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Abstract

In this thesis we show that the infinitesimal rigidity of point-hyperplane frame-

works in En is equivalent to the infinitesimal rigidity of bar-joint frameworks in Sn

with a set of joints (corresponding to the hyperplanes) located on a hyperplane in Sn.

This is done by comparing the rigidity matrix of Euclidean point-hyperplane frame-

works and the rigidity matrix of spherical frameworks. This result clearly shows

how the first-order rigidity in projective spaces and Euclidean spaces are globally

connected. This geometrically significant result is central to the thesis.

This result leads to the equivalence of the first-order rigidity of point-hyperplane

frameworks in En with that of bar-joint frameworks with a set of joints in a hyper-

plane in En. This result and some of its important consequences are also presented

in the coauthored paper [17]. We also study the rigidity of point-hyperplane frame-

works in En and characterize their rigidity.

We next highlight the relationship between point-line frameworks and slider

mechanisms in the plane. Point-line frameworks are used to model various types

of slider mechanisms. A combinatorial characterization of the rigidity of pinned-

slider frameworks in the plane is derived directly as an immediate consequence of

the analogous result for pinned bar-joint frameworks in the plane. Using fixed-

normal point-line frameworks, we model a second type of slider system in which the

slider directions do not change. Also, a third type of slider mechanism is introduced

in which the sliders may only rotate around a fixed point but do not translate.

This slider mechanism is defined using point-line frameworks with rotatory lines

(no translational motion of the lines is allowed). A combinatorial characterization

of the generic rigidity of these frameworks is coauthored in [17].

Then we introduce point-hyperplane tensegrity frameworks in En. We inves-

tigate the rigidity and the infinitesimal rigidity of these frameworks in En using

tensegrity frameworks in Sn. We characterize these different types of rigidity for

point-hyperplane tensegrity frameworks in En and show how these types of rigidity
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are linked together. This leads to a characterization of the rigidity of a broader class

of slider mechanisms in which sliders may move under variable distance constraints

rather than fixed-distance constraints.

Finally we investigate body-cad constraints in the plane. A combinatorial char-

acterization of their generic infinitesimal rigidity is given. We show how angular

constraints are related to non-angular constraints. This leads to a combinatorial

result about the rigidity of a specific class of body-bar frameworks with point-point

coincidence constraints in E3.
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Chapter 1

Introduction

1.1 Introduction to rigidity

The word rigidity is used in a broad sence in mathematics and engineering literature.

In geometry, a set S of points equipped with a geometric, topological or differentiable

structure is called rigid in a space (En, for example) if S admits no deformation.

A deformation is a transformation that does not globally preserve the structure of

the space as opposed to the transformations that do preserve the structure of the

entire space, which become the rigid transformations of the space. For instance, a

famous theorem in differential geometry states that ‘the sphere is rigid’, in the sense

that any compact, connected, smooth surface with constant Gaussian curvature is

a sphere in E3 [6, p. 317]. Physically, this means a sphere made of a flexible but

inelastic material is rigid. This theorem globally describes the sphere in the space.

A triangle is a very simple, geometric, discrete structure: three points with

pairwise fixed distances between them (side lengths). This defines a rigid geometric

structure in Euclidean spaces of any dimension by the well-known Side-Side-Side

congruence theorem in Euclidean plane. On the other hand, four distinct points

with four distance constraints is not a rigid structure in the plane (Figure 1.1a).

Depending on the nature of the constraints and the geometry of the ambient
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space, we can give a precise definition of a specific type of rigidity in question.

For example, a quadrilateral is defined by four distance constraints on four points

p1, p2, p3, p4 in the plane: the distances ‖p1−p2‖, ‖p2−p3‖, ‖p3−p4‖ and ‖p4−p1‖ are

to remain fixed but ‖p2−p4‖ and ‖p1−p3‖ may change. If we assign time-dependent

coordinates (x1, y1), (x2, y2), (x3, y3) and (x4, y4) to the points p1, p2, p3 and p4 re-

spectively, then the above distance constraints yield four quadratic equations with

eight unknowns x1, x2, x3, x4, y1, y2, y3, y4 as functions of t as a time variable. There

will always be trivial solutions to such a system of equations, which occurs when all

the points move under a single 1-parameter rigid motion (all rotate or translate in

the same way). Any other type of solution (non-trivial solution) for the system is

considered a deformation and its existence implies that the framework is not rigid.

If there is no non-trivial solution then the system is called rigid. In the case of the

quadrilateral, we intuitively know that there is a non-trivial solution for our system

(Figure 1.1a) because the structure is flexible. Now this example may be generalized

to any number of points p1, . . . , pn ∈ Rn with fixed distance constraints on some

pairs of points p1, . . . , pn. To express which pairs are constrained, we may use a

graph G = (V,E) with |V | vertices corresponding to each point pi such that the

vertex i is connected to the vertex j if the points pi and pj are to maintain their

distance. This is called a bar-joint framework in En and is denoted by (G,p). The

constraints define a set of quadratic equations1 but as the number of points and

constraints grow, it becomes more difficult to compute a solution for the system

even in the plane (NP-complete). But if we differentiate (with respect to a time

variable) these quadratic equations, we obtain a system of linear equations that

captures a lot of information about the non-linear system of quadratic equations.

The coefficient matrix of the linear system is usually called the rigidity matrix of

the framework. Rigidity matrices play a crucial role in the study of all types of

systems of constraints that we will deal with later on. Of course, the linear system

1This is an affine algebraic variety.
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is not equivalent to the original system of quadratic equations but ‘almost always’,

it equivalently determines the rigidity of the framework (See [2]). The derivative of

the trivial solutions of the system of quadratic equations (as smooth curves) gives

rise to ‘trivial solutions’ for the linear system.

It is key that ‘almost always’ the rigidity or flexibility of a framework (G,p)

is not dependent on where the points pi are placed in Rn but it depends on the

graph G. This makes the rigidity a combinatorial problem (for n = 2, see Laman’s

Theorem in Chapter 2). It is said that a framework is ‘generically infinitesimally

rigid’ if it is rigid almost always.

One stream of results in Rigidity dates back to Euler’s Conjecture [18], followed

by a result due to Cauchy [7] that states convex polyhedra in three-dimensions with

congruent faces connected in the same pattern, are congruent to each other. That

means if the faces of a convex polyhedron are made of rigid plates and its edges

are replaced by hinges then we have a rigid structure in 3-space (plates and hinges

structures). This result was extended by Alexandrov [1] to higher dimensions in

1950. He showed that convex polyhedra are uniquely described by the metric spaces

on their surfaces. Pogorelov [47] generalized the result to convex surfaces.

R. Bricard [5] gave an example of a flexible octahedral surface in E3, which is not

embedded because of the self-intersection. H. Gluck [21] showed that Euler’s Con-

jecture [18] is almost always true for the case of closed, simply connected polyhedral

surfaces. R. Connelly [8] found a counterexample to the Euler’s Conjecture.

Another stream that helped develop the mathematical theory of rigidity is the

Static Rigidity that has a rich literature in structural and mechanical engineering.

The modern mathematical treatment of structural rigidity is specially influenced by

the great physicist and geometer James Clerk Maxwell through the static theory

[40],[41] which states:

If (G,p), |V | ≥ n, is a framework in En then

dim (S) ≥ |E| − n|V |+
(
n+ 1

2

)
,

3



p4

p1

p3

p2

p4 p3

p2p1

(a) 4 distance constraints on 4 distinct

points do not uniquely define a convex

quadrilateral in plane.

d

c

a

b

f

e

(b) Generic (left) and non-generic (right)

configurations on 6 points. In the right

figure, ab, cd and ef are parallel with

equal length.

Figure 1.1: Planar frameworks.

with equality if and only if the framework is infinitesimally rigid where S is the

stress space of the framework which is the co-kernel of the rigidity matrix of (G,p).

This result also connects static rigidity to infinitesimal rigidity of frameworks.

Although static theory provides an equivalent description for infinitesimal rigid-

ity of bar-joint frameworks (see [16]), it is a suitable language for studying tensegrity

frameworks and also useful in global rigidity [9].

1.2 Motivation: sliders, geometric CAD constraints and

projective geometry

In mechanical engineering, a revolute joint is a type of joint connecting two rigid

bodies so that it restricts their relative motion to a rotational motion (one degree

of freedom) as opposed to prismatic joints that restrict the relative motions of two

connected bodies to translational motions.

A variety of mathematical tools have been used to formulate simple mechanical

structures (such as open or closed cycles) in order to analyze their motion and

their rigidity. There are many standard examples in E2 and E3 to which these

methods have been applied. Using the theory of Lie Algebras and Lie groups of

rigid motions of En, a single constraint equation can be written (see [56, p.108]) to

4



describe the configuration space and the incidence geometry of a simple mechanism.

Another interesting description of rigid motions of the Euclidean space uses Clifford

Algebra (see [56], [24]). Dual quaternions as a representation of rigid motions in

E3, have been proven useful for analyzing the motions and the incidence geometry

of some simple closed cycles such as 6R cycles in the space, see [27] and [26]. Dual

quaternions provide a unified representation of rotations and translations in the

space. This representation has geometric advantages over the matrix representation

of the rigid motions because the center of a rigid motion (and the angle of rotation

as the parameter) form the coordinates of the corresponding one-parameter dual

quaternion with fixed axis [27]. This representation of rigid motions is in connection

with the way 2-extensors represent the infinitesimal rigid motions (Section 2.7.1).

In this context, a prismatic joint is represented by a one-parameter dual quater-

nion whose axis is at infinity (a translation). For a simple closed cycle (such as a

4-bar linkage, Figure 1.3) of revolute or prismatic joints, the product of a number of

dual quaternions (one for each joint) is set to the identity (which is 1 as a number).

This equation is called the closure condition and its solutions form an algebraic

variety whose dimension determines the degrees of freedom of the mechanism. For

a triangle, which is the simplest closed cycle of 3 revolute joints, this variety is of

dimension zero. In other words, a triangle is rigid. Only when we replace all the

(a) Three prismatic joints

with one degree of free-

dom.

(b) The line model (3 an-

gles fixed) with one de-

gree of freedom.

u

(c) The non-trivial in-

finitesimal motion of 3

collinear point.

Figure 1.2: A triangle at infinity and point-line frameworks.
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three revolute joints by prismatic joints (Figure 1.2a) the dimension of the corre-

sponding algebraic variety becomes one, which confirms one degree of freedom for

the system. On the other hand, the motion of this slider cycle resembles the motion

of three lines constrained to maintain the three angles between them, which also has

one degree of freedom (Figure 1.2b). Three collinear points connected by bars (a

collinear triangle) also has one degree of freedom in terms of infinitesimal motions

(Figure 1.2c). The bar connecting the two end-points is drawn curved to be visi-

ble in the collinear triangle. Computationally, the analysis of the algebraic variety

that describes the configuration space of a mechanism could become less effective

and very complicated as the number of joints or the number of links increase. This

makes the problem NP-hard in general [53].

Sliders frequently occur in different mechanisms, sometimes in combination with

revolute joints (see Figure 1.3). A point constrained to move in a specific direction

can be viewed as a point constrained to slide along a line. Let’s look at the simple

bar-joint framework whose underlying graph is K2,2. This mechanism (called the

4-bar linkage) has one degree of freedom. A 4-bar linkage is usually viewed as a

closed cycle of 4 bodies (or links) with 4 revolute joints (4R) each of which allows

one degree of freedom of rotational relative motion.

Figure 1.3a (in the middle) shows a slider mechanism derived from the 4-bar linkage

when the joint p4 ‘goes to infinity’, meaning the connected links have only a relative

translational motion. This slider mechanism has also one degree of freedom as well.

We can model this mechanism using a point-line framework in which the joint p4 is

replaced by a line `1, shown in Figure 1.3a (on the right). Note that joints p1 and

p3 are sliding along the same line in the slider mechanism. So they are constrained

to maintain their distance from a line in the point-line model.

In Figure 1.3b (on the left), the two joints p2, p4 go to infinity, that is, they are

6



p1

1

p2

4

3 p3

2

p4

1

2

3

4

p2 p3

p1

p1

p2
p3

∞
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∞

p1
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∞

∞

(c)
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∞

∞

∞

∞

p3p1 p2 p4
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u1 = 0 u4 = 0u2
u3

`1
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`4

(d)

Figure 1.3: Sliders, point-line models and bar-joint frameworks with collinear joints.
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replaced by two slider joints in specific directions as shown in Figure 1.3b (in the

middle). The corresponding point-line framework is also flexible with one degree of

freedom.

In Figure 1.3c, the three joints p2, p3, p4 go to infinity and one revolute joint is

left. Again, the corresponding point-line framework shows one degree of freedom.

We can go on and send the fourth joint to infinity to have a cycle of sliders,

see Figure 1.3d. The corresponding point-line framework contains no point and 4

lines, with no relative rotational motion between them. The corresponding bar-

joint framework is a collinear quadrilateral, which infinitesimally has two degrees of

freedom and consequently two degrees of freedom (of finite motion) as a point-line

framework and as a slider mechanism. Note that the additional degree of freedom

occurred because the joints collapsed on a line (they became collinear). In this

thesis, we will explain these connections and shed some light on the link between

the rigidity of point-line models and that of bar-joint frameworks that are not generic

in Chapter 3.

These types of constraints on the combinations of points and lines (and in higher

dimensions, planes or splines [68] and so on) are common in geometric constraints

for CAD (Computer Aided Design) software that allows users to put geometric

constraints on rigid bodies to design complex systems. The common issue is to detect

when a set of arbitrary constraints is independent to avoid redundant constraints.

So it is valuable to be able to tell whether a set of constraints is dependent or not by

a simple counting criterion. This is the subject of Combinatorial Rigidity. Secondly,

it is important to understand the geometry that rules these constraints. This is the

subject of Geometric Rigidity.

We study a combination of constraints on points and lines on rigid planar bodies

in Chapter 6 that are inspired by CAD constraints and first initiated by A. Lee-

St.John et al. in [25] for 3D rigid bodies. The restricted motion of two bodies to

sliding along a direction (a line, for example) relative to each other is a translation,
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which is described as an instantaneous rigid motion whose center (a 2-extensor in

R3) is at infinity in the language of projective geometry.

Projective geometry is known to be the geometry of the first-order motions

of bar-joint frameworks because projective transformations preserve the first-order

rigidity of bar-joint frameworks and far beyond that. Even in situations that pro-

jective transformations do not preserve the constraints (such as tensegrity frame-

works) they still help understand different but equivalent types of first-order rigid

constraints of those types (Chapter 5). The importance of projective geometry is

highlighted in this thesis.

1.3 Outline of thesis

Chapter 2 reviews some fundamental results and techniques in the rigidity theory on

which the thesis is relied on. The study of bar-joint and body-bar frameworks covers

an extensive part of the literature in Rigidity Theory. We begin to recall some ba-

sic definitions and results from infinitesimal rigidity, rigidity, generic rigidity, static

rigidity, inductive constructions of bar-joint frameworks in Euclidean spaces. We re-

view the infinitesimal rigidity of spherical bar-joint frameworks and their connection

with the infinitesimal rigidity of Euclidean frameworks. The use of the techniques

from matroid theory is becoming inevitable to express or achieve more complicated

combinatorial results in Rigidity. So we tried to highlight this very briefly in a sec-

tion. The generic rigidity of point-line frameworks in plane were recently given a

combinatorial characterization by B. Jackson and J. Owen [32]. These frameworks

became a suitable platform for us to express our rough geometric idea of unifying the

rigidity of frameworks with some joints finite and some at infinity as points in the

projective plane. Therefore we present the rigidity matrix for point-line frameworks

as it is in [32] along with the given combinatorial characterization of the generic

rigidity for these frameworks.

We review body-cad constraints introduced in [25] for rigid bodies in E3. The
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complexity of the constraints in the space compared to the plane does not allow to

include point-point coincidence constraints in the combinatorial characterization of

the rigidity of these frameworks in 3-space, which was given by A. Lee-St.John and

J. Sidman [38] .

The contribution of the thesis starts in Chapter 3. We introduce point-hyperplane

frameworks in En and show that hyperplanes may be treated just as points (at in-

finity). Of course, this relation between points and hyperplanes is the essence of the

duality in projective geometry but the fact that the kinematic (at the infinitesimal

level) of hyperplanes is also completely explained by kinematic of the corresponding

points ‘at infinity’ is remarkable. This leads to a geometric correspondence between

the infinitesimal rigidity of point-hyperplane frameworks and bar-joint frameworks

with a set of joints realized on a hyperplane in En (see [17]). This is a remarkable

achievement because it makes a clear connection between two worlds that look com-

pletely different. It also allows us to transfer the results from the context of bar-joint

frameworks to point-hyperplane frameworks. In particular, a combinatorial charac-

terization of the infinitesimal rigidity for bar-joint frameworks in the plane with a

set of collinear joints is given as a result transferred from the context of point-line

frameworks. We use spherical frameworks to express our geometric correspondence.

The rigidity of point-hyperplane frameworks is studied in En. Finally, we provide

some examples in the plane and give some remarks on inductive construction of

point-line frameworks.

In Chapter 4, we show that point-line frameworks can be used to model different

types of slider mechanisms, such as pinned-slider frameworks using pinned point-line

frameworks. A combinatorial characterization of the generic rigidity of these frame-

works is derived in the plane simply using the results on pinned frameworks in the

plane. Next, using fixed-normal point-line frameworks, a type of slider mechanisms

is defined for which the sliders move along lines with fixed normals. A combinato-

rial characterization of the generic rigidity of this type of sliders is given. Our proof
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describes how an isostatic graph with respect to one type of rigidity (point-line) is

transferred to an isostatic graph in another type of rigidity (fixed-normal). Finally

we define a type of slider mechanisms for which sliders may only have rotational mo-

tions but not translational, using point-line frameworks with rotatory lines whose

distance from a reference point is fixed.

In Chapter 5, we introduce and study point-hyperplane tensegrity frameworks

in En. At first, we establish the static theory and tensegrity frameworks in Sn.

Then, we show that the standard results about the tensegrity frameworks also hold

in spherical spaces. We need the spherical results to prove the main theorems about

the infinitesimal rigidity of point-hyperplane tensegrity frameworks in En. Then the

rigidity of point-hyperplane tensegrity frameworks are studied and characterized in

En.

In Chapter 6, we study body-cad constraints in the plane and give a combina-

torial characterization of their rigidity in the plane.

Using this combinatorial result in 2D, we describe the infinitesimal rigidity of

body-bar frameworks with coincidence constraints in the plane. In turn, this will

be used to combinatorially understand the infinitesimal rigidity of a class of spatial

rigid bodies with point-point coincidence constraints in 3D.

1.3.1 Statement of authorship

Except for the results that are clearly and directly referenced to the joint work [17]

with B. Jackson, A. Nixon, B. Schulze, S. Tanigawa and W. Whiteley in Chapters

3 and 4, this thesis is the original work of the author. The results referenced to the

joint work [17] in this thesis are either immediate consequences of the results of this

thesis or the author significantly contributed into their formation and towards their

final proofs.
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Chapter 2

Background:

Rigidity of frameworks

In this chapter we review some fundamental concepts of the rigidity of frameworks

that form the background of our research and the results or methods that will be

used in this thesis.

2.1 Basic definitions of Graph Theory

Graphs are used to record geometric constraints on pairwise geometric objects such

as points, lines, planes or rigid bodies and so on.

Definition 2.1.1. A graph is a pair of finite sets (V,E), V 6= φ where V is called

the set of vertices and E, disjoint from V , is called the set of edges and it consists

of unordered pairs of vertices. The set E is a multiset, meaning its elements may

occur more than once so that every element has a multiplicity. We label the vertices

with letters indexed with numbers (for example: v1, v2, . . . , vn, . . . ) or simply, with

numbers 1, 2, 3, . . . if there is no confusion. Similarly, edges are labeled by indexed

letters: an edge e connecting a pair of vertices v1, v2 is denoted by e = {v1, v2} or

e = v1v2 or simply, e = 12 if there is no ambiguity. A graph with the set of vertices
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V and the set of edges E is denoted by G = (V,E). Also, we use |V | = v and

|E| = e for the number of the elements in V and E, respectively.

The following terminologies are useful:

1. For an edge e = {v1, v2}, the two vertices v1 and v2 are the end-points (or the

ends) of the edge e.

2. Edges with the same ends are parallel.

3. An edge with identical ends, {v, v} is a loop. We do not allow loops for the

graphs in this thesis.

4. A graph is simple if it has no parallel edges and no loops. A graph that has

parallel edges or loops is called a multigraph.

5. Two vertices v1 and v2 are adjacent if they are connected by an edge, i.e.

e = {v1, v2} ∈ E; the edge e is called incident to the vertices v1 and v2 and

also, v1 and v2 are incident to e.

6. The valence1 of a vertex v, written as val(v), is the number of edges adjacent

to v. By convention, loops are counted twice and parallel edges contribute

separately to the valence of a vertex.

7. An isolated vertex is a vertex whose valence is 0.

Given a graph G = (V,E) and E′ ⊆ E, ν(E′) is the number of vertices incident

to the edges in E′. We draw a graph with vertices depicted by circles and edges

by line segments. A simple graph that contains every possible edge between all the

vertices is called a complete graph. A complete graph with n vertices is denoted by

Kn.

The graph G′ = (V ′, E′) is a subgraph of G = (V,E) if

1It is also called degree of v.
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1. V ′ ⊆ V , and

2. E′ ⊆ E.

A subgraph G′ = (V ′, E′) of G with V ′ = V is called a spanning subgraph. The

subgraph G[E′] of G = (V,E) induced by the edge set E′ ⊆ E, is a graph where

V ′ is the set of the ends of the edges in E′. The subgraph of G with the edge set

E\E′ is simply written as G−E′. Similarly, the graph obtained from G by adding

a set of edges E′ is denoted by G + E′. If E′ = {e} we write G − e and G + e

instead of G− {e} and G+ {e}. The subgraph of G = (V,E) induced by the vertex

set V ′ ⊆ V is a graph where E′ is the set of all edges with both ends in V ′. This

graph is denoted by G[V ′]. The induced graph G[V \V ′] is denoted by G − V ′. If

V ′ = {v} we write G− v for G− {v}. A complete subgraph of G is called a clique

of G. A graph G = (V,E) is said to be bipartite if its vertex set has a partition of

two sets V1 and V2 so that every edge in E has one end in V1 and another end in V2.

If each vertex of V1 is connected to each vertex of V2 the bipartite graph is called a

complete bipartite graph, denoted by Km,n where |V1| = m, |V2| = n.

By a path from vertex u to v, we mean a sequence of vertices v0, v1, . . . , vk so

that :

1. v = v0 and u = vk;

2. v0, v1, . . . , vk are distinct;

3. vi−1 and vi are adjacent, for i = 1, . . . , k.

A path from vertex u to v is called closed if u = v. A closed path is called a circuit.

A graph is connected if for every two vertices u and v of G, there is a path from u to

v. A connected graph with no circuit is called a tree. A spanning tree is a spanning

subgraph that is a tree.

For two simple graphs G1 = (V1, E1) and G2 = (V2, E2), the union G1 ∪ G2 of

G1 and G2 is the graph whose vertex set is V1 ∪ V2 and its edge set is E1 ∪ E2.
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2.2 Bar-joint frameworks in En

In this section, we review fundamental concepts of the rigidity of bar-joint frame-

works. Throughout this section, by a framework we mean a bar-joint framework.

Definition 2.2.1. An n-dimensional bar-joint framework, denoted by (G,p), con-

sists of a simple graph G = (V,E) and an embedding p of the vertex set V into En,

p : V → Rn with p(i) = pi, for every vertex i ∈ V .

Often, the embedding p is identified by a point in Rnv which in this case, it is

called a configuration of v points in En. It is also said that the graph G is realized

by p.

First we formalize a definition of a motion of a framework as follows.

Let (G,p) be a framework in En. A motion of (G,p) is a smooth path P : [0, 1]→

Rnv with P(t) = (P1(t), . . . , Pv(t)) ∈ Rnv such that P(0) = p and

‖Pi(t)− Pj(t)‖ = ‖pi − pj‖ for all t ∈ [0, 1] and all ij ∈ E,

where ‖.‖ is the Euclidean distance in Rn.

A motion P : [0, 1]→ Rnv of a framework (G,p) is a rigid motion if the distances

between all vertices of G are preserved by the motion:

‖Pi(t)− Pj(t)‖ = ‖pi − pj‖ for all t ∈ [0, 1] and all i, j ∈ V . (2.2.0.1)

Explicitly, a rigid motion of points p1, . . . , pv in En is of the form Pi(t) = R(t)pi+s(t),

1 ≤ i ≤ v, where R(t) ∈ SO(n) is in the Special Orthogonal Group of En for all

t ∈ [0, 1], with R(0) = In×n, and s(t) ∈ Rn for all t ∈ [0, 1], with s(0) = 0. Rigid

motions are also called trivial motions as they trivially satisfy (2.2.0.1) for any

configuration p.

If a motion of a framework (G,p) is not a rigid motion then the distance be-

tween at least one pair of vertices is altered by the motion. This motion is called
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a deformation or a finite flex or finite motion of (G,p). A non-rigid framework is

called flexible. A framework is said to be rigid if all of its motions are rigid motions,

that is, it admits no deformations.

2.2.1 Infinitesimal rigidity

An infinitesimal motion2 of a framework (G,p) in En is a function p′ : V → Rn,

p′(i) = p′i ∈ Rn so that

〈pi − pj , p′i − p′j〉 = 0 for all ij ∈ E, (2.2.1.1)

where 〈 , 〉 is the standard inner product in Rn.

An infinitesimal motion p′ of (G,p) is called an infinitesimal rigid motion if

p′i = Spi + t for all i ∈ V , some n × n skew-symmetric matrix S and t ∈ Rn. In

fact, p′i is the sum of an infinitesimal rotation Spi and an infinitesimal translation

t at pi in En. Clearly, infinitesimal rigid motions of a framework (G,p) in En form

a linear subspace of Rnv. We denote it by T (p). If the points p1, . . . , pv generate

an affine space of dimension at least n − 1 in En, we have dim(T (p)) =
(
n+1

2

)
. A

configuration of points with this property is called non-degenerate. We assume the

point configurations are non-degenerate unless otherwise is specified.

Remark. Note that dim(T (p)) will drop if the above assumption does not hold.

For example, for a single bar p = (p1, p2) in E3, dim(T (p)) = 5 as the rotation

whose axis contains this bar gives velocities (p′1, p
′
2) = (0, 0) at p, which is null.

Clearly, infinitesimal rigid motions trivially satisfy (2.2.1.1) for any configuration

p because 〈x, Sx〉 = 0, for any x ∈ Rn and any n×n skew-symmetric matrix. Hence

they are also called trivial infinitesimal motions.

The coefficient matrix of (2.2.1.1), called the rigidity matrix of (G,p), is a e×nv

matrix whose rows and each set of n columns are indexed by the edges and the

vertices of G, respectively. More clearly, a row ij of this matrix is a vector in Rnv

2also called an infinitesimal flex, first-order motion or first-order flex.
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Figure 2.1: Singular configurations

that has the coordinates of pi−pj for the n components indexed by i (the n columns

under pi in the matrix), the coordinates of pj−pi in for the n components indexed by

j (the n columns under pj in the matrix) and zeros for the rest of the components:

R(G,p) =


pi pj
...

...

edge ij . . . pi − pj . . . pj − pi . . .
...

...

, (2.2.1.2)

By (2.2.1.1) any infinitesimal motion of (G,p) is exactly an element of ker R(G,p).

A framework (G,p) is said to be infinitesimally rigid in En if every infinitesimal

motion of (G,p) is an infinitesimal rigid motion, i.e. ker R(G,p)= T (p). Otherwise,

it is called infinitesimally flexible. If a framework (G,p) has a non-rigid motion

(or non-trivial motion) in En, its derivative at t = 0 gives rise to a non-trivial

infinitesimal motion. So the following result seems plausible (see [10] for a proof):

Theorem 2.2.1. If a framework (G,p) is infinitesimally rigid in En then it is rigid

in En.

The converse is not always true. The simplest example is a collinear triangle

shown in Figure 2.1a. A more subtle example is Desargues’ configuration shown

in Figure 2.1b in which the dashed lines containing the edges {p2, p5}, {p3, p6} and

{p1, p4} are concurrent. In both cases, the frameworks are not infinitesimally rigid
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but they are rigid. The non-trivial infinitesimal motions (up to infinitesimal rigid

motions) are illustrated in each case. These infinitesimal motions do not lead to a

finite motion but they arise as a result of the special configurations. These configu-

rations form the singular points of (2.2.1.2) where the rank of (2.2.1.2) increases in

an open neighbourhood of such configurations.

More explicitly, the rigidity matrix R(G,p) is closely related to the differential

of the rigidity map fG of G given by:

fG : Rnv → Re

fG(p) = (. . . , ‖pi − pj‖2, . . . ),
(2.2.1.3)

It is easy to check that the differential map dfG(p) of fG at p is equal to 2R(G,p).

A configuration p is called a regular3 point of fG if dfG(p) maintains its rank in an

open neighbourhood of p in Rnv, or equivalently, the rank of R(G,q) is maximized

at p over all configurations q ∈ Rnv. In this case, the level set f−1
G (fG(p)) is a

smooth closed embedded manifold in Rnv whose codimension is the rank of dfG(p)

(see [37]).

So both the configurations in Figure 2.1 are not regular but they are singular

points of fG. It is proved in [3] that the rigidity of a framework is equivalent to its

infinitesimal rigidity for regular configurations.

Theorem 2.2.2. [3] A framework (G,p) is infinitesimally rigid in En if and only

if p is a regular point of fG and (G,p) is rigid.

Suppose the rank of dfG(x) is k = rank dfG(p) for all x in an open neighbourhood

around p in Rnv. Let P (x) be the sum of the squares of the determinants of all

k × k minors of dfG(x), for x ∈ Rnv. Obviously P (x) is the sum of a finite number

of non-negative polynomials in nv variables. Since P (x) is not zero at p, it is a

non-trivial polynomial in nv variables. Therefore the set of all regular points of

3In differential geometry, the term regular is often used when dfG(p) is surjective, i.e. the rank

of dfG(p) is e in our context, but here, it is only required that the rank remains constant.
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fG, {x ∈ Rnv|P (x) 6= 0} is a dense open subset of Rnv whose complement set is

of Lebesgue measure zero. Hence the above theorem determines the rigidity or

flexibility of a graph G in En for almost all configurations p in En. In fact, this

explains why the rigidity of a framework is sometimes described as the rigidity of

its graph. This is the foundation of the combinatorial aspect of Rigidity Theory.

In the literature of Rigidity Theory, the term ‘generic’ is more popular to use

than ‘regular’. There is a large portion of literature that uses this term in the

following meaning:

A configuration p in Rnv is called generic if the set of all the coordinates

{x1, . . . , xnv} of points p1, . . . , pv are algebraically independent over Q.

Note that if a configuration is generic then it is regular but the converse is not

necessarily true. We say a framework (G,p) is generically rigid in En if it is infinites-

imally rigid for some, and consequently, for all generic (or regular) configurations p

in En.

2.2.2 Static rigidity

In this section, we review key notions and results in the Static Theory of rigidity of

bar-joint frameworks. This point of view of rigidity has a vast literature in math-

ematics, physics [40] and structural engineering. The reader can consult [16], [68]

and [23] to obtain a general view. Static theory has also been used to derive many

results about the rigidity of bar-joint frameworks, such as inductive constructions

of rigid graphs [61].

Definition 2.2.2. Suppose (G,p) is a framework in En. A self-stress of (G,p) is a

function ω : E → R with ω = (ωij)ij∈E such that for every i ∈ V ,

∑
j,ij∈E

ωij(pi − pj) = 0. (2.2.2.1)

It is understood that ωij = ωji for all ij ∈ E.
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The set of stresses of a framework (G,p) forms a linear space in Re, denoted by

S(E). A self-stress ω could also be identified as member of RE so that ωR(G,p) = 0

by (2.2.2.1), with ω as a row vector in Re. Linear algebraically, self-stresses are the

coefficients of a linear dependence relation among the rows of R(G,p). As (2.2.2.1)

indicates, at each vertex pi, the internal forces ωij(pi − pj), ij ∈ E, add up to zero

so that the structure is in equilibrium. Moreover, in structural engineering, self-

stresses record internal forces as tension (if ωij < 0) and compression (if ωij > 0)

along the bars in the structure.

A non-empty subset E′ of the edge set E is called independent if there is a re-

alization p of G for which the corresponding rows in R(G,p) to the edges in E′ are

linearly independent. The framework (G,p) is called independent if E is indepen-

dent, i.e. S(E) is trivial. A framework that is both independent and infinitesimally

rigid is called isostatic.

Definition 2.2.3. (see [61, p.28],[11]) Let p be a configuration of points (p1, . . . , pv)

in En and f1, . . . , fv, fi ∈ Rn is a sequence of forces in En at the points p1, . . . , pv,

respectively. We say F = (f1, . . . , fv) is an equilibrium force4 at p if

v∑
i=1

fi = 0,

v∑
i=1

fi ∧ pi = 0,

(2.2.2.2)

where ∧ is the exterior product in Rn.

Using the language of Grassman-Cayley algebra, the equations (2.2.2.2) may be

combined into one single equation
∑v

i=1 f̃i ∨ p̃i = 0 where f̃i = (fi, 0) ∈ Rn+1 is a

point at infinity (in Pn) and p̃i = (pi, 1) (see [16]).

The set of equilibrium loads at p is a linear space by (2.2.2.2). We denote

it by E(p). The space of equilibrium loads at p = (p1, . . . , pv) is the orthogonal

complement of T (p) in Rnv, see [68], [11].

4also called equilibrium load.
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A framework (G,p) is statically rigid in En if every equilibrium force F =

(f1, . . . , fv) is in the row space of the rigidity matrix R(G,p). Namely,

∑
j,ij∈E

ωij(pi − pj) = fi, (2.2.2.3)

for every i ∈ V and some stress ω = (ωij) ∈ Re. If (2.2.2.3) holds for some force

F = (f1, . . . , fv), the stress ω is called a resolution of F or F is resolved by stress

ω. Note that if a force F is resolved then it is an equilibrium force. A framework

(G,p) is statically rigid if rank R(G,p) = nv −
(
n+1

2

)
. Indeed, static rigidity and

infinitesimal rigidity are dual concepts.

Theorem 2.2.3. ([16], [61], [11]) A framework (G,p) in En is statically rigid if

and only if it is infinitesimally rigid.

The language of static rigidity has been used to tackle some problems in rigidity

[68]. The term ‘stress’, defined above, comes from the vocabulary of the static theory

of rigidity but its use extends further to the study of important geometric problems

such as global rigidity, see [9]. In addition, the static theory of rigidity is used to

study the rigidity of tensegrity frameworks [50]. Here we describe these types of

frameworks.

Suppose G = (V,E) is a simple graph. Assign signs + or − to some edges, not

necessarily all. This partitions the edges into three sets: E+, the edges with + sign;

E−, the edges with minus sign and E◦ are the edges with no sign assigned to them.

The graph G is now called a signed graph, which we denote by G± = (V,E◦, E−, E+).

Suppose G is realized in En by an embedding p = (p1, . . . , pv) ∈ Rnv. Consider

the following system:

〈pi − pj , p′i − p′j〉 = 0 for all ij ∈ E◦, (2.2.2.4)

〈pi − pj , p′i − p′j〉 ≤ 0 for all ij ∈ E−, (2.2.2.5)

〈pi − pj , p′i − p′j〉 ≥ 0 for all ij ∈ E+, (2.2.2.6)
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where p′i are unknowns for every i = 1, . . . , v. The signed graph G along with

a configuration p in En subject to the constraints (2.2.2.4)–(2.2.2.6), is called a

tensegrity framework in En and we denote it by (G±,p).

The tensegrity framework (G±,p) is called infinitesimally rigid if the only pos-

sible solutions p′i ∈ Rn, i = 1, . . . , v of the system (2.2.2.4)–(2.2.2.6) are the trivial

infinitesimal motions of the framework (G,p). It turns out that the rigidity of a

tensegrity framework (G±,p) is closely related to that of the corresponding frame-

work (G,p). For a definition of the rigidity of a tensegrity framework, we refer the

reader to [50], [69].

A proper stress ω = (ωij)ij∈E of a tensegrity framework (G±,p) is a self-stress

of (G,p) that respects the signs of all the corresponding edges in G±, i.e. ωij ≤ 0 if

ij ∈ E−, ωij ≥ 0 if ij ∈ E+ and no condition on ωij if ij ∈ E◦.

A proper stress ω = (ωij)ij∈E is called strict if ωij 6= 0, for all ij ∈ E− ∪ E+. A

tensegrity framework (G±,p) is called statically rigid if every equilibrium force at

p is resolved by a proper stress, as described in (2.2.2.3).

Theorem 2.2.1 has an analogue for tensegrity frameworks. See [10], [12] of Con-

nelly and [50] of Roth and Whiteley for a proof.

Theorem 2.2.4. If a tensegrity framework (G±,p) is infinitesimally rigid in En

then it is rigid in En.

We next state the main result that characterizes the rigidity of tensegrity frame-

works in En. It also establishes connections between the infinitesimal rigidity and

the rigidity for tensegrity frameworks.

Theorem 2.2.5. ([50, Theorem 5.2.]) Suppose (G±,p) is a tensegrity framework

in En. Then the following are equivalent:

(a) (G±,p) is infinitesimally rigid in En.

(b) (G,p) is infinitesimally rigid in En and there exists a strict stress of (G±,p).
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(c) (G,p) is rigid in En, p is a regular point of G and there exists a strict stress of

(G±,p).

(d) (G±,p) is rigid in En, p is a regular point of G and there exists a strict stress

of (G±,p).

A configuration p is fully regular5 if rank dfA(p) is maximized in an open neigh-

bourhood of p, for every subgraph A of G.

Theorem 2.2.6. ([50, Theorem 5.8.]) If p is fully regular for a graph G then

(G±,p) is rigid in En if and only if it is infinitesimally rigid in En.

2.3 Equivalence of infinitesimal rigidity of spherical and

Euclidean bar-joint frameworks

It is well-known that the infinitesimal rigidity of spherical bar-joint frameworks

on the upper (or resp. lower) hemisphere Sn+ (or resp. Sn−) is equivalent to the

infinitesimal rigidity of bar-joint frameworks in En under the central projection (see

[52], [54] and [47, Chapter V]). See Figure 2.2.

The central projection provides a geometric correspondence between the in-

finitesimal rigidity class of spherical frameworks and their projection into En. But

this correspondence naturally excludes a hyperplane in Sn (the ‘equator’) whose

points have no image in En under the central projection. This thesis extends this

geometric correspondence to include the equator in Sn!

2.3.1 Spherical bar-joint frameworks

A n-sphere Sn is defined as the subset,

Sn = {x ∈ Rn+1 : ‖x‖ = 1},
5The term general position is used in [50] instead of fully regular.
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z = 1

Figure 2.2: Infinitesimal rigidity of a framework on upper hemisphere is equivalent to that

of its projection in the Euclidean plane.

of Rn+1. The upper hemisphere Sn+ is Sn+ = {x ∈ Sn|〈x, en+1〉 > 0}, where en+1 =

(0, . . . , 0, 1) ∈ Rn+1 is of length 1. Similarly, Sn− = {x ∈ Sn|〈x, en+1〉 < 0}. The

equator of Sn consists of x ∈ Sn such that 〈x, en+1〉 = 0.

Let G = (V,E) be a simple, finite, undirected graph with |V | = v vertices and

|E| = e edges. A bar-joint framework in Sn, denoted by (G,p), is composed of

a simple graph G = (V,E) and an embedding p of vertices V into Sn, i.e. p =

(p1, p2, . . . , pv) where pi ∈ Sn for all i ∈ V . A motion of a framework (G,p) is a

smooth path p(t) = (p1(t), . . . , pv(t)) : [0, 1]→ R(n+1)v with p(0) = p such that

〈pi(t), pj(t)〉 = 〈pi, pj〉,

〈pi(t), pi(t)〉 = 1,
(2.3.1.1)

for all t ∈ [0, 1] and all ij ∈ E, i ∈ V . A framework (G,p) is rigid if for every

motion p(t) we have pi(t) = R(t)pi, for all i ∈ V and all t close enough to 0 where

R(t) is the one-parameter group generated by a rotation R0 = R ∈ SO(n+ 1). An

infinitesimal motion of (G,p) is an assignment of vectors p′i ∈ Rn+1, for each i ∈ V ,

such that

〈pj , p′i〉+ 〈pi, p′j〉 = 0 for all ij ∈ E,

〈pi, p′i〉 = 0 for all i ∈ V .
(2.3.1.2)

A framework (G,p) is called infinitesimally rigid if for any infinitesimal motion
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(p′1, . . . , p
′
v) of (G,p), p′i = Spi for every i ∈ V and for some skew symmetric

(n + 1) × (n + 1) matrix S. Otherwise, it is called infinitesimally flexible. The

infinitesimal motions of (G,p) form a linear subspace of R(n+1)v, which is also, the

kernel of a (e + v) × (n + 1)v matrix called the rigidity matrix RS(G,p) of the

framework (G,p) in Sn:

RS(G,p) =



i j

...
...

edge {i, j} . . . pj . . . pi . . .
...

...
...

vertex i . . . pi · · · 0 · · ·
...

...
...

vertex j . . . 0 · · · pj · · ·
...

...


, (2.3.1.3)

where pi ∈ Sn, i ∈ V . The rows are indexed by the finite set E∪V and corresponding

to each vertex i in V , there are n+ 1 columns indexed by i. One can observe that

the equations in (2.3.1.2) are actually homogeneous with respect to the pairs (pi, p
′
i)

for any i ∈ V . This means pi may be scaled to have any length other than 1 so

that points pi are on different concentric spheres while the infinitesimal rigidity or

infinitesimal flexibility remains invariant. Geometrically, this is where the projective

geometry begins to appear. The matrix RS(G,p) captures a lot of information about

the infinitesimal rigidity of different types of frameworks, as we will see in Chapter

3.

It is important to remember that, not all infinitesimal motions arise as the

derivatives of real motions but all non-trivial finite motions do generate non-trivial

infinitesimal motions. This again suggests that infinitesimal rigidity implies rigidity.

Similar to the argument in Section 2.2.2 we can see that if p is a regular point of

RS(G,p) then infinitesimal rigidity is equivalent to rigidity in Sn.
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The equations in (2.3.1.2) can also be equivalently rewritten as

〈pj − pj , p′i − p′j〉 = 0 for all ij ∈ E,

〈pi, p′i〉 = 0 for all i ∈ V .
(2.3.1.4)

This correspondence appears in the rigidity matrix through simple row reductions

on the matrix RS(G,p) to obtain the matrix RS∗(G,p)

RS∗(G,p) =



pi pj
...

...

edge {i, j} . . . pi − pj . . . pj − pi . . .
...

...
...

vertex i . . . pi · · · 0 · · ·
...

...
...

vertex j . . . 0 · · · pj · · ·
...

...


. (2.3.1.5)

We summarize these observations with a proposition.

Proposition 2.3.1. There is an invertible (e + v) × (e + v) matrix T such that

T ×RS(G,p) = RS∗(G,p). As a result, they have isomorphic kernels.

There are two geometric perspectives related to the representation (2.3.1.4):

• It describes the rigidity (matrix) of a bar-joint framework in En+1 obtained

from (G,p) by connecting each of the v vertices of (G,p) with a new point o

(the origin) (see Figure 2.3) and then, restricting the infinitesimal motions to

those which fix the origin. In matrix notation, this is achieved by deleting the

columns corresponding to the origin from the rigidity matrix. This process

is called coning and the resulting framework is called the cone framework

denoted by (G ∗ o,p). The above matrix is also called the cone rigidity matrix

of the cone framework (G ∗ o,p). For more details on coning see [66], [54].
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G

o

G ∗ o

Figure 2.3: A graph G is coned to G ∗ o by a vertex o.

• It describes the rigidity matrix of a bar-joint framework (G,p) in En+1 sup-

ported on Sn (see [44]). Namely, the vertices are realized in Sn and restricted

to move in Sn but the bars connecting the vertices are not in Sn.

Let (G,p) be a framework in Sn. We may assume that no point pi, i ∈ V is in

the equator. We then move all the points pi = (xi,1, . . . , xi,n+1), xi,n+1 6= 0, along

their radial ray so that they lie in the hyperplane xn+1 = 1. In other words, we

replace pi by

p̃i = (xi,1/xi,n+1, . . . , xi,n/xi,n+1, 1),

in the rigidity matrix RS∗(G,p). So we obtain the following new system which is

equivalent to (2.3.1.2) and (2.3.1.4):

〈p̃j − p̃j , p̃′i − p̃′j〉 = 0 for all ij ∈ E,

〈p̃i, p̃′i〉 = 0 for all i ∈ V .
(2.3.1.6)

Note that p̃′i = 1
〈pi,en+1〉p

′
i where p′i ∈ TpiSn, i ∈ V are motions of (G,p) in Sn. In

fact, the point pi was scaled by the factor 1/〈pi, en+1〉 and therefore, its velocity p′i

is scaled by the same factor.

The resulting matrix, denoted byRA(G, p̃), is equivalent to (2.3.1.3) and (2.3.1.5):
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RA(G, p̃) =



p̃i p̃j
...

...

edge ij . . . p̃i − p̃j . . . p̃j − p̃i . . .
...

...
...

vertex i . . . p̃i . . . 0 . . .
...

...
...

vertex j . . . 0 . . . p̃j . . .
...

...


. (2.3.1.7)

In particular, (2.3.1.3), (2.3.1.5) and (2.3.1.7) have isomorphic kernels (see also [54]).

We can now go a step further and completely embed the framework (G, p̃) into

En while the infinitesimal rigidity or the infinitesimal flexibility of the framework is

maintained.

To see this, let π : Rn+1 → Rn, π(x1, . . . , xn, xn+1) = (x1, . . . , xn) be the natural

projection from Rn+1 into Rn. Let

π(p̃i) = p̂i,

and

π(p̃′i) = p̂′i,

for every i ∈ V . This describes a one-one correspondence, simultaneously between

both the points p̃i ↔ p̂i and their infinitesimal motions p̃′i ↔ p̂′i for every i ∈ V ,

considering 〈p̃i, p̃′i〉 = 0 and 〈p̃i, en+1〉 = 1 for every i ∈ V . If p̂′i is a motion at

p̂i in En then we can recover p̃′i by augmenting a new last component to p̂′i, i.e.,

p̃′i = (p̂′i,−〈p̂′i, p̂i〉) ∈ Rn+1.

In addition, this correspondence preserves trivial infinitesimal motions. Under

this correspondence, (2.3.1.6) in Rn+1 is equivalent to the following system in En:

〈p̂j − p̂j , p̂′i − p̂′j〉 = 0 for all ij ∈ E. (2.3.1.8)
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The coefficient matrix of (2.3.1.8) looks like:

R(G, p̂) =


p̂i p̂j
...

...

edge ij . . . p̂i − p̂j . . . p̂j − p̂i . . .
...

...

, (2.3.1.9)

which is the rigidity matrix of a bar-joint framework in En. Now the matrix R(G, p̂)

is of size e×nv. In fact, one column under each point and the v rows corresponding

to the vertices in (2.3.1.7), one for each point have been removed from (2.3.1.3).

The framework (G, p̂) in En is the projective image of (G,p) in Sn under the central

projection.

The transfer from (2.3.1.2) to (2.3.1.8) can be directly described by the following

bijections:

φ : Sn → En

φ(pi) = π
( 1

〈pi, en+1〉
pi

)
,

(2.3.1.10)

for every i ∈ V and

ψpi : TpiS
n → Rn

ψpi(p
′
i) = π

( 1

〈pi, en+1〉
p′i

)
,

(2.3.1.11)

for every i ∈ V 6. Figure 2.4 shows this correspondence for a single bar. It shows

how trivial infinitesimal motions are projected from sphere to those in the plane and

vice versa.

We, therefore, have the following important theorem.

Theorem 2.3.2. [52] Suppose (G,p) is a bar-joint framework in the upper hemi-

sphere Sn+ whose central projection into En is (G, p̂). Then (G,p) is infinitesimally

rigid in Sn if and only if (G, p̂) is infinitesimally rigid in En.

6The bijection ψ is not the differential of the smooth mapping φ in (2.3.1.10).
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ûj

ũi
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Figure 2.4: One-to-one correspondence of infinitesimal rigid motions on the upper hemi-

sphere S2+ and the plane.

2.4 Matroid Theory and Rigidity Matroids

Matroid theory is originated as a generalization of the concept of dependence and

independence in linear algebra and graph theory. The reader is referred to [20], [46]

for definition(s) of a matroid, basic properties and associated important concepts

such as submodular functions.

As was briefly explained before, generic rigidity has a combinatorial nature which

is explored through the rigidity matrix of the related frameworks at generic config-

urations. So matroid theory naturally arises from rigidity matrices of frameworks.

More specifically, when a graph is realized by a generic embedding p then the inde-

pendent rows of the rigidity matrix define independent sets of a matroid called the

rigidity matroid, see [23], [68]. So we can shift our focus from the framework to its

associated graph when p is generic. For example, we say some edges of a graph are

independent if the corresponding rows in the rigidity matrix are independent.

An important function associated to a matroid on a ground set S is the rank

function: for any T ⊆ S, r(T ) is the size of a maximal independent subset of T ,

which is well-defined. A matroid is uniquely determined by its rank function [46].
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A set of edges is called a basis of the rigidity matroid on the vertex set V of G if

it is a maximal independent set of the rigidity matroid on V . A graph whose edges

are the basis for the rigidity matroid is called an isostatic graph.

Now let’s consider some well-known rigidity matroids from bar-joint frameworks.

Suppose G is a graph and p embeds the vertices of G collinear as distinct points on

a line. This is a generic 1-dimensional framework in R. The rigidity matrix R(G,p)

is the matrix representation of the cycle matroid of the graph G, which is also the

1-rigidity matroid.

Proposition 2.4.1. [68] The 1-rigidity matroid of a graph G is the cycle matroid

of G. In particular:

(a) A set E′ of edges is independent if and only if it is a forest.

(b) A set E′ of edges is independent if and only if |F ′| ≤ ν(F ′) − 1 for every non-

empty F ′ ⊆ E′.

(c) A set E′ of edges is a basis for the 1-rigidity matroid on the vertex set of G if

and only if it is a spanning tree on the vertex set of G.

(d) A set E′ of edges is a basis for the 1-rigidity matroid on the vertex set of G if

and only if |E′| = v − 1 and |F ′| ≤ ν(F ′)− 1 for every non-empty F ′ ⊆ E′.

Given a graph G and a generic embedding p of the vertices of G in E2. The

2-rigidity matroid is characterized by Laman’s Theorem; a landmark theorem in the

theory of rigidity that gives a characterization of the generic rigidity of bar-joint

frameworks in E2.

Theorem 2.4.2 (Laman’s Theorem). [35] Let G be a graph G = (V,E) with v ≥ 2

vertices. Then G is a basis for the 2-rigidity matroid on v vertices if and only if

e = 2v − 3 and |E′| ≤ 2ν(E′)− 3 for every non-empty E′ ⊆ E.
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Figure 2.5: A graph with 4 maximal rigid components.

Crapo’s theorem [15] and Recski’s theorem [48] are another two equivalent com-

binatorial characterizations of isostatic graphs in the plane.

Each of these characterizations has an associated polynomial time algorithm to

verify whether a given graph is isostatic. The pebble game [36] is widely used for

this purpose.

The following result describes the rank function r of the 2-rigidity matroid.

Theorem 2.4.3. ([39], [23]) For a graph G = (V,E), the rank function of 2-rigidity

matroid is given by

r(E) = min

k∑
i=1

(2ν(Ei)− 3),

where the minimum is taken over all partitions {Ei}ki=1 of E. The minimum is

achieved when Ei’s are the maximal rigid components of G.

Example 2.4.1. Figure 2.5 shows a graph whose maximal rigid components consists

of 4 quadrilaterals with their diagonals R1, R2, R3 and R4 along with 8 single bars

Bi, 1 ≤ i ≤ 8. Since r(Ri) = 5 , i = 1, 2, 3, 4 and r(Bi) = 1, 1 ≤ i ≤ 8, by Theorem

2.4.3, we have

r(E) = 4r(R1) + 8r(B1) = 20 + 8 = 28.

So the graph has one degree of freedom:

(2v − 3)− r(E) = 2× 16− 3− 28 = 1.
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Figure 2.6: Double banana: a flexible framework in 3-space which is a circuit of the 3-rigidity

matroid with e = 3v − 6.

The following theorem gives a necessary condition for n-dimensional rigidity ma-

troid, which is just a consequence of the fact that the space of infinitesimal rigid

motions is of dimension
(
n+1

2

)
for (non-degenerate) configurations in En.

Theorem 2.4.4. ([68, p.237]) Let G be a graph with v ≥ n vertices. If E is an

independent set of edges on v vertices in the n-dimensional rigidity matroid then

|F | ≤ nν(F )−
(
n+ 1

2

)
for all F ⊆ E with ν(F ) ≥ n. (2.4.0.1)

An edge set F with |F | > nν(F )−
(
d+1

2

)
is dependent in the n-rigidity matroid.

Figure 6.14a shows an example of a graph with the set E of 18 edges and 8

vertices for which |E| = 3|V |−6 = 18 but E is generically dependent. The framework

is flexible under a rotation with the axis illustrated as a dotted line. This means

that the counting condition in the above theorem is not sufficient to characterize

independent (or dependent) sets in 3-rigidity matroid. At the moment, there is no

known characterization of isostatic graphs in 3-space or higher dimensions.
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2.5 Inductive constructions of rigid graphs

As we saw, a system of geometric constraints may define a matroid that describes

the generic rigidity of those constraints and therefore, defines the combinatorial

conditions on the associated graph that characterizes the rigidity of the system for

almost all realizations. One of the active topics of possible research in the Rigidity

Theory aims to develop inductive methods based on which the rigid graphs (in the

related matroids) can be constructed from simple ones such as a single bar, and

conversely.

Perhaps the Henneberg methods [29] is the most famous example of inductive

methods that were introduced to characterize 2-isostatic graphs; the graphs asso-

ciated to isostatic bar-joint frameworks in the plane. Henneberg methods give a

recipe for adding or removing a 2-valent or a 3-valent vertex from a given 2-isostatic

graph so that it yields a new 2-isostatic graph. Because the existence of 2-valent or

3-valent vertices for an isostatic graph G (unless it is single bar) is guaranteed by

the count e = 2v − 3, these methods are all that is needed:

1. We can simply remove (add) a 2-valent vertex from (to) an 2-isostatic graph

to obtain a new one (Figure 2.7a). This is called a 2-addition or 2-removal

move.

2. We can replace any edge e = {v1, v2} by a new 3-valent vertex v∗ that is

connected to v1 and v3 and any third vertex v3 in the graph. This operation

is called edge-split. Conversely, suppose G is a 2-isostatic graph with a 3-

valent vertex v∗ adjacent to three vertices v1, v2, v3 then for some edge e ∈

{v1v2, v1v3, v2v3}, the graph (G− v∗) + e is 2-isostatic (Figure 2.7b).

See [61] for a proof of the above claims and extensions. The operations 1 and 2

form the Henneberg moves. Therefore,

Proposition 2.5.1. [61] A graph with at least two vertices is 2-isostatic if and only

if it is obtained from a single bar by a sequence of Henneberg moves.

34



p

(a) Adding or removing a 2-valent

vertex preserves isostatic graphs in

the plane.

p

(b) An edge-split move and its re-

verse preserve isostatic graphs in the

plane.

Figure 2.7: Henneberg methods

Henneberg moves also preserve isostatic graphs in En (n-isostatic graphs). But

not all isostatic graphs are obtained from these moves only for n > 2. The reader

can see [45] for more inductive techniques of various types of graphs.

2.6 Point-line frameworks in the plane and their rigidity

matroid

A combinatorial characterization of the generic rigidity of point-line frameworks in

the plane is given in [32]. We review the following preliminary concepts from [32]

needed to state that result which will be used in the next chapter.

Definition 2.6.1. A point-line graph G = (VP ∪ VL, E) is a simple graph whose

vertex-set is partitioned into two subsets VP and VL called point-vertices and line-

vertices, respectively. This will naturally partition the set E into three subsets

EPP , EPL, ELL. The sets EPP , EPL and ELL are respectively, the set of the edges

of G with both their end-points in VP , the set of the edges of G with one end in VP

and the other in VL and the set of the edges of G with both their end-points in VL.

A point-line graph records the pairwise distance constraints between a pair of

points, a pair of a point and a line, and angle constraints between a pair of lines.

We use vp for |VP | and vl for |VL|. Point-vertices are labeled as p1, . . . , pvp and line-

vertices are labeled as `1, . . . , `vl when we draw point-line graphs. We often refer to
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a point pi by its index i as i ∈ VP and similarly, to a line `i as i ∈ VL. For simplicity,

we will denote a point-line graph by G = (V,E), if point-vertices and line-vertices

are understood.

Definition 2.6.2. A point-line framework (G,p, `) in the plane consists of a point-

line graph G = (V,E), an embedding p : VP → R2 of point-vertices into R2 and an

embedding ` : VL → E2 of line-vertices in VL into E2 such that `i = (ai, bi) if the

line `i has the equation x = aiy + bi, for every i ∈ VL.

If VL = φ, then (G,p, `) is just a bar-joint framework. In general, just like

bar-joint frameworks, a point-line framework (G,p, `) with v ≥ 2 could have a

3-dimensional trivial infinitesimal motions in the plane. A line in the plane has

two degrees of freedom just like a point: a rotational motion and a translation

perpendicular to the line. If (p, `) is viewed as a point of R2v, it is called a point-

line configuration in E2. A point-line configuration is called generic if the collection

of the coordinates {xi, yi}i∈VP
⋃
{ai}i∈VL of all points and lines are algebraically

independent over Q. Soon we will see why there is no concern about bi’s for the

lines i ∈ VL in a generic point-line configuration.

Given a point-line graph G, the rigidity map fG : R2v → Re with fG(p, `) =

(. . . , fij(p, `), . . . ), ij ∈ E, is defined as follows:

fij(p, `) =


(xi − xj)2 + (yi − yj)2 ij ∈ EPP ,

(xi − ajyi − bj)(1 + a2
j )
−1/2 ij ∈ EPL,

tan−1 ai − tan−1 aj ij ∈ ELL, i < j.

Using some elementary row-column operations (see [32]), the Jacobian dfG(p, `) can
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be simplified to the point-line rigidity matrix R(G,p, `):



ph pi `j `k

Point-point . . . xh − xi yh − yi . . . xi − xh yi − yh . . . 0 0 . . . 0 0
...

...
...

...
. . .

...
...

. . .
...

...

Line-line . . . 0 0 · · · 0 0 . . . 1 0 . . . −1 0
...

...
...

...
. . .

...
...

. . .
...

Point-line . . . 1 −aj . . . 0 0 . . . −xiaj − yi −1 . . . 0 0


.

A point-line framework is called infinitesimally rigid if the rank of R(G,p, `)

is 2v − 3. In other words, only the trivial infinitesimal motions (infinitesimal rigid

motions of the plane) are in the kernel of R(G,p, `). A framework that is not

infinitesimally rigid is called infinitesimally flexible. A set of edges of a point-line

graph is called independent if the corresponding rows in the rigidity matrixR(G,p, `)

are independent for some generic configuration (p, `) ∈ R2v. A point-line graph G

is called isostatic if e = 2v − 3 and E is independent.

Example 2.6.1. Figure 2.8a shows a point-line graph G1 with no point-vertex.

Lines `1, `2 and `3 are to maintain their mutual angles. But we know that this

geometrically is a dependent set of constraints because the angle sum in a triangle

is fixed, of course. Also, any generic realization of G as a point-line framework results

in an infinitesimally flexible and flexible framework as each line can independently

move parallel to itself, which is not a trivial motion. This gives rise to one degree

of freedom for the system. Obviously, G1 is rigid as a bar-joint graph though.

Figure 2.8b shows another point-line graph G2 = (V2, E2) with 3 line-vertices

`1, `2, `3 and 6 point-vertices p1, . . . , p6. A realization of G is also demonstrated in

Figure 2.8b. Point-line distance constraints are illustrated by dashed-lines. The

generic framework (G2,p, `) in Figure 2.8b is flexible because the lines `1, `2, `3 can

move parallel to themselves while all the constraints are maintained. The graph G2

as a bar-joint graph is rigid because, by Theorem 2.4.3, r(E2) = 5+5+5 = 15 = |E|

and also, 2|V2| − 3 = 15. So G2 is isostatic as a bar-joint framework.
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Figure 2.8: Examples of point-line graphs and their realizations.

For a set of edges E, νP (E) and νL(E) denote the number of point-vertices and

the number of line-vertices incident to the edges in E, respectively.

The following theorem gives a combinatorial characterization of isostatic point-

line graphs in the plane.

Theorem 2.6.1. [32] Given a point-line graph G = (V,E) on v vertices in the

plane. G is isostatic if and only if e = 2v − 3 and for every non-empty subset E′ of

E, we have

|E′| ≤
s∑
i=1

(2νP (Ai) + νL(Ai)− 2) + νL(E′)− 1,

for every partition {Ai}si=1 of E′.

It is shown in [32] that the point-line matroid is induced by the submodular

function ρ+ νL − 1 where

ρ(F ) = min
s∑
i=1

(2νP (Ai) + νL(Ai)− 2),
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for every partition {Ai}si=1 of φ 6= F ⊆ E. The authors also give a polynomial

algorithm to decide whether a given point-line graph is independent using pebble

game.

Theorem 2.6.1 can now detect that the graphs G1 and G2 are dependent. Con-

sider G1 = (V1, E1) and partition its edge-set into three single bars A1 = {`1, `2},

A2 = {`2, `3} and A3 = {`1, `3}. We have νP (Ai) = 0 and νL(Ai) = 2 for every

i = 1, 2, 3 but

3 = |E1| > νL(E1)− 1 = 2,

for this particular partition. Therefore E1 is not independent. It is easy to see that

the rank of E is 2 in the point-line rigidity matroid because two angle constraints

are independent.

For graph G2 = (V2, E2), partition its edge set into three subsets A1, A2, A3

where each Ai is one of the three quadrilaterals in the graph G. Considering

νP (Ai) = νL(Ai) = 2 for i = 1, 2, 3, we obtain

15 = |E2| > 3(4 + 2− 2) + 2 = 14,

for this partition. Therefore E2 is dependent.

2.7 Body-bar frameworks and their rigidity matroid

It often happens that a bar-joint framework consists of several rigid blocks in En

that are connected together in a certain way. These rigid blocks become rigid bodies

in En, which their size or their shape is not of our concern but the bodies must span

an affine space of dimension at least n−1 in En. All points attached to a rigid body

now move under a single rigid motion. This section reviews the methods and results

derived to study this type of frameworks.

As an example, the bar-joint framework with the graph shown in Figure 2.5 can

be considered a body-bar framework with 4 bodies cyclically connected with pairs
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Figure 2.9: A body-bar framework in plane.

of bars, see Figure 2.9. The shaded ellipses are symbols of rigid bodies in this thesis

(Chapter 6).

2.7.1 Center of infinitesimal rigid motions in En

In the context of body-bar frameworks, the set of points attached to a body move

under a single rigid motion which is the motion that the entire body undergoes.

Instead of a matrix representation of the rigid motions, we want a representation of

infinitesimal rigid motions in En that allows us to write the constraints linearly so

that it produces a rigidity matrix for the constraints. This representation is provided

through the exterior algebra and it also has geometric benefits specially in terms of

projective geometry and the incidence geometry of the constraints.

In the following we use the notation of Grassmann-Cayley algebra: the join

operator ∨ on points in Rn+1 instead of the exterior product ∧ in the exterior algebra

as Grassmann-Cayley algebra has another operation called meet ∧ to represent the

intersection of two spaces whose output is a smaller space (see [62]).

In general every r-extensor p1 ∨ · · · ∨ pr, pi ∈ Rn+1 uniquely defines a linear

subspace N generated by pi’s in Rn+1 of dimension r, if pi’s are independent. This

subspace can be given ‘coordinates’ by putting the row vectors pi’s in a r × (n+ 1)

matrix and listing all r × r minors in some order. There are ν =
(
n+1
r

)
of these

numbers, not simultaneously zero, that are called the Plücker coordinates of the

subspace N . They are unique to each subspace up to a non-zero scalar. So they

are considered points of the projective space Pν−1 but not any point. They have to
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satisfy some equations called Plücker relations. Therefore they belong to a projective

algebraic variety in Pν−1 called Grassmannian G(r, n+ 1) (see [58]).

Here, from [64] by N. White and W. Whiteley, we recall key tools, notations and

techniques we will need later for our problems in the plane.

Any rotation (including a translation) in En has a center (or axis) of dimension

n−2 in Pn, which is a subspace of dimension n−1 in Rn+1. In fact, for n−1 vectors

a1, . . . , an−1 in Rn+1, the (n − 1)-extensor Z = a1 ∨ a2 ∨ · · · ∨ an−1 represents an

infinitesimal rigid motion in En whose action at a point p = (p1, . . . , pn, 1) is Z ∨ p.

This is called the motion at p induced by Z. The (n − 1)-extensor Z = a1 ∨ a2 ∨

· · · ∨ an−1 is referred to as the center of the motion7. In fact, the hyperplane Z ∨ p

in Rn+1 has the Plücker coordinates in the form of a (n+1)-vector (v1, . . . , vn, vn+1)

where (v1, . . . , vn) is the instantaneous velocity (or instantaneous motion) at the

point (p1, . . . , pn) in En and vn+1 = −〈(v1, . . . , vn), (p1, . . . , pn)〉. This is because

det[a1, . . . , an−1, p, p] = 〈(v1, . . . , vn, vn+1), p〉 = 0.

Note that the above equation also explains by which order the Plücker coordinates

(v1, . . . , vn, vn+1) could be ordered.

If Z is in the hyperplane at infinity in Pn then Z represents the center of an

instantaneous translation in En. It determines a (n − 1)-dimensional subspace in

the hyperplane at infinity that, in turn, dually determines a unique vector v ∈ Rn,

which is an instantaneous translation in the direction of v in En. In fact, it can be

easily checked that the velocity induced by Z at any two point p and q in En are

identical to v.

In E2, the center of an infinitesimal rigid motion is a 3-vector c = p ∨ q for two

points p, q ∈ P2. In E3, the center of a typical infinitesimal rigid motion is a 6-vector

c = p ∨ q for two points p, q ∈ P3. Also, this is a screw in the space with the axis

7The motion Z′ = αZ where α is a scalar has the same center as Z but different angular velocity

if Z is a rotation. This can be accurately determined after an appropriate normalization.
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p ∨ q. For example, a screw whose axis is the z-axis is s = (0, 0, 0, 1) ∨ (0, 0, 1, 0) =

(0, 0, 0, 0, 0,−1) in the standard order 12, 13, 14, 23, 24, 34 where ij means the minor

of columns ij. The motion of s at a point p = (p1, p2, p3, 1) is s ∨ p = (p2,−p1, 0, 0)

in the order 234,−134, 124,−123.

2.7.2 Infinitesimal rigidity of body-bar frameworks in En

Let B1 and B2 are two rigid bodies in En and p, q are points on B1 and B2,

respectively. Suppose p and q are connected by a bar, namely they are constrained

to maintain their distance in En. Let u and v are infinitesimal motions in En that

respect this constraint, namely, vectors in Rn such that 〈u − v, p − q〉 = 0. Since

points p and q are part of rigid bodies, their motions are induced by Z1 and Z2, the

centers of infinitesimal motions of B1 and B2 , respectively. Considering p and q

in their homogeneous coordinates, we then have Z1 ∨ p = (u,−〈u, p〉) and similarly,

Z2 ∨ q = (u,−〈u, q〉) as explained above. Therefore Z1 ∨ p ∨ q = det[Z1, p, q] =

〈Z1 ∨ p, q〉. Thus,

0 = 〈u− v, p− q〉 = −Z1 ∨ p ∨ q − Z2 ∨ q ∨ p = −Z1 ∨ (p ∨ q) + Z2 ∨ (p ∨ q),

(2.7.2.1)

Note that Z1 ∨ (p ∨ q) or Z2 ∨ (p ∨ q) are determinants that two of their rows

are p and q. We expand these determinants with respect to two rows p and q

we can write Z1 ∨ p ∨ q = 〈Z∗1 , p ∨ q〉 where Z∗1 is viewed as a
(
n+1
n−1

)
-vector with

such an order of coordinates that when we take its dot-product to p ∨ q we obtain

det[Z1, p, q]. In fact, if Z = p1 ∨ · · · ∨ pn−1 is an (n − 1)-extensor then Z∗ =

(P12,−P13, . . . , (−1)i+j−1Pij , . . . ) where Pij is the (n− 1)× (n− 1) minor obtained

by omitting columns i and j from the matrix whose rows are p1, . . . , pn−1. The

operator ∗ as described above is well defined, bijective and linear. Therefore (2.7.2.2)

can written as

0 = 〈u− v, p− q〉 = 〈Z∗1 − Z∗2 , p ∨ q〉. (2.7.2.2)
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Note that p ∨ q also determines the line through the points p and q in En.

Definition 2.7.1. [64] A body-bar framework in En is a finite collection of rigid

bodies B1, . . . , Bv and some rigid bars {pi,e, pj,e}ei=1 for some e ∈ N, connecting

pairs of distinct points pi,e, pj,e on two bodies Bi and Bj for some 1 ≤ i, j ≤ v.

Associated to a body-bar framework, there is a finite multigraph G = (V,E), with

no loops, and with vertices corresponding to each body and edges to the bars. This

multigraph G is called a body-bar graph. Any body-bar graph may be realized as a

body-bar framework by assigning an ordered pair of distinct points in Rn+1 to each

edge e ∈ E. A body-bar framework with multigraph G and an embedding of edges

p as just described, is denoted by (G,p).

Note that each bar {pi,e, pj,e} determines a 2-extensor or a line pi,e ∨ pj,e in

En. As (2.7.2.2) indicates, the constraint corresponding to the bar {pi,e, pj,e} only

depends on the line pi,e∨pj,e so that the pair pi,e, pj,e could be replaced by any other

pairs of distinct points on the line pi,e ∨ pj,e without changing the constraint.

An infinitesimal motion of a body-bar framework (G,p) is an assignment of

centers Zi as (n − 1)-extensors to each body Bi so that the length of each bar

e = {pi,e, pj,e} with pi,e ∈ Bi and pj,e ∈ Bj for two bodies Bi, Bj is infinitesimally

preserved, i.e. 〈Z∗i − Z∗j , pi,e ∨ pj,e〉 = 0. This defines a system of linear equations

of |E| = e equations and v
(
n+1

2

)
unknown, that is Zi, 1 ≤ i ≤ v. The corresponding

body-bar rigidity matrix has the following format:

Rb(G,p) =


Bi Bj
...

...

edge e . . . pi,e ∨ pj,e . . . −pi,e ∨ pj,e . . .
...

...

. (2.7.2.3)

The rigidity matrix Rb(G,p) has one row for each bar (or edge of G) and
(
n+1

2

)
columns per body, bodies are indexed by some order. The kernel of Rb(G,p) is of

the form (Z∗1 , . . . , Z
∗
v ) where Zi is the center of instantaneous motion of the body

Bi.
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A body-bar framework (G,p) is called infinitesimally rigid if Z1 = · · · = Zv = Z,

where Z is the center of an infinitesimal rigid motion of Rn.

Therefore dim(ker(Rb(G,p))) =
(
n+1

2

)
. A set of edges of G are called indepen-

dent if the corresponding rows in the rigidity matrix are independent for almost all

realizations p of G. A body-bar graph G is called isostatic if it has e =
(
n+1

2

)
(v−1)

independent edges.

To analyze the combinatorics of the independence of the rows of Rb(G,p), a

more general matrix pattern is considered in [64] that includes that of body-bar

frameworks as a special case.

Definition 2.7.2. [64] Let G be a multigraph with no loops. A k-frame matrix for

G consists of one row for each edge and k columns for each vertex, where if {u, v} is

an edge of G then the row for e has a k-tuple xe in the columns for u and −xe in the

columns for v, and 0 in all other columns. For a particular choice of xe, e ∈ E via

an embedding p : E → Rk, p(e) = xe, the k-frame matrix is denoted by M(G,p)

and is called a k-frame of (G,p). If (G,p) has distinct algebraically independent

coordinates for all entries in the xe’s, we call (G,p) a generic k-frame for G.

Abstractly, a motion of a k-frame (G,p) is defined to be a vector Z = (Z1, . . . , Zv) ∈

Rkv of length kv which is orthogonal to the row space of the matrix M(G,p). A

trivial motion of a k-frame is a motion for which Z1 = · · · = Zv. A k-frame is called

rigid if it has only trivial motions. A k-frame is k-isostatic if every motion of it is

trivial and deleting any edge results in a non-trivial motion for the k-frame.

Theorem 2.7.1. [64] Let G be a multigraph. The following are equivalent:

(a) A k-frame of G is k-isostatic.

(b) There is a set of k edge-disjoint spanning trees which covers G.

(c) The rigidity matrix is the matroid union of k cycle matroids of G.
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B1 B2

(a) A flexible body-bar graph with

one degree of freedom.

B4 B3

B1 B2

(b) A generically rigid body-bar

graph.

Figure 2.10: A body-bar graph in the plane (a) and a rigid graph derived from it (b) with

3 spanning trees on the vertices.

(d) e = k(v − 1) and for any non-empty subset E′ ⊆ E,

|E′| ≤ k(|V (E′)| − 1).

We note that a body-bar framework is a special case of a k-frame when k =
(
n+1

2

)
and xe is a 2-extensor for every e ∈ E. The combinatorial characterization of the

rigidity of body-bar frameworks in En was first given by Tay [60] using inductive

techniques. The equivalence of (b) and (d) are due to Tutte and Nash-Williams [43].

Example 2.7.1. Consider the body-bar framework in Figure 2.9. The associated

body-bar graph G is shown in Figure 2.10. In the plane, we have k = 3. For the

multigraph G, v = 4. So we need 3 × (4 − 1) = 9 edges (constraints) to possibly

have a rigid framework. Therefore, by Theorem 2.7.1, the framework is not rigid

as it is underconstrained. The framework has one degree of freedom as predicted

using Theorem 2.4.3 in Example 2.4.1. Figure 2.10b shows that adding an extra

edge will result in a rigid framework. An edge-disjoint union of 3 spanning trees is

shown in the graph as dotted edges, dashed edges and ordinary edges. The extra

edge could be placed anywhere. The rigidity of this new framework can be verified

as a bar-joint framework, as well.
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2.7.3 Body-cad constraints in E3

Motivated by constraint-based CAD software, a broader set of geometric constraints

on rigid bodies, other than only the distance constraints on distinct points, has been

introduced in [25] by A. Lee-St.John et al. and the corresponding rigidity matrix

was developed for 3-dimensional structures. These constraints include, not only

points but more diverse geometric objects in 3-space such as lines and planes that

are affixed to different rigid bodies:

1. Point-point constraints, which include distance constraints on distinct points of

different bodies (as it is for body-bar frameworks) and coincidence constraints

on two coincident points in 3-space that is, the two coincident points each

attached to two different bodies are to remain coincident.

2. Point-line constraints including distance or coincidence constraints on pairs

of point-lines attached to a pair of bodies in 3-space.

3. Line-line constraints including parallel, perpendicular, fixed angular, coinci-

dence and distance constraints on pairs of lines attached to pair of bodies.

These constraints are not identical in 3-space.

4. Point-plane constraints including distance or coincidence constraints on pairs

of point-planes attached to pairs of bodies in 3-space.

5. Line-plane constraints including parallel, perpendicular, fixed angular, coin-

cidence and distance constraints on pairs of lines-planes attached to pairs of

bodies in 3-space.

6. Plane-plane constraints including parallel, perpendicular, fixed angular, coin-

cidence and distance constraints on pairs of planes attached to pairs of bodies

in 3-space.

These constraints are named body-cad constraints. We refer the reader to [25] for

the details on the algebraic expression of the constraints and examples.
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For n = 3, the centers of infinitesimal motions are 2-extensors, called screws in

E3 indicating the axis of the instantaneous motion of a rigid body. The dimension of

the linear space of infinitesimal rigid motions in E3 is 6. So, with v bodies, the rank

of the rigidity matrix of a body-cad system is at most 6(v − 1). As it is for body-

bar frameworks, a body-cad framework is infinitesimally rigid if all the infinitesimal

motions of the system are trivial. Namely, the only solution (infinitesimal motions)

of the system are trivial motions i.e., all bodies have the same center of motion.

A body-cad system is infinitesimally rigid if the rank of its rigidity matrix is 6(v−1);

it is called isostatic (or minimally rigid) if it is infinitesimally rigid and its associ-

ated graph has 6(v − 1) edges.

Angular constraints may incluse parallel, perpendicular or arbitrary fixed angu-

lar constraints such as line-line non-parallel fixed angular, line-line parallel, line-line

perpendicular line-plane parallel, line-plane perpendicular, line-plane fixed angular,

plane-plane parallel, plane-plane perpendicular, plane-plane fixed angular although

all of these reduce to line-line non-parallel fixed angular or line-line parallel using

the normals to the planes.

It is important to know that angular constraints exhibit a rather special be-

haviour than distance constraints. We shall shed some light on the geometric rea-

sons of this in this thesis. At the first place, this difference is visible from the

rigidity matrix of the constraints. In fact, a pattern of ‘generic zeros’ in the rows

involving angular constraints in the rigidity matrix explicitly reveals the difference.

These rows in the matrix and the corresponding edges in the body-cad graph G

are coloured red and the rest of edges are black to emphasize the difference. So

a body-cad graph generally has two types of edges: red R and black B. This is

denoted by G = (V,R ∪B).

We should also note that some of the above constraints need more than one

equation to be expressed algebraically. So they may occupy more than one row in
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the rigidity matrix or correspond to more than one edge in the graph. The constraint

corresponding to one row in the rigidity matrix or equivalently, one edge in G are

called primitive. For example, a line-line coincidence constraint in E3 corresponds to

4 primitive constraints: 2 red (angular) constraints to preserve parallel lines and 2

black constraints to maintain coincidence of a point of one line on the other line (see

[25]). More explicitly, a line-line coincidence constraint is composed of a line-line

parallel and a point-line coincidence constraint each of which corresponds to two

algebraic constraints or two rows in the rigidity matrix.

The following theorem by A. Lee-St.John and J. Sidman gives a combinatorial

characterization of generic rigidity for a body-cad system in E3. The proof is based

on the technique employed in [64].

Theorem 2.7.2. [38] A 3-dimensional body-cad framework with no point-point co-

incidence constraints is generically minimally rigid if and only if in its associated

primitive cad graph G = (V,R ∪ B) there is some set of black edges B′ ⊆ B such

that

1. B\B′ is the edge-disjoint union of 3 spanning trees, and

2. R ∪B′ is the edge-disjoint union of 3 spanning trees.

A point-point coincidence constraint between two bodies in 3-space imposes 3

black constraints on two bodies. Double banana in Figure 6.14a is an example of

two bodies with two point-point coincidence constraints, which is generically flexible

in E3 while its graph satisfies the criterion in the above theorem. So point-point

coincidence constraints in 3D are excluded in the combinatorial criterion of the

generic rigidity.

In Chapter 6, we will develop cad constraints in the plane and will see that

the analogous 2D combinatorial characterization is true in the plane even when

point-point coincidences are included.
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Chapter 3

Rigidity of point-hyperplane

frameworks

In this chapter we define point-hyperplane frameworks and study their geometric

rigidity. We will show that the first-order rigidity of spherical frameworks in Sn

with some joints on the ‘equator’ are equivalent to the first-order rigidity of point-

hyperplane frameworks in En. In terms of projective geometry, this provides a

one-to-one geometric correspondence between the infinitesimal rigidity of a frame-

work in Pn with some joints at infinity and the infinitesimal rigidity of a class of

point-hyperplane frameworks in the Euclidean space En. In other words, this corre-

spondence gives a Euclidean interpretation of the bar-joint frameworks in Pn with

some joints at infinity.

Using projective transformations, it will be shown that the first-order rigidity

of a point-hyperplane framework in En is equivalent to the first-order rigidity of

a bar-joint framework with a set of joints (corresponding to the hyperplanes) in a

hyperplane in En (see also [17]). In particular, this establishes the equivalence of

the first-order rigidity of point-line frameworks in the plane and that of bar-joint

frameworks in E2 with some collinear joints. Since a combinatorial characteriza-
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tion of the ‘generic’ rigidity of point-line frameworks in E2 has been recently given,

the mentioned correspondence also provides a combinatorial characterization of the

‘generic’ rigidity of bar-joint frameworks with some collinear joints in the plane.

As indicated, some results of this chapter are coauthored in [17].

3.1 Bar-joint frameworks with some joints on the equa-

tor in Sn

In Chapter 2 we described bar-joint frameworks in the upper hemispherical space

Sn+ (or equivalently Sn−) and Theorem 2.3.2 showed that their infinitesimal rigidity

is equivalent to that of the bar-joint framework in En obtained by the central pro-

jection of the spherical configuration into the affine chart containing the Euclidean

space En; the affine chart of ‘finite points’ in the language of projective geometry.

However, the correspondence (2.3.1.10)–(2.3.1.11) in Section 2.3 implicitly excludes

the points in the ‘hyperplane at infinity’ in Pn (or in the equator in Sn) because

obviously, there is no point in En corresponding to a point in the hyperplane at

infinity under the central projection. But what if some vertices fall into the chart

of the ‘points at infinity’? what does this situation correspond to in a Euclidean

space? We will answer this question in this chapter.

We denote the affine hyperplane xn+1 = 1 in Rn+1 by An. This hyperplane is

the chart of finite points in the projective space Pn, which may be taken identical

to En. The point N = (0, 0, . . . , 0, 1) ∈ Rn+1 is the north pole of Sn. The equator

Veq of Sn is the intersection of the hyperplane

H∞ = {x ∈ Rn+1 : 〈x,N〉 = 0},

in Rn+1 with Sn. The hyperplane H∞, the hyperplane at infinity in Pn, is the chart

of the points at infinity in Pn.
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Suppose (G,p) is a bar-joint framework in Sn with some points on the equator

Veq. As explained in Chapter 2, a first-order motion of the framework (G,p) is

p′ = (p′i)i∈V ∈ R(n+1)v such that p′i ∈ TpiSn for every i ∈ V and

〈pj , p′i〉+ 〈pi, p′j〉 = 0 for all ij ∈ E,

〈pi, p′i〉 = 0 for all i ∈ V .
(3.1.0.1)

The framework (G,p) in Sn is called infinitesimally rigid if (3.1.0.1) only has trivial

solutions, namely, all the solutions of (3.1.0.1) are of the form p′i = Spi for every

i ∈ V and some skew-symmetric (n+1)×(n+1) matrix. In fact, the trivial motions

are the infinitesimal rigid motions of the framework (G,p).

The set of all first-order motions of a framework (G,p) forms a linear space in

R(n+1)v, a subspace of which is the space of trivial motions denoted by T (p):

T (p) = {(p′1, . . . , p′v) ∈
v∏
i=1

TpiS
n | p′i = Spi, S

t = −S, S ∈M(n+1)×(n+1)}.

If the points p1, . . . , pv of the configuration p in Sn generate a linear subspace of

Rn+1 of dimension at least n then dim T (p) =
(
n+1

2

)
, which is the dimension of

the linear space of infinitesimal rotations in Rn+1 or equivalently, the dimension of

the space of (n + 1) × (n + 1) skew-symmetric matrices. The coefficient matrix of

(3.1.0.1) is called the rigidity matrix of the framework (G,p) and we denoted it by

RS(G,p) in Chapter 2.

As one can easily see, (3.1.0.1) is invariant under scaling the pairs (pi, p
′
i), for

every i ∈ V . In particular, if we replace a point pi with its antipodal −pi then the

infinitesimal rigidity will be preserved.

The system (3.1.0.1) associated to a framework (G,p) in Sn can be equivalently

expressed as:

〈p̃i − p̃j , p̃′i − p̃′j〉 = 0 ij ∈ E,

〈p̃i, p̃′i〉 = 0 i ∈ V.
(3.1.0.2)
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Figure 3.1: The transfer of velocities along the radial rays.

where

p̃i =
1

〈en+1, pi〉
pi for every pi /∈ Veq, (3.1.0.3)

p̃i = pi for every pi ∈ Veq. (3.1.0.4)

The natural bijection between the solution space of (3.1.0.1) and (3.1.0.2) is the

following:

p̃′i =
1

〈en+1, pi〉
p′i for every pi /∈ Veq, (3.1.0.5)

p̃′i = p′i for every pi ∈ Veq, (3.1.0.6)

if p′i is a motion at pi. That is, the motions will be rescaled by the same factor as

the points were rescaled. Note that (3.1.0.3)–(3.1.0.6) define invertible mappings so

that we can recover the spherical system (3.1.0.1) from (3.1.0.2) using the following

inverses:

pi =
1

‖p̃i‖
p̃i, (3.1.0.7)

p′i =
1

‖p̃i‖
p̃′i, (3.1.0.8)

for all points i ∈ V . Intuitively, the points that are not in the equator Veq have been

projected to into the affine hyperplane xn+1 = 1 (or En) but the points in Veq and

their motions simply remain unchanged under the above transformation (see Figure

3.1). In addition, the points in Veq (or points at infinity) could also be arbitrarily
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rescaled. In fact, p̃ may also be viewed as a configuration in the projective space

Pn for which the points p̃i, pi /∈ Veq are finite points as their last coordinate is non-

zero while p̃i, pi ∈ Veq are the points at infinity as their last coordinate is zero, in

their homogeneous coordinates. This makes sense if we recall that the metric of

the projective space is defined the same as that of a spherical space except that

the points need not to have a unit length [51]. We denote the coefficient matrix of

(3.1.0.2) by RP(G, p̃):

finite points points at infinity

p̃h p̃i p̃j p̃k





...
...

finite-finite . . . p̃h − p̃i . . . p̃i − p̃h . . . 0
...

...
...

...

infinity-infinity 0 . . . p̃j − p̃k . . . p̃k − p̃j . . .
...

...
...

...

finite-infinity 0 p̃i − p̃j p̃j − p̃i 0
...

...
...

...
...

...

finite vertices . . . p̃h . . . 0 . . . 0 . . . 0 . . .
...

...
...

...
...

vertices at infinity . . . 0 . . . 0 . . . 0 . . . p̃k . . .
...

...
...

...
...

. (3.1.0.9)

From (3.1.0.5)–(3.1.0.8), we have the following proposition.

Proposition 3.1.1. The systems (3.1.0.1) and (3.1.0.2) are equivalent with iso-

morphic solution spaces and isomorphic spaces of trivial solutions.

According to the column operations we did to obtainRP(G, p̃) fromRS(G,p), the

bijective transformation that maps the kernel of RS(G,p) to the kernel of RP(G, p̃)
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is the (n+ 1)v × (n+ 1)v matrix with the block form

Finite Joints Infinite Joints

Q =



z−1
1 I

(n+1)×(n+1) 0

0. . .

0 z−1
vf
I
(n+1)×(n+1)

I
(n+1)×(n+1)

0
0

. . .

0 I
(n+1)×(n+1)



.

The blocks of the identity matrices I(n+1)×(n+1) in Q corresponding to the joints at

infinity emphasize that the velocities assigned to the joints at infinity (“velocities at

infinity”) are the same as that of the joints of the associated spherical framework

located on the equator.

The spherical rigidity matrix RS(G,p) and the matrix RP(G, p̃) equivalently

describe the infinitesimal rigidity of a spherical framework (G,p), however the spe-

cial similarity in the appearance of the matrix RP(G, p̃) to the rigidity matrix of

a bar-joint framework in En makes it more suitable for our purposes in the next

section.

3.2 Point-hyperplane frameworks in En

Informally, a point-hyperplane framework is a collection of points and hyperplanes

in En with pairwise distance constraints on some pairs of points, points and hyper-

planes and angle constraints on some pairs of hyperplanes. Namely, the distance

or the angle between the appropriate pairs are to remain fixed. A graph can be
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employed to show which pairs of points or hyperplanes are constrained.

A point-hyperplane graph G = (V,E) is a simple, finite, undirected graph whose

vertex set V is composed of an ordered subset VP of vertices corresponding to the

points (point-vertices) and an ordered subset VL of vertices corresponding to the

hyperplanes (hyperplane-vertices); its edge set E is the disjoint union of the subsets

EPP , EPL and ELL where

• EPP is the set of the edges incident to pairs of point-vertices. These edges

represent the distance constraints on those pairs of points.

• EPL is the set of the edges with one end-point in VP (a point-vertex) and

the other end-point in VL (a hyperplane-vertex). These edges represent the

distance constraints on point-hyperplane pairs.

• ELL is the set of the edges incident to pairs of hyperplane-vertices. These

edges represent the angle constraint on those pairs of hyperplanes.

In the case VL = φ, a point-hyperplane graph becomes a bar-joint graph.

Notation 1. Given a point-hyperplane graph G = (V,E), we use |V | = v for the

total number of vertices, |VP | = vp for the number of point-vertices, |VL| = vl for

the number of hyperplane-vertices and |E| = e for the number of the edges of G.

The ordering on vertices and edges is arbitrary. The vertices are indexed by natural

numbers VP = {1, . . . , vp} for points and VL = {1, . . . , vl} for hyperplanes but we

also use pi for the ith point in VP and `i for the ith hyperplane in VL. The edge

{i, j} in E is also denoted by ij ∈ E.

A point-hyperplane framework (G,p, `) consists of a point-hyperplane graph G,

an embedding of the point-vertices p : VP → Rn with p(i) = pi = (xi,1, . . . , xi,n),

i ∈ VP into Rn, along with a parametrization of hyperplanes ` : VL → Rn with

`(i) = `i = (ai,1, . . . , ai,n) ∈ Rn for every i ∈ VL such that the hyperplane `i has
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the equation x1 + ai,1x2 + · · · + ai,n−1xn + ai,n = 0, in En. This representation of

the hyperplanes assumes that no hyperplane has a normal vector perpendicular to

the x1-axis in Rn. This is no loss of generality because we may always rotate the

entire framework so that the normals to the hyperplanes are not perpendicular to

the x1-axis. The pair (p, `) just described, is called a point-hyperplane configuration

in En.

To start studying the rigidity of point-hyperplane constraints, we first introduce

the algebraic expressions of the constraints. Given a point-hyperplane graph G =

(V,E), the rigidity map of G is a smooth function fG : Rnvp × Rnvl → Re with

fG(p, `) = (. . . , fij(p, `), . . . ) where

fij(p, `) = ‖pi − pj‖2 ij ∈ EPP ,

fij(p, `) =
xi,1 + aj,1xi,2 + · · ·+ aj,n−1xi,n + aj,n

(1 + a2
j,1 + · · ·+ a2

j,n−1)1/2
ij ∈ EPL,

fij(p, `) = cos−1 1 + ai,1aj,1 + · · ·+ ai,n−1aj,n−1

(1 + a2
i,1 + · · ·+ a2

i,n−1)1/2(1 + a2
j,1 + . . .+ a2

j,n−1)1/2
ij ∈ ELL.

(3.2.0.1)

for every (p, `) ∈ Rnvp ×Rnvl . For every ij ∈ E, the expression for fij(p, `) at (p, `)

is:

• the squared distance between points pi and pj if ij ∈ EPP ,

• the signed distance between point pi and hyperplane `j if ij ∈ EPL,

• the angle1 between hyperplanes `i and `j if ij ∈ ELL.

Given a point-hyperplane framework (G,p, `), we can calculate the differential

dfG(p, `) of the rigidity map fG at the configuration (p, `). After some calculations

1The angle between two hyperplanes is defined as the angle between their normal vectors.
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and simplifications (see below), we obtain the following e× nv matrix:



ph pi `j `k

point-point . . . ph − pi . . . pi − ph . . . 0 . . . 0 . . .
...

...
...

...

hyperplane-hyperplane . . . 0 . . . 0 . . . Θjk Θkj . . .
...

...
...

...

point-hyperplane . . . Hj . . . 0 . . . Dhj . . . 0 . . .


, (3.2.0.2)

where

Hj =(1, aj,2, . . . , aj,n−1) j ∈ VL,

‖Hj‖ =(1 + a2
j,2 + · · ·+ a2

j,n−1)1/2 j ∈ VL,

Dhj =(xh,2‖Hj‖2 − aj,1αhj , . . . , xh,n‖Hj‖2 − aj,n−1αhj , 1) h ∈ VP , j ∈ VL,

Θjk =− (ak,1‖Hj‖2 − aj,1θjk, . . . , ak,n−1‖Hj‖2 − aj,n−1θjk, 0) j, k ∈ VL,

αhj =xh,1 + aj,1xh,2 + · · ·+ aj,n−1xh,n h ∈ VP , j ∈ VL,

θjk =1 + aj,1ak,1 + · · ·+ aj,n−1ak,n−1 j, k ∈ VL.

We denote the matrix (3.2.0.2) by RE(G,p, `). This matrix is obtained from the

Jacobian matrix as follows. Multiply a point-hyperplane row hj, h ∈ Vp, j ∈ VL by

‖Hj‖. Multiply a hyperplane-hyperplane row jk by

‖Hj‖‖Hk‖

√
1−

θ2
jk

‖Hj‖2‖Hk‖2
.

For every i ∈ VL, multiply the first n−1 columns under the hyperplane `i by ‖Hi‖2.

Finally, for every column l, l = 1, . . . , n−1 under a hyperplane `j , j ∈ VL, the scalar

multiple aj,laj,n of the last column is added to the lth column. Consequently, the

Jacobian matrix of the rigidity map fH defined above, and the matrix (3.2.0.2) are

equi-rank for any subgraph H of G.
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It is vital to note that the latter column operation makes the last coordinate

ai,n of each hyperplane `i = (ai,1, . . . , ai,n) disappear from the Jacobian matrix.

Therefore ai,n, i ∈ VL does not appear in (3.2.0.2). As we will see, geometrically,

this means that the rigidity of a point-hyperplane configuration in En is invariant

under any translation of any individual hyperplane in the configuration.

Given a point-hyperplane framework (G,p, `) in En, we say a point-hyperplane

framework is equivalent to (G,p, `) if it is obtained from (G,p, `) by translating

some hyperplanes `i, i ∈ VL. So every framework (G,p, `) is equivalent to a fam-

ily of point-hyperplane frameworks. In particular, any framework (G,p, `) in En is

equivalent to the framework (G,p, `◦) where `◦i = (ai,1, . . . , ai,n, 0) for every i ∈ VL.

`◦i is the hyperplane parallel to `i through the origin.

Given a point-hyperplane configuration (p, `) in En, let p̃i = (xi,1, . . . , xn,1, 1)

where pi = (xi,1, . . . , xn,1) for every i ∈ VP and ˜̀
i = (~̀i, 0) ∈ Rn+1 for every i ∈ VL

where ~̀i = (1, ai,1, . . . , ai,n−1) is the orientation of the hyperplane `i whose equation

is x1+ai,1x2+· · ·+ai,n−1xn+ai,n = 0. We say a configuration (p, `) is non-degenerate

if p̃1, . . . , p̃vp and ˜̀
1, . . . , ˜̀

vl generate a vector space of dimension at least n in Rn+1.

We define dim (p, `) = dim 〈p̃1, . . . , p̃vp ,
˜̀
1, . . . , ˜̀

vl〉 − 1. A non-degenerate point-

hyperplane configuration in En has a full dimension of infinitesimal rigid motions

that are not all identity on the configuration. If the vector space spanned by

p̃1, . . . , p̃vp and ˜̀
1, . . . , ˜̀

vl is of dimension m < n then the configuration is called

degenerate. A single point or any number of parallel lines in the plane are each

degenerate configurations in E2. A point and a set of parallel planes in E3 form

a degenerate point-plane configuration. For degenerate configurations, the dimen-

sion of rigid motions of the configuration (that are not identity when restricted to

the configuration) is not full; it is less than n(n + 1)/2. We always assume that

point-hyperplane configurations are non-degenerate unless otherwise is specified.

We say that a point-hyperplane framework (G,p, `) is infinitesimally rigid if the
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rank of (3.2.0.2) is nv −
(
n+1

2

)
; it is independent if the rank of (3.2.0.2) is e; it is

generic if the set of the coordinates

∪1≤i≤vp{xi,1, . . . , xi,n}
⋃
∪1≤j≤vl{aj,1, . . . , aj,n−1}

are algebraically independent.

As one might have already noticed, the matrix (3.2.0.2) is complicated and not

intuitive enough to work with. In the next section, we will give a geometric view of

(3.2.0.2) by showing it is equivalent to (3.1.0.9) as far as the infinitesimal rigidity of

point-hyperplane frameworks is concerned.

3.3 Point-hyperplane frameworks vs bar-joint frameworks

in En

Suppose (G,p, `) is a point-hyperplane framework in En where p = (pi)i∈VP , pi =

(xi,1, ..., xi,n) and `i = (ai,1, . . . , ai,n) for hyperplanes i ∈ VL with equations x1 +

ai,1x2 + · · ·+, ai,n−1xn + ai,n = 0.

Let

p̃i = (xi,1, ..., xi,n, 1) for all points pi, i ∈ VP ,

p̃i = (1, ai,1, ..., ai,n−1, 0) for all hyperplanes `i = (ai,1, . . . , ai,n), i ∈ VL.

(3.3.0.1)

More clearly, p̃i gives the affine coordinates of points pi in the affine hyperplane

xi,n+1 = 1 for every i ∈ VP while p̃i is the coordinates of a ‘point at infinity’, which

is determined by a normal vector to each hyperplane i ∈ VL.

From Proposition 3.1.1, the matrix RP(G, p̃) detects the infinitesimal rigidity (or

flexibility) of the spherical framework (G, p̂) as well as RS(G, p̂) where p̂ is given

by the following:

p̂i = p̃i/‖p̃i‖ for every i ∈ V ,

p̂′i = p̃′i/‖p̃i‖ for every i ∈ V ,
(3.3.0.2)
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that rescale (p̃i)i∈V and their motions (p̃′i)i∈V by the same factor 1
‖p̃i‖ for each i ∈ V .

Under (3.3.0.2), the points p̃i = (1, ai,1, . . . , ai,n−1, 0), i ∈ VL corresponding to

the hyperplane `i, are being projected to points p̂i in the equator Veq of Sn. How-

ever, points p̂i’s do not belong to Veq if i ∈ VP .

The next theorem relates the infinitesimal rigidity of a point-hyperplane frame-

work (G,p, `) in En to that of a bar-joint framework (G, p̂) in Sn.

Theorem 3.3.1. A point-hyperplane framework (G,p, `) is infinitesimally rigid

(resp. independent) in En if and only if the spherical bar-joint framework (G, p̂)

with points p̂i, i ∈ VL on the equator Veq, is infinitesimally rigid (resp. independent)

in Sn.

Proof. Consider the (v + e)× (n+ 1)v matrix RP(G, p̃) in (3.1.0.9) at p̃ in R(n+1)v

where p̃ is given in (3.3.0.1). Using elementary row-column operations, we will show

that RP(G, p̃) and the matrix in (3.2.0.2) are rank-equivalent. Then the theorem

will follow from (3.3.0.2) and Proposition 3.1.1.

The ‘finite-finite’ rows in RP(G, p̃) are already in the desired form with respect to

their corresponding point-point rows in (3.2.0.2). We then operate the elementary

row operations rj − rj,k ↪→ rj,k for all j, k ∈ VL and rh − rh,j ↪→ rh,j for all h ∈

VP , j ∈ VL to have the following form of that part of RP(G, p̃):



p̃h p̃j p̃k
...

...
...

finite, infinite . . . (1 , aj,1, . . . , aj,n−1, 0) . . . (xh,1, xh,2, . . . , xh,n, 1) . . . 0 . . .
...

...
...

infinite, infinite . . . 0 . . . ( 1 , ak,1, . . . , ak,n−1, 0) . . . (1 , aj,1, . . . , aj,n−1, 0) . . .
...

...
...

vertex p̃h . . . (xh,1, xh,2, . . . , xh,n, 1) . . . 0 . . . 0 . . .
...

...
...

vertex p̃j . . . 0 . . . ( 1 , aj,1, . . . , aj,n−1, 0) . . . 0 . . .
...

...
...

vertex p̃k . . . 0 . . . 0 . . . (1 , ak,1, . . . , ak,n−1, 0) . . .
...

...
...



,
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Now the columns under the finite points i ∈ VP are already in the appropriate form

with respect to the corresponding columns in (3.2.0.2). Next we need to do some

column operations. For all finite-infinite rows hj with h ∈ VP , j ∈ VL, we apply

the row operation − αhj

‖Hj‖2 rj + rh,j ↪→ rh,j . Also, for the rows jk with j, k ∈ VL, we

apply the row operation
θjk
‖Hj‖2 rj − rj,k ↪→ rj,k. Then, for every j ∈ VL, we apply the

column operation aj,lcj,l + cj,1 ↪→ cj,1 for every 2 ≤ l ≤ n. Divide the first column

under every j ∈ VL by ‖Hj‖2. Finally, multiply columns 1 to n − 1 by ‖Hj‖2 and

divide row j by ‖Hj‖2, for every j ∈ VL. Now the unique pivot 1 has been created in

the first column under every point p̃j , j ∈ VL located in the vertex-row j. The pivot

1 for every point pi, i ∈ VP is located in the last column under pi, in the vertex-row

i. If we remove all the columns and rows containing the pivot 1’s from RP(G, p̃) we

obtain (3.2.0.2). This completes the proof.

See [17] for a different exposition of Theorem 3.3.1.

Definition 3.3.1. Given a point-hyperplane framework (G,p, `) in En, we call the

spherical framework (G, p̂) described above, the projection of (G,p, `) into Sn. Con-

versely, a bar-joint framework (G, p̂) in Sn with some vertices realized in the equator

will correspond to a family of point-hyperplane frameworks that are equivalent to

(G,p, `◦) where G is regarded as a point-hyperplane graph such that i ∈ VP if

p̂i /∈ Veq and i ∈ VL if p̂i ∈ Veq, with concurrent hyperplanes so that the hyperplane

`i has the equation ai,1x1 + · · · + ai,nxn = 0 where p̂i = (ai,1, . . . , ai,n, 0) ∈ Veq

and pi = π( p̂i
〈p̂i,en+1〉) for all points pi /∈ Veq, where π : Rn+1 → Rn is the natural

projection.

With the notation developed above, we have the following corollary:

Corollary 3.3.2. Suppose (G,p, `) is a point-hyperplane framework in En. Then

the following are equivalent:

(a) (G,p, `) is infinitesimally rigid.
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(b) rank RE(G,p, `) = nv −
(
n+1

2

)
.

(c) rank RP(G, p̃) = nv + v −
(
n+1

2

)
.

(d) rank RS(G, p̂) = nv + v −
(
n+1

2

)
.

Even though the parametrization of hyperplanes as introduced in the previous

section used a minimal number of parameters and as a result, provided a smaller size

of matrix (3.2.0.2), it is rather complicated to work with. As pointed out, we could

rescale the points at infinity p̃i in (3.1.0.4) as desired without affecting the infinites-

imal rigidity but it helps to normalize the normal vectors p̃i = (1, ai,1, . . . , ai,n−1, 0),

1 ≤ i ≤ vl, of hyperplanes `i to have the unit length when they are being pa-

rameterized. Namely, we can parameterize a hyperplane `i as (a′i,1, . . . , a
′
i,n+1) so

that a′2i,1 + . . . + a′2i,n = 1 and a′i,n+1 is arbitrary. This will not change the rank of

RP(G, p̃). It also removes the implicit restriction of parametrization that forces the

first coordinate in p̃i = (1, ai,1, . . . , ai,n−1, 0) to be 1 while this is not necessary be-

cause, geometrically, this dictates a specific orientation to the hyperplanes so that

they have the normals with positive first coordinates. By normalizing the vectors

normal to hyperplanes `i, the expressions in (3.2.0.1) will be neater. This shortcut

transition from point-hyperplane frameworks in En to spherical frameworks in Sn

might reduce the projective geometric perspective of the problem. This slightly dif-

ferent, but equivalent approach is adopted in [17], which we explain at the end of

this chapter and will use it in Chapter 5.

It is well-known that projective transformations preserve regularities (as well

as singularities) in the literature of the rigidity of frameworks [16], [30]. In the

view of the fact that the infinitesimal rigidity of point-hyperplane frameworks can

be equivalently described using the matrix (3.1.0.9), which resembles the rigidity

matrix of a bar-joint framework, one might expect that projective transformations

would preserve the rigidity of point-hyperplane frameworks as well. Indeed, we will
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see below that this is true. We now begin to explain what a ‘projective image’ of a

point-hyperplane framework is.

Suppose (G,p, `) is a point-hyperplane framework in En and (G, p̂) is its projec-

tion in Sn. Let T be a projective transformation in En represented by an invertible

linear transformation T : Rn+1 → Rn+1. Applying T to the configuration p̂ results

in a new configuration q̂ = (q̂i)i∈V in Sn given by q̂i = T (p̂i)
‖T (p̂i)‖ . Using (3.3.0.2),

we project back q̂ into the Euclidean space En to obtain a point-hyperplane frame-

work (G,q, ◦) of concurrent hyperplanes at the origin, possibly after relabeling of

the vertices of G as points or hyperplanes depending on whether qi is now on the

equator Veq of Sn or not. We denote this derived graph of G under a projective

transformation T by GT and we call (GT ,q, 
◦) and any equivalent framework in its

class, a projective image of the point-hyperplane framework (G,p, `) in En under T .

Theorem 3.3.3. Suppose (G,p, `) is a point-hyperplane framework in En. Then

(G,p, `) is infinitesimally rigid (resp. independent) if and only if any projective

image of (G,p, `) is infinitesimally rigid (resp. independent).

Proof. Suppose (GT ,q, ) is any projective image of (G,p, `) under a projective

transformation T . Let (G, p̂) and (G, q̂) be the projections of (G,p, `) and (GT ,q, ),

respectively into Sn. It is enough to show that (G, p̂) and (GT , q̂) are both infinites-

imally rigid or infinitesimally flexible in Sn. Since (GT ,q, ) is a projective image of

(G,p, `), q̂i = T (p̂i)/‖T (p̂i)‖ for every i ∈ V . Then p̂′ = (p̂′i)i∈V is a motion of the

framework (G, p̂) if and only if q̂′ = (q̂′i)i∈V where q̂′i = T−t(p̂′i)/‖T (p̂i)‖, i ∈ V is

a motion of (G, q̂). This is because xty = 0, is equivalent to (Tx)t(T−ty) = 0, for

every x, y ∈ Rn+1. Now the theorem follows from Theorem 3.3.1.

A projective image of a point-hyperplane framework (G,p, `) could be a bar-

joint framework if no vertex of G is projected to the hyperplane at infinity. This

special type of projective images of a point-hyperplane framework yields bar-joint

frameworks with all points i ∈ VL located on a hyperplane in En. The invariance
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of the infinitesimal rigidity for point-hyperplane frameworks under projective trans-

formations was observed and used in [17] to drive the following theorem and some

other results.

Theorem 3.3.4. [17] Suppose (G,q) is a bar-joint framework in En with some

points qi realized in an affine hyperplane in En for all i ∈ V0 ⊆ V . There exists a

point-hyperplane framework (G′,p, `) in En whose infinitesimal rigidity is equivalent

to that of (G,q) in En.

Proof. Let H be the affine hyperplane on which the points qi’s are realized for

all i ∈ V0 and G′ be the point-hyperplane graph where VL = V0. Suppose T is

a projective transformation which maps H to the hyperplane at infinity H∞ in

Pn. Define pi = T (qi) ∈ En for all i ∈ V \V0, and `i = T (qi) ∈ H∞, which is

a hyperplane in En through the origin with normal vector is T (qi). The point-

hyperplane framework (G,p, `) is a projective image of (G,q) so their infinitesimal

rigidity are equivalent by Theorem 3.3.3.

Theorem 3.3.4 gives a geometric insight into the rigidity of an important class of

non-generic bar-joint frameworks in Euclidean spaces. Consequently, all the known

results and techniques in theory of the rigidity of bar-joint frameworks could be

applied to point-hyperplane frameworks and vice versa. In particular, we will use

point-line frameworks to understand the combinatorial and geometric rigidity of

bar-joint framework with some collinear joints in the plane in Section 3.5.

3.4 Rigidity of point-hyperplane frameworks in En

In order to understand motions in any geometric space it is essential to first un-

derstand the isometries of the space and how they act on the geometric objects in

the space. Recall that an isometry of En is a bijective map T : En → En such that

‖T (x)−T (y)‖ = ‖x−y‖ for all x, y ∈ En. To obtain the image of a hyperplane under

an isometry, we may find the action of the isometry on a point on the hyperplane
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and its action on a normal vector of the hyperplane as a point (see Section 5.3.2).

Then, if needed, we rescale the resulting equation of the new hyperplane to be in

the form described in Section 3.2 with the first coordinate 1.

Given a point-hyperplane graph G with v vertices, consider the rigidity function

fG : Rnvp × Rnvl defined by (3.2.0.1). Let K be the complete graph on the vertex

set of G. Note that fK(p, `) = fK(q, ) for all (p, `), (q, ) ∈ Rnvp × Rnvl if and

only if the mapping pi ↔ qi, `i ↔ i is the restriction of an isometry of En to the

configuration (p, `).

In fact, f−1
K (fK(p, `)) is the set of all point-hyperplane configurations (q, ) ∈

Rnvp × Rnvl that are congruent to (p, `). Because the set of all isometries of En

forms a smooth manifold (of dimension n(n+ 1)/2) so f−1
K (fK(p, `)) is also smooth

manifold that may be parameterized by the set of isometries of En that are not the

identity on (p, `). Exactly similar to [2, p. 283], it can be shown that f−1
K (fK(p, `))

is of dimension n(n + 1)/2 if (p, `) is non-degenerate. If (p, `) is degenerate of

dimension m < n− 1 then the dimension of f−1
K (fK(p, `)) is (m+ 1)(2n−m)/2.

It is clear that f−1
K (fK(p, `)) ⊆ f−1

G (fG(p, `)) for any graph G on v vertices.

Definition 3.4.1. Let G be a point-hyperplane graph on v vertices, K is the com-

plete graph on v vertices and (p, `) ∈ Rnvp × Rnvl is a point-hyperplane configura-

tion in En. The point-hyperplane framework (G,p, `) is rigid in En if there exists a

neighbourhood U of (p, `) in Rnvp × Rnvl such that

f−1
K (fK(p, `)) ∩ U = f−1

G (fG(p, `)) ∩ U.

The framework (G,p, `) is called flexible in En if there exists a continuous path γ :

[0, 1]→ Rnvp×Rnvl such that γ(0) = (p, `) and γ(t) ∈ f−1
G (fG(p, `))−f−1

K (fK(p, `))

for all t ∈ (0, 1].

Therefore, a framework (G,p, `) is rigid in En if for every (q, ) ∈ Rnvp × Rnvl

near (p, `) with fG(p, `) = fG(q, ), there exists an isometry of En that maps the

configuration (p, `) to the configuration (q, ).
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The following proposition demonstrates the equivalence of different notions of

flexibility.

Proposition 3.4.1. Let G be a point-hyperplane graph with v vertices, K the com-

plete graph with v vertices, and (p, `) ∈ Rnvp × Rnvl. The following are equivalent:

(a) (G,p, `) is not rigid in En.

(b) (G,p, `) is flexible in En.

(c) There exists a analytic path γ in f−1
G (fG(p, `)) with γ(0) = (p, `) and γ(t) /∈

f−1
K (fK(p, `)).

Proof. The proof is similar to Proposition 1 in [2].

It is a standard result in differential geometry (see [37], for example) that if

(p, `) is a regular point of fG in Rnvp × Rnvl then f−1
G (fG(p, `)) is a smooth closed

embedded submanifold in Rnvp × Rnvl .

For any given point-hyperplane graph G, a point-hyperplane configurations (p, `)

is called regular if (p, `) is a regular point of fG given by (3.2.0.1). Regular point-

hyperplane configurations of a point-hyperplane graph form an open dense subset

of Rnvp × Rnvl .

Theorem 3.4.2. Let G be a point-hyperplane graph on v vertices, with e edges and

the edge function fG : Rnvp × Rnvl → Re. Suppose (p, `) ∈ Rnvp × Rnvl is a regular

point of fG and let m = dim(p, `). Then the framework (G,p, `) is rigid in En if

and only if

rank dfG(p, `) = nv − (m+ 1)(2n−m)/2. (3.4.0.1)

Consequently, (G,p, `) is flexible if and only if

rank dfG(p, `) < nv − (m+ 1)(2n−m)/2. (3.4.0.2)
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Proof. We omit the proof since it is similar to that of the main result in [2, p.282]

for bar-joint frameworks.

Since we usually assume that (p, `) is non-degenerate so m is equal to n− 1 or

n. Then (3.4.0.1) and (3.4.0.2) simplify to

rank dfG(p, `) = nv − n(n+ 1)/2, (3.4.0.3)

and

rank dfG(p, `) < nv − n(n+ 1)/2. (3.4.0.4)

Note that f−1
K (fK(p, `)) is a smooth manifold whose tangent space T(p,`) at

point (p, `) lies in ker dfG(p, `) since if x′ ∈ Rnvp × Rnvl is in the tangent space of

f−1
K (fK(p, `)) at (p, `) then there exists a smooth path x(t) : [0, 1]→ f−1

K (fK(p, `))

such that x(0) = (p, `) and x′(0) = x′. Therefore fG(x(t)) = fG(p, `) for all t ∈ [0, 1].

This implies dfG(p, `)x′ = 0, i.e., x′ ∈ ker dfG(p, `). Therefore T(p,`) ⊆ ker dfG(p, `).

By definition, (G,p, `) is infinitesimally rigid in En if T(p,`) = ker dfG(p, `). Theorem

3.4.2 implies if (G,p, `) is rigid for a regular configuration (p, `) then it is infinites-

imally rigid. The converse is also true: Infinitesimal rigidity of a point-hyperplane

framework in En implies its rigidity. See [10] for a proof in the context of bar-joint

frameworks. We will also give the proof of a version of this in Chapter 6. Because

the proofs are similar we omit them here.

We therefore have the following important result which is analogous to the result

for bar-joint frameworks in [3, p. 173] by Asimow and Roth.

Theorem 3.4.3. A point-hyperplane framework (G,p, `) in infinitesimally rigid in

En if and only if (p, `) is a regular point of fG and (G,p, `) is rigid.

Proof. Suppose (G,p, `) is infinitesimally rigid in En. Let (q, ) be a point-hyperplane

configuration in an open neighbourhood of (p, `) such that l ≥ m where dim (q, ) = l
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and dim (p, `) = m. Then

rank dfG(q, ) ≥ rank dfG(p, `) = nv − (m+ 1)(2n−m)/2

≥ nv − (l + 1)(2n− l)/2 = rank dfG(q, ).

Therefore rank dfG(q, ) = rank dfG(p, `). Namely dfG(p, `) maintains its rank in

an open neighbourhood of (p, `) in Rnv. So (p, `) is regular and by Theorem 3.4.2

(G,p, `) is rigid. The converse also follows from Theorem 3.4.2.

This theorem shows that the rigidity and infinitesimal rigidity of point-hyperplane

frameworks are equivalent for regular configurations. The difference may occur only

at singular configurations. See Chapter 7, Figure 7.2a for an example of a singular

point-line configuration as a result of symmetry. The point-line framework in E2 is

the projection of a symmetric Desargues’ configuration on S2 into the plane. The

point-line framework is infinitesimally flexible but it is rigid.

Understanding the correspondence between finite and infinitesimal flexes of spher-

ical bar-joint and Euclidean point-line frameworks was one of our main motivations

for the development of this thesis. Translational finite motions of lines in a point-line

framework are not necessarily captured on the sphere as finite flexes of the spheri-

cal framework but they are infinitesimally recorded on the sphere at even singular

bar-joint configurations by Theorem 3.3.1. In the next section, we will see examples

of singular configurations of bar-joint frameworks in the plane whose infinitesimal

flex becomes a finite flex in the corresponding class of point-line frameworks.

3.5 Point-line frameworks in the plane

In this section, we investigate the consequences of the results of the previous sections

to the plane.

Suppose (G,p, `) is a point-line framework in E2. In [32], a combinatorial char-

acterization of the generic rigidity of point-line frameworks was given. In that paper,
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a line `i is parameterized by a pair (ai, bi) such that its equation is `i : x = aiy+ bi.

This slightly different parametrization from the one in Section 3.2 just results in a

minus sign in the columns under each line in the rigidity matrix. As a combinatorial

reason, this choice creates a desired patterns of 1’s and -1’s in the rigidity matrix

(see below). With this form of parametrization, the following matrix is obtained

from (3.2.0.2) for n = 2:



ph pi `j `k

Point-point . . . xh − xi yh − yi . . . xi − xh yi − yh . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

Line-line . . . 0 0 · · · 0 0 . . . −aj + ak 0 −(−aj + ak) 0
...

...
...

...
. . .

...
...

...
...

Point-line . . . 1 −aj . . . 0 0 . . . −xiaj − yi −1 0 0


.

Part of the assumption of genericity of a point-line configuration is that there is

no parallel lines in the configuration. Therefore, ai 6= aj , if i 6= j for all i, j ∈ VL.

Under this assumption, the previous matrix can be simplified more by dividing every

‘line-line’ row jk ∈ ELL by −aj + ak to obtain the final form of the matrix as the

following:



ph pi `j `k

Point-point . . . xh − xi yh − yi . . . xi − xh yi − yh . . . 0 0 . . . 0 0
...

...
...

...
. . .

...
...

. . .
...

...

Line-line . . . 0 0 · · · 0 0 . . . 1 0 . . . −1 0
...

...
...

...
. . .

...
...

. . .
...

Point-line . . . 1 −aj . . . 0 0 . . . −xiaj − yi −1 . . . 0 0


,

(3.5.0.1)

The pattern of 1, -1 in all the rows involving the lines (all the edges adjacent to a

line-vertex) is used to understand the matroid represented by this matrix.

Let (G,p, `) be a point-line framework in the plane with pi = (xi, yi) for all

points i ∈ VP and each line `i has the coordinates (ai, bi), for all lines i ∈ VL. By

our conventional notation, p̃i = (xi, yi, 1) for all points i ∈ VP and p̃i = (1,−ai, 0),
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for every lines `i, i ∈ VL. Substituting this into (3.1.0.9), we obtain a 3-dimensional

representation of (G,p, `) that unifies the geometry of points and lines. By Theorem

3.3.1, the rigidity of a point-line framework may be described by this representation.

It is easy to check that (3.5.0.1) is obtained from (3.1.0.9) using only row oper-

ations2 followed by deleting the last column under each finite point (for each i ∈ Vp

in (3.5.0.1)) and the first column under each point at infinity (corresponding to each

line i ∈ VL in (3.5.0.1)) and finally, the deletion of all vertex-rows in (3.1.0.9). There-

fore, if u = (ui,1, ui,2)i∈V ∈ R2v is in the kernel of (3.5.0.1) then ũ = (ũi)i∈V ∈ R3v

will be in the kernel of (3.1.0.9) where

ũi = (ui,1, ui,2,−〈(xi,1, xi,2), (ui,1, ui,2)〉) for all i ∈ VP ,

ũj = (−ajuj,1,−uj,1,−uj,2) for all j ∈ VL.
(3.5.0.2)

Note that this correspondence is one-to-one because 〈p̃i, ũi〉 = 0, for all i ∈ V .

According to (3.3.0.2), after scaling each point (finite or infinite) p̃i, i ∈ V

by the reciprocal of its length 1
‖p̃i‖ , we obtain the corresponding motions of the

projected spherical bar-joint framework (G, p̂). This gives us an intuitive sense

of the motions at a line `i in the Euclidean plane using its corresponding point

p̃i/‖p̃i‖ = (1,−ai, 0)(1 + a2
i )
−1/2 on the equator of S2. To have a better view, let’s

consider the correspondence between trivial motions on S2 and E2 under the central

projection that includes the points on the equator. To obtain the motion at a point

p = (x, y) undergoing an instantaneous rotation with center (c1, c2, c3) around the

point (c1/c3, c2/c3, 1) in the plane, we calculate (c1, c2, c3)× (x, y, 1) and then read

the first two coordinates, by (3.5.0.2). If p represents a line x = ay+ b, we calculate

(c1, c2, c3)× (1,−a, 0) and read the last two coordinates by (3.5.0.2).

In the plane, the pure infinitesimal rotation has a center (0, 0, c3) around the

origin for some c3 ∈ R (the angular velocity) and a trivial infinitesimal pure trans-

lation in the direction of (c2,−c1) has the center (c1, c2, 0). The effect of a trivial

2for higher dimensions, we needed column operations as well.
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c1

ui = c1 × pi

pi

(a) A pure translation of a line in the

plane whose normal is determined by

a point pi ∈ Veq can be obtained by

the action of a rotation c1 at pi whose

axis is through the equator.

c2

Rotation

T
ra
n
sl
a
ti
o
n uj = c2 × pj

pj

(b) A general rotation c2 of a

line whose normal is determined by

pj ∈ Veq can be decomposed into

a pure rotational and pure transla-

tional components

Figure 3.2: Infinitesimal motions at lines in the plane with normals determined by pi and

pj can be visualized using the infinitesimal motions at the point pi and pj on the equator

of S2.

motion (general rotation) with center (c1, c2, c3) at a point or line p is

(c1, c2, c3)× p = (c1, c2, 0)× p+ (0, 0, c3)× p,

which is the sum of a pure rotational motion and a pure translational motion (see

Figure 3.2b). The motion of pure rotations with center (0, 0, c3) at line (1,−a, 0) is

(ac3,−c3, 0), which reads as (−c3, 0) in the plane. The motion of a trivial translation

in direction (c2,−c1) at a line (1,−a, 0) is (0, 0,−ac1 − c2) (see Figure 3.2a) which

reads as (0,−ac1 − c2) in the plane. Figure 3.2 visualizes motions at two lines in

the plane whose normals are determined by points pi and pj shown on the equator.

The motion with center c1 on the equator (which is a translation in the plane) at pi

is ui. This is a pure translation on a line `i with normal pi in the plane. The axis

through c2 is the center of a general rotation motion whose motion at pj is uj and
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is decomposed to a pure translation and a pure rotation respectively perpendicular

and parallel to the plane z = 1.

The following theorem is the main result in the plane:

Theorem 3.5.1. [17] The following are equivalent in the plane:

(a) A point-line framework (G,p, `) is generically infinitesimally rigid.

(b) A projection image of (G,p, `) as a bar-joint framework (G,q) with all the joints

qi, i ∈ VL collinear, is infinitesimally rigid.

(c) The graph G has a spanning subgraph G′ = (V,E′) with |E′| = 2|V | − 3 such

that

|F ′| ≤
s∑
i=1

(2νP (Ai) + νL(Ai)− 2) + νL(F ′)− 1,

for all partitions {A1, . . . , As} of any non-empty subset F ′ of E′.

Proof. The equivalence of (a) and (b) is a consequence of Theorem 3.3.4 for n = 2.

The equivalence of (a) and (c) is the main result in [32].

This theorem shows that at the infinitesimal level, a point-line framework is

essentially a bar-joint framework whose vertices corresponding exactly to the line-

vertices in the associated point-line graph, are realized collinear. Namely, a point-

line framework is a bar-joint framework with a special geometry in the world of

infinitesimal rigidity. We now apply the above result to some important examples

below.

Example 3.5.1. Consider the bar-joint framework (G, p̂) on S2 shown in Figure

3.3a. It has 6 vertices and 9 edges. Three of its joints are placed collinear on the

equator of S2. Therefore, (G, p̂) is not infinitesimally rigid on the sphere because

a projective image of it is a bar-joint framework with three collinear points and a

cycle on the collinear vertices that has wasted one edge (see Figure 3.4b). When
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(a)

z = 1

(b)

`1
`2

`3

α1

α2

α3

z = 1

(c)

Figure 3.3: (a) shows a spherical framework with 3 joints on the equator projected to the

plane in (b). Its infinitesimal rigidity is equivalent to that of a class of point-line frameworks

in the plane (c).

(G, p̂) is projected under the central projection the joints on the equator map to

infinity (Figure 3.3b), each of which may be replaced by a line from the associated

pencil of parallel lines (Figure 3.3c). The point-line configuration (G,p.`) shown

in the plane z = 1 in Figure 3.3c is a representative of a class of equivalent point-

line frameworks whose rigidity is equivalent to the spherical framework (G, p̂). The

associated point-line graph G is illustrated in Figure 3.4a.

By Theorem 3.3.1, (G,p, `) is not generically infinitesimally rigid because the

spherical framework (G, p̂) is not. By Theorem 3.5.1, the infinitesimal rigidity of

(G,p, `) is equivalent to a bar-joint framework (G,p) in the plane with collinear

points corresponding to the line-vertices of G, which is shown in Figure 3.4a. (G,p)

is dependent because of the cycle on points p1, p2 and p3 (corresponding to the lines

`1, `2 and `3). Note that collinear edges correspond to angle constraints on the line

`1, `2 and `3, which is also a dependent set of geometric constraints on the lines in

the plane since if any two of the angles α1, α2 or α3 are fixed, the third one will be

determined and fixed automatically. Also note that the framework with collinear

points in Figure 3.4b is not infinitesimally rigid but is rigid as a bar-joint frame-

work. On the other hand, the corresponding point-line framework is infinitesimally
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`1

`2

`3

(a)

p1 p2 p3

(b)

Figure 3.4: Point-line graph (a) and its corresponding bar-joint framework (b).

flexible, and flexible as a point-line configuration by Theorem 3.4.2 because such a

configuration is regular as a point-line configuration.

We can use the count in Theorem 3.5.1 part (c) to detect the dependence in the

point-line graph. The graph G itself is the only spanning graph with |E| = 2|V |−3.

Let F ′ is the edge set of the cycle on vertices `1, `2 and `3. Therefore |F ′| = 3,

νL(F ′) = 3 and νP (F ′) = 0. For the partition {A1, A2, A3} of F ′ where A1 = {`1, `2},

A2 = {`1, `3} and A3 = {`2, `3}, we have

3 > (0 + 2− 2) + (0 + 2− 2) + (0 + 2− 2) + 3− 1 = 2.

Thus F ′ is dependent.

In general, if F ′ is a non-empty subset of edges incident to line-vertices in a

point-graph G then by part (c) in Theorem 3.5.1 we must have

|F ′| ≤ ν(F ′)− 1,

which is the independence condition of the cycle matroid of a graph. As a result,

any cycle on line-vertices or equivalently, collinear points in G create dependence.

Recall that cycle matroid characterizes the rigidity of 1-dimensional frameworks.

Example 3.5.2. Consider the point-line graph in Figure 3.5a of which a generic

point-line realization in the plane is shown in Figure 3.5b. The infinitesimal rigidity

of this point-line framework in the plane is equivalent to the infinitesimal rigidity
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p1 p2

`1

`2

`3

(a) A point-line graph G

`1

`2

`3

p1
p2

(b) A point-line realization

of G

p4

p2p1

p3

p5

(c) A bar-joint realization

of G

Figure 3.5: Point-line vs. bar-joint frameworks

of the bar-joint framework (corresponding to G) shown in Figure 3.5c where the

collinear points p1, p2 and p3 are the vertices corresponding to the line-vertices in

G.

This bar-joint framework is not infinitesimally rigid in the plane because the

edge {p3, p4} is induced by both the edges with end-points p1, . . . , p4 and the edges

with end points p3, p4, p5. This makes the framework dependent.

To see the dependence of G via the combinatorial criterion in Theorem 3.5.1,

first note that G is the only spanning graph with |E| = 2|V | − 3 = 2.5 − 3 = 7.

With lines regarded as collinear point we have, VP = {p1, p2}, VL = {p3, p4, p5}.

Consider the partition {A1, A2, A3} of E where A1 is the set of edges with end-

points p1, p2, p3, p4, A2 is the singleton of the edge {p3, p5} and A3 is the singleton

of the edge {p4, p5}. So νP (A2) = νP (A3) = 0, νP (A1) = νP (E) = 2 and also

νL(A1) = 2, νL(A2) = νL(A2) = 2. Therefore

7 >
(
(2× 2 + 2− 2) + (0 + 2− 2) + (0 + 2− 2)

)
+ 3− 1 = 6.

for the partition {A1, A2, A3}. Thus the bar-joint framework in Figure 3.5c is not

infinitesimally rigid even though it is rigid (as is its projection on the sphere).

However, any generic point-line realization of G is flexible.

According to the correspondence established in Theorem 3.3.1 between point-
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hyperplane and bar-joint frameworks in En, a point-hyperplane framework with

different sets of parallel hyperplanes in En is infinitesimally equivalent to a bar-joint

framework in En with the sets of vertices corresponding to each set of parallel hy-

perplanes realized coincident and conversely. For example, two parallel hyperplanes

are projected to two coincident points. This type of bar-joint framework is an inter-

esting non-generic case to be explored. For the case when only two vertices realized

coincident in a bar-joint framework in the plane, a characterization of the infinites-

imal rigidity and a count matroid is given in [19, Theorem 15]. This theorem states

that a graph G with two distinct vertices u, v may be realized as an infinitesimally

rigid bar-joint framework in the plane with the vertices u and v coincident if and

only if G−uv and Guv are both infinitesimally rigid in E2 where G−uv is the graph

G with the edge {u, v} deleted and Guv is the graph obtained from G by contracting

the vertices u, v. By theorem 3.3.3, this result immediately characterizes the rigidity

of a point-line framework whose underlying graph is G with two vertices u, v as the

exactly two line-vertices `1, `2 of G realized as two parallel lines in the plane. Such

a framework is infinitesimally rigid if and only if the deletion of the edge {`1, `2}

(representing an angle constraint between `1, `2, if it exists) and contraction of the

pair `2, `1 of vertices both result in two infinitesimally rigid point-line frameworks.

3.6 Some remarks on the inductive construction of point-

line frameworks

In general, it can be a bit more involved to conclude whether a given point-line

graph is isostatic or not. Henneberg methods are one of the powerful tools to detect

isostatic bar-joint frameworks in the plane. Considering our geometric insight of

point-line frameworks as a special non-generic bar-joint frameworks, we will see

that applying Henneberg methods to point-line graphs needs some care. We do not
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aim to establish an inductive method that captures isostatic point-line frameworks

in the plane but there are some observations to share.

Due to the special geometry of point-line configurations as bar-joint configura-

tions with collinear points, Henneberg moves might fail to preserve independence or

minimal rigidity for these frameworks.

Consider the point-line graph G in Figure 3.5a and let G1 be the subgraph

G − {`2}. G1 is an isostatic point-line graph because it is isostatic as a bar-joint

graph. But adding a 2-valent line-vertex `2, adjacent to two line-vertices `1 and `3

results in a dependent point-line graph G. This is always the case: Adding a 2-valent

line-vertex adjacent to two line-vertices of an isostatic point-line graph will result in

a dependent graph. Except for this case, 2-addition moves preserve minimal rigidity

of point-line graphs.

The following proposition is a consequence of [61, Proposition 3.1.] for bar-joint

frameworks and Theorem 3.5.1.

Proposition 3.6.1. Let G = (V,E) be a point-line graph with two distinct vertices

i and j and G′ = (V ′, E′) be a graph obtained from G by attaching a new 2-valent

vertex k and edges ik and jk to G such that at least one of i, j, k is a point-vertex.

Then G is generically minimally rigid if and only if G′ is generically minimally

rigid.

Just like bar-joint frameworks in the plane, removing any 2-valent vertex v0 from

a point-line graph will preserve minimal rigidity of the graph. To see this, one can

realize the graph by a framework then the removal of v0 will leave us with a set

of 2(v − 1) − 3 independent edges on v − 1 vertices, which is an isostatic point-

line framework, by definition. From this argument, we can conclude that there

is no isostatic point-line graph with a 2-valent line-vertex `0 adjacent to two line-

vertices, say `1 and `2. Otherwise the removal of the 2-valent vertex `0 would give

rise to an isostatic framework. That is, the edge {`1, `2} is induced by the edge

set E − {{`0, `1}, {`0, `2}}, which contradicts that fact that the initial graph was
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isostatic.

Let’s now consider the removal of a 3-valent vertex v0 from an isostatic point-line

graph G. Let (G,p) is an isostatic realization of G as a bar-joint framework with

exactly all line-vertices realized collinear on a line `∗ (point vertices are not on `∗).

We might encounter the following two cases:

1. v0 is adjacent to three vertices, not all are line-vertices. So we may assume that

these three vertices are not collinear in the corresponding bar-joint framework

with collinear joints. Then, by the proof of Proposition 3.3 in [61], the removal

of v0 and inserting a new edge among the adjacent vertices yields an isostatic

framework. Therefore the new graph obtained this way from G is an isostatic

point-line graph.

2. v0 is adjacent to three line-vertices `1, `2 and `3. Let E′ = E−{{v0, `1}, {v0, `2}, {v0, `3}}.

We distinguish two cases:

Case 1. There is no tree on the line-vertices `1, `2 and `3 induced by E′.

That is, at most one of the edges {`1, `2}, {`1, `3} or {`2, `3} may be induced

by E′. In this case, the removal of v0 and the addition of one of the edges

{`1, `2}, {`1, `3} or {`2, `3} that are not induced by E′ preserves independence

and implies that the resulting graph is an isostatic point-line graph.

Case 2. There is a tree on the line-vertices `1, `2 and `3 induced by E′. Then,

v0 has to be a point-vertex. We may assume that the vertices `1, `2 or `3

are of valence at least 3. If the edges {`1, `2}, {`2, `3} exist in E′ then there

is a new vertex v adjacent to `1 or `3. If v is a point-vertex adjacent to, say

`1 then the edges {v, `2}, {v, `3} are not both induced by E′. So the removal

of v0 and its 3 incident edges and addition of one of the edges {v, `2}, {v, `3}

will results in a smaller isostatic point-line graph. If v is a line-vertex adja-

cent to say `1 then there must be a point-vertex p adjacent to v otherwise

v is adjacent to some line vertices `4, `5, . . . , `n for some n ∈ N. Then the
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Figure 3.6: An edge-split move that fails to preserve the independence of a point-line graph.

edges {v, `4, }, . . . , {v, `n} could be replaced by {v, `4, }, {`4, `5}, . . . , {`n−1, `n}

respectively, without affecting the minimal rigidity. But this results in a 2-

valent line-vertex adjacent to two line vertices `1, `4 in an isostatic graph,

which is impossible. Therefore a point p is adjacent to v. Now the edges

{p, v}, {p, `1}, {p, `2}, {p, `3} are not all induced by E′. Remove v0 and add

one of the edges {p, v}, {p, `1}, {p, `2}, {p, `3} that is not induced by E′. If

the edges {`1, `2}, {`2, `3} do not exist in E′ but induced by it then we do not

know whether {`1, `2}, {`2, `3} are necessarily induced by some isostatic blocks

in the graph or no. This should be clear before one can proceed.

Consider the triangle graph G with 1 point-vertex and 2 line-vertices as a point-

line graph shown in Figure 3.6. Splitting the edge {p, `2} by a line-vertex `3 does

not produce an isostatic point-line graph. An exploration of the inductive methods

for point-line graphs is a possible project for the future work. This example shows

that an edge-split move might fail to preserve isostatic graphs.

3.7 Alternative presentation of point-hyperplane frame-

works in En

Before we move on to the next section, we would like to explain a slightly different

approach to present point-hyperplane frameworks in En that has also been adopted

in [17]. As mentioned before, normalizing normal vectors to hyperplanes simplifies

the algebraic expressions of the constraints and some connections to spherical mo-

tions at the cost of an extended set of constraints and a larger rigidity matrix.
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Suppose (G,p, `) is a point-hyperplane framework in En. All the points pi, i ∈ VP

are assigned their affine coordinates pi = (xi,1, . . . , xi,n, 1) in the affine hyperplane

xn+1 = 1 and hyperplanes i ∈ VL are coordinated as `i = (ai,1, . . . , ai,n, ai,n+1)

where

a2
i,1 + . . .+ a2

i,n = 1, (3.7.0.1)

so that `i has the equation ai,1x1+. . .+ai,nxn+ai,n+1 = 0. The vector (ai,1, . . . , ai,n) ∈

Rn determines the orientation of `i. So `i can be written as `i = (~̀i, ai,n+1). Now

let the variables (xi,1, . . . , xi,n)i∈VP and (ai,1, . . . , ai,n, ai,n+1)i∈VL vary over time

t ∈ [0, 1) so that p(0) = p and `(0) = ` while (3.7.0.1) is respected for t ∈ [0, 1).

The point-line constraints may be written as:

〈pi(t)− pj(t), pi(t)− pj(t)〉 = 〈pi − pj , pi − pj〉 for every ij ∈ EPP ,

〈pi(t), `j(t)〉 = 〈pi, `j〉 for every ij ∈ EPL,

〈~̀i(t)− ~̀j(t), ~̀i(t)− ~̀j(t)〉 = 〈~̀i − ~̀j , ~̀i − ~̀j〉 for every ij ∈ ELL,

〈~̀i(t), ~̀i(t)〉 = 1 for every i ∈ VL,

〈pi(t), en+1〉 = 1 for every i ∈ VP .

Taking the derivative gives the first-order constraints as the following:

〈pi − pj , p′i − p′j〉 = 0 for every ij ∈ EPP , (3.7.0.2)

〈pi, `′j〉+ 〈p′i, `j〉 = 0 for every ij ∈ EPL, (3.7.0.3)

〈~̀i − ~̀j , ~̀′i − ~̀′j〉 = 0 for every ij ∈ ELL, (3.7.0.4)

(3.7.0.5)

and in addition,

〈p′i, en+1〉 = 0 for every i ∈ VP , (3.7.0.6)

〈~̀i, ~̀′i〉 = 0 for every i ∈ VL. (3.7.0.7)
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where `′i = (~̀′i, a
′
i,n+1) for every i ∈ VL. We refer to (3.7.0.2)–(3.7.0.7) as the (n+1)-

dimensional representation of point-hyperplane frameworks in En. Recall that, by

our notation, `◦i = (~̀i, 0) ∈ Rn+1 is the coordinates of the hyperplane parallel to `i

through the origin, for every i ∈ VL. Thus the coefficient matrix of (3.7.0.2)–(3.7.0.7)

is the following (e+ v)× (n+ 1)v matrix:

R(G,p, `) =



ph pi `j `k
...

...
...

...

· · · ph − pi · · · pi − ph · · · 0 · · · 0 · · ·
...

...
...

...

· · · `j · · · 0 · · · ph · · · 0 · · ·
...

...
...

...

· · · 0 · · · 0 · · · `◦j − `◦k · · · `◦k − `◦j . . .
...

...
...

...

· · · en+1 · · · 0 · · · 0 · · · 0 . . .
...

...
...

...

· · · 0 · · · 0 · · · `◦j · · · 0 . . .
...

...
...

...



, (3.7.0.8)

It is obvious, from the matrix R(G,p, `) and also (3.7.0.2)–(3.7.0.7) (the last

coordinate of p′i ∈ Rn is zero), that the last component ai,n+1 of each hyperplane

`i = (ai,1, . . . , ai,n, ai,n+1) does not affect the rank of R(G,p, `) and we take it to be

zero. Therefore

rank R(G,p, `) = rank R(G,p, `◦),

for any point-hyperplane configuration (p, `) ∈ R(n+1)v. Using some elementary

row-column operations the matrix R(G,p, `) can be turned into (3.1.0.9). By the

equivalence of (3.1.0.9) and the spherical matrix, we can equivalently describe the

infinitesimal rigidity of a point-hyperplane framework in En using any of these ma-

trices:

rank RP(G, p̃) = rank RS(G, p̂) = rank R(G,p, `),

where p̃ and p̂ are defined in (3.1.0.3)–(3.1.0.6) and (3.3.0.2). Notice that, by
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replacing `i by `◦i in the above matrix, we make R(G,p, `) have a uniform shape for

the configuration (p, `◦) where all hyperplanes are through the origin.

This approach eases the expression of the point-hyperplane constraints and the

correspondence between the infinitesimal motions of spherical frameworks and those

of point-hyperplane framework (see [17]). We will use this treatment in Chapter 5

when we want to describe tensegrity constraints for point-hyperplane framework.
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Chapter 4

Sliders and point-line

frameworks in the plane

In this chapter, we reflect further on the connection between slider mechanisms

and point-hyperplane frameworks in the plane. Through examples, we will see that

point-line frameworks are natural candidates for analyzing slider mechanisms in the

plane.

As a simplification of a difficult problem, it is natural and useful to study point-

hyperplane frameworks with restricted hyperplane-motions simply because the rigid-

ity matrix becomes simpler. This restrictions consist of forcing the hyperplanes to

only translate or only rotate in En but not both, simultaneously. In the former case,

the normals to the hyperplanes are being fixed (fixed-normal rigidity) and in the

latter case, the hyperplanes are to maintain their distance from a reference point in

En.

In this chapter, we mainly focus on point-line frameworks with restricted motions

of the lines in the plane. This study will lead to some interesting connections

to other types of structures (such as scene analysis and incidence structures) and

moreover, interesting results on sliders. Also, in the light of the connection we made

between point-hyperplane and bar-joint frameworks in Chapter 3, these results on
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point-line frameworks (or point-hyperplane frameworks) will have twin results for

bar-joint frameworks with co-hyperplanar joints with restricted motions of the co-

hyperplanar joints. Again, by the geometric and algebraic understanding of the

motion of hyperplanes established in Chapter 3, the restricted motions of the co-

hyperplanar joints are: the motion in the hyperplane containing the joints or the

motion perpendicular to it.

We also consider point-line frameworks in which lines are pinned. This is used

to model pinned slider frameworks.

The main results in this chapter have appeared in the joint work [17].

4.1 Slider joints in the plane and point-line frameworks

Given two rigid bodies in the plane with translational relative motion, we may

replace each by a single bar (as a planar rigid body) that is constrained to slide

along a line. This gives rise to a point-line framework that models the relative

translational motion of two rigid bodies in the plane (see Figure 4.1a). Note that

the type of the relative motion (translation in a specific direction determined by a

line `), degrees of freedom of the substructures (bodies) and the degrees of freedom

of the entire system are correspondingly preserved in such a point-line model.

Figure 4.1b1 shows a system of sliders. We will analyze the rigidity of this

mechanism and determine its degrees of freedom using a point-line model. This

example has also appeared in [17].

The system consists of 4 rigid bodies connected in a more complicated way. But

the same rule still holds: each slider restricts the relative motion of the connected

bodies to a translation in a specific direction.

Based on what we explained for Figure 4.1a, we model this slider system as a

point-line framework shown in Figure 4.1c. In fact, pairs of bodies with relative

1This figure is adopted from [49, p. 278].
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Figure 4.1: The slider system illustrated in (b) is modeled by the point-line framework

shown in (c).
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(a) The point-line graph of the

framework in Figure 4.1c.

A1 A4

A3A2

(b) Rigid blocks A1, . . . , A4 of the

graph in (a).

Figure 4.2: The dependent point-line graph associated to the slider system in Figure 4.1b.

sliding motions are described as point-line frameworks according to Figure 4.1a.

By Theorem 3.3.4, corresponding to the point-line framework in Figure 4.1c,

there is a bar-joint framework with collinear joints shown in Figure 4.2a. It has

v = vp + vl = 8 + 5 = 13 vertices with e = 24 edges.

Let G = (V,E) be the point-line graph corresponding to the framework in

Figure 4.1c. Let A1, A2, A3 and A4 be the edge sets incident to the bodies 1,

2, 3 and 4, respectively, which are also the maximal rigid blocks of G (Figure

4.2b). So νP (A1) = νP (A2) = νP (A3) = νP (A4) = 2, νL(A1) = νL(A3) = 3
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and νL(A2) = νL(A4) = 2. Applying the count in Theorem 3.5.1, part c to the

partition {A1, A2, A3, A4} of E, we conclude that

rPL(E) ≤ (2×2+3−2)+(2×2+2−2)+(2×2+3−2)+(2×2+2−2)+(5−1) = 22,

where rPL(E) is the rank of E in the point-line rigidity matroid. If we delete an edge

from A2 and an edge from A4 in G the remaining edges are independent because

the resulting subgraph is constructed by 2-addition moves only (Proposition 3.6.1).

Since this subgraph is a spanning graph as well, we have rPL(E) = 22. This means

the system has 2v− 3− rPL(E) = 23− 22 = 1 degree of freedom (as finite motion).

In addition, it is easy to check that A1∪A2∪A3, which corresponds to the slider

cycle 1-2-3, is also dependent. This corresponds to a cycle of three sliders which has

only one degree of freedom. By removal of 3-valent vertices from A1 ∪A2 ∪A3 (see

Section 3.6), we can reduce it to a collinear triangle which is obviously dependent

with one degree of freedom as a point-line graph. In fact, every cycle of sliders in

the system corresponds to a dependent subgraph in G as a point-line graph.

4.2 Pinned-slider frameworks in the plane

Pinned frameworks are regarded as an important class of frameworks and have been

studied in the context of different types of frameworks such as bar-joint frameworks

and body-bar frameworks. Pinned frameworks arise naturally because, in practice,

frameworks are attached to rigid bases such as ground, walls etc. and therefore,

they are pinned.

In this section, using the known results on the pinned bar-joint frameworks, we

will give a combinatorial characterization of the rigidity of point-line frameworks

with all lines pinned in the plane.

A point-line framework (G,p, `) is pinned by prescribing points pi ∈ R2 or lines

`j ∈ R2 for all points pi and lines `j in a subset Vpi of the vertex set V as fixed

positions for the point-vertices and line-vertices in Vpi. The vertices in Vpi are called
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pinned vertices and the others are called inner vertices, denoted by Vin. Indeed,

the velocities at pinned vertices are set to be zero and therefore, the columns corre-

sponding to pinned vertices will be removed from the corresponding rigidity matri-

ces. This modified rigidity matrix is called a pinned rigidity matrix of (G,p, `). If

we use (3.5.0.1) as the point-line rigidity matrix then we may delete 2 columns under

the pinned vertices. If (3.1.0.9) or (5.3.2.1) is used then we delete three columns

under each pinned vertex and its associated row to obtain the pinned rigidity matrix

of the pinned point-line framework. In the following we assume |Vpi| ≥ 2.

By a pinned-slider framework in the plane, we mean a point-line framework

(G,p, `) in which all the lines are pinned, VL ⊆ Vpi; its associated point-line graph

is called a pinned point-line graph. When G is understood from the context, we also

denote it by G = (Vin, Vpi, E) indicating the pinned vertices in contrast to the inner

vertices regardless of whether they are point-vertices or line-vertices. In addition,

there is no edge connecting two pinned vertices in a pinned-line graph G.

Under the assumption |Vpi| ≥ 2, infinitesimal rigid motions are automatically

excluded from the kernel of pinned rigidity matrices. Therefore, the rigidity of

pinned-slider frameworks is described as the following.

A pinned-slider framework (G,p, `) is called infinitesimally rigid if the kernel of

its associated pinned rigidity matrix is trivial; it is isostatic if it is infinitesimally

rigid and removing any edge from G yields an infinitesimally flexible framework or

equivalently, its pinned rigidity matrix is invertible.

The well-known result on isostatic pinned bar-joint graphs (see [57, Theorem 4])

gives a combinatorial characteristic of the realizability of these graphs as isostatic

pinned bar-joint frameworks up to arbitrary configurations with at least two distinct

locations for pinned, and generic configurations for inner vertices. The proof uses

Henneberg methods.
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We now directly employ this result [57] to prove the following theorem.

Theorem 4.2.1. A pinned-slider graph G = (Vin, Vpi, E) can be realized as an

isostatic pinned-slider framework in the plane if and only if

(a) |E| = 2|Vin|,

(b) |E′| ≤ 2|Vin(E′)| for all E′ ⊆ E with |V (E′) ∩ Vpi| ≥ 2,

(c) |E′| ≤ 2|Vin(E′)| − 1 for all E′ ⊆ E with |V (E′) ∩ Vpi| = 1,

(d) |E′| ≤ 2|Vin(E′)| − 3 for all E′ ⊆ E(Vin).

Proof. Suppose G = (Vin, Vpi, E) is a pinned-slider graph satisfying conditions (a)-

(d) . By Theorem [57, Theorem 4], conditions (a)-(d) hold for G if and only if

G has a realization q as an isostatic pinned bar-joint framework where the pinned

vertices realized arbitrarily with at least two distinct positions. In particular, q

may be assumed to realize only the pinned line-vertices collinear. By theorem 3.3.4,

the infinitesimal rigidity of (G,q) is equivalent to that of an isostatic point-line

framework with all lines pinned. This proves the theorem.

If we have at least two pinned line-vertices in an isostatic pinned-slider graph

G then G can be realized as an isostatic pinned-slider framework with all pinned

line-vertices realized coincident to any two non-parallel lines. Also note that the

above theorem holds even when there are some points pinned. If G contains a

pinned point-vertex and a pinned line-vertex, then all the pinned line-vertices can

be realized coincident while the pinned-slider framework remains isostatic.

A version of the above result was proved in [59] by L. Theran and I. Streinu

using the known results on the realization of direction networks in the plane (see

[65], [68], [70] by W. Whiteley). Another version of the result was proved in [34] by

N. Katoh and S. Tanigawa using techniques from matroid theory.
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Figure 4.3: A generically infinitesimally rigid pinned-slider framework (a), its corresponding

point-line framework (b), its corresponding spherical framework (c) and its associated graph

(d).

Following the convention in [17], we draw squares for the pinned vertices in a

pinned point-line graph.

Example 4.2.1. Figure 4.3a illustrates an example of a pinned-slider framework

in the plane. The four boxes indicate the restricted sliding motions of the joints

p1, p2, p3, p4 along the two pinned lines. The pinned point-line framework of Figure

4.3a with pinned lines is shown in Figure 4.3b, which in turn, is equivalent to a

pinned bar-joint framework on the sphere with two pinned points on the equator,

by Theorem 3.3.1 (see Figure 4.3c). The first-order rigidity of this spherical pinned

framework is equivalent to the first-order rigidity of a pinned bar-joint framework

in the plane. The associated pinned point-line graph is shown in Figure 4.3d. The

number of pinned vertices, inner vertices and edges are |Vpi| = 2, |Vin| = 4 and

e = 8, respectively. One can easily check that conditions (b)-(d) are also satisfied.

So the pinned-slider framework is infinitesimal rigid.

Note that the realization of the inner vertices is not arbitrary. In particular, the

realization of the unpinned points on the pinned lines may yield a flexible framework.

As an example, in Figure 4.3a, one can check that if we place the points p1, p2 on

`1 and the points p3, p4 on `2 then the framework becomes infinitesimally flexible.
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4.3 Fixed-normal sliders in the plane

A fixed-normal slider framework is a point-line framework in which lines may only

move parallel to themselves but not change their normals. Namely, the lines will

only have translational motions so their normals will be fixed2.

Let (G,p, `) be a point-line framework in the plane where pi = (xi, yi) ∈ R2 for

all points i ∈ VP and the line `i = (ai, bi) ∈ R2 has the equation x = aiy + bi, for

all lines i ∈ VL, as described in Section 3.5. The point-line framework (G,p, `) is

a fixed-normal slider framework when a′i = 0, for every i ∈ VL. For a fixed-normal

slider framework, there is no angle constraints between the lines as all the angles

are automatically preserved. So ELL = ∅ for fixed-normal slider graphs.

A fixed-normal slider framework is infinitesimally rigid if translations of the

entire plane are the only motions of the framework. A rigidity matrix of a fixed-

normal slider framework (G,p, `) can be obtained from (3.5.0.1) by deletion of the

first column under each line `i, i ∈ VL to obtain the following e× (2vp + vl) matrix:



ph pi `j

Point-point . . . xh − xi yh − yi . . . xi − xh yi − yh . . . 0 . . .
...

...
...

...
. . .

...

Point-line . . . 1 −aj . . . 0 0 . . . −1 . . .


,

(4.3.0.1)

Alternatively, a rigidity matrix for fixed-normal slider frameworks may be ob-

tained from (3.1.0.9) by deletion of the first two columns and the row corresponding

to each point p̃i at infinity, which determines a normal to a line `i, for every i ∈ VL.

Also, the fixed-normal constraint equations can be given in terms of the system

2This type of rigidity is named fixed-slope rigidity in [32] and fixed-normal rigidity of a point-line

framework in [17].
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of constraints (3.7.0.2)–(3.7.0.7) for a point-line framework (G,p, `) in the plane

(see [17]) by setting ~̀′j = 0, for every line j ∈ VL while d′j may vary for every line

`j = ( ~̀j , dj), j ∈ VL, where ~̀
j ∈ R2 determines the orientation of the line `j and

dj ∈ R. Therefore, the fixed-normal constraint equations are:

〈pi − pj , p′i − p′j〉 = 0 ij ∈ EPP , (4.3.0.2)

〈p′i, ~̀j〉+ d′j = 0 ij ∈ EPL. (4.3.0.3)

Hence a rigidity matrix of a fixed-normal slider framework (G,p, `) can be obtained

from (5.3.2.1) for n = 2 after the deletion of the first two columns under each line,

in addition to the deletion of the row corresponding to each line i ∈ VL. This yields

a (e + vp) × (2vp + vl) matrix. Equivalently, one may also use the spherical bar-

joint rigidity matrix (2.3.1.3) to study these constraints if they remove the first and

second columns along with the associated row, corresponding to each point on the

equator.

A fixed-slope slider framework is isostatic if it is infinitesimally rigid and the

removal of any edge results in an infinitesimally flexible framework.

The following theorem from the joint work [17] gives a combinatorial character-

ization of the generic rigidity of fixed-normal slider frameworks. This result was

proved in [32] for the special case when there is no point-point distance.

We offer two proofs for this theorem. The first proof is based on the count

matroid for point-line frameworks (which is similar to the proof given in [17]). The

second proof is a geometric proof that is a consequence of a result of W. Whiteley

[65, Theorem 5.2. ]. This result states that a Leman graph (a graph satisfying

Laman’s conditions) may be realized as an infinitesimally rigid bar-joint framework

in the plane with several sets of collinear edges (or bars) that each forms a tree on

the line containing them. As we know, the generic infinitesimal rigidity of a point-

line framework is geometrically equivalent to that of a bar-joint framework with

only one set of collinear edge while these edges do not need to form a tree. But, as
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we will show, when these edges form a tree, the rigidity of the point-line graph is

equivalent to the fixed-normal rigidity of the subgraph without the collinear edges

(the tree). This second proof creates a link to scene analysis.

We recall that if (G,p, `) is a point-line framework in the plane with the rigidity

matrix given in (3.5.0.1) then a translational infinitesimal motion in direction of

t = (t1, t2) of (G,p, `) has the form ui = (t1, t2) at every points pi = (xi, yi) ∈ R2

and ui = (0,−t2ai + t1) ∈ R2 at every line `i : x = aiy + bi, i ∈ VL while a pure

rotation has the form ui = (−yi, xi) at every point pi, i ∈ VP and ui = (α, 0) at

every line `i, i ∈ VL and some α ∈ R.

Theorem 4.3.1. Let G = (V,E), vp ≥ 1, vl ≥ 2 be a fixed-normal slider graph.

G can be realized as an isostatic fixed-normal slider framework if and only if e =

2vp + vl − 2 and |F | ≤ 2νP (F ) + νL(F )− 2 for all φ 6= F ⊆ E with νL(φ) = −1.

Proof. The necessity follows since the rank of the submatrix of the slider fixed-slope

rigidity matrix corresponding to E′ ⊆ E, which is |E′|, cannot exceed 2|Vp(E′)| +

|Vs(E′)| − 2 because of the two-dimensional subspace of translational motions re-

stricted to V (E′).

So we prove the sufficiency. Let T be the spanning tree on the line-vertices in

G. We show that G ∪ T is isostatic as a point-line graph. We first notice that

|E(G ∪ T )| = |E(G)|+ |E(T )| = 2|VP |+ |VL| − 2 + |VL| − 1 = 2(|VP |+ |VL|)− 3.

Let F be a non-empty subset of the edge set of G ∪ T . If VL(F ) = φ then

|F | ≤ 2νP (F )− 1− 2,

= 2νP (F )− 3.

If VL(F ) 6= φ then we have |F | = |F ∩E(G)|+|F ∩E(T )|. If F ∩E(G) is a non-empty

subset of E(G), then we have

|F ∩ E(G)| ≤ ρ(F ∩ E(G)) ≤ ρ(F ),
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where ρ = min
∑s

i=1(2νP (Ai)+νL(Ai)−2) for any partition {Ai}si=1 of F . The first

inequality follows from the fact that the matroid induced by ρ and 2νP + νL− 2 are

identical ([32, Lemma 3.6.]) and the last inequality follows since ρ is a non-decreasing

submodular function [32].

Because |F ∩ E(T )| ≤ νL(F )− 1, we now have

|F | = |F ∩ E(G)|+ |F ∩ E(T )| ≤ ρ(F ) + νL(F )− 1

i.e., F is independent in the point-line matroid (which is the matroid induced by the

submodular function ρ+ νL− 1). If F ∩E(G) = φ then ρ(F ) = 0 and |F ∩E(T )| ≤

νL(F ) − 1 which means F is independent in the point-line matroid. Therefore

G ∪ T is an isostatic point-line graph and can be realized as an isostatic point-line

framework (G∪T,p, `). Thus it follows that (G,p, `) is an isostatic fixed-slope slider

framework because otherwise, it has a non-trivial (non-translational) infinitesimal

motion m = (mi) ∈ R2vp × Rvl with mi ∈ R2 for i ∈ VP and mi ∈ R for i ∈ VL.

Then m̃ = (mi)
v
i=1 ∈ R2vp+2v` with m̃i = mi, i ∈ VP , m̃j = (0,mj), j ∈ VL would

be a non-trivial motion of (G ∪ T,p, `), which is impossible. This completes the

proof.

The second proof comes from a study of scene analysis and the interesting de-

rived results from it such as [65, Theorem 5.2. ]. This theorem gives necessary and

sufficient counting conditions on an incidence graph G∗ = (A,B; I) under which

it can be realized as bar-joint framework in the plane such that each vertex in A

and B is a line and a joint, respectively and the vertices of B incident to a line in

A correspond to the joints that are collinear with a tree of bars spanned on them.

We use this result below for point-line framework as they are considered bar-joint

frameworks with only one set of joints collinear, by Theorem 3.3.4 . The reader is

referred to [65] to see more matroids and connections on incidence structures.

An alternative proof of Theorem 4.3.1. The necessity of the statement is similar to

the proof above. To prove sufficiency, we interpret the graph G as an incidence graph
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G∗ = (A,B; I) so that each edge in EPP ∪ EPL represents a line-vertex in A with

two incidences and B = VP ∪ VL forms the set of point-vertices in G∗. Moreover,

the line-vertices in VL are all incident to an extra line, denoted by `, that does not

correspond to any edges in G. This is the line that all line vertices are incident to

it (the line at infinity.) Thus the total number of lines |A| in G∗ is e+ 1, the total

number of incidences |I| is 2e + vl and the total number of vertices |B| is vp + vl.

We now show that the incidence graph G∗ satisfies the following conditions:

(a) |I| = |A|+ 2|B| − 3,

(b) |I ′| ≤ |A′| + 2|B′| − 3, for any non-empty subset of incidences I ′ ⊆ I with at

least two points.

It is easy to check (a):

|I| = 2e+ vl = e+ 1 + (2vp + vl − 2)− 1 + vl = |A|+ 2|B| − 3.

To see condition (b) suppose I ′ is a set of |I ′| incidences with |A′| lines (edges) and

|B′| ≥ 2 points. Trivially, (b) holds if |I ′| = 2. If |I ′| > 2 we use a recursive process

to reduce the incidence structure I ′ to a simple one for which condition (b) can be

easily verified. Then we substitute back to recover the original incidence set.

Case 1. Suppose the special line ` is not contained in the line set A′ of I ′. Knowing

that no line in A′ has more than two incidences, we have either |I ′| = 2|A′| = 2|E′|

(full incidence) or |I ′| < 2|E′| (non-full incidence). In the former case, all edges have

their two endpoints in I ′. So |B′| = |VP (E′)|+ |VL(E′)|. Now (b) follows because

|I ′| = 2|E′| = |E′|+ |E′| ≤ |E′|+ (2νP (E′) + νL(E′)− 2) ≤ |A′|+ 2|B′| − 3.

That last inequality is using the fact that νL(E′) = −1 if VL(E) = ∅ and νL(E′) =

|VL(E′)| ≥ 1 if VL(E) 6= ∅.

If |I ′| < 2|E′| then there exists a line with only one incidence, say (e1, b1) ∈ I ′.

Now the incidence set I(2) = I ′−{(e1, b1)} has |E′| − 1 lines in its line set. If I(2) is

94



full incidence we are done otherwise we continue until we end up with an incidence

subset I(n) that is full incidence or there only two points in the point-set of I(n),

which in both cases (b) holds for I(n). Note that in each step either a single line or

a line and a point incident to it are being removed for each incident. Substituted

back the removed incidences, we obtain (b) for the original incidence set I ′.

Case 2. The line ` in the line set of I ′ is the only one that can possibly have

more than two incidences. Remove the incidences (`, b) in I ′ that b is only incident

to ` until we obtain an incidence set I(n) ⊆ I ′ with points on ` that are incident

to another line or there is no incidence of ` in I(n). Note that in each step we

are either removing a single point or a point and the line ` for each incidence set.

In the latter case, (b) holds for I(n) by Case 1. In the former case, we will have

|B(n)| = |VP (E(n))|+ |VL(E(n))|. Thus

|I(n)| ≤ 2|E(n)|+ |VL(E(n))| ≤(|E(n)|+ 1) + (2|VP (E(n))|+ |VL(E(n))| − 2)+

|VL(E(n))| − 1 = |A(n)|+ 2|B(n)| − 3.

which verifies (b) for I(n). Substituting back the incidences, we obtain (b) for I ′.

Thus (b) holds for G∗.

Theorem 5.2 in [65] implies that G∗ can be a realized as an isostatic bar-joint

framework (G ∪ T,q) in the plane where T is the spanning tree on the line-vertices

incident to the line ` and q is an embedding of the vertices of G. Therefore, by

Theorem 3.3.4, there is an isostatic realization of G ∪ T as a point-line framework

(G ∪ T,p, `) with line-vertices as the vertices of T . Similar to the argument in the

above proof, (G,p, `) is an isostatic fixed-normal slider framework.

As an insightful corollary of the above proofs, we have

Corollary 4.3.2. A fixed-normal slider framework (G,p, `) is isostatic in the plane

if and only if (G∪ T,p, `) is an isostatic point-line framework in the plane where T

is a spanning tree on the line-vertices VL.

95



(a)

`1

`2

`3

p1

p2

p3

(b)

p1

p2
p3

p4 p5 p6

u5

u3

u2

u1

(c)

Figure 4.4: Fixed-normal slider frameworks

As the above corollary shows, a basis in the fixed-normal rigidity matroid can be

easily turned into a basis element in the point-line rigidity matroid. In this sense,

the fixed-normal rigidity is a special case of the general point-line rigidity.

Intuitively, the tree T mentioned above blocks the relative rotational motion of

the lines so that if we prevent one line from rotating then none of the remaining

lines will rotate. If the framework is now infinitesimally rigid then it is fixed-normal

rigid and vice versa.

A projective image of a fixed-normal slider framework (as a fixed-normal point-

line framework) as a bar-joint framework with collinear joints in the plane such that

the motion at the collinear joints is restricted to be perpendicular to the direction

of the line containing them.

We use little black-filled triangles on the lines to indicate that the lines are

constrained to have fixed normals, see Figure 4.4b.

Example 4.3.1. Figure 4.4a illustrates a fixed-normal slider framework with 3

revolute joints and 3 prismatic joints. Its point-line framework model is shown in

Figure 4.4b with 3 points p1, p2, p3 and 3 fixed-normal lines `1, `2, `3. By The-

orem 4.3.1, this fixed-normal slider framework is not infinitesimally rigid since

e = 6 < 2vp + vl − 2 = 7. It has one degree of freedom because the framework

is independent by Theorem 4.3.1. This infinitesimal motion leads to a finite motion

(in the associated point-line framework) as the configuration is a regular point of the
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matrix (4.3.0.4). The infinitesimal rigidity of this point-line framework is equivalent

to that of a bar-joint framework shown in Figure 4.4c in which the collinear points

are restricted to infinitesimally move perpendicular to the line containing them.

One can easily generalize the concept of the fixed-normal rigidity in the plane

to higher dimensions for point-hyperplane frameworks. ‘Fixed-normal rigidity’ for

point-hyperplane frameworks in En restricts the motion of the hyperplanes to trans-

lations only. This rules out the rotational motions of the entire framework in En,

which is the n(n− 1)/2 dimensional space of infinitesimal rotations so(n). A rigid-

ity matrix of the fixed-normal rigidity of a fixed-normal point-hyperplane framework

(G,p, `) in En can be obtained from (3.2.0.2) by removing the first n − 1 columns

under each hyperplane, which gives rise to the following matrix:



ph pi `j
...

...
...

Point-point . . . ph − pi . . . pi − ph . . . 0 . . .
...

...
...

Point-hyperplane . . . Hj . . . 0 . . . 1 . . .
...

...
...


, (4.3.0.4)

where Hj = (1, aj,1, . . . , aj,n−1) represents a normal vector to the hyperplane `j in

En. Therefore if G = (VP ∪ VL, E) is a point-hyperplane graph on vp point-vertices

and vl hyperplane-vertices then the necessary condition for the edge-set E to be

independent in the fixed-normal rigidity matroid in Rn is

|F | ≤ nνP (F ) + νL(F )− n,

for every non-empty subset F ⊆ E. The question here is whether this is a sufficient

condition for independence or not?

The answer is affirmative for the case when there is no point-point distance

constraints, i.e., EPP = φ in which case G is a bipartite graph with the bipartition
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{VP , VL}. In this case, the rigidity matrix (4.3.0.4) is identical to the rigidity matrix

of the parallel n-scene matrix given by W. Whiteley in [68, p. 210-211] and as a

result, its rigidity matroid is the same as the n-parallel matroid (see also [65]).

Thus we have the following theorem:

Theorem 4.3.3. [17] Let G = (Vp∪VL, E) be a bipartite graph. Then the following

are equivalent:

(a) Every realization of G as a n-scene with generic hyperplane normals is trivial3.

(b) Every realization of G as a point-hyperplane framework in En with generic nor-

mals is infinitesimally fixed-normal rigid in En.

(c) G contains a spanning subgraph G′ = (VP ∪ VL, E′) such that

|E′| = nvp + vl − n,

|F | ≤ nνP (F ) + νL(F )− n,

for all non-empty F ⊆ E′.

The generic rigidity of point-hyperplane frameworks in En, n > 2 is even more

difficult to understand than the generic rigidity of bar-joint frameworks. To see

this, consider complete bipartite point-hyperplane graphs. The generic rigidity of a

complete bipartite graph Kp,q in En is characterized by a theorem of Whiteley in

[67]: Kp,q is generically rigid in En if and only if p + q ≥
(
n+2

2

)
, p, q > n. By this

theorem, the complete bipartite graph K4,6 is generically rigid in E3 as a bar-joint

framework. On the other hand, in [4, Theorem 15], it is shown that a bar-joint

framework with the underlying graph K4,6 in E3 has non-trivial infinitesimal mo-

tion if and only if the joints all lie on a quadric surface or the 4 points lie in a plane.

This result combined with Theorem 3.3.4 implies that a point-plane framework in

E3 with K4,6 as its point-plane graph with 4 plane-vertices and 6 point-vertices is

3All points in VP will be realized coincident.
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generically infinitesimally flexible because the 4 planes correspond to 4 coplanar

points. Again, by a result of Whiteley (see [67, Corollary 1.4]), this point-plane

framework has 2 degrees of infinitesimal motions in E3. This example shows that

the difficulty of understanding the generic rigidity of point-hyperplane frameworks

in E3 goes beyond an obstacle such as double banana for bar-joint frameworks as

there is not yet any point-point distance edge in K4,6.

As expected, by generic normals Hj = (1, aj,1, . . . , aj,n−1), j ∈ VL, to hyperplanes

`j we mean the generic points (aj,1, . . . , aj,n−1) ∈ Rn, j ∈ VL, in a hyperplane in En.

For n = 2, the normals to the lines are generic points on the line at infinity. We

want to show that it is not enough to have distinct normals (distinct points on the

line at infinity) in order to maintain the rank of the point-line rigidity matrix. In

general, the points on the line at infinity should be ‘generic’ on the line regardless

of the position of the points in En.

As the following example shows for the plane, there are some cases for which the

genericity of the normals is not necessary for generic rigidity but only the distinction

of the normals is enough. However, the genericity of normals is necessary in general

(Example 4.3.3). To show this, we use fixed-normal point-line frameworks with

naturally bipartite graphs for which the positions of points play no role in the

rigidity of these frameworks as point coordinates do not appear in the rigidity matrix

(4.3.0.4).

Example 4.3.2. Figure 4.5a illustrates an example of a bipartite graph G1 that is

generically infinitesimally rigid as a fixed-normal slider graph (or fixed-normal point-

line graph) by Theorem 4.3.1. But its fixed-normal rigidity in the plane depends only

on the distinction of the normals to the lines. Let R(G1,p, `) be the rigidity matrix

of the framework and lines `1, . . . , `6 have equations x = aiy+bi, 1 ≤ i ≤ 6. Suppose

M(G,p, `) is the principal minor in the rigidity matrix obtained by removing the
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two columns corresponding to any two lines, say, `5 and `6. Then

detM(G,p, `) = ±(a1 − a2)(a3 − a6)(a4 − a5)(a5 − a6),

where ± sign is up to the ordering of the lines as they appear in the rigidity matrix.

This indicates the rank of the rigidity matrix will not drop as long as the lines have

different normals. So the normals to the lines only need to be distinct. It is not

difficult to see why linear terms such as (ai − aj) for some i, j ∈ V , appear in the

determinant. det M(G,p, `) can be calculated using Laplace expansion and some

rules of thumb. First, a 2-valent point-vertex can be removed from the graph and

as a result, the determinant is factored by ±(ai − aj) if the 2-valent point-vertex

is adjacent to lines `i and `j . Second, if two point-vertices i, j are adjacent to the

same two line-vertices k, l then every edge jm adjacent to j could be replaced by

edge im in the graph. In the case of G1, we first replace the edge {p4, `6} by {p1, `6}

then expand the determinant on the columns of p4. Consequently the factor a1−a2

appears. Similarly, replace the edge {p3, `6} by {p2, `6} and remove p3. This factors

det M(G,p, `) by a4 − a5. Finally we replace edges {p2, `4} and {p2, `5} by {p1, `4}

and {p1, `5}, respectively and the factor a3−a6 will appear, as a result. We are then

left with a cone graph; point p1 is connected to all lines and the determinant of this

cone graph is a5 − a6. Using this observation, it can be checked that for fixed-slope

point-line frameworks with less than 6 lines, the genericity of the normals is not

necessary.

Example 4.3.3. Now consider the graph G2 shown in Figure 4.5b, which is isostatic

as a generic fixed-normal slider framework (or fixed-normal point-line framework)

by Theorem 4.3.1. All point-vertices are 3-valent and every two have only one line-

vertex in common. If we remove the columns of `5 and `6 in the rigidity matrix, the

determinant of this minor is

±(a5 − a6)
(

(a4 − a5)(a1 − a3)(a2 − a6) + (a3 − a5)(a1 − a2)(a4 − a6)
)
,
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Figure 4.5: The genericity of the normals of the lines is necessary for generic rigidity of

fixed-normal point-line frameworks.

which is not the product of linear factors. In fact, there are some sets of distinct

normals for which the rigidity matrix is not full-rank. One can easily check that the

rank drops if we choose a1 = 1, a2 = 0, a3 = 2, a4 = 4/5, a5 = 3, a6 = 1/4 while it is

full-rank for generic normals.

One can adopt Theorem 3.4.2 for fixed-normal point-hyperplane frameworks to

conclude that if a point-hyperplane configuration (p, `) is a regular point of the

matrix (4.3.0.4) and the rank of this matrix at (p, `) is less than nvp + vl − n then

the rigidity and the infinitesimal rigidity of the fixed-normal framework (p, `) are

equivalent.

In the next section, we consider the rigidity of a class of point-line frameworks

with constrained line motions for which the genericity of line-normals is not neces-

sary.

4.4 Fixed-intercept rigidity

In this section we consider point-line frameworks for which the lines may not trans-

late. To prevent translational motions of the lines we restrict them to maintain their
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Figure 4.6: Fixed-intercept rigidity.

distance from a fixed point in the plane. This fixed point will be the center of the

trivial rotational motion of the entire framework, which is a rigid motion. Note that

trivial infinitesimal translations are being automatically excluded. So the center of

the trivial rotation should be a specific point in the sense that it is not coincident to

any other points. With no loss of generality, this center may be assumed to be the

origin. In Chapter 3, we realized that the generic rigidity of point-line frameworks

does not depend on the position of the lines in the plane. Therefore we may also

assume that the lines are concurrent and through the origin. In [17], these frame-

works are referred to as line-concurrent frameworks. It should be emphasized that

the point of concurrency (the center of the allowed rotation) is a special point and

no other point should be coincident to this center (see Figure 4.6b).

Let G be a point-line graph and (p, `) be a generic configuration of points and

lines in the plane. The framework (p, `) is called infinitesimally fixed-intercept rigid

if the framework has only the trivial rotational motion. A rigidity matrix capturing

the fixed-intercept rigidity of a framework (G,p, `) can be obtained from a point-line

rigidity matrix such as (3.5.0.1) by deleting the last column under every line, i.e.

the infinitesimal translational component of the motions of the lines is set to zero

for line-concurrent frameworks. Hence the rank of the corresponding rigidity matrix
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does not exceed 2vp + vl − 1.

Fixed-intercept rigidity constraints on a point-line configuration (p, `) in the

plane can also be obtained from the constraints (3.7.0.2)–(3.7.0.7) by setting d′i = 0

for every line `i = (~̀i, di), i ∈ VL:

〈pi − pj , p′i − p′j〉 = 0 ij ∈ EPP ,

〈pi, ~̀j
′
〉+ 〈p′i, ~̀i〉 = 0 ij ∈ EPL,

〈~̀i, ~̀j
′
〉+ 〈~̀i

′
, ~̀j〉 = 0 ij ∈ ELL,

〈~̀i, ~̀i
′
〉 = 0 i ∈ VL,

where pi = (xi, yi) ∈ R2 for every i ∈ VP and ~̀
i is a unit vector in R2 for every line

i ∈ VL.

A combinatorial characterization of the generic fixed-intercept rigidity is given

in the following theorem.

Theorem 4.4.1. [17] Let G be a point-line graph with vl ≥ 2. Then G can be real-

ized as an isostatic fixed-intercept line concurrent framework with arbitrary distinct

normals of the lines if and only if e = 2vp + vl − 1 and

|F | ≤ 2νP (F ) + νL(F )− 3 +min{2, νL(F )},

for all non-empty F ⊆ E.

Proof. See [17, Theorem 4.3.] for a proof.

In Chapter 3, we established an intuitive connection (see Figure 3.2) between

the motions (translational-rotational components) of lines of a point-line framework

in the plane and those of the points on the equator of a bar-joint framework on

the sphere S2. We utilized this conception in the proof of Theorem 4.3.1. This

connection will also give us a geometric insight into the rigidity of fixed-intercept

frameworks. Suppose (G,p, `) is a point-line framework in the plane and (G,q) is its

projection into S2 with all points i ∈ VL on the equator. Blocking the translational
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Figure 4.7: Fixed-intercept point-line frameworks and collinear sliders.

motion of the lines in the plane is equivalent to the blocking of the perpendicular

(to the equator of S2 in R3) component of the motion of the points on the equator.

This is achieved by connecting the north pole to each point on the equator which

yields a new bar-joint framework (G′,q) on S2, where V (G′) = V (G) ∪ {N} and

E(G′) = E(G)∪{e1, . . . , evl} with ei = {N, `i}, 1 ≤ i ≤ vl. The projection of (G′,q)

to the plane is a point-line framework whose fixed-intercept rigidity is equivalent

to the rigidity of (G′,q) with the north pole pinned because there is a natural

one-one correspondence between the infinitesimal motions of these two frameworks.

Applying a rotation that maps only the north pole to the equator results in a bar-

joint framework with only one joint on the equator which is pinned. Projecting this

framework to the plane gives rise to a point-line framework with one line which is

pinned and the collinear points on the pinned line are constrained to remain on the

line because they are connected to a point at infinity. See [17, Figure 8] for more

examples.

Therefore, the infinitesimal rigidity of a fixed-intercept framework (G,p, `) is

equivalent to the infinitesimal rigidity of a bar-joint framework (G,q) where the

joints qi, i ∈ VL are collinear and constrained to move on a line.

Example 4.4.1. Consider the graph G in Figure 4.6a. By Theorem 4.4.1, G is

infinitesimally fixed-intercept rigid. A point-line framework with the underlying

graph G is shown in Figure 4.7b. As was explained, the fixed-intercept infinitesimal

rigidity of this framework is equivalent to that of a bar-joint framework on the sphere
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shown in Figure 4.7a. In turn, the infinitesimal rigidity of this spherical framework

is equivalent to the framework shown in Figure 4.7c, under a rigid motion of the

sphere. The projection of this last framework to the plane is a bar-joint framework

with collinear joints constrained to stay collinear, shown in Figure 4.7d.

Hence Theorem 4.4.1 has an analogue for bar-joint frameworks with one set of

collinear joints that are constrained to move along the line containing them. In

fact, Theorem 4.4.1 has been extended in [17, Theorem 4.4] to give a combinatorial

characterization of fixed-intercept rigidity for the non-generic case when some lines

might have the same normals, meaning they could be coincident or parallel.

This result will directly translate to a result about the rigidity of a slider mech-

anism with a set of sliders on a line so that the slider points could be coincident.

We state it here for completeness:

Theorem 4.4.2. [17, Theorem 4.5.] Let G be a point-line graph with vl ≥ 2 and let

xi ∈ R for each i ∈ VL. Then G can be realized as a minimally infinitesimally rigid

bar-joint framework in R2 with VL as a set of horizontal slider joints such that the

coordinate of i ∈ VL is (xi, 0) if and only if

(a) e = 2vp + vl − 1,

(b) xi 6= xj for each ij ∈ ELL, and

(c) |F | ≤ 2νP (F ) + νL(F ) − 1 −
∑

H∈C(G[F ])P )max{0, 2 − |{xj : ij ∈ F ∩ EPL, i ∈

V (H)}|}) for all non-empty F ⊆ E.

The counting condition in the above theorem simplifies to the counting condition

in Theorem 4.4.1 when the lines have distinct normals. See [17] for the proof of these

results.
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Chapter 5

Tensengrity for

point-hyperplane frameworks

In this chapter we introduce and study the type of point-hyperplane frameworks with

not only fixed distances on some pair of points but also with the constraints that

restrict the motion of some points in some directions. This will lead to the study of

the rigidity of a system of constraints with upper-bounded or lower-bounded distance

or angle constraints on some pairs of points and hyperplanes. We investigate and

characterize the rigidity and infinitesimal rigidity of these types of point-hyperplane

frameworks. These results can detect the rigidity or flexibility of a broad class of

slider systems.

This study is inspired by the analogous constraint system on points in En. These

frameworks drew attention from engineers and architects in the last century. A

physical model of these structures could be composed of some bars, cables and

struts connecting specific pairs of points so that bars keep the distance between

their endpoints fixed while cables (respectively, struts) allow this distance to reduce

(respectively, increase) only. These structures were called tensegrity frameworks by

Buckminster Fuller.

We first establish tensegrity frameworks in Sn and then ‘project’ them into
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the Euclidean space En in order to understand tensegrity constraints for point-

hyperplane frameworks in En. To this end, we first develop the Static Theory of

frameworks in spherical spaces. This will give us insight into the static analysis of

point-hyperplane frameworks.

5.1 Statics of bar-joint frameworks in Sn

In this section, the static theory of rigidity is developed as the dual concept to the

infinitesimal theory of rigidity in n-dimensional spherical space. We will see that

the static rigidity of frameworks in Sn is equivalent to their infinitesimal rigidity.

In the entire section, by a framework we mean a spherical framework.

We recall that for a spherical configuration p = (p1, . . . , pv) with pi ∈ Sn, 1 ≤

i ≤ v, the linear subspace

T (p) = {(p′1, . . . , p′v) ∈
v∏
i=1

TpiS
n | p′i = Spi, S

t = −S, S ∈M(n+1)×(n+1)},

of R(n+1)v is the linear space of trivial infinitesimal motions at p.

If p generates a vector space of dimension at least n then the dimension of T (p)

is
(
n+1

2

)
; the dimension of the space of skew-symmetric (n+1)×(n+1) matrices i.e.,

the dimension of the linear space of infinitesimal rotations in Rn+1. In this chapter,

we assume that all configurations p have this property.

In differential geometry, forces at a point p are elements of the cotangent space

T ∗p Sn at p; the space of 1-forms at p, which is isomorphic to Rn. In addition, forces

are pulled back by smooth maps as opposed to velocities that are pushed forward

by smooth maps. In projective geometry, a force at a point p in Pn is a 2-form f ∧ p

for some f ∈ Rn+1, see [16] and [33]. For our purposes, we define

Definition 5.1.1. A force fi at a point pi on Sn is an element of Rn+1 such that

〈fi, pi〉 = 0. The exterior 2-form fi ∧ pi determines a line called the line of force fi

on Sn.
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Therefore, by definition, forces determine decomposable 2-extensors in the lan-

guage of projective geometry and conversely, any decomposable 2-extensor in Rn+1

determines a force at a point on sphere Sn.

A force at a configuration p = (p1, . . . , pv) is a v-tuple F = (f1, . . . , fv) of forces

fi at points pi on Sn, i = 1, . . . , v. We define the linear space of equilibrium forces

at configuration p = (p1, . . . , pv) as

E(p) = {F ∈ R(n+1)v|〈F,p′〉 = 0,p′ ∈ T (p)}.

In other words, E(p) is the orthogonal complement of I(p) in a nv-dimensional

space, so dim E(p) = nv −
(
n+1

2

)
. The following proposition gives an alternative

description of E(p).

Proposition 5.1.1. A force F = (f1, . . . , fv) at a spherical configuration p =

(p1, . . . , pv) is in equilibrium if and only if

v∑
i=1

fi ∧ pi = 0. (5.1.0.1)

Proof. Let F = (f1, . . . , fv) and p′ = (p′1, . . . , p
′
v) be respectively, an equilibrium

load and a trivial infinitesimal motion at p. It is useful to regard a skew symmetric

matrix S ∈ M(n+1)×(n+1) as a extensor (n+ 1)− 2 form so that Spi = S ∧ pi is an

extensor n form. So 〈fi, S ∧ pi〉 = −〈fi ∧ pi, S〉. Hence,

〈F,p′〉 =

v∑
i=1

〈fi, p′i〉 =

v∑
i=1

〈fi, S ∧ pi〉 =

=
( v∑
i=1

fi ∧ S ∧ pi
)

=
(
− (

v∑
i=1

fi ∧ pi) ∧ S
)
.

This implies
∑v

i=1 fi ∧ pi = 0 if only if 〈F,p′〉 = 0.
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p1

p2
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(a) Spherical equilibrium loads on

two points p1 and p2.

p2

p3p1

f2

f3

f1

f ′3
q

f ′2

f ′1

(b) Spherical equilibrium forces on

three points p1, p2 and p3.

Figure 5.1: Equilibrium forces on S2.

For example, an equilibrium load F = (f1, f2) of a single bar on S2 is a pair of

forces f1 and f2 applied to the end points of the bar so that they both are tangent

to the great circle containing the bar and moreover, their parallel transports to any

point on the line add up to zero. Algebraically, this is expressed by the equality

f1 × p1 = −f2 × p2 where × is the cross product of two vectors in R3. Similarly, a

triple of forces (f1, f2, f3) applied to three points p1, p2 and p3 on S2 is in equilibrium

if their lines of forces (great circles) are concurrent and the parallel transport of the

forces to the point of concurrency add up to zero. To see this, note first that

f1 × p1 + f2 × p2 + f3 × p3 = 0 implies the lines of forces of f1, f2 and f3 through

p1, p2 and p3 respectively, intersect at a point, say q. The parallel transport of each

fi, i = 1, 2, 3 along their lines of force to point q are forces f ′1, f
′
2 and f ′3 at q such

that:

fi × pi = f ′i × q i = 1, 2, 3.

Since
∑3

i=1 fi × pi = 0 we conclude f ′1 + f ′2 + f ′3 = 0. In general, equation (5.1.0.1)

assures that equilibrium forces do not generate a net momentum around any axis

(through the origin.)
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(a) Stress definition

p1 p5

p4

p3

p2

p6

(b) An independent framework with-

out non-trivial stresses.

Figure 5.2: Stresses in S2.

Given a configuration p = (p1, . . . , pv) for every 1 ≤ i < j ≤ v, the force

Fij = (0, . . . , 0, fi, 0, . . . , 0, fj , 0, . . . , 0)

= (0, . . . , 0, pj − 〈pi, pj〉pi, 0, . . . , 0, pi − 〈pi, pj〉pj , 0, . . . , 0) ∈ R(n+1)v,

is an example of an equilibrium force at p.

Let G = (V,E) be a simple graph with |V | = v, |E| = e.

Definition 5.1.2. A self-stress of a framework (G,p) is an assignment ω : E → R

of scalars ωij = ωji to each edge ij ∈ E such that for every i ∈ V ,∑
ij∈E

ωij(pj − 〈pi, pj〉pi) = 0. (5.1.0.2)

Note that 〈(pj−〈pi, pj〉pi), pi〉 = 0 for every i ∈ V , as Figure 5.2a shows. Clearly,

the set of stresses of a framework (G,p) is a subspace of RE ; we denote it by S(E).

Every stress of (G,p) corresponds to a linear dependence of the rows of the

spherical rigidity matrix RS(G,p). More specifically, for any nontrivial stress ω =

(ωij)ij∈E , ∑
ij∈E

ωijpj + ωipi = 0 for every i ∈ V,
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where ωi = −
∑

ij∈E ωij〈pj , pi〉.

Given a framework (G,p), the stress transformation of (G,p) is defined to be

the linear transformation T : RE → R(n+1)v, T (ω) = (T1(ω), . . . , Tv(ω)) where Ti(ω)

is given by

Ti(ω) =
∑
ij∈E

ωij(pj − 〈pi, pj〉pi).

Note that ker(T ) = S(E), by definition 5.1.2. Also, the image of the stress trans-

formation T of (G,p) is contained in E(p) because

∑
i∈V

Ti(ω) ∧ pi =
∑
i∈V

∑
ij∈E

ωij(pj − 〈pi, pj〉pi)

 ∧ pi =
∑
i∈V

∑
j∈V

ωijpj ∧ pi = 0,

for any ω ∈ RE .

An equilibrium force F = (f1, . . . , fv) is called resolvable by the spherical frame-

work (G,p) if there exists ω ∈ RE such that T (ω) = F. Such a stress ω is called

a resolution of F by framework (G,p). If every equilibrium force of a framework

(G,p) is resolvable then the framework is called statically rigid. In this case, the

rank of T achieves its maximum possible value nv −
(
n+1

2

)
.

The edge set E of a framework (G,p) is called independent if and only if the

stress transformation T of (G,p) is injective, ker T = S(E) = {000}; otherwise E is

called dependent. In this case, the rank of T is less than the number of bars. Finding

non-trivial dependency relations, or showing that none exists, is a useful method

for deciding the independence of an edge set. The framework shown in Figure 5.2b

with points p1, p5 and p6 collinear is independent since it only admits the trivial

self-stress. To see this, notice that the force p3 − 〈p3, p6〉p6 at point p6 cannot be a

non-trivial linear combination of forces p1−〈p1, p6〉p6 and p5−〈p5, p6〉p6 at p6. Hence

ω36 = ω16 = ω56 = 0. Consequently, ωij = 0 for all ij ∈ E. Now if we add the edge

{1, 5} to the framework then we will have a non-trivial stress on edges {1, 5}, {1, 6}
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and {5, 6}. In general, if p6 = λ1p1 + λ2p5 then ω16 = λ1, ω15 = −λ1λ2, ω56 = λ2

and, ωij = 0 for the rest of edges, is a stress of the new framework.

The rigidity matrix RS(G,p) is a matrix representation of the rigidity transfor-

mation R :
∏v
i=1 TpiSn → RE , R = (Rij)ij∈E where

Rij(u1, . . . , ui, . . . , uj , . . . , uv) = 〈pi, uj〉+ 〈pj , ui〉,

for every ij ∈ E. It is crucial to note that operators R and T are transpose of each

other, R∗ = T . To see this, one can verify

〈R(u), w〉 = 〈u, T (w)〉 for all u ∈
v∏
i=1

TpiS
n, w ∈ RE .

Now if u is an infinitesimal motion of (G,p), R(u) = 0 then 〈u, T (w)〉 = 0 for

any w ∈ RE , meaning the space of infinitesimal motions of framework (G,p) is

orthogonal to the space of resolvable forces. We now express the two important

results of this section:

Theorem 5.1.2. For a spherical framework (G,p), static rigidity is equivalent to

infinitesimal rigidity.

Proof. The fact that R∗ = T implies

dim(im(T )) = dim(im(R)).

So (G,p) is statically rigid if and only if dim im(T )= nv−
(
n+1

2

)
= dim im(R). This

is true if and only if (G,p) is infinitesimally rigid.

We conclude this section with Maxwell’s theorem for Sn:

Theorem 5.1.3. Let (G,p) be a spherical framework in Sn. Then

dim(S) ≥ e− nv +

(
n+ 1

2

)
The equality holds if and only if the framework is statically rigid or equivalently, it

is infinitesimally rigid.
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Proof. Since dim(
∏v

1 TpiSn) = nv and dim(R|E|) = e, we have

dim(S) + dim(im(T )) = e,

dim(ker(R)) + dim(im(R)) = nv,

and so

dim(ker(R)) = n|V | − |E|+ dimS ≥
(
n+ 1

2

)
.

Equality holds if and only if dim(ker(R)) =
(
n+1

2

)
and this is true if and only if

(G,p) is infinitesimally rigid or equivalently, statically rigid.

This theorem explains the term ‘isostatic’ used by structural engineers: a frame-

work (G,p) is called isostatic if e = nv −
(
n+1

2

)
and there is no non-trivial stress,

dim(S) = 0. In other words, ker(T ) = {0} and im(T ) = E(p). At this point,

adding more edges (or bars) creates stresses but no effect on the first-order rigidity

of (G,p).

5.2 Tensegrity in Sn

Definition 5.2.1. A signed graph G± = (V,E) is a simple graph whose edge set

E is partitioned into three subsets E−, E◦ and E+ called cables, bars and struts,

respectively. A signed graph is denoted by G± = (V ;E−, E◦, E+).

Definition 5.2.2. A tensegrity framework (G±,p) on Sn consists of a signed graph

G± = (V ;E−, E◦, E+) and an embedding p : V → Sn of vertices so that pi 6= −pj ,

for all i, j ∈ V .

An infinitesimal motion of (G±,p) is an assignment p′ : V →
∏v
i=1 TpiSn,

p′(i) = p′i ∈ TpiSn of velocities to the points pi, i ∈ V such that

〈pi − pj , p′i − p′j〉 ≤ 0 ij ∈ E−, (5.2.0.1)

〈pi − pj , p′i − p′j〉 = 0 ij ∈ E◦, (5.2.0.2)

〈pi − pj , p′i − p′j〉 ≥ 0 ij ∈ E+. (5.2.0.3)
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These conditions are respectively driven from the following:

d

dt
cos−1〈pi, pj〉 ≤ 0,

d

dt
cos−1〈pi, pj〉 = 0,

d

dt
cos−1〈pi, pj〉 ≥ 0,

d

dt
〈pi, pi〉 = 0,

where points pi, i ∈ V are smooth functions of time t.

Trivial infinitesimal motions of (G±,p) are the infinitesimal motions at p in-

duced by the group of orthogonal transformations SO(n+1) of the entire sphere Sn.

A tensegrity framework (G±,p) is called infinitesimally rigid if every infinitesimal

motion of (G±,p) is trivial that is, p′i = Spi for all i ∈ V and a skew symmetric

(n+ 1)× (n+ 1) matrix S.

A self-stress ω = (ωij)ij∈E of the tensegrity framework (G±,p) is a self-stress of

(G,p) such that ωij ≥ 0 for ij ∈ E− and ωij ≤ 0 for ij ∈ E+. A self-stress ω of

(G±,p) is called strict if ωij > 0 for all ij ∈ E− and ωij < 0 for all ij ∈ E+.

A tensegrity framework (G±,p) is statically rigid if for every equilibrium force

F = (fi)i∈V of p there are scalars ωij = ωji, ij ∈ E with ωij ≥ 0 for ij ∈ E− and

ωij ≤ 0 for ij ∈ E+ such that

∑
ij∈E

ωij(pj − 〈pj , pj〉pi) + fi = 0, (5.2.0.4)

for every i ∈ V . In this case, F is said to be resolvable by (G±,p) and ω is called a

stress that resolves F. As (5.2.0.4) indicates, a self-stress of (G±,p) demonstrates

how the framework responds to an external force F by creating tensions (on cables

E−) and compressions (on struts E+) along the edges in a particular pattern dictated

by the sign pattern on the edge set E in order to neutralize the effect of F. In

addition,
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Figure 5.3: A tensegrity framework on S2.

Proposition 5.2.1. Suppose (G±,p) is a statically rigid tensegrity framework in

Sn. The framework (G′±,q) with qi = −pi for some i and qj = pj for all j 6= i whose

signed graph G′± is obtained by reversing the sign on all edges in G± adjacent to

the vertex i, is statically rigid if and only if (G±,p) is statically rigid.

Proof. According to (5.2.0.4), changing pi to −pi for some i while replacing fi by

−fi leads to a new set of consistent equations confirming static rigidity of (G′±,q)

as it resolves all equilibrium forces of q.

Throughout the chapter, we use dash-dotted lines to represent cable elements.

We will use springs with double-lines to represent strut elements and, solid lines to

represent bars, as usual.

Example 5.2.1. Suppose K4 is the complete graph on 4 vertices, We define a signed

graph K±4 of K4 by {e12, e24, e43, e31} = E− and {e14, e23} = E+. Let (K±4 ,p) be a

tensegrity framework with configuration p = (p1, p2, p3, p4) where

p1 = (

√
2

2
,

√
2

2
, 0), p2 = (

1

3
,
−2
√

2

3
, 0), p3 = (−1

3
,
2

3
,
2

3
), p4 = (−1

2
,−1

2
,

√
2

2
).

It is easy to check that (K±4 ,p) admits a strict self-stress

ω = (ω12, ω13, ω14, ω23, ω24, ω34),
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where

ω12 =
9

2(1 + 2
√

2)
, ω13 =

3

2
, ω14 = −

√
2,

ω24 =
9

6−
√

2
, ω23 = − 27

√
2

4(6−
√

2)
, ω34 =

27
√

2 + 3

32− 11
√

2
.

This generates the 1-dimensional stress space of (K±4 ,p). Figure 5.3a shows a

schematic model of the tensegrity framework (K±4 ,p) on sphere. By a rigid motion

of S2 we can transfer (K±4 ,p) to S2
+. The projection of the resulting framework to

the plane (Figure 5.3c on top) is statically rigid and infinitesimally rigid. Therefore

(K±4 ,p) is statically and infinitesimally rigid in S2 (See [54]).

Figure 5.3b shows a tensegrity framework obtained from (K4,p) after replacing

p3 by its antipodal −p3. This gives rise to a new statically rigid tensegrity framework

if we reverse the signs on the edges adjacent to p3 and the new self-stress is:

ω′ = (ω12,−ω13, ω14,−ω23, ω24,−ω34).

Figure 5.3c shows the projective image (under the central projection) of the spherical

tensegrity frameworks in Figures 5.3a and 5.3b as rigid tensegrity frameworks in the

plane. A practical model of the spherical frameworks shown in Figure 5.3 can be

made by designing rigid pieces that connect the vertices on the sphere to a central

point such that the vertices can freely rotate around that center with cables and

struts among them. This process is called coning. We employ this idea to transfer

statics from En+1 to Sn in Lemma 5.2.3 later.

An immediate consequence of (5.2.0.4) is that interchanging the cables and struts

of a tensegrity framework does not change the classification of its infinitesimal rigid-

ity. As an example, all the frameworks shown in Figure 5.3, both in plane and on

the sphere, lead to new rigid tensegrity framework with cables replaced by struts

and vice versa.
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We are now going to transfer some key results in the theory of Euclidean tenseg-

rity frameworks to spherical spaces. The following result of Roth and Whiteley [50]

connects the infinitesimal rigidity and the static rigidity of tensegrity frameworks.

Theorem 5.2.2. [50, Theorem 4.3.] A tensegrity framework (G±,p) in En is in-

finitesimally rigid if and only if it is statically rigid.

We want to conclude the analogous result in Sn. Before that, the following

lemma is needed.

Lemma 5.2.3. Suppose (Ǧ±, p̌) is the tensegrity framework obtained from (G±,p)

by adding a new vertex at the origin v0 plus v bars connecting v0 to each vertex

vi ∈ V . The following are true:

(a) (G±,p) is statically rigid on Sn if and only if (Ǧ±, p̌) is statically rigid in En+1.

(b) (G±,p) is infinitesimally rigid on Sn if and only if (Ǧ±, p̌) is infinitesimally

rigid in En+1.

Proof of a. Suppose (G±,p) is statically rigid. We will show any equilibrium force

F = (f0, f1, . . . , fv) ∈ R(n+1)(v+1) of (Ǧ±, p̌) in En+1 will be resolved by a stress

of (Ǧ±, p̌). Since F is an equilibrium force of (Ǧ±, p̌) then
∑v

i=1 fi ∧ pi = 0 and

therefore,

F′ = (f1 − 〈f1, p1〉p1, . . . , fv − 〈fv, pv〉pv),

is an equilibrium force of (G±,p) in Sn. So there exists a stress ω = (ωij)ij∈E of

(G±,p) that resolves this force, meaning∑
ij∈E

ωij(pj − 〈pi, pj〉pi) + fi − 〈fi, pi〉pi = 0,

for every 0 6= i ∈ V . A simple manipulation yields

∑
ij∈E

ωij(pj − pi) +

∑
ij∈E

(ωij − 〈pi, pj〉)− 〈fi, pi〉

 pi + fi = 0, (5.2.0.5)
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for every 0 6= i ∈ V . At vertex v0, we have

∑
i

∑
ij∈E

(ωij − 〈pi, pj〉)− 〈fi, pi〉

 pi − f0 = 0. (5.2.0.6)

This follows from (5.2.0.5) considering f0 = −
∑v

i=1 fi. Now (5.2.0.5) and (5.2.0.6)

imply F is resolved by framework (Ǧ±, p̌) for some stresses. So (Ǧ±, p̌) is statically

rigid.

Conversely, suppose (Ǧ±, p̌) is statically rigid. If (f1, . . . , fv) in R(n+1)v is an

equilibrium force of (G±,p) then F = (−
∑

i fi, f1, . . . , fv) in R(n+1)(v+1) is an equi-

librium force of (Ǧ±, p̌). So there exists a stress ω ∈ Re+v of (Ǧ±, p̌) that resolves

F. In particular, ∑
j

ωij(pj − pi) + fi = 0 1 ≤ i ≤ v.

Taking the dot product by pi, we have
∑

j(ωij〈pj , pi〉 − ωij) = 0, for all 1 ≤ i ≤ v

as 〈pi, fi〉 = 0, 〈pi, pi〉 = 1 for all 1 ≤ i ≤ v. This implies∑
j

ωij(pj − 〈pj , pi〉pi) + fi = 0.

So ωij ∈ Re is a resolving stress. Thus (G±,p) is statically rigid.

Proof of b. The statement follows from the fact that if (p′1, . . . , p
′
v) is an infinites-

imal motion of (G±,p) then (0, p′1, . . . , p
′
v) is an infinitesimal motion of (Ǧ±, p̌).

Conversely, if (p′0, p
′
1, . . . , p

′
v) is a motion of (Ǧ±, p̌) then (p′1 − p′0, . . . , p′v − p′0) is a

motion of (G±,p). This establishes a isomorphism between the space of motions of

the two framework and so, the equivalence of their infinitesimal rigidity.

Corollary 5.2.4. A tensegrity framework (G±,p) in Sn is infinitesimally rigid if

and only if it is statically rigid.

Proof. It follows from Theorem 5.2.2 and Lemma 5.2.3.

The proof of Lemma 5.2.3 shows us that stresses on non-radial edges in the

tensegrity framework (Ǧ±, p̌) in Ed are the same as those on their corresponding

118



edges of the spherical tensegrity framework (G±,p). In particular, strict stresses of

(Ǧ±, p̌) are transferred to strict stresses of (G±,p) and conversely. Also, as indi-

cated in the proof of Lemma 5.2.3, stresses on radial edges in (Ǧ±, p̌) are dependent

on the stresses on non-radial edges. Therefore the dimension of the stress space of

the underlying bar-joint framework (Ǧ , p̌) in En+1 is equal to the dimension of the

stress space of the bar-joint framework (G,p) in Sn. As a result, the framework

(Ǧ , p̌) is statically rigid if and only if (G,p) is statically rigid.

Thus, the following important theorem is a corollary of Theorem 2.2.5:

Theorem 5.2.5. For a tensegrity framework (G±,p) in Sn the following are equiv-

alent:

(a) (G±,p) is statically rigid.

(b) (G±,p) has a strict self-stress and the bar-joint framework (G,p) is statically

rigid.

Proof. (a) is equivalent to the static rigidity of the coning framework (Ǧ , p̌) in En+1,

by Lemma 5.2.3. This, in turn, is equivalent to the existence of a strict self-stress of

(Ǧ±, p̌) and infinitesimal rigidity of (Ǧ , p̌), by Theorem 2.2.5. Thus the equivalence

of (a) and (b) follows from the proof of Lemma 5.2.3.

5.3 Point-hyperplane tensegrity frameworks in En

Let p = (pi)
vp
i=1 ∈ Rnvp be a configuration of points pi = (xi,1, . . . , xi,n) ∈ Rn and we

have a collection of hyperplanes with equations x1 +ai,1x2 + · · ·+ai,n−1xn+ai,n = 0

for each hyperplane `i. In general, the sign of the point-hyperplane distance formula

xi,1 + aj,1xi,2 + · · ·+ xi,naj,n−1 + aj,n√
1 + a2

j,1 + · · ·+ a2
j,n−1

,

between point pi and hyperplane `j depends on the orientation ~̀
j of `j and the side

on which the point pi is located. If ~̀i is towards the point pi the sign of the distance
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tance depends on the orientation the
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α `i

`j

~̀
j−~̀i

π − α

(b) Changing the orientation of `i results in

measurement of the complement angle.

Figure 5.4: Orientation of lines and distance-angle measurements.

is positive otherwise it is negative (Figure 5.4a). The angle between two lines `i

and `j are measured by the angle between their normal vectors as α = cos−1〈~̀i, ~̀j〉.

If we change the orientation of one line then the complement angle π − α will be

measured (Figure 5.4b). Increasing the angle α is equivalent to decreasing its com-

plement π − α. Throughout this chapter, we assume the hyperplanes are oriented.

Recall that (G,p, `◦) is a point-hyperplane framework obtained from (G,p, `) by

translating all the hyperplanes `i, i ∈ VL to the origin while the points remain in their

positions. Therefore the orientation of hyperplanes in (G,p, `◦) and (G,p, `) are the

same, ~̀◦i = ~̀
i but ai,n = 0 for all hyperplanes in (G,p, `◦). In fact, `◦i = ( ~̀◦i , 0) =

(~̀i, 0). As we saw before, the frameworks (G,p, `) and (G,p, `◦) are equivalent

in terms of infinitesimal rigidity. In addition, their infinitesimal rigidity can be

examined using the matrix (3.1.0.9) as well as the rigidity matrix (G,p, `):
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R(G,p, `) =



ph pi `j `k

...
...

...
...

· · · ph − pi · · · pi − ph · · · 0 · · · 0 · · ·

...
...

...
...

· · · `j · · · 0 · · · ph · · · 0 · · ·

...
...

...
...

· · · 0 · · · 0 · · · `◦j − `◦k · · · `◦k − `
◦
j . . .

...
...

...
...

· · · en+1 · · · 0 · · · 0 · · · 0 . . .

...
...

...
...

· · · 0 · · · 0 · · · `◦j · · · 0 . . .

...
...

...
...



,

where en+1 = (0, · · · , 1) is a unit vector in Rn+1 where pi = (xi,1, . . . , xi,n, 1) for

points and `i = (~̀i, ai,n) with ‖~̀i‖2 = 1 for hyperplanes.

Similar to spherical frameworks, we can see (proof of Proposition 5.3.1 below)

that any linear dependence relation of the rows of the rigidity matrix R(G,p, `)

can be uniquely determined by the coefficients of the principal rows rij , ij ∈ E

(corresponding to the edges of the graph) in that linear relation.

So we define:

Definition 5.3.1. A self-stress of a point-hyperplane framework (G,p, `) is an

assignment of scalars ωij = ωji to every edge ij ∈ E such that for every vertex

i ∈ V , if i ∈ Vp, ∑
j∈VP ,ij∈E

ωij(pi − pj) +
∑

j∈VL,ij∈E
ωij`j + ωien+1 = 0,

for some scalar ωi and, if i ∈ VL,∑
j∈VP

ωijpj +
∑
j∈VL

ωij(`
◦
i − `◦j ) + ωi`

◦
i = 0,
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for some scalar ωi.

Self-stresses are the coefficients of the principal row vectors in a linear depen-

dence relations of the rows of the matrix (G,p, `) . They form a linear space that

we denote by S(G,p, `). It is vital to note that any self-stress of (G,p, `) is a self-

stress of (G,p, `◦) and vice versa. Therefore S(G,p, `) = S(G,p, `◦). To analyze

the stresses of a framework (G,p, `), we work with the framework (G,p, `◦) instead

as its rigidity matrix has a closer appearance a spherical rigidity matrix.

Next, we see that self-stresses of point-hyperplane frameworks can be obtained

from the corresponding spherical frameworks under the central projection as de-

scribed in Chapter 3.

5.3.1 Transfer of stresses from spherical frameworks to point-hyperplane

frameworks

Suppose (G,p), is a framework in Sn+ ∪ Veq and Veq contains a non-empty set of

joints in V that are located on the equator of Sn. We use i ∈ Veq for pi ∈ Veq and

i /∈ Veq for pi /∈ Veq.

Let pi = (xi,1, . . . , xi,n+1), xi,n+1 > 0, for i ∈ V \Veq and pi = (xi,1, . . . , xi,n, 0),

i ∈ Veq be the points on the equator Sn. Projecting (G,p) to the affine hyper-

plane xn+1 = 1, we have an oriented point-hyperplane framework (G, p̃, `◦) with

all lines passing through the origin so that p̃i = (xi,1/xi,n+1, . . . , xi,n/xi,n+1, 1) are

the points in the hyperplane xn+1 = 1 if i ∈ V \Veq and the oriented hyperplane `◦i

has the equation xi,1x1 + · · · + xi,nxn = 0 for i ∈ Veq corresponding to the point

pi = (xi,1, . . . , xi,n, 0) on the equator.

We have the following proposition:

Proposition 5.3.1. Let (G,p) be a framework on Sn with some vertices on the

equator and (G, p̃, `◦) is its projected point-hyperplane framework in En. If ω =
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(ωij)ij∈E is a self-stress of (G,p) in Sn then ω̃ = (ω̃ij)ij∈E is a self-stress of (G, p̃, `◦)

in En where

ω̃ij =


xi,n+1xj,n+1ωij ij ∈ EPP ,

−xi,n+1ωij ij ∈ EPL,

ωij ij ∈ ELL.

(5.3.1.1)

Conversely, if ω̃ij is a self-stress of (G, p̃, `◦) then

ωij =


‖p̃i‖‖p̃j‖ω̃ij ij ∈ EPP ,

−‖p̃i‖ω̃ij ij ∈ EPL,

ω̃ij ij ∈ ELL.

is a self-stress of the spherical framework (G,p).

Proof. Assume ω = (ωij)ij∈E is a self-stress of (G,p) on Sn. For every i ∈ V \Veq,

∑
j /∈Veq

ωijpj +
∑
k∈Veq

ωikpk + ωipi = 0,

where ωi = −
∑

j∈V ωij〈pj , pi〉 with the convention ωij = 0 if ij /∈ E.

This yields

∑
j /∈Veq

xi,n+1xj,n+1ωij p̃j +
∑
k∈Veq

xi,n+1ωikpk + ωix
2
i,n+1p̃i = 0, (5.3.1.2)

or ∑
j /∈Veq

xi,n+1xj,n+1ωij(p̃j − p̃i) +
∑
k∈Veq

xi,n+1ωikpk

+ (ωix
2
i,n+1 +

∑
j /∈Veq

xi,n+1xj,n+1ωij)en+1 = 0.

(5.3.1.3)

For every i ∈ Veq on Sn, we have

∑
j /∈Veq

ωijpj +
∑
j∈Veq

ωijpj + ωipi = 0,
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or ∑
j /∈Veq

xj,n+1ωij p̃j +
∑
j∈Veq

ωijpj + ωipi = 0, (5.3.1.4)

which can be written as

∑
j /∈Veq

−xj,n+1ωij p̃j +
∑
j∈Veq

ωij(pi − pj) + (ωi −
∑
ij

ωij)pi = 0. (5.3.1.5)

Now (5.3.1.3) and (5.3.1.5) prove one direction. Because the stress spaces of (G,p)

and (G, p̃, `◦) are isomorphic (of the same finite dimension) and 5.3.1.1 is a linear

injection from the stress space of (G,p) in S2 to the stress space of (G, p̃, `◦) in En,

then it must be a bijection. So (5.3.1.3) and (5.3.1.5) also trace the way back from

point-hyperplane stresses to obtain spherical stresses.

It is worth mentioning that in order to obtain the corresponding linear relations

in the rows of (3.2.0.2), we can continue further from equation (5.3.1.2) to substitute

for ωix
2
i,n+1 using ∑

j /∈Veq

ωijxi,n+1xj,n+1 + ωix
2
i,n+1 = 0,

to get

∑
j /∈Veq

xi,n+1xj,n+1ωij(p̂j − p̂i) +
∑
k∈Veq

xi,n+1xk,1ωikpk = 0, (5.3.1.6)

where p̂i = (xi,1/xi,n+1, . . . , xi,n/xi,n+1) for i /∈ Veq and p̂i = (1, xi,2/xi,1, . . . , xi,n/xi,1)

for i ∈ Veq. For i ∈ VL, let p̃i = (1, xi,2/xi,1, . . . , xi,n/xi,1, 0) for all i ∈ Veq. Then we

solve the equation (5.3.1.4) for ωi:

xi,1ωi = −
∑
j /∈Veq

xj,n+1ωij〈p̃j ,
p̃i
‖p̃i‖2

〉 −
∑
j∈Veq

xj,1ωij〈p̃j ,
p̃i
‖p̃i‖2

〉.

and we next substitute this back into (5.3.1.5) and rule out the first component of

the vector equation (5.3.1.5):∑
j /∈Veq

xj,n+1ωij(p̃j −
p̃j .p̃i
‖p̃i‖2

p̃i) +
∑
j∈Veq

xj,1ωij(p̃j −
p̃j .p̃i
‖p̃i‖2

p̃i) = 0. (5.3.1.7)
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Equations (5.3.1.6) and (5.3.1.7) imply that the corresponding linear dependence

relation the matrix (3.2.0.2) is

ω̂ij =


xi,n+1xj,n+1ωij ij ∈ EPP ,

−xi,n+1xj,1ωij i ∈ VP , j ∈ VL, ij ∈ EPL,

xi,1xj,1ωij ij ∈ ELL.

(5.3.1.8)

Example 5.3.1. The spherical bar-joint framework in Example (5.2.1) is projected

to the oriented point-line framework (G,p, `) in the plane with configuration

p1 = (−1

2
, 1), p2 = (−

√
2

2
,−
√

2

2
),

of points and

`1 : x− 2
√

2y = 0, `2 : x+ y = 0.

of lines oriented by the normal vectors ~̀
1 = (1,−2

√
2)/3 and ~̀

2 = (1, 1)/
√

2. By

Proposition 5.3.1, the 1-dimensional stress space E is generated by

(
18 +

√
2

32− 11
√

2
,

9
√

2

2(6−
√

2)
, 1,

3
√

2 + 1√
2 + 4

,− 9
√

2

2(6−
√

2)
,−1),

for the edges {p1, p2}, {p1, `1}, {p2, `2}, {`1, `2}, {p2, `1}, {p1, `2}, respectively. Note

that the sum of stresses on the edges incident to each line is zero. This can be seen

from the matrix R(G,p, `) in (5.3.2.1).

5.3.2 Point-hyperplane tensegrity frameworks in En: infinitesimal

rigidity

Suppose (G,p, `) be a point-hyperplane framework in En so that hyperplanes have

the coordinates

`i = (~̀i, di) ∈ Rn × R,

where the unit- length vector ~̀i determines the orientation of the hyperplane `i in

En. Note that the point bi = −di ~̀i ∈ En is on `i for every i ∈ VL.
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If a point-hyperplane configuration (p, `) in En undergoes a rigid motion (R, s), R ∈

SO(n), s ∈ Rn, we obtain a new point-hyperplane configuration (q, ) where

qi = Rpi + s, i = (R~̀i,−〈−diR~̀i + s,R~̀i〉), i ∈ V. (5.3.2.1)

Here the points pi are understood in their Euclidean coordinates. Now, for a one-

parameter family of rotationsR(t) ∈ SO(n) and translations s(t) = (s1(t), . . . , sn(t)) ∈

Rn where R(0) = In×n is the n×n identity matrix and s(0) = 0 ∈ Rn, (q, ) changes

smoothly as a function of t under a rigid motion. Taking the derivative of (5.3.2.1)

with respect to t at t = 0, we obtain the infinitesimal rigid motions

p′i = Spi + s, (5.3.2.2)

for points pi , i ∈ VP where d
dtR(t)|t=0 = S is a n × n skew-symmetric matrix and

d
dts(t)|t=0 = s. Similarly, for a hyperplane `i, the derivative of (5.3.2.1) at t = 0 is

d

dt
(R~̀i,−〈−diR~̀i + s,R~̀i〉) =

d

dt
(R~̀i, di − 〈s,R~̀i〉)

= (S~̀i,−〈s, I ~̀i〉 − 〈0, S~̀i〉)

= (S~̀i,−〈s, ~̀i〉).

(5.3.2.3)

If we view points pi’s in the affine hyperplane xn+1 = 1, i.e., pi = (xi,1, . . . , xi,n, 1)

we then, based on the equations (5.3.2.2) and (5.3.2.3), have the following uniform

expression of the infinitesimal rigid motions of a point-hyperplane framework in En

in the matrix format:

p′i =


S

s1

...

sn

0 . . . 0 0

 pi, (5.3.2.4)
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at the point pi and

`′i =


S

0
...

0

−s1 . . . −sn 0

 `i. (5.3.2.5)

for the hyperplane `i. It looks like that these two matrices are two pieces of one

skew-symmetric (n+1)×(n+1) matrix, which is a typical infinitesimal rigid motion

of Sn. This suggests how the infinitesimal motion of points and hyperplanes can be

uniformly described if the hyperplanes are through the origin and the last coordinate

of p′i is changed to −〈s, pi〉 instead of zero. We will see below that this will work

perfectly to allow us to transfer between En and Sn.

Definition 5.3.2. A signed point-hyperplane graph is a point-hyperplane graph

G = (VP ∪VL;EPP , ELL, EPL) whose edge set E = EPP ∪ELL ∪EPL is partitioned

into three edge subsets E−, E◦ and E+ called signed edges. We denote the point-

hyperplane signed graph by G± = (VP ∪ VL;E−, E◦, E+).

A point-hyperplane tensegrity framework (G±,p, `) in En consists of a signed

point-hyperplane graph G± = (VP ∪ VL;E−, E◦, E+) and a point-hyperplane con-

figuration (p, `) in En. An infinitesimal motion of a framework (G±,p, `) is an

assignment of point-hyperplane velocities (p′, `′) ∈ R(n+1)v such that

〈pi − pj , p′i − p′j〉 = 0 ij ∈ E◦ ∩ EPP , (5.3.2.6)

〈pi − pj , p′i − p′j〉 ≤ 0 ij ∈ E− ∩ EPP , (5.3.2.7)

〈pi − pj , p′i − p′j〉 ≥ 0 ij ∈ E+ ∩ EPP , (5.3.2.8)

〈p′i, `j〉+ 〈pi, `′j〉 = 0 ij ∈ E◦ ∩ EPL, (5.3.2.9)

〈p′i, `j〉+ 〈pi, `′j〉 ≤ 0 ij ∈ E− ∩ EPL, (5.3.2.10)

〈p′i, `j〉+ 〈pi, `′j〉 ≥ 0 ij ∈ E+ ∩ EPL, (5.3.2.11)
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〈~̀i − ~̀j , ~̀′i − ~̀′j〉 = 0 ij ∈ E◦ ∩ ELL, (5.3.2.12)

〈~̀i − ~̀j , ~̀′i − ~̀′j〉 ≤ 0 ij ∈ E− ∩ ELL, (5.3.2.13)

〈~̀i − ~̀j , ~̀′i − ~̀′j〉 ≥ 0 ij ∈ E+ ∩ ELL, (5.3.2.14)

where

〈p′i, en+1〉 = 0 i ∈ VP , (5.3.2.15)

with en+1 = (0, . . . , 0, 1) and `′i ∈ Rn+1, ~̀′i = π ◦ `′i with π : Rn+1 → Rn is the

projection on the first n coordinates. Conditions (5.3.2.12)–(5.3.2.14) use the fact

that

〈~̀i, ~̀′i〉 = 0, i ∈ VL, (5.3.2.16)

These conditions are the first-order constraints corresponding to the following

time-dependent constraints:

‖pi(t)− pj(t)‖ = ‖pi − pj‖ ij ∈ E◦ ∩ EPP , (5.3.2.17)

‖pi(t)− pj(t)‖ ≤ ‖pi − pj‖ ij ∈ E− ∩ EPP , (5.3.2.18)

‖pi(t)− pj(t)‖ ≥ ‖pi − pj‖ ij ∈ E+ ∩ EPP , (5.3.2.19)

〈pi(t), `j(t)〉 = 〈pi, `j〉 ij ∈ E◦ ∩ EPL, (5.3.2.20)

〈pi(t), `j(t)〉 ≤ 〈pi, `j〉 ij ∈ E− ∩ EPL, (5.3.2.21)

〈pi(t), `j(t)〉 ≥ 〈pi, `j〉 ij ∈ E+ ∩ EPL, (5.3.2.22)

cos−1〈~̀i(t), ~̀j(t)〉 = cos−1〈~̀i, ~̀j〉 ij ∈ E◦ ∩ ELL, (5.3.2.23)

cos−1〈~̀i(t), ~̀j(t)〉 ≤ cos−1〈~̀i, ~̀j〉 ij ∈ E− ∩ ELL, (5.3.2.24)

cos−1〈~̀i(t), ~̀i(t)〉 ≥ cos−1〈~̀i, ~̀j〉 ij ∈ E+ ∩ ELL, (5.3.2.25)

with the following additional constraints:

〈pi(t), en+1〉 = 1 i ∈ VP , (5.3.2.26)

〈~̀i(t), ~̀i(t)〉 = 1 i ∈ VL, (5.3.2.27)
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where points pi’s and hyperplanes `i’s move smoothly in the affine hyperplane

xn+1 = 1 in Rn+1 over a period of time t ∈ [0, 1] with pi(0) = pi, `i(0) = `i.

As the above constraints imply, each element of E◦∩EPP , E◦∩EPL and E◦∩ELL

preserves the distance between a pair of points, a pair of point and hyperplane and

the angle between a pair of hyperplanes, respectively. Each element of E− ∩ EPP

and E−∩ELL (respectively, E+∩EPP and E+∩ELL) places an upper (respectively,

lower) bound on the distances between pairs of points or angles between a pair of

hyperplanes. However, the elements of ij ∈ E+ ∩ EPL and ij ∈ E− ∩ EPL do not

necessarily preserve the distance between pairs of points and hyperplanes but, they

restrict a point pi to move in the half-space with border determined by ~̀
i and −~̀i

in En, respectively. To see this, one could view 〈pi(t), `j(t)〉 as the signed point-

hyperplanes distance so that when 〈pi(t), `j(t)〉 is a decreasing function of t, point

pi will relatively move towards the hyperplane `j if 〈pi(t), `j(t)〉 > 0 for small t and

pi moves away from `j if 〈pi(t), `j(t)〉 < 0; in either case, point pi does not move in

the direction of ~̀i. Similarly, when 〈pi(t), `j(t)〉 is an increasing function of t, point

pi will relatively move toward ~̀
i.

Given a point-hyperplane tensegrity framework (G±,p, `) in En:

1. A trivial infinitesimal motion of (G±,p, `) is a trivial infinitesimal motion of

(G,p, `), which is given by (5.3.2.2) and (5.3.2.3).

2. (G±,p, `) is called infinitesimally rigid if trivial infinitesimal motions are the

only motions of (G±,p, `). Otherwise, it is called infinitesimally flexible.

3. A self-stress of (G±,p, `) is a self-stress of (G,p, `) such that ωij ≥ 0 for

ij ∈ E− and ωij ≤ 0 for ij ∈ E+.

For a point-hyperplane tensegrity framework (G±,p, `) there is an associated

tensegrity framework in Sn whose point configuration is the projection of (p, `) into

Sn as described in Chapter 3 and its signed graph G′± is obtained by reversing the
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signs on all point-hyperplane edges of G±. More clearly, define φ by the central

projection to Sn for points:

φ(pi) =
pi
‖pi‖

, (5.3.2.28)

for points pi = (xi,1, . . . , xi,n, 1) ∈ An, for all i ∈ VP . For hyperplanes `i, i ∈ VL, it

is defined as:

φ(`i) = ξi = (~̀i, 0). (5.3.2.29)

In fact ξi is the pole of the hyperplane `◦i through the origin in En, which is a point

on the equator of Sn.

The infinitesimal motions of points and hyperplanes transfer by ψ, defined by:

ψpi(p
′
i) =

1

‖pi‖
(p′i + (0, . . . , 0,−〈pi, p′i〉)) ∈ Tφ(pi)S

n, (5.3.2.30)

at point pi where p′i ∈ TpiAn, and

ψ`i(`
′
i) = `′i ∈ TξjS

n, (5.3.2.31)

at every hyperplane `i, i ∈ VL. For this, we take `′i = ξ′i as the velocity at the point

ξ on the equator.

It is verified in [17] that (p′, `′) is an infinitesimal motion of (G,p, `) in En if

and only if (ψ(p′), ψ(`)) is an infinitesimal motion of (G, (φ(p), φ(`))) in Sn. This

can also be seen in calculations below in the proof of Theorem 5.3.2. The associated

tensegrity framework (G′±, (φ(p), φ(`))) in Sn is key to understanding (G±,p, `) in

En.

In the following theorem, we show that conditions (5.3.2.6)–(5.3.2.25) for (G±,p, `)

are closely related to those of the tensegrity framework (G′±, (φ(p), φ(`))) in Sn.

This is one of our main results.

Theorem 5.3.2. For a point-hyperplane tensegrity framework (G±,p, `) in En, the

following are equivalent:
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(a) The tensegrity framework (G±,p, `) is infinitesimally rigid in En.

(b) The tensegrity framework (G′±, (φ(p), φ(`))) is infinitesimally rigid in Sn.

(c) The tensegrity framework (G′±, (φ(p), φ(`))) is statically rigid in Sn.

(d) (G′±, (φ(p), φ(`))) has a strict self-stress and (G, (φ(p), φ(`))) is infinitesimally

rigid in Sn.

(e) (G±,p, `) has a strict self-stress and (G,p, `) is infinitesimally rigid in En.

Proof. By (5.3.2.28) and (5.3.2.30), for every ij ∈ EPP we have

〈pi − pj , p′i − p′j〉 = ‖pi‖‖pj‖〈φ(pi)− φ(pj), ψpi(p
′
i)− ψpj (p′j)〉.

The right-hand side is a constraint of ij ∈ EPP in Sn. For every ij ∈ EPL,

〈p′i, `j〉+ 〈pi, `′j〉 =‖pi‖
(
〈ψpi(p′i), ξj〉+ 〈φ(pi), ξ

′
j〉
)

=− ‖pi‖〈φ(pi)− ξj , ψ(pi)− ξ′j〉,

as 〈φ(pi), ψ(pi)〉 = 0 and 〈ξj , ξ′j〉 = 0 in Sn. The right-hand side is a constraint

ij ∈ EPP with i ∈ VP , j ∈ Veq. Conditions (5.3.2.12)–(5.3.2.14) are equivalent to

the following conditions on the points φ(`i) = ξi, i ∈ VL on the equator of Sn:

〈ξi − ξj , ξ′i − ξ′j〉 = 〈~̀i − ~̀j , ~̀′i − ~̀′j〉.

Considering the tensegrity constraints (5.2.0.1)–(5.2.0.3) on Sn, the above equa-

tions prove the equivalence of the infinitesimal rigidity of (G′±, (φ(p), φ(`))) and

(G±,p, `). The equivalence of the statements (b),(c) and (d) follow from Corollary

5.2.4 and Theorem 5.2.5. The equivalence of (d) and (e) follows from Proposition

5.3.1 and Theorem 3.3.1.

For a point-hyperplane tensegrity framework (G±,p, `) (with E− ∪ E+ 6= φ) to

be infinitesimally rigid, it is necessary to have e > nv−
(
n+1

2

)
by the above theorem.

This is because if e ≤ nv −
(
n+1

2

)
then (G,p, `) is either isostatic (i.e., no strict
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stress) or infinitesimally flexible.

The following result is a consequence of Proposition 5.2.1 and Theorem 5.3.2.

Corollary 5.3.3. Given a point-hyperplane tensegrity framework (G±,p, `) in En.

The framework obtained from (G±,p, `) by reversing the orientation of a hyperplane

and the signs of the incident edges to that hyperplane-vertex is infinitesimally rigid

if and only if (G±,p, `) is infinitesimally rigid.

Before we move on to more explore more about point-hyperplane tensegrity

frameworks, we would like to consider the rigidity of these frameworks.

5.4 Rigidity of point-hyperplane tensegrity frameworks

This section closely follows [50] in results and methods.

Let M(p, `) be the algebraic set

{(q, ) ∈ R(n+1)vp × R(n+1)vl :‖qi − qj‖2 = ‖pi − pj‖2,

〈qi, j〉 = 〈pi, `j〉, 〈~i, ~j〉 = 〈~̀i, ~̀j〉,

‖~i‖2 = 1, 〈qj , en+1〉 = 1, ∀i, j ∈ V }.

The constraints imposed by members of E◦, E− and E+ define the set X(p, `) of

elements (q, ) such that q = (q1, . . . , qvp) with qi ∈ Rn+1 and  = (1, . . . , vl) with

i = (~i, bi) ∈ Rn × R satisfying the following conditions:

‖qi − qj‖ = ‖pi − pj‖ ij ∈ E◦ ∩ EPP ,

‖qi − qj‖ ≤ ‖pi − pj‖ ij ∈ E− ∩ EPP ,

‖qi − qj‖ ≥ ‖pi − pj‖ ij ∈ E+ ∩ EPP ,

〈qi, j〉 = 〈pi, `j〉 ij ∈ E◦ ∩ EPL,

〈qi, j〉 ≤ 〈pi, `j〉 ij ∈ E− ∩ EPL,

〈qi, j〉 ≥ 〈pi, `j〉 ij ∈ E+ ∩ EPL,
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cos−1〈~i, ~j〉 = cos−1〈~̀i, ~̀j〉 ij ∈ E◦ ∩ ELL,

cos−1〈~i, ~j〉 ≤ cos−1〈~̀i, ~̀j〉 ij ∈ E− ∩ ELL,

cos−1〈~i, ~i〉 ≥ cos−1〈~̀i, ~̀j〉 ij ∈ E+ ∩ ELL,

‖~i‖ = 1 i ∈ VL,

〈qi, en+1〉 = 1 i ∈ VP .

Since rigid motions trivially preserve the constraints of (G±,p, `), M(p, `) ⊆

X(p, `).

Definition 5.4.1. A tensegrity framework (G±,p, `) is rigid in En if there exists

an open neighbourhood U of (p, `) in R(n+1)vp × R(n+1)vl such that

X(p, `) ∩ U = M(p, `) ∩ U.

(G±,p, `) is called flexible if there exists a continuous path γ : [0, 1]→ R(n+1)v with

γ(0) = (p, `) and γ(t) ∈ X(p, `)\M(p, `) for all t ∈ (0, 1].

Proposition 5.4.1. Suppose (G±,p, `) is a tensegrity framework in Rn. The fol-

lowing are equivalent:

(a) (G±,p, `) is not rigid.

(b) There exists an analytic path γ : [0, 1] → Rnv, with γ(0) = (p, `) and γ(t) ∈

X(p, `)\M(p, `) for all t ∈ (0, 1].

(c) (G±,p, `) is flexible.

Proof. We first construct the algebraic set A corresponding to semi-algebraic set

X(p, `): A is composed of points (q, , y1, . . . , y|E−|, z1, . . . , z|E+|) ∈ R(n+1)v+|E−|+|E+|

such that (q, ) ∈ X(p, `) and

‖qi − qj‖+ y2
ij = ‖pi − pj‖,

〈qi, j〉+ y2
ij = 〈pi, `j〉,

〈~i, ~j〉 − y2
ij = 〈~̀i, ~̀j〉,
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for all ij ∈ E− and

‖qi − qj‖2 − z2
ij = ‖pi − pj‖2,

〈qi, j〉 − z2
ij = 〈pi, `j〉,

〈~i, ~j〉+ z2
ij = 〈~̀i, ~̀j〉,

for all ij ∈ E+. The last equality follows since cosine inverse is a decreasing function.

Thus (q, ) ∈ X(p, `) if and only of (q, , y1, . . . , y|E−|, z1, . . . , z|E+|) ∈ A. Now if

(G±,p, `) is not rigid then every open neighbourhood of (p, `) contains points in

X(p, `)\M(p, `). This means every neighbourhood of (p, `, 0, . . . , 0) in A contains

points that are not in M(p, `). Let M(p, `,0) be an embedded copy of M(p, `) in A.

By the curve selection lemma of Milnor [42, Lemma 3.1, p. 25], there is an analytic

curve

(q, , y1, . . . , y|E−|, z1, . . . , z|E+|) : [0, 1]→ Rnv+|E−|+|E+|

starting at (p, `, 0, . . . , 0) and belongs to A\M(p, `,0) for t ∈ (0, 1]. Thus (q(t), (t))

is an analytic path in X(p, `)\M(p, `). This proves a→ b.

b→ c is obvious. If c holds then there exists t0 in [0, 1) that (q(t0), (t0)) is the last

point of the curve which is in M(p, `). Then there is a rigid motion T such that

T (q(t0), (t0)) = (p, `) but T (q(t), (t)) ∈ X(p, `)\M(p, `) for t > t0. Thus every

neighbourhood of (p, `) intersects X(p, `)\M(p, `) so (G±,p, `) is not rigid.

Suppose (G,p, `) is point-hyperplane framework with points pi = (xi,1, . . . , xi,n)

in Rn for all i ∈ VP and hyperplane `i, i ∈ VL is parametrized by a n-tuples

(ai,1, . . . , ai,n) such that its equation is x1 + ai,1x2 + · · · + ai,n−1xn + ai,n = 0.

We recall the rigidity map fA : Rnv → R|A| of the subset A ⊆ E by fA(p, `) =

(. . . , fij(p, `), . . . ) where

fij(p, `) = ‖pi − pj‖2 ij ∈ EPP ∩A,

fij(p, `) =
xi,1 + aj,1xi,2 + · · ·+ aj,n−1xi,n + aj,n√

1 + a2
j,1 + · · ·+ a2

j,n−1

ij ∈ EPL ∩A,
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fij(p, `) = cos−1 1 + ai,1aj,1 + · · ·+ ai,n−1aj,n−1√
1 + a2

i,1 + · · ·+ a2
i,n−1

√
1 + a2

j,1 + · · ·+ a2
j,n−1)

ij ∈ ELL ∩A.

A point-hyperplane configuration (p, `) is a regular point of the tensegrity (G±,p, `)

if

rank dfE(p, `) = max {rank dfE(q, )|(q, ) ∈ Rnv}.

It is important to observe that the set of point-hyperplane configurations (p, `) ∈

Rnvp×Rnvl for which a tensegrity framework (G±,p, `) is infinitesimally rigid is open.

This is based on two facts. On one hand, the sign of strict stresses of a framework

(G±,p, `) is preserved in an small open set around (p, `). The argument is similar

to [50, Theorem 5.4.]. On the other hand, the infinitesimal rigidity of (G,p, `) is

unchanged in an small open set around (p, `). So by Theorem 5.3.2, the infinitesimal

rigidity of (G,p, `) is maintained in an open set around (p, `).

The following result was first observed by Connelly [12, Remark 4.1] for tenseg-

rity frameworks.

Theorem 5.4.2. If a framework (G±,p, `) is infinitesimally rigid then it is rigid.

Proof. If (G±,p, `) is flexible in En then, by Proposition 5.4.1, there is an analytic

path γ : [0, 1] → Rnv such that γ(0) = (p, `) and γ(t) ∈ X(p, `) −M(p, `) for all

t ∈ (0, 1]. Thus there exist vertices k,m ∈ V for which fkm(γ(t)) is not constant

on [0, 1] for small positive t while γ(t) ∈ X(p, `) for all t. Since fkm(γ(t)) is a

non-constant real analytic function its derivative is not zero for small enough t > 0.

Real analyticity of γ implies that fij(γ(t)) for every ij ∈ E− (resp. ij ∈ E+) is

either constant or its the derivative of fij(γ(t)) is negative (resp. positive) for small

t > 0. Therefore γ′(0) is a non-trivial infinitesimal motion of (G±,p, `) and as a

result, (G±,p, `) is infinitesimally flexible.

It turns out that regularity of a configuration (p, `) of a tensegrity framework

(G±,p, `) is not enough to insure that the set of infinitesimally flexible realization

of a framework is a open set. Because tensegrity frameworks have over-braced
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p1 p3

p4

p2

(a) A flexible bar-joint tensegrity

framework in the plane.

p1 p3

p4

p2

(b) A rigid bar-joint tensegrity

framework in the plane.

Figure 5.5: Rigid and flexible tensegrity frameworks with the same underlying signed graph.

underlying framework their sub-frameworks might not be ‘regular’ while the rank

of the entire matrix is maximized. Figure 5.5 (borrowed from [50]) shows a simple

example in which both realizations are regular by definition but the one in Figure

5.5a (p1, p2 and p3 are collinear) is flexible while any open neighbourhood of its

configuration contains rigid frameworks, Figure 5.5b.

Thus we need a more restrictive notion: A configuration (p, `) is said to be fully

regular for a framework (G±,p, `) if

rank dfA(p, `) = max {rank dfA(q, )|(q, ) ∈ Rnv},

for every nonempty A ⊆ E.

The following theorem states the rigidity and infinitesimal rigidity are the same

for fully regular point-hyperplane tensegrity framework

Theorem 5.4.3. If (p, `) is fully regular for the framework (G±,p, `) in Enthen

(G±,p, `) is infinitesimal rigid if and only if it is rigid.

Proof. One direction is given by Theorem 5.4.2. Conversely, suppose (G±,p, `) has

a non-trivial infinitesimal motion in En. If the framework (G,p, `) is infinitesimally

flexible it is flexible since (p, `) is a regular point of (G±,p, `). Then (G±,p, `) is
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flexible so we are done. Therefore we assume (G,p, `) is infinitesimally rigid. We

will show that (G±,p, `) is flexible. Let I(p, `) be the space of infinitesimal motions

of (G±,p, `) and

A = {ij ∈ E | Fij ∈ I(p, `)⊥},

where Fij is the rows ij in the Euclidean matrix (3.2.0.2). We know that EPP ⊆ A.

Since (G,p, `) is rigid and (G±,p, `) is infinitesimally flexible, A 6= E. So there

exists a non-trivial infinitesimal motion µ ∈ I(p, `) − T (p, `) such that for some

vertices i and j, 〈µ, Fij〉 6= 0. Thus we can choose a (p′, `′) ∈ I(p, `) such that

〈Fij , (p′, `′)〉 6= 0 for all ij ∈ E−A. If A = φ then choose the path γ(t) = (γi(t))i∈V

to be γi(t) = pi + tp′i for all points i ∈ VP and γi(t) = (ai,1 + tvi,1, . . . , ai,n + tvi,1)

for the hyperplane parameterized as (ai,1, . . . , ai,n) with velocity `′i = (vi,1, . . . , vi,n).

Obviously γ(0) = (p, `) and γ′(0) = (p′, `′). Thus (G±,p, `) is flexible. If A 6= φ then

f−1
A (fA(p, `)) is a manifold near (p, `) since (p, `) is fully regular. The tangent space

to this manifold at (p, `) is ker dfA(p, `) and the infinitesimal motion (p′, `′) belongs

to ker dfA(p, `). So there exists a smooth path γ(t) in f−1
A (fA(p, `)) with γ(0) =

(p, `) and γ′(0) = (p′, `′). The path γ(t) automatically satisfies the conditions for

E − A as γ′(0) = (p′, `′). This proves that γ(t) is a finite flex for (G±,p, `) and

therefore it is flexible.

Corollary 5.4.4. If (G,p, `) is an isostatic framework in En then the tensegrity

framework (G±,p, `) obtained from (G,p, `) by replacing any edge by a signed edge

is flexible.

Proof. Since (G,p, `) is isostatic then (p, `) is fully regular and it does not admit

any non-trivial stress. Therefore (G±,p, `) is not infinitesimally rigid by Theorem

5.3.2 and then, by Theorem 5.4.3 it is flexible.

5.5 Point-line tensegrity frameworks and sliders

Now let’s consider an example of a point-line tensegrity framework in the plane.
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p1

p2

+

−+

−

~̀
2

`2

~̀
1

`1 −
+

(a) A rigid point-line tensegrity

framework. Minus signed edges are

cables and positive edges are struts.

p1

p2

−

++

−

~̀
2

`2

~̀
1

`1 −
+

(b) A rigid point-line tensegrity

framework obtained from (a) by re-

versing the orientation of `2.

Figure 5.6: Point-line tensegrity frameworks.

Example 5.5.1. Figure 5.6a shows a point-line tensegrity framework in the plane.

The cable elements E− and strut elements E+ are illustrated by minus signs −

and plus signs +, respectively. Indeed, E− = {{p1, p2}, {p1, `1}, {p2, `2}, {`1, `2}}

and E+ = {p2, `1}, {p1, `2}}. By Example 5.3.1, there exists a strict stress for the

framework in Figure 5.6a. The underlying point-line framework is infinitesimally

rigid because K4 is an infinitesimally rigid graph. Thus by Theorem 5.3.2, the point-

line tensegrity framework in Figure 5.6a is infinitesimally rigid and by Theorem 5.4.2,

it is rigid.

The framework in Figure 5.6b is obtained from (a) by reversing the orientation

of `2 and the reversing the sign on the edges incident to `2 except for the angle

that we did not change while we could. This is because increasing an angle α in

equivalent to decreasing the angle π − α and vice versa. Therefore the framework

in Figure 5.6b is rigid as well, by Corollary 5.3.3.

We have demonstrated a mechanical model of the point-line tensegrity framework

in Figure 5.6a using sliders and rollers shown in Figure 5.7a. The rollers attached to

the point p1 restrict the relative motion of p1 to the lines `1 and `2 to be against ~̀1

and in the direction ~̀2, respectively. Similarly, the rollers attached to p2 restrict the
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p1

p2

`1

`2

(a) The rigid slider-roller model of the

tensegrity framework in Figure 5.6a.

p2

p1 `1

`2

(b) The rigid slider-roller model of the

tensegrity framework in Figure 5.6a by

reversing all stress signs.

Figure 5.7: A slider-roller model of point-line tensegrity frameworks.

relative motion of p2 to the lines `1 and `2 to be respectively in the direction ~̀1 and

against ~̀2. The two pairs of double rollers constrain the illustrated angle between

two lines to increase only (or equivalently, the angle between ~̀
1 and ~̀

2 to decrease

only). This model is infinitesimally rigid (and rigid) by Example 5.5.1. Note that

the arrangement of the rollers and sliders does not depend on the orientation of the

lines by Corollary 5.3.3. Another infinitesimally rigid model derived from (a) by

reversing the sign of all stresses of the framework in Figure 5.6a, is demonstrated

in Figure 5.7b. Note that the rollers are drawn on the opposite side compared with

Figure 5.7a.

In fact, these tensegrity frameworks are considered various ‘projective images’

of a quadrilateral tensegrity framework on four points. An arbitrary projective im-

age of a point-hyperplane framework in En is a point-hyperplane framework in En

as explained in Section 3.3. It was observed in [50] that a projective image of an

infinitesimally rigid bar-joint tensegrity framework is infinitesimally rigid provided
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that the signed graph is adjusted appropriately. Namely, the bars cut by the hyper-

plane at infinity under the projective transformation must change signs. This can

also be seen from Proposition 5.3.1 using Sn. In fact, the possible sign change occurs

as a result of transferring the points from Sn− to Sn+. The finite points mapped to

infinity become new oriented hyperplanes in the Euclidean space under the projec-

tive transformation.

In the next section we will see that the sign of stresses in a point-hyperplane

tensegrity framework may have an interpretation as tension or compression.

5.6 Point-hyperplane tensegrity frameworks in En with

point-hyperplane distances

As we saw in the previous section, the constraints (5.3.2.21) and (5.3.2.22) on a

point-hyperplane tensegrity framework do not place upper bounds or lower bounds

on the point-hyperplane distances. But we are not far from there. In order to

accomplish this, we simply need to adjust those constraints by considering their

absolute values.

Suppose (p(t), `(t)), t ∈ [0, 1] with (p(0), `(0)) = (p, `) is a smooth time-

dependent point-hyperplane configuration in En and G± = (VP ∪VL;E−, E◦, E+) is

a signed point-hyperplane graph such that

‖pi(t)− pj(t)‖ = ‖pi − pj‖ ij ∈ E◦ ∩ EPP , (5.6.0.1)

‖pi(t)− pj(t)‖ ≤ ‖pi − pj‖ ij ∈ E− ∩ EPP , (5.6.0.2)

‖pi(t)− pj(t)‖ ≥ ‖pi − pj‖ ij ∈ E+ ∩ EPP , (5.6.0.3)

〈pi(t), `j(t)〉 = 〈pi, `j〉 ij ∈ E◦ ∩ EPL, (5.6.0.4)

|〈pi(t), `j(t)〉| ≤ |〈pi, `j〉| ij ∈ E− ∩ EPL, (5.6.0.5)

|〈pi(t), `j(t)〉| ≥ |〈pi, `j〉| ij ∈ E+ ∩ EPL, (5.6.0.6)
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cos−1〈~̀i(t), ~̀j(t)〉 = cos−1〈~̀i, ~̀j〉 ij ∈ E◦ ∩ ELL, (5.6.0.7)

cos−1〈~̀i(t), ~̀j(t)〉 ≤ cos−1〈~̀i, ~̀j〉 ij ∈ E− ∩ ELL, (5.6.0.8)

cos−1〈~̀i(t), ~̀i(t)〉 ≥ cos−1〈~̀i, ~̀j〉 ij ∈ E+ ∩ ELL, (5.6.0.9)

for every t ∈ [0, 1]. We assume that 〈pi, `j〉 6= 0, for ij ∈ (E− ∪ E+) ∩ EPL.

Otherwise, we let ij ∈ E◦ if ij ∈ E−; Also ij ∈ E+ is not considered a constraint

as |〈pi(t), `j(t)〉| ≥ 0 is trivially true for all t. Now we can take the derivative of

the system at t = 0 to obtain the corresponding infinitesimal constraints as the

following:

〈pi − pj , p′i − p′j〉 = 0 ij ∈ E◦ ∩ EPP , (5.6.0.10)

〈pi − pj , p′i − p′j〉 ≤ 0 ij ∈ E− ∩ EPP , (5.6.0.11)

〈pi − pj , p′i − p′j〉 ≥ 0 ij ∈ E+ ∩ EPP , (5.6.0.12)

〈p′i, `j〉+ 〈pi, `′j〉 = 0 ij ∈ E◦ ∩ EPL, (5.6.0.13)

〈pi, `j〉(〈p′i, `j〉+ 〈pi, `′j〉) ≤ 0 ij ∈ E− ∩ EPL, (5.6.0.14)

〈pi, `j〉(〈p′i, `j〉+ 〈pi, `′j〉) ≥ 0 ij ∈ E+ ∩ EPL, (5.6.0.15)

〈~̀i − ~̀j , ~̀′i − ~̀′j〉 = 0 ij ∈ E◦ ∩ ELL, (5.6.0.16)

〈~̀i − ~̀j , ~̀′i − ~̀′j〉 ≤ 0 ij ∈ E− ∩ ELL, (5.6.0.17)

〈~̀i − ~̀j , ~̀′i − ~̀′j〉 ≥ 0 ij ∈ E+ ∩ ELL, (5.6.0.18)

where

〈p′i, en+1〉 = 0 i ∈ VP , (5.6.0.19)

〈~̀i, ~̀′i〉 = 0 i ∈ VL. (5.6.0.20)

We denote a point-hyperplane framework with constraints (5.6.0.10) – (5.6.0.18)

by (G±,p, ¯̀) to distinguish it from the tensgrity framework (G±,p, `). Now each

element of E◦ preserves the distance between a pair of points, point-hyperplanes and

the angle between a pair of hyperplanes. Also, each element of E− (respectively,
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E+) places an upper (respectively, lower) bound on the distances between pairs of

points or pairs of point-hyperplanes or angles between some pairs of hyperplanes.

A tensegrity framework (G±,p, ¯̀) is infinitesimally rigid in En if every infinites-

imal motion of it is trivial, meaning (p′, ¯̀′) is given by (5.3.2.4) and (5.3.2.5). Oth-

erwise, it is called infinitesimally flexible.

An assignment of scalars ωij = ωji to the edges ij ∈ E is called a self-stress of

(G,p, ¯̀) if ω′ = (ω′ij)ij∈E is self-stress of (G,p, `) where

ω′ij = ωij ij ∈ E◦ ∪ EPP ∪ ELL,

ω′ij = 〈pi, `j〉ωij ij ∈ EPL.
(5.6.0.21)

Suppose (G±,p, `) is a tensegrity framework and let (G′′±,p, `) is a framework whose

signed graph G′′± = (V,E′′− ∪ E◦ ∪ E′′+) obtained from G± as the following:

ij ∈ E′′PL ∩ E− if ij ∈ EPL ∩ E+, 〈pi, `j〉 < 0,

ij ∈ E′′PL ∩ E+ if ij ∈ EPL ∩ E−, 〈pi, `j〉 < 0.
(5.6.0.22)

Otherwise, an edge of G′′± has the same sign as G±.

Considering (5.6.0.21), the following Theorem is an immediate consequence of

the proof of Theorem 5.3.2.

Theorem 5.6.1. A point-hyperplane tensegrity framework (G±,p, ¯̀) (with absolute

value of point-hyperplane distances) is infinitesimally rigid in En if and only if the

following hold:

(a) The framework (G′′±,p, `) is infinitesimally rigid in En.

(b) The framework (G′′±,p, `) has a strict self-stress and (G,p, `) is infinitesimally

rigid.

The notion of self-stress, as appeared in Definition 5.3.1, does not directly rep-

resent tensions and compressions in the structure of a point-hyperplane framework

as one can see in Example 5.5.1. But the geometric adjustment (5.6.0.21) of stresses
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Figure 5.8: Point-line tensegrity frameworks with point-line distances.

provides us with the right pattern of stress signs that can be interpreted as ten-

sions and compressions in a point-hyperplane framework with point-hyperplane dis-

tances. Figure 5.8 shows the rigid point-line tensegrity frameworks with point-line

distances corresponding to the tensegrity frameworks of Figure 5.6. Note that the

sign of stresses (or cables and struts) have changed according to (5.6.0.21). More

importantly, the sign of stresses (or equivalently, cables and struts) do not change

if we change the orientation of the hyperplanes. This is not accidental. A change

of orientation would change the stresses on point-hyperplane edges of the tensegrity

framework but that change will be reversed by (5.6.0.21). So the rigidity of the

constraints (5.6.0.10) – (5.6.0.18) does not depend on the orientation of the hyper-

planes. On the other hand, if we move a hyperplane parallel to itself so that it

crosses an adjacent point the sign of stress (tension or compression) will change by

(5.6.0.21).

Also note that the slider-roller model of both types of constraints are the same

(compare Figure 5.8 and Figure 5.7).

Based on Theorem 5.6.1, the infinitesimal rigidity of a tensegrity framework

(G±,p, `) is generically equivalent to the rigidity of the associated framework (G′′±,p, ¯̀)

143



(that respects distance constraints) if 〈pi, `j〉 6= 0 for ij ∈ EPP . Assume 〈pi, `j〉 = 0

for a cable elements ij ∈ E−. In general, if (G±,p, `) is infinitesimally rigid then

(G′′±,p, ¯̀) has to be infinitesimally rigid. If (G′′±,p, ¯̀) is infinitesimally rigid and

ωij = 0 then (G±,p, `) is not infinitesimally rigid by Theorem 5.3.2.

We conclude this chapter with an geometric interpretation of equilibrium forces

to a point-line configuration. In fact, we project equilibrium forces from spherical

bar-joint configuration with some joints on the equator to the corresponding point-

line configuration in the plane, under the central projection.

Suppose p = (pi)
v
i=1 is a configuration of v points on the sphere S2 with some

points on the equator Veq. Let F = (f1, . . . , fv) be an equilibrium force at p. By

the equilibrium condition (5.1.0.1) for spherical configurations, we have:

∑
i/∈Veq

(fi,1, fi,2, fi,3)× (xi, yi, zi) +
∑
i∈Veq

(fi,1, fi,2, fi,3)× (xi, yi, 0) = 0,

or

∑
i/∈Veq

(zifi,2−yifi,3,−zifi,1+xifi,3, yifi,1−xifi,2)+
∑
i∈Veq

(−fi,3yi, fi,3xi, fi,1yi−fi,2xi) = 0.

Note that, for all i /∈ Veq,

(zifi,2 − yifi,3,−zifi,1 + xifi,3, yifi,1 − xifi,2) = (f̂i,1, f̂i,2, 0)× (xi/zi, yi/zi, 1).

where (f̂i,1, f̂i,2, 0) = (zifi,1−xifi,3, zifi,2− yifi,3, 0) is the vector of the force fi× pi

in the affine plane z = 1 at the point (xi/zi, yi/zi, 1). For every i ∈ Veq for which

fi,3 6= 0, we have

(−fi,3yi, fi,3xi, fi,1yi − fi,2xi) = (−fi,3xi,−fi,3yi, 0)× (fi,1/fi,3, fi,2/fi,3, 1),

which is a force at a ‘finite’ point (fi,1/fi,3, fi,2/fi,3, 1) on the line `i. Note here that

the translation of line i, and as a result, the point (fi,1/fi,3, fi,2/fi,3, 1), anywhere in

the direction of (xi, yi, 0) (perpendicular tho the line) does not change this equality.
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However, in the case fi,3 = 0, i ∈ VL, we have

(0, 0, fi,1yi − fi,2xi) = (−a
2
xi,−

a

2
yi, 0)× (fi,1/a, fi,2/a, 1)

+ (
a

2
xi,

a

2
yi, 0)× (−fi,1/a,−fi,2/a, 1),

for any non-zero real number a. This is a couple of forces to the line `i that creates no

net linear momentum to the line `i but a pure angular momentum. In the language

of projective geometry, this is a ‘force at infinity’ which appears as a couple in the

Euclidean plane. In general, a couple ±λ(xi, yi, 0) of forces should be placed ‖fi‖/λ

away from each other to have the same effect as the force fi at infinity. Again,

notice that translating this points in any direction does not change the effect of the

couple.

Substituting all this back in the sum above, we summarize the equilibrium conditions

on point-line configurations as the following:

• All forces to points and lines must add up to zero. Couples do not contribute

to this sum.

• The net angular momentum of the whole configuration must be zero. This

amounts to a geometric incidence condition on the lines of forces to the system.

Consider the tensegrity framework (K±,p) in Example 5.2.1 on sphere with the

force diagram shown in Figure 5.9a. Stress pattern on the sphere clearly illustrates

compression along the edge with negative stress and tension along the edge with

positive stress. Considering (5.6.0.21) and Proposition 5.3.1, we obtain the force

diagram of the projected point-line framework in plane as shown in Figure 5.9b.

Positive stresses are shown to represent compressions and negative stresses to rep-

resent tensions. The couples {f3,−f3} and {f4,−f4} compressing the angle α or

equivalently impose tension on the complement angle. Considering the fact that a

system of forces in the plane is invariant under the translation, we can translate

a line so that it passes an adjacent point without changing the force system. Al-

though, this will reverse the tension or compression on the corresponding edge as
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Figure 5.9: Force diagram of a point-line tensegrity framework in the plane.

we knew according to (5.6.0.21).

The geometry of point-hyperplane frameworks in Sn is neater compared to point-

hyperplane frameworks in En. The point-hyperplane distance formula in Sn is

dS(p, `) = |π/2 − cos−1〈p, ξ〉|, where ξ is a pole of the hyperplane `. This tells us

that the generic first-order rigidity of point-hyperplane frameworks in Sn is equiva-

lent to the generic rigidity of bar-joint frameworks in En. In particular, the generic

rigidity of a point-line framework in S2 is characterized by Laman’s Theorem. Also

the infinitesimal rigidity of their tensegrity constraints in Sn will be determined

by the infinitesimal rigidity of the tensegrity framework obtained by substituting

hyperplanes with their poles and the rest will proceed as above.

Inductive constructions of bar-joint tensegrity frameworks has been considered

in [14]. This provides the background for an exploration of the inductive techniques

for point-hyperplane tensegrity frameworks.
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Chapter 6

Body-cad constraints in the

Euclidean plane

Geometric constraints in CAD software have motivated a lot of questions and re-

search in Rigidity. In this chapter we study a set of geometric constraints on pairs

of points, pairs of lines or a point and a line, each attached to rigid bodies in the

plane. These constraints are pairwise coincidences, angle (between two lines) and

distance constraints between points or lines attached to rigid bodies, which gives a

more diverse set of constraints than the classic body-bar frameworks. These sys-

tems of geometric constraints on rigid bodies are called body-cad constraints. We

will develop the rigidity matrix of these constraints and will give a combinatorial

characterization of their minimal rigidity. This will lead to a combinatorial charac-

terization of the rigidity of body-bar frameworks with collinear bars and coincidence

constraints. We will combinatorially characterize the rigidity of a special class of

rigid bodies with point-point coincidence constraints in 3-space. It turns out that

point-point coincidence constraints pose a geometric difficulty in understanding the

rigidity of structures. These types of constraints are avoided in the context of body-

bar framework.
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6.1 Preliminaries

In this section we quickly review the notions and operators in the plane mentioned

in Section 2.7.1. We need them in Section 6.3 to derive the algebraic expression of

body-cad constraints.

The join p ∨ q of the two points p and q in P2 is the ordered 3-tuple of all

3 minors of the 3 × 2 matrix M whose columns are the points p and q in their

homogeneous coordinates. The standard order of the minors is |M23|,−|M13|, |M12|

where |Mij |, 1 ≤ i < j ≤ 3, is the 2 × 2 minor determined by the rows i and j. So

p ∨ q = (|M23|,−|M13|, |M12|) as a 3-vector.

Rigid motions in the plane are rotations and translations. We represent an

infinitesimal rotation c (the center of the motion) in the plane as a 3-vector c =

(αc1, αc2, α) where (c1, c2, 1) is the affine coordinates of the center (c1, c2) in E2

and α 6= 0 is the angular velocity of the infinitesimal rotation. For any point

p = (p1, p2, 1) in its affine coordinates in the plane, c ∨ p is a 3-vector encoding the

velocity vector p′ = (p′1, p
′
2, 0) at the point p induced by the rotation c as its first

two coordinates. More clearly,

c ∨ p =

∣∣∣∣∣∣∣∣∣
αc1 p1

αc2 p2

α 1

∣∣∣∣∣∣∣∣∣ = (p′1, p
′
2,−〈p′, p〉) for every point p ∈ P2. (6.1.0.1)

In particular, an infinitesimal translation in the direction (t1, t2) at any point p =

(p1, p2, 1) in the plane is induced by the infinitesimal rotation c = (−t2, t1, 0) whose

center is at infinity in P2, in the direction perpendicular to the vector (t1, t2):

(−t2, t1, 0) ∨ (p1, p2, 1) = (t1, t2,−t1p1 − t2p2), for every point p ∈ P2.

For three vectors v1, v2, v3 in R3, v1 ∨ v2 ∨ v2 is a real scalar, which is the

determinant [v1, v2, v3] of a 3 × 3 matrix with the columns v1, v2, v3. In particular,
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c

p

p′

` = c ∨ p

Figure 6.1: c ∨ p describes the infinitesimal motion at p, and the line through p and the

center of the motion c.

if q = (q1, q2, 0) is a direction in the plane then

c ∨ p ∨ q =

∣∣∣∣∣∣∣∣∣
αc1 p1 q1

αc2 p2 q2

α 1 0

∣∣∣∣∣∣∣∣∣ = 〈c ∨ p, q〉 = 〈p′, q〉, (6.1.0.2)

where the determinant is expanded with respect to the third column. We frequently

use (6.1.0.2) to express body-cad constraints.

On the other hand, p ∨ q represents the Plücker coordinates of the line through

the points p and q in the plane. The line ` joining the two points p and q in the

plane is denoted by ` = p∨ q (see Figure 6.1). The first two coordinates of ` = p∨ q

will represent a vector ~̀ perpendicular to ` and the last coordinate will be a scalar

multiple (±‖~̀‖) of the distance of the line from the origin.

6.2 Body-cad constraints in the plane

A rigid body in the plane can be imagined as a collection of points that are connected

to each other in a rigid way. We are not concerned about the shape and the size

of rigid bodies but we require that each body, as a collection of points, spans a one

dimensional affine space in the plane.

Suppose B1 and B2 are two rigid bodies in the plane with some points and lines
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Figure 6.2: Body-cad constraints in the plane.

attached to them in a rigid way. We define the following set of constraints on the

points and lines on B1 and B2:

1. Angular constraints.

Assume an arbitrary pair of lines `i and `j are attached to the bodies Bi and

Bj respectively, in the plane. An angular constraint on the lines `i and `j

restricts the motions of the bodies Bi and Bj so that the angle between `i and

`j remains fixed during the motion of the bodies (see Figure 6.2a).

2. Line-line distance constraints.

Given two arbitrary parallel (or coincident) lines `i and `i attached to the bod-

ies Bi and Bj respectively, a line-line distance constraint restricts the motions

of Bi and Bj so that the distance between the lines `i and `j is preserved (see

Figure 6.2b).

3. Point-line distance constraints.

For an arbitrary pair of a point p and a line ` attached to the bodies Bi and Bj
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Figure 6.3: A body-cad framework in (a) and its associated cad graph in (b).

respectively, a point-line distance constraint will restrict the motion of bodies

Bi and Bj so that the point-line distance between p and ` is maintained (see

Figure 6.2c).

4. Point-point distance constraints.

For two arbitrary distinct points pi and pj on the bodies Bi and Bj respectively,

a point-point distance constraint will restrict the motion of Bi and Bj so that

the distance between the points pi and pj is preserved (see Figure 6.2d). This

single type of constraint is the subject of body-bar frameworks that has been

understood in all dimensions (see [60], [64]).

5. Point-point coincidence constraints.

For a common point p on both bodies Bi and Bj , a point-point coincidence

constraint restricts the motion of the bodies so that the points remain coinci-

dent (see Figure 6.2e).

The above constraints are called body-cad constraints in the plane. A set of

bodies in the plane interconnected by pairwise body-cad constraints forms a body-

cad structure in the plane.
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A cad graph is a multigraph G = (V,E) with no loops together with an edge

colouring function c : E → C, where C = {c1, c2, c3, c4, c5} is a set of 5 colours cor-

responding to each of the five body-cad constraints mentioned above. The colouring

function naturally partitions the edge set E into 5 partitions E1, . . . , E5.

A body-cad framework (G, c, L1, . . . , L5) is a cad graph (G, c) along with a family

of functions L1, . . . , L5, where Li(e), e ∈ Ei, assigns coordinates of points or lines to

two bodies constrained by the geometric constraint corresponding to the edge e ∈ Ei.

For example if e is an edge corresponding to a point-line distance constraint in E3

(number 3 above) on bodies Bi and Bj , then L3(e) is an element of R2 × (R2 × R)

that assigns a point pi ∈ R2 to the body Bi and a line ` = (~̀, d) ∈ R2 × R, to the

body Bj . Figure 6.3 shows a body-cad framework with its associated cad graph.

Now we are not concerned with the realization of these constraints in the plane.

Therefore we will need to work with a ‘finer’ multigraph that represents these con-

straints. These will be called ‘primitive cad graphs’. The next section will show

why this is needed.

6.3 Rigidity matrix of body-cad constraints in the plane

Suppose B1, B2, . . . , Bn are rigid bodies in the plane. Let c = (c1, . . . , cn) ∈ (R3)n

is an assignment of a center ci ∈ R3 of infinitesimal rigid motion in E2 to each body

Bi, 1 ≤ i ≤ n. Then c is an infinitesimal motion of a body-cad framework if ci and

cj infinitesimally respect the body-cad constraints on the pair of bodies Bi and Bj ,

1 ≤ i, j ≤ n. An infinitesimal motion c = (c1, . . . , cn) is called trivial if ci = cj , for

all 1 ≤ i, j ≤ n. A body-cad framework is infinitesimally rigid if every infinitesimal

motion is trivial; otherwise, it is infinitesimally flexible.

A rigid body in the plane has three degrees of freedom, one of which is rotational

and two are translational. An angular constraint restricts one degree of freedom on

2 bodies while a line-line distance constraint will reduce two degrees of freedom.

A primitive constraint on a pair of bodies is the one that may reduce at most one
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degree of freedom. Therefore a line-line constraint consists of 2 primitive constraints

one of which is angular and the other is non-angular (see the next section).

The rigidity matrix R for a body-cad framework has 3 columns for each body

and there is one row corresponding to each primitive constraint. The rigidity ma-

trix is the coefficient matrix of the linear system of infinitesimal cad constraints (see

below). Just like the rigidity matrix of body-bar frameworks, a cad rigidity ma-

trix captures the infinitesimal rigidity of a cad system. The centers of infinitesimal

motions of bodies form the kernel of the rigidity matrix, as explained in Section 2.7.2.

Now we start to find the algebraic expression of body-cad constraints and the

corresponding rigidity matrix.

Let’s start with an angular constraint between a pair of lines. Suppose lines `i

and `j , each rigidly affixed to bodies Bi and Bj respectively, undergo the infinites-

imal motions with the centers ci and cj respectively. This angular constraint is

infinitesimally maintained if and only if the relative infinitesimal motion ci− cj is a

translation:

ci − cj ∈ H1
∞, (6.3.0.1)

where H1
∞ is the line at infinity in P2. Equivalently, the last component of ci − cj

as a 3-vector must be zero.

Therefore an angular constraint corresponds to the following single row in the

rigidity matrix of the associated body-cad system.

· · · Body Bi · · · Body Bj . . .

· · · 0 · · · 0 0 1 · · · 0 · · · 0 0 -1 · · · 0 · · ·

From algebraic and combinatorial (and later geometric, as we understand more)

points of view, the pattern of generic zeros appearing in the rows corresponding

to an angular constraint is very important. To emphasize this distinction, they
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are coloured red in contrast to the entries that are generically non-zero which are

coloured grey, similar to [25]. We call the rows corresponding to angular constraints

in the rigidity matrix red rows and others black rows. The red rows do not depend

on the coordinates of the lines and they have a fixed format. Moreover, we do

not need to treat angular constraints for parallel and non-parallel lines separately

because the algebraic constraints are identical and geometrically equivalent in the

plane. But this is not the case for angle constraints in 3-space because non-parallel

angular constraints reduce one degree of freedom while parallel angular constraints

reduce two degrees of freedom in the space (see [25]).

The remaining coincidence and distance constraints (non-angular1 constraints)

are reduced to some combination of angular and distance constraints as we will see

below. There are 3 different distance constraints:

• Point-point distance,

• Point-line distance,

• Line-line distance.

Let’s consider a point-point distance constraint. If two points pi and pj attached to

bodies Bi and Bj undergo infinitesimal motions with the centers ci and cj , respec-

tively we have to distinguish two cases here:

1. Two points pi and pj are distinct and we want to preserve the non-zero distance

between them. The distance between the points pi and pj is infinitesimally

preserved if the direction of the relative velocity ci − cj at pi is perpendicular

to the line pi ∨ pj (figure 6.4a) which means the center of the rotation ci − cj

should lie on the line pi ∨ pj :

(ci − cj) ∨ (pi ∨ pj) = 〈pi ∨ pj , ci − cj〉 = 0. (6.3.0.2)

1These constraints are called blind in [25].
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Figure 6.4: Point-point constraints in the plane.

As a result, this constraint corresponds to one row of the rigidity matrix:

· · · Body Bi · · · Body Bj · · ·

· · · 0 · · · pi ∨ pj · · · 0 · · · −pi ∨ pj · · · 0 · · ·

2. If pi = pj , then the distance constraint is a coincidence constraint (Figure

6.4b). A point-point coincidence constraint is infinitesimally maintained if the

relative velocity at p induced by the motion ci − cj is zero. Equivalently, we

should have

(ci − cj) ∨ p = 0, (6.3.0.3)

by (6.1.0.1). Note that (6.3.0.3) can be equivalently written as c1 − c2 = αp,

for some scalar α ∈ R. By (6.1.0.2), this holds if and only if the following two

equations are simultaneously satisfied:

(ci − cj) ∨ p ∨ (1, 0, 0) = 0,

(ci − cj) ∨ p ∨ (0, 1, 0) = 0.
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These equations can be written as follows:

〈ci − cj , p ∨ (1, 0, 0)〉 = 0, (6.3.0.4)

〈ci − cj , p ∨ (0, 1, 0)〉 = 0. (6.3.0.5)

Thus a point-point coincidence constraint corresponds to 2 rows in the rigidity

matrix:

· · · Body Bi · · · Body Bj . . .

· · · 0 · · · p ∨ (1, 0, 0) · · · 0 · · · p ∨ (−1, 0, 0) · · · 0 · · ·

· · · 0 · · · p ∨ (0, 1, 0) · · · 0 · · · p ∨ (0,−1, 0) · · · 0 · · ·

We now consider a point-line distance constraint. A point p affixed to body Bi

is constrained to maintain a fixed distance from a line ` = (~̀, d) affixed to a body

Bj . The constraint is preserved if the relative velocity of p lies in the same direction

as ~̀ (Figure 6.5a). Therefore the velocity at p must be perpendicular to ~̀, i.e.,

(ci − cj) ∨ p ∨ (~̀, 0) = 0,

or

〈ci − cj , p ∨ (~̀, 0)〉 = 0, (6.3.0.6)

using (6.1.0.1) and (6.1.0.2).

Hence a point-line distance constraint corresponds to one row in the rigidity

matrix:

· · · Body Bi · · · Body Bj · · ·

· · · 0 · · · p ∨ (~̀, 0) · · · 0 · · · −p ∨ (~̀, 0) · · · 0 · · ·

Note that (~̀, 0) is a point at infinity (representing the vector ~̀ in the Euclidean

plane). So a point-line distance constraint becomes a point-point distance constraint
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Figure 6.5: Point-line and line-line distance constraints.

(compare it with (6.3.0.2)) with one finite point and a point at infinity, which is

determined by the orientation of the line.

It is also important to note that the point p can be equivalently realized on the

line `. This is equivalent to multiplying p∨(~̀, 0) by a non-zero scalar, which does not

alter the generic rigidity of the system. Recall that for point-line frameworks in the

plane this may create singularity and violate the generic rigidity of the framework.

Now we consider line-line distance constraints. A pair of parallel lines `i = (~̀, di)

and `j = (~̀, dj) affixed to bodies Bi and Bj respectively, are constrained to have

a fixed distance between them. To this end, we place an angular constraint on the

lines `i and `j to preserve the parallelism i.e., the relative motion ci− cj has to be a

translation. Then we require the relative velocity at an arbitrary point p on `i (or
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`j) to be perpendicular to ~̀. This will hold if and only if

ci − cj = λ(~̀, 0), (6.3.0.7)

for some 0 6= λ ∈ R (see Figure 6.5b). In fact, (6.3.0.7) can be equivalently expressed

by the following two conditions:

ci − cj = is a translation, (6.3.0.8)

〈ci − cj , (~̀⊥, 0)〉 = 0, (6.3.0.9)

where ~̀⊥ is 90◦ counterclockwise rotation of ~̀ ∈ R2 in the plane. Therefore, the two

corresponding rows in the rigidity matrix are:

· · · Body Bi · · · Body Bj · · ·

· · · 0 · · · 0 0 1 · · · 0 · · · 0 0 -1 · · · 0 · · ·

· · · 0 · · · ~̀⊥ 0 · · · 0 · · · −~̀⊥ 0 · · · 0 · · ·

By (6.3.0.7), a line-line distance constraint is a point-point coincidence constraint

where the coincidence is at infinity. One can see this by comparing (6.3.0.7) with

(6.3.0.3).

Note that for line-line constraints, the two lines may be coincident. This will

neither change the constraint equations above nor the generic rigidity of the system

because the entries of the matrix in the corresponding rows remain the same for this

special position of lines. Also, we do not need to pay attention to the zeros in the

second row above as they are always paired with a red edge.

Now we have given the algebraic expression of body-cad constraints in the plane.

As we noticed the angular constraints are easy to identify in the rigidity matrix be-

cause of the pattern of zeros in the corresponding rows. This pattern combinatorially

distinguishes them from other constraints.
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We have now developed the infinitesimal theory for body-cad rigidity in the

plane. The following table summarizes cad constraints in terms of the number of

the primitive angular and non-angular constraints for each cad constraints.

Table 6.1: The number of angular and non-angular equations in each body-cad constraint

Point Line

angular non-angular angular non-angular

Point

distance 0 1 0 1

coincidence 0 2 0 1

Line

fixed angular 1 0

distance 1 1

6.4 Combinatorics

In this section we give a combinatorial characterization of the generic minimal rigid-

ity of cad graphs in the plane.

Associated to a cad graph (G = (V,E), c), there is a bicolored (red and black

edges) multigraph H = (V,B ∪R) obtained by assigning vertices to bodies and one

edge to each primitive cad constraint on bodies i and j such that the primitive an-

gular and non-angular constraints each correspond to two disjoint edge sets R and

B, respectively. This bicolored graph H = (V,E = B ∪ R) is called the primitive

cad graph. For example, the primitive cad graph of the framework in Figure 6.6a is

illustrated in Figure 6.6b.

The rigidity matrix of a body-cad framework in the plane with a primitive cad

graph H = (V,E = B ∪R) is a |E| × 3v matrix which has a row for every primitive

cad constraints, as described in the previous section. By the definition, a body-cad
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framework in the plane is infinitesimally minimally rigid if and only if its rigidity

matrix has the rank 3(v − 1).

A body-cad framework is called generically rigid if it is infinitesimally rigid for

some families of functions L1, . . . , L5 that assign the coordinates of points or lines

to the bodies corresponding to each geometric constraint (listed 1 to 5 in Section

6.2).

A body-cad framework is called generically minimally rigid if it is generically

rigid and the removal of any primitive constraint from the cad system (or an edge

from the associated primitive cad graph) would result in an infinitesimally flexible

framework. Equivalently, the rank of the cad rigidity matrix is 3(v − 1).

In the context of point-line frameworks in the plane, we saw that the indepen-

dence of angle constraints on lines is equivalent to the independence of the corre-

sponding edges in the cycle matroid of the subgraph containing those edges. This

followed from the pattern of 0, 1 . . . 0,−1 in the line-line edges in the rigidity ma-

trix (3.5.0.1). We had a similar pattern of 0’s and 1’s for angular constraints in

the cad rigidity matrix (red rows). This means that, given a primitive cad graph

H = (V,E = B ∪R), a set of red edges R′ ⊆ R is independent if and only if R′ is a

B2

B3

B1

p3

p4p2

p1

`3

`1

`2

α

(a) A body-cad framework in the

plane.

B1

B2 B3

(b) A primitive cad graph.

Figure 6.6: A body-cad framework and its primitive cad graph.
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forest on the vertex set V (R′).

However, if we assume there is any non-angular constraint in a body-cad struc-

ture then it is possible that they induce some angular constraint (red edges) in the

structure which makes the system dependent. The easiest example occurs when two

rigid bodies are linked by two parallel bars, see Figure 6.7a. The two parallel bars

linking bodies Bi and Bj have the coordinates of two parallel lines `1 = (d1, d2, d3)

and `2 = (d1, d2, d
′
3) in the plane up to a non-zero scalar multiple. Hence they

induce a red edge on the bodies Bi and Bj since the red edge is a non-trivial linear

combination of the two black rows:

Bi Bj

...

0 · · · 0 (d1, d2, d3) 0 · · · 0 −(d1, d2, d3) 0 · · · 0

0 · · · 0 (d1, d2, d
′
3) 0 · · · 0 −(d1, d2, d

′
3) 0 · · · 0

0 · · · 0 (0, 0, 1) 0 · · · 0 −(0, 0, 1) 0 · · · 0
...


,

So two parallel edges (distance constraints) with an angular constraint together

form a dependent set of constraints on two bodies. We have a similar situation in

the context of body-bar frameworks: if the lines containing three bars linking two

bodies are concurrent or parallel then the system is dependent. Two parallel bars

in 3-space and higher dimensions induce a red edge as well. A linear combination

of two parallel lines (bars) in 3-space is a red bar, which is a line at infinity in P3.

Note that a red bar in 3-space is characterized by its first three zero coordinates

(see [25]).

Figure 6.7b shows another example of black edges producing red edges, which

makes the entire system dependent. The black edges (bars) on the pairs of bodies

B1, B2 and B1, B3 induce a bar (the dotted line) on the bodies B2 and B3 which

happens to be parallel to the single bar that already exists on these bodies because

of the mirror symmetry. These constraints induce an angular constraint on B1 and
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B1

B2

(a)

B3
B2

B1

induced line

mirror

(b)

Figure 6.7: Dependent body-cad frameworks in the plane.

B3, which results in a dependent system.

We have a necessary condition for a generically independent body-cad system:

Proposition 6.4.1. A body-cad framework in the plane with the associated multi-

graph H = (V,E = B ∪ R) is generically minimally rigid only if |E| = 3v − 3 with

|R| ≤ v − 1 and |R′| ≤ |V (R′)| − 1, for non-empty subsets E′ ⊆ E and R′ ⊆ R.

Proof. A body-cad framework is minimally infinitesimally rigid if the rank of the

rigidity matrix is 3v − 3. For every non-empty subset E′ ⊆ E, the corresponding

rows in the cad rigidity matrix will be trivially satisfied by the 3-dimensional space

of infinitesimal rigid motions so |E′| ≤ 3|V (E′)| − 3. For any subset of red edges

R′ ⊆ R in E, consider the corresponding rows in the cad rigidity matrix and the last

column under each vertex in V (R′). This submatrix has a one dimensional space of

the rotational rigid motions in its kernel. This implies |R′| ≤ |V (R′)| − 1, for every

φ 6= R′ ⊆ R.

The conditions in the above proposition are not enough to detect independence

in the cad rigidity matroid. Figure 6.8 provides an example of a body-cad frame-

work satisfying the counting condition in Proposition 6.8 but it is not generically

minimally rigid because B1 may translate independently in the system. This exam-

ple shows that the edge set in the graph is dependent.
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B1

B2
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p1

p3

p2

`1

`3

B3
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q2
q1

(a) A flexible body-cad framework in the

plane.

B1

B2 B3

(b) The non-rigid primitive cad graph of

the framework in (a).

Figure 6.8: A flexible body-cad framework satisfying the counting condition in Proposition

6.4.1.

In order to give a combinatorial characterization of the generic rigidity of a

body-cad framework we follow the technique of White and Whiteley in [64] used

for body-bar frameworks to give a combinatorial criterion for their generic rigidity.

Based on this technique used for k-frames, (k, g)-frames for any integer g, k, g < k

and a combinatorial characterization of their rigidity is also given in [38] by A.

Lee-St.John and J. Sidman.

This technique constructs an abstract model (called frame) of the pattern of the

entries in the body-bar rigidity matrix in Rn and gives the combinatorial character-

istic of the generic independence in the rigidity matrix.

A (3, 1)-frame H(p) is a bicolored graph H = (V,B ∪ R) with a function p

that assigns a vector in R3 to every edge such that the first 2 components of these

vectors are zero for red edges (see [38]). Associated to each (3, 1)-frame is a matrix

M(H(p)) with e rows and 3v columns so that for a row e, p(e) is in the 3 columns

under i and −p(e) is in the 3 columns under j while the rest of the entries in row
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e are zero. A (3, 1)-frame is a general model of a typical cad rigidity matrix in

the plane. A (3, 1)-frame is a special case of a 3-frame in [64] when the first two

components of p(e) are zero if e ∈ R.

A (3, 1)-frame H(p) is minimally rigid if it becomes flexible after the removal

of any edge from H. Every minimally rigid (3, 1)-frame must have exactly 3v − 3

rows since the trivial motions are obviously in the kernel of the rigidity matrix. For

a similar reason we want the number of red edges to be at most v − 1. The cad

rigidity matrix is a (3v−3)×3v matrix, which is not square. Again following [64], we

append a 3× 3v matrix T (3) with the identity matrix in the first 3 columns and 0’s

everywhere else to the bottom of the cad rigidity matrix to form the basic tie-down

matrix (Figure 6.9). This augmented 3v × 3v matrix is denoted by MT (H(p)). A

(3, 1)-frame H(p) is called (3, 1)-counted if |E| = 3(v − 1).

N. White and W. Whiteley showed that a frame is minimally rigid if and only

if its tie-down matrix has a non-zero determinant (see [64, Proposition 2.5.]).

As a consequence of their result, we have,

Proposition 6.4.2. A (3, 1)-counted (3, 1)-frame H(p) is minimally rigid if and

only if det MT (H(p)) 6= 0.

Our proof below follows the same idea as used in [64] and later used in [38]

for (k, g)-frames2 to give a combinatorial description of the independence of the

constraints on rigid bodies. But the proof for the planar cad constraints reveals

some geometrically interesting results that are true only in the plane. Among them

is the fact that point-point coincidence constraints are included in the pattern of

(3, 1)-frames, without violating the combinatorial characterization.

Theorem 6.4.3. A body-cad framework in the plane with the primitive cad graph

H = (V,R ∪ B) is generically minimally rigid if and only if there is a set of black

2This was motivated by cad constraints in the space (without point-point coincidence con-

straints) which is a (6, 3)-frame.
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v1 v2 · · · vn

(3n− 3) rows


M

(3n−3)×3
A

(3n−3)×(3n−3)

3 rows

 I3 0
3×(3n−3)

Figure 6.9: The basic tie-down matrix MT (H).

edges B′ ⊆ B such that:

(a) R ∪B′ forms a spanning tree, and

(b) B\B′ is the edge-disjoint union of 2 spanning trees.

Proof. (→) If H = (V,R∪B) is a minimally rigid cad graph then det MT (H(p)) 6= 0,

for some p. Consider a Laplace expansion along the last 3 rows of MT (H(p)). Since

the only non-zero entries in these rows happen in the first 3 × 3 identity matrix

appearing in the tie-down in the first 3 columns, detMT (H(p)) = detA, where A

is the submatrix of MT (H(p)) formed by the first 3n− 3 rows and the last 3n− 3

columns (Figure 6.9). So detA 6= 0. Now consider a Laplace expansion of detA using

(v − 1) × (v − 1)-minors with respect to first columns, second columns and third

columns under each vertex i, i = 2, . . . , v. So detA is a sum of the terms of form

detA1.detA2.detA3 where for j = 1, 2, 3, Aj is an (v − 1) × (v − 1) submatrix of A

with the jth column under each of the v − 1 remaining vertices (the first vertex is

tie-down) and some choices of v − 1 rows. Since det A 6= 0 there is a non-zero term

in this expansion, meaning detA1.detA2.detA3 6= 0 for some (v−1)× (v−1) minors

A1, A2, A3. This implies that detA1, detA2, detA3 are all non-zero. Each submatrix

Aj has one column per vertex and the rows of Aj are just the rows of the incidence

matrix of an oriented graph on the edges of H multiplied by non-zero scalars. Since

det Aj is non-zero for j = 1, 2, 3, then Aj can be regarded as the incidence matrix
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of a subgraph of H with v− 1 edges and no cycles on v vertices. Thus Aj describes

a spanning tree Tj of H. Therefore A1, A2, A3 provides an edge-disjoint decomposi-

tion of E into 3 spanning trees. It is clear that red edges must fall into A3 because

the first two coordinates is always zero. This completes one direction of the proof.

(←) LetH be the generic (3, 1)-frame, whereH = (V,B∪R) is a (3, 1)-counted graph

satisfying conditions (a) and (b) above. We will show that det MT (H) is not identi-

cally zero, which means there exists a configuration p for which det MT (H(p)) 6= 0.

The idea is to provide a special p that decomposes det MT (H)(p) into blocks

A1, A2, A3, each of which corresponds to one of the trees (Figure 6.10) so that

the submatrices A1, A2 and A3 (in the manner mentioned above) become the

incidence matrices of the given trees. Then it is clear that this particular term

detA1.detA2.detA3 in the Laplace expansion of MT (H) is not zero because Ajs are

incidence matrices of some edge-disjoint spanning trees. To do this, we show that

we can write all the rows corresponding to the edges in tree T1 so that they look

like a non-zero scalar multiple of

· · · 0 · · · 1 0 0 · · · 0 · · · -1 0 0 · · · 0 · · ·

and all the rows corresponding to the edges in tree T2 so that they look like a non-

zero scalar multiple of

· · · 0 · · · x 1 0 · · · 0 · · · -x -1 0 · · · 0 · · ·

(x is arbitrary) and all the edges in tree T3 can be made look like a non-zero scalar

multiple of

· · · 0 · · · y z 1 · · · 0 · · · −y −z -1 · · · 0 · · ·
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where y, z could be zero or nonzero but the third coordinate should be non-zero. If

we show all this, then we can reorder and recover the rigidity matrix corresponding

to the multigraph G = T1 ∪ T2 ∪ T3 as follows: root every tree at a vertex, say

vertex 1. There is a matrix associated to G whose first n − 1 rows are constraints

(all in their new form as above) corresponding to the edges of T1 and second n− 1

rows are constraints corresponding to the edges of T2 and third n − 1 rows are

constraints corresponding to the edges of T3. We regard vertex 1 as the tie-down

vertex in this matrix. So we have recovered a matrix MT (G) similar to the one

in the first part of the proof and a submatrix A of it exactly as explained before.

Now reorder the columns of the submatrix A so that its first n − 1 columns are

the first columns under each vertex 2, . . . , n and its second n − 1 columns are the

second columns under each vertex 2, . . . , n and its third n− 1 columns are the third

columns under each vertex 2, . . . , n. According to the new form designed for the

constraints the reordered matrix A will look like as in Figure 6.10. The determinant

of A is detA1.detA2.detA3 which is nonzero and it is the only non-zero term in the

Laplace expansion of A because if you pick the rows in any arrangement other than

the one described above we will get a zero row in at least one of the minors located

in the place of Ai in Figure 6.10 and then the whole term would be zero.

Now if we look at the equations for all kinds of constraints we will recognize that

we can achieve the new form described before for cad constraints.

All edges corresponding to angular constraints can only belong to the “red tree”

T3 because they all are of the form (0, 0, 1).

In point-point coincidence case, the expressions are of the form

(p1, p2, 1) ∨ (1, 0, 0) = (0, 1,−p2),

or

(p1, p2, 1) ∨ (0, 1, 0) = (1, 0,−p1).

The first row can be a member of T2 or T3 if we choose the point p = (0, 0, 1)
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A1 0
(n−1)×(n−1)

0
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(n−1)×(n−1)

Z
(n−1)×(n−1) A3

Figure 6.10: The rearrangement of the rows and columns of the matrix A.

or p = (0, 1, 1), respectively. The second one can be a member of T1 if we choose

p = (0, 0, 1) or T3 if we choose p = (1, 0, 1).

For point-point distance case, p ∨ q could belong to T1 if we choose p = (0, 1, 1)

and q = (0, 0, 1) or it could belong to T2 if we choose p = (1, 0, 1) and q = (0, 0, 1)

or it could belong to T3 if we choose p = (1, 0, 1), q = (0, 1, 1).

For point-line distance with ` = (d1, d2, d3), the expression is of the form

p ∨ (d1, d2, 0) = (−d2, d1, p1d2 − p2d1),

which can be a member of T1 if we choose ` = (0, 1, 0), p = (0, 0, 1) or T2 if we choose

` = (1, 0, 0), p = (0, 0, 1) or T3 if we choose p = (1, 0, 1), ` = (0, 1, 0).

For line-line distance case, one of the rows is a red row so it will belong to T3.

The second row is of the form (−d2, d1, 0), which could be in T1 if ` = (1, 0, 0) or in

T2 if ` = (0, 1, 0). This completes the proof.

Two examples of rigid cad graphs are shown in Figure 6.11. The graphs are de-

composed into 3 edge-disjoint spanning trees whose edges are shown by solid lines,

dashed lines and dotted lines. Black edges (dashed and dotted) form two edge-

disjoint trees and three red edges along with the bolded black edge form the red
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Figure 6.11: Minimally rigid body-cad primitive graphs.

tree.

In summary, the three points (1, 0, 1), (0, 1, 1), (0, 0, 1) together with the two lines

(1, 0, 0), (0, 1, 0) and the line at infinity (0, 0, 1) are enough to obtain an independent

set of cad constraints.

Even though a point-point coincidence constraint in the plane fits into the com-

binatorial characterization of the generic rigidity of a cad system in the plane by

Theorem 6.4.3, this constraint poses a major problem in 3-space if it is included in

the system so that it has to be excluded for the list of the constraints that obey the

3D combinatorial criterion of the rigidity. A famous example of this is the double

banana (Figure 6.14a), which is composed of two rigid bodies in space with two

point-point coincidence constraints on them. The double banana is flexible because

the two coincident points allow a hinge motion along the line connecting the two

points. The combinatorial criterion in [38] fails to detect the flexibility of this struc-

ture.

The next section shows how the flexibility of a class of 3D structures with point-

point coincidence constraints can be determined combinatorially using Theorem

6.4.3.
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6.5 Special body-bar frameworks with point-point co-

incidence constraints in E2 and E3

The idea of using the projective invariance of the first-order rigidity of structures is

the main theme of this section as well as the entire thesis. As usual, we use spheres

to express this idea.

Rigid bodies on the sphere can be imagined as a collection of (infinitely many)

points on S2 that are rigidly attached to each other. Infinitesimal rigid motions on

S2 are the infinitesimal rigid motions in E3 that fix the origin i.e., the rigid motions

of E3 whose axes are through the origin.

Hence infinitesimal rigid motions on sphere can be presented by a 3-vector c =

(c1, c2, c3) in R3 where the center is the point c/‖c‖ on sphere and the induced

motion at a point p ∈ S2 ⊆ R3 is c ∨ p as shown in Figure 2.4. So the center

of the infinitesimal rigid motions are projected the center of the motion of a rigid

body in S2. For points p, q ∈ A2, p ∨ q is a scalar multiple of p/‖p‖ ∨ q/‖q‖ for the

points p/‖p‖ and q/‖q‖ on S2. Therefore, the infinitesimal rigidity of a body-bar

framework in the plane is equivalent to that of the projected body-bar framework

on the sphere because the rigidity matrix of one framework is obtained from the

other by some scalar multiple of the rows.

In the case of body-cad structures in the plane where there are some lines in-

volved, we can use our correspondence between points and lines (used in the previous

chapters) to project lines to the points on the equator of S2. All the constraints

involving lines in Section 6.3 show that a line could be replaced by a point at infinity.

Suppose H(p) is a body-cad framework in the plane with v bodies where p

is an assignment of points and lines to rigid bodies corresponding to each body-

cad constraint in the plane. The projection of a point p to p/‖p‖ on the upper

hemisphere and a line ` = (~̀, d) to the point (~̀, 0)/‖~̀‖ on the equator gives rise to

a body-bar framework on the sphere whose rigidity is equivalent to H(p). We call
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this body-bar framework the projection of the body-cad framework H(p) into the

sphere. We denote it by H(p̂).

Note that point-point distance or coincidence constraints remain the same point-

point distance or coincidence constraints on the projected points on the upper

hemisphere under the central projection. A line-line angular constraint on two

non-parallel lines `1 = ( ~̀1, d1) and `1 = ( ~̀2, d2) becomes a point-point distance

constraint on the points ( ~̀1, 0)/‖ ~̀1‖ and ( ~̀2, 0)/‖ ~̀2‖, on the equator of S2 (because

( ~̀1, 0)/‖ ~̀1‖∨( ~̀2, 0)/‖ ~̀2‖ is a scalar multiple of (0, 0, 1).) A planar point-line distance

constraint is a point-point distance constraint on a point in S2
+ with a point on the

equator on sphere after appropriate rescaling (see 6.3.0.6). By comparing (6.3.0.7)

and (6.3.0.3), we see that a line-line distance constraint in the plane becomes a

point-point coincidence constraint on the equator of the sphere after projection.

This shows that H(p̂) is a body-bar framework with some point-point coincidence

constraints. Under a rigid motion of the sphere, the configuration p̂ may be re-

placed by a new configuration q̂ of a body-bar framework in S2
+ with arbitrary

point-point coincidence constraints in addition to a set of collinear point-point dis-

tance and point-point coincidence constraints. Projecting this spherical body-bar

framework back to the plane, we obtain an equivalently infinitesimally rigid body-

bar framework with point-point distance and coincidence constraints with collinear

attachments.

This leads us to the following definition:

Definition 6.5.1. Given a body-bar framework in the plane with point-point co-

incidence constraints and a set of collinear point-point distance or coincidence con-

straints, its primitive bicolored multigraph H = (V,R ∪B) is a multigraph with no

loops whose edge set is partitioned into two subsets R and B such that

(a) there is an edge incident to the vertices i and j for every point-point distance

constraint on the bodies Bi and Bj .

(b) there is a parallel edge incident to the vertices Bi and Bj per each point-point
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(a) Bodies B2 and B3 are coincident at p.

B1

B2

B3

p

B4

(b) An infinitesimally rigid framework

with collinear and coincidence constraint

at p.

Figure 6.12: Planar body-bar frameworks with collinear bars.

coincidence constraint on the bodies Bi and Bj .

where R contains all collinear edges (point-point distance constraints), plus one

edge (of the parallel edges) per each point-point coincidence constraint on the line

containing the collinear edges.

By Theorem 6.4.3, we have

Theorem 6.5.1. A body-bar framework with coincidence constraints, one set of

collinear edges and coincidences in the plane whose primitive multigraph is H =

(V,R∪B) is minimally rigid if and only if there is a set of edges B′ ⊆ B such that:

(a) R ∪B′ forms a spanning tree, and

(b) B\B′ is the edge-disjoint union of 2 spanning trees.

Example 6.5.1. Figure 6.12a shows a body-bar framework with a point-point coin-

cidence constraint at the point p on bodies B2 and B3. The rigidity of this framework

is equivalent to the rigidity of the body-cad framework shown in Figure 6.8a. Its

primitive graph is the same as the graph in Figure 6.6b, which is infinitesimally

rigid.

Figure 6.12b shows another infinitesimally rigid body-bar framework whose graph

is illustrated in Figure 6.11b, with 2 collinear bars on 3 collinear points on the dashed

line.
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We conclude this chapter with an application of Theorem 6.5.1.

Given a body-bar framework in E2, it corresponds to a body-bar framework in

E3 by coning3 as follows: place the body-bar framework in the affine plane x3 = 1

then connect every rigid body in the plane to the origin of R3 using three non-

coplanar bars. This is a rigid body in the space. This body-bar framework is called

the coning body-bar framework of a planar body-bar framework. These bodies share

a single point in the space and are connected according to the multigraph of the

corresponding body-bar framework in the plane.

The coning operation preserves the rigidity of body-bar frameworks. Up to a

translation of the entire space, we can assume that the rigid motions for every rigid

body is a pure rotation around an axis through the common point. So very motion

of the 2D body-bar framework is a motion of the coning body-bar framework in a

natural way. These frameworks may have a set of bars or coincidence constraints

coplanar. A primitive multigraph for these frameworks is a bicolored multigraph

H = (G,R ∪ B) whose edge-set is partitioned into two sets R and B where R

contains the coplanar edges along with one edge incident to the pair of bodies with

a coincidence constraint at a point on the plane and B contains the rest of the edges.

Theorem 6.5.2. A coning body-bar framework in the space with point-point coin-

cidences, some coplanar set of point-point coincidence constraints and bars with the

primitive multigraph H = (G,R ∪ B) is minimally rigid in the space if and only if

there is a set of edges B′ ⊆ B such that:

(a) R ∪B′ forms a spanning tree, and

(b) B\B′ is the edge-disjoint union of 2 spanning trees.

The famous double banana is an example of a coning body-bar framework with

a single coincidence constraint which has one degree of freedom. Its primitive multi-

3The idea of coning has been used in the context of bar-joint frameworks in [13], [66], [54].
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(a) A minimally rigid body-bar frame-

work with coincidence constraints in the

space.

B1

B2 B3

(b) The primitive multigraph of the

framework in (a).

Figure 6.13: Rigid frameworks with a common point in E3.

graph has two vertices with parallel edges on them. This predicts one degree of

freedom.

(a) Double banana: a flexible framework

in 3-space.

B1

B2

(b) The primitive multigraph of Double

Banana.

Figure 6.14: Flexible body-bar frameworks in 3-space.

Figure 6.13a shows three rigid bodies in the space with a common points. The

point p is a coincidence constraint of two bodies and the primitive graph is shown

in Figure 6.14b.

The results of this section are part of a core idea followed in this thesis. The

projective invariance of the first-order rigidity allowed us to switch between different
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types of constraints and as a result, we could transfer our findings about one set

of constraints into another set. Angular constraints provide a pattern of zeros that

distinguish them from other constraints. This distinction helped us understand

coincidence constraints for special cases in plane and space.

Understanding the combinatorics of point-point coincidences in 3D is more dif-

ficult. A plane-plane constraint in 3D has two red edges and one black (see [25]).

Two plane-plane distance constraints on two bodies leave one degree of freedom for

the bodies just like any two coincidence constraints on two bodies in the space. In

the first case it is a translational motion (a rotation at infinity) and in the second

case it is a rotational motion. Both types impose 6 primitive constraints on two

bodies but in the case of plane-plane distance constraints, the combinatorial crite-

rion (Theorem 2.7.2) is able to detect this flexibility while there is no criterion to

detect the flexibility of the two point-point constraints.

We expect that there is connection between these two cases and we anticipate

Theorem 2.7.2 can help us understand the point-point coincidence constraints in

3D for a larger class of frameworks (compared to Theorem 6.5.2). This could lie in

the fact that a plane-plane distance constraint can be exchanged by a point-point

coincidence constraint (and some others correspondingly). However this does not

include arbitrary point-point coincidences in the space. To tackle the general case,

we need a deeper understanding of the geometry of these constraints in the space.
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Chapter 7

Future work

In this chapter we briefly outline some possible directions for the future work that

is stimulated by the present work. The thesis provides a valuable simple geomet-

ric insight into the rigidity of point-hyperplane frameworks by linking this type of

frameworks to bar-joint frameworks, as a special case. Based on this, it becomes

natural and easier to apply the methods and techniques available to bar-joint frame-

works to explore some fundamental questions about point-hyperplane frameworks.

7.1 Inductive constructions of isostatic point-line graphs

In general, inductive methods are of extreme importance in Rigidity Theory as many

proofs and results rely on inductive constructions.

The first fundamental problem is to develop inductive methods for isostatic point-

line graphs. As it was remarked in Chapter 3, Henneberg moves do not always

preserve the minimal rigidity of point-line frameworks if they are simply applied to

point-line frameworks as bar-joint frameworks. This is because the special geometry

of point-line frameworks as was explained. At the first glance, removing a 3-valent

vertex might require us to go deeper into the graph to find an edge to replace the

176



3-valent vertex. It is not clear to us how to definitely find the appropriate edge for

substitution. This makes it harder to develop an inductive method because we need

to be able to move backward in an inductive process.

In the proof of the result that certifies the edge-split as an inductive move for

bar-joint frameworks, the new 3-valent vertex splitting an edge is placed on the line

connecting the two adjacent vertices. In general, there are bad positions [63] of the

new vertex that makes an edge-split move fail for bar-joint frameworks. This poses

a potential problem for an edge-split move in a point-line framework if we need to

split an edge by a line-vertex, as we saw in Figure 3.6 . This is again due to the

special geometry of a generic point-line configuration.

Another important step to take is to understand other inductive methods for

point-lines such as X-replacement and vertex-split [71].

7.2 Global rigidity of point-line configurations

A fundamental geometric problem in Rigidity Theory is known as Global Rigidity,

which is concerned with whether a configuration of points with a set of pairwise

fixed distances has a unique realization (up to congruence) in En. Namely, given a

bar-joint framework (G,p) in En if for any framework (G,q) in En where ‖pi−pj‖ =

‖qi − qj‖ for all ij ∈ E, q is congruent to p then (G,p) is called globally rigid. It

turns out that global rigidity is a generic property of a graph meaning, almost all

realizations of a globally rigid graph are globally rigid frameworks. Usually, the

term ‘generic global rigidity’ is used in this case. The generic global rigidity of

bar-joint frameworks has found characterizations for generic configurations in En.

We refer the reader to [28], [31], [9], [22] to see layers of results towards the final

characterization of generic global rigidity.

First, inductive proofs play an important role in the derivation of the results in

global rigidity. Also, some critical techniques used to tackle global rigidity origi-

nated from the study of tensegrity frameworks (see [9] by Connelly).
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p1 p2

`1 `2 `3

(a) Not globally rigid point-

line framework.

`3`2`1

p1

p2

(b) A globally rigid point-

line framework.

`4`3`2`1

p1

p2

(c) Not globally rigid point-

line framework.

Figure 7.1: Generic global rigidity of point-line frameworks.

It is natural to ask about global rigidity of point-hyperplane frameworks in En.

Is it a generic property of the graph? If yes, find a characterization of generic global

rigidity of point-hyperplane configurations in En. This is a major step towards the

completion of the understanding of the global geometric rigidity of point-hyperplane

graphs. Note that in the whole thesis we have considered generic point-hyperplane

frameworks. This condition does not allow parallel hyperplanes and therefore, it

rules out hyperplane-hyperplane distance constraints in the generic rigidity and

generic global rigidity of point-hyperplane frameworks.

Of course, a class of global rigidity theorems assume genericity of the configura-

tions. It should be studied how much these conditions could be relaxed in general,

because generic point-hyperplane configurations are non-generic bar-joint configu-

rations at infinitesimal level. The stress matrix technique by Connelly [9] has been

extensively used to determine the global rigidity of bar-joint frameworks. The ques-

tion is: can we applying this technique to the problem of the global rigidity of

generic point-hyperplane frameworks? Do we need to extend this technique?

In the key paper [13], R. Connelly and W. Whiteley proved that a bar-joint graph

is generically globally rigid in En if and only if it is generically globally rigid in Sn. As
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the Pogorelov map has played a crucial role in derivation of the results in [13] and an

extension of it in this thesis, the natural question is: can we extend the techniques in

[13] to extract results on the global rigidity of generic point-hyperplane frameworks?

Although the study of the global rigidity needs more sophisticated tools compared to

the study of infinitesimal rigidity but averaging and de-averaging of bar-joint frame-

works is used as a tool in [13] to relate these two concepts. We expect that it is useful

to develop the analogous average and de-average point-hyperplane frameworks to

get a better understanding of global rigidity of point-hyperplane frameworks.

Regarding to the Spherical-Euclidean correspondence between point-hyperplane

and bar-joint frameworks, we recall that different but equivalent point-hyperplane

frameworks correspond to the same bar-joint framework in Sn. This means the

translation of hyperplanes is not directly detected by this correspondence as opposed

to the relative rotational motions of hyperplanes that is directly reflected in its

projective bar-joint framework in Sn.

Figure 7.1a shows a graph that is globally rigid as a bar-joint graph but as a

point-line graph it is not even rigid. In fact, it is flexible as line `2 may translate

independently. Therefore, it can not be globally rigid.

The graph shown in Figure 7.1b is generically globally rigid as a bar-joint graph.

But, it is generically infinitesimally rigid (and rigid) as a point-line graph. It is also

globally rigid as a point-line graph.

Figure 7.1c shows an infinitesimally rigid point-line graph that is not globally

rigid because line `3 can change its side with respect to the point p2. This means

`3 may change its orientation with respect to point p2. On the other hand, the

stress on the edge {p2, `3} is zero. The graph is not generically globally rigid as a

point-line graph.

As it is pointed out in [13] affine (and therefore, projective) transformations

do not preserve global rigidity of bar-joint frameworks, in general. But there are
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(a) A singular point-line configura-

tion with mirror symmetry.

(b) A point-line configuration with

3-fold rotational symmetry.

Figure 7.2: Symmetry in point-line configurations.

situations in which projective transformations preserve global rigidity. This might

also be helpful to transfer the results on global rigidity of bar-joint frameworks to

point-hyperplane frameworks.

7.3 Symmetry and point-hyperplane frameworks

The idea of symmetry is fundamental in geometry and science. In addition, sym-

metric structures are common in our surrounding. Symmetric bar-joint frameworks

have drawn a lot of attention in Geometric Rigidity Theory and been considered

for various types of frameworks. Symmetry is usually viewed from two perspec-

tives with respect to the motion of the framework: The configuration tolerate some

kind of symmetry (such as mirror symmetry, rotational symmetry) at a moment

but the symmetry might break during the motion (incidental symmetry). On the

other hand, there are symmetric structures that maintain their symmetry during

the motions (forced symmetry). B. Schulze and W. Whiteley [55] introduced the

orbit matrix as a tool to study forced symmetric flexes of a bar-joint framework.

The concepts of incidence symmetric and forced-symmetric frameworks can also
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be considered for point-hyperplane frameworks in En. As usual, the presence of

symmetry in the incidence structure of a point-hyperplane framework may result in

infinitesimal flexibility or even flexibility.

Figure 7.2a shows a point-line framework with mirror symmetry. The incidental

symmetry causes singularity and therefore infinitesimal flexibility. But the frame-

work remains rigid.

Figure 7.2b shows a point-line configuration in the plane with 3-fold rotational

symmetry. It is infinitesimally flexible and flexible (see Chapter 3). The red vectors

show the rotational motion of the lines relative to the triangle of points. The lines

may symmetrically rotate around the three vertices of the triangle. This point-line

framework corresponds to a bar-joint framework on the sphere with an equilateral

triangle in S2
+ and a collinear triangle on the equator with rotation symmetry about

the north pole. The motions shown in Figure 7.2b have correspondence for the

spherical framework with rotational symmetry as well (see Chapter 3). Note that

both frameworks have one degree of freedom and maintain the symmetry of the

motion at any moment. The point-line configuration is regular point of the graph

so this infinitesimal motion must lead to a finite motion module a rigid motion of

the plane, which has rotational symmetry as well.

The Spherical-Euclidean correspondence of first-order flexes of point-hyperplane

and bar-joint frameworks given in this thesis is a great help to understand the

symmetric rigidity of point-line frameworks. This correspondence for symmetric

bar-joint frameworks has been explored in [54] through conning. It remains to

extend these connections to the context of point-hyperplane frameworks in En.

Point-line motions are more complex in general. Considering that the symme-

tries of a point-hyperplane configuration are expected to respect point-vertices and

hyperplane-vertices we have more restricted symmetries in the category of generic

point-hyperplane frameworks. For example, in the plane, half-turn symmetry would

require the existence of parallel lines which is a non-generic point-line configuration
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as far as we were concerned in this thesis.

Again this raises the significance of the study of point-hyperplane frameworks

with parallel hyperplanes. These frameworks are common and natural. In addi-

tion, their infinitesimal rigidity is equivalent to the infinitesimal rigidity of bar-joint

frameworks with coincident joints, as explained before. It sounds very natural to

tackle the problem for easier cases such as fixed-normal hyperplanes before facing

the general problem. Namely, point-hyperplane frameworks with parallel hyper-

planes where the hyperplanes are restricted to maintain their normal, which is an

important special case as well.
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