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Abstract

The application of piezoelectric actuators in smart structures is a rapidly de-

veloping field, especially in aerospace environments. Since thermal effects play an

important role in aerospace environments, thermopiezoelectricity has been studied

as it takes into account the thermal field in addition to the mechanical and elec-

trical fields. As a result, the coupling effects among these three fields have to be

considered, including the pyroelectric (change in the electric potential due to the

presence of a thermal field) and electrocaloric (change in the temperature when

an electric field is applied) effects. This thesis presents an examination of how

these coupled effects can affect the performance of piezoelectric bender and stack

actuators in varying external environments. More specifically, this thesis investi-

gates the influence of the pyroelectric and electrocaloric effects on the positioning

and dynamic performance of these actuators in static and dynamic cases by using

a custom written finite element code that considers the three fully coupled field

equations of thermopiezoelectricity.
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1 Introduction

Piezoelectricity is a phenomenon by which an electric field is generated when

mechanical pressure is applied to a material, or when mechanical strain is pro-

duced when an electric field is applied. It is referred to as the direct piezoelectric

effect when an electric field is produced, and the converse piezoelectric effect when

mechanical strain is generated [17, 18, 19].

The piezoelectric effect is present in many applications, including quartz watches

(an electronic oscillator regulated by a quartz crystal), SONAR systems (piezoelec-

tric transducers that convert mechanical energy into electric signals due to the direct

piezoelectric effect), ultrasound machines (piezoelectric transducers which convert

electrical energy into mechanical vibrations, creating ultrasound waves for medical

imaging applications due to the converse piezoelectric effect), and smart structures

in aerospace applications (piezoelectric actuators that convert voltage into mechan-

ical displacement due to the converse piezoelectric effect) [20, 4]. The application of

piezoelectric actuators in smart structures is a rapidly developing field, especially in

1



aerospace environments, and has received significant attention in recent years. The

performance of actuators must be ensured when large, possibly rapid, temperature

variations are considered, which is the case particularly in aerospace environments

and therefore, the theory of thermopiezoelectricity must be applied. Thermopiezo-

electricity considers the thermal field in addition to the electrical and mechanical

fields [4], and thus the coupling effects among these three fields must be taken into

account, including the pyroelectric and electrocaloric effects. The pyroelectric effect

is a phenomenon observed in certain materials in which voltage can be produced

in response to variations in temperature. The electrocaloric effect is the opposite,

where temperature can be generated due to an applied electric potential.

This thesis focuses on analyzing the three fully-coupled field equations of ther-

mopiezoelectricity derived by Gornandt and Gabbert [4] and their impact on piezo-

electric bending and stack actuators. To achieve this, a finite element code is

implemented in MATLAB. Static and dynamic models are developed to accurately

quantify the influence of the pyroelectric and electrocaloric effects on the positioning

and dynamic performance of these actuators.

1.1 The Finite Element Method

The finite element method is a numerical technique used for solving a vast

number of problems in the fields of engineering and physics. In structural applica-

2



tions, when dealing with physical systems characterized by complex geometries and

material properties, analytical approaches may not be viable. In such cases, the

application of a numerical method like the finite element method becomes essential

to obtain approximate solutions [21]. The finite element method subdivides the

studied body into a discrete number of simplified subdomains referred to as finite

elements. These elements are interconnected at specific points known as nodes.

This process, known as discretization [21], allows complex geometries and physi-

cal behaviors to be represented in a more manageable manner for computational

analysis. The finite element method involves formulating equations to describe

the behavior of each individual finite element based on the physics and boundary

conditions of the problem.

In structural applications, the problem is typically simplified to a one-dimensional,

two-dimensional, or three-dimensional domain, typical examples of which can be

seen in Fig. 1.1. These domains can then be discretized as demonstrated in Fig. 1.2.

The 1D structure can be discretized simply, for example, with beam elements, which

is demonstrated in Fig. 1.2(a). The 2D domain has a simpler geometry and therefore

simpler discretization process is required, where surface element with quadrilater-

als and triangles are used, as shown in Fig. 1.2(b). The example of a 3D structure

can be discretized using 3D solid elements, known as brick elements, as shown in

Fig. 1.2(c). It is important to mention that in this particular example, there is a gap

3



between the physical and finite element model domain, which typically cannot be

avoided in the discretization process [6]. Complex geometries require a discretiza-

tion process that will result in a more complex mesh, as an example of which can

be seen in Fig. 1.3.

(a) 1D structure (b) 2D structure (c) 3D structure

Fig. 1.1 Example of 1D, 2D, and 3D structures. (Source: [6])

(a) 1D discretization (b) 2D discretization (c) 3D discretization

Fig. 1.2 Example of 1D, 2D, and 3D discretization. (Source: [6])

4



Fig. 1.3 The discretization, or mesh, of a generic aircraft (Image source: [7])

Without loss of generality, the behavior of individual subdomains for a linear

static case can be described in a compact matrix form as

keue = f e (1.1)

where ke is referred to as the element stiffness matrix, ue is the vector of element

nodal degrees of freedom, and f e is the vector of element nodal forces. The elements

are globally combined, and the equations can be solved to obtain the global behavior

of the entire body. The finite element method finds applications in many engineering

fields, including structural analysis, heat transfer, fluid dynamics, and piezoelectric

analysis, providing accurate and reliable solutions [21].
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1.2 Piezoelectric Effect

The piezoelectric effect was discovered in 1880 by the brothers Pierre and

Jacques Curie. By that time, it was already accepted that some crystals could

generate electricity when heated, which is known as the pyroelectric effect. The

Curie brothers demonstrated that crystals such as quartz, tourmaline, and sugar

cane could generate electricity when subjected to mechanical pressure [22, 17, 23,

24, 25, 26, 19, 27]. This effect is referred to as the direct piezoelectric effect, and is

demonstrated in Fig. 1.4(a). One year later, in 1881, Gabriel Lippman discovered

the converse piezoelectric effect, in which a material exhibits mechanical strain pro-

portional to the applied electric field [17, 26, 27], as shown in Fig. 1.4(b). The word

“piezo” originates from Greek and means pressure, hence piezoelectricity refers to

“pressure electricity”. Currently, there are numerous applications of piezoelectric

materials, however, the first significant application was the development of a piezo-

electric sonar instrument for submarines during World War I [22, 23, 17].

The direct piezoelectric effect occurs when force is applied via either tension or

compression to the piezoelectric material, as its crystal structure changes, which re-

sults in positive and negative charges concentrating on opposite sides, and therefore

net polarization occurs. A metal plate or electrodes gather these charges resulting

in a measurable voltage across the material as demonstrated in Fig. 1.4(a) [20].

6



Fig. 1.4 (a) Direct piezoelectric effect. (b) Converse piezoelectric effect. (Image

source: [8])

The converse piezoelectric effect is shown in Fig. 1.4(b), in which the reverse

process occurs. An electric field is applied, which results in deformation of the

crystal structure. This deformation of the crystal structure converts the electric

energy into mechanical strain, causing the material to change its shape. This

process is widely used in actuators, since it provides a mechanical response to an

input voltage [20].

1.2.1 Piezoelectric Materials

There are two types of piezoelectric materials: natural and synthetic. The

first type are naturally occurring crystal materials such as Rochelle salt, quartz,

and Tourmaline-group minerals. The second type of piezoelectric materials, the
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synthetic, are polymers, composites, quartz analogs, and ceramics [19].

There are 32 classes of crystals and they can be divided into seven different

groups according to the symmetry of the crystals faces [19, 28, 29]. From the 32

classes of crystals, only 20 contain piezoelectric properties, in which, ten of them

are polar and the other half are non-polar. The main difference between them is

that the polar presents spontaneous polarization, meaning that the crystal does not

need to have an applied mechanical load to present polarization [19, 29]. This is

known as a ferroelectric material, which was discovered in Rochelle salt by Valesk

in 1921 [30]. By definition, all ferroelectric materials are pyroelectric (generate

voltage when temperature changes), and all pyroelectric materials are piezoelectric,

however not all piezoelectric materials are pyroelectric [20, 18].

During World War II, advances in piezoelectric research led to the discovery of a

certain type of ceramic material that could show dielectric constants up to 100 times

higher than usual crystals. Three different countries, USA, Japan and the USSR

discovered at the same time that this ceramic material could be manufactured

to provide piezoelectric and dielectric properties higher than the ones found in

natural piezoelectric crystals. This ceramic was known as barium titanate (BaTiO3)

and it presents a stable perovskite structure, which denotes any material with the

chemical formula ABO3, where A and B are cations, and O stands for oxygen (see

Fig. 1.5). For different ranges of temperatures, BaTiO3 presents different crystal
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system groups, such as trigonal for temperatures below -90°C, orthorhombic for

temperatures between -90° and 5°C, and tetragonal for temperatures between 5°

and 120°C [18].

Fig. 1.5 Barium titanate crystal structure. (Image source: [9])

Lead titanate (PbTiO3) is another ceramic material with perovskite structure.

It belongs to the tetragonal crystal system at room temperature, and as the tem-

perature increases, the lead titanate structure transforms to a cubic lattice at the

Curie temperature of 490°C, which is the temperature above which the material

loses its piezoelectric and ferroelectric properties [18, 19, 17].

Lead zirconate titanate (PZT) was discovered in 1952 and it showed higher

piezoelectric properties than barium titanate [31]. PZT is a solid solution of lead ti-

tanate (PbTiO3) and lead zirconate (PbZrO3), with chemical formula Pb(Zr,Ti)O3.

Lead zirconate titanate is currently one of the most studied and used materials for

piezoelectric applications due to its Curie temperature, high dielectric constant,

and high electromechanical coupling coefficient [31, 18, 32, 33].
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The PZT ceramic which has the highest extensional and transverse strain con-

stants is PZT-5H, followed by PZT-5J, and PZT-5A. Table 1.1 presents some rele-

vant properties of PZT at room temperature.

Property Units PZT-5A PZT-5H PZT-5J

Planar coupling coefficient - kp - 0.68 0.75 0.72

Transverse coupling coefficient - k31 - 0.35 0.44 0.37

Extensional coupling coefficient - k33 - 0.72 0.75 0.74

Transverse strain constant - d31(10
−12) m/V -190 -320 -270

Extensional strain constant - d33(10
−12) m/V 390 650 485

Transverse voltage constant - g31(10
−3) Vm/N -11.3 -9.5 -10.4

Extensional voltage constant - g33(10
−3) Vm/N 23.2 19.0 21.3

Density - ρ g/cm3 7.95 7.87 7.90

Table 1.1 PZT ceramics properties for room temperature (25◦C). (Source:[1])

Due to their large piezoelectric and dielectric coefficients [33], PZT ceramics are

used in many sensor [34], actuator [35, 36], and transducer applications [37, 38].

Since the discovery of the piezoelectric effect, huge advances have been made in

studying crystals, ceramics, and their applications. More recently, engineers and

scientists have been working on composite materials in order to fabricate them

with piezoelectric properties, such as macrofiber composites [39]. Piezoelectrics are

often referred to as smart materials [18], which when integrated into structures are

referred to as smart structures [26, 40].
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1.2.2 Piezoelectric Sensors

Piezoelectric sensors are devices which use the direct piezoelectric effect in order

to measure changes in mechanical components like pressure, and generate an output

signal [20, 17, 29, 19]. Applications of piezoelectric sensors mainly started after

World War I, with the interest of measuring acceleration, pressure and force [20]

and currently are widely used in applications such as in aerospace [41], medical [42]

and nuclear engineering [43].

Piezoelectric sensors are commonly made using piezoelectric ceramics, natural

crystals (such as quartz and tourmaline), synthetic crystals (like lithium niobate),

and thin films. These sensors exhibit high stability, sensitivity, mechanical strength,

and modulus of elasticity, among other favorable characteristics [20]. One specific

type of sensor is the piezoelectric force sensor, which generates an electric charge

output proportional to the applied input force [20]. A notable application of a

piezoelectric force sensor was studied by Itoh and Suga, who developed a force

sensor for an atomic force microscope (AFM) [44]. In the medical field, Curry et

al. studied and proposed a biodegradable piezoelectric force sensor intended to mea-

sure and monitor biological forces such as brain and lung pressure. After obtaining

the required measurements, this sensor can dissolve harmlessly within the body

without causing any damage [45].
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Another type of sensor is the piezoelectric pressure sensor which works in a

similar way to the force sensor. Pressure sensors have a sensing element called a

diaphragm which is responsible for transmitting the force to the sensor. This force

is directly proportional to the applied pressure and an electric charge output is

generated [20]. Piezoelectric pressure sensors are also widely used in many applica-

tions. Joshi et al. studied and designed a piezoelectric pressure sensor to measure

the radial artery pulse [46], since the traditional method requires extensive training

and may lead to false interpretations. Kim et at. have recently studied a piezoelec-

tric pressure sensor based on flexible gallium nitride thin film for high temperature

applications such as aerospace (-60°C to 900°C) and automotive (100°C to 350°C)

[47].

Piezoelectric acceleration sensors are also widely used in engineering applica-

tions. The principle is the same as the piezoelectric force sensor, however, a seismic

mass is attached to the sensor. When a mechanical force is applied to the struc-

ture and generates acceleration [48], the beam deforms and this creates strain in

the piezoelectric structure, typically placed at the root of the beam, and then an

electric signal output is generated [20, 49]. Zheng et. al studied how different types

of piezoelectric acceleration sensors worked at high temperatures (above 645°C),

mainly for monitoring the vibration of engines [50].

12



1.2.3 Piezoelectric Actuators

Piezoelectric actuators are devices through which the converse piezoelectric ef-

fect generates a mechanical displacement when voltage is applied. They have a

high power density, large frequency response, but typically produce very small

strain [51, 52, 53]. Due to their high precision, piezoelectric actuators have been

widely used in precise positioning applications [54, 55], piezoelectric motors [56],

and microelectromechanical systems (MEMS) [57, 58, 59, 60]. Due to their small

stroke, applications can be restricted [61], therefore, amplification mechanisms are

often required in many applications.

According to Niezrecki [51], piezoelectric actuators can be classified according to

their type of amplification mechanism as internally leveraged, externally leveraged,

and frequency leveraged actuators [61]. Externally leveraged actuators rely on

an external mechanical component to amplify a stroke, while internally leveraged

actuators generate a stroke through the internal structure. Frequency-leveraged

actuators utilize an alternating control signal to generate motion [51].

1.2.3.1 Stack Actuators

Stack actuators are actuators in which piezoelectric slabs are “stacked” on top

of each other in order to increase the longitudinal deflection when voltage is applied,
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as shown in Fig. 1.6. The displacement and force are directly proportional to the

length of the actuator and its cross sectional area [51, 52, 53]. Stack actuators

are commonly used in applications which require high precision, such as precision

positioning platforms, and vibration control [62, 63].

Fig. 1.6 Piezoelectric stack actuator. (Image source: [2])

Stack actuators can produce nominal displacements of 0.1% to 0.15% of their

length, with blocking forces of around 30 N/mm2 relative to the cross-sectional

area of the actuator [2]. Table 1.2 provides some commercial specifications for

PICMA Stack Multilayer Piezo Actuators from PI Ceramics [2], at an operating

voltage range from -20 to 120 V. The PICMA multilayer piezo actuator exhibits

high response and force generation, and it demonstrated excellent performance and

durability during tests conducted by NASA, retaining 96% of its original displace-

ment after 100 billion cycles [2].
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Piezo actuator model Dimensions [mm] Max. displacement [µm] Blocking force [N]

P-882.11 3×2×9 8 190

P-883.11 3×3×9 8 290

P-885.51 5×5×18 18 900

P-887.51 7×7×18 18 1750

Table 1.2 Piezoelectric stack actuator specifications. (Source:[2])

1.2.3.2 Bender Actuators

In bender actuators, one or more layers of piezoelectric ceramics are bonded to-

gether and a passive layer may also be included, as shown in the simple schematic

of Fig. 1.7. The structure is called unimorph when only one layer of piezoceramic is

present, and it is called bimorph when the structure has two layers of the piezoelec-

tric ceramics. When the structure has more than two layers, it is typically referred

to as a multimorph [51, 64, 53, 65]. Bender actuators provide a larger mechanical

deflection in response to the applied voltage than stack actuators, however, bender

actuators show a much smaller blocked force [51, 52, 53, 64].
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Fig. 1.7 Unimorph and bimorph structures. (Image source: [10])

Series and parallel connections are used in the fabrication of bimorph and mul-

timorph actuators, as shown in Fig. 1.8 and Fig. 1.9. When a series connection is

implemented, the piezoelectric layers have opposite polarization, and the electric

field is applied along the total thickness of the bender. In parallel connections, the

layers polarization is in the same direction, and the electric field is now applied to

each separate plate with opposite polarity (see Fig. 1.9) [64]. As the electric field

is applied in parallel to only one plate and in anti parallel to the other, one layer

expands and the other contracts due to the transverse strain, generating bending

in the structure [51, 64].

In multilayer bender actuators, typically the middle layers have the same polar-
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Fig. 1.8 Bimorph series connection. (Image source: [2])

Fig. 1.9 Bimorph parallel connection. (Image source: [2])

ization direction, while the top and bottom layers have the same polarity in relation

to each other, but are opposite in relation to the middle layers, as shown in the

4-layer bender actuator in Fig. 1.10.

Fig. 1.10 Multimorph actuator. (Image source: [2])

Generally, bender actuators produce large physical displacements under smaller

applied voltage, as in the PICMA Bender Piezo Actuator PL140.10, from PI Ce-

ramics, which can produce a stroke of 1000 µm under an operating voltage of 0-60

V. Table 1.3 shows some commercial specifications of rectangular bender actuators,
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from PI Ceramics for an operating voltage of 0-60 V. Furthermore, it shows that

bender actuators provide a large displacement, however with very small blocking

forces as compared to stacks [2].

Piezo bender actuator model Dimensions [mm] Displacement [µm] Blocking force [N]

PL122.10 25×9.6×0.67 ± 250 ± 1.1

PL127.10 31×9.6×0.67 ± 450 ± 1.0

PL140.10 45×11×0.55 ± 1000 ± 0.5

Table 1.3 Piezo bender actuator specifications from PI Ceramics [2]

1.3 Linear Theory of Piezoelectricity

The IEEE Standard on Piezoelectricity [66] provides a general linear theory

of piezoelectricity where the material properties are assumed as constants regard-

less of the magnitude of the applied mechanical stresses and electrical fields. The

constitutive equations of a piezoelectric material can be introduced following the

assumption that the total strain is the sum of the mechanical strain caused by the

mechanical stress and the actuation strain generated by the applied voltage [67].

The constitutive equations of piezoelectricity in strain-charge tensor form is

given as [66]

Sij = sEijklTkl + dkijEk (1.2)

Di = diklTkl + εTijEk (1.3)

18



where Sij is the strain tensor, sEijkl is the compliance tensor (where the superscript

E denotes measured at constant electric field), Tkl is the stress tensor, dkij and

dikl are the piezoelectric tensors, and Ek represents the electric field. The electric

displacement is denoted as Di, and εTij (where the superscript T denotes measured

at constant stress) represents the dielectric constants. Eq. (1.2) corresponds to the

converse piezoelectric effect, and Eq. (1.3) represents the direct piezoelectric effect.

It is possible to rewrite the constitutive equations (Eqs. (1.2)-(1.3)) in engineer-

ing notation form as

S = sEσ + dE (1.4)

D = dTσ + εσE (1.5)

where S is the strain vector, sE is the matrix of compliance constants and it is

given in m2/N, σ is the stress vector in N/m2, d represents the piezoelectric strain

matrix in m/V, in which the superscript T denotes the transpose of the matrix,

E is the applied electric field vector in V/m, D is the electric displacement vector

given in C/m2, and εσ corresponds to the matrix of permittivity constants in F/m.

In full matrix form, Eqs. (1.4)-(1.5) become



S1

S2

S3

S4

S5

S6

 =



sE11 sE12 sE13 sE14 sE15 sE16

sE21 sE22 sE23 sE24 sE25 sE26

sE31 sE32 sE33 sE34 sE35 sE36

sE41 sE42 sE43 sE44 sE45 sE46

sE51 sE52 sE53 sE54 sE55 sE56

sE61 sE62 sE63 sE64 sE65 sE66





σ1
σ2
σ3
σ4
σ5
σ6

+



d11 d21 d31
d12 d22 d32
d13 d23 d33
d14 d24 d34
d15 d25 d35
d16 d26 d36


E1

E2

E3

 (1.6)
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D1

D2

D3

 =

d11 d12 d13 d14 d15 d16
d21 d22 d23 d24 d25 d26
d31 d32 d33 d34 d35 d36




σ1
σ2
σ3
σ4
σ5
σ6

+

εσ11 εσ12 εσ13
εσ21 εσ22 εσ23
εσ31 εσ32 εσ33

E1

E2

E3

 (1.7)

For a transversely isotropic piezoelectric material, such as PZT, the matrices can

be reduced to



S1

S2

S3

S4

S5

S6

 =



sE11 sE12 sE13 0 0 0

sE12 sE11 sE13 0 0 0

sE13 sE13 sE33 0 0 0

0 0 0 sE44 0 0

0 0 0 0 sE44 0

0 0 0 0 0 2(sE11 − sE12)





σ1
σ2
σ3
σ4
σ5
σ6

+



0 0 d31
0 0 d31
0 0 d33
0 d15 0
d15 0 0
0 0 0


E1

E2

E3

 (1.8)

D1

D2

D3

 =

 0 0 0 0 d15 0
0 0 0 d15 0 0
d31 d31 d33 0 0 0




σ1
σ2
σ3
σ4
σ5
σ6

+

εσ11 0 0
0 εσ11 0
0 0 εσ33

E1

E2

E3

 (1.9)

1.4 Thermopiezoelectricity

Thermopiezoelectricity takes into account the thermal field in addition to the

mechanical and electrical fields. As a result, the coupling effects among these three

fields must be considered, including the pyroelectric and electrocaloric effects.

Several studies have been conducted on thermopiezoelectricity and, in 1974,

Mindlin derived the governing equations of a linear piezothermoelastic medium [68].
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In 1978, Nowacki presented the theorem for the solutions of piezothermoelastic dif-

ferential equations [69]. Nowacki also investigated the influence of a temperature

field on an elastic dielectric medium in 1982 [70]. Chandrasekharaiah worked on

thermopiezoelectricity, in 1984, presenting equations for a temperature rate theory

of thermopiezoelectricity [71]. These equations predicted a finite speed of propa-

gation of the thermal field. Additionally, in 1988, Chandrasekharaiah conducted

a research on generalized linear thermoelasticity theory for piezoelectric materials

obtaining an equation of energy balance and a theorem on the uniqueness of the

solution [72]. Rao and Sunar studied the thermopiezoelectric sensors and actua-

tors in advanced intelligent structures, in 1993, in which they used a finite element

formulation to analyse the problem [73]. One year later, Tzou and Howard in-

vestigated the use of a piezothermoelastic shell vibration theory for applications in

active structures [74], and Tzou and Ye studied the piezothermoelastic effects of dis-

tributed piezoelectric sensors/actuators in structural systems [75]. Yang and Batra

investigated the effect of heat conduction on the shift in frequencies of a vibrating

linear piezoelectric body in 1995 [76]. Two methods were used in the research,

one involving the thermal conductivity and the other involving the thermocoupling

constants. In 2000, Fung et al. analysed the dynamics of a piezothermoelastic res-

onator with several shapes [77]. In 2002, Görnandt and Gabbert proposed a finite

element implementation for thermopiezoelectric smart structures in order to solve
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the coupled field problem [4]. In 2003, Ashida and Tauchert conducted a study

on thermally-induced wave propagation in a piezoelectric plate using the Laplace

transform technique, considering thermal relaxation time, which is the amount of

time that a material takes to return to ambient temperature following heating [78].

The analyses demonstrated that the relaxation time significantly influenced the

stresses, displacements and electric potential difference across the plate, however,

it had small consequences in the temperature field. Tian et al. proposed in 2007 a

finite element method for generalized piezothermoelastic problems [79]. In 2012, Al-

shaikh developed a mathematical modelling for the influence of initial stresses and

relaxation time on reflection and refraction waves in a thermopiezoelectric media

[80].

Following [4], the governing constitutive equations for a thermopiezoelectric

material can be written as

Tij = Cijklukl − ekijEk − ζijθ (1.10)

Di = eijkujk + εijEj + piθ (1.11)

η = ζijuij + piEi + λθ (1.12)

where Tij, Di, and η are defined as the stress tensor, electric displacement, and

entropy density, respectively. The terms Cijkl, ekij and εij are the elastic compliance,

piezoelectric, and dielectric permittivity coefficients. The term ζijθ in Eq. (2.15) is
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related to the thermal stress via ζij which is defined as the temperature-stress

coefficient, where θ is a small temperature change. The term piθ in Eq. (2.16) is

the pyroelectric term, where pi is defined as the pyroelectric constant [81, 82]. The

term ζijuij in Eq. (2.17) stands for the heat of deformation (thermal-mechanical

coupling), piEi is the electrocaloric effect (thermal-electrical coupling effect), and

the coefficient λ is defined as ρCE
v /Θ0, where C

E
v is the specific heat capacity, and Θ0

is the reference temperature, that is the point with no thermal strains [81, 82, 26].

In many applications, such as in the aerospace field, the thermal effects influ-

ence the behavior of piezoelectric actuators and structures. More recent studies

have been conducted by Elahi et al., such as a thermopiezoelectric energy harvester

for a reconnaissance satellite structure [83], and in 2021, Elahi [84] investigated the

structural health monitoring of aerospace structures through piezoelectric aeroelas-

tic energy harvesting [84].

1.5 Research Objectives and Contributions

The objective of this research is to investigate the influence of these effects on

piezoelectric actuators and predict their behavior in environments where thermal

fields play an important role. Moreover, it is of interest to determine whether the

pyroelectric and electrocaloric effects exert a significant impact on the analyzed

actuators in comparison to simulations that do not consider these coefficients.
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Coefficient ABAQUS 2021 ANSYS 2021 COMSOL 6.0
Piezoelectric ✓ ✓ ✓
Pyroelectric x x ✓
Electrocaloric x x ✓

Fully coupled effects x x x

Table 1.4 A comparison of the capabilities of commercial software

There are currently no commercial finite element software codes available that

include both the pyroelectric and electrocaloric effects in a fully-coupled implemen-

tation (see Table 1.4). To investigate the thermopiezoelectric effect in piezoelecric

actuators, a finite element code is implemented in MATLAB that considers the

three fully-coupled field equations of thermopiezoelectricity. Both static and dy-

namic cases are analyzed for piezoelectric bender and stack actuators, simulating

thermal conditions that could occur in varying external environments.

For this investigation, the development of the code is divided into four parts.

The first step is to implement a finite element code for a three dimensional solid

element, then for a piezoelectric element. The third step is to implement a finite

element code for a thermoelastic element, and finally the last step is the implemen-

tation for a thermopiezoelectric element.

In the literature there are studies on thermopiezoelectricity and how the cou-

pled three-field problem (mechanical, electrical, thermal) can be solved numerically,

for static and dynamic cases. Gornandt and Gabbert [4], for instance, presented
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the weak form of the fully coupled thermopiezoelectric field equations, and inves-

tigated static and dynamic cases, in which it was demonstrated that a change in

temperature exerted an impact on the structures behaviour. These results focused

on structural and sensing applications, and did not consider actuators. This thesis

focuses on actuators as it is known that driving causes self-heating in actuators

and a drift in their position, however it has not been studied with a fully coupled

three-field model.

This research will provide a quantification of the coupling effects on piezoelectric

actuators in dynamic applications, and the prediction of their behaviour will open

the door to a deeper understating of how these effects impact the actuators and

allow more complex models to be implemented.

The objectives of this research can be summarized as:

1. Implement a finite element code in MATLAB to numerically solve the three

fully-coupled field equations of thermopiezoelectricity for simulations of piezo-

electric actuators under environments in which the thermal field plays an

important role.

2. Investigate and quantify the influence that the electric field has on the tem-

perature, and how the temperature affects the positioning and dynamic per-

formance of these actuators.
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3. Predict the behaviour of piezoelectric actuators when temperature is consid-

ered and the piezoelectric strain coefficients are temperature dependent.

1.6 Organization

This thesis is divided into six main parts beginning with the presentation of the

finite element formulation of the constitutive equations of thermopiezoelectricity

and the verification of the code in Chapter 2. This begins with a description of

the finite element method, covering isoparametric formulation, classical shape func-

tions, high-order shape functions, Gaussian quadrature, thermopiezoelectric finite

element formulation, boundary conditions, static, modal, and dynamic solutions.

The verification process starts with a three dimensional solid element, proceeds to

a piezoelectric element, and finally includes a thermoelastic element by comparing

the results with ABAQUS and with benchmarks. Two benchmarks are investigated:

a piezoelectric problem proposed by Tzou [85], and a thermopiezoelectric problem

proposed by Tauchert [86] and further investigated by Gornandt and Gabbert [4].

Chapter 3 focuses on the simulations of multilayer stack actuators. This Chapter

introduces stack actuators, alongside the model that is used in the simulations.

The stack actuator, with different numbers of layers, is analyzed for a step input

signal, a sinusoidal input, and a thermal load. Chapter 4 discusses the analysis of

multimorph bender actuators. The actuator is simulated for a step input signal,
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a sinusoidal input, and a thermal load. Chapter 5 revisits the simulations ana-

lyzed in Chapter 3 and 4, with consideration of the temperature dependence of the

piezoelectric strain coefficients d31 and d33. The chapter discusses the differences

between piezoelectric simulations and simulations using temperature-independent

coefficients, as well as results that incorporate temperature-dependent piezoelectric

strain coefficients d31 and d33. To conclude Chapter 5, a realistic case study for

bender actuators is analyzed. This scenario considers the temperature variations

experienced for a piezoelectrically-actuated instrument on a strataspheric balloon

flight that includes convection, and a multi-step scan across the actuation range

with the consideration of the temperature-dependent coefficient d31. The analysis

compares piezoelectric, thermopiezoelectric with temperature-independent coeffi-

cient d31, thermopiezoelectric with temperature-independent coefficient d31 while

neglecting the pyroelectric and electrocaloric effects, and thermopiezoelectric sim-

ulations with temperature-dependent coefficient d31. Finally, Chapter 6 concludes

the thesis by summarizing the findings of the research and presenting directions for

future work.
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2 Finite Element Implementation and

Verification

The finite element implementation is the process of translating the numerical

principles and mathematical concepts of the finite element method into practical

computer programs. It involves numerically formulating the problem which results

in a system of algebraic equations for the solution, partitioning the domain into

smaller elements, choosing shape functions, assembling a global system of equa-

tions, applying boundary conditions to solve the equations, and performing model

verification in the post-processing step.

The finite element equations of a physical system can be formulated using one of

three main techniques. For structural analysis problems, these techniques include

the direct equilibrium method, variation methods based on the principle of virtual

work, and weighted residual method [21, 87, 6]. The direct equilibrium method

is the simplest method and typically finds applications to derive the element stiff-

ness matrices for 1D elements, such as trusses, springs, and beams. In structural

28



mechanics problems, two primary direct approaches are commonly employed. In

one approach, referred to as the force (or flexibility) method, the unknowns of the

problem are internal forces. The governing equations are obtained by first utilizing

equilibrium equations, and additional necessary equations are then derived by in-

troducing compatibility equations. The result is a set of algebraic equations used to

determine the unknown forces. The second method, referred to as the displacement

or stiffness method, takes into account the nodal displacements as the problem’s

unknowns. For instance, satisfaction of compatibility constraints demand that ele-

ments connected at a common node, along a common edge, or on a common surface,

continue to be connected at that node, edge, or surface upon loading. The equilib-

rium equations and a relevant formula connecting forces to displacements are then

used to translate the governing equations into terms of nodal displacements. Since

it provides a more straightforward formulation for the majority of structural appli-

cation problems, the displacement approach is used more frequently in commercial

finite element programs [21, 87].

The variational approach is founded on the idea of minimizing a functional, a

mathematical statement that includes the unknown field variable and its deriva-

tives. In comparison to the direct method, the variational method makes it much

simpler to derive the finite element equations for two and three-dimensional ele-

ments. It does, however, need the existence of a functional, whose minimization

29



results in the stiffness matrix and associated element equations. The functional

reflects a physical quantity relevant to the system under study, such as the total

energy produced by the external forces or potential energy. The principle of min-

imal potential energy, for instance, can be used as the functional for structural

analysis problems because it is a relatively simple physical idea to comprehend.

In the weighted residual technique, an approximate solution to the equations

is obtained by minimizing the difference between the original equations and the

approximation. The equations are multiplied by weight functions to achieve this,

and the domain is then integrated.

Any of the these methods will result in equations that describe an element’s

behaviour. For the linear static case, these equations can be expressed in matrix

form as

keue = f e (2.1)

where ke is the element stiffness matrix which relates the nodal displacement vector

ue to the nodal forces vector f e for an unique element e.

The element equations must be assembled into global equations. Without loss

of generality, the global system of equations is given as

KU = F (2.2)

where K is the global stiffness matrix, U is the vector of generalized displacements,
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and F is the vector of global nodal forces. The global stiffness matrix K can be

expressed as

K =
n∑

e=1

ke (2.3)

The vector of global nodal forces is given as

F =
n∑

e=1

f e (2.4)

Physical problem

Discretization

Element stiffness matrix generation

Assembly of global stiffness matrix

Apply boundary conditions

Solve the equations

Postprocessing and validation

Fig. 2.1 Finite element analysis procedure

The typical technique used to solve for U involves taking the inverse of the
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global stiffness matrix K and pre-multiplying it by the vector of global nodal forces

F . A summary of the finite element analysis procedure for structural application

problems that produces displacement solutions is shown in Fig. 2.1.

2.1 Classical Shape Functions

Shape functions are functions used to approximate the behaviour of physical

quantities, such as displacement, within the elements. They interpolate the solution

between the values obtained at the nodes polynomial. The value of a shape function

at a specific node is one, whereas it is zero at the other nodes, where the sum of

all shape functions is equal to one at any point [87, 21, 88, 89]. The most common

types of shape functions include linear, quadratic, or higher-order shape functions,

depending on what type of element is chosen in the discretization and its degree of

freedom. An example of one-dimensional bar element is shown in Fig. 2.2.

Fig. 2.2 Nodes and degrees of freedom of a bar element. (Image adapted from:

[11])

For the one-dimensional bar element, the unknown variable u(x) can be written
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as

u(x) =
(
1− x

L

)
u1 +

(x

L

)
u2

(2.5)

where N1 =
(
1− x

L

)
is the first shape function (associated with node 1), and N2

=
(x

L

)
is the second shape function.

It is important to mention that the polynomial order of the shape function

typically determines the accuracy of the approximation.

2.2 Isoparametric Formulation

The development of equations and element matrices in terms of a global coordi-

nate system (x, y, z for 3D structures) becomes extremely challenging for complex

elements and is typically not possible because all elements may have different ge-

ometry. Therefore, the isoparametric formulation was developed [90], which allows

for elements to take on both straight lines and curved surfaces. The isoparametric

formulation uses a natural coordinate reference system (ξ1, ξ2, ξ3 for 3D structures)

which assigns coordinates to the nodes in a normalized interval, typically ranging

from -1 to 1, and facilitates the evaluation of integrals in the natural coordinate

domain. Furthermore, the application of the isoparametric formulation results in

simpler and more efficient computer programs.

The relationship between the global and natural coordinate systems is referred

to as transformation mapping, and it must be used in equation formulations to
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compute the derivatives of the shape functions. The shape functions are defined in

terms of the natural coordinates ξi, but their partial derivatives are with respect

to Cartesian coordinates. Calculating these derivatives involves using the inverse

of the Jacobian matrix and applying the chain rule. This process of coordinate

transformation through the Jacobian matrix is demonstrated for a shape function

N as

∂N (i)

∂ξ1
∂N (i)

∂ξ2
∂N (i)

∂ξ3


=



∂x

∂ξ1

∂y

∂ξ1

∂z

∂ξ1
∂x

∂ξ2

∂y

∂ξ2

∂z

∂ξ2
∂x

∂ξ3

∂y

∂ξ3

∂z

∂ξ3


︸ ︷︷ ︸

J



∂N (i)

∂x
∂N (i)

∂y
∂N (i)

∂z


⇒



∂N (i)

∂x
∂N (i)

∂y
∂N (i)

∂z


= J−1



∂N (i)

∂ξ1
∂N (i)

∂ξ2
∂N (i)

∂ξ3


(2.6)

where J is the Jacobian matrix, J−1 is the inverse of the Jacobian matrix, and |J |

is denominated as the determinant of the Jacobian, which is given as

|J | = ∂x

∂ξ1


∂y

∂ξ2

∂z

∂ξ2
∂y

∂ξ3

∂z

∂ξ3

− ∂y

∂ξ1


∂x

∂ξ2

∂z

∂ξ2
∂x

∂ξ3

∂z

∂ξ3

+
∂z

∂ξ1


∂x

∂ξ2

∂y

∂ξ2
∂x

∂ξ3

∂y

∂ξ3

 (2.7)

2.3 Higher-Order Shape Functions

Higher-order element shape functions can be created by adding more nodes to

the sides of the linear element. For the one-dimensional example shown in Fig. 2.2,

an additional node can be implemented (see Fig 2.3), resulting in higher-order (or

quadratic) shape functions.
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Fig. 2.3 Nodes and degrees of freedom of bar element: quadratic or higher-order

shape function. (Source: [12])

The unknown variable u(x) is now given as

u(x) =

(
1− 3x

L
+

2x2

L2

)
u1 +

(
4x

L
− 4x2

L2

)
u2 +

(
−x

L
+

2x2

L2

)
u3 (2.8)

where N1 =

(
1− 3x

L
+

2x2

L2

)
is the first shape function, N2 =

(
4x

L
− 4x2

L2

)
is the

second shape function, and N2 =

(
−x

L
+

2x2

L2

)
is the third shape function.

For three-dimensional elements, higher-order shape functions are often used.

With fewer elements, convergence to the exact solution happens more quickly be-

cause these elements produce higher-order strain variations within each element

[21, 87]. Fig. 2.4 shows a reference 20-noded hexahedral element in the natural

coordinates (−1 ≤ ξ1 ≤ 1,−1 ≤ ξ2 ≤ 1,−1 ≤ ξ3 ≤ 1).
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Fig. 2.4 Reference 20-noded hexahedral element (−1 ≤ ξ1 ≤ 1,−1 ≤ ξ2 ≤ 1,−1 ≤

ξ3 ≤ 1). (Image adapted from: [13])

The shape functions for the 20-noded hexahedral element are given as

• For the edge nodes j = 1,2,3,4,5,6,7,8:

Nj =
1

8
(1 + ξ

(j)
1 ξ1)(1 + ξ

(j)
2 ξ2)(1 + ξ

(j)
3 ξ3)(ξ

(j)
1 ξ1 + ξ

(j)
2 ξ2 + ξ

(j)
3 ξ3 − 2) (2.9)

• For the midside nodes j = 9,11,13,15:

Nj =
1

4
(1− ξ21)(1 + ξ

(j)
2 ξ2)(1 + ξ

(j)
3 ξ3) (2.10)

• For the midside nodes j = 10,12,14,16:

Nj =
1

4
(1− ξ22)(1 + ξ

(j)
1 ξ1)(1 + ξ

(j)
3 ξ3) (2.11)
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• For the midside nodes j = 17,18,19,20:

Nj =
1

4
(1− ξ23)(1 + ξ

(j)
1 ξ1)(1 + ξ

(j)
2 ξ2) (2.12)

2.4 Gaussian Quadrature

Gaussian quadrature is a numerical method to solve definite integrals. In finite

element analysis, it is considered one of the most useful methods for numerical

evaluation of integrals [21]. Gaussian quadrature relies on evaluating a function

y(ξ) at n different specific sampling points ξi, where each function evaluation y(ξi) is

multiplied by the corresponding weightWi and summed to obtain an approximation

of the integral [6]. Without loss of generality, Gaussian quadrature approximates

the integral on a reference domain [-1,1]. The formula for a one-dimensional case

is given as

I =

∫ 1

−1

y(ξ)dξ ≈
n∑

i=1

Wiy(ξi) (2.13)

The position of Gaussian points and their corresponding weights are given in Ta-

ble 2.1, for one, two, and three sampling points.

In general, Gaussian quadrature provides exact integration for polynomials up

to order 2m - 1, wherem is the order of the polynomial [21]. However, if the function

y(ξ) is not a polynomial, Gaussian quadrature becomes an approximation rather

than an exact solution, where the accuracy of the approximation of the solution is
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Number of points n Locations, ξi Weights, Wi

1 ξ1 = 0 2

2 ξ1 = ξ2 = ±
√

1

3
1

3
ξ1 = ξ3 = ±

√
15

5
5/9

ξ2 = 0 8/9

Table 2.1 Gaussian points and weights

increased by using more Gauss points [21, 6, 87].

As the Gaussian quadrature formulation is described in a natural reference

system with coordinates ξi, where the coordinates can vary between -1 and 1,

an example of the Gauss points for one-dimensional, two-dimensional, and three-

dimensional structures in this natural coordinate system is demonstrated in Fig. 2.5.

(a) in 1D structure (b) in 2D structure (c) in 3D structure

Fig. 2.5 Illustration of the location of Gauss points. (Image adapted from: [6])
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The one-dimensional quadrature rule can naturally be extended to three dimen-

sions and is given as

I =

∫ 1

−1

∫ 1

−1

∫ 1

−1

y(ξ1, ξ2, ξ3)dξ1dξ2dξ3 =
n∑

i=1

n∑
j=1

n∑
k=1

y(ξi, ξj, ξk)WiWjWk (2.14)

The number of Gauss points used to integrate the function defines whether the

integration is considered full integration or reduced integration. For a 20-noded

hexahedral element (brick element), full integration has 3 points in each direction

(3×3×3), therefore 27 points are evaluated for the integration, as shown in Fig. 2.6.

For the reduced integration of the 20-noded hexahedral element, only 2 points are

needed in each direction (2×2×2), therefore 8 points are needed (see Fig. 2.7), which

drastically reduces the computational time to run simulations.

Fig. 2.6 Example of Gaussian quadrature full integration of a 20-noded hexahedral

element. (Image adapted from: [14])
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Fig. 2.7 Example of Gaussian quadrature reduced integration of 20-noded hexa-

hedral element. (Image adapted from: [14])

The 20-noded hexahedral element with reduced integration is typically the best

choice for most general stress/displacement simulations [3, 21]. The 20-noded hex-

ahedral element with reduced integration (C3D20R) also provides more consistent

and accurate results than the full integration element (C3D20) in comparison with

the analytical results for the deflection of a beam, as shown in Table 2.2. Thus,

for most simulations in this thesis unless otherwise noted, the reduced integration

20-noded hexahedral element is employed.
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Depth x Mesh
Element type 1×4 2×4 4×4 8×16

C3D20 0.987 0.987 0.988 1.000
C3D20R 1.001 1.001 1.001 1.001

Table 2.2 Normalized tip deflection of a cantilever beam (wfem/wexact) as compared

to the Bernoulli-Euler theory prediction for a reference problem. (Source:[3])

2.5 Thermopiezoelectric Finite Element Formulation

The governing constitutive equations for a thermopiezoelectric material are

given as [4]

Tij = Cijklukl − ekijEk − ζijθ (2.15)

Di = eijkujk + εijEj + piθ (2.16)

η = ζijuij + piEi + λθ (2.17)

where Tij, Di, and η are defined as the stress tensor, electric displacement, and

entropy density, respectively. The terms Cijkl, ekij, εij, and E are the elastic com-

pliance, piezoelectric matrix, dielectric permittivity matrix, and the electric field,

respectively. The temperature-stress coefficient is defined as ζij, and θ is a small

temperature change, therefore the term ζijθ in Eq. (2.15) is described as the thermal

stress. The pyroelectric matrix is defined as pi, where the term piθ, in Eq. (2.16),

stands for pyroelectricity [81, 82]. The term ζijuij in Eq. (2.17) stands for the

heat of deformation (thermal-mechanical coupling), piEi is the electrocaloric ef-
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fect (thermal-electrical coupling effect), and the coefficient λ is defined as ρCE
v /Θ0,

where CE
v is the specific heat capacity, and Θ0 is the reference temperature, that is

the point without thermal strain [81, 82, 26].

The field variables for a thermopiezoelectric finite element (u, ϕ, θ), where u

stands for mechanical displacement, ϕ represents electric potential, and θ denotes

temperature, can be approximated by the shape functions Nu (mechanical), Nϕ

(electrical), and Nθ (thermal), along with the unknown nodal degrees of freedom

ue, ϕe, and θe. The field variable u corresponds to the mechanical degrees of freedom

and is represented as a vector with dimensions of 60×1 for a 20-noded hexahedral

element, as each node has three mechanical degrees of freedom. The field variable

associated with electrical degrees of freedom is ϕ, which is a vector with dimensions

of 20×1 for a 20-noded hexahedral element, as there is only one electrical degree

of freedom per node. Since there is one degree of freedom per node for the thermal

field, θ is a vector with dimensions of 20×1 for a 20-noded hexahedral element. The

shape functions for a 20-noded hexahedral element related to mechanical degrees of

freedom form a matrix with dimensions of 3×60, while the shape functions associ-

ated with electrical and thermal degrees of freedom are matrices with dimensions of

1×20. The shape functions N
(1)
u through N

(20)
u are defined as in the shape functions
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related to the mechanical field, and can be described as

Nu =

N
(1)
u 0 0 N

(2)
u 0 0 ... 0

0 N
(1)
u 0 0 N

(2)
u 0 ... 0

0 0 N
(1)
u 0 0 N

(2)
u ... N

(20)
u

 (2.18)

The shape functions matrix related to the electrical field can be written as

Nϕ =
[
N

(1)
ϕ N

(2)
ϕ ... N

(20)
ϕ

]
(2.19)

Similarly, the shape functions matrix related to the thermal field can be described

as

Nθ =
[
N

(1)
θ N

(2)
θ ... N

(20)
θ

]
(2.20)

The relation of the field variables u, ϕ, θ, shape functions Nu, Nϕ, Nθ, and unknown

degrees of freedom ue, ϕe, θe can be formulated as

u = Nu(ξ1, ξ2, ξ3)u
e (2.21)

ϕ = Nϕ(ξ1, ξ2, ξ3)ϕ
e (2.22)

θ = Nθ(ξ1, ξ2, ξ3)θ
e (2.23)

The gradient matrices, which relates the strain, electric potential, and temperature

at each integration point to the unknown degrees of freedom ue, ϕe, θe , respectively,

are given as

Bu = DuNu

Bϕ = DϕNϕ

Bθ = DθNθ

(2.24)
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where Du, Dϕ, and Dθ are the differential matrices in Cartesian coordinates x, y,

and z

Du =



∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z
∂

∂y

∂

∂x
0

0
∂

∂z

∂

∂y
∂

∂z
0

∂

∂x


(2.25)

Dϕ = Dθ =



∂

∂x
∂

∂y
∂

∂z

 (2.26)

The gradient matrices for the mechanical, electrical, and thermal fields can now be

described in extended matrix form. The ith partition of the gradient matrix for the

mechanical field B
(i)
u in general form is given as

B(i)
u =



∂N
(i)
u

∂x
0 0

0
∂N

(i)
u

∂y
0

0 0
∂N

(i)
u

∂z

∂N
(i)
u

∂y

∂N
(i)
u

∂x
0

0
∂N

(i)
u

∂z

∂N
(i)
u

∂y

∂N
(i)
u

∂z
0

∂N
(i)
u

∂x



(2.27)
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The general form of the gradient matrices for the electrical B
(i)
ϕ and thermal B

(i)
θ

fields are written as

B
(i)
ϕ =



∂N
(i)
ϕ

∂x

∂N
(i)
ϕ

∂y

∂N
(i)
ϕ

∂z



B
(i)
θ =



∂N
(i)
θ

∂x

∂N
(i)
θ

∂y

∂N
(i)
θ

∂z



(2.28)

where i = 1,2, ..., n (n = number of nodes of the element).

For a 20-noded hexahedral element, Eq. (2.27) becomes

Bu =



∂N
(1)
u

∂x
0 0

∂N
(2)
u

∂x
0 0

∂N
(3)
u

∂x
0 ... 0

0
∂N

(1)
u

∂y
0 0

∂N
(2)
u

∂y
0 0

∂N
(3)
u

∂y
... 0

0 0
∂N

(1)
u

∂z
0 0

∂N
(2)
u

∂z
0 0 ...

∂N
(20)
u

∂z

∂N
(1)
u

∂y

∂N
(1)
u

∂x
0

∂N
(2)
u

∂y

∂N
(2)
u

∂x
0

∂N
(3)
u

∂y

∂N
(3)
u

∂x
... 0

0
∂N

(1)
u

∂z

∂N
(1)
u

∂y
0

∂N
(2)
u

∂z

∂N
(2)
u

∂y
0

∂N
(3)
u

∂z
...

∂N
(20)
u

∂y

∂N
(1)
u

∂z
0

∂N
(1)
u

∂x

∂N
(2)
u

∂z
0

∂N
(2)
u

∂x

∂N
(3)
u

∂z
0 ...

∂N
(20)
u

∂x


(2.29)
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and Eq. (2.28) becomes

Bϕ =



∂N
(1)
ϕ

∂x

∂N
(2)
ϕ

∂x

∂N
(3)
ϕ

∂x
...

∂N
(20)
ϕ

∂x

∂N
(1)
ϕ

∂y

∂N
(2)
ϕ

∂y

∂N
(3)
ϕ

∂y
...

∂N
(20)
ϕ

∂y

∂N
(1)
ϕ

∂z

∂N
(2)
ϕ

∂z

∂N
(3)
ϕ

∂z
...

∂N
(20)
ϕ

∂z



Bθ =



∂N
(1)
θ

∂x

∂N
(2)
θ

∂x

∂N
(3)
θ

∂x
...

∂N
(20)
θ

∂x

∂N
(1)
θ

∂y

∂N
(2)
θ

∂y

∂N
(3)
θ

∂y
...

∂N
(20)
θ

∂y

∂N
(1)
θ

∂z

∂N
(2)
θ

∂z

∂N
(3)
θ

∂z
...

∂N
(20)
θ

∂z



(2.30)

The shape functions Nu, Nϕ, Nθ are given in the natural coordinates ξ1, ξ2, ξ3,

however, their partial derivatives are in relation to Cartesian coordinates x, y, z.

The computation of these derivatives requires the inverse of the Jacobian matrix

and the application of the chain rule. For the sake of simplicity, Eq. (2.28) is used

to demonstrate the transformation of coordinates to evaluate the derivatives, and

can be formulated as

∂N
(i)
ϕ

∂ξ1
∂N

(i)
ϕ

∂ξ2
∂N

(i)
ϕ

∂ξ3


=



∂x

∂ξ1

∂y

∂ξ1

∂z

∂ξ1
∂x

∂ξ2

∂y

∂ξ2

∂z

∂ξ2
∂x

∂ξ3

∂y

∂ξ3

∂z

∂ξ3


︸ ︷︷ ︸

J



∂N
(i)
ϕ

∂x

∂N
(i)
ϕ

∂y

∂N
(i)
ϕ

∂z


⇒



∂N
(i)
ϕ

∂x

∂N
(i)
ϕ

∂y

∂N
(i)
ϕ

∂z


= J−1



∂N
(i)
ϕ

∂ξ1
∂N

(i)
ϕ

∂ξ2
∂N

(i)
ϕ

∂ξ3


(2.31)

where J−1 is the inverse of the Jacobian matrix.

From the constitutive thermopiezoelectric equations (Eqs. (2.15)-(2.17)), and

since there are three coupled fields (mechanical, electrical and thermal), the finite
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element formulation can be derived following the method presented in [4] as

M e
uuü

e + ke
uuu

e + ke
uϕϕ

e − ke
uθθ

e = f e
uu

(2.32)

ke
ϕuu

e − ke
ϕϕϕ

e + ke
ϕθθ

e = f e
ϕϕ

(2.33)

ke
θuu̇

e − ke
θϕϕ̇

e +He
θθθ̇

e + ke
θθθ

e = f e
θθ

(2.34)

where the element mass matrix is

M e
uu =

∫
V e

ρNT
u NudV

e (2.35)

where ρ is the density, and V e means that the integral is evaluated over the volume

of the element. The mechanical element stiffness matrix is given as

ke
uu =

∫
V e

BT
uCBudV

e (2.36)

where C is the stiffness matrix [N/m2] with dimensions 6×6, which for the case of

PZT takes the form of a transversely isotropic material and can be written as

C =



CE
11 CE

12 CE
13 0 0 0

CE
21 CE

22 CE
23 0 0 0

CE
31 CE

32 CE
33 0 0 0

0 0 0 CE
44 0 0

0 0 0 0 CE
55 0

0 0 0 0 0 CE
66


=



CE
11 CE

12 CE
13 0 0 0

CE
12 CE

11 CE
13 0 0 0

CE
13 CE

13 CE
33 0 0 0

0 0 0 CE
44 0 0

0 0 0 0 CE
55 0

0 0 0 0 0 CE
55


(2.37)

where CE are the elastic constants at constant electric field. The direct piezoelectric

coupling element stiffness matrix is described as

ke
uϕ =

∫
V e

BT
u e

TBϕdV
e (2.38)
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where e is the matrix of piezoelectric stress coefficients [N/(Vm)] with dimension

3×6, which for the case of PZT can be written as

e =


0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e32 e33 0 0 0

 (2.39)

The elasto-thermal element stiffness matrix is given as

ke
uθ =

∫
V e

BT
u ζNθdV

e (2.40)

where ζ is the thermal stress coefficient vector [N/(m2K)] which is obtained by

multiplying the compliance matrix C by the vector of thermal expansion coefficients

α, where α is given as

α =



α11

α22

α33

0

0

0


(2.41)

Therefore the thermal stress coefficients vector ζ, for PZT, can be written as

ζ =



CE
11α11 + CE

12α22 + CE
13α33

CE
21α11 + CE

22α22 + CE
23α33

CE
31α11 + CE

32α22 + CE
33α33

0

0

0


(2.42)
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The dielectric element stiffness matrix is described as

ke
ϕϕ =

∫
V e

BT
ϕ εBϕdV

e (2.43)

where ε is the matrix of dielectric coefficients [F/m] with dimensions 3×3, which is

given as

ε =


εTr
11 0 0

0 εTr
22 0

0 0 εTr
33

 (2.44)

where εTr are the free dielectric constants (piezoelectric measured when completely

unconstrained), which are described as relative dielectric constants ε multiplied by

the permittivity of free space (ε0 = 8.85418782x10−12 [F/m]). The pyroelectric

element stiffness matrix is given as

ke
ϕθ =

∫
V e

BT
ϕ pNθdV

e (2.45)

where p is the vector of pyroelectric coefficients, and can be written as

p =


p1

p2

p3

 (2.46)

The thermal element stiffness matrix can be described as

ke
θθ =

∫
V e

BT
θ λBθdV

e +

∫
Oe

h

NT
θ hvNθdO

e (2.47)

where λ is the matrix of heat conduction coefficients [W/(mK)] and it is formulated
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as

λ =


λ11 0 0

0 λ22 0

0 0 λ33

 (2.48)

The second term in Eq. (2.47), hv, is referred to as the convective heat transfer

coefficient, and Oe
h means that the integral is evaluated over the surface. The

thermoelastic element stiffness matrix is formulated as

ke
θu =

∫
V e

NT
θ NθΘζTBudV

e (2.49)

where Θ is the reference temperature, which is typically referred to as the nodal

temperature. The electrocaloric element stiffness matrix is written as

ke
θϕ =

∫
V e

NT
θ NθΘpTdV e (2.50)

The heat capacity element stiffness matrix is described as

He
θθ =

∫
V e

NT
θ ρcvNθdV

e (2.51)

where cv is the heat capacity coefficient of the material. The external mechanical

element force vector is defined as

f e
uu =

∫
V e

NT
u ρbdV

e +

∫
Oe

NT
u t̄dO

e (2.52)

where b is the vector of body forces, Oe denotes the prescribed values of traction t̄

on the surface. The electric element charge vector is given as

f e
ϕϕ = −

∫
Oe

NT
ϕ Q̄dOe (2.53)
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where Q̄ is the prescribed surface charge on the surface Oe. The external thermal

element force vector is written as

fθθ =

∫
Oe

h

NT
θ hv(Θ∞ −Θ0)dO

e +

∫
Oe

NT
θ q̄sdO

e +

∫
V e

ρrdV e (2.54)

where Θ∞ is the ambient temperature, Θ0 is the stress free temperature or body

temperature, q̄s is the prescribed heat flux across the surface Oe, and r is the quan-

tity of heat generated by internal heat sources per unit of time. All equations are

presented in Tables A.1–A.3 for further reference. To form the matrices, Gaussian

quadrature is applied to evaluate the integrals (see Eq. (2.14)). For the sake of

simplicity, Eq. (2.35) is used to demonstrate the Gaussian quadrature technique,

and it is given as

M e
uu =

∫ 1

−1

∫ 1

−1

∫ 1

−1

ρNT
u Nu|J |dξ1dξ2dξ3 =

=
n∑

i=1

n∑
j=1

n∑
k=1

ρNT
u (ξi, ξj, ξk)Nu(ξi, ξj, ξk)|J |WξiWξjWξk

(2.55)

where |J | is the determinant of the Jacobian matrix.

If the elemental system of differential equations in Eqs. (2.32–2.34) are assembled

into a global matrix, the system of equations can be written asMuu 0 0
0 0 0
0 0 0

ÜΦ̈
Θ̈

+

 0 0 0
0 0 0

Kθu −Kθϕ Hθθ

U̇Φ̇
Θ̇


+

Kuu Kuϕ −Kuθ

Kϕu −Kϕϕ Kϕθ

0 0 Kθθ

UΦ
Θ

 =

Fu

Fϕ

Fθ


(2.56)
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where the mass Muu of the body multiplies the acceleration of the body in the first

term of Eq. (2.56). The second term refers to the damping matrix, which multiplies

the first derivatives of displacement, electric potential, and temperature. The first

two terms of Eq. (2.56) are typically applied in dynamic analyses. The third term is

referred to as the global stiffness matrix, which multiplies the displacement, electric

potential, and temperature, and is used in static analyses. The sum of the first three

terms equals the global vector of forces, which includes the mechanical, electrical,

and thermal forces.

2.6 Boundary Conditions

Boundary conditions are fundamental constraints or specifications applied to the

boundaries or nodes of the domain, where it is specified how the solution behaves at

the boundaries, ensuring that the analysis accurately depicts physical conditions. If

boundary conditions are not specified in the finite element method, the determinant

of the global stiffness matrix K will be zero, and its inverse will not exist. This

singularity is typically addressed by imposing boundary conditions [21, 88, 91].

Boundary conditions are generally classified into two types. The first type is

referred to as essential or Dirichlet boundary conditions, in which the values that

the primary variables (displacements, electric potential, temperature) must take on

the domain are specified. The second type, the natural or Neumann boundary con-
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dition, specifies the values that the derivatives must assume within the domain, as

shown in the example in Fig. 2.6. The example shows a domain Ω with a boundary

∂Ω, where the solution is satisfied if

u|Γ1 = u0 and
∂u

∂n

∣∣∣
Γ2

= g (2.57)

where u0 and g are functions defined on the boundaries Γ1 and Γ2, respectively.

Fig. 2.8 Example of boundary conditions: Neumann (1), Dirichlet (2). (Image

adapted from:[15])

Typically, structures have mechanical constraints such that the body under

study is not free to move when external loads are applied. For instance, a beam

under a mechanical concentrated force often has a support that prevents the beam

from moving, which requires the displacements at the support to be zero. This

condition is referred to as a homogeneous boundary condition when the values of
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the variables are set to zero at the boundary of the domain. Electric potential and

temperature can also be specified as zero along the domain when dealing with ther-

mopiezelectric problems. Furthermore, electric potential and temperature are also

frequently prescribed to be at a level other than zero, therefore non-homogeneous

boundary conditions have to be taken into account, where the values that the so-

lution needs to take on the domain must be specified.

2.6.1 Homogeneous Boundary Conditions

The finite element implementation of homogeneous boundary conditions is straight-

forward. For the sake of simplicity, the implementation is demonstrated for dis-

placements, but can be extended to electric potential and temperature with the

same technique. Therefore, for the nodes that are mechanically constrained, their

displacement will be zero. Generally, in one-dimensional cases, it is easier to remove

the rows and columns associated with the constrained nodes in the stiffness matrix

K, in the force vector F , and in the displacement vector U , reducing the system

of matrices to be solved. However, when working with three-dimensional problems

and higher degrees of freedom, a more elegant technique can be employed. The

rows of the global force vector F corresponding to the constrained nodes are set

to zero, the rows and columns of the global stiffness matrix K associated with the

constrained nodes are set to zero, and the diagonal entry of the constrained nodes
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in the global stiffness matrix K is set equal to one. This technique allows the rows

and columns to be retained which can avoid mistakes because there is no need to

rearrange the system of equations after the solution is calculated. Furthermore, it

allows the calculation of reaction forces. For the sake of simplicity, both techniques

are demonstrated with a simple example of a one-dimensional case, which can be

extended to two-dimensional and three-dimensional cases. Consider a 3×3 system

of equations, where U1 is constrained in xK11 K12 K13

K21 K22 K23

K31 K32 K33

U1

U2

U3

 =

F1

F2

F3

 (2.58)

By using the elimination technique, Eq. (2.58) can be rewritten as a 2×2 system of

matrices [
K22 K23

K32 K33

] [
U2

U3

]
=

[
F2

F3

]
(2.59)

where the system of equations can be described as

K22U2 +K23U3 = F2

K32U2 +K33U3 = F3

(2.60)

By implementing the technique where the rows and columns are retained, Eq. (2.58)

is written as 1 0 0
0 K22 K23

0 K32 K33

U1

U2

U3

 =

R1

F2

F3

 (2.61)
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where R1 is the reaction force in the constrained node. Now the system of equations

is described as

U1 + 0K12 + 0K13 = R1

0K21 +K22U2 +K23U3 = F2

0K31 +K32U2 +K33U3 = F3

(2.62)

2.6.2 Non-homogeneous Boundary Conditions

The implementation of non-homogeneous boundary conditions is more complex

than for the case of homogeneous boundary conditions. In this type of boundary

condition, the value that the solution must have on the boundary of domain is

specified but is not equal to zero. To enact this type of boundary condition, the

first step is to rearrange the equations considering the values that the solution must

obtain. Consider the example in Eq. (2.58), where U1 is constrained in x, where

now, in addition, U3 has a prescribed nodal value d which can be written asK11 K12 K13

K21 K22 K23

K31 K32 K33

U1

U2

d

 =

F1

F2

F3

 (2.63)

The non-homogeneous boundary condition follows the same process as the homo-

geneous boundary conditions, with the difference that the force vector F has to

be rearranged to account for the prescribed value of U3. The rows and columns

associated with the prescribed value are set to zero in the global stiffness matrix
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K, with the exception of the diagonal value K33. Eq. (2.65) can be rewritten as1 0 0
0 K22 0
0 0 K33

U1

U2

d

 =

R1

F2

F3

 (2.64)

Now, to get rid of d in the system of equations, the force vector F is rearranged as1 0 0
0 K22 0
0 0 K33

U1

U2

U3

 =

 R1

K23d
K33d

 (2.65)

where the solution of the system of equations results

U1 = R1

U2 =
K23d

K22

U3 =
K33d

K33

= d

(2.66)

Without loss of generality, this process can be employed to set the boundary

conditions corresponding to the electric potential and temperature.

2.7 Static Analysis

The numerical static solution of Eq. (2.56) for static analysis is straightforward

and can be solved for mechanical, piezoelectric, thermoelastic, and thermopiezo-

electric problems. For mechanical problems, the equation is solved for the nodal

displacements U and can be written as

U = K−1
uu F (2.67)
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For piezoelectric problems, the equation is solved for both the displacement and

the electric potential, where the equation considers only the elastic, piezoelectric,

and dielectric matrices, and it is simplified to

[
U
Φ

]
=

[
Kuu Kuϕ

Kϕu −Kϕϕ

]−1 [
Fu

Fϕ

]
(2.68)

The solution of this equation will yield the vector

[
U
Φ

]
, in which the nodal

displacements and electric potential can be easily split by means of number of

degrees of freedom. For instance, for one single element, the mechanical degrees

of freedom are three (x, y, z), and for a 20-noded hexahedral element, the total

number of mechanical degrees of freedom is 60. Therefore, the displacement will

be the first 60 values of the vector

[
U
Φ

]
, and the electric potential Φ will be the

remaining 20, since Φ has only one degree of freedom per node.

For thermoelastic problems, the equation is solved for both the displacement

and temperature, and the equation is reduced to

[
U
Θ

]
=

[
Kuu −Kuθ

0 Kθθ

]−1 [
Fu

Fθ

]
(2.69)

For thermopiezoelectric problems, the full Eq. (2.56) is considered and is solved

for the displacement, electric potential, and temperature. It is given asUΦ
Θ

 =

Kuu Kuϕ −Kuθ

Kϕu −Kϕϕ Kϕθ

0 0 Kθθ

−1 Fu

Fϕ

Fθ

 (2.70)
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Without loss of generality, the variables U , Φ, and Θ are separated by type of

degree of freedom, in which the displacement U has three degrees of freedom per

node, while the electric potential, Φ, and temperature, Θ, have only one degree of

freedom per node.

2.8 Modal Analysis

Modal analysis is the study of the dynamic characteristics of a system, in par-

ticular the natural frequencies, which are the frequencies at which the structure

naturally oscillates [92]. The modal analysis follows a relation which is described

as

(K − ω2M)Λ = 0 (2.71)

where K is the global stiffness matrix, M is the global mass matrix, ω is the

angular natural frequency (where ω2 are the eigenvalues), and Λ is the matrix of

mode shape vectors (or eigenvectors) associated with the natural frequencies. The

solution of Eq. 2.71 is straightforward and results in the eigenvalues of the system.

The eigenfrequencies [rad/s] of the system can now be obtained from the eigenvalues

through the relation given as

ω = λ
1
2 (2.72)
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where λ represents the eigenvalues. The modal analysis provides important infor-

mation regarding how a structure responds to induced vibrations or dynamic loads.

Knowledge of the natural frequencies of a structure allows the calculation of the

damping ratio, which is a dimensionless measure used to describe how oscillations

decay in a vibrating system. This information is crucial for accurately analyzing

structures subjected to external dynamic loads.

In the verification section, the bimorph actuator PL127.10 from PI Ceramics is

used in simulations. Therefore, a modal analysis is performed in both FE code and

ABAQUS to obtain the frequencies and, consequently, the damping coefficients. A

comparison of the natural frequencies of the first 5 modes between the FE code and

ABAQUS is presented in Table 2.3, demonstrating excellent agreement between the

results. Furthermore, the corresponding mode shapes plots are shown in Fig. 2.9.

Modal Analysis - Bimorph PL127.10 (31×9.6×0.67) [mm]

FE Code ABAQUS

Frequency [Hz]

443.74 443.74
2454.45 2454.46
2760.52 2760.52
5668.79 5668.79
7723.75 7723.75

Table 2.3 A comparison of the first five natural frequencies between the FE Code

and ABAQUS
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(a) Mode shape 1: 443.74 Hz (b) Mode shape 2: 2454.45 Hz

(c) Mode shape 3: 2760.52 Hz (d) Mode shape 4: 5668.79 Hz

(e) Mode shape 5: 7723.75 Hz

Fig. 2.9 Five mode shapes of the PL127.10 modal analysis in the FE code

2.9 Dynamic Analysis

For piezoelectric actuators, their advantage lies in their fast response. Therefore,

the dynamic solution of interest involves determining nodal displacements, electric

potential, and temperature at different time steps for any dynamic system, a process

referred to as numerical integration in time [91, 21]. The most common method is

direct integration, which can be divided into implicit and explicit methods. The

61



implicit method requires the calculation of the effective stiffness matrix at each time

step t+∆t, while the explicit method does not. However, the implicit method, more

specifically, the Newmark-Beta method, will be used as the integration in time, since

it is more versatile and unconditionally stable [91, 21].

2.9.1 Newmark Integration Method

The Newmark method is a classic example of an implicit time-integration al-

gorithm, in which two parameters are introduced: β, and γ. These parameters

are used to control the stability and accuracy of the numerical integration, where

β is usually chosen between 0 and
1

4
, and γ is frequently used as

1

2
. It has been

shown that the numerical analysis is stable when β and γ are taken to be
1

4
and

1

2
respectively, resulting in the average acceleration method [91, 87]. This method

is considered to be unconditionally stable, meaning that the solution will converge

for all time increments [21, 91, 89].

The displacement Ut+∆t and velocity U̇t+∆t at time t + ∆t in the Newmark

method are described as

Ut+∆t = Ut + (∆t)U̇t +

[(
1

2
− β

)
∆t2

]
Üt + (β∆t2)Üt+∆t (2.73)

U̇t+∆t = U̇t + [(1− γ)∆t] Üt + (γ∆t)Üt+∆t
(2.74)
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Applying the time-stepping method, as

∆Ut = Ut+∆t − Ut
(2.75)

∆U̇t = U̇t+∆t − U̇t
(2.76)

∆Üt = Üt+∆t − Üt
(2.77)

Eqs. (2.73-2.74) can be rewritten as

∆Ut = (∆t)U̇t +
∆t2

2
Üt + (β∆t2)∆Üt

(2.78)

∆U̇t = (∆t)Üt + (γ∆t)∆Üt
(2.79)

Solving for the acceleration ∆Üt yields

∆Üt =
1

β(∆t)2
∆Ut −

1

β(∆t)
U̇t −

1

2β
Üt (2.80)

Substituting the term ∆Üt in Eq. (2.79), the velocity can be described as

∆U̇t =
γ

β(∆t)
∆Ut −

γ

β
U̇t −

[(
γ

2β
− 1

)
∆t

]
Üt (2.81)

The displacement is calculated by taking the inverse of the effective dynamic

stiffness K̂ and multiplying by the effective dynamic load F̂ , at each time step.

This is given as

∆Ut = K̂−1F̂ (2.82)

where K̂ is calculated as

K̂ = K +
γ

β(∆t)
D +

1

β(∆t)2
M (2.83)
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and F̂ is calculated as

F̂ = F + F∆t +

[
1

β(∆t)
M +

γ

β
D

]
U̇t +

[
1

2β
M +

(
γ

2β
− 1

)
(∆t)D

]
Üt (2.84)

where D and M are the damping and mass matrices. Referring to Eq. (2.56), the

damping matrix is rewritten as

D =

 R 0 0
0 0 0

Kθu −Kθϕ Hθθ

 (2.85)

where R stands for the classical Rayleigh damping, which is a proportional linear

combination of the mass matrix (see Eq. (2.35)) and elastic stiffness matrix (see

Eq. (2.36)), and is given as

R = αRMuu + βRKuu (2.86)

where αR and βR are the Rayleigh damping coefficients. These coefficients can be

described as

ζi =
αR

2ωi

+
βRωi

2
(2.87)

where ζi is the damping ratio, and ωi is the angular frequency [rad/s] which can

be calculated from a modal analysis. Table 2.4 summarizes the steps for the imple-

mentation of the Newmark integration method.
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Newmark method

1. Initialize U , U̇ , and Ü at time step zero

2. Select time step ∆t, and parameters γ and β

3. Form the effective stiffness matrix K̂ (Eq. (2.83)), and triangularize it

4. For each time step:

4.1 Calculate the effective load matrix F̂ (Eq. (2.84))

4.2 Calculate the displacement ∆Ut (Eq. (2.82))

4.3 Calculate the velocity ∆U̇t (Eq. (2.81))

4.4 Calculate the acceleration ∆Üt (Eq. (2.80))

4.5 Repeat step number 4 until the last time step

5. Output of final displacements, velocities, and accelerations

Table 2.4 Steps of the Newmark integration method

2.10 Verification of Static Analysis

The implementation of the code is divided into steps. The first step is to im-

plement the finite element code for 3D solid elements, followed by piezoelectric

elements, thermoelastic elements, and finally thermopiezoelectric elements. Confi-

dence in the implementation is established by using the commercial code ABAQUS

to bound and verify the results for each step. This section covers the verification of

the code for both static and dynamic cases. The coefficients needed for verification
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are acquired from several sources of information, such as from Physik Instrumente

Ceramic.

For mechanical element simulations, aluminum is used. For the simulations

involving piezoelectric and thermoelastic elements, the bimorph PL127.10 from

Physik Instrumente Ceramic [2] is used. For all cases the same structure is used,

a rectangular structure with dimensions 31×9.6×0.67 mm, with a free length of 27

mm (see Fig. 2.10).

Fig. 2.10 Rectangular structure with 2 attached layers with dimensions of

31×9.6×0.67 mm

2.10.1 Three-Dimensional Solid Element with Reduced Integration

For a mechanical problem (3D solid elements), the code is verified by com-

paring the results with the commercial software ABAQUS. Element matrices are
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calculated, and then Eq. (2.67) is solved. In the case of three-dimensional elements,

the density ρ and the compliance matrix C are required.

2.10.1.1 Three-Dimensional Solid Static Case

For the solid element verification, concentrated forces of 1 N are applied in the

z direction, on the edge nodes. Fig. 2.11 shows the region and nodes where the

concentrated mechanical forces are applied. The beam has 160 total elements and

1053 nodes. The material used is aluminum with a Young’s modulus of E = 70

GPa, and Poisson’s ratio of ν = 0.33.

Fig. 2.12 provides the comparison between the implemented code and ABAQUS,

showing that both agree qualitatively when comparing the mesh profile, and quan-

titatively with a maximum deflection in the z direction of approximately 748 µm.

There is no difference between the implemented code and the solution obtained via

commercial software.

Fig. 2.11 Aluminum plate with forces (red arrows) applied on the edge nodes
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Fig. 2.12 Developed displacement in z for the three-dimensional solid static case

2.10.2 Piezoelectric Element

To verify, Eq. (2.68) is solved to obtain the solution for piezoelectric simulations.

For this case, the compliance matrix C, the piezoelectric coefficients matrix e,

and the dielectric matrix ε are required. In this case, two separate analyses are

conducted to capture both mechanical and electrical behaviour.

2.10.2.1 Piezoelectric Static Case 1

As a first simulation, a typical example of the converse piezoelectric effect is

examined. For this case, 531 V is applied to the bimorph in parallel connection

and its left end is mechanically constrained, leaving a free length of 27 mm. In
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the parallel connection, both top and bottom surfaces are set to a specific voltage,

which is 531 V in this case, and the middle surface is set to ground (0 V), meaning

the polarization of both layers is in the same direction. The bending direction is

in the z-direction, and therefore, Fig. 2.13(a) refers to the z-displacement, showing

an agreed maximum bending of around 458 µm for both FE code and ABAQUS

results, while Fig. 2.13(b) provides the expected voltage magnitude and profile.

(a) z-displacement (b) Voltage

Fig. 2.13 Displacement in z and voltage results for the piezoelectric static case 1

2.10.2.2 Piezoelectric Static Case 2

An example of the direct piezoelectric effect is studied in this example, in which

a concentrated force of 1 N is applied to the tip of the bimorph (right end), exactly

in the middle of the actuator (see Fig. 2.14).

The direct piezoelectric effect generates an electric potential in the material
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Fig. 2.14 Bimorph PL127.10 with a concentrated force applied in the right end,

middle node.

when a mechanical force is applied. Fig. 2.15(b) provides the developed voltage after

the concentrated force is applied to the middle node, right end of the bimorph. The

static numerical analysis from the FE code produced a voltage of 15.30 V, and the

commercial software showed a result of 15.16 V. The difference between the results

is of about 0.2%, showing an excellent agreement. The deflection of the actuator

is shown in Fig. 2.15(a), and a maximum displacement of 367.96 µm is observed in

the numerical analysis, while 367.86 µm is the maximum deflection obtained from

ABAQUS. Both the implemented code and ABAQUS plots agree qualitatively and

quantitatively, with differences of less than 0.2%.
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(a) z-displacement (b) Voltage

Fig. 2.15 Displacement in z and voltage results for the piezoelectric static case 2

2.10.3 Thermoelastic Element

For thermoelastic problems, the solution is obtained by solving Eq. (2.69). In

this case, the compliance matrix C, the vector of thermal expansion α, the specific

heat capacity coefficient cv, and the matrix of heat conduction coefficients λ are

required. Since convection is neglected, the convective heat transfer coefficient

hv is not needed. In ABAQUS, the analysis type used is a coupled temperature-

displacement analysis, in which the mechanical and thermal fields are coupled.

2.10.3.1 Thermoelastic Static Case

The considered study is that of a 30 K temperature enforced along the surface

at the tip of the bimorph, while the left end is constrained for both the temper-
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ature and displacement. Since the material is expanding, Fig. 2.16(a) shows the

displacement mesh contour in the x axis, and a maximum expansion of 2.78 µm

is observed in this test for both FE Code and ABAQUS. Fig. 2.16(b) provides the

mesh contour of the developed temperature and its magnitude where it is clearly

noticed that the temperature is increasing gradually from the constrained end of

the bimorph (left end) to the free end of the actuator (right end), until it reaches

the temperature of 30 K, matching the gradual increasing expansion in the x axis.

(a) x-displacement (b) Temperature

Fig. 2.16 Displacement in x and temperature results for a thermal load application

2.10.4 Verification of Numerical Analysis with Benchmark

The static analysis verification demonstrated that the implemented code exhib-

ited excellent agreement with ABAQUS for various simulations. Nevertheless, it
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remains important to verify the developed code against benchmarks proposed in

the literature. Therefore, this section covers the verification of the numerical anal-

ysis from the implemented MATLAB finite element code with a benchmark in the

literature. H.S. Tzou proposed in his book Piezoelectric Shells [85] a benchmark

example of a bimorph beam, consisting of two layers of PVDF material with di-

mensions 100×5×1 mm (see Fig. 2.17) with opposite polarization directions. The

material parameters for this example can be found in Table 2.5.

Fig. 2.17 Bimorph beam consisting of PVDF material with dimensions 100×5×1

mm

For the simulation, a voltage difference of 1 V through the thickness of the

bimorph is applied (0.5 V at top surface, ground at the middle, and -0.5 V at

the bottom surface). A 20 noded hexahedral element with reduced integration is
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Material coefficients PVDF

Coefficient Unit Value

Young’s Modulus
N

m2 2×109

Poisson’s Ratio ν 0.29

Piezoelectric stress coefficient e31, e23
N

Vm
0.046

Dielectric matrix coefficient ε11, ε22, ε33
F

m
1.069×10−9

Mass density
kg

m3 1800

Table 2.5 Material coefficients PVDF

used in the simulation and the results for the transverse deflection of the bimorph

(displacement in the z-axis) is presented in Fig. 2.18. The numerical results are

demonstrated to have an excellent agreement with the analytical results provided

by Tzou [85].
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Fig. 2.18 Transverse deflection

2.11 Verification of Transient Analysis

In this section the transient analysis is verified. The time dependence of the

field variables are considered in this case, therefore the system of equations to be

solved is Eq. (2.56) or a subset of the fields. Similarly to the validation of the static

cases (see Section 2.10), the same material (PL127.10 from Physik Instrumente

Ceramic) is used to run the simulations. Consistent mass and heat capacity ma-

trices formulations are implemented for the transient analysis, with the Newmark

method employed for the time integration algorithm (see Section 2.9.1).
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2.11.1 Rayleigh Damping Coefficients

A very commonly used method for modelling the damping of structures is the

Rayleigh damping method, in which two parameters (αR and βR) are selected (see

Eq. (2.87)). A modal analysis of the PL127.10 actuator (refer to Fig. 2.10) is con-

ducted in the FE Code, with no load applied. Mechanical constraints in all three

directions are fixed along the left edge of the actuator (leaving the free length

of 27 mm). Table 2.6 provides the first five natural frequencies of the bimorph.

These frequencies can be used to help determine the Rayleigh damping coefficients

of this actuator using Eq. (2.87) with knowledge of the first and second bending

frequencies, which are, for this case, 443.74 Hz and 2760.52 Hz.

Modal Analysis - Bimorph PL127.10 (31×9.6×0.67) [mm]
Mode number Frequency [Hz]

1 443.74
2 2454.45
3 2760.52
4 5668.79
5 7723.75

Table 2.6 First 5 natural frequencies of the PL127.10 actuator

A damping ratio (ζ) of 0.05 is assumed and Eq. (2.87) becomes the system of

equations

ζ1 =
αR

2ω1

+
βRω1

2

ζ2 =
αR

2ω2

+
βRω2

2

(2.88)
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Eq. (2.88) is solved and the coefficients αR and βR are found to be 240.20 and

4.97×10−6. These parameters are used for all the analyses in this transient valida-

tion section.

2.11.2 Three-Dimensional Solid Element

This section focuses on verifying the transient analysis for three-dimensional

solid elements with reduced integration (C3D20R). The solution involves solving

Eq. 2.56, where the active degrees of freedom in the system are exclusively the

mechanical degrees of freedom.

2.11.2.1 Three-Dimensional Solid Transient Case

This case provides an example of a transient analysis involving ramp signal

forces of 1 N applied at the edge nodes, at the tip the actuator (see Fig. 2.11).

Fig. 2.20 shows the displacement in the z-direction for the node at the tip of the

bimorph (see Fig. 2.19) versus time, while Fig. 2.21 presents the transverse deflection

through the length of the actuator at time t = 1 second, along the neutral axis.

The maximum deflection in the numerical analysis is approximately 0.75 mm and

has excellent agreement with the results from ABAQUS.
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Fig. 2.19 Node of interest (red point)

Fig. 2.20 Time versus nodal z-displacement at reference node
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Fig. 2.21 Transverse deflection at time t = 1 second across the length of the

actuator
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2.11.3 Piezoelectric Element

This section covers the verification of transient analyses for piezoelectric el-

ements with reduced integration (C3D20RE). In this case, the active degrees of

freedom in the system are the mechanical and electrical ones.

2.11.3.1 Piezoelectric Transient Case

This simulation considers the transient analysis where the converse piezoelectric

effect is investigated. The bimorph is subjected to voltages of 100 V in parallel

connection with a sinusoidal wave A(t) = sin(2πtf) showed in Fig. 2.22, where the

frequency f is 1 Hz.

Fig. 2.22 Sinusoidal wave
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The developed nodal z-displacement at the tip of the actuator (see Fig. 2.19)

is seen in Fig. 2.23, where the deflection ranges from -0.08 mm to 0.08 mm. Ad-

ditionally, Fig. 2.24 presents the transverse deflection of the bimorph at the times

t = 0.25 seconds and t = 0.75 seconds through the length of the actuator at the

middle of the thickness. The maximum and minimum deflections of 0.08 mm and

-0.08 mm can be observed and the results showed an excellent agreement between

the numerical analysis and the commercial software.

Fig. 2.23 Time versus nodal z-displacement at reference node (node 4)
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Fig. 2.24 Transverse deflection at time t = 0.25 seconds and 0.75 seconds

2.11.4 Thermoelastic Element

This section discusses the verification of thermoelastic elements with reduced

integration (C3D20TR) in transient analyses. In this case, the equation of interest

is Eq. (2.56), and the active degrees of freedom in the system are mechanical and

thermal degrees of freedom.

2.11.4.1 Thermoelastic Transient Case

The top surface of the bimorph is subjected to a sinusoidal temperature rise of 20

K (θ = θ0sin(πtf/2)), while the bottom surface is set to a constant temperature of
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273.15 K (refer to Fig. 2.25 for the sinusoidal waveform). Due to the thermal load on

the top surface of the bimorph, the actuator bends down in the z-direction. Fig. 2.26

shows the bimorph deflection for both the numerical analysis and ABAQUS. Both

results have an excellent agreement, where the implemented code and ABAQUS

converge to the same maximum displacement of approximately -0.07 mm.

Fig. 2.25 Sinusoidal thermal load applied in time
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Fig. 2.26 Deflection of the bimorph at reference node due to thermal load

2.12 Thermopiezoelectric Element

A benchmark problem was proposed by Tauchert [86] in 1997 for evaluating the

validity of the coupling effects in a five-layer plate made of two piezoelectric layers,

one isotropic layer, and two orthotropic layers with 0°and 90°orientations.

The laminate configuration for the benchmark problem is shown in Fig. 2.27.

The five-layer plate has a width to thickness ratio of b/t = 5 with an assumed plane

strain state. The width b is set to 50 mm and the thickness t is set to 10 mm, with

each layer of the thickness being 2 mm. The material parameters for each layer is

shown in Table 2.7.
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This benchmark problem was proposed and analytically solved in 2D by Tauchert

[86], and numerically investigated by Gornandt and Gabbert [4]. Furthermore,

Shang et.al [93] verified the same benchmark problem with a 3D model, in a se-

quentially coupled analysis procedure in ABAQUS.

This work uses a finite element implementation in MATLAB (FE Code) that

considers the fully-coupled equations of thermopiezoelectricity, and compares the

obtained results to the previous investigations.

Fig. 2.27 Laminate configuration. (Source: [4])
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Material Coefficient Value Unit

Piezoelectric layer

Young’s Modulus E = 2×109 N/m2

Poisson’s Ratio ν = 0.25

Thermal expansion α = 1×10−5 1/K

Thermal conductivity λ = 1 W/(Km)

Electric permittivity
ε11 = ε22 = 1×10−8

F/m
ε33 = 1×10−7

Electric permittivity clamped
ε11 = ε22 = 0.5×10−8

F/m
ε33 = 0.6×10−7

Pyroelectric p = 0.25×10−3 C/(m2K)

Piezoelectric strain
d31 = d32 = d24 = 2×10−10

m/V
d33 = 2.8×10−10

Isotropic layer

Young’s Modulus E = 2×109 N/m2

Poisson’s Ratio ν = 0.25

Thermal expansion α = 1×10−5 1/K

Thermal conductivity λ = 1 W/(Km)

Orthotropic layer 90°

Engineering constants

E1 = 1.8×1011

N/m2
E2 = 1.8×1011

G12 = G13 = 8×109

G23 = 3×109

Poisson’s Ratio ν12 = ν13 = ν23 = 0.25

Thermal expansion
α1 = 2x10−9

1/K
α2 = α3 = 2×10−6

Thermal conductivity
λ1 = 100

W/(Km)
λ2 = λ3 = 1

Table 2.7 Material parameters for the considered five-layer plate. (Source: [4])

The plate is subjected to a sinusoidal thermal load θ = θ0sin(πy/b) at the

bottom surface (−t/2), while the top surface (t/2) and the ends of the plate (y =

0, b) are held fixed at 273.15 K. The electric potential at the inner surfaces as well as

at the ends of the plate are set to zero, while distributions of the electric potential

can arise on the outer surfaces. The mechanical boundary conditions are that the
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plate is assumed to be simply supported.

For the investigation of this problem, the laminate is discretized using 20×10×1

quadratic elements, C3D20T (thermoelastic), C3D20E (piezoelectric), or C3D20TE

(thermopiezoelectric), depending on the type of simulation being investigated. The

first simulation neglects the piezoelectric and pyroelectric coupling effects, allowing

for comparison with the analytical solution provided by Tauchert [86] as well as

with the numerical solution presented by Gornandt and Gabbert [4]. Second, the

coupling effects (piezoelectric and pyroelectric) are incorporated into the simulation,

and the obtained results are compared with the results of Gornandt and Gabbert

[4]. Due to the temperature load on the bottom surface, the plate curves in the z-

direction and Fig. 2.28 presents the normalized displacement z∗ (z∗ = zt/(α0θ0b
2)),

where α0 = 1×10−5 K−1 and θ0 = 50 K) in the thickness direction at the center cross

section of the plate for both the uncoupled and coupled simulations. The uncoupled

simulation shows that the developed code provides an excellent agreement with

both the analytic solution (Analytic uncoupled) [86] and the numerical solution

(Magdeburg uncoupled) [4], resulting in a maximum error of around 0.3% when

compared to the analytic solution, and a maximum result difference of around 0.11%

when compared to the numerical solution presented by Madgeburg. The coupled

simulation (considering both pyroelectric and piezoelectric coupling effects) also

shows exceptional agreement with the numerical solution proposed by Gornandt
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and Gabbert (Magdeburg coupled) [4], with the maximum difference between the

results being approximately 0.09%.

Fig. 2.28 Non-dimensional transverse deflection

The difference of the induced electric potential on the bottom surface of the lower

piezoelectric layer (y = -t/2) is presented in Fig. 2.29, where the first simulation

considers both the pyroelectric and piezoelectric effects, and the second simulation

only accounts for the piezoelectric effect. The results of the developed code for

both simulations have an excellent agreement with the numerical results produced

by Gornandt and Gabbert [4], implying the validity of the developed numerical

procedure. Additionally, the results reveal that the pyroelectric effect can be of
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great importance and should be considered in thermopiezoelectric applications.

Fig. 2.29 The induced electric potential at [y*, -0.5t] due to a thermal load
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3 Examination of the Thermopiezoelectric

Effect in Multilayer Stack Actuators

Piezoelectric stack actuators are multi-layered ceramic actuators that convert

electrical energy into longitudinal mechanical displacement with high precision,

force, and speed [2, 51]. This section investigates the coupled effects of thermopiezo-

electricity in a P-887.51 stack actuator from Physik Instrumente Ceramic [2] (see

Fig. 3.1(a)), whose specifications are shown in Table 3.1. The material parameters

of the stack actuator P-887.51 are presented in Table 3.2. Fig. 3.1(b) shows the

diagram of how the electrical connections are made in a multi-layer stack actuator,

along with the polarization direction.

Piezoceramic actuator Dimensions [mm] Nominal travel range [µm] Operating voltage [V]
P-887.51 7×7×18 15 100

Table 3.1 P-887.51 specifications. (Source: [2])
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(a) P-887.51 model (b) Electrical diagram

Fig. 3.1 Multilayer stack actuator (Source: [2])

Material coefficients P-887.51

Coefficient Unit Value

Compliance matrix
N

m2 C =



1.229×1011 7.660×1010 7.017×1010 0 0 0

7.660×1010 1.229×1011 7.017×1010 0 0 0

7.017×1010 7.017×1010 9.705×1010 0 0 0

0 0 0 2.315×1010 0 0

0 0 0 0 2.226×1010 0

0 0 0 0 0 2.226×1010


Piezoelectric stress matrix

N

Vm
e =

 0 0 0 0 12.444 0

0 0 0 17.735 0 0

−7.841 −7.841 13.559 0 0 0


Dielectric matrix

F

m
ε =

1.638×10−8 0 0

0 1.638×10−8 0

0 0 1.550×10−8


Mass density

kg

m3 ρ = 7800

Heat conduction matrix
W

mK
λ =

1.1 0 0

0 1.1 0

0 0 1.1



Thermal expansion matrix
1

K
α =



6×10−6

6×10−6

-5×10−6

0

0

0


Pyroelectric matrix

C

m2K
p =

 0

0

-6×10−4


Heat capacity coefficient

J

K
cv = 350

Table 3.2 Material parameters of the P-887.51 actuator. (Source: [2])
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3.1 Scaling Factor and Validation

Table 3.1 presents the nominal displacement of the stack actuator for an oper-

ating voltage of 100 V with the nominal operating voltage lying between 0 and 120

V. Stack actuators are composed of multiple piezoelectric layers stacked on top of

each other with alternating polarity, and the nominal displacement is the sum of

the displacements of each of these layers. The longitudinal displacement of a stack

actuator is given as

∆l = d33nV (3.1)

where ∆l [m] is the longitudinal displacement, d33 [m/V] is the longitudinal piezo-

electric charge coefficient, n is the number of layers, and V [V] is the operating

voltage. In order to determine the number of layers of the P-887.51 actuator,

the nominal displacement (15 × 10−10 [m]) and the piezoelectric coefficient d33

(4.00 × 10−10 [m/V]) are substituted into ∆l and d33 terms. The solution of this

equations yields 375 layers.

For the purpose of initial model verification, the number of layers is set to 1,

and the voltage is scaled. When n is specified as one in Eq. (3.1), the necessary

operating voltage to produce the same displacement is 37500 V. To demonstrate

that the scaling produces displacement results consistent with those provided by

PI Ceramics, a static model is created in ABAQUS. In this model, the bottom of
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the actuator is mechanically constrained and set to ground, while the top surface

is set to -37500 V.

The deflection obtained by both ABAQUS and MATLAB is 14.56 µm (see

Fig. 3.2). This amounts to a difference of 2.98% compared to the nominal displace-

ment provided by the company specifications of 15 µm (which allows for a tolerance

of ± 20%).

Fig. 3.2 Displacement of the stack actuator with voltage scaling for the nominal

displacement

3.2 Rotation Matrices

To run simulations involving multiple layers, where each of these layers have op-

posite material orientations, leading to opposing polarization directions, rotation

matrices must be employed. Consideration of material orientation can be incor-
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porated via rotation matrices along with the material constitutive matrices. As

the actuator stack direction aligns with the z-direction or 3-axis, a 180◦ rotation

around the x-direction (or 1-axis) will yield the required orientation of the polar-

ization direction.

A general rotation around the 1-axis can be written as

R =

1 0 0
0 cos(β) − sin(β)
0 sin(β) cos(β)

 (3.2)

And the strain transformation matrix can be described as

T =


1 0 0 0 0 0
0 cos2(β) sin2(β) 2 sin(β) cos(β) 0 0
0 sin2(β) cos2(β) −2 sin(β) cos(β) 0 0
0 − cos(β) sin(β) cos(β) sin(β) cos2(β)− sin2(β) 0 0
0 0 0 0 cos(β) − sin(β)
0 0 0 0 sin(β) cos(β)

 (3.3)

where β is the angle of rotation. Applying the transformations to the piezoelectric

constitutive matrices, the compliance matrix becomes [?]

C
′
= TCT T (3.4)

where T T is the transpose of the strain transformation matrix. The transformed

piezoelectric strain coefficients can be written as

d
′
= RdT T (3.5)

and the transformed permittivity matrix becomes

ε
′
= RεRT (3.6)
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where RT is the transpose of the rotation matrix. The thermal matrices also must

be transformed accordingly. Therefore, the thermal expansion matrix in the new

coordinate system can be written as

α
′
= Tα (3.7)

The heat conduction coefficients matrix becomes

λ
′
= RλRT (3.8)

And the pyroelectric matrix in the new coordinate system can be described as

p
′
= Rp (3.9)

3.3 Step Input Signal

The first simulation involves the transient analysis of the stack actuator sub-

jected to a step input signal. The voltage is applied as shown in Fig. 3.1(b). Each

layer has an opposing polarization orientation to ensure the longitudinal mechan-

ical displacement occurs in the same direction. The simulation runs for 1 second,

featuring a step at t = 0.01 seconds. Analyses are run for 1 layer, 7 layers, and the

realistic model with 375 layers.
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3.3.1 Step Input for a 1-Layer Model

The initial approach involves building a stack model using just 1 layer. As

mentioned in Section 3.1, the voltage needs to be scaled up, resulting in a value of

37500 V. In this configuration, the bottom surface is grounded while the top surface

of the actuator is set to the desired voltage. Fig. 3.4 demonstrates the voltage, along

with the resulting deflection and temperature at the reference node (see Fig. 3.3 -

corner of the actuator).

The application of the step signal generates a response of the actuator, leading

to longitudinal mechanical displacement. Due to the coupled fields, a temperature

develops throughout the actuator where it is evident that an impulse has occurred.

This behavior arises from the multiplication of the Kθϕ matrix by the derivative of

the electric potential ϕ̇, since the derivative of a step function produces an impulse

response. A significant temperature spike of approximately 100 K is observed at

the time of the step signal. This spike is due to the scaling factor, as the electric

field can not be scaled in as intuitive a manner.
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Fig. 3.3 Stack actuator modeled as 1-layer with the reference node highlighted

Fig. 3.4 Developed voltage, z-deflection, and temperature for the reference node
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The developed temperature at time t = 0.5 seconds is shown in Fig. 3.5, where

a smooth and continuous temperature distribution across the actuator can be ob-

served.

Fig. 3.5 Developed temperature due to step input for a 1-layer stack model

3.3.2 Step Input for a 7-Layer Model

A 7-layer model is built as an interim model as the number of layers in the model

directly influence the temperature spike seen initially. In this case, the voltage is

scaled to achieve the nominal displacement of 15 µm, resulting in a scaled voltage

of 5439 V. A diagram of how the voltage is applied to the surfaces of the actuator

is shown in Fig. 3.6. The reference node is located at the top of the actuator, with

original coordinates of (0.0125, 0.005, 0.018) mm (see Fig. 3.6).
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Fig. 3.6 7-layer stack actuator with electric connection and reference node

The results for the voltage, developed displacement, and temperature at the

reference node are presented in Fig. 3.7. Similar to the simulation with 1 layer,

a significant temperature jump of approximately 70 K is observed, albeit reduced

with the additional layers and hence the lower applied voltage. This leads to the

conclusion that while voltage scaling is fine for the mechanical and electrical fields,

to get an accurate representation of the thermal field, a realistic model with 375

layers should be simulated.
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Fig. 3.7 Developed voltage, z-deflection, and temperature for the reference node

Fig. 3.8 shows the temperature of the actuator at the time of 0.5 seconds. The

mesh profile shows a repeating temperature pattern across the stack actuator (ex-

actly where the voltage is being applied). This phenomenon is a result of the py-

roelectric coefficient getting switched with the polarization direction in each layer,

where one side is positive, and the other is negative.
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Fig. 3.8 Developed temperature of the 7-layer stack actuator due to a step input

The result for the developed displacement over time at the reference node (top

of the actuator - see Fig. 3.6) is shown in Fig. 3.9 for both thermopiezoelectric and

piezoelectric simulations. In the piezoelectric simulation, the thermal field is not

taken into account. As expected, there is a damped oscillation in the piezoelectric

simulation that decays to a constant final position. However, when temperature is

incorporated into the analysis, an interesting phenomenon emerges as the actua-

tor’s position gradually drifts upward. This drift results in a slight change on the

stack position of approximately 11 nm, which could hold significance in nanoposi-

tioning applications [94, 95], and is reminiscent of the creep phenomenon seen in

nanopositioning applications.

The underlying reason for the thermopiezoelectric simulation demonstrating a

smaller displacement than the piezoelectric simulation lies in the negative thermal
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expansion coefficient α3. This coefficient leads to contraction of the stack actuator

when subject to temperature with the pyroelectric effect responsible for the upward

drift observed in the displacement. This occurs because the developed temperature

increases the voltage, subsequently increasing the actuator’s displacement.

Fig. 3.9 Time versus z-displacement for thermopiezoelectric and piezoelectric sim-

ulations

3.3.3 Step Input for a 375-layer Model

A realistic model of the stack is created by dividing the actuator into 375 layers.

In this case no scaling is necessary, hence 100 V and 0 V are alternately applied to

the surfaces of each of the layers. The z-displacement is shown in Fig. 3.10.
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Fig. 3.10 Developed displacement of the 375-layer stack actuator due to a step

input

Fig. 3.11(a) provides the temperature at the step time of 0.01 seconds. Here, no

large temperature jumps are observed, with 0.62 K being the largest spike obtained.

Due to the considerable number of layers and elements involved, the temperature

profile in Fig. 3.11(a) is not be clear when viewed on a macro-scale. Consequently,

a cross-sectional xz view is presented in Fig. 3.11(b), which provides a clearer ob-

servation of the developed temperature. This view reveals distinct red and blue

regions indicating areas with higher and lower temperatures, respectively, that co-

incide with the positive and negative terminals at each layer.
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(a) Developed temperature

(b) Planar xz view of the developed tem-

perature

Fig. 3.11 Developed temperature of the 375-layer stack actuator

Fig. 3.12 shows a comparison of the z-displacement across the length of the

actuator for 1 layer, 7 layers, and 375 layers. This comparison is made at the final

time increment of the simulation, and clearly demonstrates an excellent agreement

among the results of these three simulations.
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Fig. 3.12 Developed displacement in z through the length for 1 layer, 7 layers, and

375 layers

3.4 Thermal Load

In contrast to the previous cases where a step input was applied, this section

investigates the behaviour of the stack actuator under a dynamic thermal load,

particularly its impact on the electric potential and position of the actuator. This

analysis involves the comparison of two simulations: one considering the pyroelec-

tric effect and the other neglecting it. In these simulations, the top surface of the

stack actuator is subjected to a sinusoidal temperature rise (see Fig. 3.13) with

a magnitude of 10 K. The bottom surface maintains a constant temperature of

273.15 K. Boundary conditions are enforced to 0 V alternately on half the surfaces

of the actuator, leaving the other half free to produce voltage, following the diagram
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shown in Fig. 3.1(b).

Fig. 3.13 Sinusoidal thermal load

Fig. 3.14(a) demonstrates the resulting displacement and Fig. 3.14(b) shows the

generated voltage caused by the thermal load. Significant differences are evident

between the results that consider the pyroelectric effect and those that neglect it.

Specifically, in terms of developed displacement, accounting for the pyroelectric ef-

fect yields a result approximately twice as large as the simulation that disregards

this effect (see Fig. 3.14(a)). In Fig. 3.14(b), the developed voltage in the simula-

tion considering the pyroelectric effect is approximately 12.5 times larger than the

voltage generated in the simulation that neglects the pyroelectric effect. This sig-

nificant difference arises from the fact that although three fields are still considered

(mechanical, electrical, and thermal), two couplings are missing, the pyroelectric

and electrocaloric effects. That is the reason why the developed voltage is quite

106



small in this case.

(a) Developed displacement (b) Developed voltage

Fig. 3.14 Stack actuator under thermal load considering the pyroelectric effect

versus neglecting the pyroelectric effect
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4 Examination of the Thermopiezoelectric

Effect in Multimorph Bender Actuators

Multimorph bender actuators consist of two or more layers of piezoelectric ce-

ramics bonded together [51, 64]. The difference to stack actuators lies in their

mechanical behavior, where bender actuators generate bending. This section ex-

plores the behavior of thermopiezoelectric bimorph actuators when driven via two

distinct electric field waveforms: a step input signal and a sinusoidal input signal.

The final part of this chapter investigates the electric potential and displacement

exhibited by the actuator when subjected to a dynamic thermal load.

The multimorph bender actuator examined in this section is the PB4NB2W

model from ThorLabs. This bimorph actuator incorporates multiple piezoelectric

ceramic layers, specifically two segments co-fired with five piezoelectric ceramic lay-

ers, resulting in a total of ten layers. The actuator offers a maximum displacement

of ±450 µm with a tolerance of ±15% [5]. Table 4.1 presents the specifications pro-

vided by ThorLabs, while Fig. 4.1 shows the PB4NB2W model (Fig. 4.1(a)) along
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with its corresponding drawing (Fig. 4.1(b)).

PB4NB2W specifications

Drive voltage range 0 - 150 V

Displacement at 150 V ±450 µm

Dimensions 32×7.8×0.8 mm

Free length 28 mm

Table 4.1 PB4NB2W bender actuator specifications (Source: [5])

(a) PB4NB2W bender actuator (b) PB4NB2W actuator drawing

Fig. 4.1 Bimorph actuator. (Source: [5])

Table 4.2 presents the material properties of the PB4NB2W actuator. Rather

than listing each coefficient individually, the matrices used in the simulations are

presented.
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Material coefficients PB4NB2W

Coefficient Unit Value

Compliance matrix
N

m2 C =



1.589×1011 1.130×1011 1.170×1011 0 0 0

1.130×1011 1.589×1011 1.170×1011 0 0 0

1.170×1011 1.170×1011 1.442×1011 0 0 0

0 0 0 2.577×1010 0 0

0 0 0 0 1.409×1010 6

0 0 0 0 0 1.409×1010


Piezoelectric stress matrix

N

Vm
e =

 0 0 0 0 13.380 0

0 0 0 24.484 0 0

−3.914 −3.914 27.500 0 0 0


Dielectric matrix

F

m
ε =

2.984×10−8 0 0

0 2.984×10−8 0

0 0 2.922×10−8


Mass density

kg

m3 ρ =7700

Heat conduction matrix
W

mK
λ =

3.0 0 0

0 3.0 0

0 0 3.0



Thermal expansion matrix
1

K
α =



0.25×10−6

0.25×10−6

-3.17×10−6

0

0

0


Pyroelectric matrix

C

m2K
p =

 0

0

-6×10−4


Heat capacity coefficient

J

K
cv =420

Table 4.2 Material parameters of PB4NB2W actuator. (Source: [5])

Section 4.1 examines the thermopiezoelectric effect in bender actuators focusing

on the maximum displacement offered. The driving method used for this purpose

is the differential voltage control method. Then, in Section 4.2, simulations un-

der a step input signal, and a sinusoidal wave signal are considered. The results

obtained from the implemented code are compared to those from ABAQUS. In

the developed code, the fully coupled thermopiezoelectric equations are consid-
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ered, while ABAQUS only takes the piezoelectric effect into account, contrasting

the differences between thermopiezoelectric simulations (where the thermal field

is considered) and piezoelectric simulations (where the thermal field is neglected).

Lastly, Section 4.2.3 considers the evaluation of the influence of a dynamic thermal

load on the electric field and displacement of the bender actuator.

4.1 Differential Voltage Control for Displacement Test

A static analysis is performed in ABAQUS to verify the displacements and

compare them with the maximum displacement provided by ThorLabs. One of the

driving techniques for bender actuators is the differential voltage control method.

In this method (see Fig. 4.1(b)), the red wire is set to a constant bias of 150 V, the

white wire is the drive signal which varies from 0 V to 150 V, and the green wire is

set to 0 V. Alternatively, voltages can be applied by setting the red wire to 75 V,

the white wire from -75 V to 75 V, and the green wire to -75 V (see Table 4.3).

Differential voltage control
Option Red wire White wire Green wire

1 150 V 0 V to 150 V 0 V
2 75 V -75 V to 75 V -75 V

Table 4.3 Differential voltage control

The configuration for applying voltage to a multilayer bender actuator is shown

in Fig. 4.2. In this arrangement, each layer exhibits opposite polarization, except for
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the middle layers [2]. The polarization direction and electric field orientations for

the PB4NB2W 10-layer bender actuator are demonstrated in Fig. 4.3, with colors

corresponding to Table 4.3. The polarization direction for the white color is oriented

in the positive z-direction, while for the red and green colors (illustrating the red

and green wires from the actuator) the polarization is in the negative z-direction.

Fig. 4.2 Polarization direction and voltage application to a multilayer bender ac-

tuator. (Source: [2])

Fig. 4.3 PB4NB2W diagram - xz view: polarization direction

4.1.1 Displacement Test 1

For the test, option 1 from Table 4.3 is selected. The initial simulation involves a

static analysis, where 150 V is applied to the surfaces corresponding to the positive
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terminal (red wire), 150 V to the surfaces that corresponds to the drive signal

(white wire), and 0 V to the surfaces corresponding to the negative terminal (green

wire). The material coefficients utilized are presented in Table 4.2. The bender

is mechanically constrained in the x, y, and z directions, as illustrated in Fig. 4.4,

leaving a free length of 28 mm.

Fig. 4.4 Bender actuator model with mechanical boundary conditions depicted

The displacement result from MATLAB is demonstrated in Fig. 4.5, presenting

a maximum deflection of -450.4 µm. The maximum displacement specified by

ThorLabs is -450 µm. The difference between these two values is approximately

0.09%. This initial test confirms the simulation’s accuracy in MATLAB.
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Fig. 4.5 Developed displacement of the bender actuator due to a constant bias of

150 V and a variable voltage of 150 V

4.1.2 Displacement Test 2

The second test also involves a static analysis, differing only in the application of

0 V to the white wire instead of 150 V. The mesh contour and displacement results

obtained from the simulation in MATLAB are presented in Fig. 4.6. Notably, this

time, the deflection is positive (+ 450.4 µm) due to the change in variable voltage

from 150 V to 0 V.

114



Fig. 4.6 Developed displacement of the bender actuator due to a constant bias of

150 V and a variable voltage of 0 V

4.2 Transient Analysis

A comparison is made between the results obtained from the implemented finite

element code and those from ABAQUS. In the FE Code, the fully coupled ther-

mopiezoelectric equations are taken into account, while ABAQUS only considers

piezoelectric simulations, neglecting the thermal field.

4.2.1 Step Input

The first simulation involves a transient analysis for a common drive signal,

specifically a step input signal. Fig. 4.3 demonstrates how the voltage is applied

along with the polarization direction. The node of interest is located at the tip of

the actuator (see Fig. 4.7).
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Fig. 4.7 Reference node (red dot) in yz view

Fig. 4.8(a) provides the graphs for the voltage, developed deflection and tem-

perature for the reference node at the tip of the actuator due to the step input

(refer to Fig. 4.7). Applying a 150 V voltage causes the bimorph to bend upwards

and maintain its position due to the step input. The actuator experiences initial

oscillation, primarily due to the low damping factor, then followed by maintain-

ing its position at approximately 450 µm for the remainder of the simulation. A

temperature variation of approximately 0.38 K is observed in Fig. 4.8(b), with the

highest peak occurring at the step time (t = 0.01 seconds).

The voltage, deflection, and temperature at time t = 0.01 seconds in a xz-view

cut is shown in Fig. 4.8(b). The developed temperature showed in all the layers of

the actuator confirms that the surfaces to which the voltage is applied experience

the highest temperatures.
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(a) Developed voltage, z-displacement, and temperature due

to a step input

(b) Mesh profile representing the voltage, displacement, and tem-

perature at the step time (t = 0.01 seconds)

Fig. 4.8 Bender actuator due to a step signal
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As discussed in Chapter 1, piezoelectric actuators are widely used in precise

positioning applications, hence their displacements are of significant importance.

Therefore, a comparison of the bimorph actuator position is made by considering

both piezoelectric and thermopiezoelectric analyses, where the deflection of the ben-

der is shown in Fig. 4.9. Fig. 4.9(b) provides a magnified view of the z-displacement.

The displacement obtained from the piezoelectric analysis appears as a constant dis-

placement after the oscillations have damped out, which is as expected since the

step signal should maintain a constant position after the initial transient phase. In

contrast, the thermopiezoelectric analysis, even with a minor temperature increase,

reveals a slight upward drift in the actuator’s positioning immediately after the

oscillations have damped out. This difference of approximately 20 nm between the

thermopiezoelectric and piezoelectric simulations indicates the impact of thermal

effects, specifically the pyroelectric and electrocaloric effects. By the end of the

simulation (t = 1 second), the position difference reaches around 25 nm.

118



(a) z-displacement

(b) z-displacement with zoom in at y axis

Fig. 4.9 Thermopiezoelectric analysis versus piezoelectric analysis
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4.2.2 Sinusoidal Input

Another common drive signal for a multimorph bender is a unipolar sinusoidal

wave signal (see Fig. 4.10). The simulation is conducted for a duration of 1 second.

Fig. 4.10 Unipolar sinusoidal wave signal

The top surface of the actuator is subjected to a unipolar sinusoidal waveform

signal (ϕ = ϕ0

2
(sin(2πtf−π/2)+1)), with a voltage of 150 V applied to the surfaces

corresponding to the positive terminal (red wires) and 0 V applied to the other

surfaces, with an operating frequency of 100 Hz (refer to Table 4.3). The bottom

surface is constrained to 0°C. The first simulation considers all thermal effects,

including the pyroelectric and electrocaloric effects.
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Fig. 4.11 shows the evolution of the developed temperature over time when the

pyroelectric effect is considered. Initially, at the first time step, the bender actuator

is at rest, as shown in Fig. 4.11(a). It then reaches its maximum developed temper-

ature at t = 0.0040 seconds (see Fig. 4.11(c)). With this quite small temperature of

0.1 K, again the mesh exhibits more intense red regions, which correspond to the

areas where voltage is being applied.
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(a) time t = 0 seconds

(b) time t = 0.0018 seconds

(c) time t = 0.0040 seconds

Fig. 4.11 Developed temperature at different times considering the pyroelectric

effect
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The second simulation takes into account thermal effects but neglects the pyro-

electric coefficient. Fig. 4.12 shows the developed temperature when the pyroelectric

effect is neglected. At the time t = 0, the actuator is at rest and it reaches a maxi-

mum temperature of 0.02 K, which is due to the heat of deformation only, at time

t = 0.0040 seconds (see Fig. 4.12(c)). In Fig. 4.12(c), the temperature gradually

increases, without alternating temperature in the layers as seen in the case where

the pyroelectric coefficient is considered.

Both investigated simulations did not result in a significantly elevated temper-

ature. However, when accounting for the pyroelectric effect, the maximum reached

temperature is five times higher than when the pyroelectric effect is neglected.

Consequently, a larger displacement is typically expected when the pyroelectric is

taken into account. The simulation considering the pyroelectric effect resulted in

a maximum displacement of 412.7 µm at t = 0.0040 seconds, while the simulation

neglecting the pyroelectric effect achieved a maximum deflection of 410.1 µm at

the same time. The difference in their maximum displacement is approximately 2.6

µm, a significant variance with potential implications for positioning applications.
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(a) time t = 0 seconds

(b) time t = 0.0018 seconds

(c) time t = 0.0040 seconds

Fig. 4.12 Developed temperature at different times neglecting the pyroelectric

effect
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4.2.3 Thermal Load

This section investigates how a thermal load impacts the voltage and deflection

of the bender actuator by comparing simulations that consider the pyroelectric

effect with simulations that neglect it. For this purpose, the first analysis sets the

pyroelectric coefficient p3 to its correspondent values -6×10−4, while in the second

analysis, the pyroelectric matrix becomes all zero. Thermal effects such as thermal

expansion and the thermal conductivity are still considered in the simulation. The

top surface of the actuator is subjected to a sudden sinusoidal temperature rise θ

= θ0sin(
π
2
t) with a magnitude of 50 K. The bottom surface is set to a constant

temperature of 273 K. Boundary conditions are enforced to 0 V on the surfaces

corresponding to drive signal (white wires), while voltage could occur on the other

surfaces.

Fig. 4.13 shows the developed voltage and deflection of the actuator under the

thermal load for simulations considering and neglecting the pyroelectric effect. Both

voltage and displacement results, as shown in Fig. 4.13(a) and Fig. 4.13(b), reveal

larger values are obtained in the simulation that considers the pyroelectric effect.

The voltage exhibits a difference of approximately 21 V in magnitude, while the

displacement shows a difference of around 45 µm. These significant differences

underscore the importance of accounting for the pyroelectric effect in certain ap-
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plications where thermal effects are expected to be significant.

(a) Developed voltage (b) Developed displacement

Fig. 4.13 Bender actuator under thermal load considering the pyroelectric effect

versus without the pyroelectric effect
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5 Temperature Dependence of the Piezoelectric

Strain Coefficients

Numerous studies have investigated the temperature dependence of piezoelec-

tric strain coefficients in piezoelectric actuators. This temperature dependence

affects the piezoelectric strain coefficients d31 and d33 in soft PZT 5A and PZT

5H ceramics, which are often used in nanopositioning applications demanding high

sensitivity [16]. For bender actuators, the transverse strain coefficient d31 is more

influential, while for stack actuators, the longitudinal strain coefficient d33 natu-

rally plays a larger role. The objective is to investigate how the actuator behaves

when temperature-dependent piezoelectric strain coefficients are considered in the

simulations, bringing it closer to the realistic behavior of the actuator.

Up to this point, this thesis has considered all coefficients to be temperature

independent. However, for a more precise characterization of an actuator behavior,

the relationship between the temperature and the piezoelectric strain coefficients

d31 and d33 must be taken into account into each time iteration of a transient anal-
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ysis. For this purpose, the developed code is enhanced with the implementation

of temperature-dependent coefficients d31 and d33. The algorithm implemented

recomputes the piezoelectric strain coefficients d31 or d33 at each time step after

finding the average temperature for each element. Consequently, the new piezo-

electric strain coefficient ratios multiply the element piezoelectric stiffness matrix

ke
up, and, as a result, the global stiffness matrix K is updated at each time step.

This process is repeated until the last time step of the simulation, at which point

the displacements, electric potential, and temperature are generated. Table 5.1

presents the implementation to consider varying coefficients for both d31 and d33.
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1. Assemble the global stiffness matrix K, global mass matrix M , and damping matrix D

2. Enforce homogeneous and non-homogeneous boundary conditions

3. Set the Newmark parameters β and γ, initial and final time (ti and tf ), and time step∆t

4. Set initial conditions for the displacement, electric potential, temperature, and their relevant derivatives

5. Start loop from initial to final time with time step ∆t

5.1 Call the global stiffness matrix and compute the dynamic global stiffness matrix K̂ (Eq. (2.83))

5.2 Compute the effective global force vector F̂ (Eq. (2.84))

5.3 Compute the displacements, electric potential, temperature (Eq. (2.82)), and their relevant derivatives

(Eq. (2.81)–(Eq. (2.80)) for current time step

5.4 Loop over the temperature number of elements at current time step:

5.4.1 Compute the nodal temperatures at current time step, and find the average temperature for

each element

5.4.2 Compute the new piezoelectric strain coefficient d31 or d33 using the average temperature of

each element

5.5 Multiply the computed d31 or d33 by the piezoelectric element stiffness matrix keup and update the

global stiffness matrix K

5.6 Repeat step number 5 until tf

6. Output the final displacements, voltages, and temperatures

Table 5.1 Newmark integration steps for consideration of the dependence of the piezoelectric

strain coefficient d31 and d33 on temperature
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5.1 Stack Actuators with Varying Piezoelectric Strain Co-

efficients Matrix

This section investigates the temperature dependence of the piezoelectric strain

coefficient d33 in stack actuators. The behavior of the coefficient d33 for various

loading conditions of PZT 5A (PI Ceramics P-887.51 stack actuator) is shown in

Fig. 5.1, demonstrating its linear dependence on the temperature up to 100 °C. For

the stack actuator, this thesis works with the coefficients correspondent to PZT 5A,

where the coefficient d33 is taken to have a value of approximately 400×10−12 m/V

at a temperature of θ = 20°C. To establish a more accurate relation for the actual

d33 value (400×10−12 m/V), a linear equation d33(θ) = mθ+ b is assumed, with the

slope m derived from the black curve in Fig. 5.1. Consequently, the relationship

between the piezoelectric strain coefficient d33 and temperature for PZT 5A can

be expressed as d33 = 2.615×10−12θ + 3.447×10−10, yielding the graph shown in

Fig. 5.2.

For this purpose, three simulations are compared: a piezoelectric simulation, a

thermopiezoelectric simulation that assumes the piezoelectric strain coefficients to

be constant, and a thermopiezoelectric simulation that considers the dependence of

the coefficient d33 on temperature. The investigated stack actuator is simplified to

a 7-layer model due to the computational time required to recompute (numerically
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Fig. 5.1 Evolution of the piezoelectric coefficient d33 as a function of temperature

for soft PZT type. (Source:[16])

Fig. 5.2 Evolution of the piezoelectric coefficient d33 as a function of temperature

for PZT 5A ceramic

integrate) the global stiffness matrix K at each time step in a 375-layer model.
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5.1.1 Step Input

A step input with a voltage of 500 V is applied to alternating surfaces of the

stack actuator following the diagram demonstrated in Fig. 3.6, with the bottom

surface of the actuator held at a constant temperature of 273.15 K. The simulation

results are presented in Fig. 5.3, where the simulation considering the temperature-

dependent coefficient d33 shows a larger developed displacement of approximately

3 nm compared to the piezoelectric simulation, and a larger displacement of ap-

proximately 13 nm compared to the thermopiezoelectric simulation with constant

piezoelectric strain coefficients. This behavior is expected since the temperature

dependence of the coefficient d33 linearly increases, meaning that the change in

temperature causes the piezoelectric coefficient to become larger. The piezoelectric

simulation produces a larger displacement than the thermopiezoelectric simulation

with a constant d33 coefficient, a difference of approximately 10 nm. This outcome

is due to the temperature applied to the top surface of the actuator and the negative

α3 coefficient, which causes the actuator to contract. As a result, this contraction

leads to a slightly smaller displacement in the thermopiezoelectric simulation (with

constant coefficient d33).
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Fig. 5.3 Time versus developed z-displacement

5.2 Bender Actuators with Varying Piezoelectric Strain Co-

efficients Matrix

The relation between the temperature and the coefficient d31 for PZT 5H, the

material of the ThorLabs PB4NB2W bender actuator, is demonstrated in Fig. 5.4.

For the bender actuator, this thesis works with the coefficients correspondent to

PZT 5H, where the coefficient d31 is taken to have a value of approximately -

320×10−12 m/V at a temperature of θ = 20°C. This relation can be represented by

the linear equation d31(θ) = mθ + b. The ratio of the recomputed d31 is required

to update the piezoelectric stiffness matrix ke
uϕ, and thus, the relationship can be

expressed as d31(θ) = 0.003567(θ)− 0.06189.
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Fig. 5.4 Evolution of the piezoelectric coefficient d31 as a function of temperature

for PZT type. (Source: [1])

This section investigates the temperature-dependent behavior of the piezoelec-

tric strain coefficients in two different scenarios. The first case involves an applied

voltage step, while the second case focuses on an applied thermal load. Since the

transverse strain coefficient d31 exerts a more significant influence on bender actu-

ators, the relationship demonstrated in Fig. 5.4 is used to conduct the simulations.
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5.2.1 Step Input

This simulation is similar to the one considered in Section 4.2.1. In this case,

a step input is applied to the actuator by setting the driving voltage to 150 V

on the drive signal surfaces (white wires), while the other surfaces are set to 0 V,

causing the actuator to bend upwards (see Table 4.1). The bender is fixed at its

left end (see Fig. 4.4). This scenario allows for a direct comparison among three

simulations: a piezoelectric simulation, a thermopiezoelectric simulation with a con-

stant piezoelectric strain coefficient d31, and a thermopiezoelectric simulation with

a temperature-dependent d31. Additionally, the simulation involving the varying

d31 coefficient explores two distinct scenarios: one with the reference temperature

Θ set to 273.15 K and the other with Θ set to 293.15 K.

The developed displacement in z is demonstrated in Fig. 5.5 for all cases. The

simulation considering the temperature-dependent d31 demonstrates a larger dis-

placement compared to both piezoelectric and thermopiezoelectric with a constant

d31 simulations. This behavior arises from the fact that, as temperature increases,

the piezoelectric strain coefficient d31 also increases, leading to larger displacements.

The difference in displacement between the simulations with the temperature-

dependent coefficient d31 and constant coefficient d31 amounts to approximately

4.225 µm, while the difference between the temperature-dependent coefficient d31
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and the piezoelectric simulations are approximately 4.249 µm.

Furthermore, the difference between the simulations that account for the varying

d31 under different reference temperatures Θ falls within the nanometer range,

around 1 nm. This difference is minimal in comparison to the overall displacement,

highlighting the sensitivity of the actuator’s response to temperature-dependent

variations in the piezoelectric strain coefficient.

Fig. 5.5 Time versus developed z-displacement for a voltage step

5.2.2 Thermal Load

The bender actuator is subjected to a dynamic thermal load applied to the

top surface of the actuator, while the bottom surface is maintained at a constant
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temperature of 273.15 K. Boundary conditions enforce 0 V on the surfaces cor-

responding to the variable voltage of the actuator (white wire), while arbitrary

distributions can occur on the other surfaces. The dynamic load is represented as

a sinusoidal wave θ = θ0sin
(π
2
t
)
, where θ0 equals 15 K. The objective is to inves-

tigate the resulting displacement caused by the thermal load in two simulations:

the first assumes the piezoelectric strain coefficient d31 to be constant, and the

second considers the piezoelectric strain coefficient d31 dependent on temperature.

The deflection of the bender actuator is shown in Fig. 5.6. The simulation where

the coefficient d31 is temperature-dependent demonstrates a larger z-displacement

than the simulation where the coefficient d31 is constant. Specifically, the difference

between these simulations is approximately 93.8 nm.
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Fig. 5.6 Displacement in z caused by a dynamic thermal load

5.3 Case Study: A Stratospheric Balloon Flight

In this section, a realistic case study for a piezoelectric bender actuator in use

as a lens positioning element on a stratospheric balloon flight is analyzed. The

bender actuator is scanned across its positive range with multiple steps with peri-

odic resets to its initial position, from the time t = 0.4 seconds to t = 2 seconds,

ranging from 0 V to 150 V. Additionally, the ambient temperature is varied to

simulate the worst-case scenario that could be expected to occur for the flight

with temperatures considered between -20°C and 40°C. Fig. 5.7 shows the step in-

put signal, and the variation in the ambient temperature Θ∞ for the simulation

during 2 seconds. The temperature variation is considered in the finite element
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code by incorporating convection, with the initial body temperature set at 293.15

K. In order to conduct the simulation in a reasonable amount of time, the co-

efficient of convection is artificially increased such that only 2 seconds need to

be considered. Four cases are considered, including piezoelectric simulation, ther-

mopiezoelectric with temperature-independent coefficient d31, thermopiezoelectric

with temperature-independent coefficient d31 while neglecting the pyroelectric and

electrocaloric effects, and thermopiezoelectric with temperature-dependent coeffi-

cient d31.

Fig. 5.7 Step input that scans across the bimorph range and the ambient temper-

ature variation that occurs during the simulation

The displacement and the developed temperature of the bender actuator are
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presented in Fig. 5.8. The z-displacement is depicted in Fig. 5.8(a), and the devel-

oped temperature is presented in Fig. 5.8(b), for all four cases. Fig. 5.9 focuses on

the important results, where Fig. 5.9(a) depicts the part that corresponds to con-

vection only (0 to 0.4 seconds), Fig. 5.9(b) shows the displacement at 0.9 seconds

(150 V), and Fig. 5.9 depicts the displacement of the bender actuator from the time

t = 0.9 seconds to t = 2 seconds. In Fig. 5.9(a), the temperature-dependent sim-

ulation (d31(θ) in the graph) demonstrates a considerable difference as compared

to the two other thermopiezoelectric simulations (the piezoelectric case does not

account for convection) with the largest difference compared to the thermopiezo-

electric simulation with temperature-independent d31 that neglects the pyroelectric

and electrocaloric effects (constant d31, no pyroelectric in the graph) being approx-

imately 1.04 nm.

The displacement at time t = 0.9 seconds is presented in Fig. 5.9(b). The differ-

ence between the thermopiezoelectric simulation d31(θ) and the other simulations

increases as the step input signal increases, reaching a difference of approximately

2 µm at 0.9 seconds (150 V) when compared to the piezoelectric simulation, and

1.7 µm when compared to both thermopiezoelectric simulations that consider a

constant coefficient d31.

Fig. 5.9(c) shows the results from time t = 0.9 seconds to t = 2 seconds. In this

specific part of the simulation, the ambient temperature increases from 253.15 K to

140



313.15 K and then remains constant for the remaining duration of the simulation.

From Fig. 5.9(c), it is observed that the thermopiezoelectric with a temperature-

dependent d31 experiences an upward drift when compared to the three other simu-

lations. The difference is approximately 1.6 µm when compared to the piezoelectric

simulation and 1.7 µm when compared to the other two thermopiezoelectric simu-

lations.
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(a) Displacement in z

(b) Developed temperature

Fig. 5.8 Multimorph bender actuator performance with changing ambient condi-

tions while scanning across the full range
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(a) Displacement from 0 to 0.4 seconds (b) Displacement at 0.9 seconds

(c) Displacement from 0.9 to 2 seconds

Fig. 5.9 Displacement of the bender actuator due to step input signals and tem-

perature variations
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6 Conclusions and Future Work

In this study, a finite element code was developed in MATLAB to numeri-

cally solve the fully-coupled field equations of thermopiezoelectricity in order to

investigate the effects of both pyroelectric and electrocaloric effects on piezoelec-

tric actuators, in particular stack and bender actuators. The verification process

in Chapter 2 showed an excellent agreement between the implemented finite ele-

ment code and the commercial FE software ABAQUS for various types of elements,

including three-dimensional solid, piezoelectric, and thermoelastic elements. In ad-

dition, the developed code was verified against the results of Gornandt and Gabbert

[4] confirming the implementation of the finite element code in MATLAB for ther-

mopiezoelectric simulations.

Chapters 3 and 4 focused on the investigation of multilayer stack and multi-

morph bender actuators, respectively. The primary goal was to explore the behav-

ior of these actuators, in particular under dynamic loading. For stack actuators,

the response to an applied voltage step input was analyzed for models with 1, 7,
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and 375 layers. In the thermopiezoelectric simulations, it was observed that the

z-displacement exhibited a gradual increase over time due to the pyroelectric effect.

In contrast, the piezoelectric simulations showed a constant z-displacement after

the decay of the initial transient response, resulting in a difference of approximately

10 nm. The simulation results with different numbers of layers yielded excellent

performance in terms of mechanical displacement. However, the thermal field var-

ied among models with different numbers of layers. This discrepancy arose from

the fact that the voltage scaling only accounted for the mechanical and electrical

fields, consequently, the generated temperatures were unrealistic for the 1-layer and

7-layer models. This temperature variation was verified by introducing a realistic

model with 375 layers. In this case, the temperature generated by a step input

was approximately 0.62 K, in contrast to the substantial spikes seen in the 1-layer

and 7-layer models. A thermal dynamic load was investigated for the realistic 375-

layer model. This analysis involved subjecting the stack to a temperature rise, and

the resulting voltage and displacement were studied for simulations that consid-

ered the pyroelectric effect and those that neglected it. The findings revealed that

the pyroelectric effect exerted a significant influence on the developed displacement

(approximately twice as large in simulations accounting for the pyroelectric effect)

and on the voltage (approximately 12.5 times larger in simulations accounting for

the pyroelectric effect) (refer to Fig. 3.14). These discrepancies are significant and
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emphasize the importance of considering the pyroelectric effect in nanopositioning

applications.

Multimorph bender actuators were investigated in Chapter 4, with a realistic

10-layer model subjected to various dynamic loads. The investigation analyzed an

applied step input for both piezoelectric and thermopiezoelectric simulations. The

thermopiezoelectric simulation resulted in a z-displacement that was approximately

25 nm larger than that obtained in the piezoelectric simulation. Similar to the mul-

tilayer stack actuator, the thermopiezoelectric simulation exhibited a gradual drift

in the z-displacement over time, while the piezoelectric simulation maintained a

constant displacement. Furthermore, the analysis explored the z-displacement and

temperature developed due to a sinusoidal wave input with a frequency of 100

Hz. In one simulation, the pyroelectric effect was neglected to investigate potential

differences in the resulting z-displacement and temperature. While the temper-

atures generated in both simulations (considering and neglecting the pyroelectric

effect) were quite small, the simulation considering the pyroelectric effect produced

temperatures approximately five times larger than the simulation that neglected it.

Since displacement is expected to be larger under a larger thermal field, a difference

of 2.6 µm was observed in the displacement between the two simulations. Another

analysis was carried out for an applied dynamic thermal load. The multimorph

bender actuator was subjected to a temperature increase, and in this scenario, the
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voltage and z-displacement were examined for simulations that considered and ne-

glected the pyroelectric effect. Substantial differences were noted, with a voltage

difference of 21 V and a difference generated of 45 µm in the displacement (refer

to Fig. 4.13).

The temperature-dependent piezoelectric strain coefficients d31 and d33 were in-

vestigated in Chapter 5. For multilayer stack actuators, a simplified 7-layer model

was used to conduct the study since the realistic model required an impractical

computational time. An applied step input was investigated for three models:

piezoelectric, thermopiezoelectric with constant d33, and thermopiezoelectric with

temperature dependent d33. As expected, the model with a temperature-dependent

coefficient yielded a larger displacement than the other simulations due the fact that

the piezoelectric strain coefficient increases with the produced temperature. This

difference was of approximately 13 nm when compared to the thermopiezoelectric

simulation with constant coefficient d33. The multimorph bender actuators, the re-

lationship between the coefficient d31 and temperature exhibited a more pronounced

effect. Consequently, differences in the developed displacement were expected to

be larger as compared to stack actuators. This statement was verified through the

analysis of an voltage step. The comparison between simulations accounting for

the temperature-dependent d31 and those using constant piezoelectric coefficients

demonstrated a significant variation with an approximate difference of 4.2 µm in
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the z-displacement. Additionally, two scenarios were examined in the thermopiezo-

electric simulations with temperature-dependent d31 coefficients: one that set the

reference temperature Θ∞ to room temperature (293.15 K) and the other with

Θ∞ at 273.15 K. The differences in displacement between these two scenarios were

minimal (in the nanometer range) compared to the overall variations among all

simulations.

Moreover, a dynamic thermal load was explored for both simulations considering

a constant d31 and a temperature-dependent d31. The observed difference amounted

to 93.8 nm (see Fig. 5.6), with the temperature-dependent simulation yielding a

larger z-displacement compared to the constant d31 simulation.

Lastly, a realistic scenario of a stratospheric balloon flight where a piezoelectric

bimorph actuator is used as a positioning element for a lens is considered was an-

alyzed. Four simulations were conducted, including a piezoelectric simulation, and

three thermopiezoelectric simulations: one with a constant d31 coefficient, another

with a constant d31 coefficient while neglecting the pyroelectric and electrocaloric

effects, and finally a simulation that considers a temperature-dependent coefficient

d31. Significant differences were observed among the simulations, with an ap-

proximate difference of 1.7 µm between the thermopiezoelectric with temperature-

dependent d31 simulation and the two other thermopiezoelectric simulations (con-

stant d31), and 2 µm between the thermopiezoelectric with temperature-dependent
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d31 simulation and the piezoelectric simulation. This is significant when consider-

ing that the step height is 45 µm, hence a 2 µm difference is quite considerable.

These simulations and the realistic case presented in Chapter 5 emphasize the im-

portance of accounting for temperature-dependent coefficients when investigating

and designing applications involving piezoelectric stack and bender actuators.

6.1 Future Work

This study involved simulations using models with opposite polarization direc-

tions. The polarization direction was assumed to be ideally aligned at 0° or 180°.

However, in real-world scenarios, the polarization direction is typically not perfectly

aligned and tends to cluster within domains. To more accurately capture the be-

havior of piezoelectric actuators, it is possible to implement a Gaussian distribution

for the polarization direction. This approach introduces small angle deviations in

the simulations to better represent the practical variation in the initial polarization

direction.

Furthermore, the two most commonly seen nonlinearities associated with piezo-

electric actuators, hysteresis and creep, are not present in the developed finite

element code. The code could be improved by implementing the hysteresis charac-

teristics of piezoelectric materials. By incorporating this hysteresis into the code,

the simulations could more accurately replicate the complex relationship between
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electrical and mechanical properties exhibited by piezoelectric materials. This addi-

tion would also impact how the temperature changes in response to varying voltage

inputs over time. By doing so, the simulations could more accurately replicate the

actual behavior of the analyzed actuator.

Dealing with coefficients in piezoelectric and thermopiezoelectric analyses can

be extremely complex due to the intricate relationship of mechanical, electrical,

and thermal fields. Chapter 5 investigated the temperature dependence of the

piezoelectric strain coefficients. However, it is important to note that piezoelectric

strain coefficients are not the only coefficients affected by temperature. Coefficients

such as the dielectric coefficients ε and the compliance sE11 also exhibit temperature

dependence, for instance, and the piezoelectric strain coefficient d also increases

with electric field strength. One improvement to consider is the incorporation of

these temperature-dependent coefficients (dielectric and compliance) into the code.

This development would enable more accurate predictions of the actual behavior of

these piezoelectric actuators through simulations and would also open the door to

designing better piezoelectric actuators that can perform effectively in environments

where thermal fields play an important role.
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A Appendix A

External mechanical element force vector

fe
uu =

∫
V e

NT
u ρbdV

e+∫
Oe

t

NT
u t̄dO

e

(A.1)

Electric element charge vector fe
ϕϕ = −

∫
Oe

Q

NT
ϕ Q̄dOe (A.2)

External thermal element force vector

fe
θθ =

∫
Oe

qh

NT
θ hv(Θ∞ −Θ0)dO

e+

∫
Oe

qs

NT
θ q̄sdO

e +

∫
V e

ρrdV e

(A.3)

Table A.1 External force equations for thermopiezoelectric finite element formu-

lation

151



Mechanical element stiffness matrix keuu =

∫
V e

BT
uCBudV

e (A.4)

Direct piezoelectric element stiffness matrix keuϕ =

∫
V e

BT
u e

TBϕdV
e (A.5)

Elasto-thermal element stiffness matrix keuθ =

∫
V e

BT
u ζNθdV

e (A.6)

Dielectric element stiffness matrix keϕϕ =

∫
V e

BT
ϕ εBϕdV

e (A.7)

Pyroelectric coupling element stiffness matrix keϕθ =

∫
V e

BT
ϕ pNθdV

e (A.8)

Thermal element stiffness matrix

keθθ =

∫
V e

BT
θ λBθdV

e+∫
Oe

qh

NT
θ hvNθdO

e

(A.9)

Table A.2 Thermopiezoelectric finite element equations of stationary terms
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Element mass matrix M e
uu =

∫
V e

ρNT
u NudV

e (A.10)

Thermoelastic element stiffness matrix keθu =

∫
V e

NT
θ NθΘζTBudV

e (A.11)

Electrocaloric element stiffness matrix keθϕ =

∫
V e

NT
θ NθΘpTdV e (A.12)

Heat capacity element stiffness matrix He
θθ =

∫
V e

NT
θ ρcvNθdV

e (A.13)

Table A.3 Thermopiezoelectric finite element equations of dynamic terms
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