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Abstract 

 

An overhead power line (PL) corridor area, also known as Right-of-Way (ROW), is vulnerable to 

risks that have dangerous consequences to utility operators and their customers, as for example 

the 2003 Northeast blackout. To mitigate the risks, 3D modeling of building and PL objects in the 

ROW has become a topic of increasing importance. The reason is due to the fact that the 3D 

models can provide large benefits in effectively performing the PL risk management. For 

example, the use of PL models allows us to easily determine a clearance quantity between PLs 

and vegetation by simulating a conductor blowout using its sag and swing position. The use of 3D 

building models enables us to carry out more precise thermal rating by considering the effect of 

electromagnetic field of PLs near residential areas. The research objectives aimed to achieve 

thorough the thesis are to develop methods for reconstructing the models of building and PL 

objects of interest in the PL corridor area from airborne LiDAR data. For this, it is mainly 

concerned with the model selection problem for which model is more optimal in representing the 

given data set. This means that the parametric relations and geometry of object shapes are 

unknowns and optimally determined by the verification of hypothetical models. Therefore, the 

proposed method achieves high adaptability to the complex geometric forms of building and PL 

objects. For the building modeling, the method of implicit geometric regularization is proposed to 

rectify noisy building outline vectors which are due to the irregular distribution of LiDAR data. A 

cost function for the regularization process is designed based on Minimum Description Length 

(MDL) theory which consists of two terms, model closeness and model complexity. The cost 

function favours smaller deviation between a model and observation as well as orthogonal and 

parallel properties between polylines. Next, a new approach, called Piecewise Model Growing 

(PMG), is proposed for 3D PL model reconstruction using a catenary curve model. It piece-
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wisely grows to capture all PL points of interest and thus produces a full PL 3D model. However, 

the proposed method is limited to the PL scene complexity, which causes PL modeling errors 

such as partial, under- and over-modeling errors. To correct the incompletion of PL models, the 

inner and across span analysis are carried out, which leads to replace erroneous PL segments by 

precise PL models. The inner span analysis is performed based on the MDL theory to correct 

under- and over-modeling errors. The across span analysis is subsequently carried out to correct 

partial-modeling errors by finding start and end positions of PLs which denotes Point Of 

Attachment (POA). As a result, this thesis addresses not only geometrically describing building 

and PL objects but also dealing with noisy data which causes the incompletion of models. In the 

practical aspects, the results of PL and building modeling should be essential to effectively 

analyze a PL scene and quickly alleviate the potentially hazardous scenarios jeopardizing the PL 

system. 
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CHAPTER 1 

Introduction 

 

 

 

 

1.1 Motivation 

An overhead power line (PL) corridor area, also known as Right-of-Way (ROW), is 

vulnerable to risks that have dangerous consequences for utility operators and their customers.  

Possible dangerous elements that threaten PL systems are mainly subject to three issues: 

vegetation encroachments, PL component anomalies, and unforeseen events. Vegetation is the 

most hazardous object in ROW as it is possible for vegetation to come into contact with overhead 

PLs by growing in and falling down within and outside ROW. Moreover, as PL structures wear 

out over time, their inelastic deformations occur. These cause spatial displacements of PL 

components which result in malfunctions developing in the whole PL network. The damage of PL 

components can be also affected by unexpected situations, such as large wind vibration, corona 

effect, icing, lightning, contamination flashovers, earthquakes, forest fires and so on. Any one of 

these hazardous events might result in a huge power outage. The 2003 Northeast blackout was 

mainly caused by the interference of trees with overhead PLs, which affected more than 50 

million people who had to rely on limited public services over the following week. This power 

outage caused financial losses of about $6 billion (Figure 1.1). If the potential vegetation-related 

risk factors had been identified in time, the accident could have been prevented. In 2005, the Java-
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Bali blackout occurred due to the supply’s shortfall, affecting about 100 million people and 

causing major traffic jams as well as interruption of electricity to homes and businesses 

throughout the day. In this case, an accurate PL thermal rating analysis would have helped to 

control the increase of the electrical capacity, thereby avoiding the large blackout. In addition, in 

2003, the blackout in Italy that happened due to windstorm damages left more than 55 million 

people without normal electric services over several days. 

 

 

 

Figure 1.1: Toronto city view before (City of Toronto, up) and after (National Post on August 

14, 2003, down) the 2003 Northeast blackout. 
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NERC (North American Electric Reliability Corporation), which is certified by the U.S. 

Federal Energy Regulatory Commission (FERC) and governmental authorities in Canada, was 

established to ensure the reliability of the North American bulk power system in 1968. Its primary 

duty is to develop and enforce standards that are related to the connection, reliability, and 

operation of the electric PL system. If a failure to follow the NERC standards occurs, maximum 

$1 million US per day is imposed to associated utility firms as a fine (Hurysz and Crider, 2009). 

To avoid the potential failure, utility firms should check the condition of the conductor and 

insulator, conductor sag-tension, structure vibration and alignment, the condition of the guy wire 

and structure footings, and other structures related to the PL system during the regular inspection 

cycle. The NERC standards also significantly specify the regulation on vegetation-related 

violations (i.e., vegetation encroachments) as the vegetation has the most potential to be a 

hazardous object to the PL structure. This interference has contributed to over 30% of service 

interruptions, which corresponds to the economic loss of approximately $40 billion US per year 

(Goodfellow and Peterson, 2011). 

Recently, the NERC decided to change the target PL voltages which are needed to be 

monitored according to its specific regulations from 200 kV and above to 100 kV and above. In 

addition, the NERC standard related to vegetation management (Facilities Design, Connections, 

and Maintenance, FAC003) was revised to enhance the reliability in managing vegetation located 

near to PL systems (Flood, 2011). In this context, utility firms are strongly demanded from the 

regulations enforced by the NERC to precisely identify violations as much as possible and rapidly 

eliminate them to prevent potential power outages. To effectively meet the NERC’s requirements, 

many utility firms have recently changed from a conventional inspection technique to a new 

automatic workflow using the state-of-the-art data acquisition systems. The conventional method 

relies on aerial- and ground-based human inspection with optical measuring devices to remove 
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potential hazardous elements around the ROW. Since the aforementioned large critical blackouts, 

the existing workflow has been recognized as insufficient for monitoring the risks of PL systems. 

In other words, it is cost-effective, but is less accurate. In recent years, the new system, airborne 

LiDAR system using LiDAR, digitial cameras, and video sensors, has been introduced to 

establish a new PL maintenance workflow taking into account a trade-off between cost and 

accuracy. For instance, compared to the conventional method, the airborne LiDAR system based 

inspection is approximately 1.5 times higher in cost per circuit mile, but more than 2 times higher 

in accuracy for correctly detecting vegetation-related violations. Moreover, the cost of airborne 

LiDAR equipment has continuously decreased since its initial usage for the ROW management in 

2007. This means that the airborne system based maintenance becomes the most effective 

approach with respect to cost as well as accuracy (Narolski, 2010). 

In terms of industry needs, PL risk management works focus on three main tasks: vegetation 

management, thermal rating, and asset management (Sohn and Ituen, 2010). These tasks are 

performed through the evaluation of as-built condition which corresponds to comparing the 

original design condition with the current condition of ROW, thereby identifying clearance issues. 

In the vegetation clearance management, since vegetation is grown to all possible scale with 

respect to its life cycle, it is not easy to precisely identify potentially hazardous vegetation to PL 

structures especially using the conventional inspection techniques. The best way to assess the 

necessary clearance area is to employ a PL model-based inspection workflow. This means that the 

clearance quantity can be easily determined by simulating a conductor blowout based on its 

maximum designed sag and swing position. Next, a thermal rating of PLs is the process of 

determining a certain conductor temperature to prevent the unpredictable elongation of 

conductors. The conductor elongation causes the conductor sag positions to drop down and come 

into contact with other objects such as vegetation and buildings. This might result in a mechanical 
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failure of the PL system. Additionally, in the residential area, it is required to carry out more 

precise thermal rating by taking into account the public safety which is closely related to concerns 

over potential adverse health effects. If the geometric PL models are ready, it allows us to 

precisely estimate the PL sag positions by changing the operating temperatures which mostly 

depend on the amount of electrical energy flowing through PLs. In addition to the benefits 

provided by PL models, if the information of 3D building models is compiled with a PL corridor 

map, safety zones with respect to the probable risks can be accurately determined between PLs 

and buildings. Based on the safety zones specified, the thermal rating is effectively performed by 

adjusting the magnitude of the current flow of PLs. For the asset management, as PLs are 

connected to the corresponding components such as a pylon and insulators, PL models become 

significant in easily inspecting any inelastic deformations of the components which are usually 

derived from positional movements of PLs over time. 

In the PL corridor area, as aforementioned, the geometric information of PLs and buildings 

ensures that it allows us to precisely identify violations which should be cleared between PLs and 

other objects. In this regard, more detailed study and stronger research on modeling of PL and 

building objects is needed to be tackled in the following issues: 

 

 Accuracy: in practice, most utility firms simply generate PL models under the assumption 

that conductors are isolated enough to separate each other. However, the use of the 

assumption mostly causes bundle conductors to be over-simplified as for example one PL 

model, where PLs in the bundle conductors are normally close to each other with the 

orthogonal distance of about 30 cm. If the design accuracy of conductor which is 

approximately 15 cm in the as-built condition is taken into account (Lu and Kieloch, 

2008), the over-simplified model is not appropriate for the application of precise PL 
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management. Additionally, even though the accurate PL modeling is achieved, it is also 

required to precisely determine start and end positions of PL models, called Point Of 

Attachment (POA). In most utility companies, POAs are manually determined by dotting 

points on the raw data, so that it is sometimes hard to obtain the acceptable positional 

accuracy level of POAs (i.e., ~40 cm). To supplement the difficulty, PL models, if are 

properly extracted, should be initially used for the detection of accurate POAs because 

POAs are placed along the corresponding PLs in reality. Consequently, a PL model with 

the accurate POAs helps to identify the accurate clearance area based on the simulation of 

conductor motion using two POAs. In this study, the required modeling scheme has high 

representational power for capturing PL shape details. 

 Robustness: In recent years, the PL corridor mapping enables detailed capture of a 3D PL 

scene with high point density (more than 30 points/m2). However, the PL scene 

complexity frequently restricts the capability of recognizing PL objects from the LiDAR 

data. The complexity can be derived from various factors such as object encroachments 

and occlusions as well as the complicated distribution of the PL network. These factors 

mostly cause high irregularity in the distribution of PL points, resulting in data gaps from 

a centimetre to meter level on PLs. To perform a robust PL modeling, the proposed 

modeling scheme should be much less sensitive to the presence of PL scene complexity. 

 Automation: Many utility firms have currently adopted a semi-automatic approach for the 

modeling of PLs and buildings, which is developed based on COTS (Commercial Off-

The-Shelf) software such as the well-known TerraScan software. The use of the COTS 

product obviously causes the manual interventions to manipulate each module of the 

COTS software and hence the rapid PL modeling for an immediate response to violations 

to PL structure is hard to be achieved. In recent years, some utility firms have been trying 
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to complete the total workflow for PL risk management within 72 hours (Neal 2009) to 

prevent a hazardous situation while minimizing human-based activities. To meet the 

aimed timeline, developing a new automatic approach for processing raw data and 

modeling associated objects seems to be inevitable. 

 Regularization: The process of data-driven building modeling (i.e., generic building 

modeling) usually relies on the geometric information collection in the form of modeling 

cues/primitives (i.e., lines, corners, planes). As observations (LiDAR data) are inevitably 

corrupted by noise and scene complexity, the sequences of primitives cause geometric 

distortions in the final shape of building model. In practice, common building rooftops 

show specific regularities between boundary lines or plane segments such as parallelity, 

collinearity, and orthogonality. For this, a new shape reconstruction scheme for building 

rooftop modeling is required by imposing the geometric regularities to the noisy building 

vectors. 

 

 

1.2 Objectives of the thesis 

The research objectives aimed to achieve through the thesis are to develop methods for 

reconstructing the models of building and PL objects of interest in the PL corridor area from 

Airborne LiDAR data. The resulting building rooftop and PL models are also required to be 

satisfied with requirements addressed in the four issues, accuracy, robustness, automation, and 

regularization. For this, the thesis is mainly concerned with the model selection problem for which 

model is close to optimal in representing the given data set. Here, the term model means the 

hypothetical description of a real object. The model is also used to denote a geometric model that 

explicitly expresses the structure of an object with a finite number of adjustable parameters. As 
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data acquired by sensors contain random errors, a resulting model derived from the data is not 

completely identical to its real shape. So, every model generated is to be hypothetical. The model 

selection is a process in which an appropriate model is determined among a set of candidate 

models based on the model selection criterion defined. Where, the all candidate models represent 

the given data and are differently parameterized. The selection criterion is normally comprised of 

two issues; how to optimally fit the model to the data and how to simply explain the data using 

the model. The first criterion can be easily formulated based on the principle of maximum 

likelihood. The maximum of the likelihood is thus achieved when the observed sequence is 

represented by using as many parameters as possible. However, the criterion only following the 

maximum likelihood principle definitely fails to produce an optimal model due to the occurrence 

of over-fitting problem. The most common way to correct the model selection problem is to adopt 

a combined criterion by considering the second criterion, a term of model complexity. This is 

motivated by Ockham’s razor, a simple explanation of the facts is better than a complex one 

(Hansen and Yu, 2001). In this sense, the best/optimal model requires the simpler description with 

respect to the model complexity and at the same time the higher goodness-of-fit between a model 

and data. As a result, properly combining the criteria is vital for an optimal model selection in this 

study. Note that there is no guarantee that the use of combined criteria can select a desired global 

model, but it can give us an expectation that the selected model will be near to the best ideal 

model. 
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1.3 General framework 

Figure 1.2 schematically shows the whole workflow diagram of the proposed approach for 

the automatic building and power line modeling. The main data source used for this study is laser 

point clouds acquired by the airborne LiDAR system. For the building modeling, the method of 

implicit geometric regularization is proposed to rectify noisy building outline vectors. Due to the 

use of data-driven approach, the research is mainly concerned with rectifying the irregular rooftop 

shape under the assumption that building rooftops are comprised of generic plane surfaces. It is 

performed based on Minimum Description Length (MDL) theory, which is motivated by the study 

on a local MDL-based regularization of noisy building outlines (Weidner and Forstner, 1995). 

Next, a new method, called Piecewise Model Growing (PMG), for the 3D PL model 

reconstruction is proposed, which is a model-based hypothesis verification and propagation 

process. The proposed method starts by detecting PL candidate points. Then an initial catenary 

model generated over the candidate points piece-wisely grows to capture all PL points of interest 

and thus converted into a full PL 3D model. However, the proposed method is limited to the PL 

scene complexity, which causes PL modeling errors such as partial, under- and over-modeling 

errors. To correct the incompletion of PL models, the inner and across span analysis are carried 

out, which leads to replace erroneous PL segments by precise PL models. The inner span analysis 

is performed based on the MDL theory to correct under- and over-modeling errors. The across 

span analysis is subsequently carried out to correct partial-modeling errors by finding start and 

end positions of PLs (i.e., POAs), thereby producing complete PL models. 
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Figure 1.2: Schematic workflow of proposed methods for 3D reconstruction of buildings and PLs 

in PL corridor area (ROW). 
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1.4 Contributions 

My main achievements of this study were to develop a robust solution for the automatic 

modeling of buildings and PLs from airborne LiDAR data in order to fulfill the effective power 

line risk management in the PL corridor area. All the proposed algorithms are implemented and 

their performances are evaluated. The main contributions are itemized as follows: 

 

 Introducing a new method, called implicit geometric regularization, for 3D shape 

reconstruction of building rooftops from noisy airborne LiDAR data. The innovational 

aspect is that redundant line segments which are frequently caused by data-driven 

modeling approach are minimized with geometric regularities such as parallelity, 

collinearity, and orthogonality. The regularities are also implicitly represented to rooftop 

models by a set of rules defined during the regularization process without explicitly using 

hard constraints. 

 Presenting a new method, called Piecewise Model Growing (PMG), for 3D PL model 

reconstruction using a catenary curve model. The key aspect is that the proposed PL 

modeling process is less sensitive to the lack of data information representing PL objects 

which is caused by a PL scene complexity. Moreover, the PMG method enhances the 

efficiency of PL modeling process by simultaneously capturing PL points and modeling 

PLs. This is in contrast to the general approach that a priori information such as labelled 

PL points in incorporated into the PL modeling process. 

 Proposing a new method for rectifying 3D PL modeling errors using the inner and across 

span analysis. The highlighted fact is that the proposed method is capable of dealing with 

noisy data corrupted under the windy environment and predicting suitable model 

parameters, resulting in the correction of PL modeling errors such as partial-, under-, and 
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over-modeling errors. Thus, the proposed method produces promising results in the 

extraction of accurate PL model including associated POA information, which leads to 

achieve the geometric and topological completion of PL models in forming the whole PL 

network. 

 

 

1.5 Thesis outline 

An overview of the chapters is introduced as follows: 

Chapter 1: an introduction to the motivation of this study and the proposed approach for solving 

research questions. 

Chapter 2: a summary of the recent trends of PL risk management and the previous researches on 

PL and building modeling. In addition, the background knowledge of airborne LiDAR 

system is briefly introduced. 

Chapter 3: a development of a new method for regularizing noisy building vectors derived from 

LiDAR points. A cost function for the regularization process is designed based on the MDL 

theory.  

Chapter 4: an introduction of a new algorithm for reconstructing 3D PL models using a catenary 

curve model. Model parameters are estimated based on a model-based hypothesis 

verification and propagation process. 

Chapter 5: a suggestion of a new approach for rectifying PL modeling errors. The rectification 

process is performed by the inner and across span analysis. Additionally, information on 

POAs and pylon positions is extracted as by-products which are also important factors in 

constituting the PL network.   

Chapter 6: a conclusion of this study and a direction of future works. 
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CHAPTER 2 

Background 

 

 

 

 

 

 

 
In general, a PL corridor area, called Right-of-Ways (ROW), is comprised of very extensive 

transmission networks. For example, Canada’s bulk transmission network is only the fifth largest 

producer in the world, carrying 4 percent of the world’s total, yet this network consist of more 

than 160,000km of high voltage lines with above 50kV (Industry Canada, 2008). Recently, North 

American Electric Transmission Investments has announced a future plan that $160 billion US 

will be invested in the electric transmission including more than 30,000 km of new and upgraded 

lines from 2012 to 2020. As the ROW is vulnerable to risks that have dangerous consequences for 

utility operators and their customers, monitoring and maintenance of extensive PL networks have 

become a topic of increasing importance. This chapter summarizes the recent trends of PL risk 

management and state-of-the art techniques in reconstructing PL and building models are 

discussed. In addition, the background knowledge of airborne LiDAR system is briefly introduced. 
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2.1 Power line risk management 

The tasks of PL risk management over a long PL corridor (i.e., ROW) include risk 

monitoring, risk identification, risk assessment, and risk clearance. This is for serving a reliable 

supply of electricity to customers at all times. The risk monitoring process commonly involves a 

scheduled maintenance cycle for ROW inspections. For example, the detailed climbing inspection 

for the high-voltage PLs is performed on a 5-year cycle and aerial inspections are visually 

completed several times a year (Shoemaker and Mack, 2011). While monitoring the ROW, the 

identification of possible risk factors to PL systems is carried out. The potentially hazardous 

scenarios jeopardizing PL systems are normally alleviated by identifying anomalies in PL 

structure and vegetation-related Clearance 1 and Clearance 2 in ROW (Strmiska, 2000; Neal, 

2009). The first violation is related to the damage of PL components by wind vibration (Diana et 

al., 2005), the corona effect (Zhao et al., 1996), corrosion (Smith and Hall, 2011), icing (Ma et al., 

2011), ambient temperature, earthquakes, lightning, contamination related flashovers and so on. 

During the regular inspection cycle, utility firms should check the condition of the conductor and 

insulator, conductor sag-tension, structure vibration and alignment, the condition of the guy wire 

and structure footings, and other structures related to the PL system. Next, the second violation is 

reported by a vegetation encroachment. Vegetation is the most hazardous object in ROW as it is 

possible for vegetation to come into contact with overhead PLs by growing in and falling down 

within and outside ROW. This interference has contributed to over 30% of service interruptions, 

which corresponds to the economic loss of approximately $40 billion US a year (Goodfellow and 

Peterson, 2011). The risk assessment is a process for the determination of clearance quantity 

according to the defined clearance criteria. Since measuring the clearance quantity is associated 

with assessing a certain amount on the occurrence probability of dangerous situations, it can be 

the most difficult task which results in the most time-consuming work in the PL risk management 
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workflow. Lastly, the risk clearance is accomplished by eliminating the risk factors to the PL 

systems based on the clearance quantity assessed. 

 

 

Figure 2.1: Vegetation management in the PL corridor area with respect to certain 

regulations (Clearance 1 and 2). 

 

For the vegetation management, as shown in Figure 2.1, the ground clearance around ROW is 

first performed. This is done through the year-round pruning, trimming, and removing of trees. 

All trees as well as under-brush within a specific distance of overhead PLs should be removed. 

The distance for clearance is normally determined to be a gap of at least 7.62 m (25 ft) under each 

conductor within ROW. If trees fall from the outside to the inside of ROW and come within 

approximately 1.52 m (5 ft) of a conductor, they are categorized as danger trees and a cutting 

operation is required to maintain the required minimum safety criteria (Shoemaker and Mack, 

2011). As a result, if the maintenance work with respect to the aforementioned violations is not 
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carried out at the appropriate time, a lot of complications including increased equipment failure, 

higher maintenance costs and a higher frequency of outages may arise. 

In the fulfillment of PL monitoring and risk identification work, many utility firms have 

adopted a conventional inspection technique. The technique relies on aerial- and ground-based 

human inspection with optical measuring devices to remove potential hazardous elements around 

the ROW. However, since the large critical blackouts such as 2003 Northeast blackout, the 

conventional maintenance workflow has been recognized as an insufficient approach for 

monitoring the risk situations of PL systems (Ituen and Sohn, 2008). In other words, the 

conventional workflow is cost-effective, but is less accurate. In recent years, as state-of-the-art 

data acquisition systems using LIDAR, digital cameras, and video sensors, have been introduced, 

many researchers and utility companies have been trying to establish a new automatic workflow 

for more effective PL corridor management through a trade-off between cost and accuracy. For 

instance, compared to the conventional method, an airborne LIDAR-based inspection is 

approximately 1.5 times higher in cost per circuit mile, but more than 2 times higher in accuracy 

for correctly detecting vegetation-related violations. Moreover, the cost of airborne LIDAR 

equipment has continuously decreased since its initial usage in 2007, which indicates that the 

airborne LIDAR-based maintenance is the most effective approach with respect to cost as well as 

accuracy (Narolski, 2010). This shift is inevitable because the limitations of the conventional 

approach (i.e., a time-consuming work, large gross inspection errors and so on) are hampering an 

immediate response to undesirable events such as vegetation encroachments. By using LiDAR 

measurements, detecting and modeling objects of interest, for instance, PLs, pylons, insulators 

and other PL components as well as buildings, trees, terrain, and other neighboring features, are 

required to establish geometrical relationships between them for the identification of violations. 

As a result, it ensures that an accurate and time- and cost-effective PL maintenance can be carried 
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out using the rapid mapping products. In this study, the main emphasis lies on 3D modeling of 

man-made objects, PLs and buildings, as main features in ROW. Their significance and benefits 

for the effective PL risk management are discussed in greater detail in the following sections. 

 

2.1.1 Scene complexity of power line corridor area 

In general, buildings are known as one of the most difficult for reconstructing 3D models 

regardless of where they are, for example a rural, urban, or PL corridor area. This is due to the 

high dimensional variations in the structure and shape, occlusions by neighbouring objects such as 

vegetation, insufficient data representation, and so on. Thus, the focus in this section is on 

addressing difficulties in modeling PL objects having even a simple linear shape due to a scene 

complexity of ROW. 

A PL is a geometrically distinguishable feature from the other objects in the PL scene. It 

hangs over the underlying terrain at a certain height and is isolated from its surroundings by a 

certain distance at all directions. PLs are also successively connected to one another through 

pylons running in a similar line direction. Although PLs are distinct and isolated objects, a 

method in automatically reconstructing 3D PL models for the rapid and accurate mapping has 

been not established. This is due to the fact that PL scenes are complex, which creates obstacles 

that hinder the robustness of PL reconstruction. The complex factors of the PL scene represented 

by LiDAR data can be grouped under several aspects: (a) the complexity of PL as-built condition, 

(b) object encroachment on ROW, and (c) various data quality. 

The first complication with PL modeling is that PL networks are distributed in a complex 

manner for example over urban areas as shown in Figure 2.2. PLs of various voltage types are 

placed closer together, and go in different directions. Some PLs cross over land, roads, railways, 

pipelines, residential areas and other wires, often exhibiting a variety of curvatures and 
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asymmetrical shapes. As a result, these complications cause difficulties in differentiating PL 

points from the raw data even though the segmentation process is done by a human operator. 

Second, if the vegetation is integrated with the PLs, as depicted in Figure 2.3, it is very hard to 

discern PL points from vegetation points. Although points are labelled as a PL class in the vicinity 

of vegetation, it is not guaranteed to be PL points due to the mixture of points representing PLs 

and vegetation. This causes the degradation of PL modeling accuracy or a total failure of PL 

modeling. Third, LIDAR points representing PLs show irregular point densities due to many 

factors such as the effects of occlusions, PL movements by external forces at the data acquisition 

epoch, LiDAR system’s systematic random errors, and so forth. Figure 2.4 illustrates a typical 

case of PL point distribution in the densely arranged lines. The line arrangement causes a large 

occlusion along the downward height direction, which results in the various average point 

distances per PL ranged from dense (0.17 m) to sparse (1.83 m). In the histogram derived from 

the point distance factor, PL points in the top show a relatively regular distribution with the high 

point density in which more than 90% points are placed with point distance of less than 0.5 m. On 

the other hand, the distribution of PL points in the bottom shows rather irregular in which its 

range is very broad (i.e., up to 3 m) and only 50 % points are positioned with point distance of 

less than 0.5 m. Thus, due to the low point density, the linearity of PLs is rather not clear, so that 

it can affect the modeling success rate and the degree of modeling accuracy. Therefore, if PL 

points are more regularly distributed with high point density, it surely helps to facilitate the 

development of automatic modeling approach and improve the modeling quality. 
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Figure 2.2: PL networks distributed in a complex manner in the urban area: PLs of various 

voltage types and curvatures are placed closer together and go in different directions. Some PLs 

cross over other objects such as vegetation and buildings.  

 

 

Figure 2.3: Vegetation encroachment to PL components in the PL voltage of 69 kV: points 

representing PLs and vegetation are mixed, so that it is very hard to discern PL points from 

vegetation points. 
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Figure 2.4: Irregular distribution of PL points with varying point density: occlusions of PL-parts 

by themselves occur due to the distribution of dense arranged lines along the downward height 

direction. 

 

To alleviate the difficulties in modeling PL objects due to the scene complexity, the technique of 

data fusion using different data sources such as LiDAR points and imagery data especially 

thermal image will be useful. In practice, although thermal images are sensitive to ambient 

conditions such as air temperature and the impact of solar heating, it has been widely used as a 

priori knowledge for the recognition of PL components as well as the investigation of temperature 

variance for the PL thermal rating. However, the temperature difference between PLs and others 
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is required to be at least more than 14°C for effectively detecting PLs (Han et al., 2009). When 

PLs are detected based on gradients on the image data, the performance of PL detection may be 

also restricted. This is because the contrast of pixel values between PLs and their backgrounds 

varies according to the urban and rural area. 

 

2.1.2 3D power line model and its benefits 

The PL shape can be approximated by fitting the survey data onto a parabolic form, called a 

catenary curve, as the PL cable is suspended between two support points and subjected to gravity 

forces. In general, 3D PL models are extremely useful for determining the as-built condition of 

PLs in order to deal with the clearance issues in ROW. Where, the evaluation of the as-built 

condition identifies any changes to the PL by comparing the original design condition to the 

current condition of ROW. According to Sugden (1994), the catenary curve model for PLs is 

suitable in performing a multifaceted analysis for normal PL maintenance operations. For 

example, the design accuracy of conduct sag is normally in the level of approximately 15 cm. If 

the PL model is reconstructed within the accuracy level, its sag position can be enough used for 

practical applications such as sag-tension calculations and danger tree analysis (Lu and Kieloch, 

2008). Consequently, to mitigate the risks caused by clearance issues and keep the as-built 

condition, 3D PL models can provide large benefits in terms of three main PL maintenance tasks: 

vegetation management, thermal rating, and asset management (Franken, 2003; Sohn and Ituen, 

2010). 

Vegetation management: As vegetation is spatio-temporally grown at all possible scales 

according to its life cycle, it is not easy to precisely identify potentially hazardous vegetation to 

PL structures in ROW. For example, vegetation grows 11% faster after drought years compared to 

pre-drought rates (Orwig and Abrams, 1997). The best way to minimize vegetation-caused PL 
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outages is to add PL model-based inspections into the regular monitoring cycle of PL system. If a 

geometric PL model is ready, the accurate clearance area can be easily determined by simulating a 

conductor blowout based on its maximum designed sag and swing position as well as the potential 

growth rate of vegetation. The simulation can be more robust when the accurate start and end 

position of PL models (i.e., POAs) is determined. The reason is that the accurate swing position of 

conductors depends on the accuracy of POAs. 

Thermal rating: A thermal rating of PLs is the process of determining a certain conductor 

temperature to prevent the unpredictable elongation of conductors. If the conductor sag position 

drops down to the underlying terrain surface, it might cause a mechanical failure of the PL system 

as the PLs come into contact with other features such as vegetation and buildings. The conductor 

elongation is affected by atmospheric conditions as well as various loads including elastic strain, 

long-time creep strain and thermal strain. Among them, the thermal strain depending on the 

amount of electric current flow is the most critical factor to the elongation. If the conductor 

temperature remains high for a longer time period, the conductor strength and tension will 

suddenly decrease. This sometimes leads to its physical damage which results in a huge power 

outage when a high wind loading occurs. To avoid a situation like this, measuring the accurate 

temperature of conductors is very helpful to estimate the allowable amount of current flow within 

the required minimum safety criteria of PL system. Based on the formulation derived from PL 

temperature and line sag relationship (Rahim et al., 2010), 3D PL model can play a significant 

role in estimating the PL sag position with respect to the change of its operating temperature. In 

addition, the thermal rating analysis ensures the cost-effective maintenance of PLs by avoiding 

constructing additional PLs to meet electrical power needs. For example, the cost of establishing a 

new 115 kV steel pole double circuit is 30 times more than one of a thermal re-rating per mile 

(Franken, 2003). 
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Asset management: As a PL structure wears out over time, its maintenance should be carried 

out in a timely manner to prevent electric failures. For instance, as the corrosion of a pylon 

accelerates quickly after 30 years, older pylons should be inspected regularly within a limited time 

period to identify their inelastic deformations (Smith and Hall, 2011). Since PLs are successively 

connected to pylon structures as well as other PL components across the span, it is convenient to 

inspect any inelastic deformations of PL system by measuring movements of PL positions over 

time. Therefore, PL models in which the data used for the modeling are collected in the spatio-

temporal domain can be effectively used to identify the geometrical anomalies of PL components. 

 

2.1.3 3D building model and its benefits 

Buildings as a man-made structure exhibit a range of rooftop types and a complex 

combination of building parts including roof superstructures. To represent the various building 

geometries, polyhedral-like models are usually considered to be sufficient for many applications 

such as Google Earth and Bing Maps (Haala and Kada, 2010). In terms of the modeling methods, 

the building models are mainly reconstructed based on two approaches: model-driven and data-

driven approach. The model-driven method using a parametric modeling scheme adopts pre-

defined model types for certain elements such as a gable and hip roof shape. This places some 

limitations on representing more complex building structures. On the other hand, the data-driven 

method using a generic modeling scheme allows the arbitrary representation of building shapes, 

and thus is suitable for more detailed building modeling. For the purpose of precisely analyzing 

risks between PLs and buildings in ROW, the generic building modeling becomes a more 

effective approach due to the detailed representation of building rooftops. 

PLs are considered as a major source in forming an electromagnetic field at extremely low 

frequencies such as 50/60 Hz. In recent years, the rapid increase of electric energy utilization has 
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led to the installation of new PLs inside urban areas, which leads to the increase of the 

electromagnetic field of PLs near residential areas. This causes public concerns over potential 

adverse health effects regardless of whether or not a direct link between health risks and 

electromagnetic fields exists. To reduce the possible health risks from the magnetic field, various 

regulations related to a minimum distance between PLs and buildings or magnitude of PL 

voltages near resident area have been formulated. For example, in South Australia, the minimum 

clearance distance of 20 m for 132 kV and 25 m for 275 kV lines is required. In Florida, US, the 

magnitude of the electromagnetic field is limited to a range of 15 mT (millitesla) for PLs with a 

voltage of less than 230 kV, and 20 mT for 500 kV lines (Bakhashwain et al., 2003, Salameh and 

Hassouua, 2010). Once 3D PL and building models are reconstructed in ROW, safety zones with 

respect to the probabilistic risks can be formed between them, and then the clearance analysis is 

carried out. Based on the corresponding regulations for the public safety, the thermal rating is also 

carried out by adjusting the magnitude of the current flow of PLs. In addition to that, the 

extension of buildings are easily determined toward the minimization of the impact of PLs’ 

electromagnetic effect on the corridor environment. 
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2.2 Power line modeling in literature 

2.2.1 Power line system overview 

A PL system transports electrical energy from distribution facilities, where the energy is 

derived from generating stations, through transmission line networks to end users such as 

industries, schools, and homes, as shown in Figure 2.5. The whole PL system is mainly divided 

into transmission lines, substations, distributing stations and so on. Transmission lines send 

electrical energy at voltages between 44 Kv and over 735 Kv to a transformer or distributing 

station. There are two types of PLs, overhead and underground transmission lines. Except in 

densely populated areas where underground lines are prepared to be placed, overhead lines are 

normally used. The main reason is subject to a matter of cost, that is, the construction cost is 

about 5-10 times to have underground transmission lines. Substations provide a site for storing 

reactors and capacitors for when they are needed for power factor corrections. Distributing 

stations deliver electrical service to local electrical systems and most of those stations are served 

at voltage levels of less than 50 kV. 

As depicted in Figure 2.6, an overhead PL network is mainly comprised of three components: 

conductors, insulators and pylons. A basic formation is that a pylon supports three conductors, 

called three-phase PL system. When three conductors are added to the formation for extending the 

electrical capacity, it is called a double-circuit transmission line. A space between two pylons 

denotes a span and neighbouring spans are similar in length. The main components are 

summarized as follows (Shoemaker and Mack, 2007): 
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Figure 2.5: Schematic constitution of a general PL network (Shoemaker and Mack, 2007). 

 

 
Figure 2.6: Main components of a typical overhead PL network.  
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Conductors 

Conductors provide electrical circuits between supply and user points. These conductors vary 

in size according to the rated voltage and the number of conductors strung on a pole depends on 

the type of circuits that are used. According to the electrical capacity of conductors, they are 

divided into three types: transmission line, sub-transmission line, and distribution line. Normally, 

a transmission line delivers high voltage current in the range from 138 kV to more than 500 kV 

and a sub-transmission line medium voltage between 34.5 kV and 161 kV. A distribution line 

delivers low voltage current in the level of less than 34.5 kV and is used mainly for distributing 

electricity to public customers. Copper, aluminum and steel are usually used for the conductor 

material. Since copper is plentiful in nature, its cost is comparatively low, so it is very commonly 

used for overhead line conductors. Aluminum conductors are also popular due to their light 

weights. Compared to copper conductors of the same physical size, aluminum conductors have 

only about 33% of the weight. However, their conductivity and tensile strength is kept relatively 

weak to 60% and 45%, respectively. Thus, a large width of aluminum conductor is required for 

the cross section to have the same resistance as copper conductors. Steel conductors are also used 

because of their high tensile strength (i.e., 3 times higher than that of copper conductor), which 

are appropriate for a long span construction. However, they are quick to rust, so their endurance is 

less than that of copper or aluminum. 

 

Insulators 

Insulators play an important role in isolating conductors from adjacent conductors as well as 

from their supporting structure. They are also designed to withstand heavy increases in tension or 

compression on the corresponding POAs. According to the methods of connecting insulators to 

conductors, they can be geometrically divided into three categories: post, suspension, and dead-
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end insulators. Post-type insulators are vertically or horizontally mounted on the pylon structure 

and designed to hold conductors with a clamp. This type is effectively utilized for the relatively 

low voltage transmission lines on the narrow ROWs of city streets. Suspension insulators which 

have a string of multiple discs are suspended from a pylon and thus allowed for swinging. This 

type is designed to support high voltage transmission lines by carrying the more weight of the 

conductors plus the force of the wind. Dead-end insulators are designed to withstand greater stress 

and strain than suspension insulators. For example, if all the conductors on one side of a span 

break due to being ice-laden or wind-driven, the insulators are able to retain balance of conductors 

on the other side of the span. This type of insulators thus permits longer spans as well as high 

voltage transmission lines. 

 

Pylon 

The main role of a pylon is to support conductors along straight stretches of line by hanging 

the conductors at a safe elevation above the ground. There are a variety of towers in the size and 

shape to suit various voltage types of transmission lines as well as the terrain to be crossed. The 

general shapes of pylon are tubular, lattice, and poles which are made of steel, concrete, or wood. 

For the low voltage lines, the structure is designed to provide a symmetrical conductor 

arrangement on a single-pole structure, which makes it affordable to build and reliable to operate 

in the urban area. To support high voltage of transmission lines, pylons have more complicated 

structures, such as double poles and H-frames. 

 

2.2.2 Related works 

Research of the last decade into the field of PL detection focuses on automatic PL scene 

classification and modeling using 3D point clouds and imagery data. According to the primary 
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data sources used, the proposed methods can be divided into two categories: (a) 2D image-based 

and (b) 3D point-based approaches. 

The 2D image-based studies apply algorithms to optical images under the assumption that 

PLs have uniform brightness, linear properties, and are parallel to each other. The method 

proposed by Yan et al. (2007) began to detect PL candidate pixels based on line detectors using 

mask and ratio. They traced candidate lines and grouped line segments by linking each segment 

using a randon transform and a user-driven threshold of angle and distance, and finally applied the 

Kalman filter algorithm to extract an entire power line. Li et al. (2010) suggested a new method 

for PL detection from complex and noisy image textures captured by Unmanned Aerial Vehicles 

(UAVs) through the application of a classic edge detector, the Hough Transform (HT). To reduce 

background noise and bring out PL edges, a Pulse Coupled Neural Filter (PCNF) was developed 

for preliminary detection of PLs. Finally, line clustering based on a priori information was 

performed to refine the results of line detection by using a k-means algorithm. The reported 

approaches based on 2D image analysis strongly depend on image gradients, that is, the contrast 

of pixel values between PLs and their background. The algorithms are thus sensitive to noise and 

test regions (i.e., rural versus urban areas), which leads to different contrasts near PLs, thereby 

decreasing the robustness of results. In addition, due to the lack of 1D (i.e., z-axis) in 2D images, 

occlusion occurs along the height direction, so it is difficult to detect overlapping PLs. 

By using LiDAR data as a primary information source, the 3D point-based approach 

performs a classification of PL points and the subsequent modeling is based on several unique 

properties of the LiDAR data and the geometrical characteristics of the PL. An important property 

of LiDAR data is that it can provide multi-echo information and gives the intensity of the returned 

laser. This property allows us to roughly separate point clouds into each object class (i.e., PLs, 

buildings, trees, etc.) based on height and the differences in intensity between the pulses. 
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Axelsson (1999) proposed a filtering technique for the classification of objects comprising 3D 

city models. After detecting buildings and ground using MDL criterion and the TIN-based 

elevation difference, power line points are extracted based on their geometrical properties and 

data characteristics. In other words, since power lines hanging over the ground surface show 

linear properties, their points provide multiple echoes derived from the PL and the ground. The 

results are then refined by isolating the PL points using the Hough Transformation equation. 

Clode and Rottensteiner (2005) suggested a method for the classification of trees and power lines 

based on the theory of Dempster-Shafer using only dual return airborne LiDAR data with a point 

density of about 0.8/m2. Three classification cues were used: a first pulse laser intensity image, 

height differences between the first and last pulse, and a local point density image. The Dempster-

Shafer theory was applied to classify input data into one of three classes (i.e., tree, PLs, and 

others) using the three classification cues. Melzer and Briese (2004) proposed a bottom-up 

method for reconstructing PLs from LiDAR data. An iterative Hough Transformation was used 

for extracting line primitives, which are grouped based on a minimum linkage hierarchical 

clustering method. A PL model was reconstructed using a catenary curve equation whose 

parameters are estimated using RANSAC. McLaughlin (2006) presents a two-stage method to 

extract transmission lines from LiDAR data with 1.2-2.4 m point distance on a line: an initial 

classification based on a Gaussian mixture model, and an estimation of the parameters of the 

transmission line spans using a catenary curve embedded local affine model. In the initial 

classification stage, point clouds were classified into three categories using eigenvalue analysis: 

transmission lines, vegetation, and surface. By using the classification information, the parameters 

of the catenary curve are initially calculated based on their geometrical relations. Then, the 

parameters are estimated by fitting the catenary curve to the corresponding PL member points 

using numerical methods such as a linear squares regression process, thereby reconstructing PL 
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models. Vale and Gomes-Mota (2007) proposed a new real time solution for data segmentation 

and anomaly identification algorithms. In each LiDAR sweep, the range data is assigned to one of 

four different object classes, PLs, obstacles, towers, and ground. If a geometrical mismatch 

happens due to variations in the laser position, occlusion, or insufficient data resolution, line 

interpolation occurs by taking into account previous geometrical information. Although the 

proposed point-based method demonstrated a success rate of more than 72% completeness for the 

PL extraction rate, its results show an irregularity in data distribution due to the effects of random 

errors and occlusion, which result in various point density and data gaps on PLs. These sometimes 

lead to failures in PL modeling completion. 

 

 

2.3 Building modeling in literature 

3D building models are a crucial extension of online mapping services such as Google 

EarthTM and MS Virtual EarthTM since they provide enriching and interactive visual information 

that works well with users’ eye-brain cognitive pattern interpretations and visualizations. This 

leads that the photo-realistic 3D building models are used for a variety of applications based on 

the online mapping platform. For example, environmental planning in support of decision-making 

(Scherer and Schapke, 2011, Yu et al., 2010), noise modeling for telecommunication operators 

(Wagen and Rizk, 2003), hazard mitigation for risk management (Hu and Augenbroe, 2012), 

visualizations for tourists (Glander and Dollner, 2009), interactive measurement for surveyors 

(Liang et al., 2011), magnetic interferences, flight simulations, cartography and map revision, 

transportation planning, disaster assessment and so on. However, despite the growing demand for 

3D building models, achieving the rapid and accurate creation of realistic 3D models from major 

data sources such as aerial/space images and LIDAR data remains a challenge. This is mainly 
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caused by limitations of data representation as much of the data used includes systematic and 

random errors caused in part by uncalibrated sensor systems, scene complexity, etc. It has been 

pointed out comprehensive reviews on the extraction of objects including buildings from image 

and LiDAR data by many researchers (Mayer, 2008; Rottensteiner, 2009; Haala and kada, 2010). 

Based on the reviews, this section explores research trends in the building reconstruction, 

especially regularization of noisy building vectors, from LiDAR data as a main data source during 

the last decade. 

Under the assumption that off-terrain points are detected, the modeling process of building 

objects begins with isolating building points, called building blob detection or building 

localization. Since the building rooftops are comprised of the combination of planar facets above 

terrain surface, most of building localization is subject to a plane detection based on e.g. 

RANSAC (Tarsha-Kurdi et al., 2008) and a height difference between neighboring plane patches 

(Tarsha-Kurdi et al., 2006). As LiDAR data with high point density in the range of up to 20 

points/ m2 emerge, for example, in the corridor mapping, the building blob detection techniques 

have been easy to be applied and produce high quality results. By using planar roof primitives as 

modeling cues, building rooftop modeling is done by establishing topological relations between 

planar patches and optimally fitting model hypotheses to the primitives. Two different basic 

modeling schemes, parametric and generic modeling, are mostly used to represent rooftop shapes. 

The parametric building model uses a fixed set of standard model types, such as gable and 

hip roof, in which the topological relations of planar patches are pre-parameterized but their 

geometry is unknown. Then, the extracted modeling cues are matched to predefined building 

types and geometric properties of the models such as scale and orientation are estimated as the 

output. Since this approach relies on the bulk of the data rather than on a subset of building 

segments, the representation of complex building shapes is also restricted to a composition of 
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predefined building parts. On the other hand, generic building models allow for the high variation 

of building types. This means that the parametric relations of planar segments and geometry of 

rooftop shapes are unknown. Thus, this approach provides high adaptability to complex building 

types. However, due to the minimum use of a priori knowledge of building shapes, the modeling 

quality depends heavily on the detection processes of modeling cues. In the automatic modeling 

approach, it is difficult to completely reconstruct rooftop structures including detailed rooftop 

components such as chimneys and ventilation fan. Thus, the two modeling techniques are usually 

performed under the fact that microstructures on the rooftop are not required to be modeled. 

In the past few decades, it has been pointed out by many researchers that the regularization 

of noisy building boundaries is an essential step for the generic building modeling. The process of 

regularization, known as a line simplification, is mostly used to extract the boundary vectors by 

avoiding fragmented line segments and redundant vertices. Moreover, geometric conditions such 

as symmetry, parallelism, and perpendicular are imposed to the boundary vectors during the 

regularization process. Various techniques related the regularization of building vectors have been 

proposed in the literature. In here, according to regularization criterions used, representative 

studies are categorized and then surveyed in detail. Typical limitations in the studies are not to 

deal with arc-shape of polygon and their outcomes are also sensitive to a point density which is 

shown along the boundary lines. 

 

Douglas-Peucker-based simplification 

The classical Douglas-Peucker (DP) algorithm has been widely recognized as the most 

visually effective line simplification algorithm (Ramer, 1972). This simple algorithm starts by 

constructing a polyline with edge segments, which link a priori intial vertices selected from edge 

points. The process recursively discards the subsequent vertices whose distance from the initial 
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polyline less than ζ > 0 allowing distance tolerance. It accepts the vertices as part of the new 

simplified polyline if their distances from the line are greater than ζ, where it then becomes the 

new initial vertices for further simplification. However, the performance of DP fully depends on ζ 

and intrinsic topological errors such as a self-intersection are found, which is later improved 

(Ebisch, 2002; Wu and Marques, 2003). Cho et al. (2004) simply applied the DP algorithm to an 

urban set of LiDAR data, which results in producing well-simplified boundary lines without 

considering geometric constraints between the lines. Shan and Lee (2002) and Zhang et al. (2006) 

extended the line simplification by imposing simple geometric constraints to the polylines derived 

from the DP. After computing two main orientations of a building, the most of outlines are forced 

to be parallel and/or orthogonal based on the dominant orientations. It assumes that a building 

polygon is basically formed as a rectangular shape, so consecutive polylines are perpendicular to 

one another (Alharthy and Bethel, 2002; Ma, 2005). However, due to the simplicity of approaches, 

their capability is sensitive to the presence of data noise along building boundaries. In addition, 

Lach and Kerekes (2008) and Lee et al. (2011) adopt a sleeve-fitting algorithm (Zhao and Saalfeld, 

1997), which uses angle tolerances instead of distance tolerance for simplifying irregularly 

distributed polylines. 

 

Least squares adjustment with geometric constraints 

The initial boundaries can be iteratively rectified and fitted well to boundary points as well as 

imposed by geometric constraints such as linearity, connectivity, and orthogonality based on the 

least squares adjustment. Ameri (2000) introduced the Feature Based Model Verification (FBMV) 

for regularizing 3D polyhedral building shapes from DSM and imagery data. During the 

regularization process, linearity for straightening consecutive lines, connectivity for establishing 

topology between adjacent lines, and orthogonality for imposing the orthogonal property to 
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neighbouring lines as well as co-planarity for growing a polygon are used as constraints. Then, 

the weighted least squares minimization is adopted by incorporating the constraints in order to 

produce a good regularized description of building rooftop polygons. Sampath and Shan (2007) 

parameterized a regular building model by the coefficients of a rectangular shape based on a least 

squares adjustment with only a perpendicular constraint. This results in an over-regularized 

rooftop shape in the case of building polygon with more than two directions. Xu et al. (2010) and 

Lee et al. (2011) consider the regularization with less use of orientation constraints as fixing the 

dominant orientations limits the shapes of building polygons to rectangular shapes. However, this 

often causes the generation of redundant line segments due to the irregular distribution of 

boundary points. With a similar approach, Neidhart and Sester (2008) propose a graph-based 

vertex reduction method that is used to find a polygon with a minimum perimeter, while 

preserving the geometric properties such as orthogonality of consecutive polylines. The final 

outlines with a set of straight lines are approximated based on RANSAC and least squares 

adjustment. 

 

MDL-based verification 

According to Rissanen (1999), the basic concept of Minimum Description Length (MDL) 

theory is to find the most probable model with a global maximum likelihood in the set of possible 

model classes. Weidner and Förstner (1995) adopted the MDL concept to regularize noisy 

building outlines extracted from high-resolution DSM. After determining the building boundary 

points, four consecutive points are selected to be the local unit of the line simplification. With this 

local point set, ten different hypothetical models are generated with respect to regularization 

criteria. The criteria are defined by moving two middle points, removing one of the middle points 

as well as imposing orthogonal property on the consecutive lines. As a result, the regularization 
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process produces a good approximation of building outlines, but there are several limitations. 

First, by generating many hypotheses at every vertex, a high computational cost is required. 

Second, since line simplification is locally performed, the method may produce different results 

according to the starting vertex. Moreover, due to the local adaptive regularization, it is difficult 

to achieve a global regularity for entire polylines. Thus, an additional optimization step which 

globally imposes the geometric constraints to the building model should be involved. Jwa et al. 

(2008) extended the approach by solving some limitations, resulting in the generation of a global 

optimal building polygon. Three geometric parameters of building vectors; line directionality, 

inner angle, and number of vertices, are directly employed in the MDL framework. According to 

regularization rules defined, the parameters are hypothesized, which results in a number of 

regularizing model hypotheses. A model minimizing the MDL cost function is finally selected as 

a global rooftop model among them. Similar ideas are also presented by Taillandier and Deriche 

(2004) in order to simplify the complex building rooftop shapes. From 3D plane primitives, edges 

of planes are extracted by intersecting all the planes. The possible arrangement of planes is then 

hypothesized in the form of 3D graph. Topological and geometrical description with respect to the 

number of planes, edges, vertices, and line direction are also integrated with the Bayesian 

formulation. The hypothetical rooftop models are therefore verified based on the MDL framework. 

In performing MDL-based verification, a general problem is that a model with under- or over- 

regularized form might be selected in the complex building scene. This is normally due to the 

failure of keeping a balance between regularization terms in the MDL function. To avoid the 

problems, weight values for each term are required to be adaptively optimized to control 

inferential power between the terms. 
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2.4 Airborne LiDAR system overview 

Light Detection And Ranging (LiDAR) is an active remote sensing technology. It uses an 

artificial energy source, a laser, to sense the corresponding targets by measuring time delay 

between its emission and return pulse. Since the mid 1990s, a global positioning system (GPS) 

technology has made it possible to determine the position of a person or object with a high degree 

of accuracy, which has enabled the development of the LiDAR system for the direct measurement 

of topographical terrain surfaces (Ackermann, 1999). A typical LiDAR system produces 3D 

positional data in the Cartesian (XYZ) coordinate system by integrating two main measuring 

equipments: a laser scanning system and a position and orientation system.  

 

 

Figure 2.7: The overall diagram of a typical airborne LIDAR system. 

 

As shown in Figure 2.7, each of these systems can be divided into sub-units: a laser ranging and 

optical scanning unit within the laser scanning system, a GPS, and an inertial measurement unit 
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(IMU) within the position orientation system. The associated measurements are recorded by a 

computer unit mounted adjacent to the sensors. For further information, one can refer to literature 

by Wehr and Lohr (1999), Baltsavias (1999), Shan and Toth (2009), and Geist et al. (2009). 

 

Laser ranging 

Laser ranging systems measure the distance between the survey platform and the targets on 

the ground, and consist of three sub-components: laser transmitter, receiver, and time counter. The 

laser transmitter continuously emits a number of pulses per second that are normally measured in 

kilohertz (kHz), called as PRF (Pulse Repetition Rate). Currently, a typical airborne LiDAR 

systems provided by main manufacturers (Optech, 2013; Riegl, 2013) can generate high PRF up 

to 800 kHz which leads to a dense point spacing, resulting in the increase of spatial resolution on 

the ground. However, the PRF is limited by the system’s ability to recharge a specific fraction of 

the pulse’s maximum amplitude after emitting a previous pulse. This time length is referred to as 

pulse duration (pulse width) and its common value is approximately 7 nanoseconds (ns) in most 

LiDAR systems. The receiver has an optical detector, which senses backscatters from an emitted 

pulse traveling at the speed of light. The pulse must be returned to the sensor after hitting an 

object on the ground before the next pulse is emitted, otherwise it will not be recorded. The latest 

commercial LiDAR system employs photon-counting technology based on single-pulse multi-

photon / multi-pulse single-photon detection, which results in the improvement of system 

performance by increasing the signal reception rate at low-energy. 

 

Scanning system 

The primary role of scanning devices is to redistribute laser pulses to cover wider areas with 

a higher point density. Various scan angles (i.e., Fields Of View), from 400 to 750, can be adopted 
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for different mapping purposes. A wider scanning angle reduces the time and costs required for 

mapping. However, it increases occlusions and error propagations in the range computation 

towards the edge of scan lines. In typical practical operations, four types of reflective scanning 

devices are used. They create different scanning patterns on the ground: oscillating mirror, 

rotating mirror, nutating mirror (palmer scanner), and fiber scanner. The oscillating mirror 

changes its scan direction at the end of each scan, which yields a zigzag line for a linear scanning 

pattern. This leads that its operation requires acceleration and deceleration. The rotating mirror 

and nutating mirror move with a constant angular speed, which produce parallel lines and 

elliptical shapes (i.e., a non-linear scanning pattern), respectively. This allows for faster scans that 

produce redundant raging measurements on the same ground area. In the fiber scanner, laser 

pulses are directly sent into a circular glass fiber array and linearly transmitted to the ground, 

which forms a parallel scanning pattern. As the scanner uses the small aperture of the fibers 

without large mechanical movements, it achieves a high scan rate and a high sample point density. 

However, it requires a very sophisticated calibration procedure. 

 

Positioning and orientation system 

Inertial Navigation System (INS) provides high quality navigation information derived from 

inertial measurements of linear velocity and angular rates in combination with GPS-based 

positioning techniques. Inertial navigation is defined as navigation using Inertial Measurement 

Units (IMU) based on Newton’s laws of motion. In general, an INS comprises a set of IMUs (i.e.,  

accelerometers and gyros) the platform on which they are mounted, and the computer that 

performs the calculations needed to transform sensed accelerations and angles into navigation 

information: position, velocity, and attitude. Gyroscopes measuring the angular rate of the 

platform with respect to inertial space are divided into two types: mechanical and optical gyros. 
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Mechanical gyros provide direction according to the angular momentum of a rapidly spinning 

mass in inertial space analogous to Newton’s second law of rotational motion. This device is 

usually used for strategic military applications or high-accuracy space application, given its 

accuracy, which is known to be better than 0.0001 °/hr for bias and 50 ppm for scale factor. It is 

also expensive, compared to the tactical/commercial grade, with bias stabilities in the range 0.1－

10000°/hr and scale factor larger than 100 ppm (Jekeli, 2001). Optical gyros are operated based 

on the Sagnac effect, which results in the apparent lengthening or shortening of light propagated 

in a closed circuit that is rotating with respect to inertial space. The optical gyro is not suitable for 

the local level stabilization of a platform because it does not use a spinning mass, but it is a valid 

alternative to the mechanical gyros in a strap-down mechanization in which a platform rigidly 

attaches to the corresponding reference frame. An accelerometer senses the specific (applied) 

force. In other words, it does not measure the acceleration associated with free-fall in a 

gravitational field, but it does sense the reaction, such as the lift provided by a parachute. The 

high performance accelerometer for military applications has an accuracy of greater than than 1 

   for bias and 2 ppm for scale factor. 

The NAVigation Satellite Timing and Ranging (NAVSTAR) GPS is a satellite-based radio-

positioning and time-transfer system, designed, financed, deployed and operated by the US 

Department of Defense (DoD). It was designed as an all-weather, continuous, global radio-

navigation system (Wooden, 1985). The GPS satellites have nearly circular orbits with an altitude 

of about 20,200 km above the earth and a period of approximately 12 sidereal hours. The current 

constellation (November, 2011) consists of 32 operational satellites (including IIF-1 which is a 

new generation of updated GPS satellites, launched on May. 2010) deployed in six evenly spaced 

planes (A to F) with an inclination of approximately 55° and spacing of 60° intervals along the 

equator (http://tycho.usno.navy.mil/gpscurr.html). The GPS satellites basically transmit two 

http://tycho.usno.navy.mil/gpscurr.html
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microwave carrier signals, L1 (1575.42 MHz) and L2 (1227.60 MHz), derived from the 

fundamental L band frequency (10.23 MHz). In recent years, L5 frequency (1176.45 MHz) for 

civilian-use signals has been made available to the IIF satellite according to the GPS 

modernization process, which enhances reliability in receiving GPS signals. The signals carry 

navigation messages, which include satellite clock corrections and ephemeris and pseudorandom 

noise (PRN) codes. The PRN codes are divided into various types: Coarse/Acquisition-code 

(C/A-code), Civillian L2-code (L2C), Precision-code (P-code), and Military-code (M-code). The 

C/A- and L2C-code are normally used in the Standard Positioning Service (SPS) for civilian use 

with a noise level range of less than 3 m, respectively. On the other hand, the P- and M-codes are 

designed to be utilized by the Precise Positioning Service (PPS) for a specialized user such as 

military personnel with a range accuracy of less than 0.3 m, respectively (Hofmann-Wellenhof  et 

al., 2001). 

The GPS/INS performance usually depends on the quality of the GPS measurements because 

the long-term accuracy of a stand-alone INS is poor, compared to that of GPS. On top of the 

navigational insufficiency of the stand-alone INS, the GPS positioning errors derived from a 

signal blockage, multipath, and the effect of the sensor vibration while in motion should be 

considered. In a practical situation, differential positioning with GPS (DGPS) is to be performed 

by simultaneously collecting data at two stations, a base and a rover, from each satellite to obtain 

better GPS/INS navigation information. The benefit of the differential technique is that it 

facilitates the cancellation of common errors, such as the satellite-dependent and receiver-

dependent errors. For example, a satellite clock error is considered a satellite-dependent error and 

can be removed by the single-difference (SD) mode. A receiver clock error and inter-channel 

biases, which receiver-dependent errors are eliminated based on the double difference (DD) mode. 

Table 2.1 shows the parameters characterizing a typical topographic LiDAR system. The next 
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sections discuss the fundamental formulations related to airborne LiDAR mapping, and error 

sources when producing 3D positional information. 

 

Table 2.1: Characteristics of a typical topographic LiDAR system 

Specification Typical values 

Laser wavelength 700 - 1400 nm, near-infrared 

Pulse repetition rate (PRF) ~ 800 kHz 

Pulse energy 100s  J 

Pulse width (Pulse duration) ~ 7 ns 

Beam divergence 0.25 – 2.0 mrad 

Scan angle (or Field Of View) 40  – 75  

Scan rate 25 – 90 Hz 

GPS frequency 1 – 10 Hz 

INS frequency 200 – 300 Hz 

Operating altitude 80 – 3500 m (6000 m maximum) 

Footprint size 0.25 – 2.0 m (at 1000 m altitude AGL) 

Number of returns ~ 4 or unlimited (full waveform) 

Ground spacing 0.5 – 2.0 m 

Vertical accuracy 5 – 30 cm (at 1000 – 3000 m altitude AGL) 

Horizontal accuracy 1/5500 – 1/2000 of flight attitude (m/AGL) 

 

 

2.4.1 Related fundamental formulations 

Figure 2.8 depicts the configuration of the main components of airborne LIDAR systems and 

the principle of laser point positioning derived from the LIDAR geo-referencing equation 

described in Equation 2.1 (Toth 2009; Habib 2009).  
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            (2.1) 

 

 

Figure 2.8: The schematic diagram of airborne LIDAR system’s configuration and the principle of 

laser point positioning (Bang 2010). 

 

In general, measurements derived from the main components are navigation solutions 

including position and attitude information derived from the GPS/INS integration, and range 

information produced from a laser unit. By incorporating the measurements into the LIDAR 

equation, the positional information of the laser beam footprint is estimated based on the shift and 

rotation of the associated vectors over the corresponding coordinate systems, where the coordinate 

frames used in the LIDAR equation are comprised of a ground coordinate frame and three local 

coordinate frames (i.e., IMU body frame, laser unit frame, and laser beam frame). The LIDAR 

equation is based on the summation of three shift vectors and the three corresponding rotations: (a) 

    between the origin of the mapping frame and the center of IMU body frame, (b)      (lever-arm) 

between the phase center GPS antenna and the center of IMU body frame, (c)    (laser range) 

between the laser firing point and its footprint, (d)   
  between the mapping and IMU body frame, 
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(e)    
  between the IMU and laser unit frame, (f)    

   between the laser unit and laser beam frame. 

As a result, the LIDAR system determines the positional information of the laser beam’s footprint 

    over the ground based on the spatial relationship between the used sensors. 

In the previous research, some fundamental relations and formulations are introduced as 

major factors in the airborne laser scanning (Baltsavias, 1999; Shan and Toth, 2009). Values 

derived from these formulations can be used as the main input for the whole airborne laser 

mapping task which is related to the range from planning a flight mission to obtaining a final 

product. At the level of flight planning, after selecting the appropriate LIDAR system, the main 

parameters such as flight altitude and speed are determined by taking into account the quality of 

the final product. This is due to the fact that the initial parameters in flight planning can directly 

affect the positional accuracy and resolution of LIDAR data. For instance, according to the 

information provided by one popular system manufacturer (i.e., OPTECH ALTM series) at a 

flight altitude of 1200m, the expected positional accuracy (1 sigma) of the point clouds is 

approximately 0.6m and 0.15m for the horizontal and vertical planes, respectively. However, if 

flight height increases to 2000m, the accuracy will be downgraded to 1m and 0.25m. After 

obtaining LIDAR data based on the customer’s accuracy requirements, some factors, including 

the point density/spacing and the accuracy of point position, are also used as a priori information 

for LiDAR data filtering in order to extract the final products, such as DSM and object models 

(Pfeifer and Mandlburger, 2009). Table 2.2 summarizes the fundamental relations and 

formulations of laser ranging and airborne laser scanning. 
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Table 2.2: Fundamental relations and formulations of airborne laser ranging. 

Major Factor Geometry Formulation Description 

Laser 

Ranging 

Time Pulse 

Method 

 

        

R : slant range 

v: the speed of light 

 t: measured time 

interval 

Phase 

Comparison 

Method 

 

 

            

M: integer number of 

wavelengths 

 : the known value of 

the wavelength 

  : the fractional part of 

the wavelength=   

     ), where   is 

the phase angle 

Altitude above 

Ground  

 

 

     

           

    : maximum slant 

range 

 : angular FOV 

Swap Width 

 

  

              

H: altitude 

 : angular FOV 

Number of Points per 

Scan Line 

 

N=F/    

F: pulse rate (pulse 

repetition frequency, 

PRF) 

   : scan rate 

Laser

Target

Transmit Signal

Receive Signal

Range

One Wavelength

Transmit

Receive

Laser

H

Ground

H

SW

Scan Line

N
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Point 

Spacing 

Across 

 

       

    

             

  

H: altitude 

 : angular FOV 

N: number of points in 

one scanning line 

Along              
v: forward speed 

   : scan rate 

Point Density 

 

  

           

         

  N/m
2
 

N: number of points 

Footprint 

Diameter 

Nadir 

 

   

   

            

r( H): distance between 

laser sensor and 

surface 

  : laser beam 

divergence 

Off-Nadir 

   

   

 
          

        
 

 : scan angle of the laser 

beam 

 : angle between surface 

normal and vertical 

Overlapping Factor 

 

         
SW: swath width 

e: flight line separation 

Horizontal Accuracy 

 

Better than 

1/2000   H 
H: altitude 

Vertical Accuracy 

Approximately  

15 cm at 1200m  

25 cm at 2000m  

1 sigma 

 

Point clouds

N

Nadir

Off-

Nadir

r

Surface Noraml

sw

e
Forward

Backward

Flight 

Path

X

Y

Z
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2.4.2 LIDAR error sources 

Since the LiDAR system shows complex and highly interconnected configurations of main 

sensors (i.e., navigation sensors and laser scanning unit), errors derived from each sensor are 

correlated, and thus it is difficult to clearly determine the source of those errors through a 

calibration process. The potential error sources affecting the quality of laser point clouds can be 

divided into two categories: random and systematic errors. A random error which is assumed to 

follow the normal distribution is a non-predictable error source and its impact depends heavily on 

the precision of the measurements provided by each sensor. On the other hand, systematic errors 

are mainly caused by biases due to the insufficient calibration of individual sensors and 

misalignment between different sensors. Many studies of the LiDAR error budget were performed 

early on in its development (Baltsavias, 1999; Schenk et al., 2001; Csanyi and Toth, 2007; Bang 

2010) and the summary of these studies is tabulated in Table 2.3 (Toth, 2009). 

 

Random errors 

This type of error is propagated to the ground point position according to the law of error 

propagation derived from the LiDAR equation (Equation 2.1). The impact of random errors 

should be investigated by examining system measurements such as the position and orientation 

derived from GPS/INS integration and laser range. A position noise randomly affects both of 

horizontal and vertical coordinate regardless of flight height and scan angle. However, an 

orientation error contaminates the horizontal coordinate more than the vertical coordinate and the 

contaminated amount varies with respect to flight height and scan angle. The laser range error 

normally affects the vertical component of the point in the nadir region. 
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Ranging error 

The range error is caused by the malfunction and false adjustment of the time counter in 

measuring the pulse transmission time. The atmospheric effect also affects the distortion of the 

laser pulse’s path. In other words, as a laser pulse travels to the ground and back from its laser 

unit, the value of the laser range could be incorrectly calculated according to the atmospheric 

status taking into account air-density and variations of pressure, humidity and temperature. In 

addition, the degree of the intensity of the laser signal with respect to the reflectivity of the 

surface influences the range’s computation. The error effect is usually corrected based on the 

intensity-based calibration tables provided by a LiDAR manufacturing company. The effect of the 

ranging error mainly shows in the vertical point coordinate and increases in the horizontal point 

component along the scan line. 

 

Scanning angle error 

The scanning angle error occurs if an instantaneous angular position of the scan mirror 

rotation is incorrectly measured. The error leads to an anomaly in the laser beam deflection vector 

with respect to the encoder, which causes a horizontal and vertical shift of the coordinate of the 

laser point along the scan direction. 

 

Alignment error between sensors 

The alignment error is related to a misalignment (i.e., bias) in two components: offsets and 

boresight angular. The offsets including the lever arm means translation vectors between the 

sensor frames related to GPS, INS and laser sensor. The boresight angular indicates rotation angle 

between the INS body frame and laser frame. The bias in the boresight angular is more critical 

than that in the offsets. This is because the angular bias unlike linear bias derived from the offsets 
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produces a non-linear form, and thus provides an unexpected and large impact on the point 

position according to a flight altitude. 

 

Error in navigation solution 

This error is derived from the navigation solution introduced by the GPS/INS integration in 

determining the position and attitude of the sensor platform. The position error is caused by 

anomalies in GPS measurements, which are caused by cycle slips, multipaths, tropospheric and 

ionospheric errors, integer ambiguities, and so on. The ground coordinates of the measured 

LIDAR points are directly corrupted by the error, resulting in a discrepancy between adjacent 

strips. The accuracy of IMU measurements derived from the attitude of the aircraft is mainly 

affected by initialization errors, mechanical misalignments, and gyro drifts. To mitigate errors in 

the navigation solution, proper planning of the airborne survey as well as careful calibration of 

sensors is required. For example, it is important not to use very long baselines (i.e., more than 25 

– 30 km) for the Differential GPS solution in order to reduce distance-dependent errors. 

 

Miscellaneous Errors 

Besides the aforementioned main error sources, there are minor error types which should also 

be considered in order to improve the positional accuracy of LiDAR data. A time synchronization 

error occurs in the process of fusion of measurement data derived from the navigation and laser 

sensors. Fluctuation of flight also causes complex 3D position errors of laser points. An error in 

the coordinate/datum conversion (about 1-5 cm) can occur when LiDAR data are converted into 

user-preferred coordinate systems, like NAD83 being based on a GRS80 ellipsoid after acquiring 

LiDAR data based on a WGS84 ellipsoid. A mounting error is related to the rigidity of the 
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mounting of sensors such as IMUs and laser sensors, and leads to orientation errors. During the 

flight, some unexpected bending forces on the carrying plate of sensors can cause mounting errors. 

 

Table 2.3: Major error sources and their impact on the accuracy of LiDAR point positioning (Toth 

2009). 

Components Errors Typical values 

Navigation solution 
(GPS/INS) 

Errors in sensor platform position 
(shift errors) 

  ,   : 2 - 5 cm 
  : 4 - 7 cm 

Errors in sensor platform attitude  
  ,   : 10 - 30 arcsec 

  : 20 - 60 arcsec 

Laser sensor calibration 

Range measurement error   : 1 - 2 cm 

Scan angle error   : 5 arcsec 

Error in reflectance-based range 
calibration 

[-20 - 10] cm 

Inter-sensor calibration 

Boresight misalignment between the 
INS body and laser sensor frames 

(shifts and angular errors) 

   ,    ,    : <1 cm 

   ,    : 10 arcsec 

   : 20 arcsec 

Error in measured lever arm (vector 
between GPS antenna and INS 
reference point) 

   ,    ,    : < 1 cm 

Miscellaneous errors 

Effect of beam divergence (footprint) < 5 cm 

Terrain and object characteristics - 

Time synchronization - 

Coordinate system transformations - 

Atmospheric refraction - 

Sensor mounting rigidity - 
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CHAPTER 3 

3D building modeling: 

Implicit geometric regularization of noisy 

building boundary vectors 
 

 

 

 

 

 

 

 

This chapter introduces an implicit geometric regularization method for 3D shape reconstruction 

of building rooftops from noisy airborne LiDAR data. In here, the regularization is a process in 

which a model deformed by noises is refined by considering geometric regularities that indicate 

dominant knowledge of rooftop shapes and their patterns such as parallelity, collinearity, and 

orthogonality. The regularities are also implicitly represented to rooftop models by a set of rules 

defined during the regularization process without explicitly using hard constraints. The 

regularization process is performed based on Minimum Description Length (MDL) theory and its 

cost function is designed by two terms, model closeness and model complexity. Thus, a proper 

trade-off between two selection criteria is required for generating an optimal model which 

becomes a goodness-of-fit model with simple and regular shape.  
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3.1 Introduction 

In recent years, as the use of electric energy rapidly increases in urban area, the installation 

of new PLs has been urgently required. However, this leads to the increase of electromagnetic 

field of PLs near residential areas, so that potential adverse health effects from the magnetic filed 

have become social issues. For the public safety in PL corridor area (ROW), as aforementioned in 

Chapter 2, various regulations related to for example a minimum distance between PLs and 

buildings at a certain PL voltage are already formulated all over the world. For this, an accurate 

3D geometric representation of buildings plays an important role for the effective risk analysis on 

magnetic interferences to residence buildings based on the regulations. Modeling building 

rooftops (shape reconstruction) focuses on the physical quality of the reconstructed model 

elements such as boundary lines, polygons, and volumes, so that local shape details should be 

captured (Cheung et al., 2002). However, despite the demand for 3D building models, achieving 

accurate description of buildings from major data sources captured through passive or active 

sensors such as aerial images and LiDAR data is still a challenging work. This is mainly due to 

the limitations of data representation as much of the data are normally corrupted by various error 

sources such as systematic and random errors as well as scene complexity. Thus, in the image 

data, occlusion of rooftops or their parts by neighbour objects and variation of brightness due to 

the effect of shadows, noise, and low contrast usually occur. LiDAR point clouds also show 

irregular distribution with varying point density and data gaps, which cause confusions in 

interpreting detailed rooftop structures. In spite of aforementioned limitations, a lot of research 

efforts have been made to reconstruct photo-realistic 3D building models from the major data 

sources and their comprehensive reviews were provided by Rottensteiner (2009) and Haala and 

Kada (2010). 
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In practice, using LiDAR data for this thesis, modeling building roof structures begins with 

geometric primitives detected as modeling cues which are derived from off-terrain points. Where, 

the off-terrain points are separated from on-terrain points using an appropriate filtering process. 

The primitives mean a quantitative symbolic description transferred from qualitative knowledge 

stored in raw data such as spatial behaviour of data, which are usually composed of corners, lines 

and planes (Ameri, 2000; Belgiu and Thomas, 2013). As a result, the whole shape of building 

rooftops is mostly approximated by establishing topological and geometric relationship between 

primitives detected. However, as the primitives are inevitable to be corrupted by noisy data, 

reconstructing fine building rooftop models becomes a very difficult task. As mentioned in the 

previous chapter, based on the use of the primitives, there are two basic modeling schemes, 

parametric and generic modeling. The parametric modeling is performed by fitting a candidate 

model derived from a fixed set of standard model types such as gable and hip shape to the 

associated primitives. In this approach, the topological relations of primitives are pre-

parameterized and their geometry is only unknown. However, there is a limitation in representing 

complex building shapes if they are not available in a database of predifned building types. On the 

other hand, reconstruction based on the generic modeling allows us to represent high variation of 

building types. That is, as parametric relationship between primitives and their geometry are 

unknown, it is possible to express variation in the structure of objects based on a set of geometric 

parameters that is not fixed. However, there is a principal disadvantage of generic modeling 

compared to parametric modeling. Due to the minimum use of a priori knowledge of building 

shapes, the modeling quality with a high level of detail is heavily subject to the result of detection 

of primitives, resulting in the increased sensitivity to data noise. 

In the generic modeling approach, it has been pointed out by many researchers that 

regularization is essential step for the recovery of rooftop shapes with regular patterns from noisy 
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primitives (Weidner and Forstner, 1995; Ameri, 2000; Ma, 2005; Sohn and Dowman, 2007; Lee 

et al., 2011; Sohn et al., 2013). The regularization is a process in which a model deformed by 

noises is refined by considering geometric regularities that indicate dominant knowledge of 

rooftop shapes and their patterns. Most of building rooftops modeled as a wire-frame structure 

(i.e., CAD model) shows specific regularities between line or plane segments such as parallelity, 

collinearity, and orthogonality. Besides, rooftop boundaries should be delineated by avoiding 

redundant fragmented line segments and vertices (Brunn et al., 1995). Consequently, the final 

shape of building rooftops becomes a goodness-of-fit model with simple and regular shape. 

In this chapter, we adopted the data-driven generic modeling to recover detailed rooftop 

components from airborne LiDAR data with the purpose of performing the precise risk analysis in 

ROW. For its regularization process, a new method, implicit geometric regularization, is proposed 

to achieve desired results of shape reconstruction of building rooftops from noisy primitives. The 

implicit means that geometric regularities are represented to rooftop models by implicitly 

determining (data-driven) a set of rules during the regularization process instead of explicitly 

using hard constraints. In the literature, many researchers have introduced different regularization 

techniques. However, these research efforts have gained only limited success in constrained 

environments requiring many pre-specified thresholds to control the geometric regularity or 

mainly focusing on minimising residuals between boundary observations and models. Most of 

problems considered in this chapter will be solved by performing the proposed regularization 

process in the Minimum Description Length (MDL) framework, resulting in the generation of 

polyhedral-like building models with geometric regularities. 
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3.2 Motivation 

It is discussed that a coarse generic rooftop model derived from noisy primitives is to be 

refined based on a set of regularization rules defined. Where, the used term, model, denotes the 

hypothetical description of a real object. To rectify the coarse model, a model selection procedure 

for determining which model is a best description of given data is required. It is also inevitably 

confronted with problems on what is an acceptable degree of models in representing a dominant 

part of data. If a model which only fits well to the data is selected, its over-fitting is unavoidable 

due to measurement errors, called model selection problem. This implies the need for hypothetical 

representations capable of characterizing global and universal description for the given data 

(Georgeff and Wallace, 1985). In the case of prismatic modeling, a set of hypotheses with regular 

shapes is pre-determined by using limited model parameters, so that the model selection problem 

is manipulated by fitting each hypothesis to the corresponding primitives based on the criterion 

function. However, in the generic modeling, as the set of hypotheses is not available, a set of 

possible hypotheses in the different forms, instantiation (example), is required to solve the model 

selection problem caused by the regularization process. 

In this study, primitives used for the generation of instantiations are edge segments which are 

derived by a successive chain of noisy boundary points. Related concerns are that sequences of 

primitives show very irregular forms and too redundant edge information exists. In order to deal 

with these issues, model selection criteria should be defined in the regularization framework. The 

first useful criterion is related in measuring the degree of how to fit well a model to data, 

goodness-of-fit, which can be formulated based on the principle of maximum likelihood. The 

maximum of likelihood is achieved when the observed sequence is represented by using as many 

parameters as possible (Myung, 2003). However, the criterion only following maximum 

likelihood principle definitely fails to produce the desired result due to the over-fitting problem. 
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The most common way to correct the problem is to adopt a combined criterion by adding a term 

of model complexity. This is motivated by Ockham’s razor, a simple explanation of the facts is 

better than a complex one (Hansen and Yu, 2001). Therefore, a proper trade-off between two 

selection criteria is required for generating an optimal model which becomes the higher goodness-

of-fit model to the corresponding data and at the same time the simpler description with small 

number of model parameters. 

Based on the two selection criteria, the theory of MDL is commonly used as a generic 

solution to solve the model selection problem (Grunwald, 2005). The most benefit taken from the 

MDL-based regularization is that it is not to require explicit constrains using pre-specified 

thresholds in imposing geometric regularities on the model. Weidner and Förstner (1995) adopted 

the theory of MDL to regularize noisy building outlines extracted from high-resolution DSM 

using MATCH-T. The used hypotheses that were created in accordance with the defined rules of 

hypothesis generation were verified using a MDL cost function which is designed based on the 

two selection criteria. An optimized model was finally selected among a set of hypotheses if it 

minimizes the MDL cost function. Although the method was successfully applied for the building 

shape regularization, two major limitations are observed; (1) locality and (2) limited encoding 

scheme for the model complexity. First, since the procedure of optimal model selection is 

conducted over a local sequence of points, the regularization results are subject to the starting 

local point set and their geometric regularities are not achieved in the entire solution space. 

Second, as the model complexity is only governed by the number of the vertices of hypotheses, a 

hypothesis with the same number of vertices and different shape might be also selected as an 

optimal model. To overcome the limitations, this study that is motivated by the study of Weidner 

and Förstner (1995) which is discussed in detail in the later section proposed a newly required 

modeling regularization scheme in the MDL framework. The following sections look inside the 



57 

 

proposed MDL-based regularization of noisy building vectors and give detail discussions on its 

formulations. 

 

 

3.3 3D prismatic building modeling 

In this section, the proposed method focuses on shape reconstruction of flat rooftops, called 

prismatic building rooftop model, which is parallel to the ground level and its 3D vertices are 

placed at the same height. Figure 3.1 schematically represents the workflow of regularization 

process for prismatic building modeling from noisy building outlines. 

 

Initial Vectorization

Hyothesis Generation

Outlines

Optimal Model Selection

Merging

Reconstructing Optimal 
Building Shape

Line Direction 
Quantization

 

Figure 3.1: The schematic diagram of the proposed regularization process for prismatic modeling 

of building rooftops. 
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3.3.1 Mathematical formulation of MDL  

The MDL theory has its root in measuring information for communication channel 

introduced by Shannon (1948) and finding the best prediction for statistic and inductive inference 

proposed by Solomonoff (1964). Due to the uncertainty of the information, it can be converted to 

a probability of occurrence. Let P(x) be the probability of occurrence by random selection of 

   , the information, I, of x can be represented as: 

 

I(x) =     
 

    
 = -    P(x)     (3.1) 

 

Rissanen (1983 and 1999) developed the MDL principle for the optimal model selection based on 

several important aspects such as the use of no a priori knowledge and the inference of 

hypothetical model classes instead of a single specified model. The basic concept of MDL is that 

an optimal model is selected by minimizing a computable description length (DL) with a bit unit, 

which consists of two terms; model closeness (i.e., goodness-of-fit) and model complexity. The 

computation can ultimately provide a practical advantage that avoids the search of an appropriate 

test statistic for a validation process (Barron et al., 1998). The issue on how to express the MDL 

terms in the mathematical form can be derived from a Bayesian framework (Vitanyi and Li, 2000), 

such that 

 

       
          

    
      (3.2) 

 

Given a hypothesis H and observed data D,        denotes the posterior probability which is a 

conditional probability of H on D.        means likelihood for D given H.      and      is a 



59 

 

prior probability of H and marginal probability of D, respectively. By taking the negative 

logarithm at the both side of Eq. (3.2), it is written as 

 

                                            (3.3) 

 

At this points, maximizing        in the Bayesian framework is equivalent to minimizing the 

negative log probability            . As a hypothesis testing is relatively performed in the 

same data domain, the term          becomes a constant value and can be ignored. Comparing 

to the Bayesian framework, it also turns out that prior information for      is not required in the 

MDL framework. Therefore, a total description length      can be formulated by the summation 

of two terms,             and          , such that 

 

     =                        (3.4) 

 

The first term        indicates model closeness between H and D, which measures the degree of 

model suitability in the given data D and quantified by            . The second term      

expresses the model complexity of characterizing a global representation using a set of model 

parameters and quantified by          .   and     are weight values for balancing the model 

closeness and the model complexity. Assuming that an optimal model representing the data is the 

one minimizing its description length, the model selection process allows a model H to be 

converged to the optimal model H* by achieving a good trade-off between the two terms as 

follows: 

 

                                   (3.5) 
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Development of model closeness and model complexity 

The first term, model closeness, is optimized for the good data attachment to the 

corresponding model. As the data             representing n measurements usually exhibits 

the irregular distribution due to random errors, the measurement errors can be assumed to be 

following a Gaussian-distribution           with expectation   and variance   , and its density 

function      
 

    
 

 
      

   . By using the statistical model of data, the degree of fit between a 

model and data can be measured by          , and then the term of model closeness becomes in 

the form: 

 

                           
 

       

          

 

    
  

(3.6) 

 
 

    
  

   

 
 

 

        
 

 
       

 

Where,   and   denote a priori information with respect to a PL model M. In the given D, the 

first criterion is determined by minimizing Eq. (3.6) with respect to  . If all the hypotheses are 

assumed to have the same  , the last two terms as constant values can be ignored. This is because 

they are independent on  . Thus, the term of model closeness        is to be simply rewritten as 

 

    
. Where,   denotes the weighted sum of the squared residuals between   and D,    

       in the matrix form. 

 

        
 

    
       (3.7) 
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The second term, model complexity, is related to the degree of shape complexity and its 

associated term of model complexity is composed of three geometric factors;  

 

 the number of vertices    

 the repeatability of identical line direction    

 the quantized inner angle transition     

 

By using the three factors, an optimal model is chosen if its polygon vectors have smaller 

numbers of vertices, as many as possible identical line direction, and smoother or more 

orthogonal inner angle between adjacent lines.  

The probability for    can be formulated from that a vertex is randomly selected as a 

member point of a model and then      
 

  
. Its description length becomes          based on 

Eq. (3.1). Since the optimal model has the number of minimum vertices, that is no-redundant 

vertices,   
 , its description length is to be   

         . Similarly, the probability for   , P(d), 

can be 
 

  
 and its description length is         . By considering the required number of polylines’ 

directions   
 , information for the line directionality is measured by   

         . In this study, 

line directions   ={0° ≤    ≤ 180°} is quantized by eight directions {  : i=1, … , 8} based on 

Compass Line Filter (CLF) suggested by Sohn et al. (2008) as shown in Figure 3.2. Note that the 

first orientation of CLF is the horizontal direction, and from which the others are subsequently 

displaced at a constant angle equal to    (i.e., 22.5°). Given line segments belonging to each 

section of CLF, the representative direction   
    is calculated using lines’ length as a weight. 

Lastly, we also use the angle formation of CLF for the quantization of inner angles. An inner 

angle    at two consecutive line vectors is quantized by assigning a certain penalty value to one 
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of a set of angle range specified. As depicted in Eq. (3.8), the penalty values          are 

heuristically determined to have the minimum value of 0 (i.e., favoured regularity) if    closes to 

90° or 180°, while the maximum value of 2 (i.e., un-favoured regularity) is assigned to the very 

acute inner angle. This is because the occurrence of acute inner angles at the two consecutive 

building vectors is rare in practice. Therefore, the probability for     can be derived from that an 

inner angle at a vertex is located in one of quantized angles and then       
 

   
, and its 

description length is          . In the optimal model, the cost imposed by penalty values    
  is 

         
  

 

    and the description length for the inner angle transition is to be    
          .  

As a result, the description length for term of model complexity      is obtained by the 

summation of three geometric factors as shown in Eq. (3.9). 

 

           
                
                                       
                                     

   (3.8) 

 

        
          

           
            (3.9) 
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Figure 3.2: Illustration of CLF: A set of quantized line directions with 22.5°. 
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3.3.2 Initial vectorization 

In the step of initial vectorization, after ordering building boundary points by using a 

modified convex-hull method, an initial building outlines are reconstructed with linked edge 

segments obtained by Douglas-Peucker algorithm (Douglas and Peucker, 1973). 

 

3.3.3 Line direction quantization 

Orientations of polygon slopes are quantized using CLF (Figure 3.2). All line directions {θ} 

are measured by xsinθ – ycosθ = d and assigned into one of eight CLF numbers, where θ indicates 

the angle between a line segment and x-axis, and d is the line distance from the origin. Finally, the 

representative line directions with respect to each CLF number are calculated by weight-

averaging cumulative directions belonging to the same CLF number. 

 

3.3.4 Hypothesis generation 

For each vertex, many regularizing model hypotheses are generated in four different ways. 

As illustrated in Figure 3.3, A Floating Line (FL) can move along the Guiding Line (GL) passing 

through FP and GP by replacing the FL’s direction with CLF’s ones. By intersecting the FL and 

GL, a new vertex is computed for hypothesizing a regularized model. 
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(a) (b) 

  

(c) (d) 

Figure 3.3: The possible alternative hypotheses at three points (AP: Anchor Point, FP: Floating 

Point, and GP: Guiding point) based on Compass Line Filter (CLF): (a) by moving   , (b) by 

moving   , (c) by eliminating    and moving   , (d) by eliminating    and moving   . 

 

3.3.5 Optimal model selection 

Figure 3.4(a) shows initial closed polygon formed by using boundary points extracted based 

on modified convex-hull algorithm after building detection. Figure 3.4(b) is the initial simplified 

polygon simplified by DP and initial DL value for the null hypothesis is calculated. In the next 

step (c), after computing {DL} for the entire vertices, the optimal hypothesis to produce the 

minimum DL, which is smaller than the null hypothesis, is selected (see the dotted box in Figure 

3.4(c)). In Table 3.1, the null hypothesis’s DL (Figure 3.4(b)) is larger than the one in Figure 

3.4(c) because the configuration eliminating one of vertices from building outlines mainly 

contributes to the optimal configuration. If neighboring line’s directionality has the same CLF 
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value, a simple merging procedure is performed as shown in Figure 3.4(d). The last step (Figure 

3.4(e)) presents the final optimal outlines after recursively conducting the processes illustrated in 

Figure 3.4(c) and (d) until the minimum DL obtained at the current iteration is larger than the one 

at the previous iteration. 

 

   

(a)  (b)  (c)  

  
 

(d)  (e)   

Figure 3.4: Principal steps of the regularization of irregular building boundary lines: (a) 

initial shape, (b) vectorization based on Douglas-Peucker approach, (c) reconstruction of lines 

within dotted line, (d) merge, (e) final optimal configuration. 

 

Table 3.1. The values of DL elements in each step of Figure 3.4. 

Step NP ND QΔθ L(M) Ω /2ln2 DL 

(b) 12 4 3.33 34.65 22.61 57.26 

(c) 11 4 2.66 30.55 23.62 54.17 

(d) 9 4 3.11 25.53 24.26 49.79 

(e) 4 2 0.0 6.00 15.82 21.82 

 

 

One of the key issues of the proposed method is its ability to change the regularization level 

of irregular building polygon as illustrated in Figure 3.5. This can be achieved by changing 

weight value   in the MDL cost function (Eq. (3.4)). Each optimal model is derived from the 

same initial building polygon (Figure 3.5(a)). 
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Figure 3.5: Level of detail of optimal prismatic models according to the change of weight value  . 

 

The initial model is extracted by DP algorithm as a common line-simplification algorithm, 

resulting in a sequence of connected vertices with geometric random errors. Figure 3.5(b) 

illustrates the regularized optimal shape at the default weight value (  = 0.5). As the weight in the 

model closeness increases from 0.6 to 0.9, the level of detail in representing the building shape 

increases (Figure 3.5(c) to 3.5(f)). This means that the building shapes are optimized to data with 
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more vertices and line directions. On the other hand, the increase of weight (   ) in the model 

complexity from 0.7 to 0.99 allows more simple representation of the polygon (Figure 3.5(g) to 

3.5(i)). In practice, according to the user preference, this modeling scheme can be useful for 

various applications. For example, detail modeling for decision-making on construction (Scherer 

and Schapke, 2011) and coarse modeling for an urban planning (Yu et al., 2010) 

 

 

3.4 3D polyhedral rooftop modeling 

Once building outlines are generated using the prismatic modeling discussed in the previous 

section, they can provide meaningful shape information for subsequent polyhedral building 

rooftop modeling. That is, the outlines with geometric regularities can be used as significant 

primitives representing main attributes of rooftop structures such as orientations of rooftop 

vectors. Thus, the use of primitives that are newly detected inside building is constrained to a 

priori knowledge derived from the outlines. This leads that a rooftop structure with noisy vectors 

is effectively converged to its optimal model with regular shape based on the proposed 

regularization framework. Note that this section mainly focuses on the geometric regularization of 

noisy building rooftop models which are generated by the previous research (Sohn et al. 2008). 

Figure 3.6 shows the whole workflow of 3D rooftop modeling process including the 

regularization step proposed. 
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Figure 3.6: The whole workflow of polyhedral-like building rooftop modeling. 

 

3.4.1 Roof element clustering 

Buildings exhibit a range of rooftop types and a complex combination of building parts 

including roof superstructures. This places some limitations on extracting meaningful modelling 

cues directly from building-labelled point clouds. To reduce the complexity in feature extraction, 

the first step is to partition building points into each homogeneous rooftop region based on two 

similarities: height and plane similarity. In the height clustering, let R = {Pi | i=1,2,…n} represent 

a rooftop region with n numbers of points and consists of m numbers of height segments R = 

{S1,S2, …, Sm}. Height difference at each point is computed from its neighbour points connected 

in Triangular Irregular Network (TIN). If it is less than a certain threshold, Pi belongs to the same 

height cluster. As a result, the segments satisfy with the property R =    
 
          {}, 
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    . Once a set of height clusters is extracted, the plane clustering process is performed over 

each height cluster Si, which is decomposed of k numbers of plane clusters              . We 

adopt random sample consensus (RANSAC) algorithm to obtain the best plane segments as 

suggested in some previous studies (Ameri and Fritsch, 2000; Tarsha et al., 2008). First, three 

points are randomly selected. These points are used as seed points to generate an initial plane 

segment. Then, more points are captured by using a tolerance distance ζ between    and Pj, and 

plane parameters (a,b,c) are updated recursively. This process continues until each plane has the 

maximum probable inlier points and all points that belong to Si are assigned into plane clusters. 

 

3.4.2 Linear modelling cue extraction 

After plane segments are detected, two different types of line primitives (intersection and 

step lines) are extracted. The intersection line is simply generated by intersecting between 

adjacent planar segments. To extract step lines, plane boundary points are traced. This process is 

accomplished by using a modified convex-hull method, in which the topology between member 

points is defined based on TIN structure. Then a local height discontinuity is investigated to detect 

step edge pixels among boundary points between adjacent planes. Then the process of initial 

vectorization is performed to generate linear modelling cues. Given a sequence D={P1, …, Pn}, 

Pi    2 of n boundary points in the plane, the polyline segments are formed as a successive chain 

C= {    
               

         }. The initial simplification of polylines is performed by obtaining a chain C’ 

with m fewer segments. To achieve this goal, we adopt Douglas-Peucker (DP) algorithm which 

has been recognized as an effective line simplification method (Ramer, 1972). By using a line 

segment     
    ={1 ≤ i, j ≤ n | i ≠ j}, if the norm from a vertex to     

     is less than tolerance ζ > 0, the 

vertex is removed, while a vertex shows the maximum norm is determined as an inlier point to the 

line segment . This procedure continues until the norms of remaining vertices are less than ζ. Note 
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that the degree of irregularity to be handled in DP algorithm depends on ζ. DP is effective to 

eliminate erroneous vertices in a simple manner. However, it does not provide a mechanism to 

make given polylines being regular shape patterns that is maximizing Gestatic laws 

(orthogonality, parallelity and symmetricity) in addition to simplication. 

 

3.4.3 BSP-based polyhedral building model reconstruction 

Once all modelling features (lines and planes) are extracted as described in the previous 

sections, topological relations amongst modelling features for each height segment are 

constructed using Sohn et al. (2008)’s algorithm. Sohn et al. (2008) concentrated on a topological 

construction with fragmentary modelling features. They proposed BSP-tree as its solution to 

globally recover modelling topology from incomplete features. A partitioning optimum is 

achieved by maximizing planar homogeneity produced through a recursive intersection between 

lines and associate planes. The process generates a hierarchical binary tree, in which each node 

(terminal) represents planar polygons that provides the information of topological relations among 

its adjacent planar segments. A final model is produced to combine similar planar segments in 

BSP-tree. 

 

3.4.4 Model regularization using MDL 

A most bottleneck of BSP-tree for rooftop modelling is caused by an “accidental cause” that 

occurs in line-line intersection for constructing planar topological relations. That is, an error in 

line feature inherited from line extraction process might lead to errors in geometry and under-

/over-generation of vertices in rooftop models. Thus, it is required to rectify those errors. It could 

be done by line simplication algorithm. However, our goal is to make given rooftop vectors being 

a regular shape pattern in addition to eliminating erroneous vertices; combining line simplication 
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with regularization. A shape regularity is defined as being as shape pattern that shows orthogonal, 

parallel and symmetric relations between lines as similar to Gastaltic laws. This prior knowledge 

on shape regularity is often implemented using a set of deterministic rules such as “IF-THEN” 

rules. However, in our approach, the shape regularity means more than pre-specified rules, but 

implicitly derive rules (possible shape regularity) with given initial rooftop vectors. The proposed 

method does not require pre-determined threshold constraining the regular shapes, rather 

determining optimal shape through MDL-based model selection process. 

 

Hypothesis generation 

Figure 3.7 shows a situation where a number of model hypotheses is produced at P2 in a 

polygon   ={P1, P2, P3, P4, P5, P6}, to which another polygon    ({P3, P4, P7} ∈  ) is 

connected. We label three vertices {P2, P3, P4} as Anchor Point (AP), Floating Point (FP), and 

Guiding Point (GP). Using these vertices, we drive two basis lines, Floating Line (FL = [AP, FP]) 

and Guiding Line (GL = {[GP, FP]   (x, y)     |              }) in two different 

orientations, clockwise and counter-clockwise. Where,   indicates the angle between a line 

segment and x-axis, and   is the line distance from the origin. For each vertex, a number of model 

hypotheses are generated by moving FP along GL based on a set of line directions. These line 

directions are quantized globally from given entire rooftop vectors based on the CLF and refined 

by the least-square adjustment. Figure 3.7(b) and 3.7(c) illustrate how another sets of model 

hypotheses are produced when FP is merged with adjacent vertices (P4 or P7) belonging to   . 

Therefore, based on the rules defined, various hypothetic models are generated and erroneous 

vertices produced by “accidental causes” occurred in BSP are gradually eliminated. 
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Figure 3.7: Possible alternative hypotheses by assigning three vertices as AP, FP, and GP: (a) 

moving FL = {P2, P3}, (b) eliminating the line {P2, P3} and moving FL = {P2, P4}, (c) 

eliminating the line {P2, P3} and moving FL = {P2, P7} in clockwise and counter-clockwise, 

respectively. 
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Optimal model selection 

Figure 3.8 depicts an example of the whole procedure of polyhedral building rooftop 

modeling. The process starts with classified building map from raw LiDAR data (Figure 3.8(b)). 

Using this classified points, building point clouds are then segmented into height clusters (Figure 

3.8(c)) based on a height discontinuity, which is subsequently segmented into planar patches 

using RANSAC (Figure 3.8(d)). Then, intersection (Figure 3.8(e)) and step (Figure 3.8(f)) lines 

are extracted. The extracted linear modelling cues are introduced to the BSP-based modelling to 

produce initial rooftop vectors (Figure 3.8(g)). Finally, the regularization process is performed by 

rectifying geometrical distortions between adjacent plane/line segments (Figure 3.8(h)) based on 

the MDL framework as depicted in Eq. (3.5). The fine rooftop model is produced as shown in 

Figure 3.8(i). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

 
(i) 

 

Figure 3.8: Results in reconstructing an optimal rooftop model: (a) aerial image, (b) LiDAR 

data, (c) height clustering, (d) plane clustering, (e) intersection line extraction, (f) step line 

extraction, (g) BSP-based building reconstruction with distortion errors indicated as arrows, (h) 

MDL-based shape regularization, and (i) 3D polyhedral building model. 
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3.5 Experimental results 

3.5.1 Comparative study 

Many geometric regularization approaches have been found in the literature. Amongst them, 

we selected three representative regulators from the literature for comparing their performance 

over noisy building outlines. These include Douglas-Peucker’s algorithm (Douglas and Peucker, 

1973) for conventional regularization using hard constrain such as user-driven distance tolerance, 

Rule-based Rectification (Sampath and Shan, 2007) using perpendicular constraints which is pre-

specified, and Local Minimum Description Length (Weidner and Forstner, 1995) for verifying 

model hypothesis. In this section, we briefly describe the selected techniques whose performance 

will be later compared to a new regularization method proposed in this study. 

 
Iterative Polyline Simplication 

The classical Douglas-Peucker (DP) line-simplication algorithm has been widely recognized 

as the most visually effective line simplication algorithm (Ramer, 1972). This simple algorithm 

starts to construct a polyline with edge segments which link a prior initial vertex selected from 

edge points. The process recursively discards the subsequent vertices whose distance from the 

initial polyline less than ζ > 0 error tolerance, which is the norm value between line and point, but 

accepts the vertex as part of the new simplified polyline if it is farther away from the line larger 

than ζ, which becomes the new initial vertex for further simplication. The starting points, which 

can be initial vertices, are vertices with maximum and minimum coordinate according to 

horizontal direction. After detecting all initial vertices, the process continues until the initial 

polyline from all initial vertices are less than ζ. Finally, the interesting point, corner vertex, and 

simplified polyline are extracted from building boundary points based on processing split and 

merge step, recursively. Note that the output polyline can have different shape according to user-
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driven tolerance. For example, if ζ has large value, the shape of building can be over-

simplification. 

Rule-based Rectification 

Sampath and Shan (2007) developed a rule-based regularization for refining coarse building 

boundaries extracted by segmentation between building and non-building, grouping, and tracing 

building outlines from airborne LiDAR point clouds. The method mainly consists of two-step 

regularization processes. The extracted building boundary points are grouped according to 

existing on similar line segments. Then, the second step is to further rectifying outlying points 

with perpendicular and parallel constraints which is pre-specified. In here, a coarse building 

boundary is obtained by DP, thereby eliminating noisy boundary points. After dividing slopes into 

two groups in horizontal and vertical direction, a simple least square adjustment is performed to 

regularize boundary lines with irregular shape. Since the slope direction is mainly divided into 

two directions, in case of the building polygon with more than two directions, the proposed 

regularizing process is not working well. However, this approach can rapidly provide the good 

solution for regularization in the building with simple shape. 

Model Hypothesis-Verification 

Weidner and Förstner (1995) regularized nosy building outlines extracted from high-

resolution DSM using MATCH-T based on a local Minimum Description Length (LMDL). The 

MDL principle is a well-known optimization theory to obtain a good balance between model 

likelihood and model complexity based on Occam’s razor. Starting from the initial building 

boundary obtained from the DP algorithm, the method selects four consecutive points as a local 

unit of the polyline regularization. With this local point set, ten different hypothetical 

regularization models are generated (Figure 3.1). The hypotheses are generated in order to impose 

the orthogonal regularity between consecutive lines, either by moving two middle points or to 
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enhance the simplicity by removing one of the middles points. Weidner and Förstner (1995) 

suggested a cost function for the hypothesis verification as 

 

DL =  
 

 
    

       

 
     (3.10) 

 

In Eq. (3.10), Ω is the weighted sum of the squared residuals between D and H. H’s complexity in 

the last term of Eq. (3.9) depends on the number of unknown parameters, Np (i.e., the number of 

vertices associated to generate H), and constraints, Nc (i.e., the number of parameters to constrain 

the orthogonality. The optimal hypothesis, H*, is determined by simultaneously minimizing Ω and 

the number of vertices used to generate H. Because of local-based approach, this method can 

produce different results according to starting point among building boundary points when 

regularization process is performed. That is, the shape of regularized polygon can be changed 

according to the starting point of the procedure. In order to achieve the global geometric relation 

of resulting polygon, another global hypothesis such as orthogonality and parallelity is needed.  

An example for the performance evaluation of four regulators including three existing 

techniques and our proposed method shows in Figure 3.9. Based on the initial vectorization 

process, initial building boundary vectors (Figure 3.9 (b)) are extracted from raw LiDAR data 

(Figure 3.9 (a)), which shows very irregular shape. From the initial vectors, the DP method 

(Figure 3.9 (c)) mostly represents a detailed building shape. However, since the method only 

focuses on the line-simplification using pre-determined threshold, its final shape is not able to 

express other geometric regularities such as parallel and orthogonal properties. The Sampath-Shan 

approach generates a well-regularized building shape (Figure 3.9 (d)) because it is a very suitable 

method for regularizing a rectangular shape based on only two main directions. A small line 

segment is observed in the boundary vector. It can be considered as a noise. This is because its 

length is less than average point distance, so the detailed representation of building polygon is not 
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meaningful. That is, it is not a significant part of building polygon. Weidner-Forstner method 

produces a fully simplified building shape (Figure 3.9 (e)). However, due to the local 

regularization process, its final shape is not able to express a parallel property among vectors. On 

the other hand, the proposed method reconstructs a completely regularized building boundary 

shape (Figure 3.9 (f)).         

 

 
  

(a) (b)  (c) 

   

(d) (e) (f) 

Figure 3.9: The results of regularization from building boundary vectors: (a) LiDAR data, (b) 

building boundary vectors, (c) Douglas-Peucker algorithm, (d) Sampath-Shan algorithm, (e) 

Weidner-Forstner algorithm, and (f) the proposed implicit geometric regularization. 

 

3.5.1.1 Data set 

The performance of the four regulators was evaluated using an urban area including 74 

buildings, which is located in Ilsan of South Korea. As shown in Figure 3.10, the test area (450m 

  550m) contains typical modern-looking buildings with various shapes such as rectangle, L, I, 

and T-shape. Laser point data are acquired from the Optech’s ALTM-3070 system at an altitude 

of about 1200 m above ground level on July 28, 2005. An average point density is approximately 

1.4 (points/m2) which is equal to 0.84 m point spacing. The 3D positional accuracy of the point 

clouds is approximately less than 0.25 cm. Reference building vectors were manually captured 

from a high-resolution airborne imagery taken from the Intergraph Z/I Imaging’s DMC (Digital 

Mapping Camera) with the ground sampling distance of 0.20m, resulting in the digital map with 

1:1000 size of topological features. 
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(a) (b) 

Figure 3.10: Test data set: (a) Raw LiDAR data and (b) digital map with 1:1000 size of 

topological features. 

 

3.5.1.2 Quality assessment 

In order to evaluate the quality of the reconstructed models produced by the four regulators, 

an error matrix is developed for each building polygon as depicted in Table 3.2. The matrix is 

composed of four factors which describe the difference between reference (R) and extracted (E) 

model with respect to (a) vertex (VD), (b) inner angle (IAD), (c) area (AD), and (d) centroid 

(CD). The VD denotes the difference in the number of vertices. In the IAD, after angles in CLF 

are quantized with 10 degree which results in the generation of 18 bins, inner angles at a vertex 

are allocated into each bin. The IAD thus expresses the difference in the number of bins allocated. 

The AD is the difference in the area of polygon. Lastly, the CD indicates the difference in the 

geometric center of polygon. For each factor of error matrix, scores which are used to judge the 

qualities of models regularized are calculated as the average value of entire buildings. Note that 

the score closer to zero indicates the regularized shapes close to the corresponding reference. 
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Table 3.2: Error matrix 

# Category 

1 

Vertex Difference (VD) 

Difference between R and E model w.r.t. the number of vertex 

=                

2 

Inner Angle Difference (IAD) 

Difference between R and E model w.r.t. the number of allocated bins quantized by 18 angles 

=                      

3 

Area Difference (AD) [m2] 

Difference between R and E model w.r.t. area of polygon 

=        

4 

Centroid Difference (CD) [m] 

Difference between R and E model w.r.t. geometric center of polygon 

=        

 

Figure 3.11 illustrates the results of performance evaluation for four regulators with respect 

to four factors of error matrix over the test data. The DP efficiently eliminated the most of noisy 

polygon vertices when a threshold value is properly determined (Figure 3.11(a)). Where, the 

threshold value was determined by the summation of average point distance (~ 0.84 m) and 

positional accuracy of LiDAR data (~ 0.25 m). However, the method failed to produce shapes 

with regular patterns that are controlled by geometric constraints such as repetition of identical 

line direction, angles, and lengths, orthogonality, and parallelity (Figure 3.11(b)). This is due to 

the fact that DP’s regularity optimization is achieved only by minimizing maximal distance from 

hypothesized model, but there is no mechanism to augment polygonal regularity. Unlike other 

regulators, DP’s line vectors are also directly extracted by connecting consecutive boundary 

points, so that final vertices are not governed by a set of adjustable parameters. This leads that the 

centroid of DP’s pylons is close to one of reference (Figure 3.11(d)). The overall performance of 

Sampath-Shan’s method shows better than one of DP and Weidner-Forstner algorithms. However, 
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due to the use of pre-fixed simple regulation rules, there are limitations to achieve more 

regularized shapes governed by aforementioned geometric constraints. Weidner-Forstner 

algorithm mostly suffers from the locality problem in applying regularization rules to polylines, 

so that there is no guarantee that a final form has a global regular shape. This degrades the most 

factors of error matrix. The performance of proposed method is outstanding compared to the other 

regulators, which can be clearly shown in Figure 3.11. It can be concluded that the newly driven 

regularization scheme efficiently contributed to remove noisy vertices and augment the 

orthogonal and parallel properties between polylines in the global framework. Figure 3.12 shows 

prismatic building models generated by the proposed method, which are overlaid on the 

corresponding 2D imagery. 
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Figure 3.11: Performance evaluation of four regulators w.r.t. four categories: (a) Vertex 

Difference (VD), (b) Inner Angle Difference (IAD), (c) Area Difference (AD) and (d) Centroid 

Difference (CD). 
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Figure 3.12: 3D prismatic building models generated by the proposed implicit geometric 

regularization in the MDL framework over Ilsan test area in Korea. 

 

 

3.5.2 ISPRS benchmark test 

3.5.2.1 ISPRS test data  

The performance of the proposed method was evaluated and visualized with five real data 

sets (Figure 3.13) which are provided from ISPRS Commission III, WG3/4 and used for the 

ISPRS test project on urban classification and 3D building reconstruction. Figure 3.13(a) 

illustrates typical European building types showing various degrees of shapes including gable, hip 

roof, and their mixed structures, which is located in Vaihingen, Germany. The area is divided into 

three sub-data sets with respect to primary building types. Area 1 (120m   180m) contains 

historic buildings with complex shapes. Area 2 (135m   185m) is characterized by long-

connected buildings (i.e., ~ 65m length). Area 3 (140m   215m) includes a normal residential 

area with various sizes (i.e., from 35m2 to 625m2). Figure 3.13(b) shows Toronto urban area in 
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Canada, where typical modern buildings containing various structures from a simple shape (i.e., 

rectangle, L, I, T-shape) to very complex multistore buildings are positioned. The region is 

divided into two sub-sets: Area 4 (410m   535m) contains a mixture of low and high buildings 

(i.e., from 5m to 145m above the ground level). Area 5 (410m   550m) is distinguished by a 

complex cluster of high-rise buildings (i.e., ~ 21,000 m2 of cluster area).  

 

(a) 

   

Area1 Area2 Area3 

(b) 

  

Area4 Area5 

Figure 3.13: Five ISPRS test data sets (yellow colour line): (a) Vaihingen in German and (b) 

Toronto in Canada. 
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The Vaihingen LiDAR data set was acquired by Leica ALS50 system at an altitude of 500m 

above ground level in August 2008. 10 strips are overlapped with 30% rate and an average point 

density is approximately 6.7/m2 (~ 0.39 m point spacing). For the Toronto data set, Optech’s 

ALTM-OPION M system was operated and the ALS data acquisition was carried out at an 

altitude of 650m in February 2009. The test area includes 6 strips with about 6/m2 average point 

density (~0.41 m point spacing). Total 206 building objects are located in the test areas. The 3D 

positional accuracy in both LiDAR data representing the buildings is approximately less than 15 

cm provided from a mapping company. 

 

3.5.2.2 Quality assessment 

For the quality assessment of proposed method, the evaluation result on building rooftop 

modeling is reported from the ISPRS Commission III, WG3/4 by comparing extracted models 

with the corresponding references. A more detailed description on the evaluation can be found in 

Rottensteiner et al. (2012) and the website, http://www. commission3.isprs. org/wg4/. The 

evaluation is mainly performed by two criteria: the analysis on (a) geometric errors of models and 

(b) segmentation quality. 

The first criterion is utilized to examine how well each extracted vertex    close to its 

reference   . This is simply performed by measuring Euclidean distance          between 

conjugate paired vertices in result and reference. Note that the pair’s relations are established if d() 

is less than a tolerance distance    (i.e., 3 m). The Root Mean Square (RMS) error,      

 
   

 
 , of a set of d(p,q) is then calculated using the number N of conjugated pair. Based on the 

RMS value, two different evaluations are used and their results are shown in Figure 3.14: (a) 
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RMS from    to   ,            , which denotes the nearest    at each   , (b) RMS from    to 

  ,            , which indicates the closest   at each   .  
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(b) 

Figure 3.14: The results on positional accuracy of the boundary polygon: (a) RMS of extracted 

vertices w.r.t. reference and (b) RMS of reference vertices w.r.t. extracted vertices. 
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As a result, results derived from the two evaluations mean the positional quality of vertices in 

extracted polygons. If the extracted polygons fit well to the corresponding reference models, the 

accumulation rates in the histogram of RMS show the high values within small RMSs of distance 

between    and   . Overall, more than 70% of extracted vertices    is located with less than 1.0 m 

RMS. If the positional accuracy of data (i.e., ~0.15m) and average point distance (i.e., ~0.4m) as 

well as building scene complexity including occlusion are taken into account, the result can be 

considered as a reasonable solution. In most of test area, the result of             is better than 

one of            . The reason is that the proposed method provides under-simplified models 

with redundant vertices compared to the reference. This leads that multiple   s may correspond to 

a   , so that overall accuracy (i.e., RMS) can suffer. 

Next, to evaluate overall building reconstruction performance, a confusion matrix which 

consists of three categories (i.e., completeness (Cm), correctness (Cr), and quality (Qa)) is 

introduced and each category is formulated by three factors: (a) TP (True Positive) which is the 

number of building objects that are found in both the reference and the result, (b) FN (False 

Negative) which is the number of building objects that are found only in the reference, but not in 

the result, (c) FP (False Positive) which is the number of building objects that are found only in 

the result but not in the reference. By using the ratio among the three factors, the completeness 

can be defined by TP and FN, which denotes the detection rate of objects. The correctness can be 

formulated by TP and FP, which shows how well the extracted models match to the associated 

reference models. The quality is derived by three factors and indicates the overall quality of 

results. The three categories are defined as: 
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Completeness (%)  
  

     
      

(3.11) Correctness (%)  
  

     
      

Quality (%)  
  

        
      

 

The overall performance analysis is tabulated in Table 3.3. The confusion matrix is applied 

to three different geometries: (a) area of buildings, (b) number of polygons with more than 50% 

overlap with reference, (c) number of polygons with more than 10 m2. In the area level, the 

completeness and correctness of building models extracted show more than 90%. This means that 

the most of resulting building models are properly overlapped to the corresponding reference 

models with small portion of FPs (i.e., overall 1.9%). However, the results fail to describe 

detailed boundaries of buildings when we observe the FN with relatively high portion of 9.8%. 

This is mainly caused by the limitations of data in representing the structures of buildings due to 

for example occlusions. Since the laser last return information is usually used for the building 

modeling, the extracted models also tend to shrink compared to reference vectors. Additionally, 

the regularization process sometimes causes errors such as over-simplification of detailed 

boundary lines. This is because the proposed method is performed under the assumption that 

LiDAR data usually show irregular distribution. In the polygon level, firstly, polygons with at 

least 50% overlapping to their reference are considered for the evaluation, which results in 77.3% 

completeness and 96.4% correctness. As detail building models including superstructures in 

reference are provided, non-matched polygons which are found in reference but not in result are 

found. This leads to produce the relatively low completeness. Next, polygons covering an area of 

more than 10m2 in reference compared with resulting polygons, resulting in 89.9% completeness 

and 98.2% correctness. This is very promising results with high success rate as LiDAR data 
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usually have a limitation in describing building parts including superstructures compared to high-

resolution images with centimetre-level ground sampling distance. 

 

Table 3.3: Overall quality of building rooftop modeling. 

Sub-

Set 

# 

Building 

# 

Plane 

Area  Polygon(50%overlap) Polygon(10m2area) 

Cm Cr Qa Cm Cr Qa Cm Cr Qa 

Area1 38 288 88.8 99.5 88.4 88.2 98.5 87.0 89.9 98.2 88.4 

Area2 15 69 90.2 99.8 90.0 73.9 100 73.9 90 100 90 

Area3 57 235 88.8 99.7 88.5 84.7 100 84.7 89 100 89 

Area4 58 967 89.5 98.2 88.1 75.5 97.5 74.1 83.5 97.5 81.8 

Area5 38 640 93.8 93.5 88.1 64.4 85.8 58.2 86.1 85.7 75.2 

Total 206 2199 90.2 98.1 88.6 77.3 96.4 75.6 89.9 98.2 88.4 

 

 

Figure 3.15 visualizes a final outcome of the proposed regularization approach reconstructed 

from the ISPRS test data sets. The two representative buildings of each sub-data set are selected: 

complex roof shapes integrated with a gable structure for Area1, long-connected buildings for 

Area2, typical resident buildings for Area3, complex modern buildings with multistory for Area4, 

high layer buildings for Area5. Due to the presence of irregularity in the LiDAR data distribution, 

the initial boundary edges of buildings contain geometric distortions. However, the proposed 

method successfully corrects the most of the distortions by removing redundant edge segments 

and imposing geometric constraints to line vectors in the MDL framework as shown in Figure 

3.15(c). Figure 3.16 shows all reconstructed building models overlaid on the corresponding aerial 

images. 
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Figure 3.15: Reconstructed building models with complex roof structure: (a) airborne images, (b) 

LiDAR point clouds, and (c) perspective view of the reconstructed 3D building model. 
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(a) Area1  (b) Area2 

 
 

(c) Area3 (d) Area5 

 

(e) Area4 

Figure 3.16: Perspective view of 3D building reconstruction results: (a), (b), and (c) Vaihingen in 

Germany and (d) and (e) Toronto in Canada. 
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Figure 3.17 illustrates limitations of the proposed method, which mainly occur from plane 

clustering (Figure 3.17(a) and 3.17(b)) and detailed representation of polygon (Figure 3.17(c)) 

including arc segments (Figure 3.17(d)) in X-Y plane.  

 

 (Threshold)

 
 

(a) (b) 

 
 

(c) (d) 

Figure 3.17: Examples of the limitations of 3D PL reconstruction due to plane clustering ((a) and 

(b)), over-simplification (c), arc-segment extraction (d).  

 

In Figure 3.17(a), when the plane clustering process is performed using building points, the 

detected polygon is over-segmented by merging adjacent planes due to the use of fixed error 

tolerance. The similar situation occurs in the height clustering as shown in Figure 3.17(b). If the 

height discontinuity between neighboring planes is smaller than the threshold used, the 
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corresponding planes are merged into one plane. As depicted as Figure 3.17(c), extracting 

polylines with small length (For instance, about 1 m) is a big challenging task. This is because the 

quality of line extraction normally relies on existence of sufficient data rather than performance of 

algorithms in the data-driven approach. Thus, there is a limitation to accurately collect edge 

evidences and it is hard to recover the polylines. In Figure 3.17(d), since the proposed method is 

carried out under the assumption that a polygon is composed of discrete line segments, there is a 

limitation to extract arc segments, which are approximated by linear fragments in this study. 
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Chapter 4 

3D power line model reconstruction: 

Piecewise catenary curve model growing 
 

 

 

 

 

 

 

 

This chapter describes a new method for 3D power line (PL) model reconstruction, called 

Piecewise Model Growing (PMG), which is a hypothesis verification and its optimal model 

propagation process. The process starts to detect PL candidate points from raw ALS data. Then, 

an initial catenary model generated over the candidate points piece-wisely grows to capture all PL 

points of interest and thus converted into a full PL 3D model. That is, abstract information of 

irregularly distributed PL points is to be converted into the more geometric form using a catenary 

curve model. The important issue in PMG is able to reduce the complexity in processing PL 

modeling by using hypothetical PL models as guide lines. Furthermore, it enhances the efficiency 

of the PL modeling process by simultaneously capturing PL points and modeling PLs. This is in 

contrast to the general approach that a priori information such as labelled PL points in 

incorporated into the PL modeling process.  
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4.1 Introduction 

Three-dimensional (3D) modelling of power lines (PLs) is one of the most critical processing 

steps in PL management. The main reason for this is that PL models can ensure accurate and 

time- and cost- effective maintenance of the safety operations of PL infrastructure. The 3D PL 

model-based management strategy is supported by the fact that potentially hazardous situations 

including vegetation encroachments, which often result in electrical shock hazards, fires and 

outages, should be manipulated at the appropriate time. At present, the state-of-art techniques are 

used to reconstruct PL models, and still require human intervention, which hinders the rapid 

response needed for effectively managing PL risks. Therefore, achieving the automation of PL 

modelling is one of main goals for the rapid PL risk monitoring. This chapter describes a new 

method for automatic 3D PL reconstruction, called Piecewise Model Growing (PMG), from 

airborne LiDAR data. The proposed method is developed based on a data driven approach, which 

starts by detecting PL candidate points at the point level. These points are converted into the 

catenary curve model, which piece-wisely grows to capture all PL points of interest and thus 

produces a full PL 3D model. The important aspect of the PMG method is its ability to enhance 

the efficiency of the PL reconstruction process by simultaneously capturing PL points from the 

raw data set and modelling a PL feature. In most existing studies, the step for classifying PL 

points is conducted prior to the PL modelling process. This results in an increase in the processing 

time and delays the rapid delivery of the clearance report used to detect and deal with dangerous 

situations in the ROW. In addition, a priori information such as pylon position and PL voltage 

type is not necessary to support the PL modelling process, thus there are no constraints at the 

beginning of the proposed approach when the airborne LiDAR data are obtained. Consequently, 

the model-based geometrical information obtained from a catenary curve model can provide 

various benefits to improve the robustness of the PL modelling process. 



96 

 

In this chapter, the definition of a PL model is given first. Then, the whole workflow of PMG 

method is briefly introduced and detail discussions are provided in the subsequent sections. An 

evaluation of the proposed approach over an urban area that contains a complex PL scene 

concludes this chapter. 

 

 

4.2 PL models 

In general, a PL is modeled as a catenary curve that is defined by a hyperbolic cosine 

function (McLaughlin, 2006). Figure 4.1(c) shows the geometry of the catenary curve that is 

formed by generating a plane intersecting with a vector normal to the tangent vector derived from 

positions such as    and   . As this hyperbolic cosine function is projected in horizontal (X-Y) 

and vertical (X-Z or Y-Z) planes respectively, we define a PL model using two different 

geometric forms, line equation with implicit form,       , in horizontal plane and a catenary 

curve equation with explicit form,         , in vertical plane as:  

 

                                 (4.1) 

                       
   

 
       (4.2) 

 

where         are the angle of line’s normal vector and X-axis and the distance between the line 

and the origin respectively; a and b are parameters for translation of the origin; c is a scaling 

factor denoted as the ratio between the tension and the weight of the hanging flexible wire per unit 

of length; X, Y and Z are the coordinates of the points in 3D space. Note that X-coordinate is 

replaced by Y-coordinate when the angle closes to 90 degree (Y-axis) in order to avoid a 
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singularity in estimating the model parameters. Additionally, the catenary curve is generated 

along the line orientation calculated in horizontal plane. Thus, a PL model can properly generated 

without its shape deformation which may occur by the use of data projected into a certain plane 

(X or Y plane) in estimating parameters of catenary curve.   
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Figure 4.1: 3D PL model geometry: (a) 3D perspective view of the PL model, (b) line form in the 

horizontal projection, and (c) catenary curve form in the vertical projection (McLaughlin, 2006). 

 

Compared to the use of two catenary curves                     in the previous research, the use 

of line and catenary curve             has been found to be an effective way for 3D PL modeling 

as follows: (a) It is able to reduce correlations among parameters, so that the reasonable positional 
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accuracy of PL models on the order of 10 cm is obtained (Chan and Lichti, 2011). (b) As the 

angle parameter is explicitly estimated, information on the orientations of PLs is easy to be 

obtained. It helps us to readily identify the existence of any external forces such as wind blowing 

to PLs using the variation of the orientations. (c) Due to the reduction of number of model 

parameters, it allows us to use smaller number of PL points in generating PL models.  

To estimate the parameters of the PL model, the line and catenary curve equations can be 

written as statistical linear models based on the Gauss-Markov theorem. In this regard, the two 

residual vectors of    and    between airborne LiDAR points and M(L, C) are described in matrix 

form as: 

 

       
                     

   
       (4.3) 

        
                    

   
       (4.4) 

 

Where if m and n denote the number of parameters and observations respectively,    and    are 

  1 observation vectors;    and    are     Jacobian matrix of L and C respectively;    and 

                   m  1 parameter vectors of L and C respectively;    and    are   1 

observation error vectors of L and C respectively, which follows a probability density function 

with expectation, 0, and weight matrix,              
  is a variance of unit weight. 

If we linearize Equation 4.1 and 4.2 with respect to the parameters,   ( ,  , a, b, c), and arrange 

them as the form of the Gauss-Markov observation model (Equation 4.3 and 4.4), the linearization 

form is expressed as follows: 

 

                    

  
 
 
     

  

  
 
 
      (4.5) 

            
    

       

  
 
 
     

  

  
 
 
     

  

  
 
 
     (4.6) 
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The least squares method estimates unknowns,     and   , which consist of the correction of 

the model parameters in the line (  ,   ) and the catenary curve (  ,   ,   ). The solutions are 

obtained by minimizing the sum of the squares of the residuals derived from difference between 

the model and its associated observations (Wolf and Ghilani, 1997). As a result, the optimal 

model parameters,   , for L and C can be obtained by applying the estimated corrections to initial 

approximations,     
              . The best estimates are the following formulations: 

 

         
  

    ,              (4.7) 

 

 

4.3 Piecewise catenary curve model growing 

The PMG can be described as a model-based hypothesis verification and propagation 

function that can be used to transfer discrete and abstract information of irregularly distributed PL 

points into the a more geometric form. The important issues in PMG is the early detection of PL 

seed elements, and piece-wisely gathering unlabelled points from the elements by using 

hypothetical PL models as guide lines, which reduces the complexity of the search and processing 

steps for the PL reconstruction. As shown in Figure 4.2, the method starts to detect PL candidate 

points (CPs) from raw ALS data which are potentially located on wires. The detected CPs are 

converted into line segments and used as seed elements in order to estimate the catenary curve 

parameters of the initial power line model. Producing new hypothetical models successively 

propagates the initial model, which is done by changing the catenary’s sag points from the initial 

parameter to a different location. A stochastic constrained non-linear adjustment method with 

added parameters is developed to estimate the optimal parameters of the PL model which piece-
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wisely grows by gathering all the PL points of interest and thus produce a 3D model of the full 

PL. Finally, we also introduce a statistical test to differentiate actual power lines from linear 

features extracted from non-power line objects. 
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Figure 4.2: Proposed approach for automatic 3D reconstruction of PL models. 

 

4.3.1 Extracting PL candidate points 

The first step of PMG is to detect CPs that potentially represent PLs from the given ALS 

data. The CPs are used as seed points to form PL primitive models, which are allowed to piece-

wisely grow to reconstruct the final PL models. We assume that PLs are comprised of a set of 
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small straight-line segments. Thus, a CP detected with high confidence possesses a strong 

geometric property as straight line. For extracting CPs, three different operators are used to 

extract linear feature from the ALS points (i.e., Hough-Transform, eigenvalue analysis, and point 

density analysis) are combined to compensate for the limitations imposed by each algorithm. A 

3D voxel space covering the given ALS point clouds is created. Each operator is applied to an 

individual voxel. The voxel size is pre-specified by taking into account the average point density 

of ALS point clouds. 

 

4.3.1.1 CP detection 

The first operator is the well-known Hough-Transformation (HT). The HT is the one of the 

most popular algorithms used to extract linear features due to its simplicity and global 

optimization properties (Duda and Hart, 1971). In order to speed up the operation, we project 

ALS points onto an X-Y plane and apply the HT to each voxel to convert the projected points into 

the line parameter domain (i.e., slope and y-intercept). We take the maximum voting score 

accumulated in the HT space as indicating a degree of the presence of linear features in the voxel.  

As the second operator for CP detection, the eigenvalues are calculated from the covariance 

matrix between x, y, and z of the ALS points. Supposing that the computed eigenvalues are  1, 

 2, and  3, a combinatorial measurement of the eigenvalues suggests the type of features that a 

point of interest belongs to such as:  1 ≈  2 ≈  3 for scattering points,  1,  2 >>  3 for points on 

surfaces, and  1 >>  2,  3 for linear structures. We compute ( 1-  2)/( 1-  3) to measure the 

degree of the presence of linear property in the voxel. Linear features might be found in non-PL 

objects including building roof edges, fences and tree stems. To reduce the commission errors 

caused by non-PL objects, we introduce a point density analysis as third additional criterion to 

determine CPs. It is assumed that the point density of each voxel containing PL features shows a 
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lower value, while higher values emerge for non-PL features. Once the linear properties are 

calculated by using the three operators, we detect CPs by thresholding the three operator 

measurements. The optimal threshold values used in three operators are determined by training 

sample data. 

4.3.1.2 CP orientation determination 

After CPs are detected, the Compass Line Filter (CLF) suggested by Sohn et al. (2008) 

calculates two attributes (i.e., line orientation angle and straightness) for each CP. As shown in 

Figure 4.3, the CLF was designed to assign each line segment to one of eight discrete orientation 

angles,             , where the orientation of the first compass line is horizontal, and from 

which the others are displaced at an angle equal to 22.5°. For the determination of the initial PL 

direction, a voxel is created from each CP, within which a set of CP member points, D, are 

collected and D’s variance-covariance matrix,    , is calculated. The member points are 

horizontally projected. A hypothetical line (i.e.,             ), where slope is given by CLF, is 

fitted to the horizontally projected member points. Ωi can be defined as the sum of the squared 

residuals between the hypothesis and observations.    is modeled as linear by using line equation, 

                , where   indicates the angle between the hypothesis and x-axis and   is the 

orthogonal distance from the origin. Then, Ωs are calculated for the whole hypotheses and the 

hypothesis with the lowest Ω value is finally selected as the best hypothesis, H*, which is defined 

as 

 

     Ω         Ω     

                                     
       (4.8) 

Ω     [D-  ]
T    

  [D-  ]     (4.9) 
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The line orientation information detected by fitting hypothetical quantized lines to local voxel 

space plays an important role in clustering similar CPs with the same line orientation and 

converting them into a PL line primitive which will be used as a seeded line for a complete PL 

reconstruction. 

 
 

Figure 4.3: Allocating an initial PL orientation into each CP based on the Compass Line Filter 

(CLF). 

 

4.3.2 PL model initialization 

Extracting a CP enables the identification of potential PL points. However, the CP does not 

provide group information, which means it does not indicate which CPs belong to the same PL. 

Moreover, a CP might be coarsely detected by the rather simply designed thresholding method 

described in the previous section. Thus, only relying on CPs for extracting PL primitives (i.e., 

segment of catenary curve) would be problematic. To address this problem, we describe the 

segmentation method used to augment the CP detection results by grouping neighbouring points 

from selected CPs which form a segment of the PL’s catenary curve and thus provides an initial 

PL model. We refer these newly detected points as PL Primitive Points, abbreviated to PP. 
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4.3.2.1 PL primitive points extraction 

To detect PP, we adopt the one-outlier testing technique (Snow and Schaffrin, 2003), which 

is one of the most commonly used outlier detection techniques for many applications in 

photogrammetry and image processing (Abedini et al., 2008; Kersten and Baltsavias, 1994; Lu et 

al., 2003). The one-outlier testing assumes that only one outlier at a time is present in the data set, 

and thus requires successive evaluations of the reduced dataset if an outlier is detected and 

removed. The formula is based on the linear model in Equation 4.1 and is extended by adding an 

outlier vector,  , to the parameter list. If the j-th observation in k numbers of the observations is 

evaluated by means of hypothesis testing, the model for the one-outlier testing is as follows 

 

      
 
 

                   
       (4.10) 

 

where  
   

 represents the hypothesized outlier quantity associated with the j-th observation and  
 
 

is an n 1 unit vector which has only the non-zero element, 1, at j-th position, that is [0,…0, 1, 

0,…,0]T. The corresponding quantity for the outlier vector of the j-th point is computed by 

 

               (4.11) 

                      (4.12) 

  
   

        
  

         (4.13) 

 

where    and     are the predicted residual vector and its corresponding cofactor matrix, 

respectively. For the outlier test of the j-th point, the associated test statistic,   , can be derived 
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from the F distribution in which it is determined if the two data sets come from the same data set 

by comparing the corresponding variances. Thus,    is leading to the following equation 

 

   
  

 Ω            
                      (4.14) 

 

where       
   

          is a variance related to outlier quantity; Ω        is the sum of the 

squared residuals derived from Equation 4.11. Therefore, the null hypothesis is accepted if the test 

statistic is less than its associated critical value, that is,      . 

This approach is mainly composed of three steps: (a) ordering process, (b) outlier testing in 

the horizontal domain, and (c) outlier testing in the vertical domain. At the first step, the CPs are 

sorted according to their Ω (goodness-of-fit) computed by using Equation 4.9. Then, the CP with 

the minimum Ω is selected for PP detection. As can be seen in Figure 4.4, starting from the 

selected     (i.e., a green coloured dot), a 3D search window      is generated with an user-

driven size; for example, a window that is 10m (length) 2m (width) 8m (height), where length 

and width are the values for line direction and its orthogonal direction, respectively. In the search 

window     , there might be many PLs, not all of which are related to a PL of interest. In Figure 

4.4, there are four PLs captured in     . We are interested in PL #1, including the selected    , 

which has to be separately segmented from the other PLs in the next two steps. For the outlier 

testing in the horizontal domain, as shown in Fig. 4.4(a) and 4.4(b), the data domain in      is 

projected onto an X-Y plane and the points, which have similar geometrical properties as the PL 

#1 in the X-Y domain, are clustered as the same group based on the one-outlier testing method. 

As depicted in Figure 4.4(a), a small search space,    
 , is created with dimensions 1m 

(length) 0.3m (width) 8m (height), for example. In here, the width size is normally decided by 
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taking into account the position accuracy of the ALS data because the performance of the 

horizontal-wise separation can be affected by the width value. Then, points belonging to    
  are 

assigned as CP member points,    , (i.e., inliers) in order to compute the critical value of   
  using 

Equation 4.14 for the acceptance of   . The one-outlier test is performed using the iterative 

method by adding one point from      to the inliers and computing its   . Thus, each point 

satisfying      
  is accepted as    . As illustrated in Figure 4.4(b), the proposed method enables 

the separation of the member points from PL #1 and PL #3 (solid dots) from the ones belonging to 

PL #2 and PL #4 (empty triangles). 

A similar process for the aforementioned horizontal outlier test is applied for the outlier 

testing in the vertical domain. Once the horizontal outlier test is finished, a search window for 

vertical-wise separation,    
 , is created having dimensions of, for example, 10m (length) 1m 

(width) 0.3m (height) (see Figure 4.4(c)). The height value of    
  can also be determined by 

considering the position accuracy of the ALS data for vertical-wise separation with which the 

critical value of   
  for the outlier testing is determined. Points accepted during the previous 

process are now tested as the final     by comparing    to   
 . In Figure 4.4(c) and 4.4(d), the 

outlier testing method in the vertical domain can separate line #1 (solid dots) from line #3 (empty 

rectangles). Finally, the     of the PL of interest (i.e., PL #1) can be found, and then used as a 

primitive for reconstructing the associated PL model. As it has been discussed so far, the outlier 

testing is essential for extracting a reliable PP, in particular to deal with a difficult situation where 

multiple lines are present in given a search space. 
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(a) (b) 

   

(c) (d) 

Figure 4.4: PL primitive points are extracted based on one-outlier testing in the horizontal domain 

(a) and (b); in vertical domain (c) and (d). 

 

4.3.2.2 Initial PL model generation 

Once a PP is obtained by the one-outlier testing process, the PP is converted into an initial 

PL model,                     introduced in Equation 4.1 and 4.2. However, if the PP 

includes an insufficient number of observations for estimating the parameter of M, a poor 

estimation might occur due to the irregularity of point distribution with random noise, which 
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causes the PL to grow in the wrong direction in the successive collection of CPs surrounding the 

PP. To avoid this problem, sufficient redundant observations are needed to derive a more accurate 

estimation of the initial PL model. Figure 4.5 schematically illustrates an example of the linear 

model extension to capture more CPs. Let   ,   , and    indicate line direction, PL points, and 

the voxel-like search space covering an initial PP, respectively. Based on   ,    is predicted for 

the forward and backward direction of   , and for generating a new searching space,   
 , with a 

user specified length and data-driven width. Then, the new CP   , which is located within   
  is 

captured, and is used to estimate and rectify the new model parameters    and   . Consequently, 

a new initial PL model      is generated from a new set of primitive points      , including the 

new CP set, {     } if the number of       is more than the pre-specified threshold. 

 

 
 

Figure 4.5: Linear propagation of voxel search space to increase redundancy of observation and 

initial PL model extracted. 

 

4.3.3 PL model reconstruction 

The proposed piecewise modelling approach estimates the model parameters, starting with 

the smallest measurements available, which are progressively refined as the measurements used 

for parameter adjustments increase. An implicit assumption made in this piecewise modelling is 
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that “smooth model transition” occurs, which assumes that there is no large deviation between the 

estimated model (i.e., current local model) and the targeted global model (i.e., true model). With 

this assumption, we can obtain the correct       by simply extending the physical dimensions of 

M and thus producing the corresponding     . Unfortunately, the assumption of “smooth model 

transition” is not applicable to our case. As can be seen in Figure 4.6, a very small number of ALS 

measurements might be available for generating initial models at early growing iteration steps due 

to the effects of occlusions, shadows, and system errors. In this case, the estimated model has 

deviated from the targeted global model as shown in Figure 4.7(a) and failed to capture the correct 

      by simply extending physical dimensions of M. In the next section, we consider a PL model 

verification and its optimal selection to mitigate limitations derived from the irregularity of data 

distribution, thereby reconstructing a full PL model. 

 

4.3.3.1 PL model hypothesis generation 

To resolve the aforementioned locality problem, we propose incorporating a hypothesis-

testing optimization into the piecewise model growing process. Instead of relying on a single 

initial model, M, a set of different growing models,    
     

 , are hypothetically generated from M 

and each model,   , is hypothesized to approximate the targeted global model. Suppose that an 

initial PL model,                    , is established with a given PP by Equation 4.1 and 4.2 

and M’s parameters are estimated as (        ,   ,   ) with its variance estimated to be (  
 , 

  
    

 ,   
 ,   

 ) by Equation 4.7. Given M established with a PP, a hypothetical model,   
    

    
  , 

is generated by intentionally changing the initial sag position of the catenary curve,   , along the 

line direction of project curve,   . Note that   
  in   

  is fixed as L (i.e.,   
   ) and its initial 

parameters,        , are not altered in any of the hypothesized models. Thus,   
  is produced only 
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by hypothesizing   
  and thus the parameters of the hypothetical catenary curve of   

  created by 

changing the sag position of C is described as 

 

 

                
           

                 

                

  

  

  

     
 
 
 
    

  

  
 

  
 

  
 

      (4.15) 

 

Where, we assume that the error vector,             
 , has normal distribution, N, with the 

statistical assumption, E(e)=0. In Equation 4.15,     is a dummy term used to change the initial 

sag position of    to generate a hypothetical catenary curve model of   
  that is given as     

                      where        is a constant value. Using Equation 4.15, N numbers of 

hypothetical model,    
     

 , are produced, where the null hypothesis is a PL model with       

(i.e.,   
   ). 

 

4.3.3.2 Optimal PL model selection 

Since the same PP is used for estimating the parameters of all the hypothesized models, the 

ordinary least squares method would not produce different estimation results for M even though 

   is changed to   
 . To address this problem, we adopt a non-linear least squares estimation with 

stochastic constraints to estimate the parameters of    
     

 . The Gauss-Markov linear model with 

stochastic constraints is a well-understood theory used to integrate additional observation 

equations that come from another measurement (i.e., a different source than the original ones) in 

the form of stochastic constraints (Cothren, 2005). In particular, the stochastically constrained 

parameters are often used when the parameters must conform to some relationships arising from 

geometric characteristics of the corresponding model (Mikhail and Ackerman, 1983); in our case, 
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the adjusted parameters must conform to the overall geometric characteristics caused by changing 

  . To adopt the stochastically constrained least square estimation, we modify the normal 

catenary curve model by introducing two additional parameters, (  ,   , to Equation 4.2. For 

convenience in notation, a hypothetical model,   
 , is denoted as the modified catenary curve 

model,     without model index subscript, i. Thus,    can be described as: 

 

                                
   

    
                

        (4.16) 

 

Equation 4.16, (     ) shows the stochastically constrained parameters as    
 ,   

 ,   
   and 

(  ,    are introduced to estimate the corresponding supplementary quantity created by changing 

   in Equation 4.15. The arrangement of Equations 4.15 and 4.16 in the form of the Gauss-

Markov model with stochastic constraints can be expressed as the following matrix form: 

 

 
 
  

   
    

  
  
 
 

 
 

   
 
  

   
 
  

     
 
 
    

  
   

  
        (4.17) 

 

where l is the number of constrained parameters;    is the l 1 observation vector related to 

constraints; K is the l l design matrix formed by the linear relationships between parameters and 

constraint observations; A1and A2 are the associated coefficient matrices of size n l and n (m - 

l), respectively;    is the l 1 random error vector of constrained parameters with weight matrix 

  ;    and    are original and additional parameter vectors of size l 1 and (m - l) 1, respectively. 

The parameters of all hypothetical models,    
     

 , are estimated by Equation 4.1 and 4.16. 

An optimal model,    , is selected which gives the minimum residuals between the model and PP, 

that is 
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          (4.18) 

 

where D( ) is a function used to measure the average orthogonal distance between the model and 

given points. Figure 4.6 illustrates an example of selecting     from hypothetical models, 

   
    

    
    

    
  , that are generated by moving the sag position from            from    where 

  
  is null hypothesis. 

 

(c0, b0)

(c1, b1)

(c2, b2)

(c3, b3)

(c4, b4)

Y-axis 

[m]
X-axis [m]

Z-axis 

[m] PL Primitive

Residual [cm]

: 30.14

: 15.48
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Figure 4.6: Possible alternative hypotheses from   
  to   

  determined by moving the sag position 

from b0 to b4 at the current PL primitive (red color) and the selection of the optimal power line 

model (  
  =    ) with the minimum residual. 

 

 



113 

 

4.3.3.3 Piecewise PL model growing 

The PMG is accomplished by generating multiple hypothetical models and selecting an 

optimal model, which gives the best fitting result at each iteration step. Once     is determined by 

the optimal hypothesis selection process, a 3D voxel (i.e.,     ) is extended from     based on its 

estimated model parameter and prespecified voxel size, with which the new ALS points,      , 

are obtained.      and       are used as the null hypothesis for the next modelling growth. This 

process continues unless the null hypothesis (i.e.,   
 ) is not selected as the optimal model (i.e., 

   ). If   
  is selected as    , the growing process based on the hypothesis testing is terminated. In 

this case, new ALS points are collected as the model is grown through the extension of the 

physical dimensions of the current model. The parameters of extended model are estimated using 

the ordinary least square method from Equations 4.3 to 4.7. This non-hypothesis-testing process 

continues until the extended model captures no additional ALS data. Figure 4.7 illustrates an 

overall process of the progressive model growing. In Figure 4.7, the PL model is grown using a 

hypothesis-testing process that selects optimal models from (b) to (d). After (d), the non-

hypothesis-testing process begins to extend the models from (e) to (h). As the non-hypothesis-

testing process is terminated, a final PL model is reconstructed, in which the entire ALS points 

belonging to the model are detected, as shown in Figure 4.7(h). 
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(a) (e) 

  
(b) (f) 

  
(c) (g) 

  
(d) (h) 
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Figure 4.7: Optimal PL model generation (black coloured line) and its corresponding PL points 

(red coloured points); (a) initial PL model, (b), (c), and (d) PL models from hypothesis-and-test, 

(e), (f), (g), and (h) PL models from non-hypothesis-and-test, (h) final PL reconstruction. 

 

4.3.3.4 PL model validation 

In PMG, the line primitive, PP, must grow from a CP to produce a complete PL model. Thus, 

if a CP is wrongly detected from a non-PL object, it results in a commission error in the PL 

modelling results. To resolve this problem, PMG incorporates a PL model validation process to 

investigate if the PL model generated from a CP represents a true PL object. We create two 

cylinders around the PL model where the inner cylinder has radius of     (0.5m) and is surrounded 

by the outer cylinder, which has a radius of      (1m) as shown in Figure 4.8. These two cylinders 

are used as searching spaces to capture the member points of each cylinder. In general, the PL is 

isolated from its surroundings in all directions and thus most of the points found in the cylindrical 

search are located in the inner cylinder, while very few points are present in the outer cylinder. 

However, this is not a valid assumption for non-PL objects that are spatially connected to their 

surroundings in certain direction and thus the number of points captured in the outer cylinder 

increases relative to the PL’s case. The model validation system used to classify PLs into two 

classes (i.e., PL and non-PL primitive) is conducted by analyzing the different characteristics 

between PL and non-PL objects with respect to the spatial distribution of ALS points captured in 

two cylinders. 

In a way similar to that proposed by Kittler and Illingworth (1986), we measure the residuals 

between the ALS points captured by the two cylinders and the PL model given. A range 

histogram is created in two parts, each of which is formed with the member points of two 

cylinders respectively and modeled with a normal distribution. Then, we measure the probabilistic 
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error, H, caused by modelling the residual histogram into two normal distributions based on the 

following formulation. 

 

  
       

 
                                     

             
    (4.19) 

 

where    , and      are the number of points that are captured by inner and outer cylindrical 

search spaces respectively; q indicates probability;     
   

 
,      

    

 
;    

  and     
  are 

variances obtained by using the corresponding observation in each search space. After measuring 

H for the PL model, the PL is accepted as valid model if H is less than pre-specified,   , 

otherwise it is rejected.    is pre-computed as 0.514 using Equation 4.19. This value is obtained 

based on the assumption that the points in cylindrical searching space are located with the same 

accuracy in the inner and outer cylinder (i.e.,    =      and     =     ) and consider     to have a 

vertical accuracy of 15cm horizontally and 10cm vertically for the LIDAR data for the corridor 

mapping (Ussyshkin and Smith, 2007). 

 

 
 

Figure 4.8: Two cylindrical search spaces generated for PL model validation. 
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4.4 Experiments and results 

The performance of the proposed progressive model growing method was evaluated with real 

ALS data. The test data contains a complex PL corridor scene which is located in the east of 

Folsom, California, USA and covers 638.3m (length) × 117.3m (width). Figure 4.9(a) shows the 

Folsom data where the ALS points are colourized according to their corresponding object classes. 

The classification was manually conducted using TerraScan software to produce the reference 

data for evaluating the performance of the proposed method. The PL systems in the Folsom data 

show a high degree of scene complexity, which would cause difficulties in PL reconstruction. The 

scene contains various PL voltage types (a mixture of low and high voltages), which include 

transmission, sub-transmission and distribution lines. Accordingly, the scene has a broad range of 

PL lengths and distances between PLs and catenary curve characteristics. Moreover, some 

different types of PLs run in parallel or some cross each other in different directions. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4.9: (a) Raw airborne laser scanning data set, (b) CP detection results (black color), and (c) 

3D PL reconstruction (black color) in the whole urban area. 
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The Folsom data was acquired by Riegl’s LMS Q560 laser scanner, which recorded 4-5 

multiple returns from a single shot in August, 2007. The ALS system was attached to a helicopter-

borne platform at an altitude of 121.9m above ground level with a speed of 23.15m/s, and utilized 

a scanning mechanism with a rotating polygon mirror and a ground-measuring pattern with 

parallel scanning lines. Its swath width is 190 m and the size of the laser beam foot print is 6.1cm 

with 0.5mrad of laser beam divergence. Approximately 1.8 million laser points at an average 

point density of 16 (points/m2) were collected and the point distance on the PLs ranges from 

sparse (0.83m) to dense (0.11m) with an average distance of 0.32m. 

 

4.4.1 Overall PL modelling performance analysis 

We evaluated the detection rate of CP extraction by comparing the result with classified PL 

points in Figure 4.9(a). The detection rate was measured for two criteria, completeness and 

correctness, by counting the following three factors: (a) TP (True Positives), which are the 

number of CP points that are commonly found in both the reference and the result; (b) FN (False 

Negatives), which are the number of CP points that are found only in the reference, but not in the 

result; (c) FP (False Positives), which are the number of CP points that are found only in the 

result, but not in the reference data. These evaluation measures are described as: 

 

                  
  

     
     

(4.20) 

                 
  

     
     

 

A total number of 56,396 points were labeled as PL points in the reference data. Figure 4.9(b) 

presents the CP detection results, which detected 25,303 CP points using the proposed detection 
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algorithm. As we compared the reference data to the CP detection result, TP, FN, and FP are 

counted as 19,182, 37,214, and 6,121 points, respectively. By Equation 4.20, the completeness 

was measured as 34.0% and the correctness was measured as 75.8%. As shown in the comparison 

results, the proposed CP detection method intends to produce a higher rate of correctness by 

producing fewer FP, while more FN leads to lower rate of completeness. The large amount of FNs 

in CP detection is mitigated as PL models are properly grown. The relatively low amount of FP is 

eliminated through the PL model validation procedure and contributes to speeding up the 

modelling process. 

The results of PL reconstruction obtained by the PMG method are shown as thick black lines 

(i.e., PL result) in Figure 4.9(c) and its quantified success rate is presented in Table 4.1. 151 PLs 

along the main direction were manually detected to produce a reference map for the PL models. 

Relying on intensive visual inspection, we carefully classify the modelling results produced by 

PMG into five different categories: complete, partial, under, over modelling and un-detection. A 

PL model produced by PMG was considered as a complete modelling if the model passes through 

the location of POA (Point of Attachment) where the model is connected to its corresponding 

insulator. An investigator visually checked the location of the POA. However, in many cases, it 

was hard to find the exact location of the POAs. In this case, we inferred the POA’s locations 

based on our heuristic knowledge to judge if it passes at or around the POA. A modelling result 

was recognized as partial modelling if a reconstructed model reconstructed did not reach its POA 

location, as under-modelling if two or more PLs were modelled as one model, as over-modelling 

if the actual PL was split into many models, or as an un-detected error if it was completely missed 

by PMG. Table 1 shows the overall PMG performance with the five classes of modelling results 

and shows that the PMG achieved a 96% complete modelling rate with a 4% error rate. All 



120 

 

models were reconstructed from PL objects and none of the models generated were from non-PL 

objects. 

 

Table 4.1: Overall PMG performance of PL reconstruction. 

 Total 

Complete 

Modelling 

(CM) 

Partial 

Modelling 

(PM) 

Under 

Modelling 

(UM) 

Over 

Modelling 

(OM) 

Un-

Detection 

(UD) 

Number 151 145 2 0 3 1 

Rate (%) 100 96 1.3 0 2.0 0.7 

 

We also evaluated the quality of the modelling results by comparing the PL points (56,396 

points) that were manually classified to the ones captured by PL models reconstructed by PMG. A 

total of 60,434 points were collected by the 151 PL models generated, in which 56,100 points 

were recognized as TP, while 296 and 4,335 points were recognized as FN and FP respectively. 

Thus, a completeness of 99.5% and a correctness of 92.82% were measured by Equation 4.20. 

These results demonstrate that PMG is able to achieve a high success rate for both completeness 

and correctness. A relatively high rate of FP detection compared to FN occurred since the 

complete models over-grow beyond POA. FN detection was mainly caused by partial modelling 

errors. Another measure of the modelling performance that was investigated is the root-mean-

square error (RMSE) of the residuals between manually classified PL points and PL models 

produced by PMG. Over 145 complete PL models were obtained, and the RMSE in the X-Y-Z 

(3D) plane was measured as 5.2cm, while RMSE in X-Y (2D) plane was measured as 2.9cm. The 

maximum 3D RMSE found for each PL was measured as 7.8cm, which is less than the typical 

positional accuracy of the ALS data used for PL corridor mapping (Ussyshkin and Smith, 2007). 

The high modelling accuracy obtained by PMG demonstrated its potential to automate the 

modelling process. 
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4.4.2 Sub-scene based performance analysis 

The performance of a modelling algorithm using remote sensing data usually varies in 

accordance with scene complexity; higher performances are achieved over images with lower 

complexity. To analyze the sensitivity of PMG performance to scene complexity, we divided the 

Folsom test data into 7 sub-scenes, each of which represents one span of a specific voltage type 

shown in Figure 4.10. The variety of voltage types in 7 sub-scenes ranges from a 7kv low voltage 

distribution line to a 230kv high voltage transmission line. The span lengths of the test sites vary 

from 62.4 to 178.1m between consecutive pylons, and heights differ from 9 to 42m above ground 

level. 

 

 

Figure 4.10: Selected 7 sub-scenes of Folsom test data. 

 

Figure 4.11 shows the side views of the PLs in selected test sites and the corresponding 

reconstruction results. Table 2 describes the characteristics of each site with respect to PL length, 

point distance, the number of wires and the number of bundle wires. The bundle wires consists of 

several conductor cables connected by non-conducting spacers to reduce corona losses and 

audible noise. A number of bundles are usually used for high voltage lines. The PLs comprising 

of bundle wires are located close to one another at a distance of less than 0.3m orthogonal. If the 

presence of random errors in ALS data is considered, the distance between PLs in a bundle wire 

would be smaller than 0.3m. This short distance might cause difficulties for PMG in properly 

separating individual PLs from each other within a bundle wire, which results in the under-
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modelling of PLs (i.e., representing two or more wires with one model) as shown in Figure 

4.12(a). 

 

# Original Sub-data Set PL Reconstruction 

1 

10

26

35

[m]

  

2 

10

19

31

[m]

45
50

  

3 

10

21

31

[m]

46

52

  

4 

[m]

11

26

29

32

  

5 
10

29

[m]

35

  

6 

11

20

31

[m]

52

  

7 

10

25

17

[m]
52

43

  

 

Figure 4.11: Side views of 7 sub-scenes (left) and corresponding PL modelling results coloured in 

black (right). 
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Table 4.2: PL modelling results obtained by PMG. 

Site 

Span 

Length 

[m] 

Average Point 

Distance per PL 

[m] 

CP 

Detection 

(%) 

Bundle 

Wire 

Total 

Lines 
CM PM UM OM UD 

Ave Min Max 

1 162.7  0.45 0.37 0.85 79.5 0 7 6 1 0 0 0 

2 162.9  0.38 0.27 0.54 23.0 6 21 19 0 0 1 1 

3 178.1  0.34 0.25 0.53 24.4 6 28 26 1 0 1 0 

4 62.4 0.18 0.14 0.21 62.9 0 6 6 0 0 0 0 

5 165.8  0.29 0.25 0.52 80.2 0 7 7 0 0 0 0 

6 135.8  0.30 0.17 0.83 19.3 6 36 35 0 0 1 0 

7 112.4 0.16 0.11 0.44 22.6 6 32 32 0 0 0 0 

 

Table 4.2 also indicates that a negative correlation between the number of PLs and CP 

detection rate. The decrease in the CP detection rate might be affected by occlusions that usually 

occur more often as the number of PLs increases. If no CP is detected over a PL, as shown in 

Figure 4.12(b), the under-modelling error occurs, as there is no primitive existing to trigger the 

model growing process. Also, a lower CP detection rate indicates a weaker presence of linear 

properties, which might degrade the overall performance of the PMG method. Table 4.2 also 

shows the range of point distances between consecutive points over PLs from 0.11m (dense point 

density) to 0.85m (sparse point density). The average point distance ranges from 0.16m to 0.45m. 

Larger point distances are normally detected in lower voltage PLs that run below high voltage 

ones due to the occlusion effect. This might induce large data gaps within a PL, as can be seen in 

Figure 4.12(c), which lead to the early termination of the model growing process due to the lack 

of measurements detected by the extended growing model and this results in the partial modelling 

error. 

Table 4.2 summarizes the evaluation results of PMG’s performance on each site. As shown in 

Figure 4.11, Site 1 shows the lowest scene complexity, where only one voltage type of PL is 
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present in the scene. The distribution of PLs in Site 1 is one of the simplest configurations, as it is 

comprised of only 7 PLs and does not have a bundle wire. Similar characteristics to Site 1 can be 

found in Site 4 and 5, which have 6-7 PLs and only one voltage type. Due to this, Sites 1, 4 and 5, 

which have the smallest number of PLs show a higher CP detection rate—from 62.9 to 80.2% 

compared to the other sites. The combined effects of the number of bundle wires and occlusions 

produced a relatively higher success rate of PL reconstruction over these sites and except for one 

PL error in Site 1, all the modelling results were recognized as the complete model. The partial 

modelling error in Site 1 was caused by a large data gap of more than 7m present at the end of the 

PL. The catenary curve of Site 1 shows a clear symmetric geometry, and almost straight lines 

between the different types of pylons can be found in Site 4, whereas the catenary curve of the 

PLs in Site 5 is non-symmetric. This suggests that the PMG’s performance is not affected by the 

catenary curvature of the PLs. 

The PLs in Site 2, 3, 6, and 7 have more complex structures with various PL voltage types 

and a number of bundle wires, which caused various types of modelling errors. In these sites, the 

sub-transmission lines diverge in different directions from one of the pylons and the distribution 

lines are located close to the vegetation area. 3.3% of modelling errors occurred over these four 

sites, which corresponds to 83% of total modelling errors. The location of a large data gap of 

more than 7m in PLs caused the partial modelling error if the data gap occurred at the end of PL 

(Site 3) otherwise it produced over-modelling errors (Site 2 and 3). In Site 2, one of the 

distribution lines passes through a vegetation area. This caused the undetected error, since the 

reconstructed model was rejected by the PL model validation process due to the large amount of 

vegetation points contained in the reconstructed model. In Site 6, the over modelling error also 

occurred when the parameters of an initial PL model were not correctly estimated due to data 



125 

 

errors, which misled the PL model growing direction, and thus the rest of PL points were captured 

by the new model. 

In all these sites, the transmission with 6 bundle wires and sub-transmission lines run 

together. However, all lines were well separated and no under-modelling errors occurred. The 

determination of optimal voxel size, particularly its width and height, used for PL model growing 

plays critical role in preventing the PMG from generating under-modelling errors. In this study, 

we used 0.5m (width)×0.5m (height)×5m (length) as the voxel size for model growing by taking 

into account the ALS’s typical positional accuracy for PL corridor mapping (Ussyshkin and 

Smith, 2007) and the distance between PLs in the bundle wire. Table 4.2 shows that this 

assumption works effectively without producing under-modelling errors. However, it would be 

possible to cause the under modelling error when an optimal value of the voxel size is hard to pre-

specify. In Site 6, PLs are densely distributed in the sub-transmission line level. This causes a 

large occlusion along a downward direction of height, so that the average point distance over the 

PLs ranges from dense (0.17m) to sparse (1.83m). In Site 7, PLs are located immediately above 

buildings and are distributed in different directions between spans in the lower voltage PL 

structure. Although these difficulties exist, Table 4.2 indicates that PMG successfully 

reconstructed PL models over Site 6 and 7. 
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(a) 

Detected PL Candidate Points

 
(b) 
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Data Gap (~12 m)

Vegetation

PL Models

 
(c) 

Figure 4.12: Examples of the limitations of 3D PL reconstruction due to (a) bundle wires, (b) low 

detection rate of power line candidate points, and (c) low point density on PLs. 
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CHAPTER 5 

3D power line model rectification:  

Inner and across span analysis 
 

 

 

 

 

 

 

The previous chapter introduces the main aspect of PL model reconstruction. However, it still 

provides modeling errors such as partial-, under- and over-modeling errors, which might be 

insufficient for the precise PL risk analysis. To move to correct the incompletion of PL models, 

their rectification process is performed based on the inner and across span analysis. In the inner 

span analysis, individual PL models of each span are evaluated based on the MDL theory and 

then erroneous PL segments are replaced by precise PL models, thereby correcting under- and 

over-modeling errors. An important component of this process is the ability to estimate the degree 

of corruption of PL points using regression analysis and predict suitable model parameters 

especially under the windy environment. In the across span analysis as a subsequent step, 

detecting precise start and end positions of PL models, called Point Of Attachment (POA) is the 

most key issue to correct partial modeling errors as well as refine PL models. For this, connection 

of PL models is evaluated by generating their intersection positions and selecting optimal 

connections with minimum positional errors over the across spans. Consequently, the proposed 

method is capable of achieving the geometric and topological completion of PL models over the 

whole PL network. 
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5.1 Introduction 

In Chapter 4, we proposed an automated process to reconstruct power line (PL) models from 

LiDAR point clouds. Although our method (PMG) has demonstrated promising perspectives in 

wire modeling, resulting models still include modeling errors, which should be rectified in order 

to increase its practicality in the PL risk management. In general, we can categorize PL modeling 

errors into three groups: under-, over- and partial-modeling errors. Figure 5.1 illustrates examples 

of each type of representative errors produced by PMG on real PL datasets. As shown in Figure 

5.1, the “under-modeling” errors occur when PLs are reconstructed with a lower number of PL 

models compared to their actual count, resulting in producing over-simplified PL models (Figure 

5.1(a)). The “over-modeling” errors is the opposite of under-modeling errors, which are produced 

if a PL is reconstructed with more than one model (Figure 5.1(b)). Even though PLs are modeled 

without under- or over-modeling errors, there is still a case where the modeling process converges 

early. This leads that reconstructed model is not able to reach PL’s true end positions that are 

associated with insulators and pylons, often called as POA (Point Of Attachment). This error 

refers to the “partial-modeling” errors. In this chapter, we propose a sequential post-processing 

method, which rectifies the modeling errors by introducing two steps of span analysis; inner span 

analysis and across span analysis. The inner span analysis aims to identify and rectify the under- 

and over-modeling errors produced within a span, while the across span analysis concentrates on 

correcting the partial errors across linked spans. A final modeling outcome produced through the 

sequential span analysis is an improvement of modeling accuracy to PMG’s results. 
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(a) (b) (c) 

Figure 5.1: Examples of typical error types (denoted by circle) in reconstructing PL models: (a) 

under, (b) over, and (c) partial PL modeling error. 

 

In practice, a POA is known to be important to the effective PL risk management. The main 

reason for this is that the POA can be used as an anchor position in the simulation of conductor 

blowout for the identification of PL risks. If POAs are detected with an acceptable accuracy (in 

practice, about 30 cm), it allows us to precisely assess a clearance quantity caused by 

encroachments of natural and/or artificial objects to PLs. Thus, knowing the POA positions is 

critical to conduct PL clearance analysis (Sohn and Ituen, 2010). POAs can usually be divided 

into two types: CAP (Cable Attachment Point) and IAP (Insulator Attachment Point). The CAP 

denotes a connection position between a PL and its associated insulator, while the IAP indicates a 

connection position between an insulator and the corresponding pylon structure. In this study, for 

the purpose of PL model rectification, the POA is defined as an intersection position between two 

consecutively lined PLs, which becomes either CAP or IAP according to insulator types. The 

insulator types are usually categorized as two different geometrical structures; suspension and 

dead-end types. The suspension type which normally exhibits a line or V shape is designed to 

allow two linked PLs to connect with an insulator at one point. In the dead-end type, the 

consecutive PLs are connected to different insulators and these insulators are to be connected each 
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other at one point. Therefore, the intersection point becomes the CAP in the suspension type and 

the IAP in the dead-end type. 

 

 

5.2 Motivation 

In the previous chapter, 3D PL models were reconstructed based on the proposed modeling 

method of piecewise model growing (PMG). Using the complex urban sub-data set, PMG 

demonstrated that it is able to achieve a high modeling success rate of about 96%. However, it 

might be insufficient for a complete risk analysis of PL networks as the method still produced 

some modeling errors. Even though the produced amount of errors may not be considered 

significant, these errors should be minimized as any small failure in PL modeling might hinder 

precise risk analysis and ultimately cause a critical massive power outage. We believe that the 

potential error sources affecting the PL modeling arise from irregular distribution of laser points 

reflected along PLs (PL points). The irregular distribution of PL points is caused by several 

factors. Habib (2009) discussed factors influencing the irregularity of laser point spacing (spatial 

distribution) with two error types: systematic biases and random errors. The systematic biases are 

mainly due to the insufficient calibration of individual sensors associated with point cloud 

acquisition (e.g., laser sensor, IMU, GPS) and misalignment between those sensors. Thus its 

positional accuracy is usually corrected through an appropriate sensor calibration process. On the 

other hand, the random errors are considered as a white noise in a stationary process, which 

follows a normal (Gaussian) distribution with identical means and variances. It is true that both 

systematic and random errors are one of main causes affecting the positional accuracy of laser 

point clouds, which lead to the irregular distribution of point clouds. However, these errors are 

usually much cared during sensor calibration process and the distribution characteristics of these 
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errors is given as a priori knowledge of the data acquired after the calibration process is finished. 

We believe that there are more factors causing the irregularity of spatial distribution of PL points 

than the systematic and random errors, which also causes problems in PL modeling. This is 

because characteristics and amount of these errors are hard to be known in advance and are 

usually unpredictable. These errors are related to the presence of occlusion, the nature of thin 

linear objects, as well as the nature of moving objects (i.e., the positions of PLs are changed by 

wind speed). All these factors are associated with the increase of the irregular distribution of PL 

points unexpectedly, which are explained in detail as follows: 

 

Occlusion: PL networks are constituted in a complex manner where many PLs delivering 

different voltages are placed closer together in the same direction, but with different heights or 

run in different directions. The complex spatial configuration often occludes visibility of some 

parts of PL structure by themselves or by neighbouring structures like insulators or pylons, and 

thus causes missing of laser returns along PL. This occlusion leads to a wide range of data gaps. 

For example, average point distances per PL vary from dense (0.17m) to sparse (1.83m), even 

though PLs are located in the same span due to the occlusions (Jwa and Sohn, 2012). 

 

Thin linear object: As PLs are a thin object with a small diameter in the level of several 

centimetres, it is difficult to hit them with entire laser footprints. This leads that the strength of 

return signals from PLs considerably decreases, which causes the missing of returned laser echoes. 

For example, aluminum conductors usually have about 2 cm in diameter (Shoemaker and Mack, 

2007). On the other hand, the diameter of laser beam footprint becomes at least 5 cm with 0.5 

mrad of laser beam divergence at the flight height of 100 m. Where, in the PL corridor mapping, 

the flight height of ALS is normally more than the 100 m above the ground level because 
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saturation effects in too strong return signals sometimes happen (von der Gathen, 1991). The 

other important consideration is that PLs are linear features unlike area features such as the 

surface of building rooftops or roads. According to Jelalian (1992), the strength of signal reflected 

from a linear feature is inversely proportional to the third power of laser range, R3, compared to 

R2 for the area features. As a result, the probability that energy of returning laser pulse is higher 

than a detection threshold value predetermined decreases and thus PL points will be sparsely 

recorded with the irregular distribution. Note that the threshold value plays an important role in 

discretely counting the number of laser returns (Baltsavias, 1999). 

 

Moving object: PLs are moving objects as their locations vary due to dynamic load of external 

forces such as winds, resulting in the occurrence of oscillatory. Statistically, if wind speed is over 

40 km/h in the PL corridor area, power outages start to frequently occur due to the undesired 

events such as vegetation encroachments (Betz et al., 2009). Under the situation of strong wind 

blowing, PL points acquired are plainly corrupted by the movements of PLs. That is, the 

movements cause the shape distortions of PLs, which original shape is formed with a straight line 

in the horizontal plan and catenary curve in the vertical plan. Furthermore, as the flow of wind is 

not constant, the degree of the shape distortions varies over the same corridor area as well as even 

within the same span. It is an ideal situation to record weather conditions including wind speed 

while PL point clouds are acquired using an weather probe mounted on airborne system or placed 

on the ground. However, we have observed that the weather data is often not used in practice (like 

the case of our current study) or its sampling rate is too low or its accuracy is not reliable. It is 

hard to estimate wind speed and its effects to modeling accuracy in advance. 
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5.3 Methodology 

Figure 5.2 illustrates the overall process of PL model rectification proposed, which is 

comprised of two steps: inner span analysis and across span analysis. The basic idea of the inner 

and across span analysis is closely related to solving the problem of model selection for rectifying 

PL modeling errors produced by PMG method. An optimal model (thus recovering modeling 

errors) is found in hypothetical model space that is implicitly generated with given initial models. 

For the inner span analysis, the optimal model is selected among candidate models as the best 

representation to its inliers. Individual PL models of each span are thus evaluated with the 

objective to correct under- and over-modeling errors. Where, the candidate models are generated 

based on the well-known split and merge approach. We adopt the theory of Minimum Description 

Length (MDL) for the verification of PL candidate models. The process of MDL-based 

verification favours how to optimally fit the model to the data and also to simply explain the data 

with the model, resulting in the selection of optimal PL model. Note that all of PL models are 

evaluated to detect and correct modeling-errors based on the MDL-based verification. In the 

across span analysis, detecting precise POAs is the most key issue to correct partial modeling 

errors as well as refine PL models by finding their start and end positions. For fulfilling this 

purpose, we first identify a conjugate pairs consecutively connected over across spans. Their 

associated POAs are then estimated based on a least squares adjustment. As a result, the proposed 

method is capable of achieving the geometric and topological completion of PL models, thereby 

correcting PL modeling errors. 

 

 

 



134 

 

Input

Model Split Step

Model Merge Step

Inner Span Analysis

PL connectivity 

analysis

Pylon region 

detection

Across Span Analysis

Wind Adaptive 

Parameter EstimationUnlabelled-PL 

Point Clouds

3D PL Models 

& Inliers

Refined 3D PL 

Models & Inliers

Output

Under- & Over-Modeling 

Error Correction

Partial-Modeling Error 

Correction 
 

 
Figure 5.2: Schematic diagram of the inner and across span analysis proposed: 3D PL models and 

inliers as well as non-PL points are used as an input.  

 

5.3.1 Inner PL span analysis 

This section describes a method of correcting PL modeling errors, under- and over-modeling 

errors, in the inner PL span domain. The important aspect of proposed method is the ability to 

deal with noisy PL points corrupted by wind effects in correcting PL modeling errors based on a 

regression analysis. The detailed description and a mathematical formulation used in the inner 

span analysis are discussed in the following sub-sections. 

 

5.3.1.1 MDL criteria formulation 

As we have discussed in detail in Chapter 3, the MDL criterion function is basically 

composed of two terms, model closeness and model complexity, which is to be optimized for the 

best model selection of objects of interest by solving model selection problems. This section 

discusses about how the criterion function is formulated for the selection of optimal PL model, 

which leads to the correction of PL modeling errors. The model closeness        is designed to 
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measure a deviation (i.e., goodness-of-fit) between a PL model M and the corresponding data D. 

This deviation can be assumed to follow a Gaussian-distribution         with expectation   and 

variance   . The description length of        is formulated as: 

 

       
Ω

    
      (5.1) 

 

Where, Ω denotes the weighted sum of the squared residuals between M and D,           

M in the matrix form.  

The model complexity      is designed to measure how many PL models Ms are used to 

represent the given data D. This can be formulated by specifying minimum number of 

observations on a model, if the model’s length is known (Li 1992). Suppose that   means a spatial 

resolution for expressing how close points are distributed each other over a PL model M. The 

probability that a point is randomly located on the M with a certain length   is then 
 

 
 and its 

description length becomes      
 

 
 . Where, the resolution can be approximated as an average 

distance between PL points in the given PL models. For the estimation of model parameters, the 

minimum number of PL points m is required. Therefore, we can write the model complexity      

for expressing a PL model M in the following form: 

 

           
 

 
       (5.2) 

 

As a result, based on the MDL theory, minimizing the cost of the criterion function combined by 

two terms leads to the selection of an optimal model M* given in the hypothetical model class   

as: 
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                             (5.3) 

 

The minimization of Eq. (5.3) means that the MDL criterion function should favour two cases: (1) 

the smaller discrepancy between PL models Ms and the given data D, (2) the simple 

representation of Ms in the given D. In the other cases, the criterion function penalizes Ms, so that 

its cost value increases. Therefore, under-modeling errors that cause the large discrepancy 

between Ms and D, and over-modeling errors that produce multiple model segments lead to the 

increase of their description length. That is why, in the MDL framework, incomplete PL models 

converge to the optimal models by correcting their undesired modeling errors. 

 

5.3.1.2 Wind blowing effect in PL corridor area 

A PL is a hanging object attached to its associated pylon structure and has a freedom to a 

swing. Under the strong windy environment, PLs dynamically move due to high wind loading. 

The wind blowing effect leads that measurements representing PLs are inevitably corrupted by 

their movements during data acquisition from airborne LiDAR system. This causes the severe 

noisy distribution of PL points and thus affects the performance of PL modeling as follows:  

First, PL modeling accuracy (RMSE) measured as the discrepancy between PL models and 

the corresponding data is significantly degraded by the wind blowing effect. In the stationary case, 

the typical 3D positional accuracy of data used for PL corridor mapping is approximately 10~15 

cm (Ussyshkin and Smith, 2007). In order to investigate how much the quality of PL data is 

degraded according to wind blowing, the relation between wind speed and modeling accuracy was 

made as shown in Figure 5.3. Where, we have collected part of the wind information for three 

corridors, 20023 for 161 kV, 20130 for 345 kV, and 24051 for 345 kV, from the utility company.  
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Figure 5.3: Variations of PL modeling accuracy [cm] with respect to wind speed [m/s].  

 

20 spans of each corridor were tested and parameters of each PL model were estimated based on 

Eq. (4.1) and (4.2) in Chapter 4 using PL points which were manually segmented. In Figure 5.3, 

as the average wind speed increases from 2.83 m/s to 6.05 m/s over the three corridors, RMSE of 

PL models suffers by going up to 25 cm for conductors and 40 cm for shield wires. These 

measures indicate that it is hard to collect precise airborne LiDAR data for PL corridor mapping 

under the certain wind speed, for instance over 24051 corridor in Figure 5.3. Thus, the strong 

correlation between wind speed and modeling accuracy exists. In the 20130 and 24051 corridor, 

two corridors have a similar PL structures (i.e., single-circuit with bundle conductor) supporting 

345 Kv and their average wind speeds show only small different. However, the RMSE of PL 
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models suddenly increases in the 24051 corridor compared to one of 20130 corridor (i.e., more 

than 3 times in conductors and more than 6 times in shield wires). This is because wind blew very 

dynamically with high strength and large variations of wind speed especially over the maximum 

wind speed of 20130 corridor (6.3 m/s). This leads that the impacts of wind blowing to PLs vary 

in various directions even at the constant wind speed. In addition, there might be a limitation in 

measuring accurate wind speeds using a low cost wind sensor under the situation of a wide variety 

of wind blowing. 
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Line-

Segment_3

Line-

Segment_4

LiDAR 
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PL Model_1

PL Model_2

PL Model_3

PL Model_4

 
(a) (b) 

Figure 5.4: PL models with over-modeling errors due to wind blowing effect: (a) highly 

irregular distribution of PL points and (b) four PL model segments representing a PL. 

 

Second, in the aforementioned error types, over-modeling errors occur only due to large data 

gaps, resulting in the generation of redundant line segments along a PL. In addition to the large 
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data gaps, the wind blowing effect also become a primary error source that mainly causes over-

modeling errors due to the noisy distribution of PL points along PLs swinging from side to side as 

shown in Figure 5.4. Under the assumption that PLs are modeled using a linear basis function 

such as Eq. (4.1) in Chapter 4, even without large data gaps in Figure 5.4, it is hard to avoid the 

over-modeling error due to the wind blowing effect.  

Third, the use of PL points corrupted by wind loading also affects the performance of the 

proposed post-processing method using the aforementioned MDL criterion function. The 

proposed method will be discussed in detail later. In order to correct over-modeling errors, the 

associated PL model segments should be hypothesized as a single PL model and thus the 

hypothesis (single model) is accepted in the MDL framework based on Eq. (5.3). However, due to 

the wind blowing effect, irregularity of PL point distribution accelerates, which causes large 

deviation between the hypothesized model and its PL points. As a result, the term of model 

closeness highly dominates over the MDL function and then the desired hypothesis might be 

rejected, thereby selecting PL models with over-modeling errors as an optimal model 

configuration.  

We have discussed with difficulties in modeling PL objects, which are mainly caused by 

wind blowing effects. To overcome the difficulties, an approach, a wind adaptive parameter 

estimation, is proposed, which is discussed in detail in the next section. 

 

5.3.1.3 Wind adaptive parameter estimation 

In general, standard deviation   used in Ω of the term of model closeness in Eq. (5.1) can be 

derived by measuring the deviation between an estimator and its observations, and expresses the 

precision of a set of observations. In a stationary case,   is predictable by considering observation 

errors as white noise and can be used as a priori knowledge in the modeling process of objects 
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such as buildings. However, in the case of PLs as a dynamic object, LiDAR measurements are 

corrupted by random errors as well as external forces with various quantities such as wind loads, 

so   becomes unpredictable. This means that it is difficult to determine   in the range of 

deterministic approximation values. In this study,   is called as a noise scale factor. To 

approximate   as a predictable variable, the use of relationship between PL modeling accuracy 

and wind speed, “ -wind speed”, as shown in Figure 5.3 becomes an effective way. However, as 

mentioned in the previous sections, the information of wind speed is not always available and its 

accuracy is not reliable. Therefore, we propose an alternative method for measuring the wind 

blowing effects instead of using the information of wind speed, which is discussed as follows: 

 

Measuring the magnitude of data noise for PL points 

The effects of wind blowing to PLs can be approximated by measuring the degree of noisy 

distribution of PL points. This is because the more wind blows the more PL points are corrupted 

by the wind blowing effect. Suppose that PLs laid in a span are distributed with similar directions 

each other and are modeled based on the PMG method proposed in Chpater 4. Where, the PL 

models are generated with the high goodness-of-fit to the corresponding PL points. If PL points 

are corrupted by wind blowing, their PL models are also oriented with various quantities. The 

variation of PL orientations can be measured by the well-known root-mean-square error (RMSE) 

and thus reflects the wind blowing effect. Let              denote the observed orientations of 

PL models and    indicates heir mean value. The RMSE of orientations of PL models    is: 

 

            
        

    

 
    (5.4) 
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Establishing relation of  -   

This step aims to establish a relation between noise scale factor and RMSE of orientations of 

PL models, “ -  ” instead of “ -wind speed”. Our ultimate goal is to achieve the completeness 

of PL models by correcting PL modeling errors. This means that the number n of PL models 

reconstructed is equal to the real count of PLs N. Where, the ratio R=n/N becomes one. The ratio 

with more than one thus indicates the occurrence of over-PL modeling errors, while the ratio with 

less than one means the occurrence of under-PL modeling errors. This indicates that the corrected 

PL models should satisfy the condition, R=1, and the used noise scale factor becomes an optimal 

value    under the current ambient situation (wind blowing) with a certain   . As a result, the 

relation of   -   can be developed from the relation of  -  . In the terms of correcting PL 

modeling errors, the use of    approximated by the relation of   -   leads to correct PL modeling 

errors with the condition, R=1. To determine the optimal noise scale factor   , there are essential 

processing steps proposed as follows: 

 

 Generate PL models using the PMG method proposed in Chapter 4. 

 Calculate RMSE of orientations of PL models    for a span. 

 Perform the rectification of PL models, which is discussed later, according to discrete 

values of   differentiated by    (10cm). 

 Examine the ratio having one (R=1) and find its associated values of   which become 

optimal values of noise scale factor   .   

 

In the given    of each span as shown in Figure 5.5, plots are uniform over the optimal values of 

noise scale factor,   , by satisfying that R=1. Where, the range including the optimal values 

denoted as a gray block. As the RMSE of PL orientations    increases from low (0.014°) to high 
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(0.25°) degree, the plots exhibit wild oscillations and the resulting range of    narrows. We can 

expect that finding optimal noise scale factor is to be severely restricted by the high wind blowing 

effect. 
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(c) (d) 

Figure 5.5: Plot of a relation between noise scale factor ( ) and ratio of complete PL modeling 

according to RMSE of PL model orientations: (a) 0.014°, (b) 0.091°, (c) 0.18°, and (d) 0.25°. The 

gray blocks denote the range of optimal noise scale factor having one in the ratio between the 

number of PL models extracted and the number of reference PLs. 
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Prediction of optimal noise scale factor 

For the newly observed data, the value of    is required to be predicted based on the relation 

of   -  . For this, the functional relation of   -   should be formulated. We adopt a regression 

analysis which is usually used for analyzing and modeling a relationship between associated 

variables (Sen and Srivastava, 1990). In this study, 20 spans from two corridors were selected 

with respect to the degree of variations of PL orientation and used to estimate parameters of 

regression model. Figure 5.6 shows the plot of the regression model which is a function of    

conditioned on   . Where, a vertical bar denotes the range of optimal noise scale factor    at each 

span and its mean value    is expressed as a solid point. Using   s and   s derived from 20 spans, 

the regression model is developed as a linear in the following form: 

 

                                         (5.5) 

 

Where,   denotes unknown coefficients which consists of a slope a and an intercept b which are 

estimated as 142.0 and 0.5599, respectively. The R-squared (R2) of the regression model, which 

indicates how well data fit the corresponding model with the range 0 to 1, is calculated as 0.9838. 

This means that the model fits the data adequately. In Figure 5.6, the linear prediction values of    

calculated by the regression model fall within the range of optimal noise scale factor (vertical bars) 

only up to approximately 0.2° of   . This is due to the large fluctuations of    by suddenly going 

up and down more than 0.2° of   . As a result, the good prediction of optimal noise scale factor 

for a new data set which is acquired under the strong wind blowing might be difficult even though 

the regression model is formulated by more complex models with many parameters (high order 

non-linear fitting).  
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Figure 5.6: Plot of the relation between noise scale factor   and RMSE of orientations of PL 

models   . The vertical bar denotes the optimal range of   at each RMSE. The relation is 

modeled as a linear function and denoted as a solid line. 

 

5.3.1.4 Model split process 

Using prior knowledge on the noise scale factor, the split process is performed by dividing 

over-simplified PL models into single PL models, thereby correcting under-modeling errors. For 

this, some successive processing steps are proposed. 

First, a segmentation process is required for the spatial re-grouping of PL points. This is 

because there is no a priori information about how many PL models Ms are needed for rectifying 

over-simplified PL models. The PL points grouped are thus used as seed segments for detecting 
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individual PL models. In this study, the region growing approach is considered as an effective 

method in grouping PL points using closeness property in spatial point distribution. This is due to 

the fact that PL points belonging to a PL model are closely distributed each other and mostly 

isolated from other objects. The region growing is performed by measuring a 3D Euclidean 

distance between points. If the distance is less than the pre-specified tolerance ζ, the associated 

points are labelled as the same group. In here, the value of distance threshold is determined as 

about 20 cm by considering the normal positional accuracy of airborne LiDAR points in PL 

corridor mapping. As a result, the region growing process continues until all points are assigned 

to the corresponding segments          .   

Second, the process of combining potential segments that represent the same PL is required 

to generate the corresponding PL model M without under-modeling errors. It is performed based 

on the hypothesis generation and verification process. The first step is that hypothetical PL 

models  s are generated using pairs of segments. Then, for each hypothesis  , the degree of line 

significance is measured by counting the number of segments that lie spatially close to the 

corresponding   within ζ. As a result, a   with the highest degree of line significance is firstly 

selected and its associated segments are labelled. Similarly, additional hypotheses     are 

subsequently generated using un-labelled segments. This process finally produces a set of n 

hypotheses, {       }. 

Third, so far we have been careful to make redundant hypotheses     to extend the 

opportunity of finding an optimal configuration of PL models    for the correction of under-

modeling errors. The verification process of     is performed by evaluating the acceptance of 

one of two possible sets, null    and alternative   , in the MDL framework. In here, the    

becomes a PL model M before the split process as shown in Eq. (5.6). The    denotes a new 
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configuration of PL models, that is, given           ,    are created by the combination of     

as illustrated as Eq. (5.7).  

 

       (5.6) 

                                           (5.7) 

 

Note that the order of indices of    follows the degree of line significance. We are now interested 

in making a decision for which of      is to be the best configuration and whether it can be 

replaced with    or not. The decision is carried out in the aforementioned MDL framework. 

Therefore, under the assumption that    is an optimal representation of the current PL points   , 

its rejection process is performed if the DL value of    is larger than one of     , which is 

defined by 

 

  =arg min {DL(  ), DL(  )}    (5.8) 

 

Consequently, PL models with under-modeling errors are corrected by selecting the alternative 

hypothesis, that is one of     . In the next section, over-modeling errors are corrected through the 

merge process which is described in detail. 

 

5.3.1.5 Model merge process 

To correct the over-modeling errors, redundant PL models should be merged into the 

neighbour PL models. For this, similar to the split process, the hypothesis verification of PL 

models is performed based on the aforementioned MDL criterion. Given a set of PL models Ms = 

{M1, …, Mk}, a null hypothesis    is formed by selecting two models from Ms, while its 
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alternative hypothesis    becomes a newly generated hypothetical PL model by merging the two 

models, which take the following forms 

 

                          (5.9) 

                        (5.10) 

 

If the DL value of    is less than one of   , the    is accepted as an optimal hypothesis   , so 

that the over-modeling errors are corrected. This process is continued until    is selected as    

over the all PL models Ms. 

In Figure 5.7, we show a simple example of correcting under- and over-modeling errors 

through the proposed split and merge process using a real data set. As we can see,        in 

Figure 5.7(a) shows rather poor fitting it to the PL points, which causes the under- modeling 

errors. On the other hand,                in Figure 5.7(c) is generated by fitting well them to 

local segments of PL points, which causes the over-modeling errors. For the correction of the 

errors, the split or merge technique is applied to the    by separating or combining its PL models. 

This leads to produce alternative hypotheses            and           illustrated in 

Figure 5.7(b) and (d), respectively. In addition, each term of MDL function is evaluated in Table 

5.1. As the   s minimize the total cost of MDL function     , the   s are converted to the 

corresponding   s, so that the under- and over-modeling errors are corrected. Where, RMSE of 

PL orientations is observed as 0.092° for the split process and 0.51° for the merge process. Based 

on the regression model of Figure 5.6 and RMSEs, optimal values of noise scale factors are 

predicted as 0.74 m and 2.25 m, respectively. 
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Figure 5.7: PL model correction through split ((a) and (b)) and merge ((c) and (d)) process; (a) 

and (c) mean    with the under- and over-modeling errors; (b) and (d) indicate    =   . 

 

Table 5.1: MDL terms: total description length (    ), model closeness (       , and model 

complexity term (     . 

Step #Line                  

Split M 98.33 70.61 27.72 

  +   67.71 12.33 55.38 

Merge M1+M2+M3 48.08 0.067 48.01 

M123 24.15 0.081 24.07 
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5.3.2 Across PL span analysis 

The main aim of our approach in this section is to correct partial-modeling errors by fining 

start and end positions of PLs across PL spans. This is mostly related to the process of POA 

detection. If POAs are determined, the correction of partial-modeling errors can be readily 

achieved by extending PL models to the corresponding POAs. However, detecting the POAs is a 

very complex problem because geometric information such as size and position of insulators as 

well as pylons is important to be known. To avoid the difficulties, in this study, two heuristic 

methods for the determination of POAs are proposed: (1) PL connectivity analysis and (2) pylon 

region of interest detection. This issue is discussed in more detail in the next sections. 

 

5.3.2.1 Mathematical formulation for POA detection 

In general, points intersecting PL models that are successively linked across spans become 

POAs, which are equivalent to the CAP in the suspension insulator type and the IAP in the dead-

end insulator type. In this study, we only consider such POAs for the rectification of PL models. It 

assumes that two PL models Ms = {Mi, Mj} are in the conjugate pair relation if they are 

successively linked across span. Their intersection           can be estimated based on a 

weighted least squares adjustment. Note that a PL model M is formed by the combination of a line 

(Equation 4.1)        and catenary curve (Equation 4.2)          in 3D space. Given the model 

parameters             and their variances (i.e.,    
 ,   

 ,   
 ,   

 ,   
 ) which are evaluated as 

weights (i.e.,    ,    ,    ,    ), the conjugate paired two PL models can provide four observation 

equations from Eq. (5.12) to (5.15). After replacing the nonlinear equations with their linearized 

forms,   is to be estimated based on the form of a Gauss-Markov linear model (see, Eq. 4.7). 
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    (5.14) 

 

5.3.2.2 PL connectivity analysis 

To define optimal conjugate pairs of PL models from successively connected spans, 

connectivity of PL models across spans is required to be examined. The basic idea for this is to 

estimate possible POAs from hypothetic pairs of PL models and choose a POA with minimum 

positional error among them. However, the use of the simple statistical selection criterion 

sometimes causes the establishment of wrong conjugate pairs of PL models due to the complexity 

of PL network configuration. Where, a PL network is normally designed with multiple layered 

lines with the same orientation in which PLs are overlapped in the vertical domain (i.e., X-Y 

plane). From our heuristic observations, the undesired POAs are mostly isolated as positioned 

away from pylon structures. Therefore, the limitation can be easily solved by adding a geometric 

constraint to the selection criterion. The constraint is that all POAs should be placed near to a 

pylon structure. After creating a local search region V at a POA with minimum positional error, 

the existence of unlabelled points which might represent pylon structures is examined. If the point 

density PD of unlabelled points is equal to zero, the POA becomes an undesirable intersection 

point. As shown in Figure 5.8, let            denotes a set of m different PL models in the 

neighbour span. A PL model Mi in the current span generates its associated candidate POAs, 

           
  

  having point density of more than zero, PD(POAs) > 0, and the corresponding 
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accuracy          
  

 . One of the candidates is finally selected as an optimal POA,     
  under the 

condition that it has a minimum position error and its PD is more than zero, which is defined by 

 

    
                        

  
 
   

 
         (5.15) 

 

In the real world, PLs are attached to the corresponding POAs without any geometrical 

deviation. However, it is impossible to avoid the deviation between PLs and their POAs when 

POAs are estimated by PL models which are derived from noisy data. To correct the deviation, 

the parameters of PL models are re-estimated by passing the corresponding POAs. Note that the 

accuracy of POAs varies according to the qualities of PL models used. This is why, it is required 

to first fix the POA with the high positional accuracy and then sequentially perform the 

adjustment of PL models over the whole PL network. As a result, this leads to improve the quality 

of PL models with low modeling accuracy. 
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Figure 5.8: PL model rectification based on the PL connectivity analysis across spans: (a) 

determination of PL conjugate pairs and (b) optimal POA detection and PL model correction. 

 

5.3.2.3 Pylon region of interest detection 

As mentioned above, POAs are generated by using conjugate pairs of PL models. However, 

the relation of conjugate pairs is not always available due to the inequality in terms of the number 

of PL models between subsequently linked spans. The inequality is mainly due to two causes: 

original configuration of PLs and PL modeling errors (i.e., un-detection errors). In order to detect 

POAs for PL models with non-conjugate pairs, the use of pylon region can be useful to 

approximate the corresponding POAs. The POAs are detected by intersecting PL models with the 

pylon region detected. 

As a pylon is also isolated objects like PLs, a region growing process becomes a suitable 

method for detecting the pylon region. Note that a seed position for growing the region would be 

one of POAs extracted. Once the pylon region is detected, its orientation is required to be known 

for computing accurate POAs. It is due to the fact that POAs are usually placed along the line 
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vector with pylon’s orientation which passes through the center of pylon in X-Y plane. Two 

simple methods are applicable to compute the pylon’s orientation; the use of (a) existing POAs 

and (b) direction of PL models. First, if more than two POAs are already detected, parameters of 

line vectors are easily calculated and the pylon’s orientation is determined. Note that the 

distribution of POAs should be wide enough to the horizontal domain to avoid singular in the 

matrix computation. To check the feasibility, the geometric precision with respect to the 

orientation parameter can be used. That is, if the distribution of POAs is enough to be widen 

along the orientation of pylon, the good precision of the parameter    (smaller value) is observed. 

In the matrix form, it can be derived from the covariance matrix         
      

  
   

   of the 

best estimation          which is related to the parameters of the line equation in the X-Y plane. 

Where, the elements of the cofactor matrix Q are comprised of  
      

      
 , resulting in    

      . The threshold of   , in this study, is simulated based on a 0.5-meter displacement between 

POAs in X-Y plane. Second, as two orientation vectors, PL and its pylon direction, are normally 

orthogonal, the mean value of orientations of PL models can be used to calculate the 

corresponding orientation of pylon 

After obtaining the proper orientation of pylons using one of two methods, a hyperplane with 

the orientation is generated at the center of pylon region. New POAs for the non-conjugate pair 

PL models are finally determined by intersecting the PL models with the hyperplane. Figure 5.9 

depicts the whole process for the detection of pylon region and the approximation of POAs. 
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Figure 5.9: Illustration of POA detection using the pylon region: (a) region growing process, (b) 

determination of pylon orientation using POAs detected, (c) extraction of new POA and 

rectification of PL model with a partial-modeling error, (d) before and (e) after the rectification of 

PL models in the real data. 
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5.4 Experimental results 

5.4.1 Folsom data 

To evaluate the performance of the proposed approach, PL modeling results containing 

modeling errors which are generated in the previous chapter are used. As shown in Table 5.2(a), 

prior to the process of PL model rectification, 145 PL models out of total 151 PLs belonging to 9 

spans were completely reconstructed which corresponds to a 96% success rate. In contrast, the 

aforementioned PL scene complexity caused 4% of the modeling errors which consist of partial 

modeling (1.3%), over modeling (2%), and un-detection (0.7%). Where the partial and over 

modeling errors were due to the large data gap (i.e., ~10 meters) and un-detection was caused by a 

vegetation encroachment. As evaluated in Table 5.2(b), except for un-detected PL models, the 

proposed approach corrects the incompletion of PL models, resulting in the 99.3% success rate of 

complete PL modeling. Additionally, we counted 125 POAs in the data set as depicted in table 

Table 5.3. In the across span analysis, the PL connectivity analysis achieves 90.4% POA detection 

rate and then the result is improved up to 98.4% using the pylon region of interest. Consequently, 

the POAs detected improves the quality of PL models by precisely determining their start and end 

positions. This results in the adjustment of total length of PL models from 19361.6 m to 17711.3 

m, which corresponds to an 8.52% reduction rate. Figure 5.10 illustrates the final 3D view of the 

PL components including PLs, POAs, and pylons in the PL corridor network. 

 

 

Figure 5.10: 3D PL network modeling containing 3D PL models (black color), POAs (red color), 

and pylon models (green color).  
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Table 5.2: Results of the 3D PL model reconstruction (a) before and (b) after the rectification of 

incomplete PL models 

(a) PL model reconstruction 

 Total Complete 

Modeling  

Partial 

Modeling 

Under 

Modeling  

Over 

Modeling  

Un-

Detection  

Number 151 145 2 0 3 1 

Rate (%) 100 96 1.3 0 2.0 0.7 

(b) PL model rectification 

Number 151 150 0 0 0 1 

Rate (%) 100 99.3 0 0 0 0.7 

 

Table 5.3: POA detection rate before and after pylon modeling. 

 Total Before Pylon detection After Pylon detection 

Detection Un- 

Detection 

Detection Un-

Detection 

Wrong- 

Detection 

Number 125 113 12 123 0 2 

Rate (%) 100 90.4 9.6 98.4 0 1.6 

 

 

In Table 5.3, even if the detection rate of POAs increases by 8% using the pylon region, 

redundant POAs which corresponds to 1.6% wrong-detection are generated. The main two 

reasons are illustrated in Figure 5.10. First, in Figure 5.11(a), when more than two PLs converge 

to a POA, one of them is only involved to the relationship of conjugate pair. This leads to 

redundantly detect POAs for other PL models using the corresponding pylon region. Second, as 

shown in Figure 5.11(b), due to the un-detection of a PL model, a POA is wrongly generated by 

attaching the PL model to the different pylon. 
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Figure 5.11: Examples of the limitations in detecting POAs due to non-conjugate paired PL 

models even in the use of pylon region.  

 

 

5.4.2 GDI inventory data 

For the practical use of the proposed method, it is an important to test its performance using 

long PL corridor data sets. We obtained a set of inventory data from a utility firm, GeoDigitial 

International Inc (GDI), which comprises four different PL corridor areas named as DB302, 

20023, 20130 and 24051. Figure 5.12 shows configurations of total corridor areas in X-Y plane, 

which is coloured from dark blue to dark red with respect to height. Each corridor area contains 

its major pylon type supporting the corresponding electrical power voltage, that is, steel pole type 

supporting 138 kV for DB302, H-frame type supporting 161 kV for 20023, and four-legged rigid 

type supporting 345 kV for 20130 and 24051. The detailed data specification is summarized in 

Table 5.4. The data was acquired by Riegl’s LMS Q560 laser scanner over about 138.5 km 

corridor area in April and May 2011. Due to four to five multiple returns from a single pulse, a 

high average point density with more than 16 pts/m2 is obtained. However, points representing 
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PLs are sparsely distributed with about 2 pts/m2 average point density which is equal to 0.7 m 

average point distance on PLs. This is due to the fact that a PL is a thin object with the thickness 

of degree of several centimetres, so the probability of hitting a laser pulse to PLs lower than other 

large objects such as building and tree. In addition, the thickness of PLs increases according to 

voltage capacity. For example PLs for 345 kV are about 1.5 times thicker than ones for 138 kV in 

a pipe-type conductor (Shoemaker and Mack, 2007). This leads that the average point distance on 

PLs slightly decreases from 0.71 m to 0.58 m which shows a proportion of about 1.2. 

 

Table 5.4: Basic data specifications 

Corridor 

Acquisition 

Date 

[M/D/Y] 

Voltage 

Type 

[kV] 

Length 

[km] 

Bundle 

Wires 

Ave. 

Point 

Density 

[pts/m2] 

Ave. Point Distance per 

Conductor / Shield Wire [m] 

Ave Min Max 

BD302 5/17/2011 138 34.0 No > 16 0.71 / 0.97 0.35 / 0.53 1.1 / 1.44 

20023 4/21/2011 161 37.7 No > 16 0.67 / 0.87 0.51 / 0.74 0.79 / 1.05 

20130 4/21/2011 345 40.9 Yes > 16 0.58 / 0.79 0.49 / 0.56 0.89 / 0.95 

20145 4/16/2011 345 25.9 Yes > 16 0.77 / 0.69 0.37 / 0.57 2.64 / 0.83 
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Figure 5.12: Test data sets of PL corridor area with different voltage types (left) and the 

corresponding pylon types (right): (a) 138 kV (DB302) and steel pole type (b) 161 kV and H-

frame type (20023), (c) 345 kV and four-legged rigid type (20130), (d) 345 kV and four-legged 

rigid type (24051). 
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Figure 5.13: Scatter plot of variations of PL orientations for four PL corridor test areas.  

 

To roughly know about how much the data is corrupted by external forces such as winds, 

variations of PL orientations are examined for the four PL corridor areas as shown in Figure 5.13. 

50 spans are randomly selected from each of four corridor areas and then the corresponding RMS 

errors with respect to PL orientations per span are calculated. Suppose that there are no systematic 

errors and orthogonal laser beam arrays. The average variation of PL models in the BD302 shows 

very small of 0.02°. We can expect data to be collected almost without wind effects. Compared to 

the BD302, the next two corridors, 20023 and 20130, show that their RMS errors slightly increase 

and are scattered, resulting in the average of 0.054° and 0.095°. This means that the distribution of 

PL points is somewhat affected by winds. In the case of 24051 corridor area, the distribution of 

RMS errors shows large variations over the range from about 0.2° to 0.6°, resulting in the average 

of 0.318°. We surely make inferences that PL points are extremely corrupted by strong winds. 

Thus, the degradation of PL modeling accuracy is expected in the meter level from the Figure 5.3 



161 

 

and Figure 5.5. As a result, For the practical applications such as the PL risk management, the 

models are not appropriate to precisely assess clearance quantities derived from object (usually 

trees) encroachments. 

 

5.4.2.1 BD302 PL corridor area 

This corridor is comprised of 198 spans which correspond to the length of 34 km and 

contains the number of 594 conductors supporting 138 kV and 198 shield wires. Table 5.5 shows 

the results of PL modeling for conductors and shield wires before (Table 5.5(a)) and after (Table 

5.5(b)) the PL model correction. Conductors are initially modeled with the complete modeling 

rate of 75.8%. Modeling errors which consist of 9.9% for partial modeling, 13.8% for over 

modeling, and 0.5% for un-detection also occur. The modeling errors are mostly subject to the 

low point density with a wide range of average point distance on PLs from 0.35 m to 1.1 m. Note 

that the PMG approach proposed in the previous chapter requires approximately 1 pts/m2 point 

density for the estimation of PL model parameters. In the case of shield wires, the complete 

modeling rate is relatively low with 37.9% due to the wider point distance in range [0.53, 1.44] 

than the one of conductors. The reason is that the shield wires are thinner than conductors, so that 

the probability of hitting a laser pulse to PLs decreases. Large modeling errors thus happen with 

22.7% for partial modeling, 9.6% for over modeling, and 29.8% for un-detection. After 

performing the PL model rectification, most of conductors and shield wires are completely 

generated, resulting in the success rate of 99.4% and 70.2 except for the un-detection rate of 0.6% 

and 29.8%, respectively. Figure 5.14 illustrates final result of the proposed approach for the 

BD302 PL corridor area. Each span is composed of three conductors and one shield wire and their 

PL models are continuously connected one another by the corresponding POAs. 
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Table 5.5: Results of the 3D PL model reconstruction (a) before and (b) after the rectification of 

incomplete PL models in the BD302 PL corridor area. 

(a) PL model reconstruction 

 Total Complete 

Modeling  

Partial 

Modeling 

Under 

Modeling  

Over 

Modeling  

Un-

Detection  

Conductor 
Number 594 450 59 0 82 3 

 Rate (%)  75.8 9.9 0 13.8 0.5 

Shield Wire 
Number 198 75 45 0 19 59 

 Rate (%)  37.9 22.7 0 9.6 29.8 

(b) PL model rectification 

Conductor 
Number 594 591 0 0 0 3 

Rate (%)  99.4 0 0 0 0.6 

Shield Wire 
Number 198 139 0 0 0 59 

Rate (%)  70.2 0 0 0 29.8 

 

Shield wire

~ 165 m

Conductors

Pylon

Pylon

 
(a) 

PL models

POAs

 
(b) 
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(c) 

 

Figure 5.14: Examples of establishing PL model network in the BD302 corridor: (a) raw LiDAR 

data of PL structures within a span, (b) generation of PL models and POAs in a span, and (c) PL 

model network. 

 

5.4.2.2 20023 PL corridor area 

The 20023 corridor region consists of 157 spans which is equivalent to the length of 37.7 km. 

Each span contains three conductors supporting 161 kV and two shield wires and total line 

number is counted as 417 and 314, respectively. The modeling results are tabulated in Table 5.6 

and depicted in Figure 5.15. Based on the PMG method, we first produce conductors with the 

complete modeling rate of 33.3% and the modeling errors of 66.6%. The proportion of errors can 

be divided into three types, 17.8% for partial modeling error, 47.6% for over modeling error, and 

1.3% un-detection. Compared to the results of BD302 corridor, the modeling completion is poor 

even using PL points with relatively higher point density. We can infer the reason from the fact 

that the observed PL points are more corrupted with noise which arises from wind effects as well 

as random errors. This is supported by the change in the average variation of PL orientations from 

0.02° in BD302 corridor to 0.054° in 20023 corridor. In the shield wires, only 14.6% of PL 

models are completely extracted. However, after carrying out PL model rectification, desired 

results are obtained by correcting partial and over-modeling errors, which accord with the 

complete modeling rate of 98.7% and 96.2% for conductors and shield wires. As the point density 
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of shield wires increases from 0.97 pts/m2 in BD302 corridor to 0.87 pts/m2 in BD302 corridor, 

the complete modeling rate highly increases from 70.2% to 96.2%. 

 

Table 5.6: Results of the 3D PL model reconstruction (a) before and (b) after the rectification of 

incomplete PL models in the 20023 PL corridor area.  

(a) PL model reconstruction 

 Total Complete 

Modeling  

Partial 

Modeling 

Under 

Modeling  

Over 

Modeling  

Un-

Detection  

Conductor 
Number 471 157 84 0 224 6 

 Rate (%)  33.3 17.8 0 47.6 1.3 

Shield Wire 
Number 314 46 84 0 172 12 

 Rate (%)  14.6 26.8 0 54.8 3.8 

(b) PL model rectification 

Conductor 
Number 471 465 0 0 0 6 

Rate (%)  98.7 0 0 0 1.3 

Shield Wire 
Number 314 302 0 0 0 12 

Rate (%)  96.2 0 0 0 3.8 
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Figure 5.15: Examples of establishing PL model network in the 20023 corridor: (a) raw LiDAR 

data of PL structures in a span, (b) generation of PL models and POAs in a span, and (c) PL 

model network. 

 

5.4.2.3 20130 PL corridor area 

This corridor includes 199 spans and its length runs to about 40.9 km. There are six 

conductors supporting 345kV which correspond to three bundle wires and two shield wires for a 

span. For the whole corridor, the number of conductors and shield wires is counted as 714 and 

238, respectively. As illustrated in Table 5.7 and Figure 5.16, the first modeling results of 

conductors and shield wires (see, Table 5.6(a)) reach 28.5% and 16.8% for complete modeling, 

2.5% and 13.9% for partial-modeling, 67.5% and 68.5% for over-modeling, and 1.5% and 0.8% 

for un-detection. Especially, high over-modeling errors occur due to the configuration of bundle 



166 

 

wires under the irregular distribution of PL points. After the PL model rectification, 85% of 

conductors are completely modeled. However, 13.5% for under-modeling errors newly occurs. 

The reason for this is mainly subject to several issues. First, we need to turn to a discussion of 

adaptive optimization of weight factor in the section 5.2.1.2. In the regression model, if the 

variation of PL orientations is more than 0.2°, it is difficult to properly predict an optimal weight 

for the complete model correction. Second, let us consider as-built condition of PL arrangement. 

Within a span, PLs are sometimes placed with different orientations in the construction stage. It 

causes the increase of variation of PL orientations and a higher weight value is predicted by the 

regression model, resulting in the merge of PL models closely located. We examined that about 

19% of under-modeling errors is subjected to the reason in this corridor. Except for the proportion 

of un-detection, models for shield wires are completely corrected with satisfied modeling rate of 

99.2%. 

 

Table 5.7: Results of the 3D PL model reconstruction (a) before and (b) after the rectification of 

incomplete PL models in the 20130 PL corridor area. 

(a) PL model reconstruction 

 Total Complete 

Modeling  

Partial 

Modeling 

Under 

Modeling  

Over 

Modeling  

Un-

Detection  

Conductor 
Number 714 203 18 0 482 11 

 Rate (%)  28.5 2.5 0 67.5 1.5 

Shield Wire 
Number 238 40 33 0 163 2 

 Rate (%)  16.8 13.9 0 68.5 0.8 

(b) PL model rectification 

Conductor 
Number 714 607 0 96 0 11 

Rate (%)  85.0 0 13.5 0 1.5 

Shield Wire 
Number 238 236 0 0 0 2 

Rate (%)  99.2 0 0 0 0.8 
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Figure 5.16: Examples of establishing PL model network in the 20130 corridor: (a) raw LiDAR 

data of PL structures in a span, (b) generation of PL models and POAs in a span, and (c) PL 

model network. 
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5.4.2.4 24051 PL corridor area 

65 spans with 390 conductors and 130 shield wires belong to the 24051 PL corridor in which 

the length reaches about 25.9 km. Like the 20130 PL corridor, a span is comprised of six 

conductors with 345kV (i.e., three bundle-conductors) and two shield wires. As shown in the 

statistics of Table 5.8, modeling PLs for this corridor seems to be a very challenging task because 

there is nothing to completely model PLs in the first modeling stage (Table 5.8(a)). It thus incurs 

partial modeling of 1.5%, over modeling of 97.7%, and un-detection of 0.8% for conductors and 

over modeling of 100% for shield wires. The main reason is derived from that variations of PL 

orientations are very severe, that is more than three times larger than others (See, Figure 5.12). 

The point density on PLs also exhibits very low with a wide range [0.37, 2.64] for conductors 

(See, Table 5.4). It might seem a reasonable statistics if winds hardly blow out at the epoch of 

data acquisition. As a result, the probability of hitting a laser pulse to PLs becomes low. However, 

we have seen that the many errors are to be compensated through the process of PL model 

rectification. The complete modeling rate increases up to 57.2% for conductors and 100% for 

shield wires, while under modeling errors of 41.8% newly are introduced. Due to the extremely 

noisy distribution of PL points, it would be difficult to individually model the PLs in bundle 

conductors in the proposed framework. Figure 5.17 illustrates an example of modeling PLs and 

establishing PL network by detecting POAs. 
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Table 5.8: Results of the 3D PL model reconstruction (a) before and (b) after the rectification of 

incomplete PL models in the 24051 PL corridor area. 

(a) PL model reconstruction 

 Total Complete 

Modeling  

Partial 

Modeling 

Under 

Modeling  

Over 

Modeling  

Un-

Detection  

Conductor 
Number 390 0 6 0 381 3 

 Rate (%)  0 1.5 0 97.7 0.8 

Shield Wire 
Number 130 0 0 0 130 0 

 Rate (%)  0 0 0 100 0 

(b) PL model rectification 

Conductor 
Number 390 223 0 166 1 3 

Rate (%)  57.2 0 41.8 0.2 0.8 

Shield Wire 
Number 130 130 0 0 0 0 

Rate (%)  100 0 0 0 0 
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(d) 

 

Figure 5.17: Examples of establishing PL model network in the 24051 corridor: (a) raw LiDAR 

data of PL structures in a span, (b) generation of PL models and POAs in a span, and (c) PL 

model network. 

 

 

5.4.2.5 Quality assessment 

The quality of PL modeling results including POAs’ detection is evaluated in Table 5.9 and 

5.10. Table 5.9 shows the PL modeling accuracy which is measured by RMS errors of deviation 

between each PL model and the corresponding PL points. It is used to judge whether or not the 

PL models are consistent with the goodness-of-fit condition to inliers. Let us consider the 

positional accuracy of ALS points (i.e., about 10 cm) in the typical PL corridor mapping. In the 

most of corridors, the modeling quality is satisfied with the error boundary. However, in case of 

the 24051 corridor, the deviation extremely increases especially for the shield wires. For this, we 

can estimate that PL points totally corrupted by systematic errors and/or external forces (i.e., wind 

effect). Therefore, we can conclude that the use of the data is not appropriate for the generation of 

PL models. Additionally, to perform an absolute quality measurement of our results, the generated 

PL models and POAs are compared with a reference which is digitized manually by an operator in 

the utility company (i.e., GDI) as shown in Table 5.10. For the evaluation of PL models, their 3D 

middle positions (i.e., sag positions) are used. From the result, we can approximate that the PL 
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modeling accuracy affects the quality of PL models and POAs. Moreover, in our process 

framework, as the quality of PL models is degraded, the one of POAs which are detected by the 

PL models is much the worse. 

 

Table 5.9: PL modeling accuracy  

[cm] Conductor Shield wire 

Corridor BD302 20023 20130 24051 BD302 20023 20130 24051 

Ave. 3.87 3.49 7.52 24.46 3.88 3.48 6.65 38.65 

Min. 3.04 2.94 4.07 6.41 2.72 2.38 3.21 21.73 

Max. 5.48 5.13 20.83 40.03 8.23 13.02 20.76 58.24 

 

Table 5.10: Quality of PL models and POAs evaluated by the utility company (GDI) 

Corridor 
RMSE [cm] 

PL model POA 

BD302 3.96 21.95 

20023 5.18 31.08 

20130 19.51 31.08 

20145 59.43 65.23 
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Chapter 6 

Conclusions and future directions 
 

 

 

 

 

 

6.1 Conclusions 

This thesis addressed the new concepts and development of robust methods in reconstructing 

3D models of building rooftops and PLs from airborne LiDAR data. The proposed reconstruction 

scheme deals with model selection problems based on a data-driven approach. The model 

selection emphasizes that the reconstruction forms are not restricted to a set of models defined 

with a priori knowledge such as structure type and its size. Therefore, the geometric and 

topological relationships between primitives constituting significant parts of shape parameters 

should be optimally determined based on hypothesis model generation and its verification using 

selection criteria defined. This means that the proposed method is designed to be well suited for 

the high adaptability to the complex geometric forms of objects of interest.  

 

6.1.1 3D building model reconstruction 

The data-driven generic building modeling requires not only recovering detailed rooftop 

components but also the ability to deal with primitives corrupted by noisy data. Thus, the 
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regularization is essential step for the generic building rooftop modeling with geometric regular 

patterns from noisy primitives. In this study, primitives indicate edge segments derived by a 

successive chain of noisy boundary points and their combinations produce a polyhedral-like 

rooftop model (a wire-frame structure, CAD model). For its regularization process, a new method, 

implicit geometric regularization is presented. The implicit means that geometric regularities 

between line segments such as parallelity, collinearity, and orthogonality are represented 

implicitly to rooftop models by a set of rules defined during the regularization process instead of 

explicitly using hard constraints. Rooftop polygon boundaries are also delineated by avoiding 

redundant fragmented line segments and vertices. The resulting models are good, which means 

that a majority of rooftop structures is close to the corresponding real geometries. The proposed 

method presents several interesting aspects: 

 

 Automation: a new automatic approach minimizing costly and labour intensive operations 

is proposed.  

 Robustness: the proposed method has an ability to deal with building scene complexity 

including occlusions in which the quality of data shows approximately 0.15m positional 

accuracy and 0.4m average point distance. The resulting models are generated with less 

than 1 m positional accuracy of vertices extracted in the ISPRS test data. 

 Adaptive modeling: the proposed method shows the high adaptability to building rooftops 

with various degrees of shape complexities, resulting in about 90% completeness in area- 

and polygon (over 10 m2 area)-based evaluation in the ISPRS test data. 

 

However, the work presented in this thesis still has some limitations in representing detail 

building rooftop shapes including arc segments. This is because the quality of extracting building 
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edge evidences normally relies on the quality of data with random errors and building scene 

complexity including occlusions. 

 

6.1.2 3D power line model reconstruction 

3D modeling of PLs has become an issue of increasing importance for the effective PL risk 

management. This is due to the fact that PL models are regarded as an essential component for 

identifying potentially hazardous situations such as vegetation encroachments. This study 

proposed a new approach, the PMG method, for automatic 3D PL reconstruction from airborne 

LiDAR data. The proposed method starts by extracting power line candidate points, which are 

converted into a catenary curve model representing a power line. This initial model is allowed to 

progressively grow to produce a complete power line model by producing hypothetical growing 

models and select optimal one. A stochastic constrained non-linear adjustment method is 

developed for estimating catenary curve model parameters. In evaluating the results of the PMG 

method, the proposed algorithm provides several promising aspects that could be useful in 

practice: 

 

 Automation: the proposed automatic technique shows the satisfactory success rate for 

example 96% rate with less than 5.2cm in 3D PL modeling accuracy in the urban data set. 

 Robust modeling: the proposed model-based approach demonstrates the benefits of 

reconstructing PL models under a high degree of PL scene complexity. Where, many PLs 

delivering different voltages are placed closer together in the same direction, but with 

different heights or run in different directions.  
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 Precise modeling: the individual modeling of PLs is possible even in bundle wires in 

which PLs are usually placed close to one another at a distance of less than 0.3m 

orthogonal. 

 Efficient process: PL points and its corresponding PL models are simultaneously 

extracted without a priori knowledge derived by PL scene classification, which results in 

the minimization of data processing time and cost. 

 

However, in order to fully gain the practical aspects, there is an issue which we need to overcome. 

A PL scene complexity affects the performance of our algorithm which causes PL modeling 

errors such as a partial-, under- and over-modeling errors. The PL scene complexity includes data 

gaps, vegetation encroachment, bundled wires, as well as combination of various PL voltage types. 

 

6.1.3 3D power line model rectification 

To move to correct the incompletion of PL models, their rectification process as a post-

processing method was proposed based on the inner and across span analysis. The proposed 

approach started with PL models using a catenary curve reconstructed by the PMG method. In the 

inner span analysis, individual PL models of each span are evaluated based on the MDL theory 

and then erroneous PL segments are replaced by hypothetic PL models through achieving an 

optimal balance between hypothesized model complexity and its goodness-of-fit to observations, 

thereby correcting under- and over-modeling errors. In the across span analysis as a subsequent 

step, detecting precise start and end positions of PL models, called Point Of Attachment (POA) is 

the most key issue to correct partial modeling errors as well as refine PL models. Final results 

obtained by the proposed post-processing method showed that: 
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 Automation: the refinement approach of PL models is autonomous without human 

intervention and capable of achieving the geometric and topological completion of PL 

models over the whole PL network. 

 Robust modeling: an important component of this study is the ability to estimate the 

degree of corruption of PL points and predict suitable model parameters especially under 

the windy environment. The proposed method produces satisfactory results with overall 

90% complete modeling rate in GDI inventory data. 

 Precise modeling: parameters of PL models are able to be updated so that more accurate 

information of line length and the positions of POA and sag point can be achieved. In 

most of GDI inventory data, high PL modeling accuracy with less than 10 cm which 

indicates deviation between PL models and their member points is obtained. By 

comparing with references which is digitized by an operator in GDI, the deviation in PL 

models and their POAs show the range from 4 cm to 20 cm and from 22 cm to 31 cm, 

respectively. 

 

However, in the corridor affected by the strong wind effect, the quality of PL modeling and its 

POAs extremely decreases because PL points are totally corrupted by the external forces. For 

example, approximately 40 cm PL modeling accuracy, and 60 cm and 65 cm deviation in PL 

models and their POAs from references of GDI. Let us consider that the positional accuracy of 

airborne LiDAR data is about 10 cm and the design accuracy of PL models is about 15 cm in the 

as-built condition. We can conclude that the use of the data is not appropriate for the generation of 

PL models and their components. 
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6.2 Directions for Future Research 

As described in the previous section, this research has covered modeling issues of objects of 

interest, particularly buildings and PLs, in the PL corridor area. All the proposed methods is 

implemented and tested, so the research objectives have been achieved satisfactorily. However, in 

carrying out the effective PL risk management, some of the aspects described in this research 

need further study, which are summarized as follows: 

 

Effective PL component modeling: As a large model database is available in practice, the use of 

existing 3D models is to be well suited for the effective modeling of PL components. The model 

database can be easily obtained from non- and/or commercial model warehouses such as Google 

3D warehouse and PLS-CADD in Power Line Systems Inc. The existing geometric and 

topological information of objects of interest is incorporated into a hypothesis model verification 

process. Possible research directions may be closely related to the statistical and structural pattern 

recognition techniques used in the computer vision. The approaches mainly focus on extracting 

quantitative properties of an object by parameterizing its shape and/or forming a set of syntactic 

grammars to discriminate geometric properties. Thus, it is expected that the method can reduce 

geometric distortions in the form of under- and over-modeling errors which is usually derived by 

the generic modeling method. 

 

Data fusion: A state-of-the-art data acquisition system which is oriented for a corridor mapping 

produces various data sources including LiDAR points, video, and digital images with different 

views. Robust data fusion techniques are required to extract detailed contextual information of PL 

components. It is feasible to recover a parts of PL structures which has not been extracted due to 

the PL scene complexity. 
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Further testing: For the practical operations of proposed algorithms, more extensive throughput 

test to evaluate the efficiency (cost-saving), reliability (accuracy compared to the ground truth) 

and robustness (testing over more diversified voltage types and structures) should be required. 
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