only [Andrews
et.al (2009)]. The standard errors of the remaining coefficients tend to be overestimated by the
AML method.
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where εt denotes the error term from one of the specifications presented below. Let

us first, examine pure noncausal processes. These models with Cauchy distributed

errors can replicate the bubbles, i.e. the aforementioned local trends followed by

sudden bursts. First, we consider a Cauchy noncausal AR(1) (r=1, s=0).

yt = ψyt+1 + εt

It is estimated with an objective function value of 713.486537:

Parameters Estimates st error* t-ratio*

ψ 0.9894 0.0096 102.8088

γ 2.6200 0.2223 11.7821

We find that the autoregressive coefficient is close to 1. The root of the autoregressive

polynomial is 1.01.

Next, we consider the noncausal AR(2) process (r=2, s=0).

yt = ψ1yt+1 + ψ2yt+2 + εt

It is estimated with an objective function value of 711.17401:
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Parameters Estimates st error* t-ratio*

ψ1 1.1217 0.0582 19.2673

ψ2 -0.1328 0.0576 -2.3048

γ 2.5812 0.2183 11.8225

The roots of the autoregressive polynomial are 7.4335 and 1.013 and one root is still

close to the unit circle.

Let us now consider the mixed causal-noncausal processes, which allow for more

complex dynamics including the spikes and bubbles with possibly asymmetric pat-

terns of growth and burst. We start with a noncausal MAR(1,1) process that com-

bines the causal and noncausal components.

(1− φL)(1− ψL−1)yt = εt, (4.4.4)

It is estimated with an objective function value of 706.773270:

Parameters Estimates st error* t-ratio*

ψ 0.9843 0.0703 2.1383

φ 0.1504 0.0120 81.4352

γ 2.5944 0.2297 11.2947

The roots of the MAR(1,1) lie outside the unit circle. The root of the non-causal

polynomial is 1.02. The MAR(2,2) model below
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(1− φ1L− φ2L
2)(1− ψ1L

−1 − ψ2L
−2)yt = εt,

is estimated with an objective function value of 696.384026:

Parameters Estimates st error* t-ratio*

ψ1 0.6492 0.0939 6.9114

ψ2 0.3092 0.0950 3.2540

φ1 0.5530 0.0977 5.6583

φ2 -0.0580 0.0785 -0.7397

γ 2.6438 0.2192 12.0579

The roots of both polynomials are 5.4035 and 4.1309 and -1.631393 and 3.73171 for

both polynomials, respectively. They are outside the unit circle.

The MAR(2,1) model:

(1− ψ1L
−1 − ψ2L

−2)(1− φL)yt = εt,

is estimated with an objective function value of 696.634560:
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Parameters Estimates st error* t-ratio*

ψ1 0.6816 0.0782 8.7109

ψ2 0.2708 0.0738 3.6666

φ 0.4945 0.0614 8.0435

γ 2.6283 0.2252 11.6676

The roots of the autoregressive polynomials are 4.1199 and -1.59770 and are outside

the unit circle.

We conclude that the stationary mixed causal-noncausal processes can accommodate

the dynamics of the WTI crude oil prices. The best fit is provided by the MAR(1,1)

process which has the highest value of the log-likelihood function at the maximum

and the roots of autoregressive polynomials outside the unit circle.

The forecasts from the MAR(1,1) process can be computed from a closed-form

formula of the predictive density as shown in Section .

4.4.2 Convolution Model

4.2.1 The Model

An alternative approach that accommodates the mixture representation is based

on the assumption that process Yt is a convolution of a Gaussian causal AR(1) and

a Cauchy noncausal MAR(0,1):
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Yt = Xt + Zt,

where

Xt = ρXt−1 + σεt, |ρ| < 1

is a stationary Gaussian AR(1) with εt ∼ IIN(0, 1). The marginal distribution of

Xt is Xt ∼ N(0, σ2

1−ρ2 ).

The stationary noncausal component is:

Zt = rZt+1 + γεt, |r| < 1

where εt is i.i.d. Cauchy C(0, 1). The marginal distribution of Zt is such that Zt(1−

|r|)/γ ∼ C(0, 1).

The noise processes εt and εt are independent. Therefore, the distribution of (Yt)

is the convoluate of the distributions of (Xt) and (Zt). The joint distribution of

(YtYt−1) can be examined from its joint characteristic function.

Let ϕ(u, v) denote the characteristic function of Yt, Yt−1:
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ϕ(u, v) = E[exp i(uYt + vYt−1)]

= E{exp[i(uXt + vXt−1)] exp[i(uZt + vZt−1)]}

= E{exp i(uXt + vXt−1)} E{exp i(uZt + vZt−1)}

We have uXt + vXt−1 = (uρ+ v)Xt−1 +uσεt. Thus the first expectation on the right

hand side can be written as:

E{exp i(uXt + vXt−1)} = E{exp i(uρ+ v)Xt−1}E{exp(iσuεt)}

= exp[−(uρ+ v)2 σ2

1− ρ2
] exp(−σ

2

2
u2)

Similarly, we have uZt+vZt−1 = (u+rv)Zt+vγεt−1 and E[exp(ivγεt−1)] = exp[−γ|v|].

Also Zt = γεt + γrεt+1 + γr2εt+2 + · · · .

Moreover,

E[exp (iuZt)] = exp−(γ|u|+ γr|u|+ γr2|u|+ · · · )

= exp

[
−γ |u|

1− |r|

]

Therefore, the second expectation can be written as:
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E{exp i(uZt + vZt−1)} = E exp [i(u+ rv)Zt−1] E[exp vγεt−1]

= exp

[
−γ |u+ rv|

1− |r|
− γ|v|

]

Proposition:

ϕ(u, v) = E[exp i(uYt + vYt−1)]

= exp

[
−(uρ+ v)2 σ2

1− ρ2
] − σ2

2
u2 − γ |u+ rv|

1− |r|
− γ|v|

]

4.2.2 Estimation

We can estimate the parameter vector θ = [ρ, r, σ2, γ]′ from observations y1, ..., yT

by finding

θ̂ = argmin ||ϕ̃T (u, v)− ϕ(u, v)||2,

where ||.||2 denotes a norm on the space of functions u, v and

ϕ̃T (u, v) =
1

T

T∑
t=1

cos[uYt + vYt−1)].

given the symmetry of the Normal and Cauchy distributions [see, Gourieroux and

Zakoian (2017)].
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For estimation, we consider an Euclidean norm constructed from a grid of values

(uj, vj), j = 1, ..., J . The grid covers the interval (-0.5,1.5) with increments of 0.001.

We estimate the process and obtain 12 :

Parameters ρ σ r γ

estimates 0.506 2.880 0.910 1.995

st. error 0.027 0.600 0.083 0.191

In order to verify if the deconvolution model can replicate the bimodal sample density

of the data, we simulate a sample of mixture process with the values of coefficients

equal to the estimates and the error from Cauchy and Normal distributions with

variances set equal to the estimates given above. Next, we compute its histogram

and kernel-smoothed density, which is displayed in Figure 4.11 below.

[Insert Figure 4.11: Histogram, simulated y]

The simulated model can replicate the bimodality revealed in the sample distri-

bution of oil prices.

4.5 Nonlinear Forecast

The MAR(1,1) specification can provide the forecasts of WTI series.

It follows from Lanne and Saikkonen (2011), and Lanne, Luoto, and Saikkonen

(2012), that process (yt) has the following unobserved components ut, vt defined by:

12See Gourieroux and Zakoian (2018) for the asymptotic validity of the standard errors
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ut ≡ (1− φL)yt ↔ (1− ψL−1)ut = εt, (4.5.5)

and

vt ≡ (1− ψL−1)yt ↔ (1− φL)vt = εt, (4.5.6)

which can be interpreted as the “causal” and “noncausal” components of process

(yt). Precisely, (ut) is a pure noncausal and (vt) is a pure causal autoregressive

process of order 1. Moreover, i) ut is ε-noncausal and y-causal and ii) vt is ε-causal

and y-noncausal. However, these processes are based on the same noise εt and are

not independent. They can be combined to construct the series yt.

The above unobserved component representation of process yt can be used for

filtering and forecasting.

4.5.1 Filtering and Simulation

The filtering procedure allows us to compute the unobserved components given the

observations on process (yt), over a period of length T . Let (y1, . . . , yT ) denote the

observed sequence.

The values of unobserved components u and v and errors ε can be computed from

a set of observations (y1, . . . , yT ) as follows:
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(i) From equation 4.4.4 for t = 2, . . . , T − 1, we obtain the values ε2, . . . , εT−1 as

functions of (y1, . . . , yT ).

(ii) From equation 4.5.5 : ut = (1− φL)yt, t = 2, . . . , T , we obtain u2, . . . , uT .

(iii) From equation 4.5.6 : vt = (1−ψL−1)yt, t = 1, . . . , T −1, we obtain v1, . . . , vT−1.

When an additional observation yT+1 becomes available, the set of unobserved com-

ponents can be updated by computing εT , uT+1 and vT .

The above formulas can be used to simulate the trajectories of process (yt) as

follows:

step 1: Simulate a path of i.i.d. errors εst , t = 1, ..., T .

step 2: Use formulas 4.5.5 - 4.5.6 to obtain the simulated paths of the ε-causal and

ε-noncausal components :

ust = εst + ψust+1, t = 1, ..., 2T,

vst = εst + φvst−1, t = −T, ..., T,

starting from a far terminal condition (resp. far initial condition) us2T = u0, say

(resp. vs−T = v0).
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step 3: The simulated trajectory (yst ) is obtained from either one of the two partial

fraction representations given below:

yst =
1

1− φψ
(ust + φvst−1) =

1

1− φψ
(vst + ψust+1), t = 1, ..., T. (4.5.7)

4.5.2 Forecasting from the MAR(1,1) Model

The information set (y1, . . . , yT ) is equivalent to the information set (v1, . . . , v2, ε2, . . . , εT−1,

uT , . . . , uT ), as shown in Gourieroux and Jasiak (2016). Therefore, the information

contained in (y1, . . . , yT+H) is equivalent to the information in (v1, ε2, . . . , εT+H−1, uT+1, . . . , uT+H),

and it is also equivalent to that in (v1, ε2, ..., εT−1, uT , ..., uT+H), because (1−ψ(L−1))ut =

εt, t = T, . . . , T +H − s by formula 4.5.5.

Thus, instead of predicting the future value of y, at horizonH, we can equivalently

predict the future value of the ε-noncausal component u, by finding the predictive

density Π̂ at horizon H for a noncausal process of order 1:

For a given error density g and for known values of coefficients φ, ψ we get :

Π̂(uT+1, . . . , uT+H |ûT )

=
g(ûT − ψuT+1)g(uT+1 − ψuT+2)g(uT+H−1 − ψuT+H)

∑T
t=1 g(uT+H − ψût)∑T

t=1 g(ûT − ψût)
.

(4.5.8)
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where ût, t = 1 + 1, ..., T are the filtered values of the ε-noncausal component, that

are functions of y1, ...., yT and of coefficients φ, ψ.

The predictive density given above has a closed-form representation when the

error density g is known. In particular, when ε follows a Cauchy distribution, the

one-step ahead predictive density is:

π(uT+1|uT ) =
1

π

1

1 + (uT − ψuT+1)2

1 + (1− ψ)2u2
T

1 + (1− ψ)2u2
T+1

, (4.5.9)

and the predictive joint distribution of two future values is:

π(uT+1, uT+2|uT ) =
1

π2

1

1 + (uT − ψuT+1)2

1

1 + (uT+1 − ψuT+2)2
×

1 + (1− ψ)2u2
T

1 + (1− ψ)2u2
T+2

. (4.5.10)

The above forecasting method developed by Gourieroux and Jasiak (2016) relies on

a closed-form formula of the estimated predictive density Π̂ given above.

An alternative forecasting method proposed by Lanne, Luoto, and Saikkonen

(2012) relies on the simulations of long paths of future εT+1, ..., εT+M , from which

the future vectors uT+1, ...., uT+H are recovered. That method approximates nu-

merically the predictive density from a large number of simulations and is more

computationally demanding. The approximation to the predictive density is based

on a truncation uT ≈
∑M

j=1 βjεT+j, which entails a truncation bias. That bias can

be arbitrarily reduced by sufficiently increasing the truncation parameter M .
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4.5.3 MAR Forecasts of WTI Crude Oil Prices

Let us now examine the forecasting performance of the MAR(1,1) model in applica-

tion to the WTI crude oil price data over the last 8 months of the sampling period,

i.e. for T = 221 to 228.

The one step ahead out-of-sample forecasts of WTI crude oil prices are computed

from the MAR(1,1) model, by applying the ”GJ” method of Gourieroux and Jasiak

(2016), and the ”LLS” method of Lanne, Luoto, and Saikkonen (2012). Next, the

forecasts are compared to the true values of median adjusted oil prices and the

”no-change” forecast, denoted by ”NC” and equal to the last observed value of the

process.

The GJ forecasts of the last 8 values of the process are given in Table 4.14 below

in column 3. The true values of the process are given in column 1, Column 2 reports

the filtered values of the noncausal component u. Column 4 contains the prediction

error of that forecast. Columns 5 and 6 present the lower and upper prediction

interval at 50% obtained from the lower and upper quartile of the predictive density.

The level of 50% is chosen to eliminate the effect of long tails. Column 7 shows

the forecast from the MAR(1,1) process based on the LLS method with a t-student

approximation of the error distribution. Column 8 provides the prediction error of

that forecast. Column 9 provides the ”no-change” forecast NC. Column 10 reports
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the forecast error of the NC forecast.
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Table 4.14: One Step Ahead Out-Of-Sample Forecasts of Demeaned WTI Crude Oil

true yT+1 uT+1 ŷT+1 er.(ŷT+1) PI(ŷT+1) L PI(ŷT+1) U ỹT+1 er.(ỹT+1) NC er(NC)
y(221) = 10.805 9.743 7.463 3.341 -13.136 16.863 6.919 3.885 7.075 3.73
y(222) = 8.695 7.0742 11.235 -2.540 -9.464 20.535 11.308 -2.613 10.805 -2.11
y(223) = 11.805 10.500 8.358 3.446 -11.541 18.458 8.654 3.150 8.695 3.11
y(224) = 8.885 7.114 12.119 -3.234 -8.480 21.519 12.044 -3.159 11.805 -2.92
y(225) = 11.055 9.722 8.946 2.109 -11.354 18.645 9.171 1.883 8.885 2.17
y(226) = 11.575 9.916 11.281 0.293 -9.218 20.781 10.944 0.630 11.055 0.52
y(227) = -2.215 -3.951 11.493 -13.708 -8.706 21.293 11.077 -13.292 -1 11.575 -13.79
y(228) = -9.655 -9.332 -3.180 6.474 -22.280 7.719 -3.304 6.350 -2.215 -7.44

The forecasts from the MAR(1,1) based on both methods provide very close results

in the application to the WTI crude oil prices. The median forecast error based on

Lanne et al. is 1.2565 as compared to 1.201 for Gourieroux and Jasiak. The median

forecast error of the no-change method is -0.795. The prediction interval, obtained

from the predictive density of Gourieroux and Jasiak method contains the true values

of the process for each yT+1. The method of Lanne et al. available on-line does not

provide a prediction interval.

The GJ method provides forecasts with mean forecast error of -0.477 and mean

squared error (MSE) of 34.287, which are slightly above the mean forecast error

of -0.395 and MSE of 32.845 for the LSS. The ”no-change” method has the worse

performance with mean forecast error of -2.0912 and MSE of 35.882. Hence, the

forecasts from the mixed causal-noncausal model outperform the ”no-change” in one

step-ahead forecasts.
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4.6 Conclusion

This chapter introduced a new convolution model for monthly WTI crude oil prices,

which accommodates local trends in its dynamics and a multimodal sample density

evidenced in Section 4.2. The results show that the convolution approach presents

a promising approach for modelling the monthly WTI crude oil prices. We also

estimated the comovements between the Ontario consumer price and energy price

indexes and the WTI crude oil prices. The comovements between these series al-

low for forecasting the Ontario price indexes using either the VEC model, or linear

functions of the forecasts of oil prices provided from the mixed autoregressive causal-

noncausal model.

The forecasts based on the noncausal MAR(1,1) model of the WTI crude oil

prices were computed from two methods of forecasting for autoregressive causal-

noncausal processes. Both the methods using MAR model to forecast the WTI crude

oil price outperformed the ”no change” forecast. The results suggest the proposed

model estimated under both method outperforms existing models and provide close

approximations of out of sample values, as the model can accommodate the various

asymmetric local trends observed in the WTI data distribution.

Under a more turbulent economic environment, for example with the COVID 19

pandemic causing a steep change in oil price, a separate cointegration analysis should
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be performed on the relationship between the WTI and Ontario price indices to verify

any changes and the validity of the VEC models. The convolution model and the

forecasts based on the noncausal MAR(1,1) model should be estimated with updated

data. The forecast under these models should still produce a close approximation,

as the model can accommodate various asymmetric local trends.
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Figure 4.1: Dynamics of OCPI, OEP and WTI Crude oil prices
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Figure 4.2: Dynamics of transformed OCPI, OEP and WTI crude oil price in US$
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Figure 4.3: Departures from long-term relation of OEP and OCPI- Residuals Model
(4.3.1)
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Figure 4.4: Rgression of OEP on oil prices - Residuals
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Figure 4.5: Departures from long-term relation of oil prices and OEP - Residuals
(4.3.2)
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Figure 4.6: Regression on OCPI on oil prices - Residuals
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Figure 4.7: WTI Crude Oil Prices: Histogram
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Figure 4.8: Crude Oil - QQ Plot
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Conclusion
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Given the volatility in commodity prices and the prevalent use of financial deriva-

tive to hedge price volatility, this thesis focuses on two themes: (i) how to align

hedging decision between mangers and shareholder using executive compensation to

maximize firm value, and (ii) how the commodity/index prices can be forecasted.

Chapters Two and Three addresses the agency problem presented in past liter-

ature whereby risk-averse mangers tends to over-hedge (Holmstorm and Ricart i.

Costa, 1986; Smith and Stulz, 1985). I developed a model to mitigate the agency

problem by aligning hedging with the use of executive compensation. My first contri-

bution is determining the factors that affect hedging decision and optimal executive

compensation. Second, using these factors I show how the agency problem can be

mitigated in practice. In the third chapter, I empirically test my model findings, the

additional contribution is using manually collected firm hedging data from the firms’

10K reports to show empirically equity-based executive compensation is negatively

related to hedging which is consistent with prior research Chen, Jin, and Wen (2011),

and Tufano (1996).

Future research will be focused on further examining the relationship between

executive compensation and hedging. For example, developing a model to study the

effects of different types of derivatives while considering the role of the risk-averse

managers, or studying the effects in a multi-period model. Another possible study
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can examine the not only the hedging of price risk, but also quantity risk.

Chapter Four focuses on how commodity/index prices can be forecasted. Being

able to forecast the commodity prices provides insight into the economic environment,

which can then be used to determine the optimal compensation scheme, as one of the

factors affecting optimal executive compensation is volatility of commodity prices.

The chapter’s first contribution is modelling and forecasting the WTI oil prices by

estimating the long-run relationships between the Ontario price indexes, and the

WTI oil prices. The forecasts of the Ontario price indexes and WTI crude oil prices

are obtained by the cointegration analysis. Alternatively, the forecasts of Ontario

price indexes are provided by the functions of the WTI crude oil price forecasts

combined with the forecast of the stationary series of departures from the long run

equilibrium. Second, this chapter provide a new method to model the oil price process

(i.e. a convolution of stationary causal and noncausal processes). The forecast of

the WTI crude oil prices can be obtained by forecasting the convoluted series or

conversely, from a simple mixed causal -noncausal model of WTI crude oil prices.

The latter approach allows for the comparison of the two methods of forecasting

for noncausal processes developed by Lanne, Luoto and Saikkonen (2012) and by

Gourieroux and Jasiak (2016).

Related future research will be focused on the use of cointegration analysis for
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different commodities and series and the use of the convolution approach. Also, we

can study the forecasts obtained under the convolution approach of the predicted oil

prices.
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Appendix 1: Chapter 2
To get Et(πt) and V art(πt), first get E(St) and V artS

E(St) =
So√
2πt

∫ ∞
−∞

[(eµt−
σ2st

2
+σsχ)(e

−χ2
2t )]∂χ

E(St) =
So√
2πt

∫ ∞
−∞

[e−
(χ−σst)2

2t
+µt]

E(St) = Soe
µt[

1√
2πt

∫ ∞
−∞

e−
(χ−σst)2

2t ]

E(St) = Soe
µt

Now to get V arSt, V arSt = E(S2)− (ES)2

E(S2
t ) =

S2
o√

2πt

∫ ∞
−∞

[(e2µt−σ2
s t+2σsχ)(e

−χ2
2t )]∂χ

E(S2
t ) =

S2
o√

2πt

∫ ∞
−∞

[e−
(χ−2σst)

2

2t
+σ2

s t+2µt]

E(S2
t ) = S2

oe
σ2
s t+2µt[

1√
2πt

∫ ∞
−∞

e−
(χ−σst)2

2t ]

E(S2
t ) = S2

oe
σ2
s t+2µt

V arSt = S2
oe
σ2
s t+2µt − S2

oe
2µt

V arSt = S2
oe

2µt(eσ
2
s t − 1)

Also,
E(q(a)) = f(a)

E(q(a)2) = (f(a) + ε)(f(a) + ε) E(q(a)2) = (f(a)2 + 2f(a)E(ε) + E(ε2)

= f(a)2 + σ2
ε)

E(S2
t q(a)) = E[S2

t ]E[q(a)]− cov(S2
t , q(a)) = f(a)Soe

σ2
s t+2µt

E(Stq(a)2) = E(St)E(q(a)2)− cov(S, q(a)2) = f(a)2Soe
µt + Soe

µtσ2
ε

E(S2
t q(a)2) = E[S2

t ]E[q(a)2]− cov(S2
t , q(a)2) = Soe

σ2
s t+2µt[f(a)2 + σ2

ε)]
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= f(a)2S2
oe
σ2
s t+2µt + S2

oe
σ2
s t+2µtσ2

ε

The covariance between St and q(a) and the co variance of their 2nd moments
are zero.

Et(πt) = s+ b[h(Fo − E(St)) + E(q(a))St − c1E(f(a) + ε)− c2]− g(a)

V art(πt) = V ar[s+ bhFo + b[−hE(St) + q(a)St − c1(q(a))]− bc2 − g(a)]

V art(πt) = V ar[b[−hE(St) + q(a)St − c1(q(a))]

X = b[−hE(St)) + q(a)St − c1(q(a))

V art(πt) = V artX = E(X2)− (EX)2

(EX)2 = E[b[−hE(St) + q(a)St − c1(q(a))]2 = [−bhSoeµt + bf(a)Soe
µt − bc1f(a)]2

(EX)2 = (bhSoe
µt)2 − 2b2hS2

oe
2µtf(a) + 2b2hSoe

µtc1f(a) + (bf(a)Soe
µt)2

−2b2f(a)2c1Soe
µt + (bc1f(a))2

X2 = [−bhS + bq(a)S − bc1q(a)][−bhS + bq(a)S − bc1q(a)]

X2 = (bhS)2 − 2b2hq(a)S2 + 2b2hc1q(a)S + (bq(a)S)2 − 2b2c1q(a)2S + (bc1q(a))2]

E(X2) = (bh)2(S2
oe
σ2
s t+2µt)− 2b2h(S2

oe
σ2
s t+2µt)f(a) + 2b2hc1(Soe

µt)f(a)

+b2S2
o(f(a)2eσ

2
s t+2µt + σ2

εe
σ2t+2µt)− 2b2c1So(f(a)2eµt + σ2

εe
µt) + b2c2

1(f(a)2 + σ2
ε)

V ar(X) = S2
ob

2(eσ
2
s t − 1)e2µt(h− f(a))2 + b2σ2

ε [S
2
oe
σ2
s t+2µt − 2Soc1e

µt + c2
1]
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Appendix 2: Chapter 4

Additional Figures

Figure 4.12: CAD/USD Exchange Rates
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Figure 4.13: OCPI in US$ - QQ Plot

140



Figure 4.14: OCPI in US$ - QQ Plot
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Figure 4.15: Residual Model (4.3.1) - Density
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Figure 4.16: Residual Model (4.3.1) - QQ Plot
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Figure 4.17: Residual Model (4.3.2) - Density
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Figure 4.18: Residual Model (4.3.2) - QQ Plot
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Appendix 3: Chapter 4 - Additional Tables

Table 4.15: VEC Model Parameter Estimates
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Table 4.16: VEC Model Parameter Estimates

The sample standard deviations of the OEP and OCPI residuals are 4.659 and
2.600, respectively. The Kolmogorov-Smirnov test does not reject the null
hypothesis of normality of these residuals at 5% with the p-values of 0.083 and
0.086, respectively.
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ARMA models of departures from long-run equilibrium

Table 4.17: departures from long-run equilibrium (Model 4.3.1)

AR1 AR2 MA1 MA2 ARMA1,1 ARMA 1,2 ARMA 2,1
Dtregress
Constant -0.575 -1.007 -0.0467 -0.0580 -1.068 -0.899 -0.885

(2.595) (3.331) (0.885) (1.048) (3.499) (3.231) (3.160)
ARMA
Lag 1 0.857∗∗∗ 0.636∗∗∗ 0.923∗∗∗ 0.906∗∗∗ 0.397

(0.0405) (0.0774) (0.0329) (0.0381) (0.264)

Lag 2 0.259∗∗∗ 0.462∗

(0.0770) (0.224)

e1 0.601∗∗∗ 0.719∗∗∗ -0.257∗∗ -0.256∗∗ 0.258
(0.0680) (0.0592) (0.0881) (0.0879) (0.295)

e2 0.622∗∗∗ 0.0972
(0.0648) (0.0796)

sigma
Constant 4.600∗∗∗ 4.441∗∗∗ 6.632∗∗∗ 5.367∗∗∗ 4.465∗∗∗ 4.444∗∗∗ 4.432∗∗∗

(0.255) (0.251) (0.423) (0.333) (0.250) (0.253) (0.251)
Observations 156 156 156 156 156 156 156
AIC 926.1 917.3 1039.4 976.2 919.0 919.5 918.7
BIC 935.3 929.5 1048.6 988.4 931.2 934.8 934.0

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The results show that the AR2 model has the best fit.
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Table 4.18: OEP regress on WTI - (Model 4.3.2)

AR1 AR2 MA1 MA2 ARMA1,1 ARMA 1,2 ARMA 2,1
Dtregress
Constant -0.143 -0.0574 -0.000797 0.00523 -0.0684 -0.0466 -0.0565

(2.251) (1.771) (0.666) (0.831) (1.920) (1.757) (1.748)
ARMA
Lag 1 0.878∗∗∗ 1.086∗∗∗ 0.826∗∗∗ 0.781∗∗∗ 1.138∗∗∗

(0.0378) (0.0746) (0.0466) (0.0648) (0.332)

Lag 2 -0.239∗∗∗ -0.284
(0.0673) (0.293)

e1 0.758∗∗∗ 0.873∗∗∗ 0.240∗∗ 0.311∗∗∗ -0.0548
(0.0556) (0.0555) (0.0769) (0.0836) (0.348)

e2 0.692∗∗∗ 0.119
(0.0513) (0.0917)

sigma
Constant 3.434∗∗∗ 3.336∗∗∗ 4.661∗∗∗ 3.832∗∗∗ 3.346∗∗∗ 3.332∗∗∗ 3.335∗∗∗

(0.172) (0.164) (0.224) (0.180) (0.165) (0.166) (0.165)
Observations 156 156 156 156 156 156 156
AIC 835.2 828.2 929.8 871.5 829.1 829.8 830.2
BIC 844.3 840.4 938.9 883.7 841.3 845.1 845.4

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The results shows that the AR2 and ARMA(1,1) models provide the best fit.
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